Sample records for smpd1 mutations causing

  1. The p.L302P mutation in the lysosomal enzyme gene SMPD1 is a risk factor for Parkinson disease

    PubMed Central

    Gan-Or, Ziv; Ozelius, Laurie J.; Bar-Shira, Anat; Saunders-Pullman, Rachel; Mirelman, Anat; Kornreich, Ruth; Gana-Weisz, Mali; Raymond, Deborah; Rozenkrantz, Liron; Deik, Andres; Gurevich, Tanya; Gross, Susan J.; Schreiber-Agus, Nicole; Giladi, Nir; Bressman, Susan B.

    2013-01-01

    Objective: To study the possible association of founder mutations in the lysosomal storage disorder genes HEXA, SMPD1, and MCOLN1 (causing Tay-Sachs, Niemann-Pick A, and mucolipidosis type IV diseases, respectively) with Parkinson disease (PD). Methods: Two PD patient cohorts of Ashkenazi Jewish (AJ) ancestry, that included a total of 938 patients, were studied: a cohort of 654 patients from Tel Aviv, and a replication cohort of 284 patients from New York. Eight AJ founder mutations in the HEXA, SMPD1, and MCOLN1 genes were analyzed. The frequencies of these mutations were compared to AJ control groups that included large published groups undergoing prenatal screening and 282 individuals matched for age and sex. Results: Mutation frequencies were similar in the 2 groups of patients with PD. The SMPD1 p.L302P was strongly associated with a highly increased risk for PD (odds ratio 9.4, 95% confidence interval 3.9–22.8, p < 0.0001), as 9/938 patients with PD were carriers of this mutation compared to only 11/10,709 controls. Conclusions: The SMPD1 p.L302P mutation is a novel risk factor for PD. Although it is rare on a population level, the identification of this mutation as a strong risk factor for PD may further elucidate PD pathogenesis and the role of lysosomal pathways in disease development. PMID:23535491

  2. Spectrum of SMPD1 mutations in Asian-Indian patients with acid sphingomyelinase (ASM)-deficient Niemann-Pick disease.

    PubMed

    Ranganath, Prajnya; Matta, Divya; Bhavani, Gandham SriLakshmi; Wangnekar, Savita; Jain, Jamal Mohammed Nurul; Verma, Ishwar C; Kabra, Madhulika; Puri, Ratna Dua; Danda, Sumita; Gupta, Neerja; Girisha, Katta M; Sankar, Vaikom H; Patil, Siddaramappa J; Ramadevi, Akella Radha; Bhat, Meenakshi; Gowrishankar, Kalpana; Mandal, Kausik; Aggarwal, Shagun; Tamhankar, Parag Mohan; Tilak, Preetha; Phadke, Shubha R; Dalal, Ashwin

    2016-10-01

    Acid sphingomyelinase (ASM)-deficient Niemann-Pick disease is an autosomal recessive lysosomal storage disorder caused by biallelic mutations in the SMPD1 gene. To date, around 185 mutations have been reported in patients with ASM-deficient NPD world-wide, but the mutation spectrum of this disease in India has not yet been reported. The aim of this study was to ascertain the mutation profile in Indian patients with ASM-deficient NPD. We sequenced SMPD1 in 60 unrelated families affected with ASM-deficient NPD. A total of 45 distinct pathogenic sequence variants were found, of which 14 were known and 31 were novel. The variants included 30 missense, 4 nonsense, and 9 frameshift (7 single base deletions and 2 single base insertions) mutations, 1 indel, and 1 intronic duplication. The pathogenicity of the novel mutations was inferred with the help of the mutation prediction software MutationTaster, SIFT, Polyphen-2, PROVEAN, and HANSA. The effects of the identified sequence variants on the protein structure were studied using the structure modeled with the help of the SWISS-MODEL workspace program. The p. (Arg542*) (c.1624C>T) mutation was the most commonly identified mutation, found in 22% (26 out of 120) of the alleles tested, but haplotype analysis for this mutation did not identify a founder effect for the Indian population. To the best of our knowledge, this is the largest study on mutation analysis of patients with ASM-deficient Niemann-Pick disease reported in literature and also the first study on the SMPD1 gene mutation spectrum in India. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Smpd3 Expression in both Chondrocytes and Osteoblasts Is Required for Normal Endochondral Bone Development

    PubMed Central

    Li, Jingjing; Manickam, Garthiga; Ray, Seemun; Oh, Chun-do; Yasuda, Hideyo; Moffatt, Pierre

    2016-01-01

    Sphingomyelin phosphodiesterase 3 (SMPD3), a lipid-metabolizing enzyme present in bone and cartilage, has been identified to be a key regulator of skeletal development. A homozygous loss-of-function mutation called fragilitas ossium (fro) in the Smpd3 gene causes poor bone and cartilage mineralization resulting in severe congenital skeletal deformities. Here we show that Smpd3 expression in ATDC5 chondrogenic cells is downregulated by parathyroid hormone-related peptide through transcription factor SOX9. Furthermore, we show that transgenic expression of Smpd3 in the chondrocytes of fro/fro mice corrects the cartilage but not the bone abnormalities. Additionally, we report the generation of Smpd3flox/flox mice for the tissue-specific inactivation of Smpd3 using the Cre-loxP system. We found that the skeletal phenotype in Smpd3flox/flox; Osx-Cre mice, in which the Smpd3 gene is ablated in both late-stage chondrocytes and osteoblasts, closely mimics the skeletal phenotype in fro/fro mice. On the other hand, Smpd3flox/flox; Col2a1-Cre mice, in which the Smpd3 gene is knocked out in chondrocytes only, recapitulate the fro/fro mouse cartilage phenotype. This work demonstrates that Smpd3 expression in both chondrocytes and osteoblasts is required for normal endochondral bone development. PMID:27325675

  4. Seven novel mutations of the SMPD1 gene in four Chinese patients with Niemann-Pick disease type A and prenatal diagnosis for four fetuses.

    PubMed

    Ding, Yuan; Li, Xiyuan; Liu, Yupeng; Hua, Ying; Song, Jinqing; Wang, Liwen; Li, Mengqiu; Qin, Yaping; Yang, Yanling

    2016-04-01

    Niemann-Pick disease type A (NPD-A) is a rare autosomal recessive lysosomal storage disorder caused by acid sphingomyelinase deficiency. Only a few cases have been documented in mainland China, and prenatal diagnosis has not been performed to date. In this study, the clinical and laboratory features of four Chinese patients with early-onset NPD-A were summarized. Four patients with NPD-A were the firstborns of non-consanguineous parents from four unrelated Chinese families. Bone marrow analysis, acid sphingomyelinase assay and genetic studies were performed. SMPD1 gene studies on amniocytes were performed for the prenatal diagnosis of four fetuses from three families. Four patients were admitted at the age of 1-10 months due to jaundice, hepatosplenomegaly and psychomotor retardation. Liver histopathological analysis revealed glucolipid accumulation. Massive foamy histiocytes were found in the bone marrow. Acid sphingomyelinase activities of peripheral blood leukocytes were significantly decreased (4.05-21.9 nmol/h/mg protein, normal range 216.1-950.9 nmol/h/mg protein). Seven novel mutations (c.518-519insT, c.562_563insC, c.792Gdel, c.949G>A, c.1487_1499delACCGTGTGTACCA, c.1495T>C and c.1670T>C) of the SMPD1 gene were identified in four patients. Only one fetus had two mutations of the SMPD1 gene of amniocytes. The results suggested that the fetus was affected by NPD-A. The mother chose artificial abortion. The other three fetuses were not affected by NPD-A. No mutation of the SMPD1 gene was detected in the cultured amniocytes from the mothers. Postnatal genetic analysis and normal development of the three infants confirmed the prenatal diagnosis. Seven novel mutations associated with NPD-A were identified in the Chinese population. Prenatal diagnosis for four fetuses of three families was successfully performed by amniocyte gene analysis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Four Novel p.N385K, p.V36A, c.1033–1034insT and c.1417–1418delCT Mutations in the Sphingomyelin Phosphodiesterase 1 (SMPD1) Gene in Patients with Types A and B Niemann-Pick Disease (NPD)

    PubMed Central

    Manshadi, Masoumeh Dehghan; Kamalidehghan, Behnam; Keshavarzi, Fatemeh; Aryani, Omid; Dadgar, Sepideh; Arastehkani, Ahoora; Tondar, Mahdi; Ahmadipour, Fatemeh; Meng, Goh Yong; Houshmand, Massoud

    2015-01-01

    Background: Types A and B Niemann-Pick disease (NPD) are autosomal-recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene. Methods: In order to determine the prevalence and distribution of SMPD1 gene mutations, the genomic DNA of 15 unrelated Iranian patients with types A and B NPD was examined using PCR, DNA sequencing and bioinformatics analysis. Results: Of 8 patients with the p.G508R mutation, 5 patients were homozygous, while the other 3 were heterozygous. One patient was heterozygous for both the p.N385K and p.G508R mutations. Another patient was heterozygous for both the p.A487V and p.G508R mutations. Two patients (one homozygous and one heterozygous) showed the p.V36A mutation. One patient was homozygous for the c.1033–1034insT mutation. One patient was homozygous for the c.573delT mutation, and 1 patient was homozygous for the c.1417–1418delCT mutation. Additionally, bioinformatics analysis indicated that two new p.V36A and p.N385K mutations decreased the acid sphingomyelinase (ASM) protein stability, which might be evidence to suggest the pathogenicity of these mutations. Conclusion: with detection of these new mutations, the genotypic spectrum of types A and B NPD is extended, facilitating the definition of disease-related mutations. However, more research is essential to confirm the pathogenic effect of these mutations. PMID:25811928

  6. Sphingomyelin phosphodiesterase-1 (SMPD1) coding variants do not contribute to low levels of high-density lipoprotein cholesterol

    PubMed Central

    Dastani, Zari; Ruel, Isabelle L; Engert, James C; Genest, Jacques; Marcil, Michel

    2007-01-01

    Background Niemann-Pick disease type A and B is caused by a deficiency of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase-1 (SMPD1) gene. In Niemann-Pick patients, SMPD1 gene defects are reported to be associated with a severe reduction in plasma high-density lipoprotein (HDL) cholesterol. Methods Two common coding polymorphisms in the SMPD1 gene, the G1522A (G508R) and a hexanucleotide repeat sequence within the signal peptide region, were investigated in 118 unrelated subjects of French Canadian descent with low plasma levels of HDL-cholesterol (< 5th percentile for age and gender-matched subjects). Control subjects (n = 230) had an HDL-cholesterol level > the 25th percentile. Results For G1522A the frequency of the G and A alleles were 75.2% and 24.8% respectively in controls, compared to 78.6% and 21.4% in subjects with low HDL-cholesterol (p = 0.317). The frequency of 6 and 7 hexanucleotide repeats was 46.2% and 46.6% respectively in controls, compared to 45.6% and 49.1% in subjects with low HDL-cholesterol (p = 0.619). Ten different haplotypes were observed in cases and controls. Overall haplotype frequencies in cases and controls were not significantly different. Conclusion These results suggest that the two common coding variants at the SMPD1 gene locus are not associated with low HDL-cholesterol levels in the French Canadian population. PMID:18088425

  7. Neutral sphingomyelinase (SMPD3) deficiency disrupts the Golgi secretory pathway and causes growth inhibition

    PubMed Central

    Stoffel, Wilhelm; Hammels, Ina; Jenke, Bitta; Binczek, Erika; Schmidt-Soltau, Inga; Brodesser, Susanne; Schauss, Astrid; Etich, Julia; Heilig, Juliane; Zaucke, Frank

    2016-01-01

    Systemic loss of neutral sphingomyelinase (SMPD3) in mice leads to a novel form of systemic, juvenile hypoplasia (dwarfism). SMPD3 deficiency in mainly two growth regulating cell types contributes to the phenotype, in chondrocytes of skeletal growth zones to skeletal malformation and chondrodysplasia, and in hypothalamic neurosecretory neurons to systemic hypothalamus–pituitary–somatotropic hypoplasia. The unbiased smpd3−/− mouse mutant and derived smpd3−/− primary chondrocytes were instrumental in defining the enigmatic role underlying the systemic and cell autonomous role of SMPD3 in the Golgi compartment. Here we describe the unprecedented role of SMPD3. SMPD3 deficiency disrupts homeostasis of sphingomyelin (SM), ceramide (Cer) and diacylglycerol (DAG) in the Golgi SMPD3-SMS1 (SM-synthase1) cycle. Cer and DAG, two fusogenic intermediates, modify the membrane lipid bilayer for the initiation of vesicle formation and transport. Dysproteostasis, unfolded protein response, endoplasmic reticulum stress and apoptosis perturb the Golgi secretory pathway in the smpd3−/− mouse. Secretion of extracellular matrix proteins is arrested in chondrocytes and causes skeletal malformation and chondrodysplasia. Similarly, retarded secretion of proteo-hormones in hypothalamic neurosecretory neurons leads to hypothalamus induced combined pituitary hormone deficiency. SMPD3 in the regulation of the protein vesicular secretory pathway may become a diagnostic target in the etiology of unknown forms of juvenile growth and developmental inhibition. PMID:27882938

  8. Neutral sphingomyelinase (SMPD3) deficiency disrupts the Golgi secretory pathway and causes growth inhibition.

    PubMed

    Stoffel, Wilhelm; Hammels, Ina; Jenke, Bitta; Binczek, Erika; Schmidt-Soltau, Inga; Brodesser, Susanne; Schauss, Astrid; Etich, Julia; Heilig, Juliane; Zaucke, Frank

    2016-11-24

    Systemic loss of neutral sphingomyelinase (SMPD3) in mice leads to a novel form of systemic, juvenile hypoplasia (dwarfism). SMPD3 deficiency in mainly two growth regulating cell types contributes to the phenotype, in chondrocytes of skeletal growth zones to skeletal malformation and chondrodysplasia, and in hypothalamic neurosecretory neurons to systemic hypothalamus-pituitary-somatotropic hypoplasia. The unbiased smpd3-/- mouse mutant and derived smpd3-/- primary chondrocytes were instrumental in defining the enigmatic role underlying the systemic and cell autonomous role of SMPD3 in the Golgi compartment. Here we describe the unprecedented role of SMPD3. SMPD3 deficiency disrupts homeostasis of sphingomyelin (SM), ceramide (Cer) and diacylglycerol (DAG) in the Golgi SMPD3-SMS1 (SM-synthase1) cycle. Cer and DAG, two fusogenic intermediates, modify the membrane lipid bilayer for the initiation of vesicle formation and transport. Dysproteostasis, unfolded protein response, endoplasmic reticulum stress and apoptosis perturb the Golgi secretory pathway in the smpd3-/- mouse. Secretion of extracellular matrix proteins is arrested in chondrocytes and causes skeletal malformation and chondrodysplasia. Similarly, retarded secretion of proteo-hormones in hypothalamic neurosecretory neurons leads to hypothalamus induced combined pituitary hormone deficiency. SMPD3 in the regulation of the protein vesicular secretory pathway may become a diagnostic target in the etiology of unknown forms of juvenile growth and developmental inhibition.

  9. Neutral Sphingomyelinase (SMPD3) Deficiency Causes a Novel Form of Chondrodysplasia and Dwarfism That Is Rescued by Col2A1-Driven smpd3 Transgene Expression

    PubMed Central

    Stoffel, Wilhelm; Jenke, Britta; Holz, Barbara; Binczek, Erika; Günter, Robert Heinz; Knifka, Jutta; Koebke, Jürgen; Niehoff, Anja

    2007-01-01

    Neutral sphingomyelinase SMPD3 (nSMase2), a sphingomyelin phosphodiesterase, resides in the Golgi apparatus and is ubiquitously expressed. Gene ablation of smpd3 causes a generalized prolongation of the cell cycle that leads to late embryonic and juvenile hypoplasia because of the SMPD3 deficiency in hypothalamic neurosecretory neurons. We show here that this novel form of combined pituitary hormone deficiency is characterized by the perturbation of the hypothalamus-pituitary growth axis, associated with retarded chondrocyte development and enchondral ossification in the epiphyseal growth plate. To study the contribution by combined pituitary hormone deficiency and by the local SMPD3 deficiency in the epiphyseal growth plate to the skeletal phenotype, we introduced the full-length smpd3 cDNA transgene under the control of the chondrocyte-specific promoter Col2a1. A complete rescue of the smpd3−/− mouse from severe short-limbed skeletal dysplasia was achieved. The smpd3−/− mouse shares its dwarf and chondrodysplasia phenotype with the most common form of human achondrodysplasia, linked to the fibroblast-growth-factor receptor 3 locus, not linked to deficits in the hypothalamic-pituitary epiphyseal growth plate axis. The rescue of smpd3 in vivo has implications for future research into dwarfism and, particularly, growth and development of the skeletal system and for current screening and future treatment of combined dwarfism and chondrodysplasia. PMID:17591962

  10. Neutral sphingomyelinase (SMPD3) deficiency causes a novel form of chondrodysplasia and dwarfism that is rescued by Col2A1-driven smpd3 transgene expression.

    PubMed

    Stoffel, Wilhelm; Jenke, Britta; Holz, Barbara; Binczek, Erika; Günter, Robert Heinz; Knifka, Jutta; Koebke, Jürgen; Niehoff, Anja

    2007-07-01

    Neutral sphingomyelinase SMPD3 (nSMase2), a sphingomyelin phosphodiesterase, resides in the Golgi apparatus and is ubiquitously expressed. Gene ablation of smpd3 causes a generalized prolongation of the cell cycle that leads to late embryonic and juvenile hypoplasia because of the SMPD3 deficiency in hypothalamic neurosecretory neurons. We show here that this novel form of combined pituitary hormone deficiency is characterized by the perturbation of the hypothalamus-pituitary growth axis, associated with retarded chondrocyte development and enchondral ossification in the epiphyseal growth plate. To study the contribution by combined pituitary hormone deficiency and by the local SMPD3 deficiency in the epiphyseal growth plate to the skeletal phenotype, we introduced the full-length smpd3 cDNA transgene under the control of the chondrocyte-specific promoter Col2a1. A complete rescue of the smpd3(-/-) mouse from severe short-limbed skeletal dysplasia was achieved. The smpd3(-/-) mouse shares its dwarf and chondrodysplasia phenotype with the most common form of human achondrodysplasia, linked to the fibroblast-growth-factor receptor 3 locus, not linked to deficits in the hypothalamic-pituitary epiphyseal growth plate axis. The rescue of smpd3 in vivo has implications for future research into dwarfism and, particularly, growth and development of the skeletal system and for current screening and future treatment of combined dwarfism and chondrodysplasia.

  11. A cell-autonomous requirement for neutral sphingomyelinase 2 in bone mineralization

    PubMed Central

    Khavandgar, Zohreh; Poirier, Christophe; Clarke, Christopher J.; Li, Jingjing; Wang, Nicholas; McKee, Marc D.; Hannun, Yusuf A.

    2011-01-01

    A deletion mutation called fro (fragilitas ossium) in the murine Smpd3 (sphingomyelin phosphodiesterase 3) gene leads to a severe skeletal dysplasia. Smpd3 encodes a neutral sphingomyelinase (nSMase2), which cleaves sphingomyelin to generate bioactive lipid metabolites. We examined endochondral ossification in embryonic day 15.5 fro/fro mouse embryos and observed impaired apoptosis of hypertrophic chondrocytes and severely undermineralized cortical bones in the developing skeleton. In a recent study, it was suggested that nSMase2 activity in the brain regulates skeletal development through endocrine factors. However, we detected Smpd3 expression in both embryonic and postnatal skeletal tissues in wild-type mice. To investigate whether nSMase2 plays a cell-autonomous role in these tissues, we examined the in vitro mineralization properties of fro/fro osteoblast cultures. fro/fro cultures mineralized less than the control osteoblast cultures. We next generated fro/fro;Col1a1-Smpd3 mice, in which osteoblast-specific expression of Smpd3 corrected the bone abnormalities observed in fro/fro embryos without affecting the cartilage phenotype. Our data suggest tissue-specific roles for nSMase2 in skeletal tissues. PMID:21788370

  12. Genetics Home Reference: Niemann-Pick disease

    MedlinePlus

    ... is responsible for the conversion of a fat (lipid) called sphingomyelin into another type of lipid called ceramide. Mutations in SMPD1 lead to a ... these genes are involved in the movement of lipids within cells. Mutations in these genes lead to ...

  13. Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development

    PubMed Central

    Stoffel, Wilhelm; Jenke, Britta; Blöck, Barbara; Zumbansen, Markus; Koebke, Jürgen

    2005-01-01

    Neutral sphingomyelinases sphingomyelin phosphodiesterase (SMPD)2 and -3 hydrolyze sphingomyelin to phosphocholine and ceramide. smpd2 is expressed ubiquitously, and smpd3 is expressed predominantly in neurons of the CNS. Their activation and the functions of the released ceramides have been associated with signaling pathways in cell growth, differentiation, and apoptosis. However, these cellular responses remain poorly understood. Here we describe the generation and characterization of the smpd3–/– and smpd2–/–smpd3–/– double mutant mouse, which proved to be devoid of neutral sphingomyelinase activity. SMPD3 plays a pivotal role in the control of late embryonic and postnatal development: the smpd3-null mouse develops a novel form of dwarfism and delayed puberty as part of a hypothalamus-induced combined pituitary hormone deficiency. Our studies suggest that SMPD3 is segregated into detergent-resistant subdomains of Golgi membranes of hypothalamic neurosecretory neurons, where its transient activation modifies the lipid bilayer, an essential step in the Golgi secretory pathway. The smpd3–/– mouse might mimic a form of human combined pituitary hormone deficiency. PMID:15764706

  14. Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development.

    PubMed

    Stoffel, Wilhelm; Jenke, Britta; Blöck, Barbara; Zumbansen, Markus; Koebke, Jürgen

    2005-03-22

    Neutral sphingomyelinases sphingomyelin phosphodiesterase (SMPD)2 and -3 hydrolyze sphingomyelin to phosphocholine and ceramide. smpd2 is expressed ubiquitously, and smpd3 is expressed predominantly in neurons of the CNS. Their activation and the functions of the released ceramides have been associated with signaling pathways in cell growth, differentiation, and apoptosis. However, these cellular responses remain poorly understood. Here we describe the generation and characterization of the smpd3(-/-) and smpd2(-/-)smpd3(-/-) double mutant mouse, which proved to be devoid of neutral sphingomyelinase activity. SMPD3 plays a pivotal role in the control of late embryonic and postnatal development: the smpd3-null mouse develops a novel form of dwarfism and delayed puberty as part of a hypothalamus-induced combined pituitary hormone deficiency. Our studies suggest that SMPD3 is segregated into detergent-resistant subdomains of Golgi membranes of hypothalamic neurosecretory neurons, where its transient activation modifies the lipid bilayer, an essential step in the Golgi secretory pathway. The smpd3(-/-) mouse might mimic a form of human combined pituitary hormone deficiency.

  15. Involvement of Cryptosporidium parvum Cdg7_FLc_1000 RNA in the Attenuation of Intestinal Epithelial Cell Migration via Trans-Suppression of Host Cell SMPD3.

    PubMed

    Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Mathy, Nicholas W; Strauss-Soukup, Juliane K; Chen, Xian-Ming

    2017-12-27

    Intestinal infection by Cryptosporidium parvum causes inhibition of epithelial turnover, but underlying mechanisms are unclear. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected epithelial cells. Using in vitro and in vivo models of intestinal cryptosporidiosis, we report here that host delivery of parasite Cdg7_FLc_1000 RNA results in inhibition of epithelial cell migration through suppression of the gene encoding sphingomyelinase 3 (SMPD3). Delivery of Cdg7_FLc_1000 into infected cells promotes the histone methyltransferase G9a-mediated H3K9 methylation in the SMPD3 locus. The DNA-binding transcriptional repressor, PR domain zinc finger protein 1, is required for the assembly of Cdg7_FLc_1000 into the G9a complex and associated with the enrichment of H3K9 methylation at the gene locus. Pathologically, nuclear transfer of Cryptosporidium parvum Cdg7_FLc_1000 RNA is involved in the attenuation of intestinal epithelial cell migration via trans-suppression of host cell SMPD3. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  16. Adjustment of Dysregulated Ceramide Metabolism in a Murine Model of Sepsis-Induced Cardiac Dysfunction

    PubMed Central

    Chung, Ha-Yeun; Kollmey, Anna S.; Schrepper, Andrea; Kohl, Matthias; Bläss, Markus F.; Stehr, Sebastian N.; Lupp, Amelie; Gräler, Markus H.; Claus, Ralf A.

    2017-01-01

    Cardiac dysfunction, in particular of the left ventricle, is a common and early event in sepsis, and is strongly associated with an increase in patients’ mortality. Acid sphingomyelinase (SMPD1)—the principal regulator for rapid and transient generation of the lipid mediator ceramide—is involved in both the regulation of host response in sepsis as well as in the pathogenesis of chronic heart failure. This study determined the degree and the potential role to which SMPD1 and its modulation affect sepsis-induced cardiomyopathy using both genetically deficient and pharmacologically-treated animals in a polymicrobial sepsis model. As surrogate parameters of sepsis-induced cardiomyopathy, cardiac function, markers of oxidative stress as well as troponin I levels were found to be improved in desipramine-treated animals, desipramine being an inhibitor of ceramide formation. Additionally, ceramide formation in cardiac tissue was dysregulated in SMPD1+/+ as well as SMPD1−/− animals, whereas desipramine pretreatment resulted in stable, but increased ceramide content during host response. This was a result of elevated de novo synthesis. Strikingly, desipramine treatment led to significantly improved levels of surrogate markers. Furthermore, similar results in desipramine-pretreated SMPD1−/− littermates suggest an SMPD1-independent pathway. Finally, a pattern of differentially expressed transcripts important for regulation of apoptosis as well as antioxidative and cytokine response supports the concept that desipramine modulates ceramide formation, resulting in beneficial myocardial effects. We describe a novel, protective role of desipramine during sepsis-induced cardiac dysfunction that controls ceramide content. In addition, it may be possible to modulate cardiac function during host response by pre-conditioning with the Food and Drug Administration (FDA)-approved drug desipramine. PMID:28420138

  17. Adjustment of Dysregulated Ceramide Metabolism in a Murine Model of Sepsis-Induced Cardiac Dysfunction.

    PubMed

    Chung, Ha-Yeun; Kollmey, Anna S; Schrepper, Andrea; Kohl, Matthias; Bläss, Markus F; Stehr, Sebastian N; Lupp, Amelie; Gräler, Markus H; Claus, Ralf A

    2017-04-15

    Cardiac dysfunction, in particular of the left ventricle, is a common and early event in sepsis, and is strongly associated with an increase in patients' mortality. Acid sphingomyelinase (SMPD1)-the principal regulator for rapid and transient generation of the lipid mediator ceramide-is involved in both the regulation of host response in sepsis as well as in the pathogenesis of chronic heart failure. This study determined the degree and the potential role to which SMPD1 and its modulation affect sepsis-induced cardiomyopathy using both genetically deficient and pharmacologically-treated animals in a polymicrobial sepsis model. As surrogate parameters of sepsis-induced cardiomyopathy, cardiac function, markers of oxidative stress as well as troponin I levels were found to be improved in desipramine-treated animals, desipramine being an inhibitor of ceramide formation. Additionally, ceramide formation in cardiac tissue was dysregulated in SMPD1 +/+ as well as SMPD1 -/- animals, whereas desipramine pretreatment resulted in stable, but increased ceramide content during host response. This was a result of elevated de novo synthesis. Strikingly, desipramine treatment led to significantly improved levels of surrogate markers. Furthermore, similar results in desipramine-pretreated SMPD1 -/- littermates suggest an SMPD1-independent pathway. Finally, a pattern of differentially expressed transcripts important for regulation of apoptosis as well as antioxidative and cytokine response supports the concept that desipramine modulates ceramide formation, resulting in beneficial myocardial effects. We describe a novel, protective role of desipramine during sepsis-induced cardiac dysfunction that controls ceramide content. In addition, it may be possible to modulate cardiac function during host response by pre-conditioning with the Food and Drug Administration (FDA)-approved drug desipramine.

  18. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice.

    PubMed

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1 (+/+)) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1 ( +/+ ) CAECs, whereas these observations were not found in Smpd1 (-/-) CAECs. Moreover, ASM deficiency reduced TRAIL-induced O(2) (-[Symbol: see text]) production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside G(M1) (MR marker) were trafficking together in Smpd1 (+/+) CAECs, which was absent in Smpd1 (-/-) CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1 (-/-) CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms, which may play an important role in DR4-mediated redox signaling in CAECs and consequently endothelial dysfunction.

  19. Regulation of dynein-mediated autophagosomes trafficking by ASM in CASMCs.

    PubMed

    Xu, Ming; Zhang, Qiufang; Li, Pin-Lan; Nguyen, Thaison; Li, Xiang; Zhang, Yang

    2016-01-01

    Acid sphingomyelinase (ASM; gene symbol Smpd1) has been shown to play a crucial role in autophagy maturation by controlling lysosomal fusion with autophagosomes in coronary arterial smooth muscle cells (CASMCs). However, the underlying molecular mechanism by which ASM controls autophagolysosomal fusion remains unknown. In primary cultured CASMCs, lysosomal Ca2+ induced by 7-ketocholesterol (7-Ket, an atherogenic stimulus and autophagy inducer) was markedly attenuated by ASM deficiency or TRPML1 gene silencing suggesting that ASM signaling is required for TRPML1 channel activity and subsequent lysosomal Ca(2+) release. In these CASMCs, ASM deficiency or TRPML1 gene silencing markedly inhibited 7-Ket-induced dynein activation. In addition, 7-Ket-induced autophagosome trafficking, an event associated with lysosomal Ca(2+) release and dynein activity, was significantly inhibited in ASM-deficient (Smpd1(-/-)) CASMCs compared to that in Smpd1(+/+) CASMCs. Finally, overexpression of TRPML1 proteins restored 7-Ket-induced lysosomal Ca(2+) release and autophagosome trafficking in Smpd1-/- CASMCs. Collectively, these results suggest that ASM plays a critical role in regulating lysosomal TRPML1-Ca(2+) signaling and subsequent dynein-mediated autophagosome trafficking, which leads its role in controlling autophagy maturation in CASMCs under atherogenic stimulation.

  20. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis.

    PubMed

    Sydor, Svenja; Sowa, Jan-Peter; Megger, Dominik A; Schlattjan, Martin; Jafoui, Sami; Wingerter, Lena; Carpinteiro, Alexander; Baba, Hideo A; Bechmann, Lars P; Sitek, Barbara; Gerken, Guido; Gulbins, Erich; Canbay, Ali

    2017-05-01

    Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD). Acid sphingomyelinase (ASM) converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1 -/- ) genotype affects diet-induced NAFLD. Smpd1 -/- mice and wild type controls were fed either a standard or Western diet (WD) for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Although Smpd1 -/- mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1 -/- , we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1 -/- mice indicated a reduction in Rictor (mTORC2) activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation.

  1. Types A and B Niemann-Pick Disease.

    PubMed

    Schuchman, Edward H; Wasserstein, Melissa P

    2016-06-01

    Two distinct metabolic abnormalities are included under the eponym Niemann-Pick disease (NPD). The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM). Patients with ASM deficiency are classified as having types A and B Niemann-Pick disease (NPD). Type A NPD patients exhibit hepatosplenomegaly, frequent pulmonary infections, and profound central nervous system involvement in infancy. They rarely survive beyond two years of age. Type B patients also have hepatosplenomegaly and progressive alterations of their lungs, but there are usually no central nervous system signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Recently, patients with phenotypes intermediate between types A and B NPD also have been identified. These individuals represent the expected continuum caused by inheriting different mutations in the ASM gene (SMPD1). Patients in the second category are designated as having type C NPD. Impaired intracellular trafficking of cholesterol causes type C NPD, and two distinct gene defects have been found. In this chapter only types A and B NPD will be discussed.

  2. Types A and B Niemann-Pick disease.

    PubMed

    Schuchman, Edward H; Wasserstein, Melissa P

    2015-03-01

    Two distinct metabolic abnormalities are encompassed under the eponym Niemann-Pick disease (NPD). The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM). Patients with ASM deficiency are classified as having types A and B Niemann-Pick disease (NPD). Type A NPD patients exhibit hepatosplenomegaly in infancy and profound central nervous system involvement. They rarely survive beyond two years of age. Type B patients also have hepatosplenomegaly and pathologic alterations of their lungs, but there are usually no central nervous system signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Recently, patients with phenotypes intermediate between types A and B NPD also have been identified. These individuals represent the expected continuum caused by inheriting different mutations in the ASM gene (SMPD1). Patients in the second NPD category are designated as having types C and D NPD. These patients may have mild hepatosplenomegaly, but the central nervous system is profoundly affected. Impaired intracellular trafficking of cholesterol causes types C and D NPD, and two distinct gene defects have been found. In this chapter only types A and B NPD will be discussed. Copyright © 2014. Published by Elsevier Ltd.

  3. Expression and regulation of enzymes in the ceramide metabolic pathway in human retinal pigment epithelial cells and their relevance to retinal degeneration.

    PubMed

    Zhu, DanHong; Sreekumar, Parameswaran G; Hinton, David R; Kannan, Ram

    2010-03-31

    Ceramide and its metabolic derivatives are important modulators of cellular apoptosis and proliferation. Dysregulation or imbalance of their metabolic pathways may promote the development of retinal degeneration. The aim of this study was to identify the expression and regulation of key enzymes of the ceramide pathway in retinal pigment epithelial (RPE) cells. RT-PCR was used to screen the enzymes involved in ceramide metabolism that are expressed in RPE. Over-expression of neutral sphingomyelinase-2 (SMPD3) or sphingosine kinase 1 (Sphk1) in ARPE-19 cells was achieved by transient transfection of SMPD3 or Sphk1 cDNA subcloned into an expression vector. The number of apoptotic or proliferating cells was determined using TUNEL and BrdU assays, respectively. Neutral sphingomyelinase-1, neutral sphingomyelinase-2, acidic ceramidase, ceramide kinase, SphK1 and Sphk2 were expressed in both ARPE-19 and early passage human fetal RPE (fRPE) cells, while alkaline ceramidase 2 was only expressed in fRPE cells. Over-expression of SMPD3 decreased RPE cell proliferation and increased cell apoptosis. The percentage of apoptotic cells increased proportionally with the amount of transfected SMPD3 DNA. Over-expression of SphK1 promoted cell proliferation and protected ARPE-19 cells from ceramide-induced apoptosis. The effect of C(2) ceramide on induction of apoptosis was evaluated in polarized vs. non-polarized RPE cultures; polarization of RPE was associated with much reduced apoptosis in response to ceramide. In conclusion, RPE cells possess the synthetic machinery for the production of ceramide, sphingosine, ceramide-1-phosphate (C1P), and sphingosine-1-phosphate (S1P). Over-expression of SMPD3 may increase cellular ceramide levels, leading to enhanced cell death and arrested cell proliferation. The selective induction of apoptosis in non-polarized RPE cultures by C(2) ceramide suggests that increased ceramide levels will preferentially affect non-polarized RPE, as are found in late age-related macular degeneration lesions, and may spare the normal RPE monolayer. SphK1 over-expression increased cellular S1P, which promoted cell proliferation and protected RPE from ceramide-induced apoptosis. Understanding the relationship between the metabolism of sphingolipids and their effects in RPE cell survival/death may help us to develop effective and efficient therapies for retinal degeneration. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Design and experimental research on a self-magnetic pinch diode under MV

    NASA Astrophysics Data System (ADS)

    Pengfei, ZHANG; Yang, HU; Jiang, SUN; Yan, SONG; Jianfeng, SUN; Zhiming, YAO; Peitian, CONG; Mengtong, QIU; Aici, QIU

    2018-01-01

    A self-magnetic pinch diode (SMPD) integrating an anode foil-reinforced electron beam pinch focus and a small high-dose x-ray spot output was designed and optimized. An x-ray focal spot measuring system was developed in accordance with the principle of pinhole imaging. The designed SMPD and the corresponding measuring system were tested under ∼MV, with 1.75 × 2 mm2 oval x-ray spots (AWE defined) and forward directed dose 1.6 rad at 1 m. Results confirmed that the anode foil can significantly strengthen the electron beam pinch focus, and the focal spot measuring system can collect clear focal spot images. This finding indicated that the principle and method are feasible.

  5. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dannhausen, Katharina; Karlstetter, Marcus; Caramoy, Albert

    Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase{sup −/−} mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase{sup −/−} mice showed many hyperreflective spots and staining for the retinalmore » microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase{sup −/−} mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function. - Highlights: • aSMase-deficient mice show impaired retinal function and reactive microgliosis. • aSMase-deficient microglia express pro-inflammatory transcripts. • aSMase-deficient microglia proliferate and have increased cell body size. • In vivo imaging shows hyperreflective spots in the fundus of aSMase-deficient mice. • aSMase-deficient microglia accumulate sphingolipid-rich intracellular deposits.« less

  6. Alternative splicing of SMPD1 coding for acid sphingomyelinase in major depression.

    PubMed

    Rhein, Cosima; Reichel, Martin; Kramer, Marcel; Rotter, Andrea; Lenz, Bernd; Mühle, Christiane; Gulbins, Erich; Kornhuber, Johannes

    2017-02-01

    Major depressive disorder (MDD) is a psychiatric disorder characterized by key symptoms that include depressed mood and a loss of interest and pleasure. A recently developed pathogenic model of MDD involves disturbed neurogenesis in the hippocampus, where the acid sphingomyelinase (ASM)/ceramide system plays an important role and is proposed as a molecular target for antidepressant action. Because alternative splicing of SMPD1 mRNA, coding for ASM, is relevant for the regulation of ASM enzymatic activity, we investigated the frequency of alternatively spliced ASM isoforms in peripheral blood cells of MDD patients versus healthy controls. Because the full-length transcript variant 1 of SMPD1 (termed ASM-1) is the only known form within the splicing pattern that encodes an enzymatically fully active ASM, we determined a fraction of splice isoforms deviating from ASM-1 using PCR amplification and capillary electrophoresis with laser-induced fluorescence analysis. ASM alternative splicing events occurred significantly less frequently in MDD patients compared to healthy subjects. After 5 days of antidepressant treatment, the frequency of alternatively spliced ASM isoforms decreased in those patients who were treated with a functional inhibitor of ASM activity (FIASMA) but remained constant in MDD patients treated with other antidepressant drugs. This effect was more pronounced when healthy male volunteers were treated with the FIASMAs fluoxetine or paroxetine, in contrast to a placebo group. Patients were treated with different antidepressant drugs, depending on individual parameters and disease courses. This study shows that the ASM alternative splicing pattern could be a biological target with diagnostic relevance and could serve as a novel biomarker for MDD. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Expression of ceramide-metabolising enzymes in subcutaneous and intra-abdominal human adipose tissue

    PubMed Central

    2012-01-01

    Background Inflammation and increased ceramide concentrations characterise adipose tissue of obese women with high liver fat content compared to equally obese women with normal liver fat content. The present study characterises enzymes involved in ceramide metabolism in subcutaneous and intra-abdominal adipose tissue. Methods Pathways leading to increased ceramide concentrations in inflamed versus non-inflamed adipose tissue were investigated by quantifying expression levels of key enzymes involved in ceramide metabolism. Sphingomyelinases (sphingomyelin phosphodiesterases SMPD1-3) were investigated further using immunohistochemistry to establish their location within adipose tissue, and their mRNA expression levels were determined in subcutaneous and intra-abdominal adipose tissue from both non-obese and obese subject. Results Gene expression levels of sphingomyelinases, enzymes that hydrolyse sphingomyelin to ceramide, rather than enzymes involved in de novo ceramide synthesis, were higher in inflamed compared to non-inflamed adipose tissue of obese women (with high and normal liver fat contents respectively). Sphingomyelinases were localised to both macrophages and adipocytes, but also to blood vessels and to extracellular regions surrounding vessels within adipose tissue. Expression levels of SMPD3 mRNA correlated significantly with concentrations of different ceramides and sphingomyelins. In both non-obese and obese subjects SMPD3 mRNA levels were higher in the more inflamed intra-abdominal compared to the subcutaneous adipose tissue depot. Conclusions Generation of ceramides within adipose tissue as a result of sphingomyelinase action may contribute to inflammation in human adipose tissue. PMID:22974251

  8. Inhibition of acid sphingomyelinase disrupts LYNUS signaling and triggers autophagy.

    PubMed

    Justice, Matthew J; Bronova, Irina; Schweitzer, Kelly S; Poirier, Christophe; Blum, Janice S; Berdyshev, Evgeny V; Petrache, Irina

    2018-04-01

    Activation of the lysosomal ceramide-producing enzyme, acid sphingomyelinase (ASM), by various stresses is centrally involved in cell death and has been implicated in autophagy. We set out to investigate the role of the baseline ASM activity in maintaining physiological functions of lysosomes, focusing on the lysosomal nutrient-sensing complex (LYNUS), a lysosomal membrane-anchored multiprotein complex that includes mammalian target of rapamycin (mTOR) and transcription factor EB (TFEB). ASM inhibition with imipramine or sphingomyelin phosphodiesterase 1 ( SMPD1 ) siRNA in human lung cells, or by transgenic Smpd1 +/- haploinsufficiency of mouse lungs, markedly reduced mTOR- and P70-S6 kinase (Thr 389)-phosphorylation and modified TFEB in a pattern consistent with its activation. Inhibition of baseline ASM activity significantly increased autophagy with preserved degradative potential. Pulse labeling of sphingolipid metabolites revealed that ASM inhibition markedly decreased sphingosine (Sph) and Sph-1-phosphate (S1P) levels at the level of ceramide hydrolysis. These findings suggest that ASM functions to maintain physiological mTOR signaling and inhibit autophagy and implicate Sph and/or S1P in the control of lysosomal function. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease.

    PubMed

    Robak, Laurie A; Jansen, Iris E; van Rooij, Jeroen; Uitterlinden, André G; Kraaij, Robert; Jankovic, Joseph; Heutink, Peter; Shulman, Joshua M

    2017-12-01

    Mutations in the glucocerebrosidase gene (GBA), which cause Gaucher disease, are also potent risk factors for Parkinson's disease. We examined whether a genetic burden of variants in other lysosomal storage disorder genes is more broadly associated with Parkinson's disease susceptibility. The sequence kernel association test was used to interrogate variant burden among 54 lysosomal storage disorder genes, leveraging whole exome sequencing data from 1156 Parkinson's disease cases and 1679 control subjects. We discovered a significant burden of rare, likely damaging lysosomal storage disorder gene variants in association with Parkinson's disease risk. The association signal was robust to the exclusion of GBA, and consistent results were obtained in two independent replication cohorts, including 436 cases and 169 controls with whole exome sequencing and an additional 6713 cases and 5964 controls with exome-wide genotyping. In secondary analyses designed to highlight the specific genes driving the aggregate signal, we confirmed associations at the GBA and SMPD1 loci and newly implicate CTSD, SLC17A5, and ASAH1 as candidate Parkinson's disease susceptibility genes. In our discovery cohort, the majority of Parkinson's disease cases (56%) have at least one putative damaging variant in a lysosomal storage disorder gene, and 21% carry multiple alleles. Our results highlight several promising new susceptibility loci and reinforce the importance of lysosomal mechanisms in Parkinson's disease pathogenesis. We suggest that multiple genetic hits may act in combination to degrade lysosomal function, enhancing Parkinson's disease susceptibility. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Trivalent chromium induces autophagy by activating sphingomyelin phosphodiesterase 2 and increasing cellular ceramide levels in renal HK2 cells.

    PubMed

    Yang, Cheng-Lin; Chiou, Shiow-Her; Tai, Wei-Chun; Joseph, Nithila A; Chow, Kuan-Chih

    2017-11-01

    In this study, we examined the role of autophagy in the initiation of lipid increases in renal epithelial HK2 cells. We found that trivalent chromium [Cr(III)] induced autophagy by activating sphingomyelin phosphodiesterase 2 (SMPD2). SMPD2 increases levels of ceramide and other lipids. Confocal immunofluorescence microscopy showed that signals of ceramide overlapped with LC3, suggesting that ceramide might play an important role in the formation of autophagosome. In conclusion, our data indicate that Cr(III) induces autophagy via structural aberration of organelle membrane, in particular by the increase of lipid compositions in addition to autophagy-associated proteins. © 2017 Wiley Periodicals, Inc.

  11. Impact of manure-related DOM on sulfonamide transport in arable soils

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina

    2016-09-01

    Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280 nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides.

  12. Impact of manure-related DOM on sulfonamide transport in arable soils.

    PubMed

    Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina

    2016-09-01

    Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Investigation of magnetic order in SmTr2Zn20 (Tr=Fe ,Co,Ru) and SmTr2Cd20 (Tr=Ni ,Pd)

    NASA Astrophysics Data System (ADS)

    Yazici, D.; White, B. D.; Ho, P.-C.; Kanchanavatee, N.; Huang, K.; Friedman, A. J.; Wong, A. S.; Burnett, V. W.; Dilley, N. R.; Maple, M. B.

    2014-10-01

    Single crystals of the "cage compounds" SmTr2Zn20 (Tr=Fe, Co, Ru) and SmTr2Cd20 (Tr=Ni, Pd) have been investigated by means of electrical resistivity, magnetization, and specific-heat measurements. The compounds SmFe2Zn20,SmRu2Zn20, and SmNi2Cd20 exhibit ferromagnetic order with Curie temperatures of TC=47.4, 7.6, and 7.5 K, respectively, whereas SmPd2Cd20 is an antiferromagnet with a Néel temperature of TN=3.4 K. No evidence for magnetic order is observed in SmCo2Zn20 down to 110 mK. The Sommerfeld coefficients γ are found to be 57 mJ /molK2 for SmFe2Zn20,79.5 mJ /molK2 for SmCo2Zn20,258 mJ /molK2 for SmRu2Zn20,165 mJ /molK2 for SmNi2Cd20, and 208 mJ /molK2 for SmPd2Cd20. Enhanced values of γ and a quadratic temperature dependence of the electrical resistivity at low temperature for SmRu2Zn20 and SmPd2Cd20 suggest an enhancement of the quasiparticle masses due to hybridization between localized 4f and conduction electron states.

  14. Genetics of Lipid-Storage Management in Caenorhabditis elegans Embryos

    PubMed Central

    Schmökel, Verena; Memar, Nadin; Wiekenberg, Anne; Trotzmüller, Martin; Schnabel, Ralf; Döring, Frank

    2016-01-01

    Lipids play a pivotal role in embryogenesis as structural components of cellular membranes, as a source of energy, and as signaling molecules. On the basis of a collection of temperature-sensitive embryonic lethal mutants, a systematic database search, and a subsequent microscopic analysis of >300 interference RNA (RNAi)–treated/mutant worms, we identified a couple of evolutionary conserved genes associated with lipid storage in Caenorhabditis elegans embryos. The genes include cpl-1 (cathepsin L–like cysteine protease), ccz-1 (guanine nucleotide exchange factor subunit), and asm-3 (acid sphingomyelinase), which is closely related to the human Niemann-Pick disease–causing gene SMPD1. The respective mutant embryos accumulate enlarged droplets of neutral lipids (cpl-1) and yolk-containing lipid droplets (ccz-1) or have larger genuine lipid droplets (asm-3). The asm-3 mutant embryos additionally showed an enhanced resistance against C band ultraviolet (UV-C) light. Herein we propose that cpl-1, ccz-1, and asm-3 are genes required for the processing of lipid-containing droplets in C. elegans embryos. Owing to the high levels of conservation, the identified genes are also useful in studies of embryonic lipid storage in other organisms. PMID:26773047

  15. Induced Pluripotent Stem Cells for Disease Modeling and Evaluation of Therapeutics for Niemann-Pick Disease Type A.

    PubMed

    Long, Yan; Xu, Miao; Li, Rong; Dai, Sheng; Beers, Jeanette; Chen, Guokai; Soheilian, Ferri; Baxa, Ulrich; Wang, Mengqiao; Marugan, Juan J; Muro, Silvia; Li, Zhiyuan; Brady, Roscoe; Zheng, Wei

    2016-12-01

    : Niemann-Pick disease type A (NPA) is a lysosomal storage disease caused by mutations in the SMPD1 gene that encodes acid sphingomyelinase (ASM). Deficiency in ASM function results in lysosomal accumulation of sphingomyelin and neurodegeneration. Currently, there is no effective treatment for NPA. To accelerate drug discovery for treatment of NPA, we generated induced pluripotent stem cells from two patient dermal fibroblast lines and differentiated them into neural stem cells. The NPA neural stem cells exhibit a disease phenotype of lysosomal sphingomyelin accumulation and enlarged lysosomes. By using this disease model, we also evaluated three compounds that reportedly reduced lysosomal lipid accumulation in Niemann-Pick disease type C as well as enzyme replacement therapy with ASM. We found that α-tocopherol, δ-tocopherol, hydroxypropyl-β-cyclodextrin, and ASM reduced sphingomyelin accumulation and enlarged lysosomes in NPA neural stem cells. Therefore, the NPA neural stem cells possess the characteristic NPA disease phenotype that can be ameliorated by tocopherols, cyclodextrin, and ASM. Our results demonstrate the efficacies of cyclodextrin and tocopherols in the NPA cell-based model. Our data also indicate that the NPA neural stem cells can be used as a new cell-based disease model for further study of disease pathophysiology and for high-throughput screening to identify new lead compounds for drug development. Currently, there is no effective treatment for Niemann-Pick disease type A (NPA). To accelerate drug discovery for treatment of NPA, NPA-induced pluripotent stem cells were generated from patient dermal fibroblasts and differentiated into neural stem cells. By using the differentiated NPA neuronal cells as a cell-based disease model system, α-tocopherol, δ-tocopherol, and hydroxypropyl-β-cyclodextrin significantly reduced sphingomyelin accumulation in these NPA neuronal cells. Therefore, this cell-based NPA model can be used for further study of disease pathophysiology and for high-throughput screening of compound libraries to identify lead compounds for drug development. ©AlphaMed Press.

  16. Pilot study of newborn screening for six lysosomal storage diseases using Tandem Mass Spectrometry☆

    PubMed Central

    Elliott, Susan; Buroker, Norman; Cournoyer, Jason J.; Potier, Anna M.; Trometer, Joseph D.; Elbin, Carole; Schermer, Mack J.; Kantola, Jaana; Boyce, Aaron; Turecek, Frantisek; Gelb, Michael H.; Scott, C. Ronald

    2017-01-01

    Background There is current expansion of newborn screening (NBS) programs to include lysosomal storage disorders because of the availability of treatments that produce an optimal clinical outcome when started early in life. Objective To evaluate the performance of a multiplex-tandem mass spectrometry (MS/MS) enzymatic activity assay of 6 lysosomal enzymes in a NBS laboratory for the identification of newborns at risk for developing Pompe, Mucopolysaccharidosis-I (MPS-I), Fabry, Gaucher, Niemann Pick-A/B, and Krabbe diseases. Methods and Results Enzyme activities (acid α-glucosidase (GAA), galactocerebrosidase (GALC), glucocerebrosidase (GBA), α-galactosidase A (GLA), α-iduronidase (IDUA) and sphingomyeline phosphodiesterase-1 (SMPD-1)) were measured on ~43,000 de-identified dried blood spot (DBS) punches, and screen positive samples were submitted for DNA sequencing to obtain genotype confirmation of disease risk. The 6-plex assay was efficiently performed in the Washington state NBS laboratory by a single laboratory technician at the bench using a single MS/MS instrument. The number of screen positive samples per 100,000 newborns were as follows: GAA (4.5), IDUA (13.6), GLA (18.2), SMPD1 (11.4), GBA (6.8), and GALC (25.0). Discussion A 6-plex MS/MS assay for 6 lysosomal enzymes can be successfully performed in a NBS laboratory. The analytical ranges (enzyme-dependent assay response for the quality control HIGH sample divided by that for all enzyme-independent processes) for the 6-enzymes with the MS/MS is 5- to 15-fold higher than comparable fluorimetric assays using 4-methylumbelliferyl substrates. The rate of screen positive detection is consistently lower for the MS/MS assay compared to the fluorimetric assay using a digital microfluidics platform. PMID:27238910

  17. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease.

    PubMed

    Gan-Or, Ziv; Dion, Patrick A; Rouleau, Guy A

    2015-01-01

    Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways.

  18. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease

    PubMed Central

    Gan-Or, Ziv; Dion, Patrick A; Rouleau, Guy A

    2015-01-01

    Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways. PMID:26207393

  19. De novo mutations in ATP1A3 cause alternating hemiplegia of childhood

    PubMed Central

    Heinzen, Erin L.; Swoboda, Kathryn J.; Hitomi, Yuki; Gurrieri, Fiorella; Nicole, Sophie; de Vries, Boukje; Tiziano, F. Danilo; Fontaine, Bertrand; Walley, Nicole M.; Heavin, Sinéad; Panagiotakaki, Eleni; Fiori, Stefania; Abiusi, Emanuela; Di Pietro, Lorena; Sweney, Matthew T.; Newcomb, Tara M.; Viollet, Louis; Huff, Chad; Jorde, Lynn B.; Reyna, Sandra P.; Murphy, Kelley J.; Shianna, Kevin V.; Gumbs, Curtis E.; Little, Latasha; Silver, Kenneth; Ptác̆ek, Louis J.; Haan, Joost; Ferrari, Michel D.; Bye, Ann M.; Herkes, Geoffrey K.; Whitelaw, Charlotte M.; Webb, David; Lynch, Bryan J.; Uldall, Peter; King, Mary D.; Scheffer, Ingrid E.; Neri, Giovanni; Arzimanoglou, Alexis; van den Maagdenberg, Arn M.J.M.; Sisodiya, Sanjay M.; Mikati, Mohamad A.; Goldstein, David B.; Nicole, Sophie; Gurrieri, Fiorella; Neri, Giovanni; de Vries, Boukje; Koelewijn, Stephany; Kamphorst, Jessica; Geilenkirchen, Marije; Pelzer, Nadine; Laan, Laura; Haan, Joost; Ferrari, Michel; van den Maagdenberg, Arn; Zucca, Claudio; Bassi, Maria Teresa; Franchini, Filippo; Vavassori, Rosaria; Giannotta, Melania; Gobbi, Giuseppe; Granata, Tiziana; Nardocci, Nardo; De Grandis, Elisa; Veneselli, Edvige; Stagnaro, Michela; Gurrieri, Fiorella; Neri, Giovanni; Vigevano, Federico; Panagiotakaki, Eleni; Oechsler, Claudia; Arzimanoglou, Alexis; Nicole, Sophie; Giannotta, Melania; Gobbi, Giuseppe; Ninan, Miriam; Neville, Brian; Ebinger, Friedrich; Fons, Carmen; Campistol, Jaume; Kemlink, David; Nevsimalova, Sona; Laan, Laura; Peeters-Scholte, Cacha; van den Maagdenberg, Arn; Casaer, Paul; Casari, Giorgio; Sange, Guenter; Spiel, Georg; Boneschi, Filippo Martinelli; Zucca, Claudio; Bassi, Maria Teresa; Schyns, Tsveta; Crawley, Francis; Poncelin, Dominique; Vavassori, Rosaria

    2012-01-01

    Alternating hemiplegia of childhood (AHC) is a rare, severe neurodevelopmental syndrome characterized by recurrent hemiplegic episodes and distinct neurologic manifestations. AHC is usually a sporadic disorder with unknown etiology. Using exome sequencing of seven patients with AHC, and their unaffected parents, we identified de novo nonsynonymous mutations in ATP1A3 in all seven AHC patients. Subsequent sequence analysis of ATP1A3 in 98 additional patients revealed that 78% of AHC cases have a likely causal ATP1A3 mutation, including one inherited mutation in a familial case of AHC. Remarkably, six ATP1A3 mutations explain the majority of patients, including one observed in 36 patients. Unlike ATP1A3 mutations that cause rapid-onset-dystonia-parkinsonism, AHC-causing mutations revealed consistent reductions in ATPase activity without effects on protein expression. This work identifies de novo ATP1A3 mutations as the primary cause of AHC, and offers insight into disease pathophysiology by expanding the spectrum of phenotypes associated with mutations in this gene. PMID:22842232

  20. Heterozygous Mutations Causing Partial Prohormone Convertase 1 Deficiency Contribute to Human Obesity

    PubMed Central

    Creemers, John W.M.; Choquet, Hélène; Stijnen, Pieter; Vatin, Vincent; Pigeyre, Marie; Beckers, Sigri; Meulemans, Sandra; Than, Manuel E.; Yengo, Loïc; Tauber, Maithé; Balkau, Beverley; Elliott, Paul; Jarvelin, Marjo-Riitta; Van Hul, Wim; Van Gaal, Luc; Horber, Fritz; Pattou, François; Froguel, Philippe; Meyre, David

    2012-01-01

    Null mutations in the PCSK1 gene, encoding the proprotein convertase 1/3 (PC1/3), cause recessive monogenic early onset obesity. Frequent coding variants that modestly impair PC1/3 function mildly increase the risk for common obesity. The aim of this study was to determine the contribution of rare functional PCSK1 mutations to obesity. PCSK1 exons were sequenced in 845 nonconsanguineous extremely obese Europeans. Eight novel nonsynonymous PCSK1 mutations were identified, all heterozygous. Seven mutations had a deleterious effect on either the maturation or the enzymatic activity of PC1/3 in cell lines. Of interest, five of these novel mutations, one of the previously described frequent variants (N221D), and the mutation found in an obese mouse model (N222D), affect residues at or near the structural calcium binding site Ca-1. The prevalence of the newly identified mutations was assessed in 6,233 obese and 6,274 lean European adults and children, which showed that carriers of any of these mutations causing partial PCSK1 deficiency had an 8.7-fold higher risk to be obese than wild-type carriers. These results provide the first evidence of an increased risk of obesity in heterozygous carriers of mutations in the PCSK1 gene. Furthermore, mutations causing partial PCSK1 deficiency are present in 0.83% of extreme obesity phenotypes. PMID:22210313

  1. Heterozygous mutations causing partial prohormone convertase 1 deficiency contribute to human obesity.

    PubMed

    Creemers, John W M; Choquet, Hélène; Stijnen, Pieter; Vatin, Vincent; Pigeyre, Marie; Beckers, Sigri; Meulemans, Sandra; Than, Manuel E; Yengo, Loïc; Tauber, Maithé; Balkau, Beverley; Elliott, Paul; Jarvelin, Marjo-Riitta; Van Hul, Wim; Van Gaal, Luc; Horber, Fritz; Pattou, François; Froguel, Philippe; Meyre, David

    2012-02-01

    Null mutations in the PCSK1 gene, encoding the proprotein convertase 1/3 (PC1/3), cause recessive monogenic early onset obesity. Frequent coding variants that modestly impair PC1/3 function mildly increase the risk for common obesity. The aim of this study was to determine the contribution of rare functional PCSK1 mutations to obesity. PCSK1 exons were sequenced in 845 nonconsanguineous extremely obese Europeans. Eight novel nonsynonymous PCSK1 mutations were identified, all heterozygous. Seven mutations had a deleterious effect on either the maturation or the enzymatic activity of PC1/3 in cell lines. Of interest, five of these novel mutations, one of the previously described frequent variants (N221D), and the mutation found in an obese mouse model (N222D), affect residues at or near the structural calcium binding site Ca-1. The prevalence of the newly identified mutations was assessed in 6,233 obese and 6,274 lean European adults and children, which showed that carriers of any of these mutations causing partial PCSK1 deficiency had an 8.7-fold higher risk to be obese than wild-type carriers. These results provide the first evidence of an increased risk of obesity in heterozygous carriers of mutations in the PCSK1 gene. Furthermore, mutations causing partial PCSK1 deficiency are present in 0.83% of extreme obesity phenotypes.

  2. A Presenilin-1 Mutation Identified in Familial Alzheimer Disease with Cotton Wool Plaques Causes a Nearly Complete Loss of γ-Secretase Activity*

    PubMed Central

    Heilig, Elizabeth A.; Xia, Weiming; Shen, Jie; Kelleher, Raymond J.

    2010-01-01

    Mutations in presenilin-1 and presenilin-2 (PS1 and PS2) are the most common cause of familial Alzheimer disease. PS1 and PS2 are the presumptive catalytic components of the multisubunit γ-secretase complex, which proteolyzes a number of type I transmembrane proteins, including the amyloid precursor protein (APP) and Notch. APP processing by γ-secretase produces β-amyloid peptides (Aβ40 and Aβ42) that accumulate in the Alzheimer disease brain. Here we identify a pathogenic L435F mutation in PS1 in two affected siblings with early-onset familial Alzheimer disease characterized by deposition of cerebral cotton wool plaques. The L435F mutation resides in a conserved C-terminal PAL sequence implicated in active site conformation and catalytic activity. The impact of PS1 mutations in and around the PAL motif on γ-secretase activity was assessed by expression of mutant PS1 in mouse embryo fibroblasts lacking endogenous PS1 and PS2. Surprisingly, the L435F mutation caused a nearly complete loss of γ-secretase activity, including >90% reductions in the generation of Aβ40, Aβ42, and the APP and Notch intracellular domains. Two nonpathogenic PS1 mutations, P433L and L435R, caused essentially complete loss of γ-secretase activity, whereas two previously identified pathogenic PS1 mutations, P436Q and P436S, caused partial loss of function with substantial reductions in production of Aβ40, Aβ42, and the APP and Notch intracellular domains. These results argue against overproduction of Aβ42 as an essential property of presenilin proteins bearing pathogenic mutations. Rather, our findings provide support for the hypothesis that pathogenic mutations cause a general loss of presenilin function. PMID:20460383

  3. FOURFIT-A Computer Code for Determining Equivalent Nuclear Yield and Peak Overpressure by a Fourier Spectrum Fit Method

    DTIC Science & Technology

    1984-05-25

    PLOT IS LINEAR-LINEAR ** C 50 LINET *0 *1’LINES *0 73 C CALL SCLI (XMN.XMX.XORG,XSTP.XEND) CALL SCL I( YMN. YMXYORG. YSTP.NEND) WRITE(6,2303... SCLI XMNXMX~ *.2(FS.4,2X)) SMIN =0.00006 S(1) z 0.00012 S(2) -0.00018 S13) =0.00024 S(4) =0.00030 .%4 S(5) =0. 00036 S(6) = 0.00060 S(7) =0.00120 C DIF...DSTP a SM!Pd/3.0 C 75 *.1z 99 £006 a DORG ASTP a DSTP * AMAX a DUSAX WRITE(6.2303) DORG.DSTP.DMAX 2303 FOOUAT(SX.s LEAVING SCLI *.3(F8.4.2x)) C

  4. 8-oxoguanine causes spontaneous de novo germline mutations in mice.

    PubMed

    Ohno, Mizuki; Sakumi, Kunihiko; Fukumura, Ryutaro; Furuichi, Masato; Iwasaki, Yuki; Hokama, Masaaki; Ikemura, Toshimichi; Tsuzuki, Teruhisa; Gondo, Yoichi; Nakabeppu, Yusaku

    2014-04-15

    Spontaneous germline mutations generate genetic diversity in populations of sexually reproductive organisms, and are thus regarded as a driving force of evolution. However, the cause and mechanism remain unclear. 8-oxoguanine (8-oxoG) is a candidate molecule that causes germline mutations, because it makes DNA more prone to mutation and is constantly generated by reactive oxygen species in vivo. We show here that endogenous 8-oxoG caused de novo spontaneous and heritable G to T mutations in mice, which occurred at different stages in the germ cell lineage and were distributed throughout the chromosomes. Using exome analyses covering 40.9 Mb of mouse transcribed regions, we found increased frequencies of G to T mutations at a rate of 2 × 10(-7) mutations/base/generation in offspring of Mth1/Ogg1/Mutyh triple knockout (TOY-KO) mice, which accumulate 8-oxoG in the nuclear DNA of gonadal cells. The roles of MTH1, OGG1, and MUTYH are specific for the prevention of 8-oxoG-induced mutation, and 99% of the mutations observed in TOY-KO mice were G to T transversions caused by 8-oxoG; therefore, we concluded that 8-oxoG is a causative molecule for spontaneous and inheritable mutations of the germ lineage cells.

  5. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype.

    PubMed

    Whitehall, V L J; Dumenil, T D; McKeone, D M; Bond, C E; Bettington, M L; Buttenshaw, R L; Bowdler, L; Montgomery, G W; Wockner, L F; Leggett, B A

    2014-11-01

    The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.

  6. Dosage Mutator Genes in Saccharomyces cerevisiae: A Novel Mutator Mode-of-Action of the Mph1 DNA Helicase.

    PubMed

    Ang, J Sidney; Duffy, Supipi; Segovia, Romulo; Stirling, Peter C; Hieter, Philip

    2016-11-01

    Mutations that cause genome instability are considered important predisposing events that contribute to initiation and progression of cancer. Genome instability arises either due to defects in genes that cause an increased mutation rate (mutator phenotype), or defects in genes that cause chromosome instability (CIN). To extend the catalog of genome instability genes, we systematically explored the effects of gene overexpression on mutation rate, using a forward-mutation screen in budding yeast. We screened ∼5100 plasmids, each overexpressing a unique single gene, and characterized the five strongest mutators, MPH1 (mutator phenotype 1), RRM3, UBP12, PIF1, and DNA2 We show that, for MPH1, the yeast homolog of Fanconi Anemia complementation group M (FANCM), the overexpression mutator phenotype is distinct from that of mph1Δ. Moreover, while four of our top hits encode DNA helicases, the overexpression of 48 other DNA helicases did not cause a mutator phenotype, suggesting this is not a general property of helicases. For Mph1 overexpression, helicase activity was not required for the mutator phenotype; in contrast Mph1 DEAH-box function was required for hypermutation. Mutagenesis by MPH1 overexpression was independent of translesion synthesis (TLS), but was suppressed by overexpression of RAD27, a conserved flap endonuclease. We propose that binding of DNA flap structures by excess Mph1 may block Rad27 action, creating a mutator phenotype that phenocopies rad27Δ. We believe this represents a novel mutator mode-of-action and opens up new prospects to understand how upregulation of DNA repair proteins may contribute to mutagenesis. Copyright © 2016 by the Genetics Society of America.

  7. Dominant Mutations in S. cerevisiae PMS1 Identify the Mlh1-Pms1 Endonuclease Active Site and an Exonuclease 1-Independent Mismatch Repair Pathway

    PubMed Central

    Smith, Catherine E.; Mendillo, Marc L.; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S.; Desai, Arshad; Putnam, Christopher D.; Kolodner, Richard D.

    2013-01-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway. PMID:24204293

  8. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    PubMed

    Smith, Catherine E; Mendillo, Marc L; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S; Desai, Arshad; Putnam, Christopher D; Kolodner, Richard D

    2013-10-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  9. Observation of c.260A > G mutation in superoxide dismutase 1 that causes p.Asn86Ser in Iranian amyotrophic lateral sclerosis patient and absence of genotype/phenotype correlation.

    PubMed

    Khani, Marzieh; Alavi, Afagh; Nafissi, Shahriar; Elahi, Elahe

    2015-07-06

    Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder in European populations. ALS can be sporadic ALS (SALS) or familial ALS (FALS). Among 20 known ALS genes, mutations in C9orf72 and superoxide dismutase 1 (SOD1) are the most common genetic causes of the disease. Whereas C9orf72 mutations are more common in Western populations, the contribution of SOD1 to ALS in Iran is more than C9orf72. At present, a clear genotype/phenotype correlation for ALS has not been identified. We aimed to perform mutation screening of SOD1 in a newly identified Iranian FALS patient and to assess whether a genotype/phenotype correlation for the identified mutation exists. The five exons of SOD1 and flanking intronic sequences of a FALS proband were screened for mutations by direct sequencing. The clinical features of the proband were assessed by a neuromuscular specialist (SN). The phenotypic presentations were compared to previously reported patients with the same mutation. Heterozygous c.260A > G mutation in SOD1 that causes Asn86Ser was identified in the proband. Age at onset was 34 years and site of the first presentation was in the lower extremities. Comparisons of clinical features of different ALS patients with the same mutation evidenced variable presentations. The c.260A > G mutation in SOD1 that causes Asn86Ser appears to cause ALS with variable clinical presentations.

  10. Novel compound heterozygous mutations in MYO7A in a Chinese family with Usher syndrome type 1.

    PubMed

    Liu, Fei; Li, Pengcheng; Liu, Ying; Li, Weirong; Wong, Fulton; Du, Rong; Wang, Lei; Li, Chang; Jiang, Fagang; Tang, Zhaohui; Liu, Mugen

    2013-01-01

    To identify the disease-causing mutation(s) in a Chinese family with autosomal recessive Usher syndrome type 1 (USH1). An ophthalmic examination and an audiometric test were conducted to ascertain the phenotype of two affected siblings. The microsatellite marker D11S937, which is close to the candidate gene MYO7A (USH1B locus), was selected for genotyping. From the DNA of the proband, all coding exons and exon-intron boundaries of MYO7A were sequenced to identify the disease-causing mutation(s). Restriction fragment length polymorphism (RFLP) analysis was performed to exclude the alternative conclusion that the mutations are non-pathogenic rare polymorphisms. Based on severe hearing impairment, unintelligible speech, and retinitis pigmentosa, a clinical diagnosis of Usher syndrome type 1 was made. The genotyping results did not exclude the USH1B locus, which suggested that the MYO7A gene was likely the gene associated with the disease-causing mutation(s) in the family. With direct DNA sequencing of MYO7A, two novel compound heterozygous mutations (c.3742G>A and c.6051+1G>A) of MYO7A were identified in the proband. DNA sequence analysis and RFLP analysis of other family members showed that the mutations cosegregated with the disease. Unaffected members, including the parents, uncle, and sister of the proband, carry only one of the two mutations. The mutations were not present in the controls (100 normal Chinese subjects=200 chromosomes) according to the RFLP analysis. In this study, we identified two novel mutations, c.3742G>A (p.E1248K) and c.6051+1G>A (donor splice site mutation in intron 44), of MYO7A in a Chinese non-consanguineous family with USH1. The mutations cosegregated with the disease and most likely cause the phenotype in the two affected siblings who carry these mutations compound heterozygously. Our finding expands the mutational spectrum of MYO7A.

  11. Loss of GATA-1 Full Length as a Cause of Diamond–Blackfan Anemia Phenotype

    PubMed Central

    Parrella, Sara; Aspesi, Anna; Quarello, Paola; Garelli, Emanuela; Pavesi, Elisa; Carando, Adriana; Nardi, Margherita; Ellis, Steven R.; Ramenghi, Ugo; Dianzani, Irma

    2015-01-01

    Mutations in the hematopoietic transcription factor GATA-1 alter the proliferation/differentiation of hemopoietic progenitors. Mutations in exon 2 interfere with the synthesis of the full-length isoform of GATA-1 and lead to the production of a shortened isoform, GATA-1s. These mutations have been found in patients with Diamond–Blackfan anemia (DBA), a congenital erythroid aplasia typically caused by mutations in genes encoding ribosomal proteins. We sequenced GATA-1 in 23 patients that were negative for mutations in the most frequently mutated DBA genes. One patient showed a c.2T > C mutation in the initiation codon leading to the loss of the full-length GATA-1 isoform. PMID:24453067

  12. Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family.

    PubMed

    Liu, Xiaowen; Tang, Zhaohui; Li, Chang; Yang, Kangjuan; Gan, Guanqi; Zhang, Zibo; Liu, Jingyu; Jiang, Fagang; Wang, Qing; Liu, Mugen

    2010-03-17

    To identify the disease-causing gene in a four-generation Chinese family affected with retinitis pigmentosa (RP). Linkage analysis was performed with a panel of microsatellite markers flanking the candidate genetic loci of RP. These loci included 38 known RP genes. The complete coding region and exon-intron boundaries of Usher syndrome 2A (USH2A) were sequenced with the proband DNA to screen the disease-causing gene mutation. Restriction fragment length polymorphism (RFLP) analysis and direct DNA sequence analysis were done to demonstrate co-segregation of the USH2A mutations with the family disease. One hundred normal controls were used without the mutations. The disease-causing gene in this Chinese family was linked to the USH2A locus on chromosome 1q41. Direct DNA sequence analysis of USH2A identified two novel mutations in the patients: one missense mutation p.G1734R in exon 26 and a splice site mutation, IVS32+1G>A, which was found in the donor site of intron 32 of USH2A. Neither the p.G1734R nor the IVS32+1G>A mutation was found in the unaffected family members or the 100 normal controls. One patient with a homozygous mutation displayed only RP symptoms until now, while three patients with compound heterozygous mutations in the family of study showed both RP and hearing impairment. This study identified two novel mutations: p.G1734R and IVS32+1G>A of USH2A in a four-generation Chinese RP family. In this study, the heterozygous mutation and the homozygous mutation in USH2A may cause Usher syndrome Type II or RP, respectively. These two mutations expand the mutant spectrum of USH2A.

  13. Current insights into the molecular genetic basis of dwarfism in livestock.

    PubMed

    Boegheim, Iris J M; Leegwater, Peter A J; van Lith, Hein A; Back, Willem

    2017-06-01

    Impairment of bone growth at a young age leads to dwarfism in adulthood. Dwarfism can be categorised as either proportionate, an overall size reduction without changes in body proportions, or disproportionate, a size reduction in one or more limbs, with changes in body proportions. Many forms of dwarfism are inherited and result from structural disruptions or disrupted signalling pathways. Hormonal disruptions are evident in Brooksville miniature Brahman cattle and Z-linked dwarfism in chickens, caused by mutations in GH1 and GHR. Furthermore, mutations in IHH are the underlying cause of creeper achondroplasia in chickens. Belgian blue cattle display proportionate dwarfism caused by a mutation in RNF11, while American Angus cattle dwarfism is caused by a mutation in PRKG2. Mutations in EVC2 are associated with dwarfism in Japanese brown cattle and Tyrolean grey cattle. Fleckvieh dwarfism is caused by mutations in the GON4L gene. Mutations in COL10A1 and COL2A1 cause dwarfism in pigs and Holstein cattle, both associated with structural disruptions, while several mutations in ACAN are associated with bulldog-type dwarfism in Dexter cattle and dwarfism in American miniature horses. In other equine breeds, such as Shetland ponies and Friesian horses, dwarfism is caused by mutations in SHOX and B4GALT7. In Texel sheep, chondrodysplasia is associated with a deletion in SLC13A1. This review discusses genes known to be involved in these and other forms of dwarfism in livestock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A novel STXBP1 mutation causes typical Rett syndrome in a Japanese girl.

    PubMed

    Yuge, Kotaro; Iwama, Kazuhiro; Yonee, Chihiro; Matsufuji, Mayumi; Sano, Nozomi; Saikusa, Tomoko; Yae, Yukako; Yamashita, Yushiro; Mizuguchi, Takeshi; Matsumoto, Naomichi; Matsuishi, Toyojiro

    2018-06-01

    Rett syndrome (RTT) is a neurodevelopmental disorder mostly caused by mutations in Methyl-CpG-binding protein 2 (MECP2); however, mutations in various other genes may lead to RTT-like phenotypes. Here, we report the first case of a Japanese girl with RTT caused by a novel syntaxin-binding protein 1 (STXBP1) frameshift mutation (c.60delG, p.Lys21Argfs*16). She showed epilepsy at one year of age, regression of acquired psychomotor abilities thereafter, and exhibited stereotypic hand and limb movements at 3 years of age. Her epilepsy onset was earlier than is typical for RTT patients. However, she fully met the 2010 diagnostic criteria of typical RTT. STXBP1 mutations cause early infantile epileptic encephalopathy (EIEE), various intractable epilepsies, and neurodevelopmental disorders. However, the case described here presented a unique clinical presentation of typical RTT without EIEE and a novel STXBP1 mutation. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. Heterozygous ABCC8 mutations are a cause of MODY.

    PubMed

    Bowman, P; Flanagan, S E; Edghill, E L; Damhuis, A; Shepherd, M H; Paisey, R; Hattersley, A T; Ellard, S

    2012-01-01

    The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) subunit of the pancreatic beta cell ATP-sensitive potassium (K(ATP)) channel. Inactivating mutations cause congenital hyperinsulinism (CHI) and activating mutations cause transient neonatal diabetes (TNDM) or permanent neonatal diabetes (PNDM) that can usually be treated with sulfonylureas. Sulfonylurea sensitivity is also a feature of HNF1A and HNF4A MODY, but patients referred for genetic testing with clinical features of these types of diabetes do not always have mutations in the HNF1A/4A genes. Our aim was to establish whether mutations in the ABCC8 gene cause MODY that is responsive to sulfonylurea therapy. We sequenced the ABCC8 gene in 85 patients with a BMI <30 kg/m², no family history of neonatal diabetes and who were deemed sensitive to sulfonylureas by the referring clinician or were sulfonylurea-treated. All had tested negative for mutations in the HNF1A and HNF4A genes. ABCC8 mutations were found in seven of the 85 (8%) probands. Four patients were heterozygous for previously reported mutations and four novel mutations, E100K, G214R, Q485R and N1245D, were identified. Only four probands fulfilled MODY criteria, with two diagnosed after 25 years and one patient, who had no family history of diabetes, as a result of a proven de novo mutation. ABCC8 mutations can cause MODY in patients whose clinical features are similar to those with HNF1A/4A MODY. Therefore, sequencing of ABCC8 in addition to the known MODY genes should be considered if such features are present, to facilitate optimal clinical management of these patients.

  16. In silico investigation of molecular effects caused by missense mutations in creatine transporter protein

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Schwatz, Charles; Alexov, Emil

    2011-03-01

    Creatine transporter (CT) protein, which is encoded by SLC6A8 gene, is essential for taking up the creatine in the cell, which in turn plays a key role in the spatial and temporal maintenance of energy in skeletal and cardiac muscle cells. It was shown that some missense mutations in CT cause mental retardation, while others are harmless non-synonymous single nucleoside polymorphism (nsSNP). Currently fifteen missense mutations in CT are known, among which twelve are disease-causing. Sequence analysis reveals that there is no clear trend distinguishing disease-causing from harmless missense mutations. Because of that, we built 3D model of the CT using highly homologous template and use the model to investigate the effects of mutations of CT stability and hydrogen bond network. It is demonstrated that disease-causing mutations affect the folding free energy and ionization states of titratable group in much greater extend as compared with harmless mutations. Supported by grants from NLM, NIH, grant numbers 1R03LM009748 and 1R03LM009748-S1.

  17. Intronic splicing mutations in PTCH1 cause Gorlin syndrome.

    PubMed

    Bholah, Zaynab; Smith, Miriam J; Byers, Helen J; Miles, Emma K; Evans, D Gareth; Newman, William G

    2014-09-01

    Gorlin syndrome is an autosomal dominant disorder characterized by multiple early-onset basal cell carcinoma, odontogenic keratocysts and skeletal abnormalities. It is caused by heterozygous mutations in the tumour suppressor PTCH1. Routine clinical genetic testing, by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to confirm a clinical diagnosis of Gorlin syndrome, identifies a mutation in 60-90 % of cases. We undertook RNA analysis on lymphocytes from ten individuals diagnosed with Gorlin syndrome, but without known PTCH1 mutations by exonic sequencing or MLPA. Two altered PTCH1 transcripts were identified. Genomic DNA sequence analysis identified an intron 7 mutation c.1068-10T>A, which created a strong cryptic splice acceptor site, leading to an intronic insertion of eight bases; this is predicted to create a frameshift p.(His358Alafs*12). Secondly, a deep intronic mutation c.2561-2057A>G caused an inframe insertion of 78 intronic bases in the cDNA transcript, leading to a premature stop codon p.(Gly854fs*3). The mutations are predicted to cause loss of function of PTCH1, consistent with its tumour suppressor function. The findings indicate the importance of RNA analysis to detect intronic mutations in PTCH1 not identified by routine screening techniques.

  18. A de novo mutation in the AGXT gene causing primary hyperoxaluria type 1.

    PubMed

    Williams, Emma L; Kemper, Markus J; Rumsby, Gill

    2006-09-01

    Primary hyperoxaluria type 1 is caused by mutations in the alanine-glyoxylate aminotransferase (AGXT) gene. In cases in which no mutation was identified, linkage analysis can be used to confirm or exclude the diagnosis in other siblings. We present a family in which a sibling of the index case predicted to have primary hyperoxaluria type 1 by means of linkage analysis failed to show hyperoxaluria during the following 7 years, putting the diagnosis into question. Whole-gene sequence analysis identified 2 causative mutations in the index case, of which only 1, c.646A (Gly216Arg), was inherited. The other sequence change, c.33_34insC, was a de novo mutation occurring on the paternal allele. This particular mutation is a relatively common cause of primary hyperoxaluria type 1. It occurs in a run of 8 cytosines and therefore potentially is susceptible to polymerase slippage. This case illustrates 2 important points. First, biochemical confirmation of a genetic diagnosis should always be made in siblings diagnosed by using genetic tests. Second, de novo mutations should be considered as a potential, albeit rare, cause of primary hyperoxaluria type 1.

  19. Pancreatic Agenesis due to Compound Heterozygosity for a Novel Enhancer and Truncating Mutation in the PTF1A Gene.

    PubMed

    Gabbay, Monica; Ellard, Sian; De Franco, Elisa; Moisés, Regina S

    2017-09-01

    Neonatal diabetes, defined as the onset of diabetes within the first six months of life, is very rarely caused by pancreatic agenesis. Homozygous truncating mutations in the PTF1A gene, which encodes a transcriptional factor, have been reported in patients with pancreatic and cerebellar agenesis, whilst mutations located in a distal pancreatic-specific enhancer cause isolated pancreatic agenesis. We report an infant, born to healthy non-consanguineous parents, with neonatal diabetes due to pancreatic agenesis. Initial genetic investigation included sequencing of KCNJ11, ABCC8 and INS genes, but no mutations were found. Following this, 22 neonatal diabetes associated genes were analyzed by a next generation sequencing assay. We found compound heterozygous mutations in the PTF1A gene: A frameshift mutation in exon 1 (c.437_462 del, p.Ala146Glyfs*116) and a mutation affecting a highly conserved nucleotide within the distal pancreatic enhancer (g.23508442A>G). Both mutations were confirmed by Sanger sequencing. Isolated pancreatic agenesis resulting from compound heterozygosity for truncating and enhancer mutations in the PTF1A gene has not been previously reported. This report broadens the spectrum of mutations causing pancreatic agenesis.

  20. Pancreatic Agenesis due to Compound Heterozygosity for a Novel Enhancer and Truncating Mutation in the PTF1A Gene

    PubMed Central

    Gabbay, Monica; Ellard, Sian; De Franco, Elisa; Moisés, Regina S.

    2017-01-01

    Neonatal diabetes, defined as the onset of diabetes within the first six months of life, is very rarely caused by pancreatic agenesis. Homozygous truncating mutations in the PTF1A gene, which encodes a transcriptional factor, have been reported in patients with pancreatic and cerebellar agenesis, whilst mutations located in a distal pancreatic-specific enhancer cause isolated pancreatic agenesis. We report an infant, born to healthy non-consanguineous parents, with neonatal diabetes due to pancreatic agenesis. Initial genetic investigation included sequencing of KCNJ11, ABCC8 and INS genes, but no mutations were found. Following this, 22 neonatal diabetes associated genes were analyzed by a next generation sequencing assay. We found compound heterozygous mutations in the PTF1A gene: A frameshift mutation in exon 1 (c.437_462 del, p.Ala146Glyfs*116) and a mutation affecting a highly conserved nucleotide within the distal pancreatic enhancer (g.23508442A>G). Both mutations were confirmed by Sanger sequencing. Isolated pancreatic agenesis resulting from compound heterozygosity for truncating and enhancer mutations in the PTF1A gene has not been previously reported. This report broadens the spectrum of mutations causing pancreatic agenesis. PMID:28663161

  1. [The study of gene mutations in unknown refractory viral infection and primary hemophagocytic lymphohistiocytosis].

    PubMed

    Tong, Chun-Rong; Liu, Hong-Xing; Xie, Jian-Jun; Wang, Fang; Cai, Peng; Wang, Hui; Zhu, Juan; Teng, Wen; Zhang, Xian; Yang, Jun-Fang; Zhang, Ya-Li; Fei, Xin-Hong; Zhao, Jie; Yin, Yu-Ming; Wu, Tong; Wang, Jing-Bo; Sun, Yuan; Liu, Rong; Shi, Xiao-Dong; Lu, Dao-Pei

    2011-04-01

    To study the type and corresponding clinical characteristics of primary hemophagocytic lymphohistiocytosis (HLH) associated immune gene mutations in the refractory virus infection or HLH of unknown causes. From December 2009 to July 2010, the patients with refractory virus infection or HLH of unknown causes were screened for the primary HLH associated immune genes mutations by DNA sequence analysis, including PRF1, UNC13D, STX11, STXBP2, SH2D1A and XIAP. The clinical characteristics and outcomes were followed up. Totally 25 patients with refractory virus infection or HLH of unknown causes were investigated for the 6 genes and 13 cases were found carrying gene mutations, composing of 6 of PRF1 mutation, 3 of UNC13D, and each one of STX11, XIAP, SH2D1A and STXBP2, respectively. Among the 13 cases with gene mutations, 5 suffered from Epstein-Barr virus associated HLH (EBV-HLH), 1 human herpes virus 7 associated HLH (HHV7-HLH), 1 HLH without causes, 4 chronic activated EB virus infection (CAEBV) with 1 progressing to Hodgkin's lymphoma carrying abnormal chromosome of t(15;17) (q22;q25) and hyperdiploid, 2 EBV associated lymphoma. Among the other 12 patients without gene mutation, 4 suffered from EBV-HLH with 1 progressing to peripheral T lymphoma, 8 suffered from CAEBV. Primary HLH associated immune gene mutations are critical causes of refractory virus infection of unknown causes, most patients manifest as HLH, some cases appear in CAEBV and EBV associated lymphoma. DNA sequence analysis is helpful to early diagnosis and correct decision-making for treatment.

  2. Novel compound heterozygous mutations in MYO7A in a Chinese family with Usher syndrome type 1

    PubMed Central

    Liu, Fei; Li, Pengcheng; Liu, Ying; Li, Weirong; Wong, Fulton; Du, Rong; Wang, Lei; Li, Chang; Jiang, Fagang; Tang, Zhaohui

    2013-01-01

    Purpose To identify the disease-causing mutation(s) in a Chinese family with autosomal recessive Usher syndrome type 1 (USH1). Methods An ophthalmic examination and an audiometric test were conducted to ascertain the phenotype of two affected siblings. The microsatellite marker D11S937, which is close to the candidate gene MYO7A (USH1B locus), was selected for genotyping. From the DNA of the proband, all coding exons and exon-intron boundaries of MYO7A were sequenced to identify the disease-causing mutation(s). Restriction fragment length polymorphism (RFLP) analysis was performed to exclude the alternative conclusion that the mutations are non-pathogenic rare polymorphisms. Results Based on severe hearing impairment, unintelligible speech, and retinitis pigmentosa, a clinical diagnosis of Usher syndrome type 1 was made. The genotyping results did not exclude the USH1B locus, which suggested that the MYO7A gene was likely the gene associated with the disease-causing mutation(s) in the family. With direct DNA sequencing of MYO7A, two novel compound heterozygous mutations (c.3742G>A and c.6051+1G>A) of MYO7A were identified in the proband. DNA sequence analysis and RFLP analysis of other family members showed that the mutations cosegregated with the disease. Unaffected members, including the parents, uncle, and sister of the proband, carry only one of the two mutations. The mutations were not present in the controls (100 normal Chinese subjects=200 chromosomes) according to the RFLP analysis. Conclusions In this study, we identified two novel mutations, c.3742G>A (p.E1248K) and c.6051+1G>A (donor splice site mutation in intron 44), of MYO7A in a Chinese non-consanguineous family with USH1. The mutations cosegregated with the disease and most likely cause the phenotype in the two affected siblings who carry these mutations compound heterozygously. Our finding expands the mutational spectrum of MYO7A. PMID:23559863

  3. Earlier onset of motor deficits in mice with double mutations in Dyt1 and Sgce.

    PubMed

    Yokoi, Fumiaki; Yang, Guang; Li, Jindong; DeAndrade, Mark P; Zhou, Tong; Li, Yuqing

    2010-10-01

    DYT1 early-onset generalized torsion dystonia is an inherited movement disorder caused by mutations in DYT1 coding for torsinA with ∼30% penetrance. Most of the DYT1 dystonia patients exhibit symptoms during childhood and adolescence. On the other hand, DYT1 mutation carriers without symptoms during these periods mostly do not exhibit symptoms later in their life. Little is known about what controls the timing of the onset, a critical issue for DYT1 mutation carriers. DYT11 myoclonus-dystonia is caused by mutations in SGCE coding for ε-sarcoglycan. Two dystonia patients from a single family with double mutations in DYT1 and SGCE exhibited more severe symptoms. A recent study suggested that torsinA contributes to the quality control of ε-sarcoglycan. Here, we derived mice carrying mutations in both Dyt1 and Sgce and found that these double mutant mice showed earlier onset of motor deficits in beam-walking test. A novel monoclonal antibody against mouse ε-sarcoglycan was developed by using Sgce knock-out mice to avoid the immune tolerance. Western blot analysis suggested that functional deficits of torsinA and ε-sarcoglycan may independently cause motor deficits. Examining additional mutations in other dystonia genes may be beneficial to predict the onset in DYT1 mutation carriers.

  4. Primary Ciliary Dyskinesia Caused by Homozygous Mutation in DNAL1, Encoding Dynein Light Chain 1

    PubMed Central

    Mazor, Masha; Alkrinawi, Soliman; Chalifa-Caspi, Vered; Manor, Esther; Sheffield, Val C.; Aviram, Micha; Parvari, Ruti

    2011-01-01

    In primary ciliary dyskinesia (PCD), genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility. The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Although it has long been suspected that mutations in DNAL1 encoding the ODA light chain1 might cause PCD such mutations were not found. We demonstrate here that a homozygous point mutation in this gene is associated with PCD with absent or markedly shortened ODA. The mutation (NM_031427.3: c.449A>G; p.Asn150Ser) changes the Asn at position150, which is critical for the proper tight turn between the β strand and the α helix of the leucine-rich repeat in the hydrophobic face that connects to the dynein heavy chain. The mutation reduces the stability of the axonemal dynein light chain 1 and damages its interactions with dynein heavy chain and with tubulin. This study adds another important component to understanding the types of mutations that cause PCD and provides clinical information regarding a specific mutation in a gene not yet known to be associated with PCD. PMID:21496787

  5. Two cases of RIT1 associated Noonan syndrome: Further delineation of the clinical phenotype and review of the literature.

    PubMed

    Milosavljević, Doris; Overwater, Eline; Tamminga, Saskia; de Boer, Karin; Elting, Mariet W; van Hoorn, Marion E; Rinne, Tuula; Houweling, Arjan C

    2016-07-01

    Mutations in RIT1, involved in the RAS-MAPK pathway, have recently been identified as a cause for Noonan syndrome. We present two patients with Noonan syndrome caused by a RIT1 mutation with novel phenotypic manifestations, severe bilateral lower limb lymphedema starting during puberty, and fetal hydrops resulting in intrauterine fetal death, respectively. Including our patients, a total of 52 patients have been reported with Noonan syndrome caused by a RIT1 mutation. Our report contributes to the delineation of the phenotype associated with RIT1 mutations and underlines that lymphatic involvement is part of this spectrum. In addition, we provide an overview of the currently described Noonan syndrome patients with RIT1 mutations in literature. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. In vitro and ex vivo suppression by aminoglycosides of PCDH15 nonsense mutations underlying type 1 Usher syndrome.

    PubMed

    Rebibo-Sabbah, Annie; Nudelman, Igor; Ahmed, Zubair M; Baasov, Timor; Ben-Yosef, Tamar

    2007-11-01

    Type 1 Usher syndrome (USH1) is a recessively inherited condition, characterized by profound prelingual deafness, vestibular areflexia, and prepubertal onset of retinitis pigmentosa (RP). While the auditory component of USH1 can be treated by cochlear implants, to date there is no effective treatment for RP. USH1 can be caused by mutations in each of at least six genes. While truncating mutations of these genes cause USH1, some missense mutations of the same genes cause nonsyndromic deafness. These observations suggest that partial or low level activity of the encoded proteins may be sufficient for normal retinal function, although not for normal hearing. In individuals with USH1 due to nonsense mutations, interventions enabling partial translation of a full-length functional protein may delay the onset and/or progression of RP. One such possible therapeutic approach is suppression of nonsense mutations by small molecules such as aminoglycosides. We decided to test this approach as a potential therapy for RP in USH1 patients due to nonsense mutations. We initially focused on nonsense mutations of the PCDH15 gene, underlying USH1F. Here, we show suppression of several PCDH15 nonsense mutations, both in vitro and ex vivo. Suppression was achieved both by commercial aminoglycosides and by NB30, a new aminoglycoside-derivative developed by us. NB30 has reduced cytotoxicity in comparison to commercial aminoglycosides, and thus may be more efficiently used for therapeutic purposes. The research described here has important implications for the development of targeted interventions that are effective for patients with USH1 caused by various nonsense mutations.

  7. DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: diagnostic yield and mutation spectrum.

    PubMed

    Bardai, G; Moffatt, P; Glorieux, F H; Rauch, F

    2016-12-01

    We detected disease-causing mutations in 585 of 598 individuals (98 %) with typical features of osteogenesis imperfecta (OI). In mild OI, only collagen type I encoding genes were involved. In moderate to severe OI, mutations in 12 different genes were found; 11 % of these patients had mutations in recessive genes. OI is usually caused by mutations in COL1A1 or COL1A2, the genes encoding collagen type I alpha chains, but mutations in at least 16 other genes have also been associated with OI. It is presently unknown what proportion of individuals with clinical features of OI has a disease-causing mutation in one of these genes. DNA sequence analysis was performed on 598 individuals from 487 families who had a typical OI phenotype. OI type I was diagnosed in 43 % of individuals, and 57 % had moderate to severe OI, defined as OI types other than type I. Disease-causing variants were detected in 97 % of individuals with OI type I and in 99 % of patients with moderate to severe OI. All mutations found in OI type I were dominant and exclusively affected COL1A1 or COL1A2. In moderate to severe OI, dominant mutations were found in COL1A1/COL1A2 (77 %), IFITM5 (9 %), and P4HB (0.6 %). Mutations in one of the recessive OI-associated gene were observed in 12 % of individuals with moderate to severe OI. The genes most frequently involved in recessive OI were SERPINF1 (4.0 % of individuals with moderate to severe OI) and CRTAP (2.9 %). DNA sequence analysis of currently known OI-associated genes identifies disease-causing variants in almost all individuals with a typical OI phenotype. About 20 % of individuals with moderate to severe OI had mutations in genes other than COL1A1/COL1A2.

  8. A novel CYP27B1 mutation causes a feline vitamin D-dependent rickets type IA.

    PubMed

    Grahn, Robert A; Ellis, Melanie R; Grahn, Jennifer C; Lyons, Leslie A

    2012-08-01

    A 12-week-old domestic cat presented at a local veterinary clinic with hypocalcemia and skeletal abnormalities suggestive of rickets. Osteomalacia (rickets) is a disease caused by impaired bone mineralization leading to an increased prevalence of fractures and deformity. Described in a variety of species, rickets is most commonly caused by vitamin D or calcium deficiencies owing to both environmental and or genetic abnormalities. Vitamin D-dependent rickets type 1A (VDDR-1A) is a result of the enzymatic pathway defect caused by mutations in the 25-hydroxyvitamin D(3)-1-alpha-hydroxylase gene [cytochrome P27 B1 (CYP27B1)]. Calcitriol, the active form of vitamin D(3), regulates calcium homeostasis, which requires sufficient dietary calcium availability and correct hormonal function for proper bone growth and maintenance. Patient calcitriol concentrations were low while calcidiol levels were normal suggestive of VDDR-1A. The entire DNA coding sequencing of CYP27B1 was evaluated. The affected cat was wild type for previously identified VDDR-1A causative mutations. However, six novel mutations were identified, one of which was a nonsense mutation at G637T in exon 4. The exon 4 G637T nonsense mutation results in a premature protein truncation, changing a glutamic acid to a stop codon, E213X, likely causing the clinical presentation of rickets. The previously documented genetic mutation resulting in feline VDDR-1A rickets, as well as the case presented in this research, result from novel exon 4 CYP27B1 mutations, thus exon 4 should be the initial focus of future sequencing efforts.

  9. A PIGN Mutation Responsible for Multiple Congenital Anomalies–Hypotonia–Seizures Syndrome 1 (MCAHS1) in an Israeli–Arab Family

    PubMed Central

    Khayat, Morad; Tilghman, Joseph Mark; Chervinsky, Ilana; Zalman, Lucia; Chakravarti, Aravinda; Shalev, Stavit A.

    2017-01-01

    Mutations in the PIGN gene involved in the glycosylphoshatidylinositol (GPI) anchor biosynthesis pathway cause Multiple Congenital Anomalies–Hypotonia–Seizures syndrome 1 (MCAHS1). The syndrome manifests developmental delay, hypotonia, and epilepsy, combined with multiple congenital anomalies. We report on the identification of a homozygous novel c.755A>T (p.D252V) deleterious mutation in a patient with Israeli–Arab origin with MCAHS1. The mutated PIGN caused a significant decrease of the overall GPI-anchored proteins and CD24 expression. Our results, strongly support previously published data, that partial depletion of GPI-anchored proteins is sufficient to cause severe phenotypic expression. PMID:26364997

  10. Novel XLRS1 gene mutations cause X-linked juvenile retinoschisis in Chinese families.

    PubMed

    Ma, Xiang; Li, Xiaoxin; Wang, Lihua

    2008-01-01

    To investigate various XLRS1 (RS1) gene mutations in Chinese families with X-linked juvenile retinoschisis (XLRS or RS). Genomic DNA was isolated from leukocytes of 29 male patients with X-linked juvenile retinoschisis, 38 female carriers, and 100 normal controls. All 6 exons of the RS1 gene were amplified by polymerase chain reaction, and the RS1 gene mutations were determined by direct sequencing. Eleven different RS1 mutations in 12 families were identified in the 29 male patients. The mutations comprised eight missense, two frameshift, and one splice donor site mutation. Four of these mutations, one frameshift mutation (26 del T) in exon 1, one frameshift mutation (488 del G) in exon 5, Asp145His and Arg156Gly in exon 5, have not been previously described. One novel non-disease-related polymorphism, 576C to T (Pro192Pro) in exon 6, was also found. Six recurrent mutations, Ser73Pro and Arg102Gln mutations in exon 4 and Arg200Cys, Arg209His, Arg213Gln, and Cys223Arg mutations in exon 6, were also identified in this study. RS1 gene mutations caused X-linked juvenile retinoschisis in these Chinese families.

  11. MKS1 regulates ciliary INPP5E levels in Joubert syndrome

    PubMed Central

    Slaats, Gisela G.; Isabella, Christine R.; Kroes, Hester Y.; Dempsey, Jennifer C.; Gremmels, Hendrik; Monroe, Glen R.; Phelps, Ian G.; Duran, Karen J.; Adkins, Jonathan; Kumar, Sairam A.; Knutzen, Dana M.; Knoers, Nine V.; Mendelsohn, Nancy J.; Neubauer, David; Mastroyianni, Sotiria D.; Vogt, Julie; Worgan, Lisa; Karp, Natalya; Bowdin, Sarah; Glass, Ian A.; Parisi, Melissa A.; Otto, Edgar A.; Johnson, Colin A.; Hildebrandt, Friedhelm; van Haaften, Gijs; Giles, Rachel H.; Doherty, Dan

    2016-01-01

    Background Joubert syndrome (JS) is a recessive ciliopathy characterized by a distinctive brain malformation “the molar tooth sign”. Mutations in >27 genes cause JS, and mutations in 12 of these genes also cause Meckel syndrome (MKS). The goals of this work are to describe the clinical features of MKS1-related JS and determine whether disease causing MKS1 mutations affect cellular phenotypes such as cilium number, length and protein content as potential mechanisms underlying JS. Methods We measured cilium number, length and protein content (ARL13B and INPP5E) by immunofluorescence in fibroblasts from individuals with MKS1-related JS and in a 3D spheroid rescue assay to test the effects of disease-related MKS1 mutations. Results We report MKS1 mutations (eight of them previously unreported) in nine individuals with JS. A minority of the individuals with MKS1-related JS have MKS features. In contrast to the truncating mutations associated with MKS, all of the individuals with MKS1-related JS carry ≥1 non-truncating mutation. Fibroblasts from individuals with MKS1-related JS make normal or fewer cilia than control fibroblasts, their cilia are more variable in length than controls, and show decreased ciliary ARL13B and INPP5E. Additionally, MKS1 mutant alleles have similar effects in 3D spheroids. Conclusions MKS1 functions in the transition zone at the base of the cilium to regulate ciliary INPP5E content, through an ARL13B-dependent mechanism. Mutations in INPP5E also cause JS, so our findings in patient fibroblasts support the notion that loss of INPP5E function, due to either mutation or mislocalization, is a key mechanism underlying JS, downstream of MKS1 and ARL13B. PMID:26490104

  12. Nocturnal frontal lobe epilepsy caused by a mutation in the GATOR1 complex gene NPRL3.

    PubMed

    Korenke, Georg-Christoph; Eggert, Marlene; Thiele, Holger; Nürnberg, Peter; Sander, Thomas; Steinlein, Ortrud K

    2016-03-01

    Mutations in NPRL3, one of three genes that encode proteins of the mTORC1-regulating GATOR1 complex, have recently been reported to cause cortical dysplasia with focal epilepsy. We have now analyzed a multiplex epilepsy family by whole exome sequencing and identified a frameshift mutation (NM_001077350.2; c.1522delG; p.E508Rfs*46) within exon 13 of NPRL3. This truncating mutation causes an epilepsy phenotype characterized by early childhood onset of mainly nocturnal frontal lobe epilepsy. The penetrance in our family was low (three affected out of six mutation carriers), compared to families with either ion channel- or DEPDC5-associated familial nocturnal frontal lobe epilepsy. The absence of apparent structural brain abnormalities suggests that mutations in NPRL3 are not necessarily associated with focal cortical dysplasia but might be able to cause epilepsy by different, yet unknown pathomechanisms. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  13. Consequences of SPAK inactivation on Hyperkalemic Hypertension caused by WNK1 mutations: evidence for differential roles of WNK1 and WNK4.

    PubMed

    Rafael, Chloé; Soukaseum, Christelle; Baudrie, Véronique; Frère, Perrine; Hadchouel, Juliette

    2018-02-19

    Mutations of the gene encoding WNK1 [With No lysine (K) kinase 1] or WNK4 cause Familial Hyperkalemic Hypertension (FHHt). Previous studies have shown that the activation of SPAK (Ste20-related Proline/Alanine-rich Kinase) plays a dominant role in the development of FHHt caused by WNK4 mutations. The implication of SPAK in FHHt caused by WNK1 mutation has never been investigated. To clarify this issue, we crossed WNK1 +/FHHt mice with SPAK knock-in mice in which the T-loop Thr243 residue was mutated to alanine to prevent activation by WNK kinases. We show that WNK1 +/FHHT :SPAK 243A/243A mice display an intermediate phenotype, between that of control and SPAK 243A/243A mice, with normal blood pressure but hypochloremic metabolic alkalosis. NCC abundance and phosphorylation levels also decrease below the wild-type level in the double-mutant mice but remain higher than in SPAK 243A/243A mice. This is different from what was observed in WNK4-FHHt mice in which SPAK inactivation completely restored the phenotype and NCC expression to wild-type levels. Although these results confirm that FHHt caused by WNK1 mutations is dependent on the activation of SPAK, they suggest that WNK1 and WNK4 play different roles in the distal nephron.

  14. Mutations in ALDH1A3 represent a frequent cause of microphthalmia/anophthalmia in consanguineous families.

    PubMed

    Abouzeid, Hana; Favez, Tatiana; Schmid, Angélique; Agosti, Céline; Youssef, Mohammed; Marzouk, Iman; El Shakankiry, Nihal; Bayoumi, Nader; Munier, Francis L; Schorderet, Daniel F

    2014-08-01

    Anophthalmia or microphthalmia (A/M), characterized by absent or small eye, can be unilateral or bilateral and represent developmental anomalies due to the mutations in several genes. Recently, mutations in aldehyde dehydrogenase family 1, member A3 (ALDH1A3) also known as retinaldehyde dehydrogenase 3, have been reported to cause A/M. Here, we screened a cohort of 75 patients with A/M and showed that mutations in ALDH1A3 occurred in six families. Based on this series, we estimate that mutations in ALDH1A3 represent a major cause of A/M in consanguineous families, and may be responsible for approximately 10% of the cases. Screening of this gene should be performed in a first line of investigation, together with SOX2. © 2014 WILEY PERIODICALS, INC.

  15. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes.

    PubMed

    Schubert, Julian; Siekierska, Aleksandra; Langlois, Mélanie; May, Patrick; Huneau, Clément; Becker, Felicitas; Muhle, Hiltrud; Suls, Arvid; Lemke, Johannes R; de Kovel, Carolien G F; Thiele, Holger; Konrad, Kathryn; Kawalia, Amit; Toliat, Mohammad R; Sander, Thomas; Rüschendorf, Franz; Caliebe, Almuth; Nagel, Inga; Kohl, Bernard; Kecskés, Angela; Jacmin, Maxime; Hardies, Katia; Weckhuysen, Sarah; Riesch, Erik; Dorn, Thomas; Brilstra, Eva H; Baulac, Stephanie; Møller, Rikke S; Hjalgrim, Helle; Koeleman, Bobby P C; Jurkat-Rott, Karin; Lehman-Horn, Frank; Roach, Jared C; Glusman, Gustavo; Hood, Leroy; Galas, David J; Martin, Benoit; de Witte, Peter A M; Biskup, Saskia; De Jonghe, Peter; Helbig, Ingo; Balling, Rudi; Nürnberg, Peter; Crawford, Alexander D; Esguerra, Camila V; Weber, Yvonne G; Lerche, Holger

    2014-12-01

    Febrile seizures affect 2-4% of all children and have a strong genetic component. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding syntaxin-1B, that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature. Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes.

  16. Hereditary Angioedema Due to C1 Inhibitor Deficiency in Serbia: Two Novel Mutations and Evidence of Genotype-Phenotype Association

    PubMed Central

    Andrejević, Slađana; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Mijanović, Radovan; Bonači-Nikolić, Branka; Rijavec, Matija

    2015-01-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease characterized by recurrent life-threatening oedemas and/or abdominal pain and caused by mutations affecting the C1 inhibitor gene, SERPING1. We sought to investigate the spectrum of SERPING1 mutations in Serbia and the possible genotype-phenotype association. C1-INH-HAE was diagnosed on the basis of clinical and laboratory criteria in 40 patients from 27 families; four were asymptomatic. Mutational analysis of the SERPING1 gene was performed by sequencing and multiplex ligation-dependent probe amplification. Disease-causing mutations in SERPING1 were identified in all patients. In C1-INH-HAE type I, we identified 19 different mutations, including 6 missense mutations, 6 nonsense mutations, 2 small deletions, 1 small insertion, 2 splicing defects and 2 large deletions. Two of the mutations (c.300C>T and c.1184_1185insTA) are reported here for the first time. All C1-INH-HAE type II patients from three families harboured the same substitution (c.1396C>T). Based on the type of mutation identified in the SERPING1 gene, patients were divided into two groups: group 1 (nonsense, frameshift, large deletions/insertions, splicing defect, and mutations at Arg444) or group 2 (missense, excluding mutations at Arg444). Significant differences were found in the clinical severity score (P = 0.005), prevalence of laryngeal (P = 0.040) and facial (P = 0.013) oedema, and long-term prophylaxis (P = 0.023) between the groups with different types of mutations. Because our population consisted of related subjects, differences in the severity score between mutation groups were further confirmed using the generalized estimating equation (P = 0.038). Our study identified 20 different disease-causing mutations, including two novel mutations, in all C1-INH-HAE patients, highlighting the heterogeneity of mutations in the SERPING1 gene. Furthermore, it appears that mutations with a clear effect on C1-INH function might be responsible for a more severe disease phenotype. PMID:26535898

  17. Hereditary Angioedema Due to C1 Inhibitor Deficiency in Serbia: Two Novel Mutations and Evidence of Genotype-Phenotype Association.

    PubMed

    Andrejević, Slađana; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Mijanović, Radovan; Bonači-Nikolić, Branka; Rijavec, Matija

    2015-01-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease characterized by recurrent life-threatening oedemas and/or abdominal pain and caused by mutations affecting the C1 inhibitor gene, SERPING1. We sought to investigate the spectrum of SERPING1 mutations in Serbia and the possible genotype-phenotype association. C1-INH-HAE was diagnosed on the basis of clinical and laboratory criteria in 40 patients from 27 families; four were asymptomatic. Mutational analysis of the SERPING1 gene was performed by sequencing and multiplex ligation-dependent probe amplification. Disease-causing mutations in SERPING1 were identified in all patients. In C1-INH-HAE type I, we identified 19 different mutations, including 6 missense mutations, 6 nonsense mutations, 2 small deletions, 1 small insertion, 2 splicing defects and 2 large deletions. Two of the mutations (c.300C>T and c.1184_1185insTA) are reported here for the first time. All C1-INH-HAE type II patients from three families harboured the same substitution (c.1396C>T). Based on the type of mutation identified in the SERPING1 gene, patients were divided into two groups: group 1 (nonsense, frameshift, large deletions/insertions, splicing defect, and mutations at Arg444) or group 2 (missense, excluding mutations at Arg444). Significant differences were found in the clinical severity score (P = 0.005), prevalence of laryngeal (P = 0.040) and facial (P = 0.013) oedema, and long-term prophylaxis (P = 0.023) between the groups with different types of mutations. Because our population consisted of related subjects, differences in the severity score between mutation groups were further confirmed using the generalized estimating equation (P = 0.038). Our study identified 20 different disease-causing mutations, including two novel mutations, in all C1-INH-HAE patients, highlighting the heterogeneity of mutations in the SERPING1 gene. Furthermore, it appears that mutations with a clear effect on C1-INH function might be responsible for a more severe disease phenotype.

  18. Types A and B Niemann-Pick disease.

    PubMed

    Schuchman, Edward H; Desnick, Robert J

    The eponym Niemann-Pick disease (NPD) refers to a group of patients who present with varying degrees of lipid storage and foam cell infiltration in tissues, as well as overlapping clinical features including hepatosplenomegaly, pulmonary insufficiency and/or central nervous system (CNS) involvement. Due to the pioneering work of Roscoe Brady and co-workers, we now know that there are two distinct metabolic abnormalities that account for NPD. The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM; "types A & B" NPD), and the second is due to defective function in cholesterol transport ("type C" NPD). Herein only types A and B NPD will be discussed. Type A NPD patients exhibit hepatosplenomegaly in infancy and profound CNS involvement. They rarely survive beyond 2-3years of age. Type B patients also have hepatosplenomegaly and pathologic alterations of their lungs, but there are usually no CNS signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Intermediate patients also have been reported with mild to moderate neurological findings. All patients with types A and B NPD have mutations in the gene encoding ASM (SMPD1), and thus the disease is more accurately referred to as ASM deficiency (ASMD). Herein we will review the clinical, pathological, biochemical, and genetic findings in types A and B NPD, and emphasize the seminal contributions of Dr. Brady to this disease. We will also discuss the current status of therapy for this disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Familial Ehlers-Danlos syndrome with lethal arterial events caused by a mutation in COL5A1.

    PubMed

    Monroe, Glen R; Harakalova, Magdalena; van der Crabben, Saskia N; Majoor-Krakauer, Danielle; Bertoli-Avella, Aida M; Moll, Frans L; Oranen, Björn I; Dooijes, Dennis; Vink, Aryan; Knoers, Nine V; Maugeri, Alessandra; Pals, Gerard; Nijman, Isaac J; van Haaften, Gijs; Baas, Annette F

    2015-06-01

    Different forms of Ehlers-Danlos syndrome (EDS) exist, with specific phenotypes and associated genes. Vascular EDS, caused by heterozygous mutations in the COL3A1 gene, is characterized by fragile vasculature with a high risk of catastrophic vascular events at a young age. Classic EDS, caused by heterozygous mutations in the COL5A1 or COL5A2 genes, is characterized by fragile, hyperextensible skin and joint laxity. To date, vessel rupture in four unrelated classic EDS patients with a confirmed COL5A1 mutation has been reported. We describe familial occurrence of a phenotype resembling vascular EDS in a mother and her two sons, who all died at an early age from arterial ruptures. Diagnostic Sanger sequencing in the proband failed to detect aberrations in COL3A1, COL1A1, COL1A2, TGFBR1, TGFBR2, SMAD3, and ACTA2. Next, the proband's DNA was analyzed using a next-generation sequencing approach targeting 554 genes linked to vascular disease (VASCULOME project). A novel heterozygous mutation in COL5A1 was detected, resulting in an essential glycine substitution at the C-terminal end of the triple helix domain (NM_000093.4:c.4610G>T; p.Gly1537Val). This mutation was also present in DNA isolated from autopsy material of the index's brother. No material was available from the mother, but the mutation was excluded in her parents, siblings and in the father of her sons, suggesting that the COL5A1 mutation occurred in the mother's genome de novo. In conclusion, we report familial occurrence of lethal arterial events caused by a COL5A1 mutation. © 2015 Wiley Periodicals, Inc.

  20. Spinal Neurofibromatosis without Café-au-Lait Macules in Two Families with Null Mutations of the NF1 Gene

    PubMed Central

    Kaufmann, Dieter; Müller, Ralf; Bartelt, Britta; Wolf, Michael; Kunzi-Rapp, Karin; Hanemann, Clemens Oliver; Fahsold, Raimund; Hein, Christian; Vogel, Walther; Assum, Günter

    2001-01-01

    Spinal neurofibromatosis (SNF) is considered to be an alternative form of neurofibromatosis, showing multiple spinal tumors and café-au-lait macules. Involvement of the neurofibromatosis type 1 (NF1) locus has been demonstrated, by linkage analysis, for three families with SNF. In one of them, a cosegregating frameshift mutation in exon 46 of the NF1 gene was identified. In the present study, we report four individuals from two families who carry NF1 null mutations that would be expected to cause NF1. Three patients have multiple spinal tumors and no café-au-lait macules, and the fourth has no clinical signs of NF1. In the first family, a missense mutation (Leu2067Pro) in NF1 exon 33 was found, and, in the second, a splice-site mutation (IVS31-5A→G) enlarging exon 32 by 4 bp at the 5′ end was found. The latter mutation has also been observed in an unrelated patient with classical NF1. Both NF1 mutations cause a reduction in neurofibromin of ∼50%, with no truncated protein present in the cells. This demonstrates that typical NF1 null mutations can result in a phenotype that is distinct from classical NF1, showing only a small spectrum of the NF1 symptoms, such as multiple spinal tumors, but not completely fitting the current clinical criteria for SNF. We speculate that this phenotype is caused by an unknown modifying gene that compensates for some, but not all, of the effects caused by neurofibromin deficiency. PMID:11704931

  1. Isolated growth hormone deficiency in two siblings because of paternal mosaicism for a mutation in the GH1 gene.

    PubMed

    Tsubahara, Mayuko; Hayashi, Yoshitaka; Niijima, Shin-ichi; Yamamoto, Michiyo; Kamijo, Takashi; Murata, Yoshiharu; Haruna, Hidenori; Okumura, Akihisa; Shimizu, Toshiaki

    2012-03-01

      Mutations in the GH1 gene have been identified in patients with isolated growth hormone deficiency (IGHD). Mutations causing aberrant splicing of exon 3 of GH1 that have been identified in IGHD are inherited in an autosomal dominant manner, whereas other mutations in GH1 that have been identified in IGHD are inherited in an autosomal recessive manner.   Two siblings born from nonconsanguineous healthy parents exhibited IGHD. To elucidate the cause, GH1 in all family members was analysed.   Two novel mutations in GH1, a point mutation in intron 3 and a 16-bp deletion in exon 3, were identified by sequence analyses. The intronic mutation was present in both siblings and was predicted to cause aberrant splicing. The deletion was present in one of the siblings as well as the mother with normal stature and was predicted to cause rapid degradation of mRNA through nonsense-mediated mRNA decay. The point mutation was not identified in the parents' peripheral blood DNA; however, it was detected in the DNA extracted from the father's sperms. As a trace of the mutant allele was detected in the peripheral blood of the father using PCR-RFLP, the mutation is likely to have occurred de novo at an early developmental stage before differentiation of somatic cells and germline cells.   This is the first report of mosaicism for a mutation in GH1 in a family with IGHD. It is clear that the intronic mutation plays a dominant role in the pathogenesis of IGHD in this family, as one of the siblings who had only the point mutation was affected. On the other hand, the other sibling was a compound heterozygote for the point mutation and the 16-bp deletion and it may be arguable whether IGHD in this patient should be regarded as autosomal dominant or recessive. © 2012 Blackwell Publishing Ltd.

  2. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation.

    PubMed

    Hartmann, Bianca; Wai, Timothy; Hu, Hao; MacVicar, Thomas; Musante, Luciana; Fischer-Zirnsak, Björn; Stenzel, Werner; Gräf, Ralph; van den Heuvel, Lambert; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Langer, Thomas; Kaindl, Angela M

    2016-08-06

    Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans.

  3. Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects.

    PubMed

    Willemsen, Marjolein H; Vissers, Lisenka E L; Willemsen, Michèl A A P; van Bon, Bregje W M; Kroes, Thessa; de Ligt, Joep; de Vries, Bert B; Schoots, Jeroen; Lugtenberg, Dorien; Hamel, Ben C J; van Bokhoven, Hans; Brunner, Han G; Veltman, Joris A; Kleefstra, Tjitske

    2012-03-01

    DYNC1H1 encodes the heavy chain protein of the cytoplasmic dynein 1 motor protein complex that plays a key role in retrograde axonal transport in neurons. Furthermore, it interacts with the LIS1 gene of which haploinsufficiency causes a severe neuronal migration disorder in humans, known as classical lissencephaly or Miller-Dieker syndrome. To describe the clinical spectrum and molecular characteristics of DYNC1H1 mutations. A family based exome sequencing approach was used to identify de novo mutations in patients with severe intellectual disability. In this report the identification of two de novo missense mutations in DYNC1H1 (p.Glu1518Lys and p.His3822Pro) in two patients with severe intellectual disability and variable neuronal migration defects is described. Since an autosomal dominant mutation in DYNC1H1 was previously identified in a family with the axonal (type 2) form of Charcot- Marie-Tooth (CMT2) disease and mutations in Dync1h1 in mice also cause impaired neuronal migration in addition to neuropathy, these data together suggest that mutations in DYNC1H1 can lead to a broad phenotypic spectrum and confirm the importance of DYNC1H1 in both central and peripheral neuronal functions.

  4. Eye Development Genes and Known Syndromes

    PubMed Central

    Slavotinek, Anne M.

    2011-01-01

    Anophthalmia and microphthalmia (A/M) are significant eye defects because they can have profound effects on visual acuity. A/M is associated with non-ocular abnormalities in an estimated 33–95% of cases and around 25% of patients have an underlying genetic syndrome that is diagnosable. Syndrome recognition is important for targeted molecular genetic testing, prognosis and for counseling regarding recurrence risks. This review provides clinical and molecular information for several of the commonest syndromes associated with A/M: Anophthalmia-Esophageal-Genital syndrome, caused by SOX2 mutations, Anophthalmia and pituitary abnormalities caused by OTX2 mutations, Matthew-Wood syndrome caused by STRA6 mutations, Oculocardiafaciodental syndrome and Lenz microphthalmia caused by BCOR mutations, Microphthalmia Linear Skin pigmentation syndrome caused by HCCS mutations, Anophthalmia, pituitary abnormalities, polysyndactyly caused by BMP4 mutations and Waardenburg anophthalmia caused by mutations in SMOC1. In addition, we briefly discuss the ocular and extraocular phenotypes associated with several other important eye developmental genes, including GDF6, VSX2, RAX, SHH, SIX6 and PAX6. PMID:22005280

  5. A screen to identify Drosophila genes required for integrin-mediated adhesion.

    PubMed Central

    Walsh, E P; Brown, N H

    1998-01-01

    Drosophila integrins have essential adhesive roles during development, including adhesion between the two wing surfaces. Most position-specific integrin mutations cause lethality, and clones of homozygous mutant cells in the wing do not adhere to the apposing surface, causing blisters. We have used FLP-FRT induced mitotic recombination to generate clones of randomly induced mutations in the F1 generation and screened for mutations that cause wing blisters. This phenotype is highly selective, since only 14 lethal complementation groups were identified in screens of the five major chromosome arms. Of the loci identified, 3 are PS integrin genes, 2 are blistered and bloated, and the remaining 9 appear to be newly characterized loci. All 11 nonintegrin loci are required on both sides of the wing, in contrast to integrin alpha subunit genes. Mutations in 8 loci only disrupt adhesion in the wing, similar to integrin mutations, while mutations in the 3 other loci cause additional wing defects. Mutations in 4 loci, like the strongest integrin mutations, cause a "tail-up" embryonic lethal phenotype, and mutant alleles of 1 of these loci strongly enhance an integrin mutation. Thus several of these loci are good candidates for genes encoding cytoplasmic proteins required for integrin function. PMID:9755209

  6. Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans

    PubMed Central

    Tao, Hirotaka; Manak, J. Robert; Sowers, Levi; Mei, Xue; Kiyonari, Hiroshi; Abe, Takaya; Dahdaleh, Nader S.; Yang, Tian; Wu, Shu; Chen, Shan; Fox, Mark H.; Gurnett, Christina; Montine, Thomas; Bird, Thomas; Shaffer, Lisa G.; Rosenfeld, Jill A.; McConnell, Juliann; Madan-Khetarpal, Suneeta; Berry-Kravis, Elizabeth; Griesbach, Hilary; Saneto, Russell P.; Scott, Matthew P.; Antic, Dragana; Reed, Jordan; Boland, Riley; Ehaideb, Salleh N.; El-Shanti, Hatem; Mahajan, Vinit B.; Ferguson, Polly J.; Axelrod, Jeffrey D.; Lehesjoki, Anna-Elina; Fritzsch, Bernd; Slusarski, Diane C.; Wemmie, John; Ueno, Naoto; Bassuk, Alexander G.

    2011-01-01

    Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution. PMID:21276947

  7. Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies

    PubMed Central

    Steehouwer, Marloes; Gilissen, Christian; Graham, Sarah A.; Hoover-Fong, Julie; Telegrafi, Aida B.; Destree, Anne; Smigiel, Robert; Lambie, Lindsday A.; Kayserili, Hülya; Altunoglu, Umut; Lapi, Elisabetta; Uzielli, Maria Luisa; Aracena, Mariana; Nur, Banu G.; Mihci, Ercan; Moreira, Lilia M. A.; Borges Ferreira, Viviane; Horovitz, Dafne D. G.; da Rocha, Katia M.; Jezela-Stanek, Aleksandra; Brooks, Alice S.; Reutter, Heiko; Cohen, Julie S.; Fatemi, Ali; Smitka, Martin; Grebe, Theresa A.; Di Donato, Nataliya; Deshpande, Charu; Vandersteen, Anthony; Marques Lourenço, Charles; Dufke, Andreas; Rossier, Eva; Andre, Gwenaelle; Baumer, Alessandra; Spencer, Careni; McGaughran, Julie; Franke, Lude; Veltman, Joris A.; De Vries, Bert B. A.; Schinzel, Albert; Fisher, Simon E.; Hoischen, Alexander

    2017-01-01

    Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype. PMID:28346496

  8. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1.

    PubMed

    Mazor, Masha; Alkrinawi, Soliman; Chalifa-Caspi, Vered; Manor, Esther; Sheffield, Val C; Aviram, Micha; Parvari, Ruti

    2011-05-13

    In primary ciliary dyskinesia (PCD), genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility. The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Although it has long been suspected that mutations in DNAL1 encoding the ODA light chain1 might cause PCD such mutations were not found. We demonstrate here that a homozygous point mutation in this gene is associated with PCD with absent or markedly shortened ODA. The mutation (NM_031427.3: c.449A>G; p.Asn150Ser) changes the Asn at position150, which is critical for the proper tight turn between the β strand and the α helix of the leucine-rich repeat in the hydrophobic face that connects to the dynein heavy chain. The mutation reduces the stability of the axonemal dynein light chain 1 and damages its interactions with dynein heavy chain and with tubulin. This study adds another important component to understanding the types of mutations that cause PCD and provides clinical information regarding a specific mutation in a gene not yet known to be associated with PCD. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Hereditary sensory and autonomic neuropathy type 1 (HSANI) caused by a novel mutation in SPTLC2

    PubMed Central

    Murphy, Sinéad M.; Ernst, Daniela; Wei, Yu; Laurà, Matilde; Liu, Yo-Tsen; Polke, James; Blake, Julian; Winer, John; Houlden, Henry; Hornemann, Thorsten

    2013-01-01

    Objective: To describe the clinical and neurophysiologic phenotype of a family with hereditary sensory and autonomic neuropathy type 1 (HSANI) due to a novel mutation in SPTLC2 and to characterize the biochemical properties of this mutation. Methods: We screened 107 patients with HSAN who were negative for other genetic causes for mutations in SPTLC2. The biochemical properties of a new mutation were characterized in cell-free and cell-based activity assays. Results: A novel mutation (A182P) was found in 2 subjects of a single family. The phenotype of the 2 subjects was an ulcero-mutilating sensory-predominant neuropathy as described previously for patients with HSANI, but with prominent motor involvement and earlier disease onset in the first decade of life. Affected patients had elevated levels of plasma 1-deoxysphingolipids (1-deoxySLs). Biochemically, the A182P mutation was associated with a reduced canonical activity but an increased alternative activity with alanine, which results in largely increased 1-deoxySL levels, supporting their pathogenicity. Conclusion: This study confirms that mutations in SPTLC2 are associated with increased deoxySL formation causing HSANI. PMID:23658386

  10. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency

    PubMed Central

    Lovric, Svjetlana; Goncalves, Sara; Oskouian, Babak; Srinivas, Honnappa; Choi, Won-Il; Shril, Shirlee; Ashraf, Shazia; Tan, Weizhen; Rao, Jia; Airik, Merlin; Schapiro, David; Braun, Daniela A.; Sadowski, Carolin E.; Schmidt, Johanna Magdalena; Girik, Vladimir; Capitani, Guido; Suh, Jung H.; Lachaussée, Noëlle; Arrondel, Christelle; Patat, Julie; Furlano, Monica; Boyer, Olivia; Schmitt, Alain; Vuiblet, Vincent; Hashmi, Seema; Wilcken, Rainer; Bernier, Francois P.; Innes, A. Micheil; Parboosingh, Jillian S.; Lamont, Ryan E.; Midgley, Julian P.; Wright, Nicola; Majewski, Jacek; Zenker, Martin; Schaefer, Franz; Kuss, Navina; Giese, Thomas; Schwarz, Klaus; Catheline, Vilain; Franke, Ingolf; Sznajer, Yves; Truant, Anne S.; Adams, Brigitte; Désir, Julie; Biemann, Ronald; Pei, York; Lloberas, Nuria; Madrid, Alvaro; Dharnidharka, Vikas R.; Connolly, Anne M.; Willing, Marcia C.; Cooper, Megan A.; Lifton, Richard P.; Simons, Matias; Riezman, Howard; Antignac, Corinne; Saba, Julie D.

    2017-01-01

    Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1Δ yeast strains, whereas expression of disease-associated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS. PMID:28165339

  11. The first Japanese patient with mandibular hypoplasia, deafness, progeroid features and lipodystrophy diagnosed via POLD1 mutation detection.

    PubMed

    Okada, Asami; Kohmoto, Tomohiro; Naruto, Takuya; Yokota, Ichiro; Kotani, Yumiko; Shimada, Aki; Miyamoto, Yoko; Takahashi, Rizu; Goji, Aya; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei

    2017-01-01

    Mandibular hypoplasia, deafness, progeroid features and lipodystrophy (MDPL) syndrome is a rare autosomal dominant disorder caused by heterozygous POLD1 mutations. To date, 13 patients affected by POLD1 mutation-caused MDPL have been described. We report a clinically undiagnosed 11-year-old male who noted joint contractures at 6 years of age. Targeted exome sequencing identified a known POLD1 mutation [NM_002691.3:c.1812_1814del, p.(Ser605del)] that diagnosed him as the first Japanese/East Asian MDPL case.

  12. Selected AGXT gene mutations analysis provides a genetic diagnosis in 28% of Tunisian patients with primary hyperoxaluria.

    PubMed

    Benhaj Mbarek, Ibtihel; Abroug, Saoussen; Omezzine, Asma; Zellama, Dorsaf; Achour, Abdellatif; Harbi, Abdelaziz; Bouslama, Ali

    2011-05-25

    Primary hyperoxaluria type I (PH1) is a rare genetic disorder characterized by allelic and clinical heterogeneity. Four mutations (G170R, 33_34insC, I244T and F152I) account for more than 50% of PH1 alleles and form the basis for diagnostic genetic screening for PH1. We aimed to analyze the prevalence of these specific mutations causing PH1, and to provide an accurate tool for diagnosis of presymptomatic patients as well as for prenatal diagnosis in the affected families. Polymerase chain reaction/Restriction Fragment Length Polymorphism, were used to detect the four mutations in the AGXT gene in DNA samples from 57 patients belonging to 40 families. Two mutations causing PH1 were detected in 24 patients (42.1%), with a predominance of the I244T mutation (68% of patients) and 33_34insC (in the remaining 32%). In 92% of cases, mutated alleles were in homozygous state. The presented clinical features were similar for the two mutations. The age of onset was heterogeneous with a higher frequency of the pediatric age. In 58.3% of cases, the presentation corresponded to advanced renal disease which occurred early (< 5 years) in the two mutations. In adolescents, only the I244T mutation was detected (41.1%). I244T and 33_34insC mutations were observed in adult patients, with 17.6% and 12.5% respectively. Limited mutation analysis can provide a useful first line investigation for PH1. I244T and 33_34insC presented 28.2% of identified mutations causing disease in our cohort. This identification could provide an accurate tool for prenatal diagnosis in the affected families, for genetic counselling and for detection of presymptomatic individuals.

  13. Mutations in the Promoter Region of the Aldolase B Gene that cause Hereditary Fructose Intolerance

    PubMed Central

    Coffee, Erin M.; Tolan, Dean R.

    2010-01-01

    SUMMARY Hereditary fructose intolerance (HFI) is a potentially fatal inherited metabolic disease caused by a deficiency of aldolase B activity in the liver and kidney. Over 40 disease-causing mutations are known in the protein-coding region of ALDOB. Mutations upstream of the protein-coding portion of ALDOB are reported here for the first time. DNA sequence analysis of 61 HFI patients revealed single base mutations in the promoter, intronic enhancer, and the first exon, which is entirely untranslated. One mutation, g.–132G>A, is located within the promoter at an evolutionarily conserved nucleotide within a transcription factor-binding site. A second mutation, IVS1+1G>C, is at the donor splice site of the first exon. In vitro electrophoretic mobility shift assays show a decrease in nuclear extract-protein binding at the g.–132G>A mutant site. The promoter mutation results in decreased transcription using luciferase reporter plasmids. Analysis of cDNA from cells transfected with plasmids harboring the IVS1+1G>C mutation results in aberrant splicing leading to complete retention of the first intron (~ 5 kb). The IVS1+1G>C splicing mutation results in loss of luciferase activity from a reporter plasmid. These novel mutations in ALDOB represent 2% of alleles in American HFI patients, with IVS1+1G>C representing a significantly higher allele frequency (6%) among HFI patients of Hispanic and African-American ethnicity. PMID:20882353

  14. Analysis of 24 genes reveals a monogenic cause in 11.1% of cases with steroid-resistant nephrotic syndrome at a single center.

    PubMed

    Tan, Weizhen; Lovric, Svjetlana; Ashraf, Shazia; Rao, Jia; Schapiro, David; Airik, Merlin; Shril, Shirlee; Gee, Heon Yung; Baum, Michelle; Daouk, Ghaleb; Ferguson, Michael A; Rodig, Nancy; Somers, Michael J G; Stein, Deborah R; Vivante, Asaf; Warejko, Jillian K; Widmeier, Eugen; Hildebrandt, Friedhelm

    2018-02-01

    Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of end-stage renal disease (ESRD) among patients manifesting at under 25 years of age. We performed mutation analysis using a high-throughput PCR-based microfluidic technology in 24 single-gene causes of SRNS in a cohort of 72 families, who presented with SRNS before the age of 25 years. Within an 18-month interval, we obtained DNA samples, pedigree information, and clinical information from 77 consecutive children with SRNS from 72 different families seen at Boston Children's Hospital (BCH). Mutation analysis was completed by combining high-throughput multiplex PCR with next-generation sequencing. We analyzed the sequences of 18 recessive and 6 dominant genes of SRNS in all 72 families for disease-causing variants. We identified the disease-causing mutation in 8 out of 72 (11.1%) families. Mutations were detected in the six genes: NPHS1 (2 out of 72), WT1 (2 out of 72), NPHS2, MYO1E, TRPC6, and INF2. Median age at onset was 4.1 years in patients without a mutation (range 0.5-18.8), and 3.2 years in those in whom the causative mutation was detected (range 0.1-14.3). Mutations in dominant genes presented with a median onset of 4.5 years (range 3.2-14.3). Mutations in recessive genes presented with a median onset of 0.5 years (range 0.1-3.2). Our molecular genetic diagnostic study identified underlying monogenic causes of steroid-resistant nephrotic syndrome in ~11% of patients with SRNS using a cost-effective technique. We delineated some of the therapeutic, diagnostic, and prognostic implications. Our study confirms that genetic testing is indicated in pediatric patients with SRNS.

  15. TFAP2B mutation and dental anomalies.

    PubMed

    Tanasubsinn, Natchaya; Sittiwangkul, Rekwan; Pongprot, Yupada; Kawasaki, Katsushige; Ohazama, Atsushi; Sastraruji, Thanapat; Kaewgahya, Massupa; Kantaputra, Piranit Nik

    2017-08-01

    Mutations inTFAP2B has been reported in patients with isolated patent ductus arteriosus (PDA) and Char syndrome. We performed mutation analysis of TFAP2B in 43 patients with isolated PDA, 7 patients with PDA with other congenital heart defects and 286 patients with isolated tooth agenesis with or without other dental anomalies. The heterozygous c.1006G>A mutation was identified in 20 individuals. Those mutation carriers consisted of 1 patient with term PDA (1/43), 16 patients with isolated tooth agenesis with or without other dental anomalies (16/286; 5.6%), 1 patient with PDA and severe valvular aortic stenosis and tooth agenesis (1/4) and 2 normal controls (2/100; 1%). The mutation is predicted to cause an amino-acid substitution p.Val336Ile in the TFAP2B protein. Tfap2b expression during early mouse tooth development supports the association of TFAP2B mutation and dental anomalies. It is hypothesized that this incidence might have been the result of founder effect. Here we report for the first time that TFAP2B mutation is associated with tooth agenesis, microdontia, supernumerary tooth and root maldevelopment. In addition, we also found that TFAP2B mutations, the common causes of PDA in Caucasian, are not the common cause of PDA in Thai population.

  16. Novel NTRK1 mutations cause hereditary sensory and autonomic neuropathy type IV: demonstration of a founder mutation in the Turkish population.

    PubMed

    Tüysüz, Beyhan; Bayrakli, Fatih; DiLuna, Michael L; Bilguvar, Kaya; Bayri, Yasar; Yalcinkaya, Cengiz; Bursali, Aysegul; Ozdamar, Elif; Korkmaz, Baris; Mason, Christopher E; Ozturk, Ali K; Lifton, Richard P; State, Matthew W; Gunel, Murat

    2008-05-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV), or congenital insensitivity to pain with anhidrosis, is an autosomal recessive disorder characterized by insensitivity to noxious stimuli, anhidrosis from deinnervated sweat glands, and delayed mental and motor development. Mutations in the neurotrophic tyrosine kinase receptor type 1 (NTRK1), a receptor in the neurotrophin signaling pathway phosphorylated in response to nerve growth factor, are associated with this disorder. We identified six families from Northern Central Turkey with HSAN IV. We screened the NTRK1 gene for mutations in these families. Microsatellite and single nucleotide polymorphism (SNP) markers on the Affymetrix 250K chip platform were used to determine the haplotypes for three families harboring the same mutation. Screening for mutations in the NTRK1 gene demonstrated one novel frameshift mutation, two novel nonsense mutations, and three unrelated kindreds with the same splice-site mutation. Genotyping of the three families with the identical splice-site mutation revealed that they share the same haplotype. This report broadens the spectrum of mutations in NTRK1 that cause HSAN IV and demonstrates a founder mutation in the Turkish population.

  17. Genetics Home Reference: Caffey disease

    MedlinePlus

    ... ethnic groups? Genetic Changes A mutation in the COL1A1 gene causes Caffey disease . The COL1A1 gene provides instructions for making part of a ... form of collagen in the human body. The COL1A1 gene mutation that causes Caffey disease replaces the ...

  18. Mutation screening of the HGD gene identifies a novel alkaptonuria mutation with significant founder effect and high prevalence.

    PubMed

    Sakthivel, Srinivasan; Zatkova, Andrea; Nemethova, Martina; Surovy, Milan; Kadasi, Ludevit; Saravanan, Madurai P

    2014-05-01

    Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2-dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000. Our study focused on studying the frequency of AKU and identification of HGD gene mutations in nomads. HGD gene sequencing was used to identify the mutations in alkaptonurics. For the past four years, from subjects suspected to be clinically affected, we found 16 positive cases among a randomly selected cohort of 41 Indian nomads (Narikuravar) settled in the specific area of Tamil Nadu, India. HGD gene mutation analysis showed that 11 of these patients carry the same homozygous splicing mutation c.87 + 1G > A; in five cases, this mutation was found to be heterozygous, while the second AKU-causing mutation was not identified in these patients. This result indicates that the founder effect and high degree of consanguineous marriages have contributed to AKU among nomads. Eleven positive samples were homozygous for a novel mutation c.87 + 1G > A, that abolishes an intron 2 donor splice site and most likely causes skipping of exon 2. The prevalence of AKU observed earlier seems to be highly increased in people of nomadic origin. © 2014 John Wiley & Sons Ltd/University College London.

  19. A rare male patient with classic Rett syndrome caused by MeCP2_e1 mutation.

    PubMed

    Tokaji, Narumi; Ito, Hiromichi; Kohmoto, Tomohiro; Naruto, Takuya; Takahashi, Rizu; Goji, Aya; Mori, Tatsuo; Toda, Yoshihiro; Saito, Masako; Tange, Shoichiro; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei

    2018-03-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder typically affecting females. It is mainly caused by loss-of-function mutations that affect the coding sequence of exon 3 or 4 of methyl-CpG-binding protein 2 (MECP2). Severe neonatal encephalopathy resulting in death before the age of 2 years is the most common phenotype observed in males affected by a pathogenic MECP2 variant. Mutations in MECP2 exon 1 affecting the MeCP2_e1 isoform are relatively rare causes of RTT in females, and only one case of a male patient with MECP2-related severe neonatal encephalopathy caused by a mutation in MECP2 exon 1 has been reported. This is the first reported case of a male with classic RTT caused by a 5-bp duplication in the open-reading frame of MECP2 exon 1 (NM_001110792.1:c.23_27dup) that introduced a premature stop codon [p.(Ser10Argfs*36)] in the MeCP2_e1 isoform, which has been reported in one female patient with classic RTT. Therefore, both males and females displaying at least some type of MeCP2_e1 mutation may exhibit the classic RTT phenotype. © 2018 Wiley Periodicals, Inc.

  20. GJB2 and GJB6 mutations are an infrequent cause of autosomal-recessive nonsyndromic hearing loss in residents of Mexico.

    PubMed

    Hernández-Juárez, Aideé Alejandra; Lugo-Trampe, José de Jesús; Campos-Acevedo, Luis Daniel; Lugo-Trampe, Angel; Treviño-González, José Luis; de-la-Cruz-Ávila, Israel; Martínez-de-Villarreal, Laura Elia

    2014-12-01

    Mutations in the DFNB1 locus are the most common cause of autosomal-recessive nonsyndromic hearing loss (ARNSHL) worldwide. The aim of this study was to identify the most frequent mutations in patients with ARNSHL who reside in Northeastern Mexico. We determined the nucleotide sequence the coding region of GJB2 of 78 patients with ARNSHL. Polymerase chain reaction assays were used to detect the GJB2 IVS1+1G>A mutation and deletions within GJB6. GJB2 mutations were detected in 9.6% of the alleles, and c.35delG was the most frequent. Six other less-frequent mutations were detected, including an extremely rare variant (c.645_648delTAGA), a novel mutation (c.35G>A), and one of possible Mexican origin (c.34G>T). GJB6 deletions and GJB2 IVS1+1G>A were not detected. These data suggest that mutations in the DFNB1 locus are a rare cause of ARNSHL among the population of Northeastern Mexico. This confirms the genetic heterogeneity of this condition and indicates that further research is required to determine the other mechanisms of pathogenesis of ARNSHL in Mexicans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Therapeutic benefits of ACTH and levetiracetam in STXBP1 encephalopathy with a de novo mutation: A case report and literature review.

    PubMed

    Liu, Shunli; Wang, Liyuan; Cai, Xiao Tang; Zhou, Hui; Yu, Dan; Wang, Zhiling

    2018-05-01

    The case report aims to discuss the clinical symptoms and treatment of encephalopathy caused by a novel syntaxin- binding protein 1 (STXBP1) genetic mutation. The patient, a girl, was born at 38+4 weeks of gestation. She had frequent spasm attacks accompanied by obvious psychomotor development retardation since the neonatal period. Genetic screening identified a novel STXBP1 genetic mutation. Early-onset epileptic encephalopathy with STXBP1 mutation. We adjusted the antiepileptic strategy to oral levetiracetam and topiramate, and intravenous administration of adrenocorticotropic hormone(ACTH) for 2 weeks. Subsequently, prednisone was continued, and gradually reduced and withdrawn over 3 months. The treatment was effective with complete control of the epileptic seizures and improvements in the electroencephalogram readings. However, the effects on psychomotor ability were slow and limited. A literature review of STXBP1 mutation cases in which ACTH was administered showed that complete seizure control is observed in 60% of cases, 20% are partially affected, and the remaining 20% show no effect. ACTH and levetiracetam had good therapeutic effects in epilepsy control in this case of de novo STXBP1 mutation. ACTH is an effective drug for early-onset epileptic encephalopathy caused by STXBP1 mutation. However, controlling epilepsy using this therapy does not alter the psychomotor development retardation caused by the STXBP1 mutation.

  2. Stickler syndrome caused by COL2A1 mutations: genotype–phenotype correlation in a series of 100 patients

    PubMed Central

    Hoornaert, Kristien P; Vereecke, Inge; Dewinter, Chantal; Rosenberg, Thomas; Beemer, Frits A; Leroy, Jules G; Bendix, Laila; Björck, Erik; Bonduelle, Maryse; Boute, Odile; Cormier-Daire, Valerie; De Die-Smulders, Christine; Dieux-Coeslier, Anne; Dollfus, Hélène; Elting, Mariet; Green, Andrew; Guerci, Veronica I; Hennekam, Raoul C M; Hilhorts-Hofstee, Yvonne; Holder, Muriel; Hoyng, Carel; Jones, Kristi J; Josifova, Dragana; Kaitila, Ilkka; Kjaergaard, Suzanne; Kroes, Yolande H; Lagerstedt, Kristina; Lees, Melissa; LeMerrer, Martine; Magnani, Cinzia; Marcelis, Carlo; Martorell, Loreto; Mathieu, Michèle; McEntagart, Meriel; Mendicino, Angela; Morton, Jenny; Orazio, Gabrielli; Paquis, Véronique; Reish, Orit; Simola, Kalle O J; Smithson, Sarah F; Temple, Karen I; Van Aken, Elisabeth; Van Bever, Yolande; van den Ende, Jenneke; Van Hagen, Johanna M; Zelante, Leopoldo; Zordania, Riina; De Paepe, Anne; Leroy, Bart P; De Buyzere, Marc; Coucke, Paul J; Mortier, Geert R

    2010-01-01

    Stickler syndrome is an autosomal dominant connective tissue disorder caused by mutations in different collagen genes. The aim of our study was to define more precisely the phenotype and genotype of Stickler syndrome type 1 by investigating a large series of patients with a heterozygous mutation in COL2A1. In 188 probands with the clinical diagnosis of Stickler syndrome, the COL2A1 gene was analyzed by either a mutation scanning technique or bidirectional fluorescent DNA sequencing. The effect of splice site alterations was investigated by analyzing mRNA. Multiplex ligation-dependent amplification analysis was used for the detection of intragenic deletions. We identified 77 different COL2A1 mutations in 100 affected individuals. Analysis of the splice site mutations showed unusual RNA isoforms, most of which contained a premature stop codon. Vitreous anomalies and retinal detachments were found more frequently in patients with a COL2A1 mutation compared with the mutation-negative group (P<0.01). Overall, 20 of 23 sporadic patients with a COL2A1 mutation had either a cleft palate or retinal detachment with vitreous anomalies. The presence of vitreous anomalies, retinal tears or detachments, cleft palate and a positive family history were shown to be good indicators for a COL2A1 defect. In conclusion, we confirm that Stickler syndrome type 1 is predominantly caused by loss-of-function mutations in the COL2A1 gene as >90% of the mutations were predicted to result in nonsense-mediated decay. On the basis of binary regression analysis, we developed a scoring system that may be useful when evaluating patients with Stickler syndrome. PMID:20179744

  3. A New COL3A1 Mutation in Ehlers-Danlos Syndrome Vascular Type With Different Phenotypes in the Same Family.

    PubMed

    Cortini, Francesca; Marinelli, Barbara; Romi, Silvia; Seresini, Agostino; Pesatori, Angela Cecilia; Seia, Manuela; Montano, Nicola; Bassotti, Alessandra

    2017-04-01

    Vascular Ehlers-Danlos syndrome (vEDS) is a rare and severe connective tissue disorder caused by mutations in the collagen type III alpha I chain ( COL3A1) gene. We describe a pathogenetic heterozygous COL3A1 mutation c.3140 G>A, p. Gly1047Asp, identified using next-generation sequencing, in a 40-year-old Italian female. The genetic test performed on her relatives, which present different clinical phenotypes, confirmed that they carry the same mutation in heterozygous state. This finding confirms that mutations causing vEDS have an incomplete penetrance.

  4. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype.

    PubMed

    Knowles, Michael R; Ostrowski, Lawrence E; Leigh, Margaret W; Sears, Patrick R; Davis, Stephanie D; Wolf, Whitney E; Hazucha, Milan J; Carson, Johnny L; Olivier, Kenneth N; Sagel, Scott D; Rosenfeld, Margaret; Ferkol, Thomas W; Dell, Sharon D; Milla, Carlos E; Randell, Scott H; Yin, Weining; Sannuti, Aruna; Metjian, Hilda M; Noone, Peadar G; Noone, Peter J; Olson, Christina A; Patrone, Michael V; Dang, Hong; Lee, Hye-Seung; Hurd, Toby W; Gee, Heon Yung; Otto, Edgar A; Halbritter, Jan; Kohl, Stefan; Kircher, Martin; Krischer, Jeffrey; Bamshad, Michael J; Nickerson, Deborah A; Hildebrandt, Friedhelm; Shendure, Jay; Zariwala, Maimoona A

    2014-03-15

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder of motile cilia, but the genetic cause is not defined for all patients with PCD. To identify disease-causing mutations in novel genes, we performed exome sequencing, follow-up characterization, mutation scanning, and genotype-phenotype studies in patients with PCD. Whole-exome sequencing was performed using NimbleGen capture and Illumina HiSeq sequencing. Sanger-based sequencing was used for mutation scanning, validation, and segregation analysis. We performed exome sequencing on an affected sib-pair with normal ultrastructure in more than 85% of cilia. A homozygous splice-site mutation was detected in RSPH1 in both siblings; parents were carriers. Screening RSPH1 in 413 unrelated probands, including 325 with PCD and 88 with idiopathic bronchiectasis, revealed biallelic loss-of-function mutations in nine additional probands. Five affected siblings of probands in RSPH1 families harbored the familial mutations. The 16 individuals with RSPH1 mutations had some features of PCD; however, nasal nitric oxide levels were higher than in patients with PCD with other gene mutations (98.3 vs. 20.7 nl/min; P < 0.0003). Additionally, individuals with RSPH1 mutations had a lower prevalence (8 of 16) of neonatal respiratory distress, and later onset of daily wet cough than typical for PCD, and better lung function (FEV1), compared with 75 age- and sex-matched PCD cases (73.0 vs. 61.8, FEV1 % predicted; P = 0.043). Cilia from individuals with RSPH1 mutations had normal beat frequency (6.1 ± Hz at 25°C), but an abnormal, circular beat pattern. The milder clinical disease and higher nasal nitric oxide in individuals with biallelic mutations in RSPH1 provides evidence of a unique genotype-phenotype relationship in PCD, and suggests that mutations in RSPH1 may be associated with residual ciliary function.

  5. Mutations in WNT1 Cause Different Forms of Bone Fragility

    PubMed Central

    Keupp, Katharina; Beleggia, Filippo; Kayserili, Hülya; Barnes, Aileen M.; Steiner, Magdalena; Semler, Oliver; Fischer, Björn; Yigit, Gökhan; Janda, Claudia Y.; Becker, Jutta; Breer, Stefan; Altunoglu, Umut; Grünhagen, Johannes; Krawitz, Peter; Hecht, Jochen; Schinke, Thorsten; Makareeva, Elena; Lausch, Ekkehart; Cankaya, Tufan; Caparrós-Martín, José A.; Lapunzina, Pablo; Temtamy, Samia; Aglan, Mona; Zabel, Bernhard; Eysel, Peer; Koerber, Friederike; Leikin, Sergey; Garcia, K. Christopher; Netzer, Christian; Schönau, Eckhard; Ruiz-Perez, Victor L.; Mundlos, Stefan; Amling, Michael; Kornak, Uwe; Marini, Joan; Wollnik, Bernd

    2013-01-01

    We report that hypofunctional alleles of WNT1 cause autosomal-recessive osteogenesis imperfecta, a congenital disorder characterized by reduced bone mass and recurrent fractures. In consanguineous families, we identified five homozygous mutations in WNT1: one frameshift mutation, two missense mutations, one splice-site mutation, and one nonsense mutation. In addition, in a family affected by dominantly inherited early-onset osteoporosis, a heterozygous WNT1 missense mutation was identified in affected individuals. Initial functional analysis revealed that altered WNT1 proteins fail to activate canonical LRP5-mediated WNT-regulated β-catenin signaling. Furthermore, osteoblasts cultured in vitro showed enhanced Wnt1 expression with advancing differentiation, indicating a role of WNT1 in osteoblast function and bone development. Our finding that homozygous and heterozygous variants in WNT1 predispose to low-bone-mass phenotypes might advance the development of more effective therapeutic strategies for congenital forms of bone fragility, as well as for common forms of age-related osteoporosis. PMID:23499309

  6. Coding Sequence Mutations Identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 Patients with Familial or Idiopathic Dilated Cardiomyopathy

    PubMed Central

    Hershberger, Ray E.; Parks, Sharie B.; Kushner, Jessica D.; Li, Duanxiang; Ludwigsen, Susan; Jakobs, Petra; Nauman, Deirdre; Burgess, Donna; Partain, Julie; Litt, Michael

    2008-01-01

    Abstract Background: More than 20 genes have been reported to cause idiopathic and familial dilated cardiomyopathy (IDC/FDC), but the frequency of genetic causation remains poorly understood. Methods and Results: Blood samples were collected and DNA prepared from 313 patients, 183 with FDC and 130 with IDC. Genomic DNA underwent bidirectional sequencing of six genes, and mutation carriers were followed up by evaluation of additional family members. We identified in 36 probands, 31 unique protein‐altering variants (11.5% overall) that were not identified in 253 control subjects (506 chromosomes). These included 13 probands (4.2%) with 12 β‐myosin heavy chain (MYH7) mutations, nine probands (2.9%) with six different cardiac troponin T (TNNT2) mutations, eight probands (2.6%) carrying seven different cardiac sodium channel (SCN5A) mutations, three probands (1.0%) with three titin‐cap or telethonin (TCAP) mutations, three probands (1.0%) with two LIM domain binding 3 (LDB3) mutations, and one proband (0.3%) with a muscle LIM protein (CSRP3) mutation. Four nucleotide changes did not segregate with phentoype and/or did not alter a conserved amino acid and were therefore considered unlikely to be disease‐causing. Mutations in 11 probands were assessed as likely disease‐causing, and in 21 probands were considered possibly disease‐causing. These 32 probands included 14 of the 130 with IDC (10.8%) and 18 of the 183 with FDC (9.8%) Conclusions: Mutations of these six genes each account for a small fraction of the genetic cause of FDC/IDC. The frequency of possible or likely disease‐causing mutations in these genes is similar for IDC and FDC. PMID:19412328

  7. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation

    PubMed Central

    Hartmann, Bianca; Wai, Timothy; Hu, Hao; MacVicar, Thomas; Musante, Luciana; Fischer-Zirnsak, Björn; Stenzel, Werner; Gräf, Ralph; van den Heuvel, Lambert; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Langer, Thomas; Kaindl, Angela M

    2016-01-01

    Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans. DOI: http://dx.doi.org/10.7554/eLife.16078.001 PMID:27495975

  8. Genetics Home Reference: congenital nephrotic syndrome

    MedlinePlus

    ... eventually leading to end-stage renal disease. NPHS1 gene mutations cause all cases of congenital nephrotic syndrome of ... is found in people of Finnish ancestry. NPHS1 gene mutations can cause congenital nephrotic syndrome in non-Finnish ...

  9. The first Japanese patient with mandibular hypoplasia, deafness, progeroid features and lipodystrophy diagnosed via POLD1 mutation detection

    PubMed Central

    Okada, Asami; Kohmoto, Tomohiro; Naruto, Takuya; Yokota, Ichiro; Kotani, Yumiko; Shimada, Aki; Miyamoto, Yoko; Takahashi, Rizu; Goji, Aya; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei

    2017-01-01

    Mandibular hypoplasia, deafness, progeroid features and lipodystrophy (MDPL) syndrome is a rare autosomal dominant disorder caused by heterozygous POLD1 mutations. To date, 13 patients affected by POLD1 mutation-caused MDPL have been described. We report a clinically undiagnosed 11-year-old male who noted joint contractures at 6 years of age. Targeted exome sequencing identified a known POLD1 mutation [NM_002691.3:c.1812_1814del, p.(Ser605del)] that diagnosed him as the first Japanese/East Asian MDPL case. PMID:28791128

  10. Combined fulminant frontotemporal dementia and amyotrophic lateral sclerosis associated with an I113T SOD1 mutation.

    PubMed

    Katz, Jonathan S; Katzberg, Hans D; Woolley, Susan C; Marklund, Stefan L; Andersen, Peter M

    2012-10-01

    Mutations in the gene for superoxide dismutase type 1 cause amyotrophic lateral sclerosis (ALS), but are not thought to be associated with frontotemporal dementia (FTD). A lack of detailed case reports is one reason, among others, for this skepticism. This case report comments on a patient with familial ALS caused by I113T mutation in the SOD1 gene presenting with progressive cognitive and behavioral decline two years before developing progressive motor degeneration. In conclusion, this case provides evidence that SOD1 mutations can be associated with FTD.

  11. BRF1 mutations alter RNA polymerase III–dependent transcription and cause neurodevelopmental anomalies

    PubMed Central

    Hög, Friederike; Dentici, Maria Lisa; Tan, Perciliz L.; Sowada, Nadine; Medeira, Ana; Gueneau, Lucie; Thiele, Holger; Kousi, Maria; Lepri, Francesca; Wenzeck, Larissa; Blumenthal, Ian; Radicioni, Antonio; Schwarzenberg, Tito Livio; Mandriani, Barbara; Fischetto, Rita; Morris-Rosendahl, Deborah J.; Altmüller, Janine; Reymond, Alexandre; Nürnberg, Peter; Merla, Giuseppe; Dallapiccola, Bruno; Katsanis, Nicholas; Cramer, Patrick; Kubisch, Christian

    2015-01-01

    RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III–related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development. PMID:25561519

  12. Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome.

    PubMed

    Gallione, Carol; Aylsworth, Arthur S; Beis, Jill; Berk, Terri; Bernhardt, Barbara; Clark, Robin D; Clericuzio, Carol; Danesino, Cesare; Drautz, Joanne; Fahl, Jeffrey; Fan, Zheng; Faughnan, Marie E; Ganguly, Arupa; Garvie, John; Henderson, Katharine; Kini, Usha; Leedom, Tracey; Ludman, Mark; Lux, Andreas; Maisenbacher, Melissa; Mazzucco, Sara; Olivieri, Carla; Ploos van Amstel, Johannes K; Prigoda-Lee, Nadia; Pyeritz, Reed E; Reardon, Willie; Vandezande, Kirk; Waldman, J Deane; White, Robert I; Williams, Charles A; Marchuk, Douglas A

    2010-02-01

    Juvenile polyposis (JP) and hereditary hemorrhagic telangiectasia (HHT) are clinically distinct diseases caused by mutations in SMAD4 and BMPR1A (for JP) and endoglin and ALK1 (for HHT). Recently, a combined syndrome of JP-HHT was described that is also caused by mutations in SMAD4. Although both JP and JP-HHT are caused by SMAD4 mutations, a possible genotype:phenotype correlation was noted as all of the SMAD4 mutations in the JP-HHT patients were clustered in the COOH-terminal MH2 domain of the protein. If valid, this correlation would provide a molecular explanation for the phenotypic differences, as well as a pre-symptomatic diagnostic test to distinguish patients at risk for the overlapping but different clinical features of the disorders. In this study, we collected 19 new JP-HHT patients from which we identified 15 additional SMAD4 mutations. We also reviewed the literature for other reports of JP patients with HHT symptoms with confirmed SMAD4 mutations. Our combined results show that although the SMAD4 mutations in JP-HHT patients do show a tendency to cluster in the MH2 domain, mutations in other parts of the gene also cause the combined syndrome. Thus, any mutation in SMAD4 can cause JP-HHT. Any JP patient with a SMAD4 mutation is, therefore, at risk for the visceral manifestations of HHT and any HHT patient with SMAD4 mutation is at risk for early onset gastrointestinal cancer. In conclusion, a patient who tests positive for any SMAD4 mutation must be considered at risk for the combined syndrome of JP-HHT and monitored accordingly. Copyright 2010 Wiley-Liss, Inc.

  13. MKS1 regulates ciliary INPP5E levels in Joubert syndrome.

    PubMed

    Slaats, Gisela G; Isabella, Christine R; Kroes, Hester Y; Dempsey, Jennifer C; Gremmels, Hendrik; Monroe, Glen R; Phelps, Ian G; Duran, Karen J; Adkins, Jonathan; Kumar, Sairam A; Knutzen, Dana M; Knoers, Nine V; Mendelsohn, Nancy J; Neubauer, David; Mastroyianni, Sotiria D; Vogt, Julie; Worgan, Lisa; Karp, Natalya; Bowdin, Sarah; Glass, Ian A; Parisi, Melissa A; Otto, Edgar A; Johnson, Colin A; Hildebrandt, Friedhelm; van Haaften, Gijs; Giles, Rachel H; Doherty, Dan

    2016-01-01

    Joubert syndrome (JS) is a recessive ciliopathy characterised by a distinctive brain malformation 'the molar tooth sign'. Mutations in >27 genes cause JS, and mutations in 12 of these genes also cause Meckel-Gruber syndrome (MKS). The goals of this work are to describe the clinical features of MKS1-related JS and determine whether disease causing MKS1 mutations affect cellular phenotypes such as cilium number, length and protein content as potential mechanisms underlying JS. We measured cilium number, length and protein content (ARL13B and INPP5E) by immunofluorescence in fibroblasts from individuals with MKS1-related JS and in a three-dimensional (3D) spheroid rescue assay to test the effects of disease-related MKS1 mutations. We report MKS1 mutations (eight of them previously unreported) in nine individuals with JS. A minority of the individuals with MKS1-related JS have MKS features. In contrast to the truncating mutations associated with MKS, all of the individuals with MKS1-related JS carry ≥ 1 non-truncating mutation. Fibroblasts from individuals with MKS1-related JS make normal or fewer cilia than control fibroblasts, their cilia are more variable in length than controls, and show decreased ciliary ARL13B and INPP5E. Additionally, MKS1 mutant alleles have similar effects in 3D spheroids. MKS1 functions in the transition zone at the base of the cilium to regulate ciliary INPP5E content, through an ARL13B-dependent mechanism. Mutations in INPP5E also cause JS, so our findings in patient fibroblasts support the notion that loss of INPP5E function, due to either mutation or mislocalisation, is a key mechanism underlying JS, downstream of MKS1 and ARL13B. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. 'Laminopathies': A wide spectrum of human diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worman, Howard J.; Bonne, Gisele; Universite Pierre et Marie Curie-Paris 6, Faculte de medecine, Paris F-75013

    2007-06-10

    Mutations in genes encoding the intermediate filament nuclear lamins and associated proteins cause a wide spectrum of diseases sometimes called 'laminopathies.' Diseases caused by mutations in LMNA encoding A-type lamins include autosomal dominant Emery-Dreifuss muscular dystrophy and related myopathies, Dunnigan-type familial partial lipodystrophy, Charcot-Marie-Tooth disease type 2B1 and developmental and accelerated aging disorders. Duplication in LMNB1 encoding lamin B1 causes autosomal dominant leukodystrophy and mutations in LMNB2 encoding lamin B2 are associated with acquired partial lipodystrophy. Disorders caused by mutations in genes encoding lamin-associated integral inner nuclear membrane proteins include X-linked Emery-Dreifuss muscular dystrophy, sclerosing bone dysplasias, HEM/Greenberg skeletal dysplasiamore » and Pelger-Huet anomaly. While mutations and clinical phenotypes of 'laminopathies' have been carefully described, data explaining pathogenic mechanisms are only emerging. Future investigations will likely identify new 'laminopathies' and a combination of basic and clinical research will lead to a better understanding of pathophysiology and the development of therapies.« less

  15. Inherited pain: sodium channel Nav1.7 A1632T mutation causes erythromelalgia due to a shift of fast inactivation.

    PubMed

    Eberhardt, Mirjam; Nakajima, Julika; Klinger, Alexandra B; Neacsu, Cristian; Hühne, Kathrin; O'Reilly, Andrias O; Kist, Andreas M; Lampe, Anne K; Fischer, Kerstin; Gibson, Jane; Nau, Carla; Winterpacht, Andreas; Lampert, Angelika

    2014-01-24

    Inherited erythromelalgia (IEM) causes debilitating episodic neuropathic pain characterized by burning in the extremities. Inherited "paroxysmal extreme pain disorder" (PEPD) differs in its clinical picture and affects proximal body areas like the rectal, ocular, or jaw regions. Both pain syndromes have been linked to mutations in the voltage-gated sodium channel Nav1.7. Electrophysiological characterization shows that IEM-causing mutations generally enhance activation, whereas mutations leading to PEPD alter fast inactivation. Previously, an A1632E mutation of a patient with overlapping symptoms of IEM and PEPD was reported (Estacion, M., Dib-Hajj, S. D., Benke, P. J., Te Morsche, R. H., Eastman, E. M., Macala, L. J., Drenth, J. P., and Waxman, S. G. (2008) NaV1.7 Gain-of-function mutations as a continuum. A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J. Neurosci. 28, 11079-11088), displaying a shift of both activation and fast inactivation. Here, we characterize a new mutation of Nav1.7, A1632T, found in a patient suffering from IEM. Although transfection of A1632T in sensory neurons resulted in hyperexcitability and spontaneous firing of dorsal root ganglia (DRG) neurons, whole-cell patch clamp of transfected HEK cells revealed that Nav1.7 activation was unaltered by the A1632T mutation but that steady-state fast inactivation was shifted to more depolarized potentials. This is a characteristic normally attributed to PEPD-causing mutations. In contrast to the IEM/PEPD crossover mutation A1632E, A1632T failed to slow current decay (i.e. open-state inactivation) and did not increase resurgent currents, which have been suggested to contribute to high-frequency firing in physiological and pathological conditions. Reduced fast inactivation without increased resurgent currents induces symptoms of IEM, not PEPD, in the new Nav1.7 mutation, A1632T. Therefore, persistent and resurgent currents are likely to determine whether a mutation in Nav1.7 leads to IEM or PEPD.

  16. Painful Na-channelopathies: an expanding universe.

    PubMed

    Waxman, Stephen G

    2013-07-01

    The universe of painful Na-channelopathies--human disorders caused by mutations in voltage-gated sodium channels--has recently expanded in three dimensions. We now know that mutations of sodium channels cause not only rare genetic 'model disorders' such as inherited erythromelalgia and channelopathy-associated insensitivity to pain but also common painful neuropathies. We have learned that mutations of NaV1.8, as well as mutations of NaV1.7, can cause painful Na-channelopathies. Moreover, recent studies combining atomic level structural models and pharmacogenomics suggest that the goal of genomically guided pain therapy may not be unrealistic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Low-level APC mutational mosaicism is the underlying cause in a substantial fraction of unexplained colorectal adenomatous polyposis cases.

    PubMed

    Spier, Isabel; Drichel, Dmitriy; Kerick, Martin; Kirfel, Jutta; Horpaopan, Sukanya; Laner, Andreas; Holzapfel, Stefanie; Peters, Sophia; Adam, Ronja; Zhao, Bixiao; Becker, Tim; Lifton, Richard P; Perner, Sven; Hoffmann, Per; Kristiansen, Glen; Timmermann, Bernd; Nöthen, Markus M; Holinski-Feder, Elke; Schweiger, Michal R; Aretz, Stefan

    2016-03-01

    In 30-50% of patients with colorectal adenomatous polyposis, no germline mutation in the known genes APC, causing familial adenomatous polyposis, MUTYH, causing MUTYH-associated polyposis, or POLE or POLD1, causing polymerase-proofreading-associated polyposis can be identified, although a hereditary aetiology is likely. This study aimed to explore the impact of APC mutational mosaicism in unexplained polyposis. To comprehensively screen for somatic low-level APC mosaicism, high-coverage next-generation sequencing of the APC gene was performed using DNA from leucocytes and a total of 53 colorectal tumours from 20 unrelated patients with unexplained sporadic adenomatous polyposis. APC mosaicism was assumed if the same loss-of-function APC mutation was present in ≥ 2 anatomically separated colorectal adenomas/carcinomas per patient. All mutations were validated using diverse methods. In 25% (5/20) of patients, somatic mosaicism of a pathogenic APC mutation was identified as underlying cause of the disease. In 2/5 cases, the mosaic level in leucocyte DNA was slightly below the sensitivity threshold of Sanger sequencing; while in 3/5 cases, the allelic fraction was either very low (0.1-1%) or no mutations were detectable. The majority of mosaic mutations were located outside the somatic mutation cluster region of the gene. The present data indicate a high prevalence of pathogenic mosaic APC mutations below the detection thresholds of routine diagnostics in adenomatous polyposis, even if high-coverage sequencing of leucocyte DNA alone is taken into account. This has important implications for both routine work-up and strategies to identify new causative genes in this patient group. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. A Japanese Family with Central Hypothyroidism Caused by a Novel IGSF1 Mutation.

    PubMed

    Nishigaki, Satsuki; Hamazaki, Takashi; Fujita, Keinosuke; Morikawa, Shuntaro; Tajima, Toshihiro; Shintaku, Haruo

    2016-12-01

    Hemizygous mutations in the immunoglobulin superfamily member 1 (IGSF1) gene have been demonstrated to cause congenital central hypothyroidism in males. This study reports a family with a novel mutation in the IGSF1 gene located on the long arm of the X chromosome. A two-month-old boy was diagnosed with central hypothyroidism because of prolonged jaundice. A thyrotropin-releasing hormone (TRH) stimulation test indicated dysfunction in both the hypothalamus and the pituitary gland, and prompted the IGSF1 gene to be analyzed. The patient had a novel nonsense variant, c.2713C>T (p.Q905X), in exon 14 of the IGSF1 gene. Studies of the family revealed that the patient's sister and mother were heterozygous carriers of the IGSF1 mutation. The patient's maternal uncle carried the same mutation as the proband but had no overt symptoms. The mother and uncle started levothyroxine supplementation because of subclinical hypothyroidism. A novel mutation (c.2713C>T, p.Q905X) of the IGSF1 gene was identified that causes congenital central hypothyroidism in a Japanese family. The findings further expand the clinical heterogeneity of this entity.

  19. Expanding the Clinical and Genetic Spectrum of KRT1, KRT2 and KRT10 Mutations in Keratinopathic Ichthyosis.

    PubMed

    Hotz, Alrun; Oji, Vinzenz; Bourrat, Emmanuelle; Jonca, Nathalie; Mazereeuw-Hautier, Juliette; Betz, Regina C; Blume-Peytavi, Ulrike; Stieler, Karola; Morice-Picard, Fanny; Schönbuchner, Ines; Markus, Susanne; Schlipf, Nina; Fischer, Judith

    2016-05-01

    Twenty-six families with keratinopathic ichthyoses (epidermolytic ichthyosis, superficial epidermolytic ichthyosis or congenital reticular ichthyosiform erythroderma) were studied. Epidermolytic ichthyosis is caused by mutations in the genes KRT1 or KRT10, mutations in the gene KRT2 lead to superficial epidermolytic ichthyosis, and congenital reticular ichthyosiform erythroderma is caused by frameshift mutations in the genes KRT10 or KRT1, which lead to the phenomenon of revertant mosaicism. In this study mutations were found in KRT1, KRT2 and KRT10, including 8 mutations that are novel pathogenic variants. We report here the first case of a patient with congenital reticular ichthyosiform erythroderma carrying a mutation in KRT10 that does not lead to an arginine-rich reading frame. Novel clinical features found in patients with congenital reticular ichthyosiform erythroderma are described, such as mental retardation, spasticity, facial dysmorphisms, symblepharon and malposition of the 4th toe.

  20. Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism

    PubMed Central

    Kapoor, Ritika R; Flanagan, Sarah E; Arya, Ved Bhushan; Shield, Julian P; Ellard, Sian; Hussain, Khalid

    2013-01-01

    Background Congenital hyperinsulinism (CHI) is a clinically heterogeneous condition. Mutations in eight genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, HNF4A and HNF1A) are known to cause CHI. Aim To characterise the clinical and molecular aspects of a large cohort of patients with CHI. Methodology Three hundred patients were recruited and clinical information was collected before genotyping. ABCC8 and KCNJ11 genes were analysed in all patients. Mutations in GLUD1, HADH, GCK and HNF4A genes were sought in patients with diazoxide-responsive CHI with hyperammonaemia (GLUD1), raised 3-hydroxybutyrylcarnitine and/or consanguinity (HADH), positive family history (GCK) or when CHI was diagnosed within the first week of life (HNF4A). Results Mutations were identified in 136/300 patients (45.3%). Mutations in ABCC8/KCNJ11 were the commonest genetic cause identified (n=109, 36.3%). Among diazoxide-unresponsive patients (n=105), mutations in ABCC8/KCNJ11 were identified in 92 (87.6%) patients, of whom 63 patients had recessively inherited mutations while four patients had dominantly inherited mutations. A paternal mutation in the ABCC8/KCNJ11 genes was identified in 23 diazoxide-unresponsive patients, of whom six had diffuse disease. Among the diazoxide-responsive patients (n=183), mutations were identified in 41 patients (22.4%). These include mutations in ABCC8/KCNJ11 (n=15), HNF4A (n=7), GLUD1 (n=16) and HADH (n=3). Conclusions A genetic diagnosis was made for 45.3% of patients in this large series. Mutations in the ABCC8 gene were the commonest identifiable cause. The vast majority of patients with diazoxide-responsive CHI (77.6%) had no identifiable mutations, suggesting other genetic and/or environmental mechanisms. PMID:23345197

  1. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy

    PubMed Central

    Sarparanta, Jaakko; Jonson, Per Harald; Golzio, Christelle; Sandell, Satu; Luque, Helena; Screen, Mark; McDonald, Kristin; Stajich, Jeffrey M.; Mahjneh, Ibrahim; Vihola, Anna; Raheem, Olayinka; Penttilä, Sini; Lehtinen, Sara; Huovinen, Sanna; Palmio, Johanna; Tasca, Giorgio; Ricci, Enzo; Hackman, Peter; Hauser, Michael; Katsanis, Nicholas; Udd, Bjarne

    2012-01-01

    Limb-girdle muscular dystrophy type 1D (LGMD1D) was linked to 7q36 over a decade ago1, but its genetic cause has remained elusive. We have studied nine LGMD families from Finland, the U.S., and Italy, and identified four dominant missense mutations leading to p.Phe93Leu or p.Phe89Ile changes in the ubiquitously expressed co-chaperone DNAJB6. Functional testing in vivo showed that the mutations have a dominant toxic effect mediated specifically by the cytoplasmic isoform of DNAJB6. In vitro studies demonstrated that the mutations increase the half-life of DNAJB6, extending this effect to the wild-type protein, and reduce its protective anti-aggregation effect. Further, we show that DNAJB6 interacts with members of the CASA complex, including the myofibrillar-myopathy-causing protein BAG3. Our data provide the genetic cause of LGMD1D, suggest that the pathogenesis is mediated by defective chaperone function, and highlight how mutations expressed ubiquitously can exert their effect in a tissue-, cellular compartment-, and isoform-specific manner. PMID:22366786

  2. Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1.

    PubMed

    Abdul Wahab, Siti Aishah; Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu

    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome.

  3. Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1

    PubMed Central

    Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu

    2016-01-01

    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome. PMID:27672653

  4. EIF2AK4 Mutations in Patients Diagnosed With Pulmonary Arterial Hypertension.

    PubMed

    Best, D Hunter; Sumner, Kelli L; Smith, Benjamin P; Damjanovich-Colmenares, Kristy; Nakayama, Ikue; Brown, Lynette M; Ha, Youna; Paul, Eleri; Morris, Ashley; Jama, Mohamed A; Dodson, Mark W; Bayrak-Toydemir, Pinar; Elliott, C Gregory

    2017-04-01

    Differentiating pulmonary venoocclusive disease (PVOD) and pulmonary capillary hemangiomatosis (PCH) from idiopathic pulmonary arterial hypertension (IPAH) or heritable pulmonary arterial hypertension (HPAH) is important clinically. Mutations in eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4) cause heritable PVOD and PCH, whereas mutations in other genes cause HPAH. The aim of this study was to describe the frequency of pathogenic EIF2AK4 mutations in patients diagnosed clinically with IPAH or HPAH. Sanger sequencing and deletion/duplication analysis were performed to detect mutations in the bone morphogenetic protein receptor type II (BMPR2) gene in 81 patients diagnosed at 30 North American medical centers with IPAH (n = 72) or HPAH (n = 9). BMPR2 mutation-negative patients (n = 67) were sequenced for mutations in four other genes (ACVRL1, ENG, CAV1, and KCNK3) known to cause HPAH. Patients negative for mutations in all known PAH genes (n = 66) were then sequenced for mutations in EIF2AK4. We assessed the pathogenicity of EIF2AK4 mutations and reviewed clinical characteristics of patients with pathogenic EIF2AK4 mutations. Pathogenic BMPR2 mutations were identified in 8 of 72 (11.1%) patients with IPAH and 6 of 9 (66.7%) patients with HPAH. A novel homozygous EIF2AK4 mutation (c.257+4A>C) was identified in 1 of 9 (11.1%) patients diagnosed with HPAH. The novel EIF2AK4 mutation (c.257+4A>C) was homozygous in two sisters with severe pulmonary hypertension. None of the 72 patients with IPAH had biallelic EIF2AK4 mutations. Pathogenic biallelic EIF2AK4 mutations are rarely identified in patients diagnosed with HPAH. Identification of pathogenic biallelic EIF2AK4 mutations can aid clinicians in differentiating HPAH from heritable PVOD or PCH. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  5. Mutational Analysis of the Adaptor Protein 2 Sigma Subunit (AP2S1) Gene: Search for Autosomal Dominant Hypocalcemia Type 3 (ADH3)

    PubMed Central

    Rogers, Angela; Nesbit, M. Andrew; Hannan, Fadil M.; Howles, Sarah A.; Gorvin, Caroline M.; Cranston, Treena; Allgrove, Jeremy; Bevan, John S.; Bano, Gul; Brain, Caroline; Datta, Vipan; Grossman, Ashley B.; Hodgson, Shirley V.; Izatt, Louise; Millar-Jones, Lynne; Pearce, Simon H.; Robertson, Lisa; Selby, Peter L.; Shine, Brian; Snape, Katie; Warner, Justin

    2014-01-01

    Context: Autosomal dominant hypocalcemia (ADH) types 1 and 2 are due to calcium-sensing receptor (CASR) and G-protein subunit-α11 (GNA11) gain-of-function mutations, respectively, whereas CASR and GNA11 loss-of-function mutations result in familial hypocalciuric hypercalcemia (FHH) types 1 and 2, respectively. Loss-of-function mutations of adaptor protein-2 sigma subunit (AP2σ 2), encoded by AP2S1, cause FHH3, and we therefore sought for gain-of-function AP2S1 mutations that may cause an additional form of ADH, which we designated ADH3. Objective: The objective of the study was to investigate the hypothesis that gain-of-function AP2S1 mutations may cause ADH3. Design: The sample size required for the detection of at least one mutation with a greater than 95% likelihood was determined by binomial probability analysis. Nineteen patients (including six familial cases) with hypocalcemia in association with low or normal serum PTH concentrations, consistent with ADH, but who did not have CASR or GNA11 mutations, were ascertained. Leukocyte DNA was used for sequence and copy number variation analysis of AP2S1. Results: Binomial probability analysis, using the assumption that AP2S1 mutations would occur in hypocalcemic patients at a prevalence of 20%, which is observed in FHH patients without CASR or GNA11 mutations, indicated that the likelihood of detecting at least one AP2S1 mutation was greater than 95% and greater than 98% in sample sizes of 14 and 19 hypocalcemic patients, respectively. AP2S1 mutations and copy number variations were not detected in the 19 hypocalcemic patients. Conclusion: The absence of AP2S1 abnormalities in hypocalcemic patients, suggests that ADH3 may not occur or otherwise represents a rare hypocalcemic disorder. PMID:24708097

  6. Two Novel Mutations in the GDAP1 and PRX Genes in Early Onset Charcot-Marie-Tooth Syndrome

    PubMed Central

    Auer-Grumbach, M.; Fischer, C.; Papić, L.; John, E.; Plecko, B.; Bittner, R. E.; Bernert, G.; Pieber, T. R.; Miltenberger, G.; Schwarz, R.; Windpassinger, C.; Grill, F.; Timmerman, V.; Speicher, M. R.; Janecke, A. R.

    2011-01-01

    Autosomal recessive Charcot-Marie-Tooth syndrome (AR-CMT) is often characterised by an infantile disease onset and a severe phenotype. Mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene are thought to be a common cause of AR-CMT. Mutations in the periaxin (PRX) gene are rare. They are associated with severe demyelination of the peripheral nerves and sometimes lead to prominent sensory disturbances. To evaluate the frequency of GDAP1 and PRX mutations in early onset CMT, we examined seven AR-CMT families and 12 sporadic CMT patients, all presenting with progressive distal muscle weakness and wasting. In one family also prominent sensory abnormalities and sensory ataxia were apparent from early childhood. In three families we detected four GDAP1 mutations (L58LfsX4, R191X, L239F and P153L), one of which is novel and is predicted to cause a loss of protein function. In one additional family with prominent sensory abnormalities a novel homozygous PRX mutation was found (A700PfsX17). No mutations were identified in 12 sporadic cases. This study suggests that mutations in the GDAP1 gene are a common cause of early-onset AR-CMT. In patients with early-onset demyelinating AR-CMT and severe sensory loss PRX is one of the genes to be tested. PMID:18504680

  7. Gene structure and mutations of glutaryl-coenzyme A dehydrogenase: Impaired association of enzyme subunits that is due to an A421V substitution causes glutaric acidemia type I in the Amish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biery, B.J.; Stein, D.E.; Goodman, S.I.

    The structure of the human glutaryl coenzyme A dehydrogenase (GCD) gene was determined to contain 11 exons and to span {approximately}7 kb. Fibroblast DNA from 64 unrelated glutaric academia type I (GA1) patients was screened for mutations by PCR amplification and analysis of SSCP. Fragments with altered electrophoretic mobility were subcloned and sequenced to detect mutations that caused GA1. This report describes the structure of the GCD gene, as well as point mutations and polymorphisms found in 7 of its 11 exons. Several mutations were found in more than one patient, but no one prevalent mutation was detected in themore » general population. As expected from pedigree analysis, a single mutant allele causes GA1 in the Old Order Amish of Lancaster County, Pennsylvania. Several mutations have been expressed in Escherichia coli, and all produce diminished enzyme activity. Reduced activity in GCD encoded by the A421V mutation in the Amish may be due to impaired association of enzyme subunits. 13 refs., 5 figs., 3 tabs.« less

  8. Selected AGXT gene mutations analysis provides a genetic diagnosis in 28% of Tunisian patients with primary hyperoxaluria

    PubMed Central

    2011-01-01

    Background Primary hyperoxaluria type I (PH1) is a rare genetic disorder characterized by allelic and clinical heterogeneity. Four mutations (G170R, 33_34insC, I244T and F152I) account for more than 50% of PH1 alleles and form the basis for diagnostic genetic screening for PH1. We aimed to analyze the prevalence of these specific mutations causing PH1, and to provide an accurate tool for diagnosis of presymptomatic patients as well as for prenatal diagnosis in the affected families. Methods Polymerase chain reaction/Restriction Fragment Length Polymorphism, were used to detect the four mutations in the AGXT gene in DNA samples from 57 patients belonging to 40 families. Results Two mutations causing PH1 were detected in 24 patients (42.1%), with a predominance of the I244T mutation (68% of patients) and 33_34insC (in the remaining 32%). In 92% of cases, mutated alleles were in homozygous state. The presented clinical features were similar for the two mutations. The age of onset was heterogeneous with a higher frequency of the pediatric age. In 58.3% of cases, the presentation corresponded to advanced renal disease which occurred early (< 5 years) in the two mutations. In adolescents, only the I244T mutation was detected (41.1%). I244T and 33_34insC mutations were observed in adult patients, with 17.6% and 12.5% respectively. Conclusion Limited mutation analysis can provide a useful first line investigation for PH1. I244T and 33_34insC presented 28.2% of identified mutations causing disease in our cohort. This identification could provide an accurate tool for prenatal diagnosis in the affected families, for genetic counselling and for detection of presymptomatic individuals. PMID:21612638

  9. Human NR5A1/SF-1 Mutations Show Decreased Activity on BDNF (Brain-Derived Neurotrophic Factor), an Important Regulator of Energy Balance: Testing Impact of Novel SF-1 Mutations Beyond Steroidogenesis

    PubMed Central

    Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E.

    2014-01-01

    Context Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. Objective To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. Patients 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. Methods SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Results Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Conclusions Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations. PMID:25122490

  10. Human NR5A1/SF-1 mutations show decreased activity on BDNF (brain-derived neurotrophic factor), an important regulator of energy balance: testing impact of novel SF-1 mutations beyond steroidogenesis.

    PubMed

    Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E

    2014-01-01

    Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.

  11. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands

    PubMed Central

    Nishimoto, Koshiro; Tomlins, Scott A.; Kuick, Rork; Cani, Andi K.; Giordano, Thomas J.; Hovelson, Daniel H.; Liu, Chia-Jen; Sanjanwala, Aalok R.; Edwards, Michael A.; Gomez-Sanchez, Celso E.; Nanba, Kazutaka; Rainey, William E.

    2015-01-01

    Primary aldosteronism (PA) represents the most common cause of secondary hypertension, but little is known regarding its adrenal cellular origins. Recently, aldosterone-producing cell clusters (APCCs) with high expression of aldosterone synthase (CYP11B2) were found in both normal and PA adrenal tissue. PA-causing aldosterone-producing adenomas (APAs) harbor mutations in genes encoding ion channels/pumps that alter intracellular calcium homeostasis and cause renin-independent aldosterone production through increased CYP11B2 expression. Herein, we hypothesized that APCCs have APA-related aldosterone-stimulating somatic gene mutations. APCCs were studied in 42 normal adrenals from kidney donors. To clarify APCC molecular characteristics, we used microarrays to compare the APCC transcriptome with conventional adrenocortical zones [zona glomerulosa (ZG), zona fasciculata, and zona reticularis]. The APCC transcriptome was most similar to ZG but with an enhanced capacity to produce aldosterone. To determine if APCCs harbored APA-related mutations, we performed targeted next generation sequencing of DNA from 23 APCCs and adjacent normal adrenal tissue isolated from both formalin-fixed, paraffin-embedded, and frozen tissues. Known aldosterone driver mutations were identified in 8 of 23 (35%) APCCs, including mutations in calcium channel, voltage-dependent, L-type, α1D-subunit (CACNA1D; 6 of 23 APCCs) and ATPase, Na+/K+ transporting, α1-polypeptide (ATP1A1; 2 of 23 APCCs), which were not observed in the adjacent normal adrenal tissue. Overall, we show three major findings: (i) APCCs are common in normal adrenals, (ii) APCCs harbor somatic mutations known to cause excess aldosterone production, and (iii) the mutation spectrum of aldosterone-driving mutations is different in APCCs from that seen in APA. These results provide molecular support for APCC as a precursor of PA. PMID:26240369

  12. Generation and analysis of knock-in mice carrying pseudohypoaldosteronism type II-causing mutations in the cullin 3 gene.

    PubMed

    Araki, Yuya; Rai, Tatemitsu; Sohara, Eisei; Mori, Takayasu; Inoue, Yuichi; Isobe, Kiyoshi; Kikuchi, Eriko; Ohta, Akihito; Sasaki, Sei; Uchida, Shinichi

    2015-10-21

    Pseudohypoaldosteronism type II (PHAII) is a hereditary hypertensive disease caused by mutations in four different genes: with-no-lysine kinases (WNK) 1 and 4, Kelch-like family member 3 (KLHL3), and cullin 3 (Cul3). Cul3 and KLHL3 form an E3 ligase complex that ubiquitinates and reduces the expression level of WNK4. PHAII-causing mutations in WNK4 and KLHL3 impair WNK4 ubiquitination. However, the molecular pathogenesis of PHAII caused by Cul3 mutations is unclear. In cultured cells and human leukocytes, PHAII-causing Cul3 mutations result in the skipping of exon 9, producing mutant Cul3 protein lacking 57 amino acids. However, whether this phenomenon occurs in the kidneys and is responsible for the pathogenesis of PHAII in vivo is unknown. We generated knock-in mice carrying a mutation in the C-terminus of intron 8 of Cul3, c.1207-1G>A, which corresponds to a PHAII-causing mutation in the human Cul3 gene. Heterozygous Cul3(G(-1)A/+) knock-in mice did not exhibit PHAII phenotypes, and the skipping of exon 9 was not evident in their kidneys. However, the level of Cul3 mRNA expression in the kidneys of heterozygous knock-in mice was approximately half that of wild-type mice. Furthermore, homozygous knock-in mice were nonviable. It suggested that the mutant allele behaved like a knockout allele and did not produce Cul3 mRNA lacking exon 9. A reduction in Cul3 expression alone was not sufficient to develop PHAII in the knock-in mice. Our findings highlighted the pathogenic role of mutant Cul3 protein and provided insight to explain why PHAII-causing mutations in Cul3 cause kidney-predominant PHAII phenotypes. © 2015. Published by The Company of Biologists Ltd.

  13. A second mutation in the type II procollagen gene (COL2AI) causing stickler syndrome (arthro-ophthalmopathy) is also a premature termination codon.

    PubMed Central

    Ahmad, N N; McDonald-McGinn, D M; Zackai, E H; Knowlton, R G; LaRossa, D; DiMascio, J; Prockop, D J

    1993-01-01

    Genetic linkage analyses suggest that mutations in type II collagen may be responsible for Stickler syndrome, or arthro-ophthalmopathy (AO), in many families. In the present study oligonucleotide primers were developed to amplify and directly sequence eight of the first nine exons of the gene for type II procollagen (COL2A1). Analysis of the eight exons in 10 unrelated probands with AO revealed that one had a single-base mutation in one allele that changed the codon of -CGA- for arginine at amino acid position alpha 1-9 in exon 7 to a premature termination signal for translation. The second mutation found to cause AO was, therefore, similar to the first in that both created premature termination signals in the COL2A1 gene. Since mutations producing premature termination signals have not previously been detected in genes for fibrillar collagens, the results raise the possibility that such mutations in the COL2A1 gene are a common cause of AO. Images Figure 2 Figure 3 PMID:8434604

  14. Sin1, a Mutation Affecting Female Fertility in Arabidopsis, Interacts with Mod1, Its Recessive Modifier

    PubMed Central

    Lang, J. D.; Ray, S.; Ray, A.

    1994-01-01

    In Arabidopsis thaliana, a mutation in the SIN1 gene causes aberrant ovule development and female-specific sterility. The effect of the sin1 mutation is polymorphic and pleiotropic in different genetic backgrounds. The polymorphism concerns morphology of the mutant ovules. The pleiotropism involves internodal distance and inflorescence initiation time. The particular ovule phenotype and the length of internodes are dependent on an interaction of sin1 with a second recessive gene, which we term mod1. The recessive mod1 allele in a homozygous sin1 mutant plant reduces internode length and ovule integument size. The mutation sin1, but not mod1, has a demonstrable effect on ovule morphology when acting idependently. In our crosses mod1 was inseparably linked to the well known mutation erecta that is known to cause a reduction in internode and pedicel lengths. PMID:7982564

  15. Gain-of-Function Mutations in RIT1 Cause Noonan Syndrome, a RAS/MAPK Pathway Syndrome

    PubMed Central

    Aoki, Yoko; Niihori, Tetsuya; Banjo, Toshihiro; Okamoto, Nobuhiko; Mizuno, Seiji; Kurosawa, Kenji; Ogata, Tsutomu; Takada, Fumio; Yano, Michihiro; Ando, Toru; Hoshika, Tadataka; Barnett, Christopher; Ohashi, Hirofumi; Kawame, Hiroshi; Hasegawa, Tomonobu; Okutani, Takahiro; Nagashima, Tatsuo; Hasegawa, Satoshi; Funayama, Ryo; Nagashima, Takeshi; Nakayama, Keiko; Inoue, Shin-ichi; Watanabe, Yusuke; Ogura, Toshihiko; Matsubara, Yoichi

    2013-01-01

    RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome. In the present study, we identified a total of nine missense, nonsynonymous mutations in RIT1, encoding a member of the RAS subfamily, in 17 of 180 individuals (9%) with Noonan syndrome or a related condition but with no detectable mutations in known Noonan-related genes. Clinical manifestations in the RIT1-mutation-positive individuals are consistent with those of Noonan syndrome, which is characterized by distinctive facial features, short stature, and congenital heart defects. Seventy percent of mutation-positive individuals presented with hypertrophic cardiomyopathy; this frequency is high relative to the overall 20% incidence in individuals with Noonan syndrome. Luciferase assays in NIH 3T3 cells showed that five RIT1 alterations identified in children with Noonan syndrome enhanced ELK1 transactivation. The introduction of mRNAs of mutant RIT1 into 1-cell-stage zebrafish embryos was found to result in a significant increase of embryos with craniofacial abnormalities, incomplete looping, a hypoplastic chamber in the heart, and an elongated yolk sac. These results demonstrate that gain-of-function mutations in RIT1 cause Noonan syndrome and show a similar biological effect to mutations in other RASopathy-related genes. PMID:23791108

  16. The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis.

    PubMed

    Kehrer-Sawatzki, Hildegard; Farschtschi, Said; Mautner, Victor-Felix; Cooper, David N

    2017-02-01

    Schwannomatosis is characterized by the predisposition to develop multiple schwannomas and, less commonly, meningiomas. Despite the clinical overlap with neurofibromatosis type 2 (NF2), schwannomatosis is not caused by germline NF2 gene mutations. Instead, germline mutations of either the SMARCB1 or LZTR1 tumour suppressor genes have been identified in 86% of familial and 40% of sporadic schwannomatosis patients. In contrast to patients with rhabdoid tumours, which are due to complete loss-of-function SMARCB1 mutations, individuals with schwannomatosis harbour predominantly hypomorphic SMARCB1 mutations which give rise to the synthesis of mutant proteins with residual function that do not cause rhabdoid tumours. Although biallelic mutations of SMARCB1 or LZTR1 have been detected in the tumours of patients with schwannomatosis, the classical two-hit model of tumorigenesis is insufficient to account for schwannoma growth, since NF2 is also frequently inactivated in these tumours. Consequently, tumorigenesis in schwannomatosis must involve the mutation of at least two different tumour suppressor genes, an occurrence frequently mediated by loss of heterozygosity of large parts of chromosome 22q harbouring not only SMARCB1 and LZTR1 but also NF2. Thus, schwannomatosis is paradigmatic for a tumour predisposition syndrome caused by the concomitant mutational inactivation of two or more tumour suppressor genes. This review provides an overview of current models of tumorigenesis and mutational patterns underlying schwannomatosis that will ultimately help to explain the complex clinical presentation of this rare disease.

  17. Diagnostic genetic testing for patients with bilateral optic neuropathy and comparison of clinical features according to OPA1 mutation status.

    PubMed

    Gaier, Eric D; Boudreault, Katherine; Nakata, Isao; Janessian, Maria; Skidd, Philip; DelBono, Elizabeth; Allen, Keri F; Pasquale, Louis R; Place, Emily; Cestari, Dean M; Stacy, Rebecca C; Rizzo, Joseph F; Wiggs, Janey L

    2017-01-01

    Inherited optic neuropathy is genetically heterogeneous, and genetic testing has an important role in risk assessment and counseling. The purpose of this study is to determine the prevalence and spectrum of mutations in a group of patients referred for genetic testing to a tertiary center in the United States. In addition, we compared the clinical features of patients with and without mutations in OPA1 , the gene most commonly involved in dominantly inherited optic atrophy. Clinical data and genetic testing results were reviewed for 74 unrelated, consecutive patients referred with a history of insidious, relatively symmetric, bilateral visual loss secondary to an optic neuropathy. Patients were evaluated for disease-causing variants in OPA1 , OPA3 , WFS1 , and the entire mitochondrial genome with DNA sequencing and copy number variation (CNV) testing. Pathogenic DNA variants were found in 25 cases, with the majority (24 patients) located in OPA1 . Demographics, clinical history, and clinical features for the group of patients with mutations in OPA1 were compared to those without disease-causing variants. Compared to the patients without mutations, cases with mutations in OPA1 were more likely to have a family history of optic nerve disease (p = 0.027); however, 30.4% of patients without a family history of disease also had mutations in OPA1 . OPA1 mutation carriers had less severe mean deviation and pattern standard deviation on automated visual field testing than patients with optic atrophy without mutations in OPA1 (p<0.005). Other demographic and ocular features were not statistically significantly different between the two groups, including the fraction of patients with central scotomas (42.9% of OPA1 mutation positive and 66.0% of OPA1 mutation negative). Genetic testing identified disease-causing mutations in 34% of referred cases, with the majority of these in OPA1. Patients with mutations in OPA1 were more likely to have a family history of disease; however, 30.4% of patients without a family history were also found to have an OPA1 mutation. This observation, as well as similar frequencies of central scotomas in the groups with and without mutations in OPA1 , underscores the need for genetic testing to establish an OPA1 genetic diagnosis.

  18. Two new mutations in the glucose-6-phosphatase gene cause glycogen storage disease in Hungarian patients.

    PubMed

    Parvari, R; Lei, K J; Szonyi, L; Narkis, G; Moses, S; Chou, J Y

    1997-01-01

    Glycogen storage disease type 1a (von Gierke disease, GSD-1A) is caused by the deficiency of microsomal glucose-6-phosphatase (G6Pase) activity which catalyzes the final common step of glycogenolysis and gluconeogenesis. The cloning of the G6Pase cDNA and characterization of the human G6Pase gene enabled the identification of the mutations causing GSD-1a. This, in turn, allows the development of non-invasive DNA-based diagnosis that provides reliable carrier testing and prenatal diagnosis. Here we report on two new mutations E110Q and D38V causing GSD-1a in two Hungarian patients. The analyses of these mutations by site-directed mutagenesis followed by transient expression assays demonstrated that E110Q retains 17% of G6Pase enzymatic activity while the D38V abolishes the enzymatic activity. The patient with the E110Q has G222R as his other mutation. G222R was also shown to preserve about 4% of the G6Pase enzymatic activity. Nevertheless, the patient presented with the classical severe symptomatology of the GSD-1a.

  19. Mutation in a gene for type I procollagen (COL1A2) in a woman with postmenopausal osteoporosis: Evidence for phenotypic and genotypic overlap with mild osteogenesis imperfecta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spotila, L.D.; Constantinou, C.D.; Sereda, L.

    Mutations in the two genes for type I collagen (COL1A1 or COL1A2) cause osteogenesis imperfecta (OI), a heritable disease characterized by moderate to extreme brittleness of bone early in life. Here, the authors show that a 52-year-old post menopausal woman with severe osteopenia and a compression fracture of a thoracic vertebra had a mutation in the gene for the {alpha}2(I) chain of type I collagen (COL1A2) similar to mutations that cause OI. cDNA was prepared from the woman's skin fibroblast RNA and assayed for the presence of a mutation by treating DNA heteroduplexes with carbodiimide. The results indicated a sequencemore » variation in the region encoding amino acid residues 660-667 of the {alpha}2(I) chain. Further analysis demonstrated a single-base mutation that caused a serine-for-glycine substitution at position 661 of the {alpha}2(I) triple-helical domain. The substitution produced posttranslational overmodification of the collagen triple helix, as is seen with most glycine substitutions that cause OI. The patient had a history of five previous fractures, slightly blue sclerae, and slight hearing loss. Therefore, the results suggest that there may be phenotypic and genotypic overlap between mild osteogenesis imperfecta and postmenopausal osteoporosis, and that a subset of women with postmenopausal osteoporosis may have mutations in the genes for type I procollagen.« less

  20. A GYS1 gene mutation is highly associated with polysaccharide storage myopathy in Cob Normand draught horses.

    PubMed

    Herszberg, B; McCue, M E; Larcher, T; Mata, X; Vaiman, A; Chaffaux, S; Chérel, Y; Valberg, S J; Mickelson, J R; Guérin, G

    2009-02-01

    Glycogen storage diseases or glycogenoses are inherited diseases caused by abnormalities of enzymes that regulate the synthesis or degradation of glycogen. Deleterious mutations in many genes of the glyco(geno)lytic or the glycogenesis pathways can potentially cause a glycogenosis, and currently mutations in fourteen different genes are known to cause animal or human glycogenoses, resulting in myopathies and/or hepatic disorders. The genetic bases of two forms of glycogenosis are currently known in horses. A fatal neonatal polysystemic type IV glycogenosis, inherited recessively in affected Quarter Horse foals, is due to a mutation in the glycogen branching enzyme gene (GBE1). A second type of glycogenosis, termed polysaccharide storage myopathy (PSSM), is observed in adult Quarter Horses and other breeds. A severe form of PSSM also occurs in draught horses. A mutation in the skeletal muscle glycogen synthase gene (GYS1) was recently reported to be highly associated with PSSM in Quarter Horses and Belgian draught horses. This GYS1 point mutation appears to cause a gain-of-function of the enzyme and to result in the accumulation of a glycogen-like, less-branched polysaccharide in skeletal muscle. It is inherited as a dominant trait. The aim of this work was to test for possible associations between genetic polymorphisms in four candidate genes of the glycogen pathway or the GYS1 mutation in Cob Normand draught horses diagnosed with PSSM by muscle biopsy.

  1. A Novel Germline Mutation in BRCA1 Causes Exon 20 Skipping in a Korean Family with a History of Breast Cancer.

    PubMed

    Yoon, Kyong-Ah; Kong, Sun-Young; Lee, Eun Ji; Cho, Jeong Nam; Chang, Suhwan; Lee, Eun Sook

    2017-09-01

    Germline mutations in the BRCA1 and BRCA2 genes are strong genetic factors for predispositions to breast, ovarian, and other related cancers. This report describes a family with a history of breast and ovarian cancers that harbored a novel BRCA1 germline mutation. A single nucleotide deletion in intron 20, namely c.5332+4delA, was detected in a 43-year-old patient with breast cancer. This mutation led to the skipping of exon 20, which in turn resulted in the production of a truncated BRCA1 protein that was 1773 amino acids in length. The mother of the proband had died due to ovarian cancer and had harbored the same germline mutation. Ectopically expressed mutant BRCA1 protein interacted with the BARD1 protein, but showed a reduced transcriptional function, as demonstrated by the expression of cyclin B1 . This novel germline mutation in the BRCA1 gene caused familial breast and ovarian cancers.

  2. Mutation spectrum of primary hyperoxaluria type 1 in Tunisia: implication for diagnosis in North Africa.

    PubMed

    Nagara, Majdi; Tiar, Afaf; Ben Halim, Nizar; Ben Rhouma, Faten; Messaoud, Olfa; Bouyacoub, Yosra; Kefi, Rym; Hassayoun, Saida; Zouari, Noura; Ben Ammar, Mohamed Slim; Abdelhak, Sonia; Chemli, Jalel

    2013-09-15

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive inherited metabolic disease, characterized by progressive kidney failure due to renal deposition of calcium oxalate. Mutations in the AGXT gene, encoding the liver-specific enzyme alanine glyoxylate aminotransferase, are responsible for the disease. We aimed to determine the mutational spectrum causing PH1 and to provide an accurate tool for diagnosis as well as for prenatal diagnosis in the affected families. Direct sequencing was used to detect mutations in the AGXT gene in DNA samples from 13 patients belonging to 12 Tunisian families. Molecular analysis revealed five mutations causing PH1 in Tunisia. The mutations were identified along exons 1, 2, 4, 5 and 7. The most predominant mutations were the Maghrebian "p.I244T" and the Arabic "p.G190R". Furthermore, three other mutations characteristic of different ethnic groups were found in our study population. These results confirm the mutational heterogeneity related to PH1 in Tunisian population. All the mutations are in a homozygous state, reflecting the high impact of endogamy in our population. Mutation analysis through DNA sequencing can provide a useful first line investigation for PH1. This identification could provide an accurate tool for prenatal diagnosis, genetic counseling and screen for potential presymptomatic individuals. © 2013 Elsevier B.V. All rights reserved.

  3. Landscape of somatic mutations in 560 breast cancer whole-genome sequences

    DOE PAGES

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; ...

    2016-05-02

    Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less

  4. Landscape of somatic mutations in 560 breast cancer whole-genome sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan

    Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less

  5. Landscape of somatic mutations in 560 breast cancer whole genome sequences

    PubMed Central

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; Ramakrishna, Manasa; Glodzik, Dominik; Zou, Xueqing; Martincorena, Inigo; Alexandrov, Ludmil B.; Martin, Sancha; Wedge, David C.; Van Loo, Peter; Ju, Young Seok; Smid, Marcel; Brinkman, Arie B; Morganella, Sandro; Aure, Miriam R.; Lingjærde, Ole Christian; Langerød, Anita; Ringnér, Markus; Ahn, Sung-Min; Boyault, Sandrine; Brock, Jane E.; Broeks, Annegien; Butler, Adam; Desmedt, Christine; Dirix, Luc; Dronov, Serge; Fatima, Aquila; Foekens, John A.; Gerstung, Moritz; Hooijer, Gerrit KJ; Jang, Se Jin; Jones, David R.; Kim, Hyung-Yong; King, Tari A.; Krishnamurthy, Savitri; Lee, Hee Jin; Lee, Jeong-Yeon; Li, Yilong; McLaren, Stuart; Menzies, Andrew; Mustonen, Ville; O’Meara, Sarah; Pauporté, Iris; Pivot, Xavier; Purdie, Colin A.; Raine, Keiran; Ramakrishnan, Kamna; Rodríguez-González, F. Germán; Romieu, Gilles; Sieuwerts, Anieta M.; Simpson, Peter T; Shepherd, Rebecca; Stebbings, Lucy; Stefansson, Olafur A; Teague, Jon; Tommasi, Stefania; Treilleux, Isabelle; Van den Eynden, Gert G.; Vermeulen, Peter; Vincent-Salomon, Anne; Yates, Lucy; Caldas, Carlos; van’t Veer, Laura; Tutt, Andrew; Knappskog, Stian; Tan, Benita Kiat Tee; Jonkers, Jos; Borg, Åke; Ueno, Naoto T; Sotiriou, Christos; Viari, Alain; Futreal, P. Andrew; Campbell, Peter J; Span, Paul N.; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E.; Thompson, Alastair M.; Birney, Ewan; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W.M.; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Kong, Gu; Thomas, Gilles; Stratton, Michael R.

    2016-01-01

    We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer. PMID:27135926

  6. A novel AMELX mutation causes hypoplastic amelogenesis imperfecta.

    PubMed

    Kim, Young-Jae; Kim, Youn Jung; Kang, Jenny; Shin, Teo Jeon; Hyun, Hong-Keun; Lee, Sang-Hoon; Lee, Zang Hee; Kim, Jung-Wook

    2017-04-01

    Amelogenesis imperfecta (AI) is a hereditary genetic defect affecting tooth enamel. AI is heterogeneous in clinical phenotype as well as in genetic etiology. To date, more than 10 genes have been associated with the etiology of AI. Amelogenin is the most abundant enamel matrix protein, most of which is encoded by the amelogenin gene in the X-chromosome (AMELX). More than 16 alternative splicing transcripts have been identified in the murine Amelx gene. The purpose of this study was to identify the genetic cause of an AI family. We recruited a family with hypoplastic AI and performed mutational analysis on the candidate gene based on the clinical phenotype. Mutational analysis revealed a missense mutation in exon 6 (NM_182680.1; c.242C > T), which changes a sequence in a highly conserved amino acid (NP_872621.1; p.Pro81Leu). Furthermore, a splicing assay using a minigene displayed that the mutation changed the mRNA splicing repertory. In this study, we identified a novel AMELX missense mutation causing hypoplastic AI, and this mutation also resulted in altered mRNA splicing. These results will not only expand the mutation spectrum causing AI but also broaden our understanding of the biological mechanism of enamel formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Activating mutations affecting the Dbl homology domain of SOS2 cause Noonan syndrome

    PubMed Central

    Cordeddu, Viviana; Yin, Jiani C.; Gunnarsson, Cecilia; Virtanen, Carl; Drunat, Séverine; Lepri, Francesca; De Luca, Alessandro; Rossi, Cesare; Ciolfi, Andrea; Pugh, Trevor J.; Bruselles, Alessandro; Priest, James R.; Pennacchio, Len A.; Lu, Zhibin; Danesh, Arnavaz; Quevedo, Rene; Hamid, Alaa; Martinelli, Simone; Pantaleoni, Francesca; Gnazzo, Maria; Daniele, Paola; Lissewski, Christina; Bocchinfuso, Gianfranco; Stella, Lorenzo; Odent, Sylvie; Philip, Nicole; Faivre, Laurence; Vlckova, Marketa; Seemanova, Eva; Digilio, Cristina; Zenker, Martin; Zampino, Giuseppe; Verloes, Alain; Dallapiccola, Bruno; Roberts, Amy E.; Cavé, Hélène; Gelb, Bruce D.; Neel, Benjamin G.; Tartaglia, Marco

    2015-01-01

    The RASopathies constitute a family of autosomal dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering son of sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its auto-inhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the Dbl homology domain. PMID:26173643

  8. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families†

    PubMed Central

    Chang, Wendy; Winder, Thomas L.; LeDuc, Charles A.; Simpson, Lynn L.; Millar, William S.; Dungan, Jeffrey; Ginsberg, Norman; Plaga, Stacey; Moore, Steven A.; Chung, Wendy K.

    2009-01-01

    Objective Walker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of α-dystroglycan (α-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS. Method We screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis. Results We identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults. Conclusion These data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population. PMID:19266496

  9. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families.

    PubMed

    Chang, Wendy; Winder, Thomas L; LeDuc, Charles A; Simpson, Lynn L; Millar, William S; Dungan, Jeffrey; Ginsberg, Norman; Plaga, Stacey; Moore, Steven A; Chung, Wendy K

    2009-06-01

    Walker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of alpha-dystroglycan (alpha-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS. We screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis. We identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults. These data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population. Copyright (c) 2009 John Wiley & Sons, Ltd.

  10. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome

    PubMed Central

    Canna, Scott W.; de Jesus, Adriana Almeida; Gouni, Sushanth; Brooks, Stephen R.; Marrero, Bernadette; Liu, Yin; DiMattia, Michael A.; Zaal, Kristien J.M.; Montealegre Sanchez, Gina A.; Kim, Hanna; Chapelle, Dawn; Plass, Nicole; Huang, Yan; Villarino, Alejandro V.; Biancotto, Angelique; Fleisher, Thomas A.; Duncan, Joseph A.; O’Shea, John J; Benseler, Susanne; Grom, Alexei; Deng, Zuoming; Laxer, Ronald M; Goldbach-Mansky, Raphaela

    2014-01-01

    Inflammasomes are innate immune sensors that respond to pathogen and damage-associated signals with caspase-1 activation, IL-1β and IL-18 secretion, and macrophage pyroptosis. The discovery that dominant gain-of-function mutations in NLRP3 cause the Cryopyrin Associated Periodic Syndromes (CAPS) and trigger spontaneous inflammasome activation and IL-1β oversecretion, led to successful treatment with IL-1 blocking agents1. Herein, we report a de novo missense mutation, c.1009A>T, p.Thr337Ser, in the nucleotide-binding domain of inflammasome component NLRC4 (IPAF/CARD12) that causes early-onset recurrent fever flares and Macrophage Activation Syndrome (MAS). Functional analyses demonstrated spontaneous inflammasome formation and production of the inflammasome-dependent cytokines IL-1β and IL-18, the latter exceeding levels in CAPS. The NLRC4 mutation caused constitutive caspase-1 cleavage in transduced cells and increased production of IL-18 by both patient and NLRC4 mutant macrophages. Thus, we describe a novel monoallelic inflammasome defect that expands the monogenic autoinflammatory disease spectrum to include MAS and suggests novel targets for therapy. PMID:25217959

  11. Four novel germline mutations in the MLH1 and PMS2 mismatch repair genes in patients with hereditary nonpolyposis colorectal cancer.

    PubMed

    Montazer Haghighi, Mahdi; Radpour, Ramin; Aghajani, Katayoun; Zali, Narges; Molaei, Mahsa; Zali, Mohammad Reza

    2009-08-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is the most common cause of early onset hereditary colorectal cancer. In the majority of HNPCC families, microsatellite instability (MSI) and germline mutation in one of the DNA mismatch repair (MMR) genes are found. The entire coding sequence of MMR genes (MLH1, MLH2, MLH6, and PMS2) was analyzed using direct sequencing. Also, tumor tests were done as MSI and immunohistochemistry testing. We were able to find three novel MLH1 and one novel PMS2 germline mutations in three Iranian HNPCC patients. The first was a transversion mutation c.346A>C (T116P) and happened in the highly conserved HATPase-c region of MLH1 protein. The second was a transversion mutation c.736A>T (I246L), which caused an amino acid change of isoleucine to leucine. The third mutation (c.2145,6 delTG) was frameshift and resulted in an immature stop codon in five codons downstream. All of these three mutations were detected in the MLH1 gene. The other mutation was a transition mutation, c.676G>A (G207E), which has been found in exon six of the PMS2 gene and caused an amino acid change of glycine to glutamic acid. MSI assay revealed high instability in microsatellite for two patients and microsatellite stable for one patient. In all patients, an abnormal expression of the MMR proteins in HNPCC was related to the above novel mutations.

  12. Biallelic PMS2 Mutation and Heterozygous DICER1 Mutation Presenting as Constitutional Mismatch Repair Deficiency With Corpus Callosum Agenesis: Case Report and Review of Literature.

    PubMed

    Cheyuo, Cletus; Radwan, Walid; Ahn, Janice; Gyure, Kymberly; Qaiser, Rabia; Tomboc, Patrick

    2017-10-01

    Constitutional mismatch repair deficiency syndrome is a cancer predisposition syndrome caused by autosomal recessive biallelic (homozygous) germline mutations in the mismatch repair genes (MLH1, MSH2, MSH6, and PMS2). The clinical spectrum includes neoplastic and non-neoplastic manifestations. We present the case of a 7-year-old boy who presented with T-lymphoblastic lymphoma and glioblastoma, together with non-neoplastic manifestations including corpus callosum agenesis, arachnoid cyst, developmental venous anomaly, and hydrocephalus. Gene mutation analysis revealed pathogenic biallelic mutations of PMS2 and heterozygous DICER1 variant predicted to be pathogenic. This report is the first to allude to a possible interaction of the mismatch repair system with DICER1 to cause corpus callosum agenesis.

  13. PPIB mutations cause severe osteogenesis imperfecta.

    PubMed

    van Dijk, Fleur S; Nesbitt, Isabel M; Zwikstra, Eline H; Nikkels, Peter G J; Piersma, Sander R; Fratantoni, Silvina A; Jimenez, Connie R; Huizer, Margriet; Morsman, Alice C; Cobben, Jan M; van Roij, Mirjam H H; Elting, Mariet W; Verbeke, Jonathan I M L; Wijnaendts, Liliane C D; Shaw, Nick J; Högler, Wolfgang; McKeown, Carole; Sistermans, Erik A; Dalton, Ann; Meijers-Heijboer, Hanne; Pals, Gerard

    2009-10-01

    Deficiency of cartilage-associated protein (CRTAP) or prolyl 3-hydroxylase 1(P3H1) has been reported in autosomal-recessive lethal or severe osteogenesis imperfecta (OI). CRTAP, P3H1, and cyclophilin B (CyPB) form an intracellular collagen-modifying complex that 3-hydroxylates proline at position 986 (P986) in the alpha1 chains of collagen type I. This 3-prolyl hydroxylation is decreased in patients with CRTAP and P3H1 deficiency. It was suspected that mutations in the PPIB gene encoding CyPB would also cause OI with decreased collagen 3-prolyl hydroxylation. To our knowledge we present the first two families with recessive OI caused by PPIB gene mutations. The clinical phenotype is compatible with OI Sillence type II-B/III as seen with COL1A1/2, CRTAP, and LEPRE1 mutations. The percentage of 3-hydroxylated P986 residues in patients with PPIB mutations is decreased in comparison to normal, but it is higher than in patients with CRTAP and LEPRE1 mutations. This result and the fact that CyPB is demonstrable independent of CRTAP and P3H1, along with reported decreased 3-prolyl hydroxylation due to deficiency of CRTAP lacking the catalytic hydroxylation domain and the known function of CyPB as a cis-trans isomerase, suggest that recessive OI is caused by a dysfunctional P3H1/CRTAP/CyPB complex rather than by the lack of 3-prolyl hydroxylation of a single proline residue in the alpha1 chains of collagen type I.

  14. Glycogen storage disease type 1a in Israel: biochemical, clinical, and mutational studies.

    PubMed

    Parvari, R; Lei, K J; Bashan, N; Hershkovitz, E; Korman, S H; Barash, V; Lerman-Sagie, T; Mandel, H; Chou, J Y; Moses, S W

    1997-10-31

    Glycogen storage disease type 1a (von Gierke disease, GSD 1a) is caused by the deficiency of microsomal glucose-6-phosphatase (G6Pase) activity which catalyzes the final common step of glycogenolysis and gluconeogenesis. The recent cloning of the G6Pase cDNA and characterization of the human G6Pase gene enabled the characterization of the mutations causing GSD 1a. This, in turn, allows the introduction of a noninvasive DNA-based diagnosis that provides reliable carrier testing and prenatal diagnosis. In this study, we report the biochemical and clinical characteristics as well as mutational analyses of 12 Israeli GSD 1a patients of different families, who represent most GSD 1a patients in Israel. The mutations, G6Pase activity, and glycogen content of 7 of these patients were reported previously. The biochemical data and clinical findings of all patients were similar and compatible with those described in other reports. All 9 Jewish patients, as well as one Muslim Arab patient, presented the R83C mutation. Two Muslim Arab patients had the V166G mutation which was not found in other patients' populations. The V166G mutation, which was introduced into the G6Pase cDNA by site-directed mutagenesis following transient expression in COS-1 cells, was shown to cause complete inactivation of the G6Pase. The characterization of all GSD 1a mutations in the Israeli population lends itself to carrier testing in these families as well as to prenatal diagnosis, which was carried out in 2 families. Since all Ashkenzai Jewish patients harbor the same mutation, our study suggests that DNA-based diagnosis may be used as an initial diagnostic step in Ashkenazi Jews suspected of having GSD 1a, thereby avoiding liver biopsy.

  15. Follistatin in chondrocytes: the link between TRPV4 channelopathies and skeletal malformations

    PubMed Central

    Leddy, Holly A.; McNulty, Amy L.; Lee, Suk Hee; Rothfusz, Nicole E.; Gloss, Bernd; Kirby, Margaret L.; Hutson, Mary R.; Cohn, Daniel H.; Guilak, Farshid; Liedtke, Wolfgang

    2014-01-01

    Point mutations in the calcium-permeable TRPV4 ion channel have been identified as the cause of autosomal-dominant human motor neuropathies, arthropathies, and skeletal malformations of varying severity. The objective of this study was to determine the mechanism by which TRPV4 channelopathy mutations cause skeletal dysplasia. The human TRPV4V620I channelopathy mutation was transfected into primary porcine chondrocytes and caused significant (2.6-fold) up-regulation of follistatin (FST) expression levels. Pore altering mutations that prevent calcium influx through the channel prevented significant FST up-regulation (1.1-fold). We generated a mouse model of theTRPV4V620I mutation, and found significant skeletal deformities (e.g., shortening of tibiae and digits, similar to the human disease brachyolmia) and increases in Fst/TRPV4 mRNA levels (2.8-fold). FST was significantly up-regulated in primary chondrocytes transfected with 3 different dysplasia-causing TRPV4 mutations (2- to 2.3-fold), but was not affected by an arthropathy mutation (1.1-fold). Furthermore, FST-loaded microbeads decreased bone ossification in developing chick femora (6%) and tibiae (11%). FST gene and protein levels were also increased 4-fold in human chondrocytes from an individual natively expressing the TRPV4T89I mutation. Taken together, these data strongly support that up-regulation of FST in chondrocytes by skeletal dysplasia-inducing TRPV4 mutations contributes to disease pathogenesis.—Leddy, H. A., McNulty, A. L., Lee, S. H., Rothfusz, N. E., Gloss, B., Kirby, M. L., Hutson, M. R., Cohn, D. H., Guilak, F., Liedtke, W. Follistatin in chondrocytes: the link between TRPV4 channelopathies and skeletal malformations. PMID:24577120

  16. [Using exon combined target region capture sequencing chip to detect the disease-causing genes of retinitis pigmentosa].

    PubMed

    Rong, Weining; Chen, Xuejuan; Li, Huiping; Liu, Yani; Sheng, Xunlun

    2014-06-01

    To detect the disease-causing genes of 10 retinitis pigmentosa pedigrees by using exon combined target region capture sequencing chip. Pedigree investigation study. From October 2010 to December 2013, 10 RP pedigrees were recruited for this study in Ningxia Eye Hospital. All the patients and family members received complete ophthalmic examinations. DNA was abstracted from patients, family members and controls. Using exon combined target region capture sequencing chip to screen the candidate disease-causing mutations. Polymerase chain reaction (PCR) and direct sequencing were used to confirm the disease-causing mutations. Seventy patients and 23 normal family members were recruited from 10 pedigrees. Among 10 RP pedigrees, 1 was autosomal dominant pedigrees and 9 were autosomal recessive pedigrees. 7 mutations related to 5 genes of 5 pedigrees were detected. A frameshift mutation on BBS7 gene was detected in No.2 pedigree, the patients of this pedigree combined with central obesity, polydactyly and mental handicap. No.2 pedigree was diagnosed as Bardet-Biedl syndrome finally. A missense mutation was detected in No.7 and No.10 pedigrees respectively. Because the patients suffered deafness meanwhile, the final diagnosis was Usher syndrome. A missense mutation on C3 gene related to age-related macular degeneration was also detected in No. 7 pedigrees. A nonsense mutation and a missense mutation on CRB1 gene were detected in No. 1 pedigree and a splicesite mutation on PROM1 gene was detected in No. 5 pedigree. Retinitis pigmentosa is a kind of genetic eye disease with diversity clinical phenotypes. Rapid and effective genetic diagnosis technology combined with clinical characteristics analysis is helpful to improve the level of clinical diagnosis of RP.

  17. Genetics Home Reference: Winchester syndrome

    MedlinePlus

    ... because Winchester syndrome and MONA are caused by mutations in different genes, they are now thought to ... groups? Genetic Changes Winchester syndrome is caused by mutations in the MMP14 gene (also known as MT1- ...

  18. Identification of Bangladeshi domestic cats with GM1 gangliosidosis caused by the c.1448G>C mutation of the feline GLB1 gene: case study.

    PubMed

    Uddin, Mohammad Mejbah; Hossain, Mohammad Alamgir; Rahman, Mohammad Mahbubur; Chowdhury, Morshedul Alam; Tanimoto, Takeshi; Yabuki, Akira; Mizukami, Keijiro; Chang, Hye-Sook; Yamato, Osamu

    2013-01-01

    GM1 gangliosidosis is a fatal, progressive neurodegenerative lysosomal storage disease caused by mutations in the β-galactosidase (GLB1) gene. In feline GM1 gangliosidosis, a pathogenic mutation (c.1448G>C) in the feline GLB1 gene was identified in Siamese cats in the United States and Japan and in Korat cats in Western countries. The present study found the homozygous c.1448G>C mutation in 2 apparent littermate native kittens in Bangladesh that were exhibiting neurological signs. This is the first identification of GM1 gangliosidosis in native domestic cats in Southeast Asia. This pathogenic mutation seems to have been present in the domestic cat population in the Siamese region and may have been transferred to pure breeds such as Siamese and Korat cats originating in this region.

  19. The HIV-1 protease resistance mutation I50L is associated with resistance to atazanavir and susceptibility to other protease inhibitors in multiple mutational contexts.

    PubMed

    Sista, P; Wasikowski, B; Lecocq, P; Pattery, T; Bacheler, L

    2008-08-01

    The HIV-1 protease mutation I50 L causes atazanavir resistance but increases susceptibility to other PIs. Predicted phenotypic FC values were obtained from viral genotypes, using the virtual Phenotype-LM bioinformatics tool (powering vircoTYPE). To evaluate I50 L's effect on susceptibility to 8 PIs, in a large genotype database. I50 L containing routine clinical isolate samples in Virco's genotype database were paired with samples having like patterns (or profiles) of IAS-USA-defined primary PI mutations, but lacking I50 L. Using vircoTYPE (version 4.1), the median predicted FC for each mutational profile was determined. I50 L-associated shifts in FC were evaluated using drug-specific CCOs. We selected 307 and 37098 samples with and without I50 L. These corresponded to 31 mutation patterns of > or =3 samples each. I50 L caused resistance to atazanavir in all 31 mutation contexts, but was associated with higher susceptibility for other PIs. The largest I50 L-associated shifts in median predicted FC were: 1.2 to 42.4 (atazanavir), 10.2 to 3.2 (amprenavir), 3.3 to 0.5 (darunavir), 13 to 0.5 (indinavir), 34.9 to 1.3 (lopinavir), 22.3 to 1.3 (nelfinavir), 5.2 to 0.3 (saquinavir) and 29.9 to 5.2 (tipranavir). The PI mutation I50 L causes clinically relevant resistance and increased susceptibility to atazanavir and other PIs respectively.

  20. Codon 62 (GTG>GCG, Val→Ala) (α1) (HBA1: c.188T>C) causing nondeletional α-thalassemia in a Chinese family.

    PubMed

    Liao, Can; Tang, Hai-Shen; Li, Ru; Li, Dong-Zhi

    2013-01-01

    We report a novel α-globin gene point mutation detected during newborn screening for hemoglobinopathies. Sequence analyses identified a GTG>GCG substitution at codon 62 of the α1-globin gene. This mutation causes a silent α-thalassemia (α-thal).

  1. Mutations in the small nuclear riboprotein 200 kDa gene (SNRNP200) cause 1.6% of autosomal dominant retinitis pigmentosa

    PubMed Central

    Sullivan, Lori S.; Avery, Cheryl E.; Sasser, Elizabeth M.; Roorda, Austin; Duncan, Jacque L.; Wheaton, Dianna H.; Birch, David G.; Branham, Kari E.; Heckenlively, John R.; Sieving, Paul A.; Daiger, Stephen P.

    2013-01-01

    Purpose The purpose of this project was to determine the spectrum and frequency of mutations in the small nuclear riboprotein 200 kDa gene (SNRNP200) that cause autosomal dominant retinitis pigmentosa (adRP). Methods A well-characterized adRP cohort of 251 families was tested for mutations in the exons and intron/exon junctions of SNRNP200 using fluorescent dideoxy sequencing. An additional 21 adRP families from the eyeGENE® Network were tested for possible mutations. Bioinformatic and segregation analysis was performed on novel variants. Results SNRNP200 mutations were identified in seven of the families tested. Two previously reported mutations, p.Arg681Cys and p.Ser1087Leu, were found in two families each. One family had the previously reported p.Arg681His mutation. Two novel SNRNP200 variants, p.Pro682Ser and p.Ala542Val, were also identified in one family each. Bioinformatic and segregation analyses suggested that these novel variants are likely to be pathogenic. Clinical examination of patients with SNRNP200 mutations showed a wide range of clinical symptoms and severity, including one instance of non-penetrance. Conclusions Mutations in SNRNP200 caused 1.6% of disease in our adRP cohort. Pathogenic mutations were found primarily in exons 16 and 25, but the novel p.Ala542Val mutation in exon 13 suggests that variation in other genetic regions is also responsible for causing dominant disease. SNRNP200 mutations were associated with a wide range of clinical symptoms similar to those of individuals with other splice-factor gene mutations. PMID:24319334

  2. First Report of a Single Exon Deletion in TCOF1 Causing Treacher Collins Syndrome

    PubMed Central

    Beygo, J.; Buiting, K.; Seland, S.; Lüdecke, H.-J.; Hehr, U.; Lich, C.; Prager, B.; Lohmann, D.R.; Wieczorek, D.

    2012-01-01

    Treacher Collins syndrome (TCS) is a rare craniofacial disorder characterized by facial anomalies and ear defects. TCS is caused by mutations in the TCOF1 gene and follows autosomal dominant inheritance. Recently, mutations in the POLR1D and POLR1C genes have also been identified to cause TCS. However, in a subset of patients no causative mutation could be found yet. Inter- and intrafamilial phenotypic variability is high as is the variety of mainly family-specific mutations identified throughout TCOF1. No obvious correlation between pheno- and genotype could be observed. The majority of described point mutations, small insertions and deletions comprising only a few nucleotides within TCOF1 lead to a premature termination codon. We investigated a cohort of 112 patients with a tentative clinical diagnosis of TCS by multiplex ligation-dependent probe amplification (MLPA) to search for larger deletions not detectable with other methods used. All patients were selected after negative screening for mutations in TCOF1, POLR1D and POLR1C. In 1 patient with an unequivocal clinical diagnosis of TCS, we identified a 3.367 kb deletion. This deletion abolishes exon 3 and is the first described single exon deletion within TCOF1. On RNA level we observed loss of this exon which supposedly leads to haploinsufficiency of TREACLE, the nucleolar phosphoprotein encoded by TCOF1. PMID:22712005

  3. First Report of a Single Exon Deletion in TCOF1 Causing Treacher Collins Syndrome.

    PubMed

    Beygo, J; Buiting, K; Seland, S; Lüdecke, H-J; Hehr, U; Lich, C; Prager, B; Lohmann, D R; Wieczorek, D

    2012-01-01

    Treacher Collins syndrome (TCS) is a rare craniofacial disorder characterized by facial anomalies and ear defects. TCS is caused by mutations in the TCOF1 gene and follows autosomal dominant inheritance. Recently, mutations in the POLR1D and POLR1C genes have also been identified to cause TCS. However, in a subset of patients no causative mutation could be found yet. Inter- and intrafamilial phenotypic variability is high as is the variety of mainly family-specific mutations identified throughout TCOF1. No obvious correlation between pheno- and genotype could be observed. The majority of described point mutations, small insertions and deletions comprising only a few nucleotides within TCOF1 lead to a premature termination codon. We investigated a cohort of 112 patients with a tentative clinical diagnosis of TCS by multiplex ligation-dependent probe amplification (MLPA) to search for larger deletions not detectable with other methods used. All patients were selected after negative screening for mutations in TCOF1, POLR1D and POLR1C. In 1 patient with an unequivocal clinical diagnosis of TCS, we identified a 3.367 kb deletion. This deletion abolishes exon 3 and is the first described single exon deletion within TCOF1. On RNA level we observed loss of this exon which supposedly leads to haploinsufficiency of TREACLE, the nucleolar phosphoprotein encoded by TCOF1.

  4. De novo mutations in HCN1 cause early infantile epileptic encephalopathy.

    PubMed

    Nava, Caroline; Dalle, Carine; Rastetter, Agnès; Striano, Pasquale; de Kovel, Carolien G F; Nabbout, Rima; Cancès, Claude; Ville, Dorothée; Brilstra, Eva H; Gobbi, Giuseppe; Raffo, Emmanuel; Bouteiller, Delphine; Marie, Yannick; Trouillard, Oriane; Robbiano, Angela; Keren, Boris; Agher, Dahbia; Roze, Emmanuel; Lesage, Suzanne; Nicolas, Aude; Brice, Alexis; Baulac, Michel; Vogt, Cornelia; El Hajj, Nady; Schneider, Eberhard; Suls, Arvid; Weckhuysen, Sarah; Gormley, Padhraig; Lehesjoki, Anna-Elina; De Jonghe, Peter; Helbig, Ingo; Baulac, Stéphanie; Zara, Federico; Koeleman, Bobby P C; Haaf, Thomas; LeGuern, Eric; Depienne, Christel

    2014-06-01

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to cationic Ih current in neurons and regulate the excitability of neuronal networks. Studies in rat models have shown that the Hcn1 gene has a key role in epilepsy, but clinical evidence implicating HCN1 mutations in human epilepsy is lacking. We carried out exome sequencing for parent-offspring trios with fever-sensitive, intractable epileptic encephalopathy, leading to the discovery of two de novo missense HCN1 mutations. Screening of follow-up cohorts comprising 157 cases in total identified 4 additional amino acid substitutions. Patch-clamp recordings of Ih currents in cells expressing wild-type or mutant human HCN1 channels showed that the mutations had striking but divergent effects on homomeric channels. Individuals with mutations had clinical features resembling those of Dravet syndrome with progression toward atypical absences, intellectual disability and autistic traits. These findings provide clear evidence that de novo HCN1 point mutations cause a recognizable early-onset epileptic encephalopathy in humans.

  5. pH-dependent relationship between thermodynamic and kinetic stability in the denaturation of human phosphoglycerate kinase 1.

    PubMed

    Pey, Angel L

    2014-08-01

    Human phosphoglycerate kinase 1 (hPGK1) is a glycolytic enzyme essential for ATP synthesis, and it is implicated in different pathological conditions such as inherited diseases, oncogenesis and activation of drugs for cancer and viral treatments. Particularly, mutations in hPGK1 cause human PGK1 deficiency, a rate metabolic conformational disease. We have recently found that most of these mutations cause protein kinetic destabilization by significant changes in the structure/energetics of the transition state for irreversible denaturation. In this work, we explore the relationships between protein conformation, thermodynamic and kinetic stability in hPGK1 by performing comprehensive analyses in a wide pH range (2.5-8). hPGK1 remains in a native conformation at pH 5-8, but undergoes a conformational transition to a molten globule-like state at acidic pH. Interestingly, hPGK1 kinetic stability remains essentially constant at pH 6-8, but is significantly reduced when pH is decreased from 6 to 5. We found that this decrease in kinetic stability is caused by significant changes in the energetic/structural balance of the denaturation transition state, which diverge from those found for disease-causing mutations. We also show that protein kinetic destabilization by acidic pH is strongly linked to lower thermodynamic stability, while in disease-causing mutations seems to be linked to lower unfolding cooperativity. These results highlight the plasticity of the hPGK1 denaturation mechanism that responds differently to changes in pH and in disease-causing mutations. New insight is presented into the different factors contributing to hPGK1 thermodynamic and kinetic stability and the role of denaturation mechanisms in hPGK1 deficiency. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Mutations Affecting the SAND Domain of DEAF1 Cause Intellectual Disability with Severe Speech Impairment and Behavioral Problems

    PubMed Central

    Vulto-van Silfhout, Anneke T.; Rajamanickam, Shivakumar; Jensik, Philip J.; Vergult, Sarah; de Rocker, Nina; Newhall, Kathryn J.; Raghavan, Ramya; Reardon, Sara N.; Jarrett, Kelsey; McIntyre, Tara; Bulinski, Joseph; Ownby, Stacy L.; Huggenvik, Jodi I.; McKnight, G. Stanley; Rose, Gregory M.; Cai, Xiang; Willaert, Andy; Zweier, Christiane; Endele, Sabine; de Ligt, Joep; van Bon, Bregje W.M.; Lugtenberg, Dorien; de Vries, Petra F.; Veltman, Joris A.; van Bokhoven, Hans; Brunner, Han G.; Rauch, Anita; de Brouwer, Arjan P.M.; Carvill, Gemma L.; Hoischen, Alexander; Mefford, Heather C.; Eichler, Evan E.; Vissers, Lisenka E.L.M.; Menten, Björn; Collard, Michael W.; de Vries, Bert B.A.

    2014-01-01

    Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1. PMID:24726472

  7. A novel A781V mutation in the CSF1R gene causes hereditary diffuse leucoencephalopathy with axonal spheroids☆

    PubMed Central

    Ahmed, Rebekah; Guerreiro, Rita; Rohrer, Jonathan D.; Guven, Gamze; Rossor, Martin N.; Hardy, John; Fox, Nick C.

    2013-01-01

    We report a family with a novel CSF1R mutation causing hereditary diffuse leucoencephalopathy with axonal spheroids. Family members presented with neuropsychiatric and behavioural symptoms, with subsequent development of motor symptoms and gait disturbance. MRI brain showed extensive white matter change with a frontal predominance and associated atrophy in two members of the family. Genetic testing revealed a novel mutation c.2342C > T (p.A781V) in the CSF1R gene in two brothers of the family. This report highlights the difficulties in diagnosing HDLS and discusses the indications for testing for mutations in the CSF1R gene. PMID:23816250

  8. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex*

    PubMed Central

    Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E.; Jaspers, Nicolaas G. J.; Kaptein, Robert; Hoeijmakers, Jan H. J.; Boelens, Rolf

    2015-01-01

    The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe231, Leu231 lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation. PMID:26085086

  9. Missense variants in plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients--disease-causing or innocent bystanders?

    PubMed

    Christensen, Alex Hørby; Benn, Marianne; Tybjaerg-Hansen, Anne; Haunso, Stig; Svendsen, Jesper Hastrup

    2010-01-01

    Mutations in genes encoding desmosomal proteins have been linked to arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). We hypothesized that a Scandinavian ARVC/D population would have a different spectrum of plakophilin-2 (PKP2) mutations and that some of the reported missense mutations may not be pathogenic. We screened 53 unrelated patients fulfilling Task Force criteria for ARVC/D for mutations in PKP2 by direct sequencing. Seven different mutations were identified: two insertion/deletions (E329fsX352, P401fsX406), 1 splice site (2146-2A>T), 1 non-sense (R79X) and 4 missense mutations (Q62K in 2 patients, G489R, G673V) of undeterminable pathogeneity. None of these mutations was present in 650 controls. Five of the mutations were novel. Seven patients carried reported missense mutations (D26N, S140F, V587I); however, these mutations were identified in our healthy controls, although at a lower frequency. Evaluation of all reported missense mutations in PKP2 showed unclear pathogeneity of several reported mutations. Fifteen percent of Danish ARVC/D patients carried PKP2 mutations. Our finding of reported disease-causing mutations at a low frequency among healthy controls suggests that these variants are disease modifying but not directly disease causing. We recommend conservative interpretation of missense variants in PKP2, functional characterization and large-scale sequencing to clarify normal variation in the gene.

  10. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome.

    PubMed

    Aoki, Yoko; Niihori, Tetsuya; Banjo, Toshihiro; Okamoto, Nobuhiko; Mizuno, Seiji; Kurosawa, Kenji; Ogata, Tsutomu; Takada, Fumio; Yano, Michihiro; Ando, Toru; Hoshika, Tadataka; Barnett, Christopher; Ohashi, Hirofumi; Kawame, Hiroshi; Hasegawa, Tomonobu; Okutani, Takahiro; Nagashima, Tatsuo; Hasegawa, Satoshi; Funayama, Ryo; Nagashima, Takeshi; Nakayama, Keiko; Inoue, Shin-Ichi; Watanabe, Yusuke; Ogura, Toshihiko; Matsubara, Yoichi

    2013-07-11

    RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome. In the present study, we identified a total of nine missense, nonsynonymous mutations in RIT1, encoding a member of the RAS subfamily, in 17 of 180 individuals (9%) with Noonan syndrome or a related condition but with no detectable mutations in known Noonan-related genes. Clinical manifestations in the RIT1-mutation-positive individuals are consistent with those of Noonan syndrome, which is characterized by distinctive facial features, short stature, and congenital heart defects. Seventy percent of mutation-positive individuals presented with hypertrophic cardiomyopathy; this frequency is high relative to the overall 20% incidence in individuals with Noonan syndrome. Luciferase assays in NIH 3T3 cells showed that five RIT1 alterations identified in children with Noonan syndrome enhanced ELK1 transactivation. The introduction of mRNAs of mutant RIT1 into 1-cell-stage zebrafish embryos was found to result in a significant increase of embryos with craniofacial abnormalities, incomplete looping, a hypoplastic chamber in the heart, and an elongated yolk sac. These results demonstrate that gain-of-function mutations in RIT1 cause Noonan syndrome and show a similar biological effect to mutations in other RASopathy-related genes. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    DOE PAGES

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.; ...

    2016-02-18

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events inmore » NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.« less

  12. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events inmore » NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.« less

  13. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene.

    PubMed

    Gonçalves, Ana; Oliveira, Jorge; Coelho, Teresa; Taipa, Ricardo; Melo-Pires, Manuel; Sousa, Mário; Santos, Rosário

    2017-10-03

    A broad mutational spectrum in the dystrophin ( DMD ) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD , adding to the diversity of mutational events that give rise to D/BMD.

  14. Identification of novel mutations in the XLRS1 gene in Chinese patients with X-linked juvenile retinoschisis.

    PubMed

    Zeng, Meizhen; Yi, Changxian; Guo, Xiangming; Jia, Xiaoyun; Deng, Yan; Wang, Juan; Shen, Huangxuan

    2007-01-01

    X-linked juvenile retinoschisis (XLRS) is a major cause of macular degeneration in young men. In this study we analyzed all six exons of the XLRS1 gene in four sporadic XLRS patients and in an affected family in China who were recently diagnosed. We found there are five different mutations with four containing missense point mutations and one having a frame-shift deletion. Among these mutations both c.644A>T and c.520delC are novel and have not been previously reported. Moreover all the second-generation offsprings and most of the third-generation ones in the affected family were found to carry the mutations bearing X chromosome. The discovery of novel mutations in the XLRS1 gene would increase the available information about the spectrum of genetic abnormalities causing XLRS. Although the limited data failed to reveal a correlation between mutations and disease phenotypes our identification of novel mutations in the XLRS1 gene will facilitate early and correct diagnosis and genetic counseling regarding the prognosis of XLRS disease.

  15. Mechanistic Basis for Type 2 Long QT Syndrome Caused by KCNH2 Mutations that Disrupt Conserved Arginine Residue in the Voltage Sensor

    PubMed Central

    McBride, Christie M.; Smith, Ashley M.; Smith, Jennifer L.; Reloj, Allison R.; Velasco, Ellyn J.; Powell, Jonathan; Elayi, Claude S.; Bartos, Daniel C.; Burgess, Don E.

    2013-01-01

    KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (IKr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing IKr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (IKv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients’ genotypes) mostly corrected the changes in IKv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing IKr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease IKr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient. PMID:23546015

  16. Mechanistic basis for type 2 long QT syndrome caused by KCNH2 mutations that disrupt conserved arginine residues in the voltage sensor.

    PubMed

    McBride, Christie M; Smith, Ashley M; Smith, Jennifer L; Reloj, Allison R; Velasco, Ellyn J; Powell, Jonathan; Elayi, Claude S; Bartos, Daniel C; Burgess, Don E; Delisle, Brian P

    2013-05-01

    KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (I Kr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing I Kr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (I Kv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients' genotypes) mostly corrected the changes in I Kv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing I Kr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease I Kr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient.

  17. Permanent Neonatal Diabetes Caused by Dominant, Recessive, or Compound Heterozygous SUR1 Mutations with Opposite Functional Effects

    PubMed Central

    Ellard, Sian ; Flanagan, Sarah E. ; Girard, Christophe A. ; Patch, Ann-Marie ; Harries, Lorna W. ; Parrish, Andrew ; Edghill, Emma L. ; Mackay, Deborah J. G. ; Proks, Peter ; Shimomura, Kenju ; Haberland, Holger ; Carson, Dennis J. ; Shield, Julian P. H. ; Hattersley, Andrew T. ; Ashcroft, Frances M. 

    2007-01-01

    Heterozygous activating mutations in the KCNJ11 gene encoding the pore-forming Kir6.2 subunit of the pancreatic beta cell KATP channel are the most common cause of permanent neonatal diabetes (PNDM). Patients with PNDM due to a heterozygous activating mutation in the ABCC8 gene encoding the SUR1 regulatory subunit of the KATP channel have recently been reported. We studied a cohort of 59 patients with permanent diabetes who received a diagnosis before 6 mo of age and who did not have a KCNJ11 mutation. ABCC8 gene mutations were identified in 16 of 59 patients and included 8 patients with heterozygous de novo mutations. A recessive mode of inheritance was observed in eight patients with homozygous, mosaic, or compound heterozygous mutations. Functional studies of selected mutations showed a reduced response to ATP consistent with an activating mutation that results in reduced insulin secretion. A novel mutational mechanism was observed in which a heterozygous activating mutation resulted in PNDM only when a second, loss-of-function mutation was also present. PMID:17668386

  18. A novel gene for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss.

    PubMed

    Ebermann, Inga; Scholl, Hendrik P N; Charbel Issa, Peter; Becirovic, Elvir; Lamprecht, Jürgen; Jurklies, Bernhard; Millán, José M; Aller, Elena; Mitter, Diana; Bolz, Hanno

    2007-04-01

    Usher syndrome is an autosomal recessive condition characterized by sensorineural hearing loss, variable vestibular dysfunction, and visual impairment due to retinitis pigmentosa (RP). The seven proteins that have been identified for Usher syndrome type 1 (USH1) and type 2 (USH2) may interact in a large protein complex. In order to identify novel USH genes, we followed a candidate strategy, assuming that mutations in proteins interacting with this "USH network" may cause Usher syndrome as well. The DFNB31 gene encodes whirlin, a PDZ scaffold protein with expression in both hair cell stereocilia and retinal photoreceptor cells. Whirlin represents an excellent candidate for USH2 because it binds to Usherin (USH2A) and VLGR1b (USH2C). Genotyping of microsatellite markers specific for the DFNB31 gene locus on chromosome 9q32 was performed in a German USH2 family that had been excluded for all known USH loci. Patients showed common haplotypes. Sequence analysis of DFNB31 revealed compound heterozygosity for a nonsense mutation, p.Q103X, in exon 1, and a mutation in the splice donor site of exon 2, c.837+1G>A. DFNB31 mutations appear to be a rare cause of Usher syndrome, since no mutations were identified in an additional 96 USH2 patients. While mutations in the C-terminal half of whirlin have previously been reported in non-syndromic deafness (DFNB31), both alterations identified in our USH2 family affect the long protein isoform. We propose that mutations causing Usher syndrome are probably restricted to exons 1-6 that are specific for the long isoform and probably crucial for retinal function. We describe a novel genetic subtype for Usher syndrome, which we named USH2D and which is caused by mutations in whirlin. Moreover, this is the first case of USH2 that is allelic to non-syndromic deafness.

  19. Mutation analysis of the MYO7A and CDH23 genes in Japanese patients with Usher syndrome type 1.

    PubMed

    Nakanishi, Hiroshi; Ohtsubo, Masafumi; Iwasaki, Satoshi; Hotta, Yoshihiro; Takizawa, Yoshinori; Hosono, Katsuhiro; Mizuta, Kunihiro; Mineta, Hiroyuki; Minoshima, Shinsei

    2010-12-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 1 (USH1), the second common type of USH, is frequently caused by MYO7A and CDH23 mutations, accounting for 70-80% of the cases among various ethnicities, including Caucasians, Africans and Asians. However, there have been no reports of mutation analysis for any responsible genes for USH1 in Japanese patients. This study describes the first mutation analysis of MYO7A and CDH23 in Japanese USH1 patients. Five mutations (three in MYO7A and two in CDH23) were identified in four of five unrelated patients. Of these mutations, two were novel. One of them, p.Tyr1942SerfsX23 in CDH23, was a large deletion causing the loss of 3 exons. This is the first large deletion to be found in CDH23. The incidence of the MYO7A and CDH23 mutations in the study population was 80%, which is consistent with previous findings. Therefore, mutation screening for these genes is expected to be a highly sensitive method for diagnosing USH1 among the Japanese.

  20. A novel splicing mutation in GALT gene causing Galactosemia in Ecuadorian family.

    PubMed

    De Lucca, M; Barba, C; Casique, L

    2017-07-01

    Classic Galactosemia (OMIM 230400) is an autosomal recessive disorder of galactose metabolism caused by mutations in the galactose-1-phosphate uridyl transferase (GALT) gene. This disease caused by the inability to metabolize galactose is potentially life-threatening but its pathophysiology has not been clearly defined. GALT gene presents high allelic heterogeneity and around 336 variations have been identified. Here, we report the case of a patient with Classic Galactosemia who was detected during a neonatal screening in Ecuador. Molecular study revealed a mutation in GALT gene intron 1, c.82+3A>G in homozygous condition, this mutation has not been previously reported. This gene variation was not found in any of the 119 healthy Ecuadorian individuals used as control. Furthermore, the mutation was the only alteration detected in the propositus's GALT after sequencing all exons and introns of this gene. In silico modeling predicted that the mutation was pathogenic. Copyright © 2017. Published by Elsevier B.V.

  1. Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP.

    PubMed

    Hu, Qi; Shokat, Kevan M

    2018-05-17

    The single most frequent cancer-causing mutation across all heterotrimeric G proteins is R201C in Gαs. The current model explaining the gain-of-function activity of the R201 mutations is through the loss of GTPase activity and resulting inability to switch off to the GDP state. Here, we find that the R201C mutation can bypass the need for GTP binding by directly activating GDP-bound Gαs through stabilization of an intramolecular hydrogen bond network. Having found that a gain-of-function mutation can convert GDP into an activator, we postulated that a reciprocal mutation might disrupt the normal role of GTP. Indeed, we found R228C, a loss-of-function mutation in Gαs that causes pseudohypoparathyroidism type 1a (PHP-Ia), compromised the adenylyl cyclase-activating activity of Gαs bound to a non-hydrolyzable GTP analog. These findings show that disease-causing mutations in Gαs can subvert the canonical roles of GDP and GTP, providing new insights into the regulation mechanism of G proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis

    PubMed Central

    DeLuca, Adam P.; Whitmore, S. Scott; Barnes, Jenna; Sharma, Tasneem P.; Westfall, Trudi A.; Scott, C. Anthony; Weed, Matthew C.; Wiley, Jill S.; Wiley, Luke A.; Johnston, Rebecca M.; Schnieders, Michael J.; Lentz, Steven R.; Tucker, Budd A.; Mullins, Robert F.; Scheetz, Todd E.; Stone, Edwin M.; Slusarski, Diane C.

    2016-01-01

    Retinitis pigmentosa (RP) is a highly heterogeneous group of disorders characterized by degeneration of the retinal photoreceptor cells and progressive loss of vision. While hundreds of mutations in more than 100 genes have been reported to cause RP, discovering the causative mutations in many patients remains a significant challenge. Exome sequencing in an individual affected with non-syndromic RP revealed two plausibly disease-causing variants in TRNT1, a gene encoding a nucleotidyltransferase critical for tRNA processing. A total of 727 additional unrelated individuals with molecularly uncharacterized RP were completely screened for TRNT1 coding sequence variants, and a second family was identified with two members who exhibited a phenotype that was remarkably similar to the index patient. Inactivating mutations in TRNT1 have been previously shown to cause a severe congenital syndrome of sideroblastic anemia, B-cell immunodeficiency, recurrent fevers and developmental delay (SIFD). Complete blood counts of all three of our patients revealed red blood cell microcytosis and anisocytosis with only mild anemia. Characterization of TRNT1 in patient-derived cell lines revealed reduced but detectable TRNT1 protein, consistent with partial function. Suppression of trnt1 expression in zebrafish recapitulated several features of the human SIFD syndrome, including anemia and sensory organ defects. When levels of trnt1 were titrated, visual dysfunction was found in the absence of other phenotypes. The visual defects in the trnt1-knockdown zebrafish were ameliorated by the addition of exogenous human TRNT1 RNA. Our findings indicate that hypomorphic TRNT1 mutations can cause a recessive disease that is almost entirely limited to the retina. PMID:26494905

  3. BMPR1B mutation causes Pierre Robin sequence

    PubMed Central

    Yao, Xu; Zhang, Rong; Yang, Hui; Zhao, Rui; Guo, Jihong; Jin, Ke; Mei, Haibo; Luo, Yongqi; Zhao, Liu; Tu, Ming; Zhu, Yimin

    2017-01-01

    Background We investigated a large family with Pierre Robin sequence (PRS). Aim of the study This study aims to determine the genetic cause of PRS. Results The reciprocal translocation t(4;6)(q22;p21) was identified to be segregated with PRS in a three-generation family. Whole-genome sequencing and Sanger sequencing successfully detected breakpoints in the intragenic regions of BMRP1B and GRM4. We hypothesized that PRS in this family was caused by (i) haploinsufficiency for BMPR1B or (ii) a gain of function mechanism mediated by the BMPR1B-GRM4 fusion gene. In an unrelated family, we identified another BMPR1B-splicing mutation that co-segregated with PRS. Conclusion We detected two BMPR1B mutations in two unrelated PRS families, suggesting that BMPR1B disruption is probably a cause of human PRS. Methods GTG banding, comparative genomic hybridization, whole-genome sequencing, and Sanger sequencing were performed to identify the gene causing PRS. PMID:28418932

  4. Epidermodysplasia verruciformis in lipoid proteinosis: case report and discussion of pathophysiology.

    PubMed

    O'Blenes, Catherine; Pasternak, Sylvia; Issekutz, Andrew; Gillis, Jane; Chowdhury, Dhiman; Finlayson, Laura

    2015-01-01

    Lipoid proteinosis (LP) is a rare autosomal recessive genodermatosis caused by mutations in extracellular matrix protein 1 (ECM1) that involves deposition of basement membrane-like material in the skin and other organs. Epidermodysplasia verruciformis (EV) is also a rare autosomal recessive genodermatosis involving susceptibility to human papillomavirus (HPV) infections and squamous cell carcinoma, caused in most cases by homozygous mutations in EVER1 or EVER2. We describe a case of EV in a patient with LP and discuss the pathophysiology. A 3-year-old Lebanese girl presented with hoarseness, beaded papules along the eyelid margins, waxy papules and plaques on her head and neck, and lichenoid verrucous papules on the forearms and hands. Histopathology of the waxy papules exhibited deposition of periodic acid Schiff-positive basement membrane-like material in the superficial dermis, characteristic of LP. The verruca plana-like lesions exhibited acanthosis and enlarged keratinocytes with pale blue-grey cytoplasm and a perinuclear halo, consistent with verrucae and EV. Polymerase chain reaction amplification and sequencing of ECM1, EVER1, and EVER2 demonstrated a homozygous point mutation, c.389C>T (p.Thr130Met), in exon 6 of ECM1 and a heterozygous point mutation, c.917 A>T (p.Asn306Ile), in exon 8 in EVER2, known to cause EV in homozygous patients. The homozygous point mutation c.389C>T in ECM1 may be a novel mutation causing LP. Verruca plana-like lesions seen in LP appear to represent a form of acquired EV. In this patient, a heterozygous mutation in EVER2 at c.917 A>T may also have conferred susceptibility to HPV infection. © 2013 Wiley Periodicals, Inc.

  5. Chronic pancreatitis associated with the p.G208A variant of PRSS1 gene in a European patient.

    PubMed

    Hegyi, Eszter; Cierna, Iveta; Vavrova, Ludmila; Ilencikova, Denisa; Konecny, Michal; Kovacs, Laszlo

    2014-01-10

    The major etiologic factor of chronic pancreatitis in adults is excessive alcohol consumption, whereas among children structural anomalies, systemic and metabolic disorders, and genetic factors are prevalent. Mutations in the cationic trypsinogen gene (PRSS1) cause hereditary pancreatitis, while mutations in serine protease inhibitor Kazal type 1 (SPINK1), cystic fibrosis transmembrane conductance regulator (CFTR) and chymotrypsin C (CTRC) genes have been shown to associate with chronic pancreatitis as independent risk factors. We present a case of 13-year-old boy with idiopathic chronic pancreatitis. Given the unexplained attacks of pancreatitis since early childhood and despite the negative family history, molecular-genetic analysis of four pancreatitis susceptibility genes (PRSS1, SPINK1, CTRC and CFTR) was performed. The boy was found to carry the c.623G>C (p.G208A) mutation of the PRSS1 gene and the c.180C>T (p.G60G) mutation of the CTRC gene, both in heterozygous state. These mutations are considered as contributing risk factors for chronic pancreatitis. In children with idiopathic chronic pancreatitis genetic causes should be considered, even in absence of positive family history. To the best of our knowledge, this is the first description of a European patient with chronic pancreatitis associated with the p.G208A mutation of PRSS1 gene. This mutation was previously reported only in Asian subjects and is thought to be a unique genetic cause of pancreatitis in Asia.

  6. [Kenny-Caffey syndrome and its related syndromes].

    PubMed

    Isojima, Tsuyoshi; Kitanaka, Sachiko

    2015-11-01

    Kenny-Caffey syndrome (KCS) is a very rare dysmorphologic syndrome characterized by proportionate short stature, cortical thickening and medullary stenosis of tubular bones, delayed closure of anterior fontanelle, eye abnormalities, and hypoparathyroidism. Two types of KCS were known: the autosomal recessive form (KCS type 1), which is caused by mutations of the TBCE gene, and the autosomal dominant form (KCS type 2), which is caused by mutations of the FAM111A gene. TBCE mutation also causes hypoparathyroidism-retardation-dysmorphism syndrome, and FAM111A mutation also causes gracile bone dysplasia. These two diseases can be called as KCS-related syndromes. In this article, we review the clinical manifestations of KCS and discuss its related syndromes.

  7. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex.

    PubMed

    Zeng, Ling-Hui; Rensing, Nicholas R; Zhang, Bo; Gutmann, David H; Gambello, Michael J; Wong, Michael

    2011-02-01

    Tuberous Sclerosis Complex (TSC) is an autosomal dominant, multi-system disorder, typically involving severe neurological symptoms, such as epilepsy, cognitive deficits and autism. Two genes, TSC1 and TSC2, encoding the proteins hamartin and tuberin, respectively, have been identified as causing TSC. Although there is a substantial overlap in the clinical phenotype produced by TSC1 and TSC2 mutations, accumulating evidence indicates that TSC2 mutations cause more severe neurological manifestations than TSC1 mutations. In this study, the neurological phenotype of a novel mouse model involving conditional inactivation of the Tsc2 gene in glial-fibrillary acidic protein (GFAP)-positive cells (Tsc2(GFAP1)CKO mice) was characterized and compared with previously generated Tsc1(GFAP1)CKO mice. Similar to Tsc1(GFAP1)CKO mice, Tsc2(GFAP1)CKO mice exhibited epilepsy, premature death, progressive megencephaly, diffuse glial proliferation, dispersion of hippocampal pyramidal cells and decreased astrocyte glutamate transporter expression. However, Tsc2(GFAP1)CKO mice had an earlier onset and higher frequency of seizures, as well as significantly more severe histological abnormalities, compared with Tsc1(GFAP1)CKO mice. The differences between Tsc1(GFAP1)CKO and Tsc2(GFAP1)CKO mice were correlated with higher levels of mammalian target of rapamycin (mTOR) activation in Tsc2(GFAP1)CKO mice and were reversed by the mTOR inhibitor, rapamycin. These findings provide novel evidence in mouse models that Tsc2 mutations intrinsically cause a more severe neurological phenotype than Tsc1 mutations and suggest that the difference in phenotype may be related to the degree to which Tsc1 and Tsc2 inactivation causes abnormal mTOR activation.

  8. Potential hot spot for de novo mutations in PTCH1 gene in Gorlin syndrome patients: a case report of twins from Croatia.

    PubMed

    Musani, Vesna; Ozretić, Petar; Trnski, Diana; Sabol, Maja; Poduje, Sanja; Tošić, Mateja; Šitum, Mirna; Levanat, Sonja

    2018-02-28

    We describe a case of twins with sporadic Gorlin syndrome. Both twins had common Gorlin syndrome features including calcification of the falx cerebri, multiple jaw keratocysts, and multiple basal cell carcinomas, but with different expressivity. One brother also had benign testicular mesothelioma. We propose this tumor type as a possible new feature of Gorlin syndrome. Gorlin syndrome is a rare autosomal dominant disorder characterized by both developmental abnormalities and cancer predisposition, with variable expression of various developmental abnormalities and different types of tumors. The syndrome is primarily caused by mutations in the Patched 1 (PTCH1) gene, although rare mutations of Patched 2 (PTCH2) or Suppressor of Fused (SUFU) genes have also been found. Neither founder mutations nor hot spot locations have been described for PTCH1 in Gorlin syndrome patients. Although de novo mutations of the PTCH1 gene occur in almost 50% of Gorlin syndrome cases, there are a few recurrent mutations. Our twin patients were carriers of a de novo mutation in the PTCH1 gene, c.3364_3365delAT (p.Met1122ValfsX22). This is, to our knowledge, the first Gorlin syndrome-causing mutation that has been reported four independent times in distant geographical locations. Therefore, we propose the location of the described mutation as a potential hot spot for mutations in PTCH1.

  9. Mutational characterization of the P3H1/CRTAP/CypB complex in recessive osteogenesis imperfecta.

    PubMed

    Barbirato, C; Trancozo, M; Almeida, M G; Almeida, L S; Santos, T O; Duarte, J C G; Rebouças, M R G O; Sipolatti, V; Nunes, V R R; Paula, F

    2015-12-03

    Osteogenesis imperfecta (OI) is a genetic disease characterized by bone deformities and fractures. Most cases are caused by autosomal dominant mutations in the type I collagen genes COL1A1 and COL1A2; however, an increasing number of recessive mutations in other genes have been reported. The LEPRE1, CRTAP, and PPIB genes encode proteins that form the P3H1/CRTAP/CypB complex, which is responsible for posttranslational modifications of type I collagen. In general, mutations in these genes lead to severe and lethal phenotypes of recessive OI. Here, we describe sixteen genetic variations detected in LEPRE1, CRTAP, and PPIB from 25 Brazilian patients with OI. Samples were screened for mutations on single-strand conformation polymorphism gels and variants were determined by automated sequencing. Seven variants were detected in patients but were absent in control samples. LEPRE1 contained the highest number of variants, including the previously described West African allele (c.1080+1G>T) found in one patient with severe OI as well as a previously undescribed p.Trp675Leu change that is predicted to be disease causing. In CRTAP, one patient carried the c.558A>G homozygous mutation, predicted as disease causing through alteration of a splice site. Genetic variations detected in the PPIB gene are probably not pathogenic due to their localization or because of their synonymous effect. This study enhances our knowledge about the mutational pattern of the LEPRE1, CRTAP, and PPIB genes. In addition, the results strengthen the proposition that LEPRE1 should be the first gene analyzed in mutation detection studies in patients with recessive OI.

  10. Novel mutation in the replication focus targeting sequence domain of DNMT1 causes hereditary sensory and autonomic neuropathy IE.

    PubMed

    Yuan, Junhui; Higuchi, Yujiro; Nagado, Tatsui; Nozuma, Satoshi; Nakamura, Tomonori; Matsuura, Eiji; Hashiguchi, Akihiro; Sakiyama, Yusuke; Yoshimura, Akiko; Takashima, Hiroshi

    2013-03-01

    DNMT1, encoding DNA methyltransferase 1 (Dnmt1), is a critical enzyme which is mainly responsible for conversion of unmethylated DNA into hemimethylated DNA. To date, two phenotypes produced by DNMT1 mutations have been reported, including hereditary sensory and autonomic neuropathy (HSAN) type IE with mutations in exon 20, and autosomal dominant cerebellar ataxia, deafness, and narcolepsy caused by mutations in exon 21. We report a sporadic case in a Japanese patient with loss of pain and vibration sense, chronic osteomyelitis, autonomic system dysfunctions, hearing loss, and mild dementia, but without definite cerebellar ataxia. Electrophysiological studies revealed absent sensory nerve action potential with nearly normal motor nerve conduction studies. Brain magnetic resonance imaging revealed mild diffuse cerebral and cerebellar atrophy. Using a next-generation sequencing system, 16 candidate genes were analyzed and a novel missense mutation, c.1706A>G (p.His569Arg), was identified in exon 21 of DNMT1. Our findings suggest that mutation in exon 21 of DNMT1 may also produce a HSAN phenotype. Because all reported mutations of DNMT1 are concentrated in exons 20 and 21, which encode the replication focus targeting sequence (RFTS) domain of Dnmt1, the RFTS domain could be a mutation hot spot. © 2013 Peripheral Nerve Society.

  11. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene.

    PubMed

    Horvath, Rita; Hudson, Gavin; Ferrari, Gianfrancesco; Fütterer, Nancy; Ahola, Sofia; Lamantea, Eleonora; Prokisch, Holger; Lochmüller, Hanns; McFarland, Robert; Ramesh, V; Klopstock, Thomas; Freisinger, Peter; Salvi, Fabrizio; Mayr, Johannes A; Santer, Rene; Tesarova, Marketa; Zeman, Jiri; Udd, Bjarne; Taylor, Robert W; Turnbull, Douglass; Hanna, Michael; Fialho, Doreen; Suomalainen, Anu; Zeviani, Massimo; Chinnery, Patrick F

    2006-07-01

    Mutations in the gene coding for the catalytic subunit of the mitochondrial DNA (mtDNA) polymerase gamma (POLG1) have recently been described in patients with diverse clinical presentations, revealing a complex relationship between genotype and phenotype in patients and their families. POLG1 was sequenced in patients from different European diagnostic and research centres to define the phenotypic spectrum and advance understanding of the recurrence risks. Mutations were identified in 38 cases, with the majority being sporadic compound heterozygotes. Eighty-nine DNA sequence changes were identified, including 2 predicted to alter a splice site, 1 predicted to cause a premature stop codon and 13 predicted to cause novel amino acid substitutions. The majority of children had a mutation in the linker region, often 1399G-->A (A467T), and a mutation affecting the polymerase domain. Others had mutations throughout the gene, and 11 had 3 or more substitutions. The clinical presentation ranged from the neonatal period to late adult life, with an overlapping phenotypic spectrum from severe encephalopathy and liver failure to late-onset external ophthalmoplegia, ataxia, myopathy and isolated muscle pain or epilepsy. There was a strong gender bias in children, with evidence of an environmental interaction with sodium valproate. POLG1 mutations cause an overlapping clinical spectrum of disease with both dominant and recessive modes of inheritance. 1399G-->A (A467T) is common in children, but complete POLG1 sequencing is required to identify multiple mutations that can have complex implications for genetic counselling.

  12. Congenital Insensitivity to Pain: Novel SCN9A Missense and In-Frame Deletion Mutations

    PubMed Central

    Cox, James J; Sheynin, Jony; Shorer, Zamir; Reimann, Frank; Nicholas, Adeline K; Zubovic, Lorena; Baralle, Marco; Wraige, Elizabeth; Manor, Esther; Levy, Jacov; Woods, C Geoffery; Parvari, Ruti

    2010-01-01

    SCN9A encodes the voltage-gated sodium channel Nav1.7, a protein highly expressed in pain-sensing neurons. Mutations in SCN9A cause three human pain disorders: bi-allelic loss of function mutations result in Channelopathy-associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To date, all mutations in SCN9A that cause a complete inability to experience pain are protein truncating and presumably lead to no protein being produced. Here, we describe the identification and functional characterization of two novel non-truncating mutations in families with CIP: a homozygously-inherited missense mutation found in a consanguineous Israeli Bedouin family (Nav1.7-R896Q) and a five amino acid in-frame deletion found in a sporadic compound heterozygote (Nav1.7-ΔR1370-L1374). Both of these mutations map to the pore region of the Nav1.7 sodium channel. Using transient transfection of PC12 cells we found a significant reduction in membrane localization of the mutant protein compared to the wild type. Furthermore, voltage clamp experiments of mutant-transfected HEK293 cells show a complete loss of function of the sodium channel, consistent with the absence of pain phenotype. In summary, this study has identified critical amino acids needed for the normal subcellular localization and function of Nav1.7. © 2010 Wiley-Liss, Inc. PMID:20635406

  13. Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations.

    PubMed

    Cox, James J; Sheynin, Jony; Shorer, Zamir; Reimann, Frank; Nicholas, Adeline K; Zubovic, Lorena; Baralle, Marco; Wraige, Elizabeth; Manor, Esther; Levy, Jacov; Woods, C Geoffery; Parvari, Ruti

    2010-09-01

    SCN9Aencodes the voltage-gated sodium channel Na(v)1.7, a protein highly expressed in pain-sensing neurons. Mutations in SCN9A cause three human pain disorders: bi-allelic loss of function mutations result in Channelopathy-associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To date, all mutations in SCN9A that cause a complete inability to experience pain are protein truncating and presumably lead to no protein being produced. Here, we describe the identification and functional characterization of two novel non-truncating mutations in families with CIP: a homozygously-inherited missense mutation found in a consanguineous Israeli Bedouin family (Na(v)1.7-R896Q) and a five amino acid in-frame deletion found in a sporadic compound heterozygote (Na(v)1.7-DeltaR1370-L1374). Both of these mutations map to the pore region of the Na(v)1.7 sodium channel. Using transient transfection of PC12 cells we found a significant reduction in membrane localization of the mutant protein compared to the wild type. Furthermore, voltage clamp experiments of mutant-transfected HEK293 cells show a complete loss of function of the sodium channel, consistent with the absence of pain phenotype. In summary, this study has identified critical amino acids needed for the normal subcellular localization and function of Na(v)1.7. Copyright 2010 Wiley-Liss, Inc.

  14. Treacher Collins syndrome with craniosynostosis, choanal atresia, and esophageal regurgitation caused by a novel nonsense mutation in TCOF1.

    PubMed

    Horiuchi, Katsumi; Ariga, Tadashi; Fujioka, Hirotaka; Kawashima, Kunihiro; Yamamoto, Yuhei; Igawa, Hiroharu; Sakiyama, Yukio; Sugihara, Tsuneki

    2004-07-15

    Treacher Collins syndrome (TCS) is caused by mutations in TCOF1 of the nonsense, small deletion, and small insertion types, which most likely result in haploinsufficiency. We report a novel de novo nonsense mutation 2731C --> T, resulting in Arg911Stop, which truncates the protein. Our patient had the classic findings of TCS, but with documented craniosynostosis, choanal atresia, and esophageal regurgitation. Copyright 2004 Wiley-Liss, Inc.

  15. Identification of a novel nonsense mutation and a missense substitution in the AGPAT2 gene causing congenital generalized lipodystrophy type 1

    PubMed Central

    Haghighi, Amirreza; Razzaghy-Azar, Maryam; Talea, Ali; Sadeghian, Mahnaz; Ellard, Sian; Haghighi, Alireza

    2012-01-01

    Congenital generalized lipodystrophy (CGL) is an autosomal recessive disease characterized by the generalized scant of adipose tissue. CGL type 1 is caused by mutations in gene encoding 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2). A clinical and molecular genetic investigation was performed in affected and unaffected members of two families with CGL type 1. The AGPAT2 coding region was sequenced in index cases of the two families. The presence of the identified mutations in relevant parents was tested. We identified a novel nonsense mutation (c.685G>T, p.Glu229*) and a missense substitution (c.514G>A, p.Glu172Lys). The unaffected parents in both families were heterozygous carrier of the relevant mutation. The results expand genotype–phenotype spectrum in CGL1 and will have applications in prenatal and early diagnosis of the disease. This is the first report of Persian families identified with AGPAT2 mutations. PMID:22902344

  16. A Novel Mutation in OTX2 Causes Combined Pituitary Hormone Deficiency, Bilateral Microphthalmia, and Agenesis of the Left Internal Carotid Artery.

    PubMed

    Shimada, Aya; Takagi, Masaki; Nagashima, Yuka; Miyai, Kentaro; Hasegawa, Yukihiro

    2016-01-01

    Mutations in OTX2 cause hypopituitarism, ranging from isolated growth hormone deficiency to combined pituitary hormone deficiency (CPHD), which are commonly detected in association with severe eye abnormalities, including anophthalmia or microphthalmia. Pituitary phenotypes of OTX2 mutation carriers are highly variable; however, ACTH deficiency during the neonatal period is not common in previous reports. We report a novel missense OTX2 (R89P) mutation in a CPHD patient with severe hypoglycemia in the neonatal period due to ACTH deficiency, bilateral microphthalmia, and agenesis of the left internal carotid artery (ICA). We identified a novel heterozygous mutation in OTX2 (c.266G>C, p.R89P). R89P OTX2 showed markedly reduced transcriptional activity of HESX1 and POU1F1 reporters compared with wild-type OTX2. A dominant negative effect was noted only in the transcription analysis with POU1F1 promoter. Electrophoretic mobility shift assay experiments showed that R89P OTX2 abrogated DNA-binding ability. OTX2 mutations can cause ACTH deficiency in the neonatal period. Our study also shows that OTX2 mutations are associated with agenesis of the ICA. To the best of our knowledge, this is the first report of a transcription factor gene mutation, which was identified due to agenesis of the ICA of a patient with CPHD. This study extends our understanding of the phenotypic features, molecular mechanism, and developmental course associated with mutations in OTX2. © 2016 S. Karger AG, Basel.

  17. Multiple giant cell lesions in patients with Noonan syndrome and cardio-facio-cutaneous syndrome.

    PubMed

    Neumann, Thomas E; Allanson, Judith; Kavamura, Ines; Kerr, Bronwyn; Neri, Giovanni; Noonan, Jacqueline; Cordeddu, Viviana; Gibson, Kate; Tzschach, Andreas; Krüger, Gabriele; Hoeltzenbein, Maria; Goecke, Timm O; Kehl, Hans Gerd; Albrecht, Beate; Luczak, Klaudiusz; Sasiadek, Maria M; Musante, Luciana; Laurie, Rohan; Peters, Hartmut; Tartaglia, Marco; Zenker, Martin; Kalscheuer, Vera

    2009-04-01

    Noonan syndrome (NS) and cardio-facio-cutaneous syndrome (CFCS) are related developmental disorders caused by mutations in genes encoding various components of the RAS-MAPK signaling cascade. NS is associated with mutations in the genes PTPN11, SOS1, RAF1, or KRAS, whereas CFCS can be caused by mutations in BRAF, MEK1, MEK2, or KRAS. The NS phenotype is rarely accompanied by multiple giant cell lesions (MGCL) of the jaw (Noonan-like/MGCL syndrome (NL/MGCLS)). PTPN11 mutations are the only genetic abnormalities reported so far in some patients with NL/MGCLS and in one individual with LEOPARD syndrome and MGCL. In a cohort of 75 NS patients previously tested negative for mutations in PTPN11 and KRAS, we detected SOS1 mutations in 11 individuals, four of whom had MGCL. To explore further the relevance of aberrant RAS-MAPK signaling in syndromic MGCL, we analyzed the established genes causing CFCS in three subjects with MGCL associated with a phenotype fitting CFCS. Mutations in BRAF or MEK1 were identified in these patients. All mutations detected in these seven patients with syndromic MGCL had previously been described in NS or CFCS without apparent MGCL. This study demonstrates that MGCL may occur in NS and CFCS with various underlying genetic alterations and no obvious genotype-phenotype correlation. This suggests that dysregulation of the RAS-MAPK pathway represents the common and basic molecular event predisposing to giant cell lesion formation in patients with NS and CFCS rather than specific mutation effects.

  18. Multiple giant cell lesions in patients with Noonan syndrome and cardio-facio-cutaneous syndrome

    PubMed Central

    Neumann, Thomas E; Allanson, Judith; Kavamura, Ines; Kerr, Bronwyn; Neri, Giovanni; Noonan, Jacqueline; Cordeddu, Viviana; Gibson, Kate; Tzschach, Andreas; Krüger, Gabriele; Hoeltzenbein, Maria; Goecke, Timm O; Kehl, Hans Gerd; Albrecht, Beate; Luczak, Klaudiusz; Sasiadek, Maria M; Musante, Luciana; Laurie, Rohan; Peters, Hartmut; Tartaglia, Marco; Zenker, Martin; Kalscheuer, Vera

    2009-01-01

    Noonan syndrome (NS) and cardio-facio-cutaneous syndrome (CFCS) are related developmental disorders caused by mutations in genes encoding various components of the RAS-MAPK signaling cascade. NS is associated with mutations in the genes PTPN11, SOS1, RAF1, or KRAS, whereas CFCS can be caused by mutations in BRAF, MEK1, MEK2, or KRAS. The NS phenotype is rarely accompanied by multiple giant cell lesions (MGCL) of the jaw (Noonan-like/MGCL syndrome (NL/MGCLS)). PTPN11 mutations are the only genetic abnormalities reported so far in some patients with NL/MGCLS and in one individual with LEOPARD syndrome and MGCL. In a cohort of 75 NS patients previously tested negative for mutations in PTPN11 and KRAS, we detected SOS1 mutations in 11 individuals, four of whom had MGCL. To explore further the relevance of aberrant RAS-MAPK signaling in syndromic MGCL, we analyzed the established genes causing CFCS in three subjects with MGCL associated with a phenotype fitting CFCS. Mutations in BRAF or MEK1 were identified in these patients. All mutations detected in these seven patients with syndromic MGCL had previously been described in NS or CFCS without apparent MGCL. This study demonstrates that MGCL may occur in NS and CFCS with various underlying genetic alterations and no obvious genotype–phenotype correlation. This suggests that dysregulation of the RAS-MAPK pathway represents the common and basic molecular event predisposing to giant cell lesion formation in patients with NS and CFCS rather than specific mutation effects. PMID:18854871

  19. Gene Therapy to Extend Lifespan of Tsc1 Conditional Brain Knockouts

    DTIC Science & Technology

    2015-07-01

    TSC) is an autosomal genetic disorder which affects about 1 in 6,000 newborns. The disease is caused by inactivating mutations in either of two...are seen in the majority (>90%) of TSC patients, and disrupt neuronal architecture causing epilepsy and obstruction of ventricles, respectively (Short...an autosomal genetic disorder which affects about 1 in 6,000 newborns. The disease is caused by inactivating mutations in either of two related tumor

  20. Glycogen storage disease type 1a in three siblings with the G270V mutation.

    PubMed

    Parvari, R; Isam, J; Moses, S W

    1999-04-01

    Glycogen storage disease type 1a (von Gierke disease, GSD1a) is caused by the deficiency of microsomal glucose-6-phosphatase (G6Pase) activity. The cloning of G6Pase cDNA and characterization of the human G6Pase gene enabled the identification of the mutations causing GSD1a. Here we report on the clinical and biochemical features of three GSD1a siblings of a Muslin Arab family with a G270V mutation. Two older patients presented with an unusually mild clinical and biochemical course.

  1. Mutations in FUS are the most frequent genetic cause in juvenile sporadic ALS patients of Chinese origin.

    PubMed

    Zou, Zhang-Yu; Liu, Ming-Sheng; Li, Xiao-Guang; Cui, Li-Ying

    2016-01-01

    Juvenile onset ALS is a very rare form of motor neuron disease, with the first symptoms of motor neuron degeneration manifested before 25 years of age. Mutations in the alsin (ALS2), senataxin (SETX), and spatacsin (SPG11) genes have been associated with familial ALS with juvenile onset and slow progression, whereas the genetic architecture of sporadic juvenile ALS remains unclear. We screened mutations in C9orf72, SOD1, FUS, TARDBP, ANG, VCP and PFN1 in 16 juvenile sporadic ALS patients. Four cases (25%) carrying FUS mutations and one individual (6%) harbouring a SOD1 mutation were identified. All cases had an aggressive disease course. Our results suggest that FUS mutations are the most frequent genetic cause in early-onset sporadic ALS patients of Chinese origin. Genetic testing of FUS should be performed in early-onset ALS patients especially those with an aggressive disease course.

  2. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy.

    PubMed

    Maugeri, A; Klevering, B J; Rohrschneider, K; Blankenagel, A; Brunner, H G; Deutman, A F; Hoyng, C B; Cremers, F P

    2000-10-01

    The photoreceptor cell-specific ATP-binding cassette transporter gene (ABCA4; previously denoted "ABCR") is mutated, in most patients, with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients from Germany and The Netherlands with isolated CRD. Single-strand conformation-polymorphism analysis and sequencing revealed 19 ABCA4 mutations in 13 (65%) of 20 patients. In six patients, mutations were identified in both ABCA4 alleles; in seven patients, mutations were detected in one allele. One complex ABCA4 allele (L541P;A1038V) was found exclusively in German patients with CRD; one patient carried this complex allele homozygously, and five others were compound heterozygous. These findings suggest that mutations in the ABCA4 gene are the major cause of AR CRD. A primary role of the ABCA4 gene in STGD1/FFM and AR CRD, together with the gene's involvement in an as-yet-unknown proportion of cases with AR RP, strengthens the idea that mutations in the ABCA4 gene could be the most frequent cause of inherited retinal dystrophy in humans.

  3. A syndrome of microcephaly, short stature, polysyndactyly, and dental anomalies caused by a homozygous KATNB1 mutation.

    PubMed

    Yigit, Gökhan; Wieczorek, Dagmar; Bögershausen, Nina; Beleggia, Filippo; Möller-Hartmann, Claudia; Altmüller, Janine; Thiele, Holger; Nürnberg, Peter; Wollnik, Bernd

    2016-03-01

    Using whole-exome sequencing, we identified a homozygous acceptor splice-site mutation in intron 6 of the KATNB1 gene in a patient from a consanguineous Turkish family who presented with congenital microcephaly, lissencephaly, short stature, polysyndactyly, and dental abnormalities. cDNA analysis revealed complete loss of the natural acceptor splice-site resulting either in the usage of an alternative, exonic acceptor splice-site inducing a frame-shift and premature protein truncation or, to a minor extent, in complete skipping of exon 7. Both effects most likely lead to complete loss of KATNB1 function. Homozygous and compound heterozygous mutations in KATNB1 have very recently been described as a cause of microcephaly with brain malformations and seizures. We extend the KATNB1 associated phenotype by describing a syndrome characterized by primordial dwarfism, lissencephaly, polysyndactyly, and dental anomalies, which is caused by a homozygous truncating KATNB1 mutation. © 2015 Wiley Periodicals, Inc.

  4. Genetics Home Reference: familial focal epilepsy with variable foci

    MedlinePlus

    ... SF, Dibbens LM. Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. ... caused by mutation in the mammalian target of rapamycin regulator NPRL3. Ann Neurol. 2016 Jan;79(1): ...

  5. Genetic epidemiology of Charcot-Marie-Tooth disease.

    PubMed

    Braathen, G J

    2012-01-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited disorder of the peripheral nervous system. The frequency of different CMT genotypes has been estimated in clinic populations, but prevalence data from the general population is lacking. Point mutations in the mitofusin 2 (MFN2) gene has been identified exclusively in Charcot-Marie-Tooth disease type 2 (CMT2), and in a single family with intermediate CMT. MFN2 point mutations are probably the most common cause of CMT2. The CMT phenotype caused by mutation in the myelin protein zero (MPZ) gene varies considerably, from early onset and severe forms to late onset and milder forms. The mechanism is not well understood. The myelin protein zero (P(0) ) mediates adhesion in the spiral wraps of the Schwann cell's myelin sheath. X-linked Charcot-Marie Tooth disease (CMTX) is caused by mutations in the connexin32 (cx32) gene that encodes a polypeptide which is arranged in hexameric array and form gap junctions. Estimate prevalence of CMT. Estimate frequency of Peripheral Myelin Protein 22 (PMP22) duplication and point mutations, insertions and deletions in Cx32, Early growth response 2 (EGR2), MFN2, MPZ, PMP22 and Small integral membrane protein of lysosome/late endosome (SIMPLE) genes. Description of novel mutations in Cx32, MFN2 and MPZ. Description of de novo mutations in MFN2. Our population based genetic epidemiological survey included persons with CMT residing in eastern Akershus County, Norway. The participants were interviewed and examined by one geneticist/neurologist, and classified clinically, neurophysiologically and genetically. Two-hundred and thirty-two consecutive unselected and unrelated CMT families with available DNA from all regions in Norway were included in the MFN2 study. We screened for point mutations in the MFN2 gene. We describe four novel mutations, two in the connexin32 gene and two in the MPZ gene. A total of 245 affected from 116 CMT families from the general population of eastern Akershus county were included in the genetic epidemiological survey. In the general population 1 per 1214 persons (95% CI 1062-1366) has CMT. Charcot-Marie-Tooth disease type 1 (CMT1), CMT2 and intermediate CMT were found in 48.2%, 49.4% and 2.4% of the families, respectively. A mutation in the investigated genes was found in 27.2% of the CMT families and in 28.6% of the affected. The prevalence of the PMP22 duplication and mutations in the Cx32, MPZ and MFN2 genes was found in 13.6%, 6.2%, 1.2%, 6.2% of the families, and in 19.6%, 4.8%, 1.1%, 3.2% of the affected, respectively. None of the families had point mutations, insertions or deletions in the EGR2, PMP22 or SIMPLE genes. Four known and three novel mitofusin 2 (MFN2) point mutations in 8 unrelated Norwegian CMT families were identified. The novel point mutations were not found in 100 healthy controls. This corresponds to 3.4% (8/232) of CMT families having point mutations in MFN2. The phenotypes were compatible with CMT1 in two families, CMT2 in four families, intermediate CMT in one family and distal hereditary motor neuronopathy (dHMN) in one family. A point mutation in the MFN2 gene was found in 2.3% of CMT1, 5.5% of CMT2, 12.5% of intermediate CMT and 6.7% of dHMN families. Two novel missense mutations in the MPZ gene were identified. Family 1 had a c.368G>A (Gly123Asp) transition while family 2 and 3 had a c.103G>A (Asp35Asn) transition. The affected in family 1 had early onset and severe symptoms compatible with Dejerine-Sottas syndrome (DSS), while affected in family 2 and 3 had late onset, milder symptoms and axonal neuropathy compatible with CMT2. Two novel connexin32 mutations that cause early onset X-linked CMT were identified. Family 1 had a deletion c.225delG (R75fsX83) which causes a frameshift and premature stop codon at position 247 while family 2 had a c.536G>A (Cys179Tyr) transition which causes a change of the highly conserved cysteine residue, i.e. disruption of at least one of three disulfide bridges. The mean age at onset was in the first decade and the nerve conduction velocities were in the intermediate range. Charcot-Marie-Tooth disease is the most common inherited neuropathy. At present 47 hereditary neuropathy genes are known, and an examination of all known genes would probably only identify mutations in approximately 50% of those with CMT. Thus, it is likely that at least 30-50 CMT genes are yet to be identified. The identified known and novel point mutations in the MFN2 gene expand the clinical spectrum from CMT2 and intermediate CMT to also include possibly CMT1 and the dHMN phenotypes. Thus, genetic analyses of the MFN2 gene should not be restricted to persons with CMT2. The phenotypic variation caused by different missense mutations in the MPZ gene is likely caused by different conformational changes of the MPZ protein which affects the functional tetramers. Severe changes of the MPZ protein cause dysfunctional tetramers and predominantly uncompacted myelin, i.e. the severe phenotypes congenital hypomyelinating neuropathy and DSS, while milder changes cause the phenotypes CMT1 and CMT2. The two novel mutations in the connexin32 gene are more severe than the majority of previously described mutations possibly due to the severe structural change of the gap junction they encode. Charcot-Marie-Tooth disease is the most common inherited disorder of the peripheral nervous system with an estimated prevalence of 1 in 1214. CMT1 and CMT2 are equally frequent in the general population. The prevalence of PMP22 duplication and of mutations in Cx32, MPZ and MFN2 is 19.6%, 4.8%, 1.1% and 3.2%, respectively. The ratio of probable de novo mutations in CMT families was estimated to be 22.7%. Genotype- phenotype correlations for seven novel mutations in the genes Cx32 (2), MFN2 (3) and MPZ (2) are described. Two novel phenotypes were ascribed to the MFN2 gene, however further studies are needed to confirm that MFN2 mutations can cause CMT1 and dHMN. © 2012 John Wiley & Sons A/S.

  6. First report of HGD mutations in a Chinese with alkaptonuria.

    PubMed

    Yang, Yong-jia; Guo, Ji-hong; Chen, Wei-jian; Zhao, Rui; Tang, Jin-song; Meng, Xiao-hua; Zhao, Liu; Tu, Ming; He, Xin-yu; Wu, Ling-qian; Zhu, Yi-min

    2013-04-15

    Alkaptonuria (AKU) is one of the first prototypic inborn errors in metabolism and the first human disease found to be transmitted via Mendelian autosomal recessive inheritance. It is caused by HGD mutations, which leads to a deficiency in homogentisate 1,2-dioxygenase (HGD) activity. To date, several HGD mutations have been identified as the cause of the prototypic disease across different ethnic populations worldwide. However, in Asia, the HGD mutation is very rarely reported. For the Chinese population, no literature on HGD mutation screening is available to date. In this paper, we describe two novel HGD mutations in a Chinese AKU family, the splicing mutation of IVS7+1G>C, a donor splice site of exon 7, and a missense mutation of F329C in exon 12. The predicted new splicing site of the mutated exon 7 sequence demonstrated a 303bp extension after the mutation site. The F329C mutation most probably disturbed the stability of the conformation of the two loops critical to the Fe(2+) active site of the HGD enzyme. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Transgenic mouse α- and β-cardiac myosins containing the R403Q mutation show isoform-dependent transient kinetic differences.

    PubMed

    Lowey, Susan; Bretton, Vera; Gulick, James; Robbins, Jeffrey; Trybus, Kathleen M

    2013-05-24

    Familial hypertrophic cardiomyopathy (FHC) is a major cause of sudden cardiac death in young athletes. The discovery in 1990 that a point mutation at residue 403 (R403Q) in the β-myosin heavy chain (MHC) caused a severe form of FHC was the first of many demonstrations linking FHC to mutations in muscle proteins. A mouse model for FHC has been widely used to study the mechanochemical properties of mutated cardiac myosin, but mouse hearts express α-MHC, whereas the ventricles of larger mammals express predominantly β-MHC. To address the role of the isoform backbone on function, we generated a transgenic mouse in which the endogenous α-MHC was partially replaced with transgenically encoded β-MHC or α-MHC. A His6 tag was cloned at the N terminus, along with R403Q, to facilitate isolation of myosin subfragment 1 (S1). Stopped flow kinetics were used to measure the equilibrium constants and rates of nucleotide binding and release for the mouse S1 isoforms bound to actin. For the wild-type isoforms, we found that the affinity of MgADP for α-S1 (100 μM) is ~ 4-fold weaker than for β-S1 (25 μM). Correspondingly, the MgADP release rate for α-S1 (350 s(-1)) is ~3-fold greater than for β-S1 (120 s(-1)). Introducing the R403Q mutation caused only a minor reduction in kinetics for β-S1, but R403Q in α-S1 caused the ADP release rate to increase by 20% (430 s(-1)). These transient kinetic studies on mouse cardiac myosins provide strong evidence that the functional impact of an FHC mutation on myosin depends on the isoform backbone.

  8. NSD1 Mutations Are the Major Cause of Sotos Syndrome and Occur in Some Cases of Weaver Syndrome but Are Rare in Other Overgrowth Phenotypes

    PubMed Central

    Douglas, Jenny; Hanks, Sandra; Temple, I. Karen; Davies, Sally; Murray, Alexandra; Upadhyaya, Meena; Tomkins, Susan; Hughes, Helen E.; Cole, Trevor R. P.; Rahman, Nazneen

    2003-01-01

    Sotos syndrome is a childhood overgrowth syndrome characterized by a distinctive facial appearance, height and head circumference >97th percentile, advanced bone age, and developmental delay. Weaver syndrome is characterized by the same criteria but has its own distinctive facial gestalt. Recently, a 2.2-Mb chromosome 5q35 microdeletion, encompassing NSD1, was reported as the major cause of Sotos syndrome, with intragenic NSD1 mutations identified in a minority of cases. We evaluated 75 patients with childhood overgrowth, for intragenic mutations and large deletions of NSD1. The series was phenotypically scored into four groups, prior to the molecular analyses: the phenotype in group 1 (n=37) was typical of Sotos syndrome; the phenotype in group 2 (n=13) was Sotos-like but with some atypical features; patients in group 3 (n=7) had Weaver syndrome, and patients in group 4 (n=18) had an overgrowth condition that was neither Sotos nor Weaver syndrome. We detected three deletions and 32 mutations (13 frameshift, 8 nonsense, 2 splice-site, and 9 missense) that are likely to impair NSD1 functions. The truncating mutations were spread throughout NSD1, but there was evidence of clustering of missense mutations in highly conserved functional domains between exons 13 and 23. There was a strong correlation between presence of an NSD1 alteration and clinical phenotype, in that 28 of 37 (76%) patients in group 1 had NSD1 mutations or deletions, whereas none of the patients in group 4 had abnormalities of NSD1. Three patients with Weaver syndrome had NSD1 mutations, all between amino acids 2142 and 2184. We conclude that intragenic mutations of NSD1 are the major cause of Sotos syndrome and account for some Weaver syndrome cases but rarely occur in other childhood overgrowth phenotypes. PMID:12464997

  9. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes.

    PubMed

    Liu, H X; Cartegni, L; Zhang, M Q; Krainer, A R

    2001-01-01

    Point mutations can generate defective and sometimes harmful proteins. The nonsense-mediated mRNA decay (NMD) pathway minimizes the potential damage caused by nonsense mutations. In-frame nonsense codons located at a minimum distance upstream of the last exon-exon junction are recognized as premature termination codons (PTCs), targeting the mRNA for degradation. Some nonsense mutations cause skipping of one or more exons, presumably during pre-mRNA splicing in the nucleus; this phenomenon is termed nonsense-mediated altered splicing (NAS), and its underlying mechanism is unclear. By analyzing NAS in BRCA1, we show here that inappropriate exon skipping can be reproduced in vitro, and results from disruption of a splicing enhancer in the coding sequence. Enhancers can be disrupted by single nonsense, missense and translationally silent point mutations, without recognition of an open reading frame as such. These results argue against a nuclear reading-frame scanning mechanism for NAS. Coding-region single-nucleotide polymorphisms (cSNPs) within exonic splicing enhancers or silencers may affect the patterns or efficiency of mRNA splicing, which may in turn cause phenotypic variability and variable penetrance of mutations elsewhere in a gene.

  10. Autosomal-Recessive Hypophosphatemic Rickets Is Associated with an Inactivation Mutation in the ENPP1 Gene

    PubMed Central

    Levy-Litan, Varda; Hershkovitz, Eli; Avizov, Luba; Leventhal, Neta; Bercovich, Dani; Chalifa-Caspi, Vered; Manor, Esther; Buriakovsky, Sophia; Hadad, Yair; Goding, James; Parvari, Ruti

    2010-01-01

    Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1. PMID:20137772

  11. Mutations in myosin VIIA (MYO7A) and usherin (USH2A) in Spanish patients with Usher syndrome types I and II, respectively.

    PubMed

    Nájera, Carmen; Beneyto, Magdalena; Blanca, José; Aller, Elena; Fontcuberta, Ana; Millán, José María; Ayuso, Carmen

    2002-07-01

    Usher syndrome is an autosomal recessive disorder characterized by congenital hearing impairment and retinitis pigmentosa. Three clinical types are known (USH1, USH2 and USH3), and there is an extensive genetic heterogeneity, with at least ten genes implicated. The most frequently mutated genes are MYO7A, which causes USH1B, and usherin, which causes USH2A. We carried out a mutation analysis of these two genes in the Spanish population. Analysis of the MYO7A gene in patients from 30 USH1 families and sporadic cases identified 32% of disease alleles, with mutation Q821X being the most frequent. Most of the remaining variants are private mutations. With regard to USH2, mutation 2299delG was detected in 25% of the Spanish patients. Altogether the mutations detected in USH2A families account for 23% of the disease alleles. Copyright 2002 Wiley-Liss, Inc.

  12. Sun exposure causes somatic second-hit mutations and angiofibroma development in tuberous sclerosis complex

    PubMed Central

    Tyburczy, Magdalena E.; Wang, Ji-an; Li, Shaowei; Thangapazham, Rajesh; Chekaluk, Yvonne; Moss, Joel; Kwiatkowski, David J.; Darling, Thomas N.

    2014-01-01

    Tuberous sclerosis complex (TSC) is characterized by the formation of tumors in multiple organs and is caused by germline mutation in one of two tumor suppressor genes, TSC1 and TSC2. As for other tumor suppressor gene syndromes, the mechanism of somatic second-hit events in TSC tumors is unknown. We grew fibroblast-like cells from 29 TSC skin tumors from 22 TSC subjects and identified germline and second-hit mutations in TSC1/TSC2 using next-generation sequencing. Eighteen of 22 (82%) subjects had a mutation identified, and 8 of the 18 (44%) subjects were mosaic with mutant allele frequencies of 0 to 19% in normal tissue DNA. Multiple tumors were available from four patients, and in each case, second-hit mutations in TSC2 were distinct indicating they arose independently. Most remarkably, 7 (50%) of the 14 somatic point mutations were CC>TT ultraviolet ‘signature’ mutations, never seen as a TSC germline mutation. These occurred exclusively in facial angiofibroma tumors from sun-exposed sites. These results implicate UV-induced DNA damage as a cause of second-hit mutations and development of TSC facial angiofibromas and suggest that measures to limit UV exposure in TSC children and adults should reduce the frequency and severity of these lesions. PMID:24271014

  13. Comprehensive Molecular Screening in Chinese Usher Syndrome Patients.

    PubMed

    Sun, Tengyang; Xu, Ke; Ren, Yanfan; Xie, Yue; Zhang, Xiaohui; Tian, Lu; Li, Yang

    2018-03-01

    Usher syndrome (USH) refers to a group of autosomal recessive disorders causing deafness and blindness. The objectives of this study were to determine the mutation spectrum in a cohort of Chinese patients with USH and to describe the clinical features of the patients with mutations. A total of 119 probands who were clinically diagnosed with USH were recruited for genetic analysis. All probands underwent ophthalmic examinations. A combination of molecular screening methods, including targeted next-generation sequencing, Sanger-DNA sequencing, and multiplex ligation probe amplification assay, was used to detect mutations. We found biallelic mutations in 92 probands (77.3%), monoallelic mutations in 5 patients (4.2%), and 1 hemizygous mutation in 1 patient (0.8%), resulting in an overall mutation detection rate of 78.2%. Overall, 132 distinct disease-causing mutations involving seven USH (ABHD12, CDH23, GPR98, MYO7A, PCDH15, USH1C, and USH2A) genes; 5 other retinal degeneration genes (CHM, CNGA1, EYS, PDE6B, and TULP1); and 1 nonsyndromic hearing loss gene (MYO15A) were identified, and 78 were novel. Mutations of MYOA7 were responsible for 60% of USH1 families, followed by PCDH15 (20%) and USH1C (10%). Mutations of USH2A accounted for 67.7% of USH2 families, and mutation c.8559-2A>G was the most frequent one, accounting for 19.1% of the identified USH2A alleles. Our results confirm that the mutation spectrum for each USH gene in Chinese patients differs from those of other populations. The formation of the mutation profile for the Chinese population will enable a precise genetic diagnosis for USH patients in the future.

  14. Chemicals or mutations that target mitochondrial translation can rescue the respiratory deficiency of yeast bcs1 mutants.

    PubMed

    Panozzo, C; Laleve, A; Tribouillard-Tanvier, D; Ostojić, J; Sellem, C H; Friocourt, G; Bourand-Plantefol, A; Burg, A; Delahodde, A; Blondel, M; Dujardin, G

    2017-12-01

    Bcs1p is a chaperone that is required for the incorporation of the Rieske subunit within complex III of the mitochondrial respiratory chain. Mutations in the human gene BCS1L (BCS1-like) are the most frequent nuclear mutations resulting in complex III-related pathologies. In yeast, the mimicking of some pathogenic mutations causes a respiratory deficiency. We have screened chemical libraries and found that two antibiotics, pentamidine and clarithromycin, can compensate two bcs1 point mutations in yeast, one of which is the equivalent of a mutation found in a human patient. As both antibiotics target the large mtrRNA of the mitoribosome, we focused our analysis on mitochondrial translation. We found that the absence of non-essential translation factors Rrf1 or Mif3, which act at the recycling/initiation steps, also compensates for the respiratory deficiency of yeast bcs1 mutations. At compensating concentrations, both antibiotics, as well as the absence of Rrf1, cause an imbalanced synthesis of respiratory subunits which impairs the assembly of the respiratory complexes and especially that of complex IV. Finally, we show that pentamidine also decreases the assembly of complex I in nematode mitochondria. It is well known that complexes III and IV exist within the mitochondrial inner membrane as supramolecular complexes III 2 /IV in yeast or I/III 2 /IV in higher eukaryotes. Therefore, we propose that the changes in mitochondrial translation caused by the drugs or by the absence of translation factors, can compensate for bcs1 mutations by modifying the equilibrium between illegitimate, and thus inactive, and active supercomplexes. Copyright © 2017. Published by Elsevier B.V.

  15. Functional correction of dystrophin actin binding domain mutations by genome editing

    PubMed Central

    Kyrychenko, Viktoriia; Kyrychenko, Sergii; Tiburcy, Malte; Shelton, John M.; Long, Chengzu; Schneider, Jay W.; Zimmermann, Wolfram-Hubertus; Bassel-Duby, Rhonda

    2017-01-01

    Dystrophin maintains the integrity of striated muscles by linking the actin cytoskeleton with the cell membrane. Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD) that result in progressive, debilitating muscle weakness, cardiomyopathy, and a shortened lifespan. Mutations of dystrophin that disrupt the amino-terminal actin-binding domain 1 (ABD-1), encoded by exons 2–8, represent the second-most common cause of DMD. In the present study, we compared three different strategies for CRISPR/Cas9 genome editing to correct mutations in the ABD-1 region of the DMD gene by deleting exons 3–9, 6–9, or 7–11 in human induced pluripotent stem cells (iPSCs) and by assessing the function of iPSC-derived cardiomyocytes. All three exon deletion strategies enabled the expression of truncated dystrophin protein and restoration of cardiomyocyte contractility and calcium transients to varying degrees. We show that deletion of exons 3–9 by genomic editing provides an especially effective means of correcting disease-causing ABD-1 mutations. These findings represent an important step toward eventual correction of common DMD mutations and provide a means of rapidly assessing the expression and function of internally truncated forms of dystrophin-lacking portions of ABD-1. PMID:28931764

  16. MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation

    PubMed Central

    Wu, Xue; Simpson, Jeremy; Hong, Jenny H.; Kim, Kyoung-Han; Thavarajah, Nirusha K.; Backx, Peter H.; Neel, Benjamin G.; Araki, Toshiyuki

    2011-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden death in children and young adults. Abnormalities in several signaling pathways are implicated in the pathogenesis of HCM, but the role of the RAS-RAF-MEK-ERK MAPK pathway has been controversial. Noonan syndrome (NS) is one of several autosomal-dominant conditions known as RASopathies, which are caused by mutations in different components of this pathway. Germline mutations in RAF1 (which encodes the serine-threonine kinase RAF1) account for approximately 3%–5% of cases of NS. Unlike other NS alleles, RAF1 mutations that confer increased kinase activity are highly associated with HCM. To explore the pathogenesis of such mutations, we generated knockin mice expressing the NS-associated Raf1L613V mutation. Like NS patients, mice heterozygous for this mutation (referred to herein as L613V/+ mice) had short stature, craniofacial dysmorphia, and hematologic abnormalities. Valvuloseptal development was normal, but L613V/+ mice exhibited eccentric cardiac hypertrophy and aberrant cardiac fetal gene expression, and decompensated following pressure overload. Agonist-evoked MEK-ERK activation was enhanced in multiple cell types, and postnatal MEK inhibition normalized the growth, facial, and cardiac defects in L613V/+ mice. These data show that different NS genes have intrinsically distinct pathological effects, demonstrate that enhanced MEK-ERK activity is critical for causing HCM and other RAF1-mutant NS phenotypes, and suggest a mutation-specific approach to the treatment of RASopathies. PMID:21339642

  17. A novel ABCB11 mutation in an Iranian girl with progressive familial intrahepatic cholestasis

    PubMed Central

    Saber, Sassan; Vazifehmand, Reza; Bagherizadeh, Iman; Kasiri, Mahbubeh

    2013-01-01

    Progressive familial intrahepatic cholestasis is an autosomal recessive liver disorder caused by (biallelic) mutations in the ATP8B1 of ABCB11 gene. A nine-year-old girl with cholestasis was referred for genetic counseling. She had a family history of cholestasis in two previous expired siblings. Genetic analysis of the ABCB11 gene led to the identification of a novel homozygous mutation in exon 25. The mutation 3593- A > G lead to a missense mutation at the amino acid level (His1198Arg). This mutation caused PFIC2 due to abnormal function in the bile salt export pump protein (BSEP). PMID:24339557

  18. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication.

    PubMed

    Paschka, Peter; Schlenk, Richard F; Gaidzik, Verena I; Habdank, Marianne; Krönke, Jan; Bullinger, Lars; Späth, Daniela; Kayser, Sabine; Zucknick, Manuela; Götze, Katharina; Horst, Heinz-A; Germing, Ulrich; Döhner, Hartmut; Döhner, Konstanze

    2010-08-01

    To analyze the frequency and prognostic impact of isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) mutations in acute myeloid leukemia (AML). We studied 805 adults (age range, 16 to 60 years) with AML enrolled on German-Austrian AML Study Group (AMLSG) treatment trials AML HD98A and APL HD95 for mutations in exon 4 of IDH1 and IDH2. Patients were also studied for NPM1, FLT3, MLL, and CEBPA mutations. The median follow-up for survival was 6.3 years. IDH mutations were found in 129 patients (16.0%) -IDH1 in 61 patients (7.6%), and IDH2 in 70 patients (8.7%). Two patients had both IDH1 and IDH2 mutations. All but one IDH1 mutation caused substitutions of residue R132; IDH2 mutations caused changes of R140 (n = 48) or R172 (n = 22). IDH mutations were associated with older age (P < .001; effect conferred by IDH2 only); lower WBC (P = .04); higher platelets (P < .001); cytogenetically normal (CN) -AML (P< .001); and NPM1 mutations, in particular with the genotype of mutated NPM1 without FLT3 internal tandem duplication (ITD; P < .001). In patients with CN-AML with the latter genotype, IDH mutations adversely impacted relapse-free survival (RFS; P = .02) and overall survival (P = .03), whereas outcome was not affected in patients with CN-AML who lacked this genotype. In CN-AML, multivariable analyses revealed a significant interaction between IDH mutation and the genotype of mutated NPM1 without FLT3-ITD (ie, the adverse impact of IDH mutation [RFS]; P = .046 was restricted to this patient subset). IDH1 and IDH2 mutations are recurring genetic changes in AML. They constitute a poor prognostic factor in CN-AML with mutated NPM1 without FLT3-ITD, which allows refined risk stratification of this AML subset.

  19. Frequency of mutations in the genes associated with hereditary sensory and autonomic neuropathy in a UK cohort

    PubMed Central

    Davidson, G. L.; Murphy, S. M.; Polke, J. M.; Laura, M.; Salih, M. A. M.; Muntoni, F.; Blake, J.; Brandner, S.; Davies, N.; Horvath, R.; Price, S.; Donaghy, M.; Roberts, M.; Foulds, N.; Ramdharry, G.; Soler, D.; Lunn, M. P.; Manji, H.; Davis, M. B.; Houlden, H.; Reilly, M. M.

    2013-01-01

    The hereditary sensory and autonomic neuropathies (HSAN, also known as the hereditary sensory neuropathies) are a clinically and genetically heterogeneous group of disorders, characterised by a progressive sensory neuropathy often complicated by ulcers and amputations, with variable motor and autonomic involvement. To date, mutations in twelve genes have been identified as causing HSAN. To study the frequency of mutations in these genes and the associated phenotypes, we screened 140 index patients in our inherited neuropathy cohort with a clinical diagnosis of HSAN for mutations in the coding regions of SPTLC1, RAB7, WNK1/HSN2, FAM134B, NTRK1 (TRKA) and NGFB. We identified 25 index patients with mutations in six genes associated with HSAN (SPTLC1, RAB7, WNK1/HSN2, FAM134B, NTRK1 and NGFB); 20 of which appear to be pathogenic giving an overall mutation frequency of 14.3%. Mutations in the known genes for HSAN are rare suggesting that further HSAN genes are yet to be identified. The p.Cys133Trp mutation in SPTLC1 is the most common cause of HSAN in the UK population and should be screened first in all patients with sporadic or autosomal dominant HSAN. PMID:22302274

  20. Frequency of mutations in the genes associated with hereditary sensory and autonomic neuropathy in a UK cohort.

    PubMed

    Davidson, G L; Murphy, S M; Polke, J M; Laura, M; Salih, M A M; Muntoni, F; Blake, J; Brandner, S; Davies, N; Horvath, R; Price, S; Donaghy, M; Roberts, M; Foulds, N; Ramdharry, G; Soler, D; Lunn, M P; Manji, H; Davis, M B; Houlden, H; Reilly, M M

    2012-08-01

    The hereditary sensory and autonomic neuropathies (HSAN, also known as the hereditary sensory neuropathies) are a clinically and genetically heterogeneous group of disorders, characterised by a progressive sensory neuropathy often complicated by ulcers and amputations, with variable motor and autonomic involvement. To date, mutations in twelve genes have been identified as causing HSAN. To study the frequency of mutations in these genes and the associated phenotypes, we screened 140 index patients in our inherited neuropathy cohort with a clinical diagnosis of HSAN for mutations in the coding regions of SPTLC1, RAB7, WNK1/HSN2, FAM134B, NTRK1 (TRKA) and NGFB. We identified 25 index patients with mutations in six genes associated with HSAN (SPTLC1, RAB7, WNK1/HSN2, FAM134B, NTRK1 and NGFB); 20 of which appear to be pathogenic giving an overall mutation frequency of 14.3%. Mutations in the known genes for HSAN are rare suggesting that further HSAN genes are yet to be identified. The p.Cys133Trp mutation in SPTLC1 is the most common cause of HSAN in the UK population and should be screened first in all patients with sporadic or autosomal dominant HSAN.

  1. Analysis of gene mutations among South Indian patients with maple syrup urine disease: identification of four novel mutations.

    PubMed

    Narayanan, M P; Menon, Krishnakumar N; Vasudevan, D M

    2013-10-01

    Maple syrup urine disease (MSUD) is predominantly caused by mutations in the BCKDHA, BCKDHB and DBT genes, which encode for the E1alpha, E1beta and E2 subunits of the branched-chain alpha-keto acid dehydrogenase complex, respectively. Because disease causing mutations play a major role in the development of the disease, prenatal diagnosis at gestational level may have significance in making decisions by parents. Thus, this study was aimed to screen South Indian MSUD patients for mutations and assess the genotype-phenotype correlation. Thirteen patients diagnosed with MSUD by conventional biochemical screening such as urine analysis by DNPH test, thin layer chromatography for amino acids and blood amino acid quantification by HPLC were selected for mutation analysis. The entire coding regions of the BCKDHA, BCKDHB and DBT genes were analyzed for mutations by PCR-based direct DNA sequencing. BCKDHA and BCKDHB mutations were seen in 43% of the total ten patients, while disease-causing DBT gene mutation was observed only in 14%. Three patients displayed no mutations. Novel mutations were c.130C>T in BCKDHA gene, c. 599C>T and c.121_122delAC in BCKDHB gene and c.190G>A in DBT gene. Notably, patients harbouring these mutations were non-responsive to thiamine supplementation and other treatment regimens and might have a worse prognosis as compared to the patients not having such mutations. Thus, identification of these mutations may have a crucial role in the treatment as well as understanding the molecular mechanisms in MSUD.

  2. Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer

    DTIC Science & Technology

    2015-09-01

    Award Number: W81XWH-12-1-0333 TITLE: Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer PRINCIPAL...COVERED 15 Aug 2012 – 14 Aug 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-12-1-0333 Determining the Location of DNA Modification and Mutation ...sequencing libraries generated for both yeast and human cells show pyrimidine bias on the 5’ end, indicating that we are sequencing the dimers

  3. Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome.

    PubMed

    Warejko, Jillian K; Tan, Weizhen; Daga, Ankana; Schapiro, David; Lawson, Jennifer A; Shril, Shirlee; Lovric, Svjetlana; Ashraf, Shazia; Rao, Jia; Hermle, Tobias; Jobst-Schwan, Tilman; Widmeier, Eugen; Majmundar, Amar J; Schneider, Ronen; Gee, Heon Yung; Schmidt, J Magdalena; Vivante, Asaf; van der Ven, Amelie T; Ityel, Hadas; Chen, Jing; Sadowski, Carolin E; Kohl, Stefan; Pabst, Werner L; Nakayama, Makiko; Somers, Michael J G; Rodig, Nancy M; Daouk, Ghaleb; Baum, Michelle; Stein, Deborah R; Ferguson, Michael A; Traum, Avram Z; Soliman, Neveen A; Kari, Jameela A; El Desoky, Sherif; Fathy, Hanan; Zenker, Martin; Bakkaloglu, Sevcan A; Müller, Dominik; Noyan, Aytul; Ozaltin, Fatih; Cadnapaphornchai, Melissa A; Hashmi, Seema; Hopcian, Jeffrey; Kopp, Jeffrey B; Benador, Nadine; Bockenhauer, Detlef; Bogdanovic, Radovan; Stajić, Nataša; Chernin, Gil; Ettenger, Robert; Fehrenbach, Henry; Kemper, Markus; Munarriz, Reyner Loza; Podracka, Ludmila; Büscher, Rainer; Serdaroglu, Erkin; Tasic, Velibor; Mane, Shrikant; Lifton, Richard P; Braun, Daniela A; Hildebrandt, Friedhelm

    2018-01-06

    Steroid-resistant nephrotic syndrome overwhelmingly progresses to ESRD. More than 30 monogenic genes have been identified to cause steroid-resistant nephrotic syndrome. We previously detected causative mutations using targeted panel sequencing in 30% of patients with steroid-resistant nephrotic syndrome. Panel sequencing has a number of limitations when compared with whole exome sequencing. We employed whole exome sequencing to detect monogenic causes of steroid-resistant nephrotic syndrome in an international cohort of 300 families. Three hundred thirty-five individuals with steroid-resistant nephrotic syndrome from 300 families were recruited from April of 1998 to June of 2016. Age of onset was restricted to <25 years of age. Exome data were evaluated for 33 known monogenic steroid-resistant nephrotic syndrome genes. In 74 of 300 families (25%), we identified a causative mutation in one of 20 genes known to cause steroid-resistant nephrotic syndrome. In 11 families (3.7%), we detected a mutation in a gene that causes a phenocopy of steroid-resistant nephrotic syndrome. This is consistent with our previously published identification of mutations using a panel approach. We detected a causative mutation in a known steroid-resistant nephrotic syndrome gene in 38% of consanguineous families and in 13% of nonconsanguineous families, and 48% of children with congenital nephrotic syndrome. A total of 68 different mutations were detected in 20 of 33 steroid-resistant nephrotic syndrome genes. Fifteen of these mutations were novel. NPHS1 , PLCE1 , NPHS2 , and SMARCAL1 were the most common genes in which we detected a mutation. In another 28% of families, we detected mutations in one or more candidate genes for steroid-resistant nephrotic syndrome. Whole exome sequencing is a sensitive approach toward diagnosis of monogenic causes of steroid-resistant nephrotic syndrome. A molecular genetic diagnosis of steroid-resistant nephrotic syndrome may have important consequences for the management of treatment and kidney transplantation in steroid-resistant nephrotic syndrome. Copyright © 2018 by the American Society of Nephrology.

  4. Steroid-resistant nephrotic syndrome: impact of genetic testing.

    PubMed

    Kari, Jameela A; El-Desoky, Sherif M; Gari, Mamdooh; Malik, Khalid; Vega-Warner, Virginia; Lovric, Svjetlana; Bockenhauer, Detlef

    2013-01-01

    Mutations in several genes are known to cause steroid-resistant nephrotic syndome (SRNS), most commonly in NPHS1, NPHS2, and WT1. Our aims were to determine the frequency of mutations in these genes in children with SRNS, the response of patients with SRNS to various immunosuppressants, and the disease outcome, and to review the predictive value of genetic testing and renal biopsy result. A retrospective review was performed of the medical records for all children with SRNS who were treated and followed-up in the Pediatric Nephrology Unit of King Abdulaziz University Hospital (KAUH), Jeddah, Saudi Arabia from 2002-2012. We retrospectively reviewed the medical records of children above 1 year of age, who presented with SRNS to KAUH, Jeddah, Saudi Arabia, in the 10-year interval from 2002-2012 and for whom the results of genetic testing for NPHS1, NPHS2, and WT1 were available. We compared the clinical phenotype, including response to treatment and renal outcome to genotype data. We identified 44 children with a clinical diagnosis of SRNS in whom results of genetic testing were available. Presumably disease-causing mutations were detected in 5 children (11.4%) of which 3 (6.8%) had NPHS2 mutation and 2 (4.5%) had NPHS1 mutation. Renal biopsy revealed minimal change disease (MCD) or variants in 17 children, focal segmental glomerulosclerosis (FSGS) in 23 children, membranoproliferative changes (MPGN) in 2 children, and IgA nephropathy in another 2 children. Children with MCD on biopsy were more likely to respond to treatment than those with FSGS. None of those with an identified genetic cause showed any response to treatment. The frequency of identified disease-causing mutations in children older than 1 year with SRNS presented to KAUH was 11.4%, and these patients showed no response to treatment. Initial testing for gene mutation in children with SRNS may obviate the need for biopsy, and the use of immunosuppressive treatment in children with disease due to NPHS1 or NPHS2 mutations. Renal biopsy was useful in predicting response in those without genetic mutations.

  5. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome.

    PubMed

    Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E

    2014-01-01

    Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.

  6. Whole-Genome Analysis Reveals that Mutations in Inositol Polyphosphate Phosphatase-like 1 Cause Opsismodysplasia

    PubMed Central

    Below, Jennifer E.; Earl, Dawn L.; Shively, Kathryn M.; McMillin, Margaret J.; Smith, Joshua D.; Turner, Emily H.; Stephan, Mark J.; Al-Gazali, Lihadh I.; Hertecant, Jozef L.; Chitayat, David; Unger, Sheila; Cohn, Daniel H.; Krakow, Deborah; Swanson, James M.; Faustman, Elaine M.; Shendure, Jay; Nickerson, Deborah A.; Bamshad, Michael J.

    2013-01-01

    Opsismodysplasia is a rare, autosomal-recessive skeletal dysplasia characterized by short stature, characteristic facial features, and in some cases severe renal phosphate wasting. We used linkage analysis and whole-genome sequencing of a consanguineous trio to discover that mutations in inositol polyphosphate phosphatase-like 1 (INPPL1) cause opsismodysplasia with or without renal phosphate wasting. Evaluation of 12 families with opsismodysplasia revealed that INPPL1 mutations explain ∼60% of cases overall, including both of the families in our cohort with more than one affected child and 50% of the simplex cases. PMID:23273567

  7. Novel and recurrent mutations in the C1NH gene of Arab patients affected with hereditary angioedema.

    PubMed

    Faiyaz-Ul-Haque, Muhammad; Al-Gazlan, Sulaiman; Abalkhail, Halah A; Al-Abdulatif, Ahmad; Toulimat, Mohamed; Peltekova, Iskra; Khaliq, Agha M R; Al-Dayel, Fouad; Zaidi, Syed H E

    2010-01-01

    Autosomal dominant hereditary angioedema (HAE) results in episodes of subcutaneous edema in any body part and/or submucosal edema of the upper respiratory or gastrointestinal tracts. This disorder is caused by mutations in the C1NH gene, many of which have been described primarily in European patients. However, the genetic cause of HAE in Middle Eastern Arab patients has not yet been determined. Four unrelated Arab families, in which 15 patients were diagnosed with HAE, were studied. DNA from 13 patients was analyzed for mutations in the C1NH gene by DNA sequencing. Three novel and 2 recurrent mutations were identified in the C1NH gene of HAE patients. In family 1, the patient was heterozygous for a novel c.856C>T and a recurrent c.1361T>A missense mutation encoding for p.Arg264Cys and p.Val432Glu, respectively. In patients from family 2, a novel c.509C>T missense mutation encoding for a p.Ser148Phe was identified. In patients from family 3, a novel c.1142delC nonsense mutation encoding for a p.Ala359AlafsX15 was discovered. In family 4, a recurrent c.1397G>A missense mutation encoding for a p.Arg444His was present. This is the first ever report of C1NH gene mutations in Middle Eastern Arab patients. Our study suggests that, despite the numerous existing mutations in the C1NH gene, there are novel and recurrent mutations in HAE patients of non-European origin. We conclude that the spectrum of C1NH gene mutations in HAE patients is wider due to the likely presence of novel and recurrent mutations in patients of other ethnicities. 2009 S. Karger AG, Basel.

  8. PROKR2 and PROK2 mutations cause isolated congenital anosmia without gonadotropic deficiency.

    PubMed

    Moya-Plana, Antoine; Villanueva, Carine; Laccourreye, Ollivier; Bonfils, Pierre; de Roux, Nicolas

    2013-01-01

    Isolated congenital anosmia (ICA) is a rare phenotype defined as absent recall of any olfactory sensations since birth and the absence of any disease known to cause anosmia. Although most cases of ICA are sporadic, reports of familial cases suggest a genetic cause. ICA due to olfactory bulb agenesis and associated to hypogonadotropic hypogonadism defines Kallmann syndrome (KS), in which several gene defects have been described. In KS families, the phenotype may be restricted to ICA. We therefore hypothesized that mutations in KS genes cause ICA in patients, even in the absence of family history of reproduction disorders. In 25 patients with ICA and olfactory bulb agenesis, a detailed phenotype analysis was conducted and the coding sequences of KAL1, FGFR1, FGF8, PROKR2, and PROK2 were sequenced. Three PROKR2 mutations previously described in KS and one new PROK2 mutation were found. Investigation of the families showed incomplete penetrance of these mutations. This study is the first to report genetic causes of ICA and indicates that KS genes must be screened in patients with ICA. It also confirms the considerable complexity of GNRH neuron development in humans.

  9. A Dominant Mutation in Hexokinase 1 (HK1) Causes Retinitis Pigmentosa

    PubMed Central

    Sullivan, Lori S.; Koboldt, Daniel C.; Bowne, Sara J.; Lang, Steven; Blanton, Susan H.; Cadena, Elizabeth; Avery, Cheryl E.; Lewis, Richard A.; Webb-Jones, Kaylie; Wheaton, Dianna H.; Birch, David G.; Coussa, Razck; Ren, Huanan; Lopez, Irma; Chakarova, Christina; Koenekoop, Robert K.; Garcia, Charles A.; Fulton, Robert S.; Wilson, Richard K.; Weinstock, George M.; Daiger, Stephen P.

    2014-01-01

    Purpose. To identify the cause of retinitis pigmentosa (RP) in UTAD003, a large, six-generation Louisiana family with autosomal dominant retinitis pigmentosa (adRP). Methods. A series of strategies, including candidate gene screening, linkage exclusion, genome-wide linkage mapping, and whole-exome next-generation sequencing, was used to identify a mutation in a novel disease gene on chromosome 10q22.1. Probands from an additional 404 retinal degeneration families were subsequently screened for mutations in this gene. Results. Exome sequencing in UTAD003 led to identification of a single, novel coding variant (c.2539G>A, p.Glu847Lys) in hexokinase 1 (HK1) present in all affected individuals and absent from normal controls. One affected family member carries two copies of the mutation and has an unusually severe form of disease, consistent with homozygosity for this mutation. Screening of additional adRP probands identified four other families (American, Canadian, and Sicilian) with the same mutation and a similar range of phenotypes. The families share a rare 450-kilobase haplotype containing the mutation, suggesting a founder mutation among otherwise unrelated families. Conclusions. We identified an HK1 mutation in five adRP families. Hexokinase 1 catalyzes phosphorylation of glucose to glucose-6-phosphate. HK1 is expressed in retina, with two abundant isoforms expressed at similar levels. The Glu847Lys mutation is located at a highly conserved position in the protein, outside the catalytic domains. We hypothesize that the effect of this mutation is limited to the retina, as no systemic abnormalities in glycolysis were detected. Prevalence of the HK1 mutation in our cohort of RP families is 1%. PMID:25190649

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boustany, R.M.; Qian, W.H.; Suzuki, K.

    The authors describe four new mutations in the [beta]-galactosidase gene. These are the first mutations causing infantile and juvenile GM[sub 1]-gangliosidosis to be described in American patients. Cell lines from two patients with juvenile and from six patients with infantile GM[sub 1]-gangliosidosis were analyzed. Northern blot analysis showed the acid [beta]-galactosidase message to be of normal size and quantity in two juvenile and four infantile cases and of normal size but reduced quantity in two infantile cases. The mutations are distinct from the Japanese mutations. All are point mutations leading to amino acid substitutions: Lys[sup 577] [yields] Arg, Arg[sup 590]more » [yields] His, and Glu[sup 632] [yields] Gly. The fourth mutation, Arg[sup 208] [yields] Cys, accounts for 10 of 16 possible alleles. Two infantile cases from Puerto Rico of Spanish ancestry are homozygous for this mutation, suggesting that this allele may have come to South America and North America via Puerto Rico. That these mutations cause clinical disease was confirmed by marked reduction in catalytic activity of the mutant proteins in the Cos-1 cell expression system. 12 refs., 5 figs., 2 tabs.« less

  11. Genetic variations in the hotspot region of RS1 gene in Indian patients with juvenile X-linked retinoschisis.

    PubMed

    Suganthalakshmi, Balasubbu; Shukla, Dhananjay; Rajendran, Anand; Kim, Ramasamy; Nallathambi, Jeyabalan; Sundaresan, Periasamy

    2007-04-19

    X-linked juvenile retinoschisis (XLRS) is the leading cause of macular degeneration in males. This condition is caused by mutations in the RS1 gene and is, characterized by schisis within the retina. The purpose of this study was to identify the mutations in the RS1 gene associated with XLRS in an Indian cohort. The coding region of RS1 was analyzed for mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and restriction fragment length polymorphism (RFLP) analysis in six unrelated subjects clinically diagnosed as having XLRS and in their available family members. Direct sequencing was performed for all samples that displayed an electrophoretic mobility shift in SSCP gel. Mutation analysis of RS1 gene revealed five mutations in exon 6 like c.574C>T, c.583A>G, c.608C>T, c.617G>A, and c.637C>T, respectively, among them four missense mutations, one nonsense mutation, and two novel sequence variations. These mutations were found in individuals who exhibited clinical features of bilateral foveal and peripheral retinoschisis consistent with XLRS. The mutations were absent in the 100 age matched control samples analyzed. This is the first report of mutations in RS1 to be associated with XLRS in the Indian population. The identified genetic variations, phenotype and genotype correlations were consistent with other studies. Identification of the causative mutation in patients with XLRS is helpful in confirming the diagnosis and in counseling of family members.

  12. De novo REEP2 missense mutation in pure hereditary spastic paraplegia.

    PubMed

    Roda, Ricardo H; Schindler, Alice B; Blackstone, Craig

    2017-05-01

    Alterations in proteins that regulate endoplasmic reticulum morphology are common causes of hereditary spastic paraplegia (SPG1-78, plus others). Mutations in the REEP1 gene that encodes an endoplasmic reticulum-shaping protein are well-known causes of SPG31, a common autosomal dominant spastic paraplegia. A closely-related gene, REEP2, is mutated in SPG72, with both autosomal and recessive inheritances. Here, we report a patient with a pure hereditary spastic paraplegia due to a de novo missense mutation (c.119T > G, p.Met40Arg) in REEP2 at a highly-conserved residue very close to another known pathogenic missense change. This represents only the second autosomal dominant SPG72 missense mutation reported.

  13. Mutations of the Imprinted CDKN1C Gene as a Cause of the Overgrowth Beckwith-Wiedemann Syndrome: Clinical Spectrum and Functional Characterization.

    PubMed

    Brioude, Frederic; Netchine, Irène; Praz, Francoise; Le Jule, Marilyne; Calmel, Claire; Lacombe, Didier; Edery, Patrick; Catala, Martin; Odent, Sylvie; Isidor, Bertrand; Lyonnet, Stanislas; Sigaudy, Sabine; Leheup, Bruno; Audebert-Bellanger, Séverine; Burglen, Lydie; Giuliano, Fabienne; Alessandri, Jean-Luc; Cormier-Daire, Valérie; Laffargue, Fanny; Blesson, Sophie; Coupier, Isabelle; Lespinasse, James; Blanchet, Patricia; Boute, Odile; Baumann, Clarisse; Polak, Michel; Doray, Berenice; Verloes, Alain; Viot, Géraldine; Le Bouc, Yves; Rossignol, Sylvie

    2015-09-01

    Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder associating macroglossia, abdominal wall defects, visceromegaly, and a high risk of childhood tumor. Molecular anomalies are mostly epigenetic; however, mutations of CDKN1C are implicated in 8% of cases, including both sporadic and familial forms. We aimed to describe the phenotype of BWS patients with CDKN1C mutations and develop a functional test for CDKN1C mutations. For each propositus, we sequenced the three exons and intron-exon boundaries of CDKN1C in patients presenting a BWS phenotype, including abdominal wall defects, without 11p15 methylation defects. We developed a functional test based on flow cytometry. We identified 37 mutations in 38 pedigrees (50 patients and seven fetuses). Analysis of parental samples when available showed that all mutations tested but one was inherited from the mother. The four missense mutations led to a less severe phenotype (lower frequency of exomphalos) than the other 33 mutations. The following four tumors occurred: one neuroblastoma, one ganglioneuroblastoma, one melanoma, and one acute lymphoid leukemia. Cases of BWS caused by CDKN1C mutations are not rare. CDKN1C sequencing should be performed for BWS patients presenting with abdominal wall defects or cleft palate without 11p15 methylation defects or body asymmetry, or in familial cases of BWS. © 2015 WILEY PERIODICALS, INC.

  14. [From gene to disease; primary hyperoxaluria type I caused by mutations in the AGXT gene].

    PubMed

    van Woerden, C S; Groothof, J W; Wanders, R J A; Waterham, H R; Wijburg, F R

    2006-07-29

    Primary hyperoxaluria type I (PH1) is a congenital defect in glyoxylate metabolism caused by a deficiency in the liver-specific peroxisomal enzyme known as alanine glyoxylate aminotransferase (AGT). The deficiency is due to mutations in the AGXT gene, located on chromosome 2q37.3, and results in the conversion of glyoxylate to oxalate. The crystallisation of oxalate with calcium results in symptoms varying from a solitary kidney stone to end-stage renal disease with systemic oxalosis. The diagnosis is based on increased oxalate and glycolate excretion in the urine, reduced AGT activity in liver tissue, and confirmed mutations in the AGXT gene. Over 50 disease-causing mutations have been identified in PH1, which are associated with a wide range of effects on the AGT enzyme. Homozygous Gly170Arg or Phei52Ile mutations are associated with a reduction in urinary oxalate excretion upon pyridoxine administration and long-term preservation of renal function when treatment is initiated in a timely manner. Homozygous 33insC and Gly82Arg mutations result in a much poorer prognosis. Mutational analysis of the AGXT gene in PH1 patients can be a useful tool for establishing the diagnosis and choosing an appropriate therapeutic strategy.

  15. Mutations affecting the SAND domain of DEAF1 cause intellectual disability with severe speech impairment and behavioral problems.

    PubMed

    Vulto-van Silfhout, Anneke T; Rajamanickam, Shivakumar; Jensik, Philip J; Vergult, Sarah; de Rocker, Nina; Newhall, Kathryn J; Raghavan, Ramya; Reardon, Sara N; Jarrett, Kelsey; McIntyre, Tara; Bulinski, Joseph; Ownby, Stacy L; Huggenvik, Jodi I; McKnight, G Stanley; Rose, Gregory M; Cai, Xiang; Willaert, Andy; Zweier, Christiane; Endele, Sabine; de Ligt, Joep; van Bon, Bregje W M; Lugtenberg, Dorien; de Vries, Petra F; Veltman, Joris A; van Bokhoven, Hans; Brunner, Han G; Rauch, Anita; de Brouwer, Arjan P M; Carvill, Gemma L; Hoischen, Alexander; Mefford, Heather C; Eichler, Evan E; Vissers, Lisenka E L M; Menten, Björn; Collard, Michael W; de Vries, Bert B A

    2014-05-01

    Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas.

    PubMed

    Palles, Claire; Cazier, Jean-Baptiste; Howarth, Kimberley M; Domingo, Enric; Jones, Angela M; Broderick, Peter; Kemp, Zoe; Spain, Sarah L; Guarino, Estrella; Guarino Almeida, Estrella; Salguero, Israel; Sherborne, Amy; Chubb, Daniel; Carvajal-Carmona, Luis G; Ma, Yusanne; Kaur, Kulvinder; Dobbins, Sara; Barclay, Ella; Gorman, Maggie; Martin, Lynn; Kovac, Michal B; Humphray, Sean; Lucassen, Anneke; Holmes, Christopher C; Bentley, David; Donnelly, Peter; Taylor, Jenny; Petridis, Christos; Roylance, Rebecca; Sawyer, Elinor J; Kerr, David J; Clark, Susan; Grimes, Jonathan; Kearsey, Stephen E; Thomas, Huw J W; McVean, Gilean; Houlston, Richard S; Tomlinson, Ian

    2013-02-01

    Many individuals with multiple or large colorectal adenomas or early-onset colorectal cancer (CRC) have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple-adenoma and/or CRC cases but in no controls. The variants associated with susceptibility, POLE p.Leu424Val and POLD1 p.Ser478Asn, have high penetrance, and POLD1 mutation was also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proofreading (exonuclease) domain of DNA polymerases ɛ and δ and are predicted to cause a defect in the correction of mispaired bases inserted during DNA replication. In agreement with this prediction, the tumors from mutation carriers were microsatellite stable but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE mutations affecting the exonuclease domain.

  17. Characterization of the mutations in the glucose-6-phosphatase gene in Israeli patients with glycogen storage disease type 1a: R83C in six Jews and a novel V166G mutation in a Muslim Arab.

    PubMed

    Parvari, R; Moses, S; Hershkovitz, E; Carmi, R; Bashan, N

    1995-01-01

    Glycogen storage disease type 1a (GSD 1a), an autosomal recessive disease, is caused by the inactivity of glucose-6-phosphatase, the gene of which has been recently cloned. We report on the missense mutation C-->T at nucleotide 326 of the G6Pase gene, causing the change of the Arg codon at position 83 into a Cys codon, as the single mutation detected in six Jewish patients. This finding suggests that this mutation might be prevalent among the Jewish population. A new missense mutation T-->G at nucleotide 576 resulting in V166G was found in an Arab Muslim patient. These families may benefit now from pre- and postnatal diagnosis by analysis of DNA from blood and amniotic fluid or chorionic villus cells rather than liver biopsy. No mutations in the G6Pase gene were detected in two GSD 1b patients.

  18. Mutations in the PFN1 gene are not a common cause in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration in France.

    PubMed

    Lattante, Serena; Le Ber, Isabelle; Camuzat, Agnès; Brice, Alexis; Kabashi, Edor

    2013-06-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are 2 adult onset neurological disorders with overlapping symptoms and clinical characteristics. It is well established that they share a common pathologic and genetic background. Recently, mutations in profilin 1 gene (PFN1) have been identified in patients with familial ALS, suggesting a role for this gene in the pathogenesis of the disease. Based on this, we hypothesized that mutations in PFN1 might also contribute to FTLD disease. We studied a French cohort of 165 ALS/FTLD patients, without finding any variant. We conclude that mutations in PFN1 are not a common cause for ALS/FTLD in France. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Genetic heterogeneity in patients with Bartter syndrome type 1

    PubMed Central

    Sun, Mingran; Ning, Jing; Xu, Weihong; Zhang, Han; Zhao, Kaishu; Li, Wenfu; Li, Guiying; Li, Shibo

    2017-01-01

    Bartter syndrome (BS) type 1 is an autosomal recessive kidney disorder caused by loss-of-function mutations in the solute carrier family 12 member 1 (SLC12A1) gene. To date, 72 BS type 1 patients harboring SLC12A1 mutations have been documented. Of these 144 alleles studied, 68 different disease-causing mutations have been detected in 129 alleles, and no mutation was detected in the remaining 15 alleles. The mutation types included missense/nonsense mutations, splicing mutations and small insertions and deletions ranging from 1 to 4 nucleotides. A large deletion encompassing a whole exon in the SLC12A1 gene has not yet been reported. The current study initially identified an undocumented homozygous frameshift mutation (c.1833delT) by Sanger sequencing analysis of a single infant with BS type 1. However, in a subsequent analysis, the mutation was detected only in the father's DNA. Upon further investigation using a next-generation sequencing approach, a deletion in exons 14 and 15 in both the patient and patient's mother was detected. The deletion was subsequently confirmed by use of a long-range polymerase chain reaction and was determined to be 3.16 kb in size based on sequencing of the junction fragment. The results of the present study demonstrated that pathogenic variants of SLC12A1 are heterogeneous. Large deletions appear to serve an etiological role in BS type 1, and may be more prevalent than previously thought. PMID:28000888

  20. Genetic heterogeneity in patients with Bartter syndrome type 1.

    PubMed

    Sun, Mingran; Ning, Jing; Xu, Weihong; Zhang, Han; Zhao, Kaishu; Li, Wenfu; Li, Guiying; Li, Shibo

    2017-02-01

    Bartter syndrome (BS) type 1 is an autosomal recessive kidney disorder caused by loss‑of‑function mutations in the solute carrier family 12 member 1 (SLC12A1) gene. To date, 72 BS type 1 patients harboring SLC12A1 mutations have been documented. Of these 144 alleles studied, 68 different disease‑causing mutations have been detected in 129 alleles, and no mutation was detected in the remaining 15 alleles. The mutation types included missense/nonsense mutations, splicing mutations and small insertions and deletions ranging from 1 to 4 nucleotides. A large deletion encompassing a whole exon in the SLC12A1 gene has not yet been reported. The current study initially identified an undocumented homozygous frameshift mutation (c.1833delT) by Sanger sequencing analysis of a single infant with BS type 1. However, in a subsequent analysis, the mutation was detected only in the father's DNA. Upon further investigation using a next‑generation sequencing approach, a deletion in exons 14 and 15 in both the patient and patient's mother was detected. The deletion was subsequently confirmed by use of a long‑range polymerase chain reaction and was determined to be 3.16 kb in size based on sequencing of the junction fragment. The results of the present study demonstrated that pathogenic variants of SLC12A1 are heterogeneous. Large deletions appear to serve an etiological role in BS type 1, and may be more prevalent than previously thought.

  1. Stabilization of a nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator yields insight into disease-causing mutations.

    PubMed

    Vernon, Robert M; Chong, P Andrew; Lin, Hong; Yang, Zhengrong; Zhou, Qingxian; Aleksandrov, Andrei A; Dawson, Jennifer E; Riordan, John R; Brouillette, Christie G; Thibodeau, Patrick H; Forman-Kay, Julie D

    2017-08-25

    Characterization of the second nucleotide-binding domain (NBD2) of the cystic fibrosis transmembrane conductance regulator (CFTR) has lagged behind research into the NBD1 domain, in part because NBD1 contains the F508del mutation, which is the dominant cause of cystic fibrosis. Research on NBD2 has also been hampered by the overall instability of the domain and the difficulty of producing reagents. Nonetheless, multiple disease-causing mutations reside in NBD2, and the domain is critical for CFTR function, because channel gating involves NBD1/NBD2 dimerization, and NBD2 contains the catalytically active ATPase site in CFTR. Recognizing the paucity of structural and biophysical data on NBD2, here we have defined a bioinformatics-based method for manually identifying stabilizing substitutions in NBD2, and we used an iterative process of screening single substitutions against thermal melting points to both produce minimally mutated stable constructs and individually characterize mutations. We present a range of stable constructs with minimal mutations to help inform further research on NBD2. We have used this stabilized background to study the effects of NBD2 mutations identified in cystic fibrosis (CF) patients, demonstrating that mutants such as N1303K and G1349D are characterized by lower stability, as shown previously for some NBD1 mutations, suggesting a potential role for NBD2 instability in the pathology of CF. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Mutations in POGLUT1, Encoding Protein O-Glucosyltransferase 1, Cause Autosomal-Dominant Dowling-Degos Disease

    PubMed Central

    Basmanav, F. Buket; Oprisoreanu, Ana-Maria; Pasternack, Sandra M.; Thiele, Holger; Fritz, Günter; Wenzel, Jörg; Größer, Leopold; Wehner, Maria; Wolf, Sabrina; Fagerberg, Christina; Bygum, Anette; Altmüller, Janine; Rütten, Arno; Parmentier, Laurent; El Shabrawi-Caelen, Laila; Hafner, Christian; Nürnberg, Peter; Kruse, Roland; Schoch, Susanne; Hanneken, Sandra; Betz, Regina C.

    2014-01-01

    Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To identify additional causes of DDD, we performed exome sequencing in five unrelated affected individuals without mutations in KRT5. Data analysis identified three heterozygous mutations from these individuals, all within the same gene. These mutations, namely c.11G>A (p.Trp4∗), c.652C>T (p.Arg218∗), and c.798-2A>C, are within POGLUT1, which encodes protein O-glucosyltransferase 1. Further screening of unexplained cases for POGLUT1 identified six additional mutations, as well as two of the above described mutations. Immunohistochemistry of skin biopsies of affected individuals with POGLUT1 mutations showed significantly weaker POGLUT1 staining in comparison to healthy controls with strong localization of POGLUT1 in the upper parts of the epidermis. Immunoblot analysis revealed that translation of either wild-type (WT) POGLUT1 or of the protein carrying the p.Arg279Trp substitution led to the expected size of about 50 kDa, whereas the c.652C>T (p.Arg218∗) mutation led to translation of a truncated protein of about 30 kDa. Immunofluorescence analysis identified a colocalization of the WT protein with the endoplasmic reticulum and a notable aggregating pattern for the truncated protein. Recently, mutations in POFUT1, which encodes protein O-fucosyltransferase 1, were also reported to be responsible for DDD. Interestingly, both POGLUT1 and POFUT1 are essential regulators of Notch activity. Our results furthermore emphasize the important role of the Notch pathway in pigmentation and keratinocyte morphology. PMID:24387993

  3. Structural Modeling Insights into Human VKORC1 Phenotypes

    PubMed Central

    Czogalla, Katrin J.; Watzka, Matthias; Oldenburg, Johannes

    2015-01-01

    Vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) catalyses the reduction of vitamin K and its 2,3-epoxide essential to sustain γ-carboxylation of vitamin K-dependent proteins. Two different phenotypes are associated with mutations in human VKORC1. The majority of mutations cause resistance to 4-hydroxycoumarin- and indandione-based vitamin K antagonists (VKA) used in the prevention and therapy of thromboembolism. Patients with these mutations require greater doses of VKA for stable anticoagulation than patients without mutations. The second phenotype, a very rare autosomal-recessive bleeding disorder caused by combined deficiency of vitamin K dependent clotting factors type 2 (VKCFD2) arises from a homozygous Arg98Trp mutation. The bleeding phenotype can be corrected by vitamin K administration. Here, we summarize published experimental data and in silico modeling results in order to rationalize the mechanisms of VKA resistance and VKCFD2. PMID:26287237

  4. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex.

    PubMed

    Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E; Jaspers, Nicolaas G J; Kaptein, Robert; Hoeijmakers, Jan H J; Boelens, Rolf

    2015-08-14

    The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe(231), Leu(231) lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene

    PubMed Central

    Gonçalves, Ana; Coelho, Teresa; Melo-Pires, Manuel; Sousa, Mário

    2017-01-01

    A broad mutational spectrum in the dystrophin (DMD) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD, adding to the diversity of mutational events that give rise to D/BMD. PMID:28972564

  6. LMX1B Mutations Cause Hereditary FSGS without Extrarenal Involvement

    PubMed Central

    Boyer, Olivia; Woerner, Stéphanie; Yang, Fan; Oakeley, Edward J.; Linghu, Bolan; Gribouval, Olivier; Tête, Marie-Josèphe; Duca, José S.; Klickstein, Lloyd; Damask, Amy J.; Szustakowski, Joseph D.; Heibel, Françoise; Matignon, Marie; Baudouin, Véronique; Chantrel, François; Champigneulle, Jacqueline; Martin, Laurent; Nitschké, Patrick; Gubler, Marie-Claire; Johnson, Keith J.; Chibout, Salah-Dine

    2013-01-01

    LMX1B encodes a homeodomain-containing transcription factor that is essential during development. Mutations in LMX1B cause nail-patella syndrome, characterized by dysplasia of the patellae, nails, and elbows and FSGS with specific ultrastructural lesions of the glomerular basement membrane (GBM). By linkage analysis and exome sequencing, we unexpectedly identified an LMX1B mutation segregating with disease in a pedigree of five patients with autosomal dominant FSGS but without either extrarenal features or ultrastructural abnormalities of the GBM suggestive of nail-patella–like renal disease. Subsequently, we screened 73 additional unrelated families with FSGS and found mutations involving the same amino acid (R246) in 2 families. An LMX1B in silico homology model suggested that the mutated residue plays an important role in strengthening the interaction between the LMX1B homeodomain and DNA; both identified mutations would be expected to diminish such interactions. In summary, these results suggest that isolated FSGS could result from mutations in genes that are also involved in syndromic forms of FSGS. This highlights the need to include these genes in all diagnostic approaches to FSGS that involve next-generation sequencing. PMID:23687361

  7. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis

    PubMed Central

    Garin, Intza; Edghill, Emma L.; Akerman, Ildem; Rubio-Cabezas, Oscar; Rica, Itxaso; Locke, Jonathan M.; Maestro, Miguel Angel; Alshaikh, Adnan; Bundak, Ruveyde; del Castillo, Gabriel; Deeb, Asma; Deiss, Dorothee; Fernandez, Juan M.; Godbole, Koumudi; Hussain, Khalid; O’Connell, Michele; Klupa, Thomasz; Kolouskova, Stanislava; Mohsin, Fauzia; Perlman, Kusiel; Sumnik, Zdenek; Rial, Jose M.; Ugarte, Estibaliz; Vasanthi, Thiruvengadam; Johnstone, Karen; Flanagan, Sarah E.; Martínez, Rosa; Castaño, Carlos; Patch, Ann-Marie; Fernández-Rebollo, Eduardo; Raile, Klemens; Morgan, Noel; Harries, Lorna W.; Castaño, Luis; Ellard, Sian; Ferrer, Jorge; de Nanclares, Guiomar Perez; Hattersley, Andrew T.

    2010-01-01

    Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (−3.2 SD score vs. −2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man. PMID:20133622

  8. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis.

    PubMed

    Kannengiesser, Caroline; Borie, Raphael; Ménard, Christelle; Réocreux, Marion; Nitschké, Patrick; Gazal, Steven; Mal, Hervé; Taillé, Camille; Cadranel, Jacques; Nunes, Hilario; Valeyre, Dominique; Cordier, Jean François; Callebaut, Isabelle; Boileau, Catherine; Cottin, Vincent; Grandchamp, Bernard; Revy, Patrick; Crestani, Bruno

    2015-08-01

    Pulmonary fibrosis is a fatal disease with progressive loss of respiratory function. Defective telomere maintenance leading to telomere shortening is a cause of pulmonary fibrosis, as mutations in the telomerase component genes TERT (reverse transcriptase) and TERC (RNA component) are found in 15% of familial pulmonary fibrosis (FPF) cases. However, so far, about 85% of FPF remain genetically uncharacterised.Here, in order to identify new genetic causes of FPF, we performed whole-exome sequencing, with a candidate-gene approach, of 47 affected subjects from 35 families with FPF without TERT and TERC mutations.We identified heterozygous mutations in regulator of telomere elongation helicase 1 (RTEL1) in four families. RTEL1 is a DNA helicase with roles in DNA replication, genome stability, DNA repair and telomere maintenance. The heterozygous RTEL1 mutations segregated as an autosomal dominant trait in FPF, and were predicted by structural analyses to severely affect the function and/or stability of RTEL1. In agreement with this, RTEL1-mutated patients exhibited short telomeres in comparison with age-matched controls.Our results provide evidence that heterozygous RTEL1 mutations are responsible for FPF and, thereby, extend the clinical spectrum of RTEL1 deficiency. Thus, RTEL1 enlarges the number of telomere-associated genes implicated in FPF. Copyright ©ERS 2015.

  9. Germline mutations in SUFU cause Gorlin syndrome-associated childhood medulloblastoma and redefine the risk associated with PTCH1 mutations.

    PubMed

    Smith, Miriam J; Beetz, Christian; Williams, Simon G; Bhaskar, Sanjeev S; O'Sullivan, James; Anderson, Beverley; Daly, Sarah B; Urquhart, Jill E; Bholah, Zaynab; Oudit, Deemesh; Cheesman, Edmund; Kelsey, Anna; McCabe, Martin G; Newman, William G; Evans, D Gareth R

    2014-12-20

    Heterozygous germline PTCH1 mutations are causative of Gorlin syndrome (naevoid basal cell carcinoma), but detection rates > 70% have rarely been reported. We aimed to define the causative mutations in individuals with Gorlin syndrome without PTCH1 mutations. We undertook exome sequencing on lymphocyte DNA from four unrelated individuals from families with Gorlin syndrome with no PTCH1 mutations found by Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), or RNA analysis. A germline heterozygous nonsense mutation in SUFU was identified in one of four exomes. Sanger sequencing of SUFU in 23 additional PTCH1-negative Gorlin syndrome families identified a SUFU mutation in a second family. Copy-number analysis of SUFU by MLPA revealed a large heterozygous deletion in a third family. All three SUFU-positive families fulfilled diagnostic criteria for Gorlin syndrome, although none had odontogenic jaw keratocysts. Each SUFU-positive family included a single case of medulloblastoma, whereas only two (1.7%) of 115 individuals with Gorlin syndrome and a PTCH1 mutation developed medulloblastoma. We demonstrate convincing evidence that SUFU mutations can cause classical Gorlin syndrome. Our study redefines the risk of medulloblastoma in Gorlin syndrome, dependent on the underlying causative gene. Previous reports have found a 5% risk of medulloblastoma in Gorlin syndrome. We found a < 2% risk in PTCH1 mutation-positive individuals, with a risk up to 20× higher in SUFU mutation-positive individuals. Our data suggest childhood brain magnetic resonance imaging surveillance is justified in SUFU-related, but not PTCH1-related, Gorlin syndrome. © 2014 by American Society of Clinical Oncology.

  10. Bioinformatic Analysis of Pathogenic Missense Mutations of Activin Receptor Like Kinase 1 Ectodomain

    PubMed Central

    Scotti, Claudia; Olivieri, Carla; Boeri, Laura; Canzonieri, Cecilia; Ornati, Federica; Buscarini, Elisabetta; Pagella, Fabio; Danesino, Cesare

    2011-01-01

    Activin A receptor, type II-like kinase 1 (also called ALK1), is a serine-threonine kinase predominantly expressed on endothelial cells surface. Mutations in its ACVRL1 encoding gene (12q11-14) cause type 2 Hereditary Haemorrhagic Telangiectasia (HHT2), an autosomal dominant multisystem vascular dysplasia. The study of the structural effects of mutations is crucial to understand their pathogenic mechanism. However, while an X-ray structure of ALK1 intracellular domain has recently become available (PDB ID: 3MY0), structure determination of ALK1 ectodomain (ALK1EC) has been elusive so far. We here describe the building of a homology model for ALK1EC, followed by an extensive bioinformatic analysis, based on a set of 38 methods, of the effect of missense mutations at the sequence and structural level. ALK1EC potential interaction mode with its ligand BMP9 was then predicted combining modelling and docking data. The calculated model of the ALK1EC allowed mapping and a preliminary characterization of HHT2 associated mutations. Major structural changes and loss of stability of the protein were predicted for several mutations, while others were found to interfere mainly with binding to BMP9 or other interactors, like Endoglin (CD105), whose encoding ENG gene (9q34) mutations are known to cause type 1 HHT. This study gives a preliminary insight into the potential structure of ALK1EC and into the structural effects of HHT2 associated mutations, which can be useful to predict the potential effect of each single mutation, to devise new biological experiments and to interpret the biological significance of new mutations, private mutations, or non-synonymous polymorphisms. PMID:22028876

  11. AGXT Gene Mutations and Prevalence of Primary Hyperoxaluria Type 1 in Moroccan Population.

    PubMed

    Boualla, Lamiae; Tajir, Mariam; Oulahiane, Najat; Lyahyai, Jaber; Laarabi, Fatima Zahra; Chafai Elalaoui, Siham; Soulami, Kenza; Ait Ouamar, Hassan; Sefiani, Abdelaziz

    2015-11-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder caused by deficiency of alanine glyoxylate aminotransferase, due to a defect in the AGXT gene. Several mutations in this gene have been reported and some of them have been observed in multiple populations. The aim of our study was to analyze the mutations causing PH1 in the Moroccan population and to estimate its prevalence in Morocco. Molecular studies of 29 unrelated Moroccan patients with PH were performed by direct sequencing of all exons of the AGXT gene. In addition, to estimate the prevalence of PH1, we screened for the recurrent p.Ile244Thr mutation in 250 unrelated Moroccan newborns using real-time polymerase chain reaction. Four pathogenic mutations were detected in 25 unrelated patients. The c.731T>C (p.Ile244Thr) was the most frequent mutation with a frequency of 84%. The other three mutations were c.33delC, c.976delG, and c.331C>T. The prevalence of the PH1 mutation among Moroccans was then estimated to range from 1/7267 to 1/6264. PH1 is one of the most prevalent genetic diseases in the Moroccan population and is probably underdiagnosed. Front line genetic testing for PH1 in Morocco should be initiated using an assay for the recurrent p.Ile244Thr mutation. This strategy would provide a useful tool for precocious diagnosis of presymptomatic individuals and to prevent their rapid progression to renal failure.

  12. Mutations in FUS cause FALS and SALS in French and French Canadian populations

    PubMed Central

    Belzil, V. V.; Valdmanis, P. N.; Dion, P. A.; Daoud, H.; Kabashi, E.; Noreau, A.; Gauthier, J.; Hince, P.; Desjarlais, A.; Bouchard, J. -P.; Lacomblez, L.; Salachas, F.; Pradat, P. -F.; Camu, W.; Meininger, V.; Dupré, N.; Rouleau, G. A.

    2009-01-01

    Background: The identification of mutations in the TARDBP and more recently the identification of mutations in the FUS gene as the cause of amyotrophic lateral sclerosis (ALS) is providing the field with new insight about the mechanisms involved in this severe neurodegenerative disease. Methods: To extend these recent genetic reports, we screened the entire gene in a cohort of 200 patients with ALS. An additional 285 patients with sporadic ALS were screened for variants in exon 15 for which mutations were previously reported. Results: In total, 3 different mutations were identified in 4 different patients, including 1 3-bp deletion in exon 3 of a patient with sporadic ALS and 2 missense mutations in exon 15 of 1 patient with familial ALS and 2 patients with sporadic ALS. Conclusions: Our study identified sporadic patients with mutations in the FUS gene. The accumulation and description of different genes and mutations helps to develop a more comprehensive picture of the genetic events underlying amyotrophic lateral sclerosis. PMID:19741216

  13. Mutations in FUS cause FALS and SALS in French and French Canadian populations.

    PubMed

    Belzil, V V; Valdmanis, P N; Dion, P A; Daoud, H; Kabashi, E; Noreau, A; Gauthier, J; Hince, P; Desjarlais, A; Bouchard, J-P; Lacomblez, L; Salachas, F; Pradat, P-F; Camu, W; Meininger, V; Dupré, N; Rouleau, G A

    2009-10-13

    The identification of mutations in the TARDBP and more recently the identification of mutations in the FUS gene as the cause of amyotrophic lateral sclerosis (ALS) is providing the field with new insight about the mechanisms involved in this severe neurodegenerative disease. To extend these recent genetic reports, we screened the entire gene in a cohort of 200 patients with ALS. An additional 285 patients with sporadic ALS were screened for variants in exon 15 for which mutations were previously reported. In total, 3 different mutations were identified in 4 different patients, including 1 3-bp deletion in exon 3 of a patient with sporadic ALS and 2 missense mutations in exon 15 of 1 patient with familial ALS and 2 patients with sporadic ALS. Our study identified sporadic patients with mutations in the FUS gene. The accumulation and description of different genes and mutations helps to develop a more comprehensive picture of the genetic events underlying amyotrophic lateral sclerosis.

  14. Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation.

    PubMed

    Zhong, Franklin L; Mamaï, Ons; Sborgi, Lorenzo; Boussofara, Lobna; Hopkins, Richard; Robinson, Kim; Szeverényi, Ildikó; Takeichi, Takuya; Balaji, Reshmaa; Lau, Aristotle; Tye, Hazel; Roy, Keya; Bonnard, Carine; Ahl, Patricia J; Jones, Leigh Ann; Baker, Paul J; Lacina, Lukas; Otsuka, Atsushi; Fournie, Pierre R; Malecaze, François; Lane, E Birgitte; Akiyama, Masashi; Kabashima, Kenji; Connolly, John E; Masters, Seth L; Soler, Vincent J; Omar, Salma Samir; McGrath, John A; Nedelcu, Roxana; Gribaa, Moez; Denguezli, Mohamed; Saad, Ali; Hiller, Sebastian; Reversade, Bruno

    2016-09-22

    Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Mutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses.

    PubMed

    Navarro-González, Carmen; Moukadiri, Ismaïl; Villarroya, Magda; López-Pascual, Ernesto; Tuck, Simon; Armengod, M-Eugenia

    2017-07-01

    Several oxidative phosphorylation (OXPHOS) diseases are caused by defects in the post-transcriptional modification of mitochondrial tRNAs (mt-tRNAs). Mutations in MTO1 or GTPBP3 impair the modification of the wobble uridine at position 5 of the pyrimidine ring and cause heart failure. Mutations in TRMU affect modification at position 2 and cause liver disease. Presently, the molecular basis of the diseases and why mutations in the different genes lead to such different clinical symptoms is poorly understood. Here we use Caenorhabditis elegans as a model organism to investigate how defects in the TRMU, GTPBP3 and MTO1 orthologues (designated as mttu-1, mtcu-1, and mtcu-2, respectively) exert their effects. We found that whereas the inactivation of each C. elegans gene is associated with a mild OXPHOS dysfunction, mutations in mtcu-1 or mtcu-2 cause changes in the expression of metabolic and mitochondrial stress response genes that are quite different from those caused by mttu-1 mutations. Our data suggest that retrograde signaling promotes defect-specific metabolic reprogramming, which is able to rescue the OXPHOS dysfunction in the single mutants by stimulating the oxidative tricarboxylic acid cycle flux through complex II. This adaptive response, however, appears to be associated with a biological cost since the single mutant worms exhibit thermosensitivity and decreased fertility and, in the case of mttu-1, longer reproductive cycle. Notably, mttu-1 worms also exhibit increased lifespan. We further show that mtcu-1; mttu-1 and mtcu-2; mttu-1 double mutants display severe growth defects and sterility. The animal models presented here support the idea that the pathological states in humans may initially develop not as a direct consequence of a bioenergetic defect, but from the cell's maladaptive response to the hypomodification status of mt-tRNAs. Our work highlights the important association of the defect-specific metabolic rewiring with the pathological phenotype, which must be taken into consideration in exploring specific therapeutic interventions.

  16. A strongly selected mutation in the HIV-1 genome is independent of T cell responses and neutralizing antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Donglai; Wang, Chu; Hora, Bhavna

    Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. Strongly selected mutations were identified by analyzing 5'-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 andmore » fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. In conclusion, the rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.« less

  17. A strongly selected mutation in the HIV-1 genome is independent of T cell responses and neutralizing antibodies

    DOE PAGES

    Liu, Donglai; Wang, Chu; Hora, Bhavna; ...

    2017-10-10

    Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. Strongly selected mutations were identified by analyzing 5'-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 andmore » fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. In conclusion, the rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.« less

  18. Dystonia-causing mutations as a contribution to the etiology of Spasmodic Dysphonia

    PubMed Central

    de Gusmão, Claudio M.; Fuchs, Tania; Moses, Andrew; Multhaupt-Buell, Trisha; Song, Phillip C.; Ozelius, Laurie J.; Franco, Ramon A.; Sharma, Nutan

    2017-01-01

    Objective Spasmodic dysphonia is a focal dystonia of the larynx with heterogeneous manifestations and association with familial risk factors. There is scarce data to allow precise understanding of etiology and pathophysiology. Screening for dystonia-causing genetic mutations has the potential to allow accurate diagnosis, inform about genotype-phenotype correlations and allow a better understanding of mechanisms of disease. Study Design Prospective cohort Setting Tertiary academic medical center Subjects and methods We enrolled patients presenting with spasmodic dysphonia to the voice clinic of our academic medical center. Data collected included demographic data, clinical features, family history and treatments administered. The following disease-causing mutations previously associated with spasmodic dysphonia were screened: TOR1A (DYT1), TUBB4 (DYT4), and THAP1 (DYT6). Results 86 patients were recruited comprising 77% females and 23% males. A definite family history of neurological disorder was present in 15% (13/86). Average age of symptom onset was 42.1y (SD±15.7). Most (99%; 85/86) were treated with botulinum toxin and 12% (11/86) received oral medications. Genetic screening was negative in all patients for the GAG deletion in TOR1A (DYT 1) and in the 5 exons currently associated with disease-causing mutations in TUBB4 (DYT4). Two patients tested positive for novel /rare variants in THAP 1 (DYT 6). Conclusion Genetic screening targeted at currently known disease-causing mutations in TOR1A, THAP1 and TUBB4 appears to have low diagnostic yield in sporadic spasmodic dysphonia. In our cohort only two patients tested positive for novel/rare variants in THAP 1. Clinicians should make use of genetic testing judiciously and in cost-effective ways. PMID:27188707

  19. Dystonia-Causing Mutations as a Contribution to the Etiology of Spasmodic Dysphonia.

    PubMed

    de Gusmão, Claudio M; Fuchs, Tania; Moses, Andrew; Multhaupt-Buell, Trisha; Song, Phillip C; Ozelius, Laurie J; Franco, Ramon A; Sharma, Nutan

    2016-10-01

    Spasmodic dysphonia is a focal dystonia of the larynx with heterogeneous manifestations and association with familial risk factors. There are scarce data to allow precise understanding of etiology and pathophysiology. Screening for dystonia-causing genetic mutations has the potential to allow accurate diagnosis, inform about genotype-phenotype correlations, and allow a better understanding of mechanisms of disease. Cross-sectional study. Tertiary academic medical center. We enrolled patients presenting with spasmodic dysphonia to the voice clinic of our academic medical center. Data included demographics, clinical features, family history, and treatments administered. The following genes with disease-causing mutations previously associated with spasmodic dysphonia were screened: TOR1A (DYT1), TUBB4 (DYT4), and THAP1 (DYT6). Eighty-six patients were recruited, comprising 77% females and 23% males. A definite family history of neurologic disorder was present in 15% (13 of 86). Average age (± standard deviation) of symptom onset was 42.1 ± 15.7 years. Most (99%; 85 of 86) were treated with botulinum toxin, and 12% (11 of 86) received oral medications. Genetic screening was negative in all patients for the GAG deletion in TOR1A (DYT1) and in the 5 exons currently associated with disease-causing mutations in TUBB4 (DYT4). Two patients tested positive for novel/rare variants in THAP1 (DYT6). Genetic screening targeted at currently known disease-causing mutations in TOR1A, THAP1, and TUBB4 appears to have low diagnostic yield in sporadic spasmodic dysphonia. In our cohort, only 2 patients tested positive for novel/rare variants in THAP1. Clinicians should make use of genetic testing judiciously and in cost-effective ways. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  20. Cystic Fibrosis in the African Diaspora.

    PubMed

    Stewart, Cheryl; Pepper, Michael S

    2017-01-01

    Identifying mutations that cause cystic fibrosis (CF) is important for making an early, unambiguous diagnosis, which, in turn, is linked to better health and a greater life expectancy. In patients of African descent, a molecular diagnosis is often confounded by the fact that the majority of investigations undertaken to identify causative mutations have been conducted on European populations, and CF-causing mutations tend to be population specific. We undertook a survey of published data with the aim of identifying causative CF mutations in patients of African descent in the Americas. We found that 1,584 chromosomes had been tested in only 6 countries, of which 876 alleles (55.3%) still remained unidentified. There were 59 mutations identified. Of those, 41 have been shown to cause CF, 17 have no associated functional studies, and one (R117H) is of varying clinical consequence. The most common mutations identified in the patients of African descent were: ΔF508 (29.4% identified in the United States, Colombia, Brazil, and Venezuela); 3120 + 1G>A (8.4% identified in Brazil, the United States, and Colombia); G85E (3.8% identified in Brazil); 1811 + 1.6kbA>G (3.7% identified in Colombia); and 1342 - 1G>C (3.1% identified in the United States). The majority of the mutations identified (81.4%) have been described in just one country. Our findings indicate that there is a need to fully characterize the spectrum of CF mutations in the diaspora to improve diagnostic accuracy for these patients and facilitate treatment.

  1. A Founder Mutation in LEPRE1 Carried by 1.5% of West Africans and 0.4% of African Americans Causes Lethal Recessive Osteogenesis Imperfecta

    PubMed Central

    Cabral, Wayne A.; Barnes, Aileen M.; Adeyemo, Adebowale; Cushing, Kelly; Chitayat, David; Porter, Forbes D.; Panny, Susan R.; Gulamali-Majid, Fizza; Tishkoff, Sarah A.; Rebbeck, Timothy R.; Gueye, Serigne M.; Bailey-Wilson, Joan E.; Brody, Lawrence C.; Rotimi, Charles N.; Marini, Joan C.

    2012-01-01

    Purpose Deficiency of prolyl 3-hydroxylase 1, encoded by LEPRE1, causes recessive osteogenesis imperfecta. We previously identified a LEPRE1 mutation, exclusively in African Americans and contemporary West Africans. We hypothesized that this allele originated in West Africa and was introduced to the Americas with the Atlantic slave trade. We aimed to determine the frequency of carriers for this mutation among African Americans and West Africans, and the mutation origin and age. Methods Genomic DNA was screened for the mutation using PCR and restriction digestion, and a custom TaqMan genomic SNP assay. The mutation age was estimated using microsatellites and short tandem repeats spanning 4.2 Mb surrounding LEPRE1 in probands and carriers. Results Approximately 0.4% of Mid-Atlantic African Americans carry this mutation, estimating recessive OI in 1/260,000 births in this population. In Nigeria and Ghana, 1.48% of unrelated individuals are heterozygous carriers, predicting 1/18,260 births will be affected with recessive OI, equal to the incidence of de novo dominant OI. The mutation was not detected in Africans from surrounding countries. All carriers shared a haplotype of 63-770 Kb, consistent with a single founder for this mutation. Using linkage disequilibrium analysis, the mutation was estimated to have originated between 650 and 900 years before present (1100-1350 C.E.). Conclusions We identified a West African founder mutation for recessive OI in LEPRE1. Nearly 1.5% of Ghanians and Nigerians are carriers. The age of this allele is consistent with introduction to North America via the Atlantic slave trade (1501 – 1867 C.E). PMID:22281939

  2. REEP1 Mutation Spectrum and Genotype/Phenotype Correlation in Hereditary Spastic Paraplegia Type 31

    ERIC Educational Resources Information Center

    Beetz, Christian; Schule, Rebecca; Deconinck, Tine; Tran-Viet, Khanh-Nhat; Zhu, Hui; Kremer, Berry P. H.; Frints, Suzanna G. M.; van Zelst-Stams, Wendy A. G.; Byrne, Paula; Otto, Susanne; Nygren, Anders O. H.; Baets, Jonathan; Smets, Katrien; Ceulemans, Berten; Dan, Bernard; Nagan, Narasimhan; Kassubek, Jan; Klimpe, Sven; Klopstock, Thomas; Stolze, Henning; Smeets, Hubert J. M.; Schrander-Stumpel, Constance T. R. M.; Hutchinson, Michael; van de Warrenburg, Bart P.; Braastad, Corey; Deufel, Thomas; Pericak-Vance, Margaret; Schols, Ludger; de Jonghe, Peter; Zuchner, Stephan

    2008-01-01

    Mutations in the receptor expression enhancing protein 1 (REEP1) have recently been reported to cause autosomal dominant hereditary spastic paraplegia (HSP) type SPG31. In a large collaborative effort, we screened a sample of 535 unrelated HSP patients for "REEP1" mutations and copy number variations. We identified 13 novel and 2 known "REEP1"…

  3. CDH1 mutations in gastric cancer patients from northern Brazil identified by Next- Generation Sequencing (NGS)

    PubMed Central

    El-Husny, Antonette; Raiol-Moraes, Milene; Amador, Marcos; Ribeiro-dos-Santos, André M.; Montagnini, André; Barbosa, Silvanira; Silva, Artur; Assumpção, Paulo; Ishak, Geraldo; Santos, Sidney; Pinto, Pablo; Cruz, Aline; Ribeiro-dos-Santos, Ândrea

    2016-01-01

    Abstract Gastric cancer is considered to be the fifth highest incident tumor worldwide and the third leading cause of cancer deaths. Developing regions report a higher number of sporadic cases, but there are only a few local studies related to hereditary cases of gastric cancer in Brazil to confirm this fact. CDH1 germline mutations have been described both in familial and sporadic cases, but there is only one recent molecular description of individuals from Brazil. In this study we performed Next Generation Sequencing (NGS) to assess CDH1 germline mutations in individuals who match the clinical criteria for Hereditary Diffuse Gastric Cancer (HDGC), or who exhibit very early diagnosis of gastric cancer. Among five probands we detected CDH1 germline mutations in two cases (40%). The mutation c.1023T > G was found in a HDGC family and the mutation c.1849G > A, which is nearly exclusive to African populations, was found in an early-onset case of gastric adenocarcinoma. The mutations described highlight the existence of gastric cancer cases caused by CDH1 germline mutations in northern Brazil, although such information is frequently ignored due to the existence of a large number of environmental factors locally. Our report represent the first CDH1 mutations in HDGC described from Brazil by an NGS platform. PMID:27192129

  4. Germline Mutations in BMPR1A/ALK3 Cause a Subset of Cases of Juvenile Polyposis Syndrome and of Cowden and Bannayan-Riley-Ruvalcaba Syndromes*

    PubMed Central

    Zhou, Xiao-Ping; Woodford-Richens, Kelly; Lehtonen, Rainer; Kurose, Keisuke; Aldred, Micheala; Hampel, Heather; Launonen, Virpi; Virta, Sanno; Pilarski, Robert; Salovaara, Reijo; Bodmer, Walter F.; Conrad, Beth A.; Dunlop, Malcolm; Hodgson, Shirley V.; Iwama, Takeo; Järvinen, Heikki; Kellokumpu, Ilmo; Kim, J. C.; Leggett, Barbara; Markie, David; Mecklin, Jukka-Pekka; Neale, Kay; Phillips, Robin; Piris, Juan; Rozen, Paul; Houlston, Richard S.; Aaltonen, Lauri A.; Tomlinson, Ian P. M.; Eng, Charis

    2001-01-01

    Juvenile polyposis syndrome (JPS) is an inherited hamartomatous-polyposis syndrome with a risk for colon cancer. JPS is a clinical diagnosis by exclusion, and, before susceptibility genes were identified, JPS could easily be confused with other inherited hamartoma syndromes, such as Bannayan-Riley-Ruvalcaba syndrome (BRRS) and Cowden syndrome (CS). Germline mutations of MADH4 (SMAD4) have been described in a variable number of probands with JPS. A series of familial and isolated European probands without MADH4 mutations were analyzed for germline mutations in BMPR1A, a member of the transforming growth-factor β–receptor superfamily, upstream from the SMAD pathway. Overall, 10 (38%) probands were found to have germline BMPR1A mutations, 8 of which resulted in truncated receptors and 2 of which resulted in missense alterations (C124R and C376Y). Almost all available component tumors from mutation-positive cases showed loss of heterozygosity (LOH) in the BMPR1A region, whereas those from mutation-negative cases did not. One proband with CS/CS-like phenotype was also found to have a germline BMPR1A missense mutation (A338D). Thus, germline BMPR1A mutations cause a significant proportion of cases of JPS and might define a small subset of cases of CS/BRRS with specific colonic phenotype. PMID:11536076

  5. Monocarboxylate transporter 1 deficiency and ketone utilization.

    PubMed

    van Hasselt, Peter M; Ferdinandusse, Sacha; Monroe, Glen R; Ruiter, Jos P N; Turkenburg, Marjolein; Geerlings, Maartje J; Duran, Karen; Harakalova, Magdalena; van der Zwaag, Bert; Monavari, Ardeshir A; Okur, Ilyas; Sharrard, Mark J; Cleary, Maureen; O'Connell, Nuala; Walker, Valerie; Rubio-Gozalbo, M Estela; de Vries, Maaike C; Visser, Gepke; Houwen, Roderick H J; van der Smagt, Jasper J; Verhoeven-Duif, Nanda M; Wanders, Ronald J A; van Haaften, Gijs

    2014-11-13

    Ketoacidosis is a potentially lethal condition caused by the imbalance between hepatic production and extrahepatic utilization of ketone bodies. We performed exome sequencing in a patient with recurrent, severe ketoacidosis and identified a homozygous frameshift mutation in the gene encoding monocarboxylate transporter 1 (SLC16A1, also called MCT1). Genetic analysis in 96 patients suspected of having ketolytic defects yielded seven additional inactivating mutations in MCT1, both homozygous and heterozygous. Mutational status was found to be correlated with ketoacidosis severity, MCT1 protein levels, and transport capacity. Thus, MCT1 deficiency is a novel cause of profound ketoacidosis; the present work suggests that MCT1-mediated ketone-body transport is needed to maintain acid-base balance.

  6. Highly Prevalent LIPH Founder Mutations Causing Autosomal Recessive Woolly Hair/Hypotrichosis in Japan and the Genotype/Phenotype Correlations

    PubMed Central

    Kono, Michihiro; Takama, Hiromichi; Hamajima, Nobuyuki; Akiyama, Masashi

    2014-01-01

    Mutations in LIPH cause of autosomal recessive woolly hair/hypotrichosis (ARWH), and the 2 missense mutations c.736T>A (p.Cys246Ser) and c.742C>A (p.His248Asn) are considered prevalent founder mutations for ARWH in the Japanese population. To reveal genotype/phenotype correlations in ARWH cases in Japan and the haplotypes in 14 Japanese patients from 14 unrelated Japanese families. 13 patients had woolly hair, and 1 patient had complete baldness since birth. An LIPH mutation search revealed homozygous c.736T>A mutations in 10 of the patients. Compound heterozygous c.736T>A and c.742C>A mutations were found in 3 of the patients, and homozygous c.742C>A mutation in 1 patient. The phenotype of mild hypotrichosis with woolly hair was restricted to the patients with the homozygous c.736T>A mutation. The severe phenotype of complete baldness was seen in only 1 patient with homozygous c.742C>A. Haplotype analysis revealed that the alleles containing the LIPH c.736T>A mutation had a haplotype identical to that reported previously, although 4 alleles out of 5 chromosomes containing the LIPH c.742C>A mutation had a different haplotype from the previously reported founder allele. These alleles with c.742C>A are thought to be the third founder LIPH mutation causing ARWH. To accurately determine the prevalence of the founder mutations, we investigated allele frequencies of those mutations in 819 Japanese controls. Heterozygous c.736T>A mutations were found in 13 controls (allele frequency: 0.0079; carrier rate: 0.016), and heterozygous c.742C>A mutations were found in 2 controls (allele frequency: 0.0012; carrier rate: 0.0024). In conclusion, this study confirms the more accurate allele frequencies of the pathogenic founder mutations of LIPH and shows that there is a third founder mutation in Japan. In addition, the present findings suggest that the mutation patterns of LIPH might be associated with hypotrichosis severity in ARWH. PMID:24586639

  7. Mutations in the ABCA4 (ABCR) Gene Are the Major Cause of Autosomal Recessive Cone-Rod Dystrophy

    PubMed Central

    Maugeri, Alessandra; Klevering, B. Jeroen; Rohrschneider, Klaus; Blankenagel, Anita; Brunner, Han G.; Deutman, August F.; Hoyng, Carel B.; Cremers, Frans P. M.

    2000-01-01

    The photoreceptor cell–specific ATP-binding cassette transporter gene (ABCA4; previously denoted “ABCR”) is mutated in most patients with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients with isolated CRD, all from Germany and The Netherlands . Single-strand conformation–polymorphism analysis and sequencing revealed 19 ABCA4 mutations in 13 (65%) of 20 patients. In six patients, mutations were identified in both ABCA4 alleles; in seven patients, mutations were detected in one allele. One complex ABCA4 allele (L541P;A1038V) was found exclusively in German patients with CRD; one patient carried this complex allele homozygously, and five others were compound heterozygous. These findings suggest that mutations in the ABCA4 gene are the major cause of AR CRD. A primary role of the ABCA4 gene in STGD1/FFM and AR CRD, together with the gene's involvement in an as-yet-unknown proportion of cases with AR RP, strengthens the idea that mutations in the ABCA4 gene could be the most frequent cause of inherited retinal dystrophy in humans. PMID:10958761

  8. Gain-of-function SOS1 mutations cause a distinctive form of noonansyndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartaglia, Marco; Pennacchio, Len A.; Zhao, Chen

    2006-09-01

    Noonan syndrome (NS) is a developmental disordercharacterized by short stature, facial dysmorphia, congenital heartdefects and skeletal anomalies1. Increased RAS-mitogenactivated proteinkinase (MAPK) signaling due to PTPN11 and KRAS mutations cause 50 percentof NS2-6. Here, we report that 22 of 129 NS patients without PTPN11 orKRAS mutation (17 percent) have missense mutations in SOS1, which encodesa RAS-specific guanine nucleotide exchange factor (GEF). SOS1 mutationscluster at residues implicated in the maintenance of SOS1 in itsautoinhibited form and ectopic expression of two NS-associated mutantsinduced enhanced RAS activation. The phenotype associated with SOS1defects is distinctive, although within NS spectrum, with a highprevalence of ectodermal abnormalitiesmore » but generally normal developmentand linear growth. Our findings implicate for the first timegain-of-function mutations in a RAS GEF in inherited disease and define anew mechanism by which upregulation of the RAS pathway can profoundlychange human development.« less

  9. Congenital myopathy is caused by mutation of HACD1.

    PubMed

    Muhammad, Emad; Reish, Orit; Ohno, Yusuke; Scheetz, Todd; Deluca, Adam; Searby, Charles; Regev, Miriam; Benyamini, Lilach; Fellig, Yakov; Kihara, Akio; Sheffield, Val C; Parvari, Ruti

    2013-12-20

    Congenital myopathies are heterogeneous inherited diseases of muscle characterized by a range of distinctive histologic abnormalities. We have studied a consanguineous family with congenital myopathy. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous non-sense mutation in 3-hydroxyacyl-CoA dehydratase 1 (HACD1) in affected individuals. The mutation results in non-sense mediated decay of the HACD1 mRNA to 31% of control levels in patient muscle and completely abrogates the enzymatic activity of dehydration of 3-hydroxyacyl-CoA, the third step in the elongation of very long-chain fatty acids (VLCFAs). We describe clinical findings correlated with a deleterious mutation in a gene not previously known to be associated with congenital myopathy in humans. We suggest that the mutation in the HACD1 gene causes a reduction in the synthesis of VLCFAs, which are components of membrane lipids and participants in physiological processes, leading to congenital myopathy. These data indicate that HACD1 is necessary for muscle function.

  10. Congenital myopathy is caused by mutation of HACD1

    PubMed Central

    Muhammad, Emad; Reish, Orit; Ohno, Yusuke; Scheetz, Todd; DeLuca, Adam; Searby, Charles; Regev, Miriam; Benyamini, Lilach; Fellig, Yakov; Kihara, Akio; Sheffield, Val C.; Parvari, Ruti

    2013-01-01

    Congenital myopathies are heterogeneous inherited diseases of muscle characterized by a range of distinctive histologic abnormalities. We have studied a consanguineous family with congenital myopathy. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous non-sense mutation in 3-hydroxyacyl-CoA dehydratase 1 (HACD1) in affected individuals. The mutation results in non-sense mediated decay of the HACD1 mRNA to 31% of control levels in patient muscle and completely abrogates the enzymatic activity of dehydration of 3-hydroxyacyl-CoA, the third step in the elongation of very long-chain fatty acids (VLCFAs). We describe clinical findings correlated with a deleterious mutation in a gene not previously known to be associated with congenital myopathy in humans. We suggest that the mutation in the HACD1 gene causes a reduction in the synthesis of VLCFAs, which are components of membrane lipids and participants in physiological processes, leading to congenital myopathy. These data indicate that HACD1 is necessary for muscle function. PMID:23933735

  11. Dominant ER Stress-Inducing WFS1 Mutations Underlie a Genetic Syndrome of Neonatal/Infancy-Onset Diabetes, Congenital Sensorineural Deafness, and Congenital Cataracts.

    PubMed

    De Franco, Elisa; Flanagan, Sarah E; Yagi, Takuya; Abreu, Damien; Mahadevan, Jana; Johnson, Matthew B; Jones, Garan; Acosta, Fernanda; Mulaudzi, Mphele; Lek, Ngee; Oh, Vera; Petz, Oliver; Caswell, Richard; Ellard, Sian; Urano, Fumihiko; Hattersley, Andrew T

    2017-07-01

    Neonatal diabetes is frequently part of a complex syndrome with extrapancreatic features: 18 genes causing syndromic neonatal diabetes have been identified to date. There are still patients with neonatal diabetes who have novel genetic syndromes. We performed exome sequencing in a patient and his unrelated, unaffected parents to identify the genetic etiology of a syndrome characterized by neonatal diabetes, sensorineural deafness, and congenital cataracts. Further testing was performed in 311 patients with diabetes diagnosed before 1 year of age in whom all known genetic causes had been excluded. We identified 5 patients, including the initial case, with three heterozygous missense mutations in WFS1 (4/5 confirmed de novo). They had diabetes diagnosed before 12 months (2 before 6 months) (5/5), sensorineural deafness diagnosed soon after birth (5/5), congenital cataracts (4/5), and hypotonia (4/5). In vitro studies showed that these WFS1 mutations are functionally different from the known recessive Wolfram syndrome-causing mutations, as they tend to aggregate and induce robust endoplasmic reticulum stress. Our results establish specific dominant WFS1 mutations as a cause of a novel syndrome including neonatal/infancy-onset diabetes, congenital cataracts, and sensorineural deafness. This syndrome has a discrete pathophysiology and differs genetically and clinically from recessive Wolfram syndrome. © 2017 by the American Diabetes Association.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Louis, M.; Poudrier, J.; Phaneuf, D.

    The deficiency of fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolic pathway is the cause of hereditary tyrosinemia type I (HT1), an autosomal recessive disease. The disease has been reported worldwide. The incidence is much higher in two clusters: the Saguenay- Lac St-Jean region (Quebec, Canada) and in Scandinavia. Seven mutations have been reported in the last two years. Here we describe two new missense mutations identified by direct sequencing of PCR products in two HT1 patients, a Norwegian (patient No. 1) and a French-Canadian (patient No. 2). The first mutation consists of a G to A transition atmore » position 337 of the FAH gene which predicts a change from glycine to serine (G337S). The second mutation is an A to G transition at position 381 which predicts a change from arginine to glycine (R381G). Patient No. 1 seems heterozygous for the G337S mutation and for a splice mutation (IVS12+5G{r_arrow}A) which was previously described. Patient No. 2 was also found heterozygous for the R381G mutation and for a rare nonsense mutation (E357X) already reported. In vitro transcription and translation were performed on mutant cDNA to demonstrate the responsibility of these two mutations in causing the decreased amount of FAH detected by Western blot analysis.« less

  13. The N355K atlastin 1 mutation is associated with hereditary sensory neuropathy and pyramidal tract features.

    PubMed

    Leonardis, L; Auer-Grumbach, M; Papić, L; Zidar, J

    2012-07-01

      Mutations in atlastin-1 (ATL-1), a gene known to cause pure, early-onset autosomal dominant hereditary spastic paraplegia SPG3A, have been recently reported to cause hereditary sensory neuropathy I (HSN I). We describe the detailed clinical and electrophysiologic findings in the first family with ulcero-mutilating sensory neuropathy carrying the c. C1065A, p.N355K mutation in ATL-1.   Detailed clinical and electrophysiologic studies were performed in affected and at-risk family members. Motor and sensory nerve conductions studies (NCS) were carried out in upper and lower limbs. ATL-1 was screened for mutations by direct sequencing.   Ten patients were found to carry the N355K mutation. With the exception of the two youngest patients, all had trophic skin changes in the feet consisting mainly of painless ulcers. Frequently, amputation of toes, feet, or even more proximal parts of the lower legs became necessary. A variable degree of increased muscle tone was observed in younger patients, whilst some older affected individuals only presented with hyperreflexia of patellar tendon reflexes. NCS revealed signs of an axonal motor and sensory neuropathies.   Our family carrying the N355K ATL1 mutation, which was initially diagnosed as HSN I, enlarges the SPG3A phenotype. We therefore suggest that patients with HSN I excluded for more common causes of HSN I, and in particular, affected individuals who exhibit additional pyramidal tract features should also be screened for mutations in ATL1. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  14. Genetics Home Reference: osteogenesis imperfecta

    MedlinePlus

    ... particular ethnic groups? Genetic Changes Mutations in the COL1A1 , COL1A2 , CRTAP , and P3H1 genes cause osteogenesis imperfecta . Mutations in the COL1A1 and COL1A2 genes are responsible for more than ...

  15. A new mutation in MT-ND1 m.3928G>C p.V208L causes Leigh disease with infantile spasms.

    PubMed

    Wray, Carter D; Friederich, Marisa W; du Sart, Desiree; Pantaleo, Sarah; Smet, Joél; Kucera, Cathlin; Fenton, Laura; Scharer, Gunter; Van Coster, Rudy; Van Hove, Johan L K

    2013-11-01

    New mutations in mitochondrial DNA encoded genes of complex I are rarely reported. An infant developed Leigh disease with infantile spasms. Complex I enzyme activity was deficient and response to increasing coenzyme Q concentrations was reduced. Complex I assembly was intact. A new mutation in MT-ND1 m.3928G>C p.V208L, affecting a conserved amino acid in a critical domain, part of the coenzyme Q binding pocket, was present at high heteroplasmy. The unaffected mother did not carry measurable mutant mitochondrial DNA, but concern remained for gonadal mosaicism. Prenatal testing was possible for a subsequent sibling. The ND1 p.V208L mutation causes Leigh disease. © 2013.

  16. U2AF1 mutations alter splice site recognition in hematological malignancies.

    PubMed

    Ilagan, Janine O; Ramakrishnan, Aravind; Hayes, Brian; Murphy, Michele E; Zebari, Ahmad S; Bradley, Philip; Bradley, Robert K

    2015-01-01

    Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 alter its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in patients, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1's zinc finger domains. © 2015 Ilagan et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Autoimmune Disease in a DFNA6/14/38 Family carrying a Novel Missense Mutation in WFS1

    PubMed Central

    Hildebrand, Michael S.; Sorensen, Jessica L.; Jensen, Maren; Kimberling, William J.; Smith, Richard J.H.

    2008-01-01

    Most familial cases of autosomal dominant low frequency sensorineural hearing loss (LFSNHL) are attributable to mutations in the Wolframin syndrome 1 (WFS1) gene at the DFNA6/14/38 locus. WFS1 mutations at this locus were first described in 2001 in six families segregating LFSNHL that was non-progressive below 2000 Hz; the causative mutations all clustered in the C-terminal domain of the wolframin protein. Mutations in WFS1 also cause Wolfram syndrome (WS), an autosomal recessive neurodegenerative disorder defined by diabetes mellitus, optic atrophy and often deafness, while numerous single nucleotide polymorphisms (SNPs) in WFS1 have been associated with increased risk for diabetes mellitus, psychiatric illnesses and Parkinson’s disease. This study was conducted in an American family segregating autosomal dominant LFSNHL. Two hearing impaired family members also had autoimmune diseases - Graves disease (GD) and Crohn’s disease (CD). Based on the low frequency audioprofile, mutation screening of WFS1 was completed and a novel missense mutation (c.2576G→A) that results in an arginine-to-glutamine substitution (p.R859Q) was identified in the C-terminal domain of the wolframin protein where most LFSNHL-causing mutations cluster. The family member with GD also carried polymorphisms in WFS1 that have been associated with other autoimmune diseases. PMID:18688868

  18. Two novel mutations in the SLC40A1 and HFE genes implicated in iron overload in a Spanish man.

    PubMed

    Del-Castillo-Rueda, Alejandro; Moreno-Carralero, María-Isabel; Alvarez-Sala-Walther, Luis-Antonio; Cuadrado-Grande, Nuria; Enríquez-de-Salamanca, Rafael; Méndez, Manuel; Morán-Jiménez, María-Josefa

    2011-03-01

    The most common form of hemochromatosis is caused by mutations in the HFE gene. Rare forms of the disease are caused by mutations in other genes. We present a patient with hyperferritinemia and iron overload, and facial flushing. Magnetic resonance imaging was performed to measure hepatic iron overload, and a molecular study of the genes involved in iron metabolism was undertaken. The iron overload was similar to that observed in HFE hemochromatosis, and the patient was double heterozygous for two novel mutations, c.-20G>A and c.718A>G (p.K240E), in the HFE and ferroportin (FPN1 or SLC40A1) genes, respectively. Hyperferritinemia and facial flushing improved after phlebotomy. Two of the patient's children were also studied, and the daughter was heterozygous for the mutation in the SLC40A1 gene, although she did not have hyperferritinemia. The patient presented a mild iron overload phenotype probably because of the two novel mutations in the HFE and SLC40A1 genes. © 2011 John Wiley & Sons A/S.

  19. The p.Leu167del Mutation in APOE Gene Causes Autosomal Dominant Hypercholesterolemia by Down-regulation of LDL Receptor Expression in Hepatocytes.

    PubMed

    Cenarro, Ana; Etxebarria, Aitor; de Castro-Orós, Isabel; Stef, Marianne; Bea, Ana M; Palacios, Lourdes; Mateo-Gallego, Rocío; Benito-Vicente, Asier; Ostolaza, Helena; Tejedor, Teresa; Martín, César; Civeira, Fernando

    2016-05-01

    The p.Leu167del mutation in the APOE gene has been associated with hyperlipidemia. Our objective was to determine the frequency of p.Leu167del mutation in APOE gene in subjects with autosomal dominant hypercholesterolemia (ADH) in whom LDLR, APOB, and PCSK9 mutations had been excluded and to identify the mechanisms by which this mutant apo E causes hypercholesterolemia. The APOE gene was analyzed in a case-control study. The study was conducted at a University Hospital Lipid Clinic. Two groups (ADH, 288 patients; control, 220 normolipidemic subjects) were included. We performed sequencing of APOE gene and proteomic and cellular experiments. To determine the frequency of the p.Leu167del mutation and the mechanism by which it causes hypercholesterolemia. In the ADH group, nine subjects (3.1%) were carriers of the APOE c.500_502delTCC, p.Leu167del mutation, cosegregating with hypercholesterolemia in studied families. Proteomic quantification of wild-type and mutant apo E in very low-density lipoprotein (VLDL) from carrier subjects revealed that apo E3 is almost a 5-fold increase compared to mutant apo E. Cultured cell studies revealed that VLDL from mutation carriers had a significantly higher uptake by HepG2 and THP-1 cells compared to VLDL from subjects with E3/E3 or E2/E2 genotypes. Transcriptional down-regulation of LDLR was also confirmed. p.Leu167del mutation in APOE gene is the cause of hypercholesterolemia in the 3.1% of our ADH subjects without LDLR, APOB, and PCSK9 mutations. The mechanism by which this mutation is associated to ADH is that VLDL carrying the mutant apo E produces LDLR down-regulation, thereby raising plasma low-density lipoprotein cholesterol levels.

  20. High-risk long QT syndrome mutations in the Kv7.1 (KCNQ1) pore disrupt the molecular basis for rapid K(+) permeation.

    PubMed

    Burgess, Don E; Bartos, Daniel C; Reloj, Allison R; Campbell, Kenneth S; Johnson, Jonathan N; Tester, David J; Ackerman, Michael J; Fressart, Véronique; Denjoy, Isabelle; Guicheney, Pascale; Moss, Arthur J; Ohno, Seiko; Horie, Minoru; Delisle, Brian P

    2012-11-13

    Type 1 long QT syndrome (LQT1) is caused by loss-of-function mutations in the KCNQ1 gene, which encodes the K(+) channel (Kv7.1) that underlies the slowly activating delayed rectifier K(+) current in the heart. Intragenic risk stratification suggests LQT1 mutations that disrupt conserved amino acid residues in the pore are an independent risk factor for LQT1-related cardiac events. The purpose of this study is to determine possible molecular mechanisms that underlie the loss of function for these high-risk mutations. Extensive genotype-phenotype analyses of LQT1 patients showed that T322M-, T322A-, or G325R-Kv7.1 confers a high risk for LQT1-related cardiac events. Heterologous expression of these mutations with KCNE1 revealed they generated nonfunctional channels and caused dominant negative suppression of WT-Kv7.1 current. Molecular dynamics simulations of analogous mutations in KcsA (T85M-, T85A-, and G88R-KcsA) demonstrated that they disrupted the symmetrical distribution of the carbonyl oxygen atoms in the selectivity filter, which upset the balance between the strong attractive and K(+)-K(+) repulsive forces required for rapid K(+) permeation. We conclude high-risk LQT1 mutations in the pore likely disrupt the architectural and physical properties of the K(+) channel selectivity filter.

  1. DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency

    PubMed Central

    Volk, Timo; Pannicke, Ulrich; Reisli, Ismail; Bulashevska, Alla; Ritter, Julia; Björkman, Andrea; Schäffer, Alejandro A.; Fliegauf, Manfred; Sayar, Esra H.; Salzer, Ulrich; Fisch, Paul; Pfeifer, Dietmar; Di Virgilio, Michela; Cao, Hongzhi; Yang, Fang; Zimmermann, Karin; Keles, Sevgi; Caliskaner, Zafer; Güner, S¸ükrü; Schindler, Detlev; Hammarström, Lennart; Rizzi, Marta; Hummel, Michael; Pan-Hammarström, Qiang; Schwarz, Klaus; Grimbacher, Bodo

    2015-01-01

    Null mutations in genes involved in V(D)J recombination cause a block in B- and T-cell development, clinically presenting as severe combined immunodeficiency (SCID). Hypomorphic mutations in the non-homologous end-joining gene DCLRE1C (encoding ARTEMIS) have been described to cause atypical SCID, Omenn syndrome, Hyper IgM syndrome and inflammatory bowel disease—all with severely impaired T-cell immunity. By whole-exome sequencing, we investigated the molecular defect in a consanguineous family with three children clinically diagnosed with antibody deficiency. We identified perfectly segregating homozygous variants in DCLRE1C in three index patients with recurrent respiratory tract infections, very low B-cell numbers and serum IgA levels. In patients, decreased colony survival after irradiation, impaired proliferative response and reduced counts of naïve T cells were observed in addition to a restricted T-cell receptor repertoire, increased palindromic nucleotides in the complementarity determining regions 3 and long stretches of microhomology at switch junctions. Defective V(D)J recombination was complemented by wild-type ARTEMIS protein in vitro. Subsequently, homozygous or compound heterozygous DCLRE1C mutations were identified in nine patients from the same geographic region. We demonstrate that DCLRE1C mutations can cause a phenotype presenting as only antibody deficiency. This novel association broadens the clinical spectrum associated with ARTEMIS mutations. Clinicians should consider the possibility that an immunodeficiency with a clinically mild initial presentation could be a combined immunodeficiency, so as to provide appropriate care for affected patients. PMID:26476407

  2. Genetic screening of non-classic CAH females with hyperandrogenemia identifies a novel CYP11B1 gene mutation.

    PubMed

    Shammas, Christos; Byrou, Stefania; Phelan, Marie M; Toumba, Meropi; Stylianou, Charilaos; Skordis, Nicos; Neocleous, Vassos; Phylactou, Leonidas A

    2016-04-01

    Congenital adrenal hyperplasia (CAH) is an endocrine autosomal recessive disorder with various symptoms of diverse severity. Mild hyperandrogenemia is the most commonclinical feature in non-classic CAH patients and 95% of the cases are identified by mutations in the CYP21A2 gene. In the present study, the second most common cause for non-classic CAH (NC-CAH), 11β-hydroxylase deficiency due to mutations in the CYP11B1 gene, is investigated. Screening of the CYP21A2 and CYP11B1 genes by direct sequencing was carried out for the detection of possible genetic defects in patients with suspected CAH. It wasobserved that CYP11B1 variants co-exist only in rare cases along with mutations in CYP21A2 in patients clinically diagnosed with CAH. A total of 23 NC-CAH female patients out of 75 were identified with only one mutation in the CYP21A2 gene. The novel CYP11B1 gene mutation, p.Val484Asp, was identified in a patient with CAH in the heterozygous state. The structural characterization of the novel p.Val484Asp was found to likely cause distortion of the surrounding beta sheet and indirect destabilization of the cavity that occurs on the opposite face of the structural elements, leading to partial impairment of the enzymatic activity. CYP21A2 gene mutations are the most frequent genetic defects in cases of NC-CAH even when these patients are in the heterozygous state. These mutations have a diverse phenotype giving rise to a variable extent of cortisol synthesis impairment; it is also clear that CYP11B1 mutants are a rare type of defects causing CAH.

  3. Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies

    PubMed Central

    Beck, Bodo B; Baasner, Anne; Buescher, Anja; Habbig, Sandra; Reintjes, Nadine; Kemper, Markus J; Sikora, Przemyslaw; Mache, Christoph; Pohl, Martin; Stahl, Mirjam; Toenshoff, Burkhard; Pape, Lars; Fehrenbach, Henry; Jacob, Dorrit E; Grohe, Bernd; Wolf, Matthias T; Nürnberg, Gudrun; Yigit, Gökhan; Salido, Eduardo C; Hoppe, Bernd

    2013-01-01

    Identification of mutations in the HOGA1 gene as the cause of autosomal recessive primary hyperoxaluria (PH) type III has revitalized research in the field of PH and related stone disease. In contrast to the well-characterized entities of PH type I and type II, the pathophysiology and prevalence of type III is largely unknown. In this study, we analyzed a large cohort of subjects previously tested negative for type I/II by complete HOGA1 sequencing. Seven distinct mutations, among them four novel, were found in 15 patients. In patients of non-consanguineous European descent the previously reported c.700+5G>T splice-site mutation was predominant and represents a potential founder mutation, while in consanguineous families private homozygous mutations were identified throughout the gene. Furthermore, we identified a family where a homozygous mutation in HOGA1 (p.P190L) segregated in two siblings with an additional AGXT mutation (p.D201E). The two girls exhibiting triallelic inheritance presented a more severe phenotype than their only mildly affected p.P190L homozygous father. In silico analysis of five mutations reveals that HOGA1 deficiency is causing type III, yet reduced HOGA1 expression or aberrant subcellular protein targeting is unlikely to be the responsible pathomechanism. Our results strongly suggest HOGA1 as a major cause of PH, indicate a greater genetic heterogeneity of hyperoxaluria, and point to a favorable outcome of type III in the context of PH despite incomplete or absent biochemical remission. Multiallelic inheritance could have implications for genetic testing strategies and might represent an unrecognized mechanism for phenotype variability in PH. PMID:22781098

  4. Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies.

    PubMed

    Beck, Bodo B; Baasner, Anne; Buescher, Anja; Habbig, Sandra; Reintjes, Nadine; Kemper, Markus J; Sikora, Przemyslaw; Mache, Christoph; Pohl, Martin; Stahl, Mirjam; Toenshoff, Burkhard; Pape, Lars; Fehrenbach, Henry; Jacob, Dorrit E; Grohe, Bernd; Wolf, Matthias T; Nürnberg, Gudrun; Yigit, Gökhan; Salido, Eduardo C; Hoppe, Bernd

    2013-02-01

    Identification of mutations in the HOGA1 gene as the cause of autosomal recessive primary hyperoxaluria (PH) type III has revitalized research in the field of PH and related stone disease. In contrast to the well-characterized entities of PH type I and type II, the pathophysiology and prevalence of type III is largely unknown. In this study, we analyzed a large cohort of subjects previously tested negative for type I/II by complete HOGA1 sequencing. Seven distinct mutations, among them four novel, were found in 15 patients. In patients of non-consanguineous European descent the previously reported c.700+5G>T splice-site mutation was predominant and represents a potential founder mutation, while in consanguineous families private homozygous mutations were identified throughout the gene. Furthermore, we identified a family where a homozygous mutation in HOGA1 (p.P190L) segregated in two siblings with an additional AGXT mutation (p.D201E). The two girls exhibiting triallelic inheritance presented a more severe phenotype than their only mildly affected p.P190L homozygous father. In silico analysis of five mutations reveals that HOGA1 deficiency is causing type III, yet reduced HOGA1 expression or aberrant subcellular protein targeting is unlikely to be the responsible pathomechanism. Our results strongly suggest HOGA1 as a major cause of PH, indicate a greater genetic heterogeneity of hyperoxaluria, and point to a favorable outcome of type III in the context of PH despite incomplete or absent biochemical remission. Multiallelic inheritance could have implications for genetic testing strategies and might represent an unrecognized mechanism for phenotype variability in PH.

  5. A de novo deletion mutation in SOX10 in a Chinese family with Waardenburg syndrome type 4.

    PubMed

    Wang, Xiong; Zhu, Yaowu; Shen, Na; Peng, Jing; Wang, Chunyu; Liu, Haiyi; Lu, Yanjun

    2017-01-27

    Waardenburg syndrome type 4 (WS4) or Waardenburg-Shah syndrome is a rare genetic disorder with a prevalence of <1/1,000,000 and characterized by the association of congenital sensorineural hearing loss, pigmentary abnormalities, and intestinal aganglionosis. There are three types of WS4 (WS4A-C) caused by mutations in endothelin receptor type B, endothelin 3, and SRY-box 10 (SOX10), respectively. This study investigated a genetic mutation in a Chinese family with one WS4 patient in order to improve genetic counselling. Genomic DNA was extracted, and mutation analysis of the three WS4 related genes was performed using Sanger sequencing. We detected a de novo heterozygous deletion mutation [c.1333delT (p.Ser445Glnfs*57)] in SOX10 in the patient; however, this mutation was absent in the unaffected parents and 40 ethnicity matched healthy controls. Subsequent phylogenetic analysis and three-dimensional modelling of the SOX10 protein confirmed that the c.1333delT heterozygous mutation was pathogenic, indicating that this mutation might constitute a candidate disease-causing mutation.

  6. A de novo deletion mutation in SOX10 in a Chinese family with Waardenburg syndrome type 4

    PubMed Central

    Wang, Xiong; Zhu, Yaowu; Shen, Na; Peng, Jing; Wang, Chunyu; Liu, Haiyi; Lu, Yanjun

    2017-01-01

    Waardenburg syndrome type 4 (WS4) or Waardenburg-Shah syndrome is a rare genetic disorder with a prevalence of <1/1,000,000 and characterized by the association of congenital sensorineural hearing loss, pigmentary abnormalities, and intestinal aganglionosis. There are three types of WS4 (WS4A–C) caused by mutations in endothelin receptor type B, endothelin 3, and SRY-box 10 (SOX10), respectively. This study investigated a genetic mutation in a Chinese family with one WS4 patient in order to improve genetic counselling. Genomic DNA was extracted, and mutation analysis of the three WS4 related genes was performed using Sanger sequencing. We detected a de novo heterozygous deletion mutation [c.1333delT (p.Ser445Glnfs*57)] in SOX10 in the patient; however, this mutation was absent in the unaffected parents and 40 ethnicity matched healthy controls. Subsequent phylogenetic analysis and three-dimensional modelling of the SOX10 protein confirmed that the c.1333delT heterozygous mutation was pathogenic, indicating that this mutation might constitute a candidate disease-causing mutation. PMID:28128317

  7. Microenvironmental Regulation by Fibrillin-1

    PubMed Central

    Sengle, Gerhard; Tsutsui, Ko; Keene, Douglas R.; Tufa, Sara F.; Carlson, Eric J.; Charbonneau, Noe L.; Ono, Robert N.; Sasaki, Takako; Wirtz, Mary K.; Samples, John R.; Fessler, Liselotte I.; Fessler, John H.; Sekiguchi, Kiyotoshi; Hayflick, Susan J.; Sakai, Lynn Y.

    2012-01-01

    Fibrillin-1 is a ubiquitous extracellular matrix molecule that sequesters latent growth factor complexes. A role for fibrillin-1 in specifying tissue microenvironments has not been elucidated, even though the concept that fibrillin-1 provides extracellular control of growth factor signaling is currently appreciated. Mutations in FBN1 are mainly responsible for the Marfan syndrome (MFS), recognized by its pleiotropic clinical features including tall stature and arachnodactyly, aortic dilatation and dissection, and ectopia lentis. Each of the many different mutations in FBN1 known to cause MFS must lead to similar clinical features through common mechanisms, proceeding principally through the activation of TGFβ signaling. Here we show that a novel FBN1 mutation in a family with Weill-Marchesani syndrome (WMS) causes thick skin, short stature, and brachydactyly when replicated in mice. WMS mice confirm that this mutation does not cause MFS. The mutation deletes three domains in fibrillin-1, abolishing a binding site utilized by ADAMTSLIKE-2, -3, -6, and papilin. Our results place these ADAMTSLIKE proteins in a molecular pathway involving fibrillin-1 and ADAMTS-10. Investigations of microfibril ultrastructure in WMS humans and mice demonstrate that modulation of the fibrillin microfibril scaffold can influence local tissue microenvironments and link fibrillin-1 function to skin homeostasis and the regulation of dermal collagen production. Hence, pathogenetic mechanisms caused by dysregulated WMS microenvironments diverge from Marfan pathogenetic mechanisms, which lead to broad activation of TGFβ signaling in multiple tissues. We conclude that local tissue-specific microenvironments, affected in WMS, are maintained by a fibrillin-1 microfibril scaffold, modulated by ADAMTSLIKE proteins in concert with ADAMTS enzymes. PMID:22242013

  8. A strong loss-of-function mutation in RAN1 results in constitution activation of the ethylene response pathway as well as a rosette-lethal phenotype

    Treesearch

    Keith Woeste; Joseph J. Kieber

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resuited in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a...

  9. GRIN1 mutations cause encephalopathy with infantile-onset epilepsy, and hyperkinetic and stereotyped movement disorders.

    PubMed

    Ohba, Chihiro; Shiina, Masaaki; Tohyama, Jun; Haginoya, Kazuhiro; Lerman-Sagie, Tally; Okamoto, Nobuhiko; Blumkin, Lubov; Lev, Dorit; Mukaida, Souichi; Nozaki, Fumihito; Uematsu, Mitsugu; Onuma, Akira; Kodera, Hirofumi; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Tanaka, Fumiaki; Kato, Mitsuhiro; Ogata, Kazuhiro; Saitsu, Hirotomo; Matsumoto, Naomichi

    2015-06-01

    Recently, de novo mutations in GRIN1 have been identified in patients with nonsyndromic intellectual disability and epileptic encephalopathy. Whole exome sequencing (WES) analysis of patients with genetically unsolved epileptic encephalopathies identified four patients with GRIN1 mutations, allowing us to investigate the phenotypic spectrum of GRIN1 mutations. Eighty-eight patients with unclassified early onset epileptic encephalopathies (EOEEs) with an age of onset <1 year were analyzed by WES. The effect of mutations on N-methyl-D-aspartate (NMDA) receptors was examined by mapping altered amino acids onto three-dimensional models. We identified four de novo missense GRIN1 mutations in 4 of 88 patients with unclassified EOEEs. In these four patients, initial symptoms appeared within 3 months of birth, including hyperkinetic movements in two patients (2/4, 50%), and seizures in two patients (2/4, 50%). Involuntary movements, severe developmental delay, and intellectual disability were recognized in all four patients. In addition, abnormal eye movements resembling oculogyric crises and stereotypic hand movements were observed in two and three patients, respectively. All the four patients exhibited only nonspecific focal and diffuse epileptiform abnormality, and never showed suppression-burst or hypsarrhythmia during infancy. A de novo mosaic mutation (c.1923G>A) with a mutant allele frequency of 16% (in DNA of blood leukocytes) was detected in one patient. Three mutations were located in the transmembrane domain (3/4, 75%), and one in the extracellular loop near transmembrane helix 1. All the mutations were predicted to impair the function of the NMDA receptor. Clinical features of de novo GRIN1 mutations include infantile involuntary movements, seizures, and hand stereotypies, suggesting that GRIN1 mutations cause encephalopathy resulting in seizures and movement disorders. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  10. A spectrum of novel NPHS1 and NPHS2 gene mutations in pediatric nephrotic syndrome patients from Pakistan.

    PubMed

    Abid, Aiysha; Khaliq, Shagufta; Shahid, Saba; Lanewala, Ali; Mubarak, Mohammad; Hashmi, Seema; Kazi, Javed; Masood, Tahir; Hafeez, Farkhanda; Naqvi, Syed Ali Anwar; Rizvi, Syed Adeebul Hasan; Mehdi, Syed Qasim

    2012-07-10

    Mutations in the NPHS1 and NPHS2 genes are among the main causes of early-onset and familial steroid resistant nephrotic syndrome respectively. This study was carried out to assess the frequencies of mutations in these two genes in a cohort of Pakistani pediatric NS patients. Mutation analysis was carried out by direct sequencing of the NPHS1 and NPHS2 genes in 145 nephrotic syndrome (NS) patients. This cohort included 36 samples of congenital or infantile onset NS cases and 39 samples of familial cases obtained from 30 families. A total of 7 homozygous (6 novel) mutations were found in the NPHS1 gene and 4 homozygous mutations in the NPHS2 gene. All mutations in the NPHS1 gene were found in the early onset cases. Of these, one patient has a family history of NS. Homozygous p.R229Q mutation in the NPHS2 gene was found in two children with childhood-onset NS. Our results show a low prevalence of disease causing mutations in the NPHS1 (22% early onset, 5.5% overall) and NPHS2 (3.3% early onset and 3.4% overall) genes in the Pakistani NS children as compared to the European populations. In contrast to the high frequency of the NPHS2 gene mutations reported for familial SRNS in Europe, no mutation was found in the familial Pakistani cases. To our knowledge, this is the first comprehensive screening of the NPHS1 and NPHS2 gene mutations in sporadic and familial NS cases from South Asia. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Genetic Analysis of Japanese Children With Acute Recurrent and Chronic Pancreatitis.

    PubMed

    Saito, Nobutomo; Suzuki, Mitsuyoshi; Sakurai, Yumiko; Nakano, Satoshi; Naritaka, Nakayuki; Minowa, Kei; Sai, Jin K; Shimizu, Toshiaki

    2016-10-01

    Causes of acute recurrent pancreatitis (ARP) or chronic pancreatitis (CP) are sometimes difficult to determine in children. In such patients, genetic analysis may prove helpful. The present study analyzed mutations of cationic trypsinogen (PRSS1), serine protease inhibitor Kazal type 1 (SPINK1), chymotrypsin C (CTRC), and carboxypeptidase A1 (CPA1) and investigated the clinical features of children with these mutations. Genetic analyses of mutations in these 4 genes were conducted in 128 patients with ARP or CP. Characteristics of the patients showing mutations were investigated using medical records. Fifty of the 128 (39.1%) subjects had at least 1 mutation (median age at onset, 7.6 years). Abdominal pain was the presenting symptom of pancreatitis in 48 of the 50 patients (96%). Fifteen of those 50 patients (30.0%) had a family history of pancreatitis. Gene mutations were present in PRSS1 in 26 patients, SPINK1 in 23, CTRC in 3, and CPA1 in 5. In the 31 patients with mutations in SPINK1, CTRC, or CPA1, 16 (51.6%) had homozygous or heterozygous mutations with other mutations. Three patients underwent surgery and another 4 patients underwent endoscopy to manage ARP or CP. Although 3 of the 7 patients complained of mild abdominal pain, none of those 7 patients experienced any obvious episode of ARP after treatment. In pediatric patients with idiopathic ARP and CP, genetic analysis is useful for identifying the cause of pancreatitis. Early endoscopic or surgical treatment prevents ARP by extending the interval between episodes of pancreatitis in this population.

  12. Early onset hearing loss in autosomal recessive hypophosphatemic rickets caused by loss of function mutation in ENPP1.

    PubMed

    Steichen-Gersdorf, Elisabeth; Lorenz-Depiereux, Bettina; Strom, Tim Matthias; Shaw, Nicholas J

    2015-07-01

    Autosomal recessive hypophosphatemic rickets 2 (ARHR2) is a rare form of renal tubular phosphate wasting disorder. Loss of function mutations of the ecto-nucleotide pyrophosphatase/pyrophosphodiesterase 1 gene (ENPP1) causes a wide spectrum of phenotypes, ranging from lethal generalized arterial calcification of infancy to hypophosphatemic rickets with hypertension. Hearing loss was not previously thought to be one of the features of the disease entities and was merely regarded as a complication rather than a part of the disease. We report two children who presented in mid to late childhood with progressive varus deformity of their legs due to hypophosphatemic rickets caused by mutations in the ENPP1 gene. Both children had evidence of progressive hearing loss requiring the use of hearing aids. This report of two unrelated infants with compound heterozygous mutations in ENPP1 and previously published cases confirms that mild to moderate hearing loss is frequently associated with ARHR2. Early onset conductive hearing loss may further distinguish the autosomal recessive ENPP1 related type from other types of hypophosphatemia.

  13. Evasion of cell senescence in SHH medulloblastoma.

    PubMed

    Tamayo-Orrego, Lukas; Swikert, Shannon M; Charron, Frédéric

    2016-08-17

    The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1 +/- mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis.

  14. Evasion of cell senescence in SHH medulloblastoma

    PubMed Central

    Tamayo-Orrego, Lukas; Swikert, Shannon M.; Charron, Frédéric

    2016-01-01

    ABSTRACT The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1+/− mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis. PMID:27229128

  15. Leigh syndrome associated with mitochondrial complex I deficiency due to a novel mutation in the NDUFS1 gene.

    PubMed

    Martín, Miguel A; Blázquez, Alberto; Gutierrez-Solana, Luis G; Fernández-Moreira, Daniel; Briones, Paz; Andreu, Antoni L; Garesse, Rafael; Campos, Yolanda; Arenas, Joaquín

    2005-04-01

    Mutations in the nuclear-encoded subunits of complex I of the mitochondrial respiratory chain are a recognized cause of Leigh syndrome (LS). Recently, 6 mutations in the NDUFS1 gene were identified in 3 families. To describe a Spanish family with LS, complex I deficiency in muscle, and a novel mutation in the NDUFS1 gene. Using molecular genetic approaches, we identified the underlying molecular defect in a patient with LS with a complex I defect. The proband was a child who displayed the clinical features of LS. Muscle biochemistry results showed a complex I defect of the mitochondrial respiratory chain. Sequencing analysis of the mitochondrial DNA-encoded ND genes, the nuclear DNA-encoded NDUFV1, NDUFS1, NDUFS2, NDUFS4, NDUFS6, NDUFS7, NDUFS8, and NDUFAB1 genes, and the complex I assembly factor CIA30 gene revealed a novel homozygous L231V mutation (c.691C-->G) in the NDUFS1 gene. The parents were heterozygous carriers of the L231V mutation. Identifying nuclear mutations as a cause of respiratory chain disorders will enhance the possibility of prenatal diagnosis and help us understand how molecular defects can lead to complex I deficiency.

  16. Mutations in SULT2B1 Cause Autosomal-Recessive Congenital Ichthyosis in Humans.

    PubMed

    Heinz, Lisa; Kim, Gwang-Jin; Marrakchi, Slaheddine; Christiansen, Julie; Turki, Hamida; Rauschendorf, Marc-Alexander; Lathrop, Mark; Hausser, Ingrid; Zimmer, Andreas D; Fischer, Judith

    2017-06-01

    Ichthyoses are a clinically and genetically heterogeneous group of genodermatoses associated with abnormal scaling of the skin over the whole body. Mutations in nine genes are known to cause non-syndromic forms of autosomal-recessive congenital ichthyosis (ARCI). However, not all genetic causes for ARCI have been discovered to date. Using whole-exome sequencing (WES) and multigene panel screening, we identified 6 ARCI-affected individuals from three unrelated families with mutations in Sulfotransferase family 2B member 1 (SULT2B1), showing their causative association with ARCI. Cytosolic sulfotransferases form a large family of enzymes that are involved in the synthesis and metabolism of several steroids in humans. We identified four distinct mutations including missense, nonsense, and splice site mutations. We demonstrated the loss of SULT2B1 expression at RNA and protein levels in keratinocytes from individuals with ARCI by functional analyses. Furthermore, we succeeded in reconstructing the morphologic skin alterations in a 3D organotypic tissue culture model with SULT2B1-deficient keratinocytes and fibroblasts. By thin layer chromatography (TLC) of extracts from these organotypic cultures, we could show the absence of cholesterol sulfate, the metabolite of SULT2B1, and an increased level of cholesterol, indicating a disturbed cholesterol metabolism of the skin upon loss-of-function mutation in SULT2B1. In conclusion, our study reveals an essential role for SULT2B1 in the proper development of healthy human skin. Mutation in SULT2B1 leads to an ARCI phenotype via increased proliferation of human keratinocytes, thickening of epithelial layers, and altered epidermal cholesterol metabolism. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Mutations in RIT1 cause Noonan syndrome with possible juvenile myelomonocytic leukemia but are not involved in acute lymphoblastic leukemia.

    PubMed

    Cavé, Hélène; Caye, Aurélie; Ghedira, Nehla; Capri, Yline; Pouvreau, Nathalie; Fillot, Natacha; Trimouille, Aurélien; Vignal, Cédric; Fenneteau, Odile; Alembik, Yves; Alessandri, Jean-Luc; Blanchet, Patricia; Boute, Odile; Bouvagnet, Patrice; David, Albert; Dieux Coeslier, Anne; Doray, Bérénice; Dulac, Olivier; Drouin-Garraud, Valérie; Gérard, Marion; Héron, Delphine; Isidor, Bertrand; Lacombe, Didier; Lyonnet, Stanislas; Perrin, Laurence; Rio, Marlène; Roume, Joëlle; Sauvion, Sylvie; Toutain, Annick; Vincent-Delorme, Catherine; Willems, Marjorie; Baumann, Clarisse; Verloes, Alain

    2016-08-01

    Noonan syndrome is a heterogeneous autosomal dominant disorder caused by mutations in at least eight genes involved in the RAS/MAPK signaling pathway. Recently, RIT1 (Ras-like without CAAX 1) has been shown to be involved in the pathogenesis of some patients. We report a series of 44 patients from 30 pedigrees (including nine multiplex families) with mutations in RIT1. These patients display a typical Noonan gestalt and facial phenotype. Among the probands, 8.7% showed postnatal growth retardation, 90% had congenital heart defects, 36% had hypertrophic cardiomyopathy (a lower incidence compared with previous report), 50% displayed speech delay and 52% had learning difficulties, but only 22% required special education. None had major skin anomalies. One child died perinatally of juvenile myelomonocytic leukemia. Compared with the canonical Noonan phenotype linked to PTPN11 mutations, patients with RIT1 mutations appear to be less severely growth retarded and more frequently affected by cardiomyopathy. Based on our experience, we estimate that RIT1 could be the cause of 5% of Noonan syndrome patients. Because mutations found constitutionally in Noonan syndrome are also found in several tumors in adulthood, we evaluated the potential contribution of RIT1 to leukemogenesis in Noonan syndrome. We screened 192 pediatric cases of acute lymphoblastic leukemias (96 B-ALL and 96 T-ALL) and 110 cases of juvenile myelomonocytic leukemias (JMML), but detected no variation in these tumoral samples, suggesting that Noonan patients with germline RIT1 mutations are not at high risk to developing JMML or ALL, and that RIT1 has at most a marginal role in these sporadic malignancies.

  18. Genetic variations in the hotspot region of RS1 gene in Indian patients with juvenile X-linked retinoschisis

    PubMed Central

    Suganthalakshmi, Balasubbu; Shukla, Dhananjay; Rajendran, Anand; Kim, Ramasamy; Nallathambi, Jeyabalan

    2007-01-01

    Purpose X-linked juvenile retinoschisis (XLRS) is the leading cause of macular degeneration in males. This condition is caused by mutations in the RS1 gene and is, characterized by schisis within the retina. The purpose of this study was to identify the mutations in the RS1 gene associated with XLRS in an Indian cohort. Methods The coding region of RS1 was analyzed for mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and restriction fragment length polymorphism (RFLP) analysis in six unrelated subjects clinically diagnosed as having XLRS and in their available family members. Direct sequencing was performed for all samples that displayed an electrophoretic mobility shift in SSCP gel. Results Mutation analysis of RS1 gene revealed five mutations in exon 6 like c.574C>T, c.583A>G, c.608C>T, c.617G>A, and c.637C>T, respectively, among them four missense mutations, one nonsense mutation, and two novel sequence variations. These mutations were found in individuals who exhibited clinical features of bilateral foveal and peripheral retinoschisis consistent with XLRS. The mutations were absent in the 100 age matched control samples analyzed. Conclusions This is the first report of mutations in RS1 to be associated with XLRS in the Indian population. The identified genetic variations, phenotype and genotype correlations were consistent with other studies. Identification of the causative mutation in patients with XLRS is helpful in confirming the diagnosis and in counseling of family members. PMID:17515881

  19. A SIGMAR1 splice-site mutation causes distal hereditary motor neuropathy.

    PubMed

    Li, Xiaobo; Hu, Zhengmao; Liu, Lei; Xie, Yongzhi; Zhan, Yajing; Zi, Xiaohong; Wang, Junling; Wu, Lixiang; Xia, Kun; Tang, Beisha; Zhang, Ruxu

    2015-06-16

    To identify the underlying genetic cause in a consanguineous Chinese family segregating distal hereditary motor neuropathy (dHMN) in an autosomal recessive pattern. We used whole-exome sequencing and homozygosity mapping to detect the genetic variant in 2 affected individuals of the consanguineous Chinese family with dHMN. RNA analysis of peripheral blood leukocytes and immunofluorescence and immunoblotting of stable cell lines were performed to support the pathogenicity of the identified mutation. We identified 3 shared novel homozygous variants in 3 shared homozygous regions of the affected individuals. Sequencing of these 3 variants in family members revealed the c.151+1G>T mutation in SIGMAR1 gene, which located in homozygous region spanning approximately 5.3 Mb at chromosome 9p13.1-p13.3, segregated with the dHMN phenotype. The mutation causes an alternative splicing event and generates a transcript variant with an in-frame deletion of 60 base pairs in exon 1 (c.92_151del), and results in an internally shortened protein σ1R(31_50del). The proteasomal inhibitor treatment increased the intracellular amount of σ1R(31_50del) and led to the formation of nuclear aggregates. Stable expressing σ1R(31_50del) induced endoplasmic reticulum stress and enhanced apoptosis. The homozygous c.151+1G>T mutation in SIGMAR1 caused a novel form of autosomal recessive dHMN in a Chinese consanguineous family. Endoplasmic reticulum stress may have a role in the pathogenesis of dHMN. © 2015 American Academy of Neurology.

  20. Phenotypic Variation in 46,XX Disorders of Sex Development due to the NR5A1 p.R92W Variant: A Sibling Case Report and Literature Review.

    PubMed

    Takasawa, Kei; Igarashi, Maki; Ono, Makoto; Takemoto, Akira; Takada, Shuji; Yamataka, Atsuyuki; Ogata, Tsutomu; Morio, Tomohiro; Fukami, Maki; Kashimada, Kenichi

    2017-01-01

    Recently, a heterozygous missense mutation in NR5A1, p.R92W, was identified as a cause of 46,XX testicular/ovo-testicular disorders of sexual development (DSD). We report a sibling pair with 46,XX DSD due to an NR5A1 mutation with distinct phenotypes, including external and internal genitalia and gonads, for whom different rearing sexes were selected. Thus, the phenotypes of p.R92W vary, even within a family. The father of the patients showed oligozoospermia with the p.R92W mutation, suggesting that in 46,XY individuals, the mutation would cause various gonadal phenotypes. We review and discuss the general role of the R92W mutation in sexual development. © 2018 S. Karger AG, Basel.

  1. Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.

    PubMed

    Chiabrando, Deborah; Castori, Marco; di Rocco, Maja; Ungelenk, Martin; Gießelmann, Sebastian; Di Capua, Matteo; Madeo, Annalisa; Grammatico, Paola; Bartsch, Sophie; Hübner, Christian A; Altruda, Fiorella; Silengo, Lorenzo; Tolosano, Emanuela; Kurth, Ingo

    2016-12-01

    Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs). Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1) gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.

  2. DNA polymerase γ and disease: what we have learned from yeast

    PubMed Central

    Lodi, Tiziana; Dallabona, Cristina; Nolli, Cecilia; Goffrini, Paola; Donnini, Claudia; Baruffini, Enrico

    2015-01-01

    Mip1 is the Saccharomyces cerevisiae DNA polymerase γ (Pol γ), which is responsible for the replication of mitochondrial DNA (mtDNA). It belongs to the family A of the DNA polymerases and it is orthologs to human POLGA. In humans, mutations in POLG(1) cause many mitochondrial pathologies, such as progressive external ophthalmoplegia (PEO), Alpers' syndrome, and ataxia-neuropathy syndrome, all of which present instability of mtDNA, which results in impaired mitochondrial function in several tissues with variable degrees of severity. In this review, we summarize the genetic and biochemical knowledge published on yeast mitochondrial DNA polymerase from 1989, when the MIP1 gene was first cloned, up until now. The role of yeast is particularly emphasized in (i) validating the pathological mutations found in human POLG and modeled in MIP1, (ii) determining the molecular defects caused by these mutations and (iii) finding the correlation between mutations/polymorphisms in POLGA and mtDNA toxicity induced by specific drugs. We also describe recent findings regarding the discovery of molecules able to rescue the phenotypic defects caused by pathological mutations in Mip1, and the construction of a model system in which the human Pol γ holoenzyme is expressed in yeast and complements the loss of Mip1. PMID:25852747

  3. Imaging of Skeletal Disorders Caused by Fibroblast Growth Factor Receptor Gene Mutations.

    PubMed

    Sargar, Kiran M; Singh, Achint K; Kao, Simon C

    2017-10-01

    Fibroblast growth factors and fibroblast growth factor receptors (FGFRs) play important roles in human axial and craniofacial skeletal development. FGFR1, FGFR2, and FGFR3 are crucial for both chondrogenesis and osteogenesis. Mutations in the genes encoding FGFRs, types 1-3, are responsible for various skeletal dysplasias and craniosynostosis syndromes. Many of these disorders are relatively common in the pediatric population, and diagnosis is often challenging. These skeletal disorders can be classified based on which FGFR is affected. Skeletal disorders caused by type 1 mutations include Pfeiffer syndrome (PS) and osteoglophonic dysplasia, and disorders caused by type 2 mutations include Crouzon syndrome (CS), Apert syndrome (AS), and PS. Disorders caused by type 3 mutations include achondroplasia, hypochondroplasia, thanatophoric dysplasia (TD), severe achondroplasia with developmental delay and acanthosis nigricans, Crouzonodermoskeletal syndrome, and Muenke syndrome. Most of these mutations are inherited in an autosomal dominant fashion and are gain-of-function-type mutations. Imaging plays a key role in the evaluation of these skeletal disorders. Knowledge of the characteristic imaging and clinical findings can help confirm the correct diagnosis and guide the appropriate molecular genetic tests. Some characteristics and clinical findings include premature fusion of cranial sutures and deviated broad thumbs and toes in PS; premature fusion of cranial sutures and syndactyly of the hands and feet in AS; craniosynostosis, ocular proptosis, and absence of hand and foot abnormalities in CS; rhizomelic limb shortening, caudal narrowing of the lumbar interpediculate distance, small and square iliac wings, and trident hands in achondroplasia; and micromelia, bowing of the femora, and platyspondyly in TD. © RSNA, 2017.

  4. [From gene to disease; genetic causes of hearing loss and visual impairment sometimes accompanied by vestibular problems (Usher syndrome)].

    PubMed

    Pennings, R J E; Kremer, H; Deutman, A F; Kimberling, W J; Cremers, C W R J

    2002-12-07

    Usher syndrome is an autosomal recessively inherited disease, characterised by sensorineural hearing loss, tapetoretinal degeneration and in some cases vestibular problems. Based on the clinical heterogeneity, the disease can be classified into three clinical types (I, II and III), which have their own genetic subtypes (Usher 1A-Usher IG, Usher 2A-Usher 2C and Usher 3). The majority of the Usher type I cases are caused by mutations in the MYO7A gene (Usher 1B) while mutations in the USH2A gene (Usher 2A) are the cause of most cases of type II. Usher syndrome type III, caused by mutations in the USH3 gene, is frequently seen only in Finland.

  5. Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles

    PubMed Central

    Darbro, Benjamin W.; Mahajan, Vinit B.; Gakhar, Lokesh; Skeie, Jessica M.; Campbell, Elizabeth; Wu, Shu; Bing, Xinyu; Millen, Kathleen J.; Dobyns, William B.; Kessler, John A.; Jalali, Ali; Cremer, James; Segre, Alberto; Manak, J. Robert; Aldinger, Kimerbly A.; Suzuki, Satoshi; Natsume, Nagato; Ono, Maya; Hai, Huynh Dai; Viet, Le Thi; Loddo, Sara; Valente, Enza M.; Bernardini, Laura; Ghonge, Nitin; Ferguson, Polly J.; Bassuk, Alexander G.

    2013-01-01

    We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker malformation and occipital cephaloceles (ADDWOC) and detected a mutation in the extracellular matrix protein encoding gene NID1. In a second family, protein interaction network analysis identified a mutation in LAMC1, which encodes a NID1 binding partner. Structural modeling the NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings implicate the extracellular matrix in the pathogenesis of Dandy-Walker spectrum disorders. PMID:23674478

  6. Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation.

    PubMed

    Hedrich, Ulrike B S; Liautard, Camille; Kirschenbaum, Daniel; Pofahl, Martin; Lavigne, Jennifer; Liu, Yuanyuan; Theiss, Stephan; Slotta, Johannes; Escayg, Andrew; Dihné, Marcel; Beck, Heinz; Mantegazza, Massimo; Lerche, Holger

    2014-11-05

    Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na(+) channels in interneurons and persistent Na(+) currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca(2+) imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation. Copyright © 2014 the authors 0270-6474/14/3414874-16$15.00/0.

  7. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors.

    PubMed

    Rothwell, Patrick E; Fuccillo, Marc V; Maxeiner, Stephan; Hayton, Scott J; Gokce, Ozgun; Lim, Byung Kook; Fowler, Stephen C; Malenka, Robert C; Südhof, Thomas C

    2014-07-03

    In humans, neuroligin-3 mutations are associated with autism, whereas in mice, the corresponding mutations produce robust synaptic and behavioral changes. However, different neuroligin-3 mutations cause largely distinct phenotypes in mice, and no causal relationship links a specific synaptic dysfunction to a behavioral change. Using rotarod motor learning as a proxy for acquired repetitive behaviors in mice, we found that different neuroligin-3 mutations uniformly enhanced formation of repetitive motor routines. Surprisingly, neuroligin-3 mutations caused this phenotype not via changes in the cerebellum or dorsal striatum but via a selective synaptic impairment in the nucleus accumbens/ventral striatum. Here, neuroligin-3 mutations increased rotarod learning by specifically impeding synaptic inhibition onto D1-dopamine receptor-expressing but not D2-dopamine receptor-expressing medium spiny neurons. Our data thus suggest that different autism-associated neuroligin-3 mutations cause a common increase in acquired repetitive behaviors by impairing a specific striatal synapse and thereby provide a plausible circuit substrate for autism pathophysiology. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Congenital Myasthenic Syndrome Type 19 Is Caused by Mutations in COL13A1, Encoding the Atypical Non-fibrillar Collagen Type XIII α1 Chain.

    PubMed

    Logan, Clare V; Cossins, Judith; Rodríguez Cruz, Pedro M; Parry, David A; Maxwell, Susan; Martínez-Martínez, Pilar; Riepsaame, Joey; Abdelhamed, Zakia A; Lake, Alice V R; Moran, Maria; Robb, Stephanie; Chow, Gabriel; Sewry, Caroline; Hopkins, Philip M; Sheridan, Eamonn; Jayawant, Sandeep; Palace, Jacqueline; Johnson, Colin A; Beeson, David

    2015-12-03

    The neuromuscular junction (NMJ) consists of a tripartite synapse with a presynaptic nerve terminal, Schwann cells that ensheathe the terminal bouton, and a highly specialized postsynaptic membrane. Synaptic structural integrity is crucial for efficient signal transmission. Congenital myasthenic syndromes (CMSs) are a heterogeneous group of inherited disorders that result from impaired neuromuscular transmission, caused by mutations in genes encoding proteins that are involved in synaptic transmission and in forming and maintaining the structural integrity of NMJs. To identify further causes of CMSs, we performed whole-exome sequencing (WES) in families without an identified mutation in known CMS-associated genes. In two families affected by a previously undefined CMS, we identified homozygous loss-of-function mutations in COL13A1, which encodes the alpha chain of an atypical non-fibrillar collagen with a single transmembrane domain. COL13A1 localized to the human muscle motor endplate. Using CRISPR-Cas9 genome editing, modeling of the COL13A1 c.1171delG (p.Leu392Sfs(∗)71) frameshift mutation in the C2C12 cell line reduced acetylcholine receptor (AChR) clustering during myotube differentiation. This highlights the crucial role of collagen XIII in the formation and maintenance of the NMJ. Our results therefore delineate a myasthenic disorder that is caused by loss-of-function mutations in COL13A1, encoding a protein involved in organization of the NMJ, and emphasize the importance of appropriate symptomatic treatment for these individuals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. A novel mutation causing nephronophthisis in the Lewis polycystic kidney rat localises to a conserved RCC1 domain in Nek8

    PubMed Central

    2012-01-01

    Background Nephronophthisis (NPHP) as a cause of cystic kidney disease is the most common genetic cause of progressive renal failure in children and young adults. NPHP is characterized by abnormal and/or loss of function of proteins associated with primary cilia. Previously, we characterized an autosomal recessive phenotype of cystic kidney disease in the Lewis Polycystic Kidney (LPK) rat. Results In this study, quantitative trait locus analysis was used to define a ~1.6Mbp region on rat chromosome 10q25 harbouring the lpk mutation. Targeted genome capture and next-generation sequencing of this region identified a non-synonymous mutation R650C in the NIMA (never in mitosis gene a)- related kinase 8 ( Nek8) gene. This is a novel Nek8 mutation that occurs within the regulator of chromosome condensation 1 (RCC1)-like region of the protein. Specifically, the R650C substitution is located within a G[QRC]LG repeat motif of the predicted seven bladed beta-propeller structure of the RCC1 domain. The rat Nek8 gene is located in a region syntenic to portions of human chromosome 17 and mouse 11. Scanning electron microscopy confirmed abnormally long cilia on LPK kidney epithelial cells, and fluorescence immunohistochemistry for Nek8 protein revealed altered cilia localisation. Conclusions When assessed relative to other Nek8 NPHP mutations, our results indicate the whole propeller structure of the RCC1 domain is important, as the different mutations cause comparable phenotypes. This study establishes the LPK rat as a novel model system for NPHP and further consolidates the link between cystic kidney disease and cilia proteins. PMID:22899815

  10. A Novel Rasopathy Caused by Recurrent De Novo Missense Mutations In PPP1CB Closely Resembles Noonan Syndrome with Loose Anagen Hair

    PubMed Central

    Gripp, Karen W.; Aldinger, Kimberly A.; Bennett, James T.; Baker, Laura; Tusi, Jessica; Powell-Hamilton, Nina; Stabley, Deborah; Sol-Church, Katia; Timms, Andrew E.; Dobyns, William B.

    2016-01-01

    Noonan syndrome is a rasopathy caused by mutations in multiple genes encoding components of the RAS/MAPK pathway. Despite its variable phenotype, limited genotype-phenotype correlations exist. Noonan syndrome with loose anagen hair (NS-LAH) is characterized by its distinctive hair anomalies, developmental differences and structural brain abnormalities and is caused by a single recurrent missense SHOC2 mutation. SHOC2 forms a complex with protein phosphatase 1 (PP1C). Protein phosphatases counterbalance kinases and control activation of signaling proteins, such as the mitogen activated protein kinases of the RAS/MAPK pathway. Here we report four patients with de novo missense mutations in protein phosphatase 1 catalytic subunit beta (PPP1CB), sharing a recognizable phenotype. Three individuals had the recurrent PPP1CB c.146G>C, p.Pro49Arg mutation, the fourth had a c.166G>C, p.Ala56Pro change. All had relative or absolute macrocephaly, low-set and posteriorly angulated ears and developmental delay. Slow growing and/or sparse hair and/or an unruly hair texture was present in all. Three individuals had feeding difficulties requiring feeding tubes. One of two males had cryptorchidism, another had pectus excavatum. Short stature was present in three. A female with the recurrent mutation had a Dandy-Walker malformation and optic nerve hypoplasia. Mild ventriculomegaly occurred in all, cerebellar tonsillar ectopia was seen in two and progressed to Chiari 1 malformation in one individual. Based on the combination of phenotypic findings and PPP1CB’s effect on RAF dephosphorylation within the RAS/MAPK pathway, this novel condition can be considered a rasopathy, most similar to NS-LAH. Collectively, these mutations meet the standardized criteria for pathogenicity. PMID:27264673

  11. Novel GABRG2 mutations cause familial febrile seizures

    PubMed Central

    Boillot, Morgane; Morin-Brureau, Mélanie; Picard, Fabienne; Weckhuysen, Sarah; Lambrecq, Virginie; Minetti, Carlo; Striano, Pasquale; Zara, Federico; Iacomino, Michele; Ishida, Saeko; An-Gourfinkel, Isabelle; Daniau, Mailys; Hardies, Katia; Baulac, Michel; Dulac, Olivier; Leguern, Eric; Nabbout, Rima

    2015-01-01

    Objective: To identify the genetic cause in a large family with febrile seizures (FS) and temporal lobe epilepsy (TLE) and subsequently search for additional mutations in a cohort of 107 families with FS, with or without epilepsy. Methods: The cohort consisted of 1 large family with FS and TLE, 64 smaller French families recruited through a national French campaign, and 43 Italian families. Molecular analyses consisted of whole-exome sequencing and mutational screening. Results: Exome sequencing revealed a p.Glu402fs*3 mutation in the γ2 subunit of the GABAA receptor gene (GABRG2) in the large family with FS and TLE. Three additional nonsense and frameshift GABRG2 mutations (p.Arg136*, p.Val462fs*33, and p.Pro59fs*12), 1 missense mutation (p.Met199Val), and 1 exonic deletion were subsequently identified in 5 families of the follow-up cohort. Conclusions: We report GABRG2 mutations in 5.6% (6/108) of families with FS, with or without associated epilepsy. This study provides evidence that GABRG2 mutations are linked to the FS phenotype, rather than epilepsy, and that loss-of-function of GABAA receptor γ2 subunit is the probable underlying pathogenic mechanism. PMID:27066572

  12. Novel GABRG2 mutations cause familial febrile seizures.

    PubMed

    Boillot, Morgane; Morin-Brureau, Mélanie; Picard, Fabienne; Weckhuysen, Sarah; Lambrecq, Virginie; Minetti, Carlo; Striano, Pasquale; Zara, Federico; Iacomino, Michele; Ishida, Saeko; An-Gourfinkel, Isabelle; Daniau, Mailys; Hardies, Katia; Baulac, Michel; Dulac, Olivier; Leguern, Eric; Nabbout, Rima; Baulac, Stéphanie

    2015-12-01

    To identify the genetic cause in a large family with febrile seizures (FS) and temporal lobe epilepsy (TLE) and subsequently search for additional mutations in a cohort of 107 families with FS, with or without epilepsy. The cohort consisted of 1 large family with FS and TLE, 64 smaller French families recruited through a national French campaign, and 43 Italian families. Molecular analyses consisted of whole-exome sequencing and mutational screening. Exome sequencing revealed a p.Glu402fs*3 mutation in the γ2 subunit of the GABAA receptor gene (GABRG2) in the large family with FS and TLE. Three additional nonsense and frameshift GABRG2 mutations (p.Arg136*, p.Val462fs*33, and p.Pro59fs*12), 1 missense mutation (p.Met199Val), and 1 exonic deletion were subsequently identified in 5 families of the follow-up cohort. We report GABRG2 mutations in 5.6% (6/108) of families with FS, with or without associated epilepsy. This study provides evidence that GABRG2 mutations are linked to the FS phenotype, rather than epilepsy, and that loss-of-function of GABAA receptor γ2 subunit is the probable underlying pathogenic mechanism.

  13. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene.

    PubMed

    Levy-Litan, Varda; Hershkovitz, Eli; Avizov, Luba; Leventhal, Neta; Bercovich, Dani; Chalifa-Caspi, Vered; Manor, Esther; Buriakovsky, Sophia; Hadad, Yair; Goding, James; Parvari, Ruti

    2010-02-12

    Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1. Copyright (c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Comprehensive molecular diagnosis of 67 Chinese Usher syndrome probands: high rate of ethnicity specific mutations in Chinese USH patients.

    PubMed

    Jiang, Lichun; Liang, Xiaofang; Li, Yumei; Wang, Jing; Zaneveld, Jacques Eric; Wang, Hui; Xu, Shan; Wang, Keqing; Wang, Binbin; Chen, Rui; Sui, Ruifang

    2015-09-04

    Usher syndrome (USH) is the most common disease causing combined deafness and blindness. It is predominantly an autosomal recessive genetic disorder with occasionally digenic cases. Molecular diagnosis of USH patients is important for disease management. Few studies have tried to find the genetic cause of USH in Chinese patients. This study was designed to determine the mutation spectrum of Chinese USH patients. We applied next generation sequencing to characterize the mutation spectrum in 67 independent Chinese families with at least one member diagnosed with USH. Blood was collected at Peking Union Medical College Hospital. This cohort is one of the largest USH cohorts reported. We utilized customized panel and whole exome sequencing, variant analysis, Sanger validation and segregation tests to find disease causing mutations in these families. We identified biallelic disease causing mutations in known USH genes in 70 % (49) of our patients. As has been previously reported, MYO7A is the most frequently mutated gene in our USH type I patients while USH2A is the most mutated gene in our USH type II patients. In addition, we identify mutations in CLRN1, DFNB31, GPR98 and PCDH15 for the first time in Chinese USH patients. Together, mutations in CLRN1, DNFB31, GPR98 and PCDH15 account for 11.4 % of disease in our cohort. Interestingly, although the spectrum of disease genes is quite similar between our Chinese patient cohort and other patient cohorts from different (and primarily Caucasian) ethnic backgrounds, the mutations themselves are dramatically different. In particular, 76 % (52/68) of alleles found in this study have never been previously reported. Interestingly, we observed a strong enrichment for severe protein truncating mutations expected to have severe functional consequence on the protein in USH II patients compared to the reported mutation spectrum in RP patients, who often carry partial protein truncating mutations. Our study provides the first comprehensive genetic characterization of a large collection of Chinese USH patients. Up to 90 % of USH patients have disease caused by mutations in known USH disease genes. By combining NGS-based molecular diagnosis and patient clinical information, a more accurate diagnosis, prognosis and personalized treatment of USH patients can be achieved.

  15. Novel FGFR1 mutations in Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism: evidence for the involvement of an alternatively spliced isoform.

    PubMed

    Gonçalves, Catarina; Bastos, Margarida; Pignatelli, Duarte; Borges, Teresa; Aragüés, José M; Fonseca, Fernando; Pereira, Bernardo D; Socorro, Sílvia; Lemos, Manuel C

    2015-11-01

    To determine the prevalence of fibroblast growth factor receptor 1 (FGFR1) mutations and their predicted functional consequences in patients with idiopathic hypogonadotropic hypogonadism (IHH). Cross-sectional study. Multicentric. Fifty unrelated patients with IHH (21 with Kallmann syndrome and 29 with normosmic IHH). None. Patients were screened for mutations in FGFR1. The functional consequences of mutations were predicted by in silico structural and conservation analysis. Heterozygous FGFR1 mutations were identified in six (12%) kindreds. These consisted of frameshift mutations (p.Pro33-Alafs*17 and p.Tyr654*) and missense mutations in the signal peptide (p.Trp4Cys), in the D1 extracellular domain (p.Ser96Cys) and in the cytoplasmic tyrosine kinase domain (p.Met719Val). A missense mutation was identified in the alternatively spliced exon 8A (p.Ala353Thr) that exclusively affects the D3 extracellular domain of FGFR1 isoform IIIb. Structure-based and sequence-based prediction methods and the absence of these variants in 200 normal controls were all consistent with a critical role for the mutations in the activity of the receptor. Oligogenic inheritance (FGFR1/CHD7/PROKR2) was found in one patient. Two FGFR1 isoforms, IIIb and IIIc, result from alternative splicing of exons 8A and 8B, respectively. Loss-of-function of isoform IIIc is a cause of IHH, whereas isoform IIIb is thought to be redundant. Ours is the first report of normosmic IHH associated with a mutation in the alternatively spliced exon 8A and suggests that this disorder can be caused by defects in either of the two alternatively spliced FGFR1 isoforms. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Col4a1 mutations cause progressive retinal neovascular defects and retinopathy

    PubMed Central

    Alavi, Marcel V.; Mao, Mao; Pawlikowski, Bradley T.; Kvezereli, Manana; Duncan, Jacque L.; Libby, Richard T.; John, Simon W. M.; Gould, Douglas B.

    2016-01-01

    Mutations in collagen, type IV, alpha 1 (COL4A1), a major component of basement membranes, cause multisystem disorders in humans and mice. In the eye, these include anterior segment dysgenesis, optic nerve hypoplasia and retinal vascular tortuosity. Here we investigate the retinal pathology in mice carrying dominant-negative Col4a1 mutations. To this end, we examined retinas longitudinally in vivo using fluorescein angiography, funduscopy and optical coherence tomography. We assessed retinal function by electroretinography and studied the retinal ultrastructural pathology. Retinal examinations revealed serous chorioretinopathy, retinal hemorrhages, fibrosis or signs of pathogenic angiogenesis with chorioretinal anastomosis in up to approximately 90% of Col4a1 mutant eyes depending on age and the specific mutation. To identify the cell-type responsible for pathogenesis we generated a conditional Col4a1 mutation and determined that primary vascular defects underlie Col4a1-associated retinopathy. We also found focal activation of Müller cells and increased expression of pro-angiogenic factors in retinas from Col4a1+/Δex41mice. Together, our findings suggest that patients with COL4A1 and COL4A2 mutations may be at elevated risk of retinal hemorrhages and that retinal examinations may be useful for identifying patients with COL4A1 and COL4A2 mutations who are also at elevated risk of hemorrhagic strokes. PMID:26813606

  17. Genotype–phenotype characteristics and baseline natural history of heritable neuropathies caused by mutations in the MPZ gene

    PubMed Central

    Feely, Shawna; Scherer, Steven S.; Herrmann, David N.; Burns, Joshua; Muntoni, Francesco; Li, Jun; Siskind, Carly E.; Day, John W.; Laura, Matilde; Sumner, Charlotte J.; Lloyd, Thomas E.; Ramchandren, Sindhu; Shy, Rosemary R.; Grider, Tiffany; Bacon, Chelsea; Finkel, Richard S.; Yum, Sabrina W.; Moroni, Isabella; Piscosquito, Giuseppe; Pareyson, Davide; Reilly, Mary M.; Shy, Michael E.

    2015-01-01

    We aimed to characterize genotype–phenotype correlations and establish baseline clinical data for peripheral neuropathies caused by mutations in the myelin protein zero (MPZ) gene. MPZ mutations are the second leading cause of Charcot–Marie–Tooth disease type 1. Recent research makes clinical trials for patients with MPZ mutations a realistic possibility. However, the clinical severity varies with different mutations and natural history data on progression is sparse. We present cross-sectional data to begin to define the phenotypic spectrum and clinical baseline of patients with these mutations. A cohort of patients with MPZ gene mutations was identified in 13 centres of the Inherited Neuropathies Consortium - Rare Disease Clinical Research Consortium (INC-RDCRC) between 2009 and 2012 and at Wayne State University between 1996 and 2009. Patient phenotypes were quantified by the Charcot–Marie–Tooth disease neuropathy score version 1 or 2 and the Charcot–Marie–Tooth disease paediatric scale outcome instruments. Genetic testing was performed in all patients and/or in first- or second-degree relatives to document mutation in MPZ gene indicating diagnosis of Charcot–Marie–Tooth disease type 1B. There were 103 patients from 71 families with 47 different MPZ mutations with a mean age of 40 years (range 3–84 years). Patients and mutations were separated into infantile, childhood and adult-onset groups. The infantile onset group had higher Charcot–Marie–Tooth disease neuropathy score version 1 or 2 and slower nerve conductions than the other groups, and severity increased with age. Twenty-three patients had no family history of Charcot–Marie–Tooth disease. Sixty-one patients wore foot/ankle orthoses, 19 required walking assistance or support, and 10 required wheelchairs. There was hearing loss in 21 and scoliosis in 17. Forty-two patients did not begin walking until after 15 months of age. Half of the infantile onset patients then required ambulation aids or wheelchairs for ambulation. Our results demonstrate that virtually all MPZ mutations are associated with specific phenotypes. Early onset (infantile and childhood) phenotypes likely represent developmentally impaired myelination, whereas the adult-onset phenotype reflects axonal degeneration without antecedent demyelination. Data from this cohort of patients will provide the baseline data necessary for clinical trials of patients with Charcot–Marie–Tooth disease caused by MPZ gene mutations. PMID:26310628

  18. Hypogonadotropic Hypogonadism due to Novel FGFR1 Mutations.

    PubMed

    Akkuş, Gamze; Kotan, Leman Damla; Durmaz, Erdem; Mengen, Eda; Turan, İhsan; Ulubay, Ayça; Gürbüz, Fatih; Yüksel, Bilgin; Tetiker, Tamer; Topaloğlu, A Kemal

    2017-06-01

    The underlying genetic etiology of hypogonadotropic hypogonadism (HH) is heterogeneous. Fibroblast growth factor signaling is pivotal in the ontogeny of gonadotropin-releasing hormone neurons. Loss-of-function mutations in FGFR1 gene cause variable HH phenotypes encompassing pubertal delay to idiopathic HH (IHH) or Kallmann syndrome (KS). As FGFR1 mutations are common, recognizing mutations and associated phenotypes may enhance clinical management. Using a candidate gene approach, we screened 52 IHH/KS patients. We identified three novel (IVS3-1G>C and p.W2X, p.R209C) FGFR1 gene mutations. Despite predictive null protein function, patients from the novel mutation families had normosmic IHH without non-reproductive phenotype. These findings further emphasize the great variability of FGFR1 mutation phenotypes in IHH/KS.

  19. A novel mutation in the MYO7A gene is associated with Usher syndrome type 1 in a Chinese family.

    PubMed

    He, Xiaoguang; Peng, Qi; Li, Siping; Zhu, Pengyuan; Wu, Chunqiu; Rao, Chunbao; Lin, Jingqi; Lu, Xiaomei

    2017-08-01

    We aimed to investigate the genetic causes of hearing loss in a Chinese proband with autosomal recessive congenital deafness. The targeted capture of 159 known deafness genes and next-generation sequencing were performed to study the genetic causes of hearing loss in the Chinese family. Sanger sequencing was employed to verify the variant mutations in members of this family. The proband harbored two mutations in the MYO7A gene in the form of compound heterozygosity. She was found to be heterozygous for a novel insertion mutation c.3847_3848 ins TCTG (p.N1285LfsX24) in exon 30 and for the known mutation c.2239_2240delAG (p.R747S fsX16)in exon 19. The novel mutation was absent in the 1000 Genomes Project. These variants were carried in the heterozygous state by the parents and were therefore co-segregated with the genetic disease. Clinical re-assessment, including detailed audiologic and ocular examinations, revealed congenital deafness and retinitis pigmentosa in the proband. Collectively, the combination of audiometric, ophthalmologic and genetic examinations successfully confirmed the phenotype of Usher syndrome type 1 (USH1). This study demonstrates that the novel mutation c.3847_3848insTCTG (p. N1285LfsX24) in compound heterozygosity with c.2239_2240delAG in the MYO7A gene is the main cause of USH1 in the proband. Our study expands the mutational spectrum of MYO7A and provides a foundation for further investigations elucidating the MYO7A-related mechanisms of USH1. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An uncommon phenotype with familial central hypogonadism caused by a novel PROP1 gene mutant truncated in the transactivation domain.

    PubMed

    Reynaud, Rachel; Barlier, Anne; Vallette-Kasic, Sophie; Saveanu, Alexandru; Guillet, Marie-Pierre; Simonin, Gilbert; Enjalbert, Alain; Valensi, Paul; Brue, Thierry

    2005-08-01

    PROP1 gene mutations are usually associated with childhood onset GH and TSH deficiencies, whereas gonadotroph deficiency is diagnosed at pubertal age. We report a novel PROP1 mutation revealed by familial normosmic hypogonadotropic hypogonadism. We performed in vitro transactivation and DNA binding experiments to study functional consequences of this mutation. Three brothers were followed in the Department of Endocrinology of a French university hospital. These patients from a consanguineous kindred were referred for cryptorchidism and/or delayed puberty. Initial investigations revealed hypogonadotropic hypogonadism. One of the patients had psychomotor retardation, intracranial hypertension, and minor renal malformations. The brothers reached normal adult height and developed GH and TSH deficiencies after age 30. A novel homozygous nonsense mutation (W194X) was found in the PROP1 gene, indicating that the protein is truncated in its transactivation domain. Transfection studies confirmed the deleterious effect of this mutation, whose transactivation capacity was only 34.4% of that of the wild-type. Unexpectedly altered DNA-binding properties suggested that the C-terminal end of the factor plays a role in protein-DNA interaction. PROP1 mutations should be considered among the growing number of genetic causes of initially isolated hypogonadotropic hypogonadism. This report extends the phenotype variability associated with PROP1 mutations.

  1. A novel deletion mutation in RS1 gene caused X-linked juvenile retinoschisis in a Chinese family.

    PubMed

    Huang, Y; Mei, L; Gui, B; Su, W; Liang, D; Wu, L; Pan, Q

    2014-11-01

    X-linked juvenile retinoschisis (XLRS), a leading cause of juvenile macular degeneration, is characterized by a spoke-wheel pattern in the macular region of the retina and splitting of the neurosensory retina. This study aimed to identify the underlying genetic defect in a Chinese family with XLRS. The proband underwent complete ophthalmic examinations, including fundus examination, fundus autofluorescence, and optical coherence tomography. DNA extracted from proband and his younger brother was screened for mutations in RS1 gene. The detected RS1 mutation was tested in all available family members and 200 healthy controls. Reduced visual acuity, spoke-wheel pattern at the fovea, and split retina were observed in the proband. A novel frameshift mutation c.206-207delTG in the RS1 gene, leading to a truncated protein (p.L69fs16X), was identified in the proband and his younger brother. This mutation was not found in any unaffected member or in the healthy controls. The mother of the proband was hemizygous for this mutant allele. We identified a novel causative mutation of RS1 in a Chinese family with XLRS. This finding expands the mutation spectrum of RS1 and provides evidence for a phenotype-genotype study in XLRS.

  2. A novel deletion mutation in RS1 gene caused X-linked juvenile retinoschisis in a Chinese family

    PubMed Central

    Huang, Y; Mei, L; Gui, B; Su, W; Liang, D; Wu, L; Pan, Q

    2014-01-01

    Purpose X-linked juvenile retinoschisis (XLRS), a leading cause of juvenile macular degeneration, is characterized by a spoke-wheel pattern in the macular region of the retina and splitting of the neurosensory retina. This study aimed to identify the underlying genetic defect in a Chinese family with XLRS. Methods The proband underwent complete ophthalmic examinations, including fundus examination, fundus autofluorescence, and optical coherence tomography. DNA extracted from proband and his younger brother was screened for mutations in RS1 gene. The detected RS1 mutation was tested in all available family members and 200 healthy controls. Results Reduced visual acuity, spoke-wheel pattern at the fovea, and split retina were observed in the proband. A novel frameshift mutation c.206-207delTG in the RS1 gene, leading to a truncated protein (p.L69fs16X), was identified in the proband and his younger brother. This mutation was not found in any unaffected member or in the healthy controls. The mother of the proband was hemizygous for this mutant allele. Conclusions We identified a novel causative mutation of RS1 in a Chinese family with XLRS. This finding expands the mutation spectrum of RS1 and provides evidence for a phenotype–genotype study in XLRS. PMID:25168411

  3. Kidney adysplasia and variable hydronephrosis, a new mutation affecting the odd-skipped related 1 gene in the mouse, causes variable defects in kidney development and hydronephrosis

    PubMed Central

    Davisson, Muriel T.; Cook, Susan A.; Akeson, Ellen C.; Liu, Don; Heffner, Caleb; Gudis, Polyxeni; Fairfield, Heather

    2015-01-01

    Many genes, including odd-skipped related 1 (Osr1), are involved in regulation of mammalian kidney development. We describe here a new recessive mutation (kidney adysplasia and variable hydronephrosis, kavh) in the mouse that leads to downregulation of Osr1 transcript, causing several kidney defects: agenesis, hypoplasia, and hydronephrosis with variable age of onset. The mutation is closely associated with a reciprocal translocation, T(12;17)4Rk, whose Chromosome 12 breakpoint is upstream from Osr1. The kavh/kavh mutant provides a model to study kidney development and test therapies for hydronephrosis. PMID:25834070

  4. Kidney adysplasia and variable hydronephrosis, a new mutation affecting the odd-skipped related 1 gene in the mouse, causes variable defects in kidney development and hydronephrosis.

    PubMed

    Davisson, Muriel T; Cook, Susan A; Akeson, Ellen C; Liu, Don; Heffner, Caleb; Gudis, Polyxeni; Fairfield, Heather; Murray, Stephen A

    2015-06-15

    Many genes, including odd-skipped related 1 (Osr1), are involved in regulation of mammalian kidney development. We describe here a new recessive mutation (kidney adysplasia and variable hydronephrosis, kavh) in the mouse that leads to downregulation of Osr1 transcript, causing several kidney defects: agenesis, hypoplasia, and hydronephrosis with variable age of onset. The mutation is closely associated with a reciprocal translocation, T(12;17)4Rk, whose Chromosome 12 breakpoint is upstream from Osr1. The kavh/kavh mutant provides a model to study kidney development and test therapies for hydronephrosis. Copyright © 2015 the American Physiological Society.

  5. Expanding the mutational spectrum in Johanson-Blizzard syndrome: identification of whole exon deletions and duplications in the UBR1 gene by multiplex ligation-dependent probe amplification analysis.

    PubMed

    Sukalo, Maja; Schäflein, Eva; Schanze, Ina; Everman, David B; Rezaei, Nima; Argente, Jesús; Lorda-Sanchez, Isabel; Deshpande, Charu; Takahashi, Tsutomu; Kleger, Alexander; Zenker, Martin

    2017-11-01

    Johanson-Blizzard syndrome (JBS, MIM #243800) is a very rare autosomal recessive disorder characterized by exocrine pancreatic insufficiency, nasal wing hypoplasia, hypodontia, and other abnormalities. JBS is caused by mutations of the UBR1 gene (MIM *605981), encoding a ubiquitin ligase of the N-end rule pathway. Molecular findings in a total of 65 unrelated patients with a clinical diagnosis of JBS who were previously screened for UBR1 mutations by Sanger sequencing were reviewed and cases lacking a disease-causing UBR1 mutation on either one or both alleles were included in this study. In order to discover mutations that are not detectable by Sanger sequencing, we designed a probe set for multiplex ligation-dependent probe amplification (MLPA) analysis of the UBR1 gene and analyzed the copy number status of all 47 UBR1 exons. Our previous studies using Sanger sequencing could detect mutations in 93.1% of 130 disease-associated UBR1 alleles. Six patients with a highly suggestive clinical diagnosis of JBS and unsolved genotype were included in this study. MLPA analysis detected six alleles harboring exon deletions/duplications, thereby raising the mutation detection rate in the entire cohort to 97.7% (127/130 alleles). We conclude that single or multi-exon deletions or duplications account for a substantial proportion of JBS-associated UBR1 mutations. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  6. FOXC2 disease-mutations identified in lymphedema-distichiasis patients cause both loss and gain of protein function

    PubMed Central

    Tavian, Daniela; Missaglia, Sara; Maltese, Paolo E.; Michelini, Sandro; Fiorentino, Alessandro; Ricci, Maurizio; Serrani, Roberta; Walter, Michael A.; Bertelli, Matteo

    2016-01-01

    Dominant mutations in the FOXC2 gene cause a form of lymphedema primarily of the limbs that usually develops at or after puberty. In 90-95% of patients, lymphedema is accompanied by distichiasis. FOXC2 is a member of the forkhead/winged-helix family of transcription factors and plays essential roles in different developmental pathways and physiological processes. We previously described six unrelated families with primary lymphedema-distichiasis in which patients showed different FOXC2 mutations located outside of the forkhead domain. Of those, four were missense mutations, one a frameshift mutation, and the last a stop mutation. To assess their pathogenic potential, we have now examined the subcellular localization and the transactivation activity of the mutated FOXC2 proteins. All six FOXC2 mutant proteins were able to localize into the nucleus; however, the frameshift truncated protein appeared to be sequestered into nuclear aggregates. A reduction in the ability to activate FOXC1/FOXC2 response elements was detected in 50% of mutations, while the remaining ones caused an increase of protein transactivation activity. Our data reveal that either a complete loss or a significant gain of FOXC2 function can cause a perturbation of lymphatic vessel formation leading to lymphedema. PMID:27276711

  7. Distinct effects of tubulin isotype mutations on neurite growth in Caenorhabditis elegans

    PubMed Central

    Zheng, Chaogu; Diaz-Cuadros, Margarete; Nguyen, Ken C. Q.; Hall, David H.; Chalfie, Martin

    2017-01-01

    Tubulins, the building block of microtubules (MTs), play a critical role in both supporting and regulating neurite growth. Eukaryotic genomes contain multiple tubulin isotypes, and their missense mutations cause a range of neurodevelopmental defects. Using the Caenorhabditis elegans touch receptor neurons, we analyzed the effects of 67 tubulin missense mutations on neurite growth. Three types of mutations emerged: 1) loss-of-function mutations, which cause mild defects in neurite growth; 2) antimorphic mutations, which map to the GTP binding site and intradimer and interdimer interfaces, significantly reduce MT stability, and cause severe neurite growth defects; and 3) neomorphic mutations, which map to the exterior surface, increase MT stability, and cause ectopic neurite growth. Structure-function analysis reveals a causal relationship between tubulin structure and MT stability. This stability affects neuronal morphogenesis. As part of this analysis, we engineered several disease-associated human tubulin mutations into C. elegans genes and examined their impact on neuronal development at the cellular level. We also discovered an α-tubulin (TBA-7) that appears to destabilize MTs. Loss of TBA-7 led to the formation of hyperstable MTs and the generation of ectopic neurites; the lack of potential sites for polyamination and polyglutamination on TBA-7 may be responsible for this destabilization. PMID:28835377

  8. Eight previously unidentified mutations found in the OA1 ocular albinism gene

    PubMed Central

    Mayeur, Hélène; Roche, Olivier; Vêtu, Christelle; Jaliffa, Carolina; Marchant, Dominique; Dollfus, Hélène; Bonneau, Dominique; Munier, Francis L; Schorderet, Daniel F; Levin, Alex V; Héon, Elise; Sutherland, Joanne; Lacombe, Didier; Said, Edith; Mezer, Eedy; Kaplan, Josseline; Dufier, Jean-Louis; Marsac, Cécile; Menasche, Maurice; Abitbol, Marc

    2006-01-01

    Background Ocular albinism type 1 (OA1) is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. Methods The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. Results We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. Conclusion The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand. PMID:16646960

  9. Genetics Home Reference: Stormorken syndrome

    MedlinePlus

    ... Genetic Changes Stormorken syndrome is caused by a mutation in the STIM1 gene. The protein produced from ... and division, and immune function. The STIM1 gene mutation involved in Stormorken syndrome leads to production of ...

  10. Gain-of-function profilin 1 mutations linked to familial amyotrophic lateral sclerosis cause seed-dependent intracellular TDP-43 aggregation.

    PubMed

    Tanaka, Yoshinori; Nonaka, Takashi; Suzuki, Genjiro; Kametani, Fuyuki; Hasegawa, Masato

    2016-04-01

    Profilin 1 (PFN1) is an actin monomer-binding protein essential for regulating cytoskeletal dynamics in all cell types. Recently, mutations in the PFN1 gene have been identified as a cause of familial amyotrophic lateral sclerosis (ALS). The co-aggregation of PFN1 bearing mutations that cause ALS with TDP-43 (a key molecule in both sporadic and some familial forms of ALS), together with the classical TDP-43 pathology detected in post-mortem tissues of patients with autosomal dominant PFN1 mutation, imply that gain-of-toxic-function of PFN1 mutants is associated with the onset of ALS. However, it remains unknown how PFN1 mutants cause ALS. We found mutant PFN1 that causes ALS formed cytoplasmic aggregates positive for ubiquitin and p62, and these aggregates sequestered endogenous TDP-43. In cells harboring PFN1 aggregates, formation of aggresome-like structures was inhibited in the presence of proteasome inhibitor, and conversion of LC3-I to LC3-II was suppressed in the presence of lysosome inhibitor. Further, insoluble TDP-43 was increased in both cases. Co-expression of ALS-linked mutant PFN1 and TDP-43 increased insoluble and phosphorylated TDP-43 levels. The C-terminal region of TDP-43, essential for aggregation of TDP-43, was also indispensable for the interaction with PFN1. Interestingly, insoluble fractions prepared from cells expressing ALS-linked mutant PFN1 functioned as a seed to induce accumulation and phosphorylation of TDP-43, indicating that TDP-43 accumulated in the presence of the PFN1 mutants is converted to prion-like species. These findings provide new insight into the mechanisms of neurodegeneration in ALS, suggesting that gain-of-toxic-function PFN1 gene mutation leads to conformational change of TDP-43. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Maturity-onset diabetes of the young (MODY): an update.

    PubMed

    Anık, Ahmet; Çatlı, Gönül; Abacı, Ayhan; Böber, Ece

    2015-03-01

    Maturity-onset diabetes of the young (MODY) is a group of monogenic disorders characterized by autosomal dominantly inherited non-insulin dependent form of diabetes classically presenting in adolescence or young adults before the age of 25 years. MODY is a rare cause of diabetes (1% of all cases) and is frequently misdiagnosed as Type 1 diabetes (T1DM) or Type 2 diabetes (T2DM). A precise molecular diagnosis is essential because it leads to optimal treatment of the patients and allows early diagnosis for their asymptomatic family members. Mutations in the glucokinase (GCK) (MODY 2) and hepatocyte nuclear factor (HNF)1A/4A (MODY 3 and MODY 1) genes are the most common causes of MODY. GCK mutations cause a mild, asymptomatic, and stable fasting hyperglycemia usually requiring no specific treatment. However, mutations in the HNF1A and HNF4A cause a progressive pancreatic β-cell dysfunction and hyperglycemia that can result in microvascular complications. Sulfonylureas are effective in these patients by acting on adenosine triphosphate (ATP)-sensitive potassium channels, although insulin therapy may be required later in life. Mutations in the HNF1B (MODY 5) is associated with pancreatic agenesis, renal abnormalities, genital tract malformations, and liver dysfunction. Compared to MODY 1, 2, 3, and 5, the remaining subtypes of MODY have a much lower prevalence. In this review, we summarize the main clinical and laboratory characteristics of the common and rarer causes of MODY.

  12. Two Finnish USH1B patients with three novel mutations in myosin VIIA.

    PubMed

    Vastinsalo, Hanna; Isosomppi, Juha; Aittakorpi, Anne; Sankila, Eeva-Marja

    2006-09-21

    Usher syndrome (USH) is an autosomal recessive disorder resulting in retinal degeneration and sensorineural deafness caused by mutations in at least 10 gene loci. USH is divided into three main clinical types: USH1 (33-44%), USH2 (56-67%), and USH3. Worldwide, USH1 and USH2 account for most of the Usher syndrome cases with rare occurrence of USH3. In Finland, however, USH3 is the most common type (40%), explained by genetic and geographical isolation accompanied with a founder mutation, while USH1 is estimated to comprise 34% and USH2 12% of all USH cases. We examined two unrelated Finnish USH1 patients by sequencing. We found three new myosin VIIA (MYO7A) mutations: p.K923AfsX8, p.Q1896X, and p.E1349K. The p.K923AfsX8 mutation was present in both patients as well as in one of 200 Finnish control chromosomes. This is the first molecular genetic study of USH1 in Finland. We have found three new pathological mutations causing either premature termination of translation or replacement of an evolutionary conserved MYO7A amino acid.

  13. Maternal segmental disomy in Leigh syndrome with cytochrome c oxidase deficiency caused by homozygous SURF1 mutation.

    PubMed

    van Riesen, A K J; Antonicka, H; Ohlenbusch, A; Shoubridge, E A; Wilichowski, E K G

    2006-04-01

    Cytochrome c oxidase deficiency (COX) is the most frequent cause of Leigh syndrome (LS), a mitochondrial subacute necrotizing encephalomyelopathy. Most of these LS (COX-) patients show mutations in SURF1 on chromosome 9 (9q34), which encodes a protein essential for the assembly of the COX complex. We describe a family whose first-born boy developed characteristic features of LS. Severe COX deficiency in muscle was caused by a novel homozygous nonsense mutation in SURF1. Segregation analysis of this mutation in the family was incompatible with autosomal recessive inheritance but consistent with a maternal disomy. Haplotype analysis of microsatellite markers confirmed isodisomy involving nearly the complete long arm of chromosome 9 (9q21-9tel). No additional physical abnormalities were present in the boy, suggesting that there are no imprinted genes on the long arm of chromosome 9 which are crucial for developmental processes. This case of segmental isodisomy illustrates that genotyping of parents is crucial for correct genetic counseling.

  14. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms

    PubMed Central

    Panizzi, Jennifer R.; Becker-Heck, Anita; Castleman, Victoria H.; Al-Mutairi, Dalal; Liu, Yan; Loges, Niki T.; Pathak, Narendra; Austin-Tse, Christina; Sheridan, Eamonn; Schmidts, Miriam; Olbrich, Heike; Werner, Claudius; Häffner, Karsten; Hellman, Nathan; Chodhari, Rahul; Gupta, Amar; Kramer-Zucker, Albrecht; Olale, Felix; Burdine, Rebecca D.; Schier, Alexander F.; O’Callaghan, Christopher; Chung, Eddie MK; Reinhardt, Richard; Mitchison, Hannah M.; King, Stephen M.; Omran, Heymut; Drummond, Iain A.

    2012-01-01

    Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation, and to establish laterality1. Cilia motility defects cause Primary Ciliary Dyskinesia (PCD, MIM 242650), a disorder affecting 1:15-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive cilia bending2. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD linked loci3. Here we show that the zebrafish cilia paralysis mutant schmalhanstn222 (smh) mutant encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a regulated gene. Screening 146 unrelated PCD families identified patients in six families with reduced outer dynein arms, carrying mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103 functions as a tightly bound, axoneme-associated protein. The results identify Ccdc103 as a novel dynein arm attachment factor that when mutated causes Primary Ciliary Dyskinesia. PMID:22581229

  15. Impact of disease-causing mutations on inter-domain interactions in cMyBP-C: a steered molecular dynamics study.

    PubMed

    Krishnamoorthy, Navaneethakrishnan; Gajendrarao, Poornima; Olivotto, Iacopo; Yacoub, Magdi

    2017-07-01

    The molecular interactions of the sarcomeric proteins are essential in the regulation of various cardiac functions. Mutations in the gene MYBPC3 coding for cardiac myosin-binding protein-C (cMyBP-C), a multi-domain protein, are the most common cause of hypertrophic cardiomyopathy (HCM). The N-terminal complex, C1-motif-C2 is a central region in cMyBP-C for the regulation of cardiac muscle contraction. However, the mechanism of binding/unbinding of this complex during health and disease is unknown. Here, we study possible mechanisms of unbinding using steered molecular dynamics simulations for the complex in the wild type, in single mutations (E258K in C1, E441K in C2), as well as in a double mutation (E258K in C1 + E441K in C2), which are associated with severe HCM. The observed molecular events and the calculation of force utilized for the unbinding suggest the following: (i) double mutation can encourage the formation of rigid complex that required large amount of force and long-time to unbind, (ii) C1 appears to start to unbind ahead of C2 regardless of the mutation, and (iii) unbinding of C2 requires larger amount of force than C1. This molecular insight suggests that key HCM-causing mutations might significantly modify the native affinity required for the assembly of the domains in cMyBP-C, which is essential for normal cardiac function.

  16. Autosomal dominant polycystic kidney disease in a family with mosaicism and hypomorphic allele.

    PubMed

    Reiterová, Jana; Štekrová, Jitka; Merta, Miroslav; Kotlas, Jaroslav; Elišáková, Veronika; Lněnička, Petr; Korabečná, Marie; Kohoutová, Milada; Tesař, Vladimír

    2013-03-15

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of inherited kidney disease that results in renal failure. ADPKD is a systemic disorder with cysts and connective tissue abnormalities involving many organs. ADPKD caused by mutations in PKD1 gene is significantly more severe than the cases caused by PKD2 gene mutations. The large intra-familial variability of ADPKD highlights a role for genetic background. Here we report a case of ADPKD family initially appearing unlinked to the PKD1 or PKD2 loci and the influence of mosaicism and hypomorphic allele on the variability of the clinical course of the disease. A grandmother with the PKD1 gene mutation in mosaicism (p.Val1105ArgfsX4) and with mild clinical course of ADPKD (end stage renal failure at the age of 77) seemed to have ADPKD because of PKD2 gene mutation. On the other hand, her grandson had a severe clinical course (end stage renal disease at the age of 45) in spite of the early treatment of mild hypertension. There was found by mutational analysis of PKD genes that the severe clinical course was caused by PKD1 gene frameshifting mutation inherited from his father and mildly affected grandmother in combination with inherited hypomorphic PKD1 allele with described missense mutation (p.Thr2250Met) from his clinically healthy mother. The sister with two cysts and with PKD1 hypomorphic allele became the kidney donor to her severely affected brother. We present the first case of ADPKD with the influence of mosaicism and hypomorphic allele of the PKD1 gene on clinical course of ADPKD in one family. Moreover, this report illustrates the role of molecular genetic testing in assessing young related kidney donors for patients with ADPKD.

  17. A Mutation in TTF1/NKX2.1 Is Associated With Familial Neuroendocrine Cell Hyperplasia of Infancy

    PubMed Central

    Young, Lisa R.; Deutsch, Gail H.; Bokulic, Ronald E.; Brody, Alan S.

    2013-01-01

    Background: Neuroendocrine cell hyperplasia of infancy (NEHI) is a childhood diffuse lung disease of unknown etiology. We investigated the mechanism for lung disease in a subject whose clinical, imaging, and lung biopsy specimen findings were consistent with NEHI; the subject’s extended family and eight other unrelated patients with NEHI were also investigated. Methods: The proband’s lung biopsy specimen (at age 7 months) and serial CT scans were diagnostic of NEHI. Her mother, an aunt, an uncle, and two first cousins had failure to thrive in infancy and chronic respiratory symptoms that improved with age. Genes associated with autosomal-dominant forms of childhood interstitial lung disease were sequenced. Results: A heterozygous NKX2.1 mutation was identified in the proband and the four other adult family members with histories of childhood lung disease. The mutation results in a nonconservative amino acid substitution in the homeodomain in a codon extensively conserved through evolution. None of these individuals have thyroid disease or movement disorders. NKX2.1 mutations were not identified by sequence analysis in eight other unrelated subjects with NEHI. Conclusions: The nature of the mutation and its segregation with disease support that it is disease-causing. Previously reported NKX2.1 mutations have been associated with “brain-thyroid-lung” syndrome and a spectrum of more severe pulmonary phenotypes. We conclude that genetic mechanisms may cause NEHI and that NKX2.1 mutations may result in, but are not the predominant cause of, this phenotype. We speculate that altered expression of NKX2.1 target genes other than those in the surfactant system may be responsible for the pulmonary pathophysiology of NEHI. PMID:23787483

  18. Osteogenesis imperfecta: recent findings shed new light on this once well-understood condition.

    PubMed

    Basel, Donald; Steiner, Robert D

    2009-06-01

    Osteogenesis imperfecta is a systemic heritable disorder of connective tissue whose cardinal manifestation is bone fragility. In approximately 90% of individuals with osteogenesis imperfecta, mutations in either of the genes encoding the pro-alpha1 or pro-alpha2 chains of type I collagen (COL1A1 or COL1A2) can be identified. Of those without collagen mutations, a number of them will have mutations involving the enzyme complex responsible for posttranslational hydroxylation of the position 3 proline residue of COL1A1. Two of the genes encoding proteins involved in that enzyme complex, LEPRE1 and cartilage-associated protein, when mutated have been shown to cause autosomal recessive osteogenesis imperfecta, which has a moderate to severe clinical phenotype, often indistinguishable from osteogenesis imperfecta types II or III. Mutations in COL1A1 or COL1A2 which result in an abnormal protein still capable of forming a triple helix cause a more severe phenotype than mutations that lead to decreased collagen production as a result of the dominant negative effect mediated by continuous protein turnover. The current standard of care includes a multidisciplinary approach with surgical intervention when necessary, proactive physiotherapy, and consideration for the use of bisphosphonates all in attempts to improve quality of life.

  19. Missense mutation T485S alters NBCe1-A electrogenicity causing proximal renal tubular acidosis

    PubMed Central

    Shao, Xuesi M.; Kao, Liyo; Azimov, Rustam; Weinstein, Alan M.; Newman, Debra; Liu, Weixin; Kurtz, Ira

    2013-01-01

    Mutations in SLC4A4, the gene encoding the electrogenic Na+-HCO3− cotransporter NBCe1, cause severe proximal renal tubular acidosis (pRTA), growth retardation, decreased IQ, and eye and teeth abnormalities. Among the known NBCe1 mutations, the disease-causing mechanism of the T485S (NBCe1-A numbering) mutation is intriguing because the substituted amino acid, serine, is structurally and chemically similar to threonine. In this study, we performed intracellular pH and whole cell patch-clamp measurements to investigate the base transport and electrogenic properties of NBCe1-A-T485S in mammalian HEK 293 cells. Our results demonstrated that Ser substitution of Thr485 decreased base transport by ∼50%, and importantly, converted NBCe1-A from an electrogenic to an electroneutral transporter. Aqueous accessibility analysis using sulfhydryl reactive reagents indicated that Thr485 likely resides in an NBCe1-A ion interaction site. This critical location is also supported by the finding that G486R (a pRTA causing mutation) alters the position of Thr485 in NBCe1-A thereby impairing its transport function. By using NO3− as a surrogate ion for CO32−, our result indicated that NBCe1-A mediates electrogenic Na+-CO32− cotransport when functioning with a 1:2 charge transport stoichiometry. In contrast, electroneutral NBCe1-T485S is unable to transport NO3−, compatible with the hypothesis that it mediates Na+-HCO3− cotransport. In patients, NBCe1-A-T485S is predicted to transport Na+-HCO3− in the reverse direction from blood into proximal tubule cells thereby impairing transepithelial HCO3− absorption, possibly representing a new pathogenic mechanism for generating human pRTA. PMID:23636456

  20. Hereditary Angioedema Nationwide Study in Slovenia Reveals Four Novel Mutations in SERPING1 Gene

    PubMed Central

    Rijavec, Matija; Korošec, Peter; Šilar, Mira; Zidarn, Mihaela; Miljković, Jovan; Košnik, Mitja

    2013-01-01

    Hereditary angioedema (HAE) is a rare autosomal dominant disease characterized by swelling of the face, lips, tongue, larynx, genitalia, or extremities, with abdominal pain caused by intra-abdominal edema. HAE is caused by mutations affecting the C1 inhibitor gene, SERPING1, resulting in low levels of C1 inhibitor (Type I HAE) or normal levels of ineffective C1 inhibitor (Type II HAE). A nationwide survey identified nine unrelated families with HAE in Slovenia, among whom 17 individuals from eight families were recruited for genetic analyses. A diagnosis of HAE was established in the presence of clinical and laboratory criteria (low C1 inhibitor antigenic levels and/or function), followed up by a positive family history. Genetic studies were carried out using PCR and sequencing to detect SERPING1 mutations in promoter, noncoding exon 1, the 7 coding exons, and exon-intron boundaries. Multiplex ligation-dependent probe amplification was performed in order to search for large deletions/duplications in SERPING1 gene. A mutation responsible for HAE was identified in patients from seven families with the disease. In HAE type I families, one previously reported substitution (Gln67Stop, c.265C>T) and four novel mutations were identified. The new mutations included two missense substitutions, Ser128Phe (c.449C>T), and Glu429Lys (c.1351G>A), together with two frameshift mutations, indel (c.49delGinsTT) and deletion (c.593_594delCT). Both families with HAE type II harbored the two well-known substitutions affecting the arginyl residue at the reactive center in exon 8, Arg444Cys (c.1396C>T) and Arg444His (c.1397G>A), respectively. In one patient only the homozygous variant g.566T>C (c.-21T>C) was identified. Our study identified four novel mutations in the Slovenian HAE population, highlighting the heterogeneity of mutations in the SERPING1 gene causing C1 inhibitor deficiency and HAE. In a single patient with HAE a homozygous variant g.566T>C (c.-21T>C) might be responsible for the disease. PMID:23437219

  1. Hereditary angioedema nationwide study in Slovenia reveals four novel mutations in SERPING1 gene.

    PubMed

    Rijavec, Matija; Korošec, Peter; Šilar, Mira; Zidarn, Mihaela; Miljković, Jovan; Košnik, Mitja

    2013-01-01

    Hereditary angioedema (HAE) is a rare autosomal dominant disease characterized by swelling of the face, lips, tongue, larynx, genitalia, or extremities, with abdominal pain caused by intra-abdominal edema. HAE is caused by mutations affecting the C1 inhibitor gene, SERPING1, resulting in low levels of C1 inhibitor (Type I HAE) or normal levels of ineffective C1 inhibitor (Type II HAE). A nationwide survey identified nine unrelated families with HAE in Slovenia, among whom 17 individuals from eight families were recruited for genetic analyses. A diagnosis of HAE was established in the presence of clinical and laboratory criteria (low C1 inhibitor antigenic levels and/or function), followed up by a positive family history. Genetic studies were carried out using PCR and sequencing to detect SERPING1 mutations in promoter, noncoding exon 1, the 7 coding exons, and exon-intron boundaries. Multiplex ligation-dependent probe amplification was performed in order to search for large deletions/duplications in SERPING1 gene. A mutation responsible for HAE was identified in patients from seven families with the disease. In HAE type I families, one previously reported substitution (Gln67Stop, c.265C>T) and four novel mutations were identified. The new mutations included two missense substitutions, Ser128Phe (c.449C>T), and Glu429Lys (c.1351G>A), together with two frameshift mutations, indel (c.49delGinsTT) and deletion (c.593_594delCT). Both families with HAE type II harbored the two well-known substitutions affecting the arginyl residue at the reactive center in exon 8, Arg444Cys (c.1396C>T) and Arg444His (c.1397G>A), respectively. In one patient only the homozygous variant g.566T>C (c.-21T>C) was identified. Our study identified four novel mutations in the Slovenian HAE population, highlighting the heterogeneity of mutations in the SERPING1 gene causing C1 inhibitor deficiency and HAE. In a single patient with HAE a homozygous variant g.566T>C (c.-21T>C) might be responsible for the disease.

  2. STAR splicing mutations cause the severe phenotype of lipoid congenital adrenal hyperplasia: insights from a novel splice mutation and review of reported cases.

    PubMed

    Camats, Núria; Pandey, Amit V; Fernández-Cancio, Mónica; Fernández, Juan M; Ortega, Ana M; Udhane, Sameer; Andaluz, Pilar; Audí, Laura; Flück, Christa E

    2014-02-01

    The steroidogenic acute regulatory protein (StAR) transports cholesterol to the mitochondria for steroidogenesis. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH) which is characterized by impaired synthesis of adrenal and gonadal steroids causing adrenal insufficiency, 46,XY disorder of sex development (DSD) and failure of pubertal development. Partial loss of StAR activity may cause adrenal insufficiency only. A newborn girl was admitted for mild dehydration, hyponatremia, hyperkalemia and hypoglycaemia and had normal external female genitalia without hyperpigmentation. Plasma cortisol, 17OH-progesterone, DHEA-S, androstendione and aldosterone were low, while ACTH and plasma renin activity were elevated, consistent with the diagnosis of primary adrenal insufficiency. Imaging showed normal adrenals, and cytogenetics revealed a 46,XX karyotype. She was treated with fluids, hydrocortisone and fludrocortisone. Genetic studies revealed a novel homozygous STAR mutation in the 3' acceptor splice site of intron 4, c.466-1G>A (IVS4-1G>A). To test whether this mutation would affect splicing, we performed a minigene experiment with a plasmid construct containing wild-type or mutant StAR gDNA of exons-introns 4-6 in COS-1 cells. The splicing was assessed on total RNA using RT-PCR for STAR cDNAs. The mutant STAR minigene skipped exon 5 completely and changed the reading frame. Thus, it is predicted to produce an aberrant and shorter protein (p.V156GfsX19). Computational analysis revealed that this mutant protein lacks wild-type exons 5-7 which are essential for StAR-cholesterol interaction. STAR c.466-1A skips exon 5 and causes a dramatic change in the C-terminal sequence of the protein, which is essential for StAR-cholesterol interaction. This splicing mutation is a loss-of-function mutation explaining the severe phenotype of our patient. Thus far, all reported splicing mutations of STAR cause a severe impairment of protein function and phenotype. © 2013 John Wiley & Sons Ltd.

  3. Investigation of magnetic order in SmTr2Zn20 (Tr = Fe, Co, Ru) and SmTr2Cd20 (Tr = Ni, Pd)

    NASA Astrophysics Data System (ADS)

    Yazici, Duygu; White, B. D.; Ho, P.-C.; Kanchanavatee, N.; Huang, K.; Dilley, N. R.; Maple, M. B.

    2015-03-01

    Single crystals of the cage compounds Sm Tr 2Zn20 (Tr = Fe, Co, Ru) and Sm Tr 2Cd20 (Tr = Ni, Pd) have been investigated by means of electrical resistivity, magnetization, and specific heat measurements. The compounds SmFe2Zn20, SmRu2Zn20,andSmNi2Cd20 exhibit ferromagnetic order with Curie temperatures of TC = 47.4 K, 7.6 K, and 7.5 K, respectively, whereas SmPd2Cd20 is an antiferromagnet with a Néel temperature of TN = 3.4 K. No evidence for magnetic order is observed in SmCo2Zn20 down to 110 mK. The Sommerfeld coefficients γ are found to be 57 mJ/mol-K2 for SmFe2Zn20, 79.5 mJ/mol-K2 for SmCo2Zn20, 258 mJ/mol-K2 for SmRu2Zn20, 165 mJ/mol-K2 for SmNi2Cd20, and 208 mJ/mol-K2 for SmPd2Cd20. Enhanced values of Sommerfeld coefficients γ and a quadratic temperature dependence of the electrical resistivity at low temperature for SmRu2Zn20andSmPd2Cd20 suggest an enhancement of the quasiparticle masses due to hybridization between localized 4 f and conduction electron states. Research at UCSD was supported by the U.S. DOE under Grant No. DE-FG02-04-ER46105 and the U.S. NSF under Award Grant No. DMR 1206553. Research at California State University, Fresno was supported by the U.S. NSF under Grant No. DMR 1104544.

  4. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations

    PubMed Central

    Vogel, Tiphanie P.; Forbes, Lisa; Ma, Chi A.; Stray-Pedersen, Asbjørg; Niemela, Julie E.; Lyons, Jonathan J.; Engelhardt, Karin R.; Zhang, Yu; Topcagic, Nermina; Roberson, Elisha D. O.; Matthews, Helen; Verbsky, James W.; Dasu, Trivikram; Vargas-Hernandez, Alexander; Varghese, Nidhy; McClain, Kenneth L.; Karam, Lina B.; Nahmod, Karen; Makedonas, George; Mace, Emily M.; Sorte, Hanne S.; Perminow, Gøri; Rao, V. Koneti; O’Connell, Michael P.; Price, Susan; Su, Helen C.; Butrick, Morgan; McElwee, Joshua; Hughes, Jason D.; Willet, Joseph; Swan, David; Xu, Yaobo; Santibanez-Koref, Mauro; Slowik, Voytek; Dinwiddie, Darrell L.; Ciaccio, Christina E.; Saunders, Carol J.; Septer, Seth; Kingsmore, Stephen F.; White, Andrew J.; Cant, Andrew J.; Hambleton, Sophie

    2015-01-01

    Germline loss-of-function mutations in the transcription factor signal transducer and activator of transcription 3 (STAT3) cause immunodeficiency, whereas somatic gain-of-function mutations in STAT3 are associated with large granular lymphocytic leukemic, myelodysplastic syndrome, and aplastic anemia. Recently, germline mutations in STAT3 have also been associated with autoimmune disease. Here, we report on 13 individuals from 10 families with lymphoproliferation and early-onset solid-organ autoimmunity associated with 9 different germline heterozygous mutations in STAT3. Patients exhibited a variety of clinical features, with most having lymphadenopathy, autoimmune cytopenias, multiorgan autoimmunity (lung, gastrointestinal, hepatic, and/or endocrine dysfunction), infections, and short stature. Functional analyses demonstrate that these mutations confer a gain-of-function in STAT3 leading to secondary defects in STAT5 and STAT1 phosphorylation and the regulatory T-cell compartment. Treatment targeting a cytokine pathway that signals through STAT3 led to clinical improvement in 1 patient, suggesting a potential therapeutic option for such patients. These results suggest that there is a broad range of autoimmunity caused by germline STAT3 gain-of-function mutations, and that hematologic autoimmunity is a major component of this newly described disorder. Some patients for this study were enrolled in a trial registered at www.clinicaltrials.gov as #NCT00001350. PMID:25359994

  5. Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement

    PubMed Central

    Sun, Yu; Bak, Beata; Schoenmakers, Nadia; van Trotsenburg, A.S. Paul; Oostdijk, Wilma; Voshol, Peter; Cambridge, Emma; White, Jacqueline K.; le Tissier, Paul; Gharavy, S. Neda Mousavy; Martinez-Barbera, Juan P.; Stokvis-Brantsma, Wilhelmina H.; Vulsma, Thomas; Kempers, Marlies J.; Persani, Luca; Campi, Irene; Bonomi, Marco; Beck-Peccoz, Paolo; Zhu, Hongdong; Davis, Timothy M.E.; Hokken-Koelega, Anita C.S.; Del Blanco, Daria Gorbenko; Rangasami, Jayanti J.; Ruivenkamp, Claudia A.L.; Laros, Jeroen F.J.; Kriek, Marjolein; Kant, Sarina G.; Bosch, Cathy A.J.; Biermasz, Nienke R.; Appelman-Dijkstra, Natasha M.; Corssmit, Eleonora P.; Hovens, Guido C.J.; Pereira, Alberto M.; den Dunnen, Johan T.; Wade, Michael G.; Breuning, Martijn H.; Hennekam, Raoul C.; Chatterjee, Krishna; Dattani, Mehul T.; Wit, Jan M.; Bernard, Daniel J.

    2012-01-01

    Congenital central hypothyroidism occurs either in isolation or in conjunction with other pituitary hormone deficits. Using exome and candidate gene sequencing, we identified eight distinct mutations and two deletions in IGSF1 in males from eleven unrelated families with central hypothyroidism, testicular enlargement, and variably low prolactin concentrations. IGSF1 is a membrane glycoprotein highly expressed in the anterior pituitary gland and the identified mutations impair its trafficking to the cell surface in heterologous cells. Igsf1-deficient male mice show diminished pituitary and serum thyroid-stimulating hormone (TSH) concentrations, reduced pituitary thyrotropin-releasing hormone (TRH) receptor expression, decreased triiodothyronine concentrations, and increased body mass. Collectively, our observations delineate a novel X-linked disorder in which loss-of-function mutations in IGSF1 cause central hypothyroidism, likely secondary to an associated impairment in pituitary TRH signaling. PMID:23143598

  6. A new nonsense mutation in the NF1 gene with neurofibromatosis-Noonan syndrome phenotype.

    PubMed

    Yimenicioğlu, Sevgi; Yakut, Ayten; Karaer, Kadri; Zenker, Martin; Ekici, Arzu; Carman, Kürşat Bora

    2012-12-01

    Neurofibromatosis-Noonan syndrome is a rare autosomal dominant disorder which combines neurofibromatosis type 1 (NF1) features with Noonan syndrome. NF1 gene mutations are reported in the majority of these patients. Sequence analysis of the established genes for Noonan syndrome revealed no mutation; a heterozygous NF1 point mutation c.7549C>T in exon 51, creating a premature stop codon (p.R2517X), had been demonstrated. Neurofibromatosis-Noonan syndrome recently has been considered a subtype of NF1 and caused by different NF1 mutations. We report the case of a 14-year-old boy with neurofibromatosis type 1 with Noonan-like features, who complained of headache with triventricular hydrocephaly and a heterozygous NF1 point mutation c.7549C>T in exon 51.

  7. A large deletion in GPR98 causes type IIC Usher syndrome in male and female members of an Iranian family.

    PubMed

    Hilgert, N; Kahrizi, K; Dieltjens, N; Bazazzadegan, N; Najmabadi, H; Smith, R J H; Van Camp, G

    2009-04-01

    Usher syndrome (USH) is a clinically and genetically heterogeneous disease. The three recognised clinical phenotypes (types I, II and III; USH1, USH2 and USH3) are caused by mutations in nine different genes. USH2C is characterised by moderate to severe hearing loss, retinitis pigmentosa and normal vestibular function. One earlier report describes mutations in GPR98 (VLGR1) in four families segregating this phenotype. To detect the disease-causing mutation in an Iranian family segregating USH2C. In this family, five members had a phenotype compatible with Usher syndrome, and two others had nonsyndromic hearing loss. Mutation analysis of all 90 coding exons of GPR98. Consistent with these clinical findings, the five subjects with USH carried a haplotype linked to the USH2C locus, whereas the two subjects with nonsyndromic hearing loss did not. We identified a new mutation in GPR98 segregating with USH2C in this family. The mutation is a large deletion g.371657_507673del of exons 84 and 85, presumably leading to a frameshift. A large GPR98 deletion of 136 017 bp segregates with USH2C in an Iranian family. To our knowledge, this is only the second report of a GPR98 mutation, and the first report on male subjects with USH2C and a GPR98 mutation.

  8. MEN1 mutations and potentially MEN1-targeting miRNAs are responsible for menin deficiency in sporadic and MEN1 syndrome-associated primary hyperparathyroidism.

    PubMed

    Grolmusz, Vince Kornél; Borka, Katalin; Kövesdi, Annamária; Németh, Kinga; Balogh, Katalin; Dékány, Csaba; Kiss, András; Szentpéteri, Anna; Sármán, Beatrix; Somogyi, Anikó; Csajbók, Éva; Valkusz, Zsuzsanna; Tóth, Miklós; Igaz, Péter; Rácz, Károly; Patócs, Attila

    2017-09-01

    Inherited, germline mutations of menin-coding MEN1 gene cause multiple endocrine neoplasia type 1 (MEN1), while somatic MEN1 mutations are the sole main driver mutations in sporadic primary hyperparathyroidism (PHPT), suggesting that menin deficiency has a central role in the pathogenesis of PHPT. MiRNAs are small, noncoding RNAs posttranscriptionally regulating gene expression. Our aim was to investigate both the role of MEN1 mutations and potentially MEN1-targeting miRNAs as the underlying cause of menin deficiency in MEN1-associated and sporadic PHPT tissues. Fifty six PHPT tissues, including 16 MEN1-associated tissues, were evaluated. Diagnosis of MEN1 syndrome was based on identification of germline MEN1 mutations. In silico target prediction was used to identify miRNAs potentially targeting MEN1. Menin expression was determined by immunohistochemistry while expression of miRNAs was analyzed by quantitative real-time PCR. Sporadic PHPT tissues were subjected to somatic MEN1 mutation analysis as well. Lack of nuclear menin was identified in all MEN1-associated and in 28% of sporadic PHPT tissues. Somatic MEN1 mutations were found in 25% of sporadic PHPTs. The sensitivity and specificity of menin immunohistochemistry to detect a MEN1 mutation were 86 and 87%, respectively. Expression levels of hsa-miR-24 and hsa-miR-28 were higher in sporadic compared to MEN1-associated PHPT tissues; however, no difference in miRNA levels occurred between menin-positive and menin-negative PHPT tissues. Menin deficiency is the consequence of a MEN1 mutation in most menin-negative PHPT tissues. Elevated expression of hsa-miR-24 and hsa-miR-28 mark the first epigenetic changes observed between sporadic and MEN1-associated PHPT.

  9. High-risk Long QT Syndrome Mutations in the Kv7.1 (KCNQ1) Pore Disrupt the Molecular Basis for Rapid K+ Permeation

    PubMed Central

    Burgess, Don E.; Bartos, Daniel C.; Reloj, Allison R.; Campbell, Kenneth S.; Johnson, Jonathan N.; Tester, David J.; Ackerman, Michael J.; Fressart, Véronique; Denjoy, Isabelle; Guicheney, Pascale; Moss, Arthur J.; Ohno, Seiko; Horie, Minoru; Delisle, Brian P.

    2012-01-01

    Type 1 long QT syndrome (LQT1) syndrome is caused by loss-of-function mutations in the KCNQ1, which encodes the K+ channel (Kv7.1) that underlies the slowly activating delayed rectifier K+ current in the heart. Intragenic risk stratification suggests LQT1 mutations that disrupt conserved amino acid residues in the pore are an independent risk factor for LQT1-related cardiac events. The purpose of this study is to determine possible molecular mechanisms that underlie the loss-of-function for these high-risk mutations. Extensive genotype-phenotype analyses of LQT1 patients showed that T322M-, T322A-, or G325R-Kv7.1 confer a high risk for LQT1-related cardiac events. Heterologous expression of these mutations with KCNE1 revealed they generated non-functional channels and caused dominant negative suppression of WT-Kv7.1 current. Molecular dynamic simulations (MDS) of analogous mutations in KcsA (T85M-, T85A-, and G88R-KcsA) demonstrated that they disrupted the symmetrical distribution of the carbonyl oxygen atoms in the selectivity filter, which upset the balance between the strong attractive and K+-K+ repulsive forces required for rapid K+ permeation. We conclude high-risk LQT1 mutations in the pore likely disrupt the architectural and physical properties of the K+ channel selectivity filter. PMID:23092362

  10. Whole Exome Sequencing Reveals a Monogenic Cause of Disease in ≈43% of 35 Families With Midaortic Syndrome.

    PubMed

    Warejko, Jillian K; Schueler, Markus; Vivante, Asaf; Tan, Weizhen; Daga, Ankana; Lawson, Jennifer A; Braun, Daniela A; Shril, Shirlee; Amann, Kassaundra; Somers, Michael J G; Rodig, Nancy M; Baum, Michelle A; Daouk, Ghaleb; Traum, Avram Z; Kim, Heung Bae; Vakili, Khashayar; Porras, Diego; Lock, James; Rivkin, Michael J; Chaudry, Gulraiz; Smoot, Leslie B; Singh, Michael N; Smith, Edward R; Mane, Shrikant M; Lifton, Richard P; Stein, Deborah R; Ferguson, Michael A; Hildebrandt, Friedhelm

    2018-04-01

    Midaortic syndrome (MAS) is a rare cause of severe childhood hypertension characterized by narrowing of the abdominal aorta in children and is associated with extensive vascular disease. It may occur as part of a genetic syndrome, such as neurofibromatosis, or as consequence of a pathological inflammatory disease. However, most cases are considered idiopathic. We hypothesized that in a high percentage of these patients, a monogenic cause of disease may be detected by evaluating whole exome sequencing data for mutations in 1 of 38 candidate genes previously described to cause vasculopathy. We studied a cohort of 36 individuals from 35 different families with MAS by exome sequencing. In 15 of 35 families (42.9%), we detected likely causal dominant mutations. In 15 of 35 (42.9%) families with MAS, whole exome sequencing revealed a mutation in one of the genes previously associated with vascular disease ( NF1 , JAG1 , ELN , GATA6 , and RNF213 ). Ten of the 15 mutations have not previously been reported. This is the first report of ELN , RNF213 , or GATA6 mutations in individuals with MAS. Mutations were detected in NF1 (6/15 families), JAG1 (4/15 families), ELN (3/15 families), and one family each for GATA6 and RNF213 Eight individuals had syndromic disease and 7 individuals had isolated MAS. Whole exome sequencing can provide conclusive molecular genetic diagnosis in a high fraction of individuals with syndromic or isolated MAS. Establishing an etiologic diagnosis may reveal genotype/phenotype correlations for MAS in the future and should, therefore, be performed routinely in MAS. © 2018 American Heart Association, Inc.

  11. DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency.

    PubMed

    Volk, Timo; Pannicke, Ulrich; Reisli, Ismail; Bulashevska, Alla; Ritter, Julia; Björkman, Andrea; Schäffer, Alejandro A; Fliegauf, Manfred; Sayar, Esra H; Salzer, Ulrich; Fisch, Paul; Pfeifer, Dietmar; Di Virgilio, Michela; Cao, Hongzhi; Yang, Fang; Zimmermann, Karin; Keles, Sevgi; Caliskaner, Zafer; Güner, S Ükrü; Schindler, Detlev; Hammarström, Lennart; Rizzi, Marta; Hummel, Michael; Pan-Hammarström, Qiang; Schwarz, Klaus; Grimbacher, Bodo

    2015-12-20

    Null mutations in genes involved in V(D)J recombination cause a block in B- and T-cell development, clinically presenting as severe combined immunodeficiency (SCID). Hypomorphic mutations in the non-homologous end-joining gene DCLRE1C (encoding ARTEMIS) have been described to cause atypical SCID, Omenn syndrome, Hyper IgM syndrome and inflammatory bowel disease-all with severely impaired T-cell immunity. By whole-exome sequencing, we investigated the molecular defect in a consanguineous family with three children clinically diagnosed with antibody deficiency. We identified perfectly segregating homozygous variants in DCLRE1C in three index patients with recurrent respiratory tract infections, very low B-cell numbers and serum IgA levels. In patients, decreased colony survival after irradiation, impaired proliferative response and reduced counts of naïve T cells were observed in addition to a restricted T-cell receptor repertoire, increased palindromic nucleotides in the complementarity determining regions 3 and long stretches of microhomology at switch junctions. Defective V(D)J recombination was complemented by wild-type ARTEMIS protein in vitro. Subsequently, homozygous or compound heterozygous DCLRE1C mutations were identified in nine patients from the same geographic region. We demonstrate that DCLRE1C mutations can cause a phenotype presenting as only antibody deficiency. This novel association broadens the clinical spectrum associated with ARTEMIS mutations. Clinicians should consider the possibility that an immunodeficiency with a clinically mild initial presentation could be a combined immunodeficiency, so as to provide appropriate care for affected patients. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Identification of proteins that interact with TANK binding kinase 1 and testing for mutations associated with glaucoma.

    PubMed

    Seo, Seongjin; Solivan-Timpe, Frances; Roos, Ben R; Robin, Alan L; Stone, Edwin M; Kwon, Young H; Alward, Wallace L M; Fingert, John H

    2013-02-01

    Copy number variations (duplications) of TANK binding kinase 1 (TBK1) have been associated with normal tension glaucoma (NTG), a common cause of blindness worldwide. Mutations in other genes involved in autophagy (TLR4 and OPTN) have been associated with NTG. Here we report searching for additional proteins involved in autophagy that may also have roles in NTG. HEK-293T cells were transfected to produce synthetic TBK1 protein with FLAG and S tags. Proteins that associate with TBK1 were isolated from HEK-293T lysates using tandem affinity purification (TAP) and polyacrylamide gel electrophoresis (PAGE). Isolated proteins were identified with mass spectrometry. A cohort of 148 NTG patients and 77 controls from Iowa were tested for glaucoma-causing mutations in genes that encode identified proteins that interact with TBK1 using high resolution melt (HRM) analysis and DNA sequencing. TAP studies show that three proteins expressed in HEK-293T cells (NAP1, TANK and TBKBP1) interact with TBK1. Testing cohorts of NTG and normal controls for disease-causing mutations in TANK, identified a total of nine unique variants including three non-synonymous changes, one synonymous changes and five intronic changes. When analyzed alone or as a group, the non-synonymous TBK1 coding sequence changes were not associated with either NTG or primary open angle glaucoma. TAP showed that NAP1, TANK and TBKBP1 interact with TBK1 and are good candidates for contributing to NTG. A mutation screen of TANK detected three non-synonymous variants. Although, it remains possible that one or more of these TANK mutations may have a role in NTG, the data in this report do not provide statistical support for an association between TANK variants and NTG.

  13. Mutational analysis of ABCC8, KCNJ11, GLUD1, HNF4A and GCK genes in 30 Chinese patients with congenital hyperinsulinism.

    PubMed

    Sang, Yanmei; Xu, Zidi; Liu, Min; Yan, Jie; Wu, Yujun; Zhu, Cheng; Ni, Guichen

    2014-01-01

    We conducted a cohort study to elucidate the molecular spectrum of congenital hyperinsulinism (CHI) in Chinese pediatric patients. Thirty Chinese children with CHI were chosen as research subjects, 16 of whom were responsive to diazoxide and 13 of whom were not (1 patient was not given the drug for medical reasons). All exons of the adenosine triphosphate (ATP)-sensitive potassium channel (KATP channel) genes KCNJ11 and ABCC8, the hepatocyte nuclear factor 4 α (HNF4A) gene, and the Glucokinase (GCK) gene as well as exons 6 and 7 and 10-12 of the glutamate dehydrogenase 1 (GLUD1) gene were amplified from genomic DNA and directly sequenced. Mutations were identified in 14 of 30 patients (47%): 3 in GLUD1 (10%) and 11 in the KATP channel genes (37%). Six patients had paternally derived monoallelic KATP channel mutations predictive of the focal CHI form. We found a novel de novo ABCC8 mutation, p. C1000*, a novel paternally inherited ABCC8 mutation, D1505H, and a dominantly inherited ABCC8 mutation, R1217K. The GLUD1 activating mutation R269H was found in 2 patients: 1 de novo and the other paternally inherited. A de novo S445L mutation was found in 1 patient. No significant HNF4A or GCK mutations were found. CHI has complex genetic onset mechanisms. Paternally inherited monoallelic mutations of ABCC8 and KCNJ11 are likely the main causes of KATP-CHI in Chinese patients. Glutamate dehydrogenase-CHI is the second most common cause of CHI, while HNF4A and GCK are rare types of CHI in Chinese patients.

  14. A novel splicing site IRP1 somatic mutation in a patient with pheochromocytoma and JAK2V617F positive polycythemia vera: a case report.

    PubMed

    Pang, Ying; Gupta, Garima; Yang, Chunzhang; Wang, Herui; Huynh, Thanh-Truc; Abdullaev, Ziedulla; Pack, Svetlana D; Percy, Melanie J; Lappin, Terence R J; Zhuang, Zhengping; Pacak, Karel

    2018-03-13

    The role of the hypoxia signaling pathway in the pathogenesis of pheochromocytoma/paraganglioma (PPGL)-polycythemia syndrome has been elucidated. Novel somatic mutations in hypoxia-inducible factor type 2A (HIF2A) and germline mutations in prolyl hydroxylase type 1 and type 2 (PHD1 and PHD2) have been identified to cause upregulation of the hypoxia signaling pathway and its target genes including erythropoietin (EPO) and its receptor (EPOR). However, in a minority of patients presenting with this syndrome, the genetics and molecular pathogenesis remain unexplained. The aim of the present study was to uncover novel genetic causes of PPGL-polycythemia syndrome. A female presented with a history of JAK2 V617F positive PV, diagnosed in 2007, and right adrenal pheochromocytoma diagnosed and resected in 2011. Her polycythemia symptoms and hematocrit levels continued to worsen from 2007 to 2011, with an increased frequency of phlebotomies. Postoperatively, until early 2013, her hematocrit levels remained normalized. Following this, the hematocrit levels ranged between 46.4 and 48.9% [35-45%]. Tumor tissue from the patient was further tested for mutations in genes related to upregulation of the hypoxia signaling pathway including iron regulatory protein 1 (IRP1), which is a known regulator of HIF-2α mRNA translation. Functional studies were performed to investigate the consequences of these mutations, especially their effect on the HIF signaling pathway and EPO. Indel mutations (c.267-1_267delGGinsTA) were discovered at the exon 3 splicing site of IRP1. Minigene construct and splicing site analysis showed that the mutation led to a new splicing site and a frameshift mutation of IRP1, which caused a truncated protein. Fluorescence in situ hybridization analysis demonstrated heterozygous IRP1 deletions in tumor cells. Immunohistochemistry results confirmed the truncated IRP1 and overexpressed HIF-2α, EPO and EPOR in tumor cells. This is the first report which provides direct molecular genetic evidence of association between a somatic IRP1 loss-of-function mutation and PHEO and secondary polycythemia. In patients diagnosed with PHEO/PGL and polycythemia with negative genetic testing for mutations in HIF2A, PHD1/2, and VHL, IRP1 should be considered as a candidate gene.

  15. Genetics Home Reference: triosephosphate isomerase deficiency

    MedlinePlus

    ... more common in particular ethnic groups? Genetic Changes Mutations in the TPI1 gene cause triosephosphate isomerase deficiency . ... down to produce energy for cells. TPI1 gene mutations lead to the production of unstable enzymes or ...

  16. Mutation analysis of Leber congenital amaurosis‑associated genes in patients with retinitis pigmentosa.

    PubMed

    Shen, Tao; Guan, Liping; Li, Shiqiang; Zhang, Jianguo; Xiao, Xueshan; Jiang, Hui; Yang, Jianhua; Guo, Xiangming; Wang, Jun; Zhang, Qingjiong

    2015-03-01

    The genetic defects underlying approximately half of all retinitis pigmentosa (RP) cases are unknown. A number of genes responsible for Leber congenital amaurosis (LCA) may also cause RP when they are mutated. Our previous study revealed that variants in the most frequently mutated nine exons accounted for approximately half of the mutations detected in a cohort of patients with LCA. The aim of the present study was to detect mutations in LCA-associated genes in patients with RP using two different strategies. Sanger sequencing was used to screen mutations in the nine exons in 293 patients with RP and exome sequencing was used to detect variants in 12 LCA-associated genes in 157 of the 293 patients with RP and then to validate the variants by Sanger sequencing. Potential pathogenic mutations were identified in four patients with early onset RP, including homozygous CRB1 mutations in two patients, compound heterozygous CRB1 mutations in one patient and compound heterozygous CEP290 mutations in one patient. The present study indicated that mutations in CEP290 may also be associated with RP but not with LCA. With the exception of CEP290, the remaining 11 genes known to be associated with LCA but not with RP are unlikely to be a common cause of RP.

  17. Case reports of juvenile GM1 gangliosidosisis type II caused by mutation in GLB1 gene.

    PubMed

    Karimzadeh, Parvaneh; Naderi, Samaneh; Modarresi, Farzaneh; Dastsooz, Hassan; Nemati, Hamid; Farokhashtiani, Tayebeh; Shamsian, Bibi Shahin; Inaloo, Soroor; Faghihi, Mohammad Ali

    2017-07-17

    Type II or juvenile GM1-gangliosidosis is an autosomal recessive lysosomal storage disorder, which is clinically distinct from infantile form of the disease by the lack of characteristic cherry-red spot and hepatosplenomegaly. The disease is characterized by slowly progressive neurodegeneration and mild skeletal changes. Due to the later age of onset and uncharacteristic presentation, diagnosis is frequently puzzled with other ataxic and purely neurological disorders. Up to now, 3-4 types of GM1-gangliosidosis have been reported and among them type I is the most common phenotype with the age of onset around 6 months. Various forms of GM1-gangliosidosis are caused by GLB1 gene mutations but severity of the disease and age of onset are directly related to the position and the nature of deleterious mutations. However, due to its unique genetic cause and overlapping clinical features, some researchers believe that GM1 gangliosidosis represents an overlapped disease spectrum instead of four distinct types. Here, we report a less frequent type of autosomal recessive GM1 gangliosidosis with perplexing clinical presentation in three families in the southwest part of Iran, who are unrelated but all from "Lurs" ethnic background. To identify disease-causing mutations, Whole Exome Sequencing (WES) utilizing next generation sequencing was performed. Four patients from three families were investigated with the age of onset around 3 years old. Clinical presentations were ataxia, gate disturbances and dystonia leading to wheelchair-dependent disability, regression of intellectual abilities, and general developmental regression. They all were born in consanguineous families with no previous documented similar disease in their parents. A homozygote missense mutation in GLB1 gene (c. 601 G > A, p.R201C) was found in all patients. Using Sanger sequencing this identified mutation was confirmed in the proband, their parents, grandparents, and extended family members, confirming its autosomal recessive pattern of inheritance. Our study identified a rare pathogenic missense mutation in GLB1 gene in patients with complex neurodevelopmental findings, which can extend the list of differential diagnoses for childhood ataxia in Iranian patients.

  18. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    PubMed

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  19. Synonymous mutations in RNASEH2A create cryptic splice sites impairing RNase H2 enzyme function in Aicardi-Goutières syndrome

    PubMed Central

    Rice, Gillian I.; Reijns, Martin A.M.; Coffin, Stephanie R.; Forte, Gabriella M.A.; Anderson, Beverley H.; Szynkiewicz, Marcin; Gornall, Hannah; Gent, David; Leitch, Andrea; Botella, Maria P.; Fazzi, Elisa; Gener, Blanca; Lagae, Lieven; Olivieri, Ivana; Orcesi, Simona; Swoboda, Kathryn J.; Perrino, Fred W.; Jackson, Andrew P.; Crow, Yanick J.

    2013-01-01

    Aicardi-Goutières syndrome (AGS) is an inflammatory disorder resulting from mutations in TREX1, RNASEH2A/2B/2C, SAMHD1 or ADAR1. Here we provide molecular, biochemical and cellular evidence for the pathogenicity of two synonymous variants in RNASEH2A. Firstly, the c.69G>A (p.Val23Val) mutation causes the formation of a splice donor site within exon 1, resulting in an out of frame deletion at the end of exon 1, leading to reduced RNase H2 protein levels. The second mutation, c.75C>T (p.Arg25Arg), also introduces a splice donor site within exon 1, and the internal deletion of 18 amino acids. The truncated protein still forms a heterotrimeric RNase H2 complex, but lacks catalytic activity. However, as a likely result of leaky splicing, a small amount of full-length active protein is apparently produced in an individual homozygous for this mutation. Recognition of the disease causing status of these variants allows for diagnostic testing in relevant families. PMID:23592335

  20. A mutation in the gamma actin 1 (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26)

    PubMed Central

    van Wijk, E; Krieger, E; Kemperman, M; De Leenheer, E M R; Huygen, P; Cremers, C; Cremers, F; Kremer, H

    2003-01-01

    Linkage analysis in a multigenerational family with autosomal dominant hearing loss yielded a chromosomal localisation of the underlying genetic defect in the DFNA20/26 locus at 17q25-qter. The 6-cM critical region harboured the γ-1-actin (ACTG1) gene, which was considered an attractive candidate gene because actins are important structural elements of the inner ear hair cells. In this study, a Thr278Ile mutation was identified in helix 9 of the modelled protein structure. The alteration of residue Thr278 is predicted to have a small but significant effect on the γ 1 actin structure owing to its close proximity to a methionine residue at position 313 in helix 11. Met313 has no space in the structure to move away. Moreover, the Thr278 residue is highly conserved throughout eukaryotic evolution. Using a known actin structure the mutation could be predicted to impair actin polymerisation. These findings strongly suggest that the Thr278Ile mutation in ACTG1 represents the first disease causing germline mutation in a cytoplasmic actin isoform. PMID:14684684

  1. Isolated Loss of PMS2 Immunohistochemical Expression is Frequently Caused by Heterogenous MLH1 Promoter Hypermethylation in Lynch Syndrome Screening for Endometrial Cancer Patients

    PubMed Central

    Sato, Naoki; Sugawara, Tae; Takahashi, Kazue; Kito, Masahiko; Makino, Kenichi; Sato, Toshiharu; Shimizu, Dai; Shirasawa, Hiromistu; Miura, Hiroshi; Sato, Wataru; Kumazawa, Yukiyo; Sato, Akira; Kumagai, Jin; Terada, Yukihiro

    2016-01-01

    Lynch syndrome (LS) is an autosomal-dominant inherited disorder mainly caused by a germline mutation in the DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) and is associated with increased risk for various cancers, particularly colorectal cancer and endometrial cancer (EC). Women with LS account for 2% to 6% of EC patients; it is clinically important to identify LS in such individuals for predicting and/or preventing additional LS-associated cancers. PMS2 germline mutation (PMS2-LS) is the rarest contribution to LS etiology among the 4 LS-associated MMR germline mutations, and its detection is complicated. Therefore, prudent screening for PMS2-LS is important as it leads to an efficient LS identification strategy. Immunohistochemistry is recommended as a screening method for LS in EC. Isolated loss of PMS2 (IL-PMS2) expression is caused not only by PMS2-LS but also by MLH1 germline mutation or MLH1 promoter hypermethylation (MLH-PHM). This study aimed to determine the association between MLH1-PHM and IL-PMS2 to avoid inappropriate genetic analysis. We performed MLH1 methylation analysis and MLH1/PMS2 germline mutation testing on the IL-PMS2 cases. By performing MMR-immunohistochemistry on 360 unselected ECs, we could select 8 (2.2%) cases as IL-PMS2. Heterogenous MLH1 staining and MLH1-PHM were detected in 4 of 8 (50%) IL-PMS2 tumors. Of the 5 IL-PMS2 patients who underwent genetic analysis, 1 had PMS2 germline mutation with normal MLH1 expression (without MLH1-PHM), and no MLH1 germline mutation was detected. We suggest that MLH1 promoter methylation analysis for IL-PMS2 EC should be performed to exclude sporadic cases before further PMS2 genetic testing. PMID:26848797

  2. Isolated Loss of PMS2 Immunohistochemical Expression is Frequently Caused by Heterogenous MLH1 Promoter Hypermethylation in Lynch Syndrome Screening for Endometrial Cancer Patients.

    PubMed

    Kato, Aya; Sato, Naoki; Sugawara, Tae; Takahashi, Kazue; Kito, Masahiko; Makino, Kenichi; Sato, Toshiharu; Shimizu, Dai; Shirasawa, Hiromistu; Miura, Hiroshi; Sato, Wataru; Kumazawa, Yukiyo; Sato, Akira; Kumagai, Jin; Terada, Yukihiro

    2016-06-01

    Lynch syndrome (LS) is an autosomal-dominant inherited disorder mainly caused by a germline mutation in the DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) and is associated with increased risk for various cancers, particularly colorectal cancer and endometrial cancer (EC). Women with LS account for 2% to 6% of EC patients; it is clinically important to identify LS in such individuals for predicting and/or preventing additional LS-associated cancers. PMS2 germline mutation (PMS2-LS) is the rarest contribution to LS etiology among the 4 LS-associated MMR germline mutations, and its detection is complicated. Therefore, prudent screening for PMS2-LS is important as it leads to an efficient LS identification strategy. Immunohistochemistry is recommended as a screening method for LS in EC. Isolated loss of PMS2 (IL-PMS2) expression is caused not only by PMS2-LS but also by MLH1 germline mutation or MLH1 promoter hypermethylation (MLH-PHM). This study aimed to determine the association between MLH1-PHM and IL-PMS2 to avoid inappropriate genetic analysis. We performed MLH1 methylation analysis and MLH1/PMS2 germline mutation testing on the IL-PMS2 cases. By performing MMR-immunohistochemistry on 360 unselected ECs, we could select 8 (2.2%) cases as IL-PMS2. Heterogenous MLH1 staining and MLH1-PHM were detected in 4 of 8 (50%) IL-PMS2 tumors. Of the 5 IL-PMS2 patients who underwent genetic analysis, 1 had PMS2 germline mutation with normal MLH1 expression (without MLH1-PHM), and no MLH1 germline mutation was detected. We suggest that MLH1 promoter methylation analysis for IL-PMS2 EC should be performed to exclude sporadic cases before further PMS2 genetic testing.

  3. Frequent life-threatening laryngeal attacks in two Croatian families with hereditary angioedema due to C1 inhibitor deficiency harbouring a novel frameshift mutation in SERPING1.

    PubMed

    Karadža-Lapić, Ljerka; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Cikojević, Draško; Lozić, Bernarda; Rijavec, Matija

    2016-11-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease caused by mutations in the SERPING1 gene. It can affect many regions in the body, but potentially life-threatening laryngeal oedemas are of concern. Twenty-three subjects from two families were recruited for clinical data evaluation and molecular analysis at General Hospital Šibenik, Croatia. Decreased levels of C1 inhibitor were detected in 12 adult patients and three young asymptomatic persons. The same novel deletion of two nucleotides on exon 3 (c.74_75delAT) was identified in all of them. A history of laryngeal oedema was present in 10 patients (83%), and all patients reported laryngeal attacks at least once a year. The delay in diagnosis decreased noticeably from the first to the last generation. We identified a novel causative mutation in SERPING1 in several affected members of two apparently unrelated families with a high frequency of laryngeal oedema. Molecular analysis of large C1-INH-HAE families will provide new insights on the genotype-phenotype relationship. Key messages Hereditary angioedema due to C1 inhibitor deficiency is a rare autosomal dominant disease caused by mutations in the SERPING1 gene, and laryngeal oedema is of concern because it can cause death by asphyxiation. A novel causative mutation in SERPING1, a deletion of two nucleotides on exon 3 (c.74_75delAT), was identified in several affected members of two apparently unrelated families with a high frequency of laryngeal oedema. Molecular analysis of large C1-INH-HAE families will provide new insights on the genotype-phenotype relationship because it appears that the mutation type may affect disease severity.

  4. The genetic architecture of microphthalmia, anophthalmia and coloboma.

    PubMed

    Williamson, Kathleen A; FitzPatrick, David R

    2014-08-01

    Microphthalmia, anophthalmia and coloboma (MAC) are distinct phenotypes that represent a continuum of structural developmental eye defects. In severe bilateral cases (anophthalmia or severe microphthalmia) the genetic cause is now identifiable in approximately 80 percent of cases, with de novo heterozygous loss-of-function mutations in SOX2 or OTX2 being the most common. The genetic cause of other forms of MAC, in particular isolated coloboma, remains unknown in the majority of cases. This review will focus on MAC phenotypes that are associated with mutation of the genes SOX2, OTX2, PAX6, STRA6, ALDH1A3, RARB, VSX2, RAX, FOXE3, BMP4, BMP7, GDF3, GDF6, ABCB6, ATOH7, C12orf57, TENM3 (ODZ3), and VAX1. Recently reported mutation of the SALL2 and YAP1 genes are discussed in brief. Clinical and genetic features were reviewed in a total of 283 unrelated MAC cases or families that were mutation-positive from these 20 genes. Both the relative frequency of mutations in MAC cohort screens and the level of confidence in the assignment of disease-causing status were evaluated for each gene. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Myotonia-related mutations in the distal C-terminus of ClC-1 and ClC-0 chloride channels affect the structure of a poly-proline helix

    PubMed Central

    Macías, María J.; Teijido, Oscar; Zifarelli, Giovanni; Martin, Pau; Ramirez-Espain, Ximena; Zorzano, Antonio; Palacín, Manuel; Pusch, Michael; Estévez, Raúl

    2006-01-01

    Myotonia is a state of hyperexcitability of skeletal-muscle fibres. Mutations in the ClC-1 Cl− channel cause recessive and dominant forms of this disease. Mutations have been described throughout the protein-coding region, including three sequence variations (A885P, R894X and P932L) in a distal C-terminal stretch of residues [CTD (C-terminal domain) region] that are not conserved between CLC proteins. We show that surface expression of these mutants is reduced in Xenopus oocytes compared with wild-type ClC-1. Functional, biochemical and NMR spectroscopy studies revealed that the CTD region encompasses a segment conserved in most voltage-dependent CLC channels that folds with a secondary structure containing a short type II poly-proline helix. We found that the myotonia-causing mutation A885P disturbs this structure by extending the poly-proline helix. We hypothesize that this structural modification results in the observed alteration of the common gate that acts on both pores of the channel. We provide the first experimental investigation of structural changes resulting from myotonia-causing mutations. PMID:17107341

  6. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation

    PubMed Central

    Nelson-Williams, Carol; Stiegler, Amy L; Loring, Erin; Choi, Murim; Overton, John; Meffre, Eric; Khokha, Mustafa K; Huttner, Anita J; West, Brian; Podoltsev, Nikolai A; Boggon, Titus J; Kazmierczak, Barbara I; Lifton, Richard P

    2014-01-01

    Upon detection of pathogen-associated molecular patterns, innate immune receptors initiate inflammatory responses. These receptors include cytoplasmic NOD-like receptors (NLRs), whose stimulation recruits and proteolytically activates caspase-1 within the inflammasome, a multi-protein complex. Caspase-1 mediates the production of interleukin-1 family cytokines (IL1FCs), leading to fever, and inflammatory cell death (pyroptosis)1,2. Mutations that constitutively activate these pathways underlie several autoinflammatory diseases with diverse clinical features3. We describe a family with a previously unreported syndrome featuring neonatal-onset enterocolitis, periodic fever, and fatal/near-fatal episodes of autoinflammation caused by a de novo gain-of-function mutation (p.V341A) in the HD1 domain of NLRC4 that co-segregates with disease. Mutant NLRC4 causes constitutive Interleukin-1 family cytokine production and macrophage cell death. Infected patient macrophages are polarized toward pyroptosis and exhibit abnormal staining for inflammasome components. These findings describe and reveal the cause of a life-threatening but treatable autoinflammatory disease that underscores the divergent roles of the NLRC4 inflammasome. PMID:25217960

  7. Not all SCID pigs are created equally: Two independent mutations in the Artemis gene cause Severe Combined Immunodeficiency (SCID) in pigs

    PubMed Central

    Waide, Emily H; Dekkers, Jack CM; Ross, Jason W; Rowland, Raymond RR; Wyatt, Carol R; Ewen, Catherine L; Evans, Alyssa B; Thekkoot, Dinesh M; Boddicker, Nicholas J; Serão, Nick VL; Ellinwood, N Matthew; Tuggle, Christopher K

    2017-01-01

    Mutations in over 30 genes are known to result in impairment of the adaptive immune system, causing a group of disorders collectively known as severe combined immunodeficiency (SCID). SCID disorders are split into groups based on their presence and/or functionality of B, T, and NK cells. Piglets from a line of Yorkshire pigs at Iowa State University were shown to be affected by T− B− NK+ SCID, representing the first example of naturally occurring SCID in pigs. Here, we present evidence for two spontaneous mutations as the molecular basis for this SCID phenotype. Flow cytometry analysis of thymocytes showed an increased frequency of immature T cells in SCID pigs. Fibroblasts from these pigs were more sensitive to ionizing radiation than non-SCID piglets, eliminating the RAG1 and RAG2 genes. Genetic and molecular analyses showed two mutations were present in the Artemis gene, which in homozygous or compound heterozygous state cause the immunodeficient phenotype. Rescue of SCID fibroblast radiosensitivity by human Artemis protein demonstrated that the identified Artemis mutations are the direct cause of this cellular phenotype. The work presented here reveals two mutations in the Artemis gene that cause T− B− NK+ SCID in pigs. The SCID pig can be an important biomedical model, but these mutations would be undesirable in commercial pig populations. The identified mutations and associated genetic tests can be used to address both of these issues. PMID:26320255

  8. Two novel mutations in the homogentisate-1,2-dioxygenase gene identified in Chinese Han Child with Alkaptonuria.

    PubMed

    Li, Hongying; Zhang, Kaihui; Xu, Qun; Ma, Lixia; Lv, Xin; Sun, Ruopeng

    2015-03-01

    Alkaptonuria (AKU) is an autosomal recessive disorder of tyrosine metabolism, which is caused by a defect in the enzyme homogentisate 1,2-dioxygenase (HGD) with subsequent accumulation of homogentisic acid. Presently, more than 100 HGD mutations have been identified as the cause of the inborn error of metabolism across different populations worldwide. However, the HGD mutation is very rarely reported in Asia, especially China. In this study, we present mutational analyses of HGD gene in one Chinese Han child with AKU, which had been identified by gas chromatography-mass spectrometry detection of organic acids in urine samples. PCR and DNA sequencing of the entire coding region as well as exon-intron boundaries of HGD have been performed. Two novel mutations were identified in the HGD gene in this AKU case, a frameshift mutation of c.115delG in exon 3 and the splicing mutation of IVS5+3 A>C, a donor splice site of the exon 5 and exon-intron junction. The identification of these mutations in this study further expands the spectrum of known HGD gene mutations and contributes to prenatal molecular diagnosis of AKU.

  9. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia

    PubMed Central

    Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni

    2015-01-01

    Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284

  10. Enhancing the Predictive Power of Mutations in the C-Terminus of the KCNQ1-Encoded Kv7.1 Voltage-Gated Potassium Channel.

    PubMed

    Kapplinger, Jamie D; Tseng, Andrew S; Salisbury, Benjamin A; Tester, David J; Callis, Thomas E; Alders, Marielle; Wilde, Arthur A M; Ackerman, Michael J

    2015-04-01

    Despite the overrepresentation of Kv7.1 mutations among patients with a robust diagnosis of long QT syndrome (LQTS), a background rate of innocuous Kv7.1 missense variants observed in healthy controls creates ambiguity in the interpretation of LQTS genetic test results. A recent study showed that the probability of pathogenicity for rare missense mutations depends in part on the topological location of the variant in Kv7.1's various structure-function domains. Since the Kv7.1's C-terminus accounts for nearly 50 % of the overall protein and nearly 50 % of the overall background rate of rare variants falls within the C-terminus, further enhancement in mutation calling may provide guidance in distinguishing pathogenic long QT syndrome type 1 (LQT1)-causing mutations from rare non-disease-causing variants in the Kv7.1's C-terminus. Therefore, we have used conservation analysis and a large case-control study to generate topology-based estimative predictive values to aid in interpretation, identifying three regions of high conservation within the Kv7.1's C-terminus which have a high probability of LQT1 pathogenicity.

  11. Pathophysiological consequences and benefits of HFE mutations: 20 years of research

    PubMed Central

    Hollerer, Ina; Bachmann, André; Muckenthaler, Martina U.

    2017-01-01

    Mutations in the HFE (hemochromatosis) gene cause hereditary hemochromatosis, an iron overload disorder that is hallmarked by excessive accumulation of iron in parenchymal organs. The HFE mutation p.Cys282Tyr is pathologically most relevant and occurs in the Caucasian population with a carrier frequency of up to 1 in 8 in specific European regions. Despite this high prevalence, the mutation causes a clinically relevant phenotype only in a minority of cases. In this review, we summarize historical facts and recent research findings about hereditary hemochromatosis, and outline the pathological consequences of the associated gene defects. In addition, we discuss potential advantages of HFE mutations in asymptomatic carriers. PMID:28280078

  12. Mutations in PROP1 cause familial combined pituitary hormone deficiency.

    PubMed

    Wu, W; Cogan, J D; Pfäffle, R W; Dasen, J S; Frisch, H; O'Connell, S M; Flynn, S E; Brown, M R; Mullis, P E; Parks, J S; Phillips, J A; Rosenfeld, M G

    1998-02-01

    Combined pituitary hormone deficiency (CPHD) in man denotes impaired production of growth hormone (GH) and one or more of the other five anterior pituitary hormones. Mutations of the pituitary transcription factor gene POU1F1 (the human homologue of mouse Pit1) are responsible for deficiencies of GH, prolactin and thyroid stimulating hormone (TSH) in Snell and Jackson dwarf mice and in man, while the production of adrenocorticotrophic hormone (ACTH), luteinizing hormone (LH) and follicle stimulating hormone (FSH) is preserved. The Ames dwarf (df) mouse displays a similar phenotype, and appears to be epistatic to Snell and Jackson dwarfism. We have recently positionally cloned the putative Ames dwarf gene Prop1, which encodes a paired-like homeodomain protein that is expressed specifically in embryonic pituitary and is necessary for Pit1 expression. In this report, we have identified four CPHD families with homozygosity or compound heterozygosity for inactivating mutations of PROP1. These mutations in the human PROP1 gene result in a gene product with reduced DNA-binding and transcriptional activation ability in comparison to the product of the murine df mutation. In contrast to individuals with POU1F1 mutations, those with PROP1 mutations cannot produce LH and FSH at a sufficient level and do not enter puberty spontaneously. Our results identify a major cause of CPHD in humans and suggest a direct or indirect role for PROP1 in the ontogenesis of pituitary gonadotropes, as well as somatotropes, lactotropes and caudomedial thyrotropes.

  13. A double mutation in exon 6 of the [beta]-hexosaminidase [alpha] subunit in a patient with the B1 variant of Tay-Sachs disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, P.J.; Coulter-Mackie, M.B.

    1992-10-01

    The B1 variant form of Tay-Sachs disease is enzymologically unique in that the causative mutation(s) appear to affect the active site in the [alpha] subunit of [beta]-hexosaminidase A without altering its ability to associate with the [beta] subunit. Most previously reported B1 variant mutations were found in exon 5 within codon 178. The coding sequence of the [alpha] subunit gene of a patient with the B1 variant form was examined with a combination of reverse transcription of mRNA to cDNA, PCR, and dideoxy sequencing. A double mutation in exon 6 has been identified: a G[sub 574][yields]C transversion causing a val[submore » 192][yields]leu change and a G[sub 598][yields] A transition resulting in a val[sub 200][yields]met alteration. The amplified cDNAs were otherwise normal throughout their sequence. The 574 and 598 alterations have been confirmed by amplification directly from genomic DNA from the patient and her mother. Transient-expression studies of the two exon 6 mutations (singly or together) in COS-1 cells show that the G[sub 574][yields]C change is sufficient to cause the loss of enzyme activity. The biochemical phenotype of the 574 alteration in transfection studies is consistent with that expected for a B1 variant mutation. As such, this mutation differs from previously reported B1 variant mutations, all of which occur in exon 5. 31 refs., 2 figs., 2 tabs.« less

  14. Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles.

    PubMed

    Darbro, Benjamin W; Mahajan, Vinit B; Gakhar, Lokesh; Skeie, Jessica M; Campbell, Elizabeth; Wu, Shu; Bing, Xinyu; Millen, Kathleen J; Dobyns, William B; Kessler, John A; Jalali, Ali; Cremer, James; Segre, Alberto; Manak, J Robert; Aldinger, Kimerbly A; Suzuki, Satoshi; Natsume, Nagato; Ono, Maya; Hai, Huynh Dai; Viet, Le Thi; Loddo, Sara; Valente, Enza M; Bernardini, Laura; Ghonge, Nitin; Ferguson, Polly J; Bassuk, Alexander G

    2013-08-01

    We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker malformation and occipital cephaloceles and detected a mutation in the extracellular matrix (ECM) protein-encoding gene NID1. In a second family, protein interaction network analysis identified a mutation in LAMC1, which encodes a NID1-binding partner. Structural modeling of the NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings implicate the ECM in the pathogenesis of Dandy-Walker spectrum disorders. © 2013 WILEY PERIODICALS, INC.

  15. A CNGB1 Frameshift Mutation in Papillon and Phalène Dogs with Progressive Retinal Atrophy

    PubMed Central

    Ahonen, Saija J.; Arumilli, Meharji; Lohi, Hannes

    2013-01-01

    Progressive retinal degenerations are the most common causes of complete blindness both in human and in dogs. Canine progressive retinal atrophy (PRA) or degeneration resembles human retinitis pigmentosa (RP) and is characterized by a progressive loss of rod photoreceptor cells followed by a loss of cone function. The primary clinical signs are detected as vision impairment in a dim light. Although several genes have been associated with PRAs, there are still PRAs of unknown genetic cause in many breeds, including Papillons and Phalènes. We have performed a genome wide association and linkage studies in cohort of 6 affected Papillons and Phalènes and 14 healthy control dogs to map a novel PRA locus on canine chromosome 2, with a 1.9 Mb shared homozygous region in the affected dogs. Parallel exome sequencing of a trio identified an indel mutation, including a 1-bp deletion, followed by a 6-bp insertion in the CNGB1 gene. This mutation causes a frameshift and premature stop codon leading to probable nonsense mediated decay (NMD) of the CNGB1 mRNA. The mutation segregated with the disease and was confirmed in a larger cohort of 145 Papillons and Phalènes (PFisher = 1.4×10−8) with a carrier frequency of 17.2 %. This breed specific mutation was not present in 334 healthy dogs from 10 other breeds or 121 PRA affected dogs from 44 other breeds. CNGB1 is important for the photoreceptor cell function its defects have been previously associated with retinal degeneration in both human and mouse. Our study indicates that a frameshift mutation in CNGB1 is a cause of PRA in Papillons and Phalènes and establishes the breed as a large functional animal model for further characterization of retinal CNGB1 biology and possible retinal gene therapy trials. This study enables also the development of a genetic test for breeding purposes. PMID:24015210

  16. Studies on transposable elements in yeast. I. ROAM mutations causing increased expression of yeast genes: their activation by signals directed toward conjugation functions and their formation by insertion of Tyl repetitive elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Errede, B.; Cardillo, T.S.; Wever, G.

    1981-01-01

    Mechanisms available to eukaryotic organisms for the coordinate regulation of gene expression are being examined by genetic and biochemical characterization of an unusual mutation, CYC7-H2, which causes over-production of iso-2-cytochrome c in the yeast Saccharomyces cerevisiae. The CYC7-H2 mutation causes overproduction in haploid strains but only a 1- to 40-fold overproduction in MATa/MAT..cap alpha.. diploid strains. This regulation of overproduction has been characterized as a response to signals controlling conjugation in yeast. Furthermore, the abnormal controlling region has been identified as an insertion of a transposable and reiterated Ty1 element adjacent to the structural gene. Therefore, we suggest that Ty1more » elements or portions of Ty1 elements occur adjacent to some of the genes required for conjugation and that they normally function to control expression of this process. The suggested role of reiterated sequences may represent a general mechanism of coordinate regulation in eukaryotes. The CYC7-H2 mutation is closely related to other regulatory mutations occurring at the cargA, cargB and DUR1,2 loci. Similar to the CYC7-H2 mutation, the mutations designated cargA/sup +/O/sup h/, cargB/sup +/O/sup h/, and durO/sup h/ cause constitutive production of their respective gene products at much lower levels of MATa/MAT..cap alpha.. diploid strains than in the corresponding haploid strains. A consistent relationship between conjugation competence and the level of overproduction in all four mutants has been established. Observations characterizing the regulation of overproduction in the CYC7-H2 mutant are presented with the additional and parallel observations for the O/sup h/ mutants. Together these results provide a demonstration of the specificity and equivalence of regulatory control exhibited by ROAM mutants.« less

  17. Mutations Affecting G-Protein Subunit α11 in Hypercalcemia and Hypocalcemia

    PubMed Central

    Babinsky, Valerie N.; Head, Rosie A.; Cranston, Treena; Rust, Nigel; Hobbs, Maurine R.; Heath, Hunter; Thakker, Rajesh V.

    2013-01-01

    BACKGROUND Familial hypocalciuric hypercalcemia is a genetically heterogeneous disorder with three variants: types 1, 2, and 3. Type 1 is due to loss-of-function mutations of the calcium-sensing receptor, a guanine nucleotide–binding protein (G-protein)–coupled receptor that signals through the G-protein subunit α11 (Gα11). Type 3 is associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which result in altered calcium-sensing receptor endocytosis. We hypothesized that type 2 is due to mutations effecting Gα11 loss of function, since Gα11 is involved in calcium-sensing receptor signaling, and its gene (GNA11) and the type 2 locus are colocalized on chromosome 19p13.3. We also postulated that mutations effecting Gα11 gain of function, like the mutations effecting calcium-sensing receptor gain of function that cause autosomal dominant hypocalcemia type 1, may lead to hypocalcemia. METHODS We performed GNA11 mutational analysis in a kindred with familial hypocalciuric hypercalcemia type 2 and in nine unrelated patients with familial hypocalciuric hypercalcemia who did not have mutations in the gene encoding the calcium-sensing receptor (CASR) or AP2S1. We also performed this analysis in eight unrelated patients with hypocalcemia who did not have CASR mutations. In addition, we studied the effects of GNA11 mutations on Gα11 protein structure and calcium-sensing receptor signaling in human embryonic kidney 293 (HEK293) cells. RESULTS The kindred with familial hypocalciuric hypercalcemia type 2 had an in-frame deletion of a conserved Gα11 isoleucine (Ile200del), and one of the nine unrelated patients with familial hypocalciuric hypercalcemia had a missense GNA11 mutation (Leu135Gln). Missense GNA11 mutations (Arg181Gln and Phe341Leu) were detected in two unrelated patients with hypocalcemia; they were therefore identified as having autosomal dominant hypocalcemia type 2. All four GNA11 mutations predicted disrupted protein structures, and assessment on the basis of in vitro expression showed that familial hypocalciuric hypercalcemia type 2–associated mutations decreased the sensitivity of cells expressing calcium-sensing receptors to changes in extracellular calcium concentrations, whereas autosomal dominant hypocalcemia type 2–associated mutations increased cell sensitivity. CONCLUSIONS Gα11 mutants with loss of function cause familial hypocalciuric hypercalcemia type 2, and Gα11 mutants with gain of function cause a clinical disorder designated as autosomal dominant hypocalcemia type 2. (Funded by the United Kingdom Medical Research Council and others.) PMID:23802516

  18. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma.

    PubMed

    Comino-Méndez, Iñaki; Gracia-Aznárez, Francisco J; Schiavi, Francesca; Landa, Iñigo; Leandro-García, Luis J; Letón, Rocío; Honrado, Emiliano; Ramos-Medina, Rocío; Caronia, Daniela; Pita, Guillermo; Gómez-Graña, Alvaro; de Cubas, Aguirre A; Inglada-Pérez, Lucía; Maliszewska, Agnieszka; Taschin, Elisa; Bobisse, Sara; Pica, Giuseppe; Loli, Paola; Hernández-Lavado, Rafael; Díaz, José A; Gómez-Morales, Mercedes; González-Neira, Anna; Roncador, Giovanna; Rodríguez-Antona, Cristina; Benítez, Javier; Mannelli, Massimo; Opocher, Giuseppe; Robledo, Mercedes; Cascón, Alberto

    2011-06-19

    Hereditary pheochromocytoma (PCC) is often caused by germline mutations in one of nine susceptibility genes described to date, but there are familial cases without mutations in these known genes. We sequenced the exomes of three unrelated individuals with hereditary PCC (cases) and identified mutations in MAX, the MYC associated factor X gene. Absence of MAX protein in the tumors and loss of heterozygosity caused by uniparental disomy supported the involvement of MAX alterations in the disease. A follow-up study of a selected series of 59 cases with PCC identified five additional MAX mutations and suggested an association with malignant outcome and preferential paternal transmission of MAX mutations. The involvement of the MYC-MAX-MXD1 network in the development and progression of neural crest cell tumors is further supported by the lack of functional MAX in rat PCC (PC12) cells and by the amplification of MYCN in neuroblastoma and suggests that loss of MAX function is correlated with metastatic potential.

  19. Chimeric protein identification of dystrophic, Pierson and other laminin polymerization residues

    PubMed Central

    McKee, Karen K.; Aleksandrova, Maya; Yurchenco, Peter D.

    2018-01-01

    Laminin polymerization is a key step of basement membrane self-assembly that depends on the binding of the three different N-terminal globular LN domains. Several mutations in the LN domains cause LAMA2-deficient muscular dystrophy and LAMB2-deficient Pierson syndrome. These mutations may affect polymerization. A novel approach to identify the amino acid residues required for polymerization has been applied to an analysis of these and other laminin LN mutations. The approach utilizes laminin-nidogen chimeric fusion proteins that bind to recombinant non-polymerizing laminins to provide a missing functional LN domain. Single amino acid substitutions introduced into these chimeras were tested to determine if polymerization activity and the ability to assemble on cell surfaces were lost. Several laminin-deficient muscular dystrophy mutations, renal Pierson syndrome mutations, and Drosophila mutations causing defects of heart development were identified as ones causing loss of laminin polymerization. In addition, two novel residues required for polymerization were identified in the laminin γ1 LN domain. PMID:29408412

  20. Isolated and combined dystonia syndromes - an update on new genes and their phenotypes.

    PubMed

    Balint, B; Bhatia, K P

    2015-04-01

    Recent consensus on the definition, phenomenology and classification of dystonia centres around phenomenology and guides our diagnostic approach for the heterogeneous group of dystonias. Current terminology classifies conditions where dystonia is the sole motor feature (apart from tremor) as 'isolated dystonia', while 'combined dystonia' refers to dystonias with other accompanying movement disorders. This review highlights recent advances in the genetics of some isolated and combined dystonic syndromes. Some genes, such as ANO3, GNAL and CIZ1, have been discovered for isolated dystonia, but they are probably not a common cause of classic cervical dystonia. Conversely, the phenotype associated with TUBB4A mutations expanded from that of isolated dystonia to a syndrome of hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC syndrome). Similarly, ATP1A3 mutations cause a wide phenotypic spectrum ranging from rapid-onset dystonia-parkinsonism to alternating hemiplegia of childhood. Other entities entailing dystonia-parkinsonism include dopamine transporter deficiency syndrome (SLC63 mutations); dopa-responsive dystonias; young-onset parkinsonism (PARKIN, PINK1 and DJ-1 mutations); PRKRA mutations; and X-linked TAF1 mutations, which rarely can also manifest in women. Clinical and genetic heterogeneity also characterizes myoclonus-dystonia, which includes not only the classical phenotype associated with epsilon-sarcoglycan mutations but rarely also presentation of ANO3 gene mutations, TITF1 gene mutations typically underlying benign hereditary chorea, and some dopamine synthesis pathway conditions due to GCH1 and TH mutations. Thus, new genes are being recognized for isolated dystonia, and the phenotype of known genes is broadening and now involves different combined dystonia syndromes. © 2015 EAN.

  1. Clinical Aspects of Type-1 Long-QT Syndrome by Location, Coding Type, and Biophysical Function of Mutations Involving the KCNQ1 Gene

    PubMed Central

    Moss, Arthur J.; Shimizu, Wataru; Wilde, Arthur A.M.; Towbin, Jeffrey A.; Zareba, Wojciech; Robinson, Jennifer L.; Qi, Ming; Vincent, G. Michael; Ackerman, Michael J.; Kaufman, Elizabeth S.; Hofman, Nynke; Seth, Rahul; Kamakura, Shiro; Miyamoto, Yoshihiro; Goldenberg, Ilan; Andrews, Mark L.; McNitt, Scott

    2012-01-01

    Background Type-1 long-QT syndrome (LQTS) is caused by loss-of-function mutations in the KCNQ1-encoded IKs cardiac potassium channel. We evaluated the effect of location, coding type, and biophysical function of KCNQ1 mutations on the clinical phenotype of this disorder. Methods and Results We investigated the clinical course in 600 patients with 77 different KCNQ1 mutations in 101 proband-identified families derived from the US portion of the International LQTS Registry (n=425), the Netherlands’ LQTS Registry (n=93), and the Japanese LQTS Registry (n=82). The Cox proportional hazards survivorship model was used to evaluate the independent contribution of clinical and genetic factors to the first occurrence of time-dependent cardiac events from birth through age 40 years. The clinical characteristics, distribution of mutations, and overall outcome event rates were similar in patients enrolled from the 3 geographic regions. Biophysical function of the mutations was categorized according to dominant-negative (>50%) or haploinsufficiency (≤50%) reduction in cardiac repolarizing IKs potassium channel current. Patients with transmembrane versus C-terminus mutations (hazard ratio, 2.06; P<0.001) and those with mutations having dominant-negative versus haploinsufficiency ion channel effects (hazard ratio, 2.26; P<0.001) were at increased risk for cardiac events, and these genetic risks were independent of traditional clinical risk factors. Conclusions This genotype–phenotype study indicates that in type-1 LQTS, mutations located in the transmembrane portion of the ion channel protein and the degree of ion channel dysfunction caused by the mutations are important independent risk factors influencing the clinical course of this disorder. PMID:17470695

  2. A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome.

    PubMed

    Singh, Nanda A; Pappas, Chris; Dahle, E Jill; Claes, Lieve R F; Pruess, Timothy H; De Jonghe, Peter; Thompson, Joel; Dixon, Missy; Gurnett, Christina; Peiffer, Andy; White, H Steve; Filloux, Francis; Leppert, Mark F

    2009-09-01

    A follow-up study of a large Utah family with significant linkage to chromosome 2q24 led us to identify a new febrile seizure (FS) gene, SCN9A encoding Na(v)1.7. In 21 affected members, we uncovered a potential mutation in a highly conserved amino acid, p.N641Y, in the large cytoplasmic loop between transmembrane domains I and II that was absent from 586 ethnically matched population control chromosomes. To establish a functional role for this mutation in seizure susceptibility, we introduced the orthologous mutation into the murine Scn9a ortholog using targeted homologous recombination. Compared to wild-type mice, homozygous Scn9a(N641Y/N641Y) knockin mice exhibit significantly reduced thresholds to electrically induced clonic and tonic-clonic seizures, and increased corneal kindling acquisition rates. Together, these data strongly support the SCN9A p.N641Y mutation as disease-causing in this family. To confirm the role of SCN9A in FS, we analyzed a collection of 92 unrelated FS patients and identified additional highly conserved Na(v)1.7 missense variants in 5% of the patients. After one of these children with FS later developed Dravet syndrome (severe myoclonic epilepsy of infancy), we sequenced the SCN1A gene, a gene known to be associated with Dravet syndrome, and identified a heterozygous frameshift mutation. Subsequent analysis of 109 Dravet syndrome patients yielded nine Na(v)1.7 missense variants (8% of the patients), all in highly conserved amino acids. Six of these Dravet syndrome patients with SCN9A missense variants also harbored either missense or splice site SCN1A mutations and three had no SCN1A mutations. This study provides evidence for a role of SCN9A in human epilepsies, both as a cause of FS and as a partner with SCN1A mutations.

  3. Exome sequencing identifies complex I NDUFV2 mutations as a novel cause of Leigh syndrome.

    PubMed

    Cameron, Jessie M; MacKay, Nevena; Feigenbaum, Annette; Tarnopolsky, Mark; Blaser, Susan; Robinson, Brian H; Schulze, Andreas

    2015-09-01

    Two siblings with hypertrophic cardiomyopathy and brain atrophy were diagnosed with Complex I deficiency based on low enzyme activity in muscle and high lactate/pyruvate ratio in fibroblasts. Whole exome sequencing results of fibroblast gDNA from one sibling was narrowed down to 190 SNPs or In/Dels in 185 candidate genes by selecting non-synonymous coding sequence base pair changes that were not present in the SNP database. Two compound heterozygous mutations were identified in both siblings in NDUFV2, encoding the 24 kDa subunit of Complex I. The intronic mutation (c.IVS2 + 1delGTAA) is disease causing and has been reported before. The other mutation is novel (c.669_670insG, p.Ser224Valfs*3) and predicted to cause a pathogenic frameshift in the protein. Subsequent investigation of 10 probands with complex I deficiency from different families revealed homozygosity for the intronic c.IVS2 + 1delGTAA mutation in a second, consanguineous family. In this family three of five siblings were affected. Interestingly, they presented with Leigh syndrome but no cardiac involvement. The same genotype had been reported previously in a two families but presenting with hypertrophic cardiomyopathy, trunk hypotonia and encephalopathy. We have identified NDUFV2 mutations in two families with Complex I deficiency, including a novel mutation. The diagnosis of Leigh syndrome expands the clinical phenotypes associated with the c.IVS2 + 1delGTAA mutation in this gene. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. UMD-USHbases: a comprehensive set of databases to record and analyse pathogenic mutations and unclassified variants in seven Usher syndrome causing genes.

    PubMed

    Baux, David; Faugère, Valérie; Larrieu, Lise; Le Guédard-Méreuze, Sandie; Hamroun, Dalil; Béroud, Christophe; Malcolm, Sue; Claustres, Mireille; Roux, Anne-Françoise

    2008-08-01

    Using the Universal Mutation Database (UMD) software, we have constructed "UMD-USHbases", a set of relational databases of nucleotide variations for seven genes involved in Usher syndrome (MYO7A, CDH23, PCDH15, USH1C, USH1G, USH3A and USH2A). Mutations in the Usher syndrome type I causing genes are also recorded in non-syndromic hearing loss cases and mutations in USH2A in non-syndromic retinitis pigmentosa. Usher syndrome provides a particular challenge for molecular diagnostics because of the clinical and molecular heterogeneity. As many mutations are missense changes, and all the genes also contain apparently non-pathogenic polymorphisms, well-curated databases are crucial for accurate interpretation of pathogenicity. Tools are provided to assess the pathogenicity of mutations, including conservation of amino acids and analysis of splice-sites. Reference amino acid alignments are provided. Apparently non-pathogenic variants in patients with Usher syndrome, at both the nucleotide and amino acid level, are included. The UMD-USHbases currently contain more than 2,830 entries including disease causing mutations, unclassified variants or non-pathogenic polymorphisms identified in over 938 patients. In addition to data collected from 89 publications, 15 novel mutations identified in our laboratory are recorded in MYO7A (6), CDH23 (8), or PCDH15 (1) genes. Information is given on the relative involvement of the seven genes, the number and distribution of variants in each gene. UMD-USHbases give access to a software package that provides specific routines and optimized multicriteria research and sorting tools. These databases should assist clinicians and geneticists seeking information about mutations responsible for Usher syndrome.

  5. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis.

    PubMed

    Wu, Chi-Hong; Fallini, Claudia; Ticozzi, Nicola; Keagle, Pamela J; Sapp, Peter C; Piotrowska, Katarzyna; Lowe, Patrick; Koppers, Max; McKenna-Yasek, Diane; Baron, Desiree M; Kost, Jason E; Gonzalez-Perez, Paloma; Fox, Andrew D; Adams, Jenni; Taroni, Franco; Tiloca, Cinzia; Leclerc, Ashley Lyn; Chafe, Shawn C; Mangroo, Dev; Moore, Melissa J; Zitzewitz, Jill A; Xu, Zuo-Shang; van den Berg, Leonard H; Glass, Jonathan D; Siciliano, Gabriele; Cirulli, Elizabeth T; Goldstein, David B; Salachas, Francois; Meininger, Vincent; Rossoll, Wilfried; Ratti, Antonia; Gellera, Cinzia; Bosco, Daryl A; Bassell, Gary J; Silani, Vincenzo; Drory, Vivian E; Brown, Robert H; Landers, John E

    2012-08-23

    Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.

  6. Fragile X spectrum disorders.

    PubMed

    Lozano, Reymundo; Rosero, Carolina Alba; Hagerman, Randi J

    2014-11-01

    The fragile X mental retardation 1 gene (FMR1), which codes for the fragile X mental retardation 1 protein (FMRP), is located at Xp27.3. The normal allele of the FMR1 gene typically has 5 to 40 CGG repeats in the 5' untranslated region; abnormal alleles of dynamic mutations include the full mutation (> 200 CGG repeats), premutation (55-200 CGG repeats) and the gray zone mutation (45-54 CGG repeats). Premutation carriers are common in the general population with approximately 1 in 130-250 females and 1 in 250-810 males, whereas the full mutation and Fragile X syndrome (FXS) occur in approximately 1 in 4000 to 1 in 7000. FMR1 mutations account for a variety of phenotypes including the most common monogenetic cause of inherited intellectual disability (ID) and autism (FXS), the most common genetic form of ovarian failure, the fragile X-associated primary ovarian insufficiency (FXPOI, premutation); and fragile X-associated tremor/ataxia syndrome (FXTAS, premutation). The premutation can also cause developmental problems including ASD and ADHD especially in boys and psychopathology including anxiety and depression in children and adults. Some premutation carriers can have a deficit of FMRP and some unmethylated full mutation individuals can have elevated FMR1 mRNA that is considered a premutation problem. Therefore the term "Fragile X Spectrum Disorder" (FXSD) should be used to include the wide range of overlapping phenotypes observed in affected individuals with FMR1 mutations. In this review we focus on the phenotypes and genotypes of children with FXSD.

  7. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice

    PubMed Central

    Jones, Frances E.; Bailey, Matthew A.; Murray, Lydia S.; Lu, Yinhui; McNeilly, Sarah; Schlötzer-Schrehardt, Ursula; Lennon, Rachel; Sado, Yoshikazu; Brownstein, David G.; Mullins, John J.; Kadler, Karl E.; Van Agtmael, Tom

    2016-01-01

    ABSTRACT Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies. PMID:26839400

  8. ENPP1 Mutation Causes Recessive Cole Disease by Altering Melanogenesis.

    PubMed

    Chourabi, Marwa; Liew, Mei Shan; Lim, Shawn; H'mida-Ben Brahim, Dorra; Boussofara, Lobna; Dai, Liang; Wong, Pui Mun; Foo, Jia Nee; Sriha, Badreddine; Robinson, Kim Samirah; Denil, Simon; Common, John Ea; Mamaï, Ons; Ben Khalifa, Youcef; Bollen, Mathieu; Liu, Jianjun; Denguezli, Mohamed; Bonnard, Carine; Saad, Ali; Reversade, Bruno

    2018-02-01

    Cole disease is a genodermatosis of pigmentation following a strict dominant mode of inheritance. In this study, we investigated eight patients affected with an overlapping genodermatosis after recessive inheritance. The patients presented with hypo- and hyperpigmented macules over the body, resembling dyschromatosis universalis hereditaria in addition to punctuate palmoplantar keratosis. By homozygosity mapping and whole-exome sequencing, a biallelic p.Cys120Arg mutation in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) was identified in all patients. We found that this mutation, like those causing dominant Cole disease, impairs homodimerization of the ENPP1 enzyme that is mediated by its two somatomedin-B-like domains. Histological analysis revealed structural and molecular changes in affected skin that were likely to originate from defective melanocytes because keratinocytes do not express ENPP1. Consistently, RNA-sequencing analysis of patient-derived primary melanocytes revealed alterations in melanocyte development and in pigmentation signaling pathways. We therefore conclude that germline ENPP1 cysteine-specific mutations, primarily affecting the melanocyte lineage, cause a clinical spectrum of dyschromatosis, in which the p.Cys120Arg allele represents a recessive and more severe form of Cole disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Absence of mutations in HCRT, HCRTR1 and HCRTR2 in patients with ROHHAD.

    PubMed

    Barclay, Sarah F; Rand, Casey M; Gray, Paul A; Gibson, William T; Wilson, Richard J A; Berry-Kravis, Elizabeth M; Ize-Ludlow, Diego; Bech-Hansen, N Torben; Weese-Mayer, Debra E

    2016-01-15

    Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) is a rare pediatric disease of unknown cause. Here, in response to a recent case report describing a ROHHAD patient who suffered from secondary narcolepsy confirmed by an absence of hypocretin-1 in the cerebrospinal fluid, we consider whether the ROHHAD phenotype is owing to one or more mutations in genes specific to hypocretin protein signalling. DNA samples from 16 ROHHAD patients were analyzed using a combination of next-generation and Sanger sequencing to identify exonic sequence variations in three genes: HCRT, HCRTR1, and HCRTR2. No rare or novel mutations were identified in the exons of HCRT, HCRTR1, or HCRTR2 genes in a set of 16 ROHHAD patients. ROHHAD is highly unlikely to be caused by mutations in the exons of the genes for hypocretin and its two receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. ORAI1 mutations abolishing store-operated Ca2+ entry cause anhidrotic ectodermal dysplasia with immunodeficiency.

    PubMed

    Lian, Jayson; Cuk, Mario; Kahlfuss, Sascha; Kozhaya, Lina; Vaeth, Martin; Rieux-Laucat, Frédéric; Picard, Capucine; Benson, Melina J; Jakovcevic, Antonia; Bilic, Karmen; Martinac, Iva; Stathopulos, Peter; Kacskovics, Imre; Vraetz, Thomas; Speckmann, Carsten; Ehl, Stephan; Issekutz, Thomas; Unutmaz, Derya; Feske, Stefan

    2017-11-16

    Store-operated Ca 2+ entry (SOCE) through Ca 2+ release-activated Ca 2+ channels is an essential signaling pathway in many cell types. Ca 2+ release-activated Ca 2+ channels are formed by ORAI1, ORAI2, and ORAI3 proteins and activated by stromal interaction molecule (STIM) 1 and STIM2. Mutations in the ORAI1 and STIM1 genes that abolish SOCE cause a combined immunodeficiency (CID) syndrome that is accompanied by autoimmunity and nonimmunologic symptoms. We performed molecular and immunologic analysis of patients with CID, anhidrosis, and ectodermal dysplasia of unknown etiology. We performed DNA sequencing of the ORAI1 gene, modeling of mutations on ORAI1 crystal structure, analysis of ORAI1 mRNA and protein expression, SOCE measurements, immunologic analysis of peripheral blood lymphocyte populations by using flow cytometry, and histologic and ultrastructural analysis of patient tissues. We identified 3 novel autosomal recessive mutations in ORAI1 in unrelated kindreds with CID, autoimmunity, ectodermal dysplasia with anhidrosis, and muscular dysplasia. The patients were homozygous for p.V181SfsX8, p.L194P, and p.G98R mutations in the ORAI1 gene that suppressed ORAI1 protein expression and SOCE in the patients' lymphocytes and fibroblasts. In addition to impaired T-cell cytokine production, ORAI1 mutations were associated with strongly reduced numbers of invariant natural killer T and regulatory T (Treg) cells and altered composition of γδ T-cell and natural killer cell subsets. ORAI1 null mutations are associated with reduced numbers of invariant natural killer T and Treg cells that likely contribute to the patients' immunodeficiency and autoimmunity. ORAI1-deficient patients have dental enamel defects and anhidrosis, representing a new form of anhidrotic ectodermal dysplasia with immunodeficiency that is distinct from previously reported patients with anhidrotic ectodermal dysplasia with immunodeficiency caused by mutations in the nuclear factor κB signaling pathway (IKBKG and NFKBIA). Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. The genetic basis of female reproductive disorders: Etiology and clinical testing ☆

    PubMed Central

    Layman, Lawrence C.

    2013-01-01

    With the advent of improved molecular biology techniques, the genetic basis of an increasing number of reproductive disorders has been elucidated. Mutations in at least 20 genes cause hypogonadotropic hypogonadism including Kallmann syndrome in about 35–40% of patients. The two most commonly involved genes are FGFR1 and CHD7. When combined pituitary hormone deficiency includes hypogonadotropic hypogonadism as a feature, PROP1 mutations are the most common of the six genes involved. For hypergonadotropic hypogonadism, mutations in 14 genes cause gonadal failure in 15% of affected females, most commonly in FMR1. In eugonadal disorders, activating FSHR mutations have been identified for spontaneous ovarian hyperstimulation syndrome; and WNT4 mutations have been described in mullerian aplasia. For other eugonadal disorders, such as endometriosis, polycystic ovary syndrome, and leiomyomata, specific germline gene mutations have not been identified, but some chromosomal regions are associated with the corresponding phenotype. Practical genetic testing is possible to perform in both hypogonadotropic and hypergonadotropic hypogonadism and spontaneous ovarian hyperstimulation syndrome. However, clinical testing for endometriosis, polycystic ovary syndrome, and leiomyomata is not currently practical for the clinician. PMID:23499866

  12. Mutation analysis of HIF prolyl hydroxylases (PHD/EGLN) in individuals with features of phaeochromocytoma and renal cell carcinoma susceptibility.

    PubMed

    Astuti, Dewi; Ricketts, Christopher J; Chowdhury, Rasheduzzaman; McDonough, Michael A; Gentle, Dean; Kirby, Gail; Schlisio, Susanne; Kenchappa, Rajappa S; Carter, Bruce D; Kaelin, William G; Ratcliffe, Peter J; Schofield, Christopher J; Latif, Farida; Maher, Eamonn R

    2011-02-01

    Germline mutations in the von Hippel-Lindau disease (VHL) and succinate dehydrogenase subunit B (SDHB) genes can cause inherited phaeochromocytoma and/or renal cell carcinoma (RCC). Dysregulation of the hypoxia-inducible factor (HIF) transcription factors has been linked to VHL and SDHB-related RCC; both HIF dysregulation and disordered function of a prolyl hydroxylase domain isoform 3 (PHD3/EGLN3)-related pathway of neuronal apoptosis have been linked to the development of phaeochromocytoma. The 2-oxoglutarate-dependent prolyl hydroxylase enzymes PHD1 (EGLN2), PHD2 (EGLN1) and PHD3 (EGLN3) have a key role in regulating the stability of HIF-α subunits (and hence expression of the HIF-α transcription factors). A germline PHD2 mutation has been reported in association with congenital erythrocytosis and recurrent extra-adrenal phaeochromocytoma. We undertook mutation analysis of PHD1, PHD2 and PHD3 in two cohorts of patients with features of inherited phaeochromocytoma (n=82) and inherited RCC (n=64) and no evidence of germline mutations in known susceptibility genes. No confirmed pathogenic mutations were detected suggesting that mutations in these genes are not a frequent cause of inherited phaeochromocytoma or RCC.

  13. Molecular determination of glutaric aciduria type I in individuals from southwest Iran.

    PubMed

    Baradaran, Masumeh; Galehdari, Hamid; Aminzadeh, Majid; Azizi Malmiri, Reza; Tangestani, Raheleh; Karimi, Zahra

    2014-09-01

    Glutaric Aciduria type 1 (GA1) is a metabolic inborn error and is characterized by increasing excursion of glutaric acid and its derivates, presented in microcephaly and dystonia. The disease is resulted from mutational inactivation in the GCDH gene encoding the glutaryl-CoA dehydrogenase. The defective enzyme causes the accumulation of an excessive level of intermediate breakdown products that leads to the brain damage. In spite of the clinical features, diagnosis of GAI has been often confusing, because of variability in the clinical manifestations of patients. Early diagnosis and treatment can though prevent irreversible disease progression and consequent brain damage; otherwise the affected individuals will die in their first decade of lives. The GCDH gene was also analyzed to (detect or identify) disease causing mutations using gene amplification and direct sequencing in 18 patients. Among 18 patients, 10 patients (55.5%) were homozygous or compounded heterozygous for the recurrent mutation E181Q, three patients (16.7%) were homozygous for the known mutation R402Q and one patient (5.6%) was compound heterozygous for S255L. All three detected missense mutations are pathogenic, which cause structural changes in the binding site and tetramerization or functional deficiency. Four other individuals (22.2%) with a preliminary diagnosis of GAI were negative for any pathogenic mutations. Most GA1 affected persons in southwest Iran are with Persian ethnicity and the most common mutation in Khuzestan Province is prominent in comparison to  previous reports from Iran.

  14. Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Minghui; Zhang, Wei K.; Benvin, Nicole M.

    The activities of organellar ion channels are often regulated by Ca2+ and H+, which are present in high concentrations in many organelles. Here we report a structural element critical for dual Ca2+/pH regulation of TRPML1, a Ca2+-release channel crucial for endolysosomal function. TRPML1 mutations cause mucolipidosis type IV (MLIV), a severe lysosomal storage disorder characterized by neurodegeneration, mental retardation and blindness. We obtained crystal structures of the 213-residue luminal domain of human TRPML1 containing three missense MLIV-causing mutations. This domain forms a tetramer with a highly electronegative central pore formed by a novel luminal pore loop. Cysteine cross-linking and cryo-EMmore » analyses confirmed that this architecture occurs in the full-length channel. Structure–function studies demonstrated that Ca2+ and H+ interact with the luminal pore and exert physiologically important regulation. The MLIV-causing mutations disrupt the luminal-domain structure and cause TRPML1 mislocalization. Our study reveals the structural underpinnings of TRPML1's regulation, assembly and pathogenesis.« less

  15. A novel pathogenic mutation of the CYP27B1 gene in a patient with vitamin D-dependent rickets type 1: a case report.

    PubMed

    Babiker, Amir M I; Al Gadi, Iman; Al-Jurayyan, Nasir A M; Al Nemri, Abdulrahman M H; Al Haboob, Ali Abdu N; Al Boukai, Ahmed Amer; Al Zahrani, Ali; Habib, Hanan Ahmed

    2014-11-05

    Rickets can occur due to Vitamin D deficiency or defects in its metabolism. Three rare genetic types of rickets with different alterations of genes have been reported, including: Vitamin D dependent rickets type 1, Vitamin D dependent rickets type 2 or also known as Vitamin D resistant rickets and 25 hydroxylase deficiency rickets. Vitamin D dependent rickets type 1 is inherited in an autosomal recessive pattern, and is caused by mutations in the CYP27B1 gene encoding the 1α-hydroxylase enzyme. We report here a new mutation in CYP27B1, which lead to Vitamin D dependent rickets type 1. We report on a 13-month-old Arabic Saudi girl with Vitamin D dependent rickets type 1 presented with multiple fractures and classic features of rickets. A whole exome sequencing identified a novel pathogenic missense mutation (CYP27B1:Homozygous c.1510C > T(p.Q504X)) which results in a protein truncating alteration. Both parents are heterozygous carriers of the mutation. Based on data search in Human Gene Mutation Database, 63 CYP27B1 alterations were reported: only 28.6% are protein truncating (5 nonsense, 13 frameshift insertions/deletions, 0 gross deletions), while 61.9% are non-truncating (38 missense, 1 small in-frame insertions/deletion), and 9.5% are possible protein-truncating (5 splice, 1 regulatory). The deleterious effect of this alteration, which was the only mutation detected in the CYP27B1 common gene of Vitamin D dependent rickets type 1 in the proband, and its autosomal recessive inheritance fashion, both support a pathogenic nature of this mutation as the cause of Vitamin D dependent rickets type 1.

  16. Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24–32 mutation

    PubMed Central

    Faivre, L; Collod-Beroud, G; Callewaert, B; Child, A; Binquet, C; Gautier, E; Loeys, B L; Arbustini, E; Mayer, K; Arslan-Kirchner, M; Stheneur, C; Kiotsekoglou, A; Comeglio, P; Marziliano, N; Wolf, J E; Bouchot, O; Khau-Van-Kien, P; Beroud, C; Claustres, M; Bonithon-Kopp, C; Robinson, P N; Adès, L; De Backer, J; Coucke, P; Francke, U; De Paepe, A; Jondeau, G; Boileau, C

    2009-01-01

    Mutations in the FBN1 gene cause Marfan syndrome (MFS) and a wide range of overlapping phenotypes. The severe end of the spectrum is represented by neonatal MFS, the vast majority of probands carrying a mutation within exons 24–32. We previously showed that a mutation in exons 24–32 is predictive of a severe cardiovascular phenotype even in non-neonatal cases, and that mutations leading to premature truncation codons are under-represented in this region. To describe patients carrying a mutation in this so-called ‘neonatal' region, we studied the clinical and molecular characteristics of 198 probands with a mutation in exons 24–32 from a series of 1013 probands with a FBN1 mutation (20%). When comparing patients with mutations leading to a premature termination codon (PTC) within exons 24–32 to patients with an in-frame mutation within the same region, a significantly higher probability of developing ectopia lentis and mitral insufficiency were found in the second group. Patients with a PTC within exons 24–32 rarely displayed a neonatal or severe MFS presentation. We also found a higher probability of neonatal presentations associated with exon 25 mutations, as well as a higher probability of cardiovascular manifestations. A high phenotypic heterogeneity could be described for recurrent mutations, ranging from neonatal to classical MFS phenotype. In conclusion, even if the exons 24–32 location appears as a major cause of the severity of the phenotype in patients with a mutation in this region, other factors such as the type of mutation or modifier genes might also be relevant. PMID:19002209

  17. A Disease Mutation Causing Episodic Ataxia Type I in the S1 Links Directly to the Voltage Sensor and the Selectivity Filter in Kv Channels.

    PubMed

    Petitjean, Dimitri; Kalstrup, Tanja; Zhao, Juan; Blunck, Rikard

    2015-09-02

    The mutation F184C in Kv1.1 leads to development of episodic ataxia type I (EA1). Although the mutation has been said to alter activation kinetics and to lower expression, we show here that the underlying molecular mechanisms may be more complex. Although F184 is positioned in the "peripheral" S1 helix, it occupies a central position in the 3D fold. We show in cut-open oocyte voltage-clamp recordings of gating and ionic currents of the Shaker Kv channel expressed in Xenopus oocytes that F184 not only interacts directly with the gating charges of the S4, but also creates a functional link to the selectivity filter of the neighboring subunit. This link leads to impaired fast and slow inactivation. The effect on fast inactivation is of an allosteric nature considering that fast inactivation is caused by a linked cytosolic ball peptide. The extensive effects of F184C provide a new mechanism underlying EA. Episodic ataxia (EA) is an inherited disease that leads to occasional loss of motor control in combination with variable other symptoms such as vertigo or migraine. EA type I (EA1), studied here, is caused by mutations in a voltage-gated potassium channel that contributes to the generation of electrical signals in the brain. The mechanism by which mutations in voltage-gated potassium channels lead to EA is still unknown and there is no consistent pharmacological treatment. By studying in detail one disease-causing mutation in Kv1.1, we describe a novel molecular mechanism distinct from mechanisms described previously. This mechanism contributes to the understanding of potassium channel function in general and might lead to a better understanding of how EA develops. Copyright © 2015 the authors 0270-6474/15/3512198-09$15.00/0.

  18. A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred.

    PubMed

    Mory, Adi; Ruiz, Francesc X; Dagan, Efrat; Yakovtseva, Evgenia A; Kurolap, Alina; Parés, Xavier; Farrés, Jaume; Gershoni-Baruch, Ruth

    2014-03-01

    Nine affected individuals with isolated anophthalmia/microphthalmia from a large Muslim-inbred kindred were investigated. Assuming autosomal-recessive mode of inheritance, whole-genome linkage analysis, on DNA samples from four affected individuals, was undertaken. Homozygosity mapping techniques were employed and a 1.5-Mbp region, homozygous in all affected individuals, was delineated. The region contained nine genes, one of which, aldehyde dehydrogenase 1 (ALDH1A3), was a clear candidate. This gene seems to encode a key enzyme in the formation of a retinoic-acid gradient along the dorsoventral axis during an early eye development and the development of the olfactory system. Sanger sequence analysis revealed a missense mutation, causing a substitution of valine (Val) to methionine (Met) at position 71. Analyzing the p.Val71Met missense mutation using standard open access software (MutationTaster online, PolyPhen, SIFT/PROVEAN) predicts this variant to be damaging. Enzymatic activity, studied in vitro, showed no changes between the mutated and the wild-type ALDH1A3 protein.

  19. A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred

    PubMed Central

    Mory, Adi; Ruiz, Francesc X; Dagan, Efrat; Yakovtseva, Evgenia A; Kurolap, Alina; Parés, Xavier; Farrés, Jaume; Gershoni-Baruch, Ruth

    2014-01-01

    Nine affected individuals with isolated anophthalmia/microphthalmia from a large Muslim-inbred kindred were investigated. Assuming autosomal-recessive mode of inheritance, whole-genome linkage analysis, on DNA samples from four affected individuals, was undertaken. Homozygosity mapping techniques were employed and a 1.5-Mbp region, homozygous in all affected individuals, was delineated. The region contained nine genes, one of which, aldehyde dehydrogenase 1 (ALDH1A3), was a clear candidate. This gene seems to encode a key enzyme in the formation of a retinoic-acid gradient along the dorsoventral axis during an early eye development and the development of the olfactory system. Sanger sequence analysis revealed a missense mutation, causing a substitution of valine (Val) to methionine (Met) at position 71. Analyzing the p.Val71Met missense mutation using standard open access software (MutationTaster online, PolyPhen, SIFT/PROVEAN) predicts this variant to be damaging. Enzymatic activity, studied in vitro, showed no changes between the mutated and the wild-type ALDH1A3 protein. PMID:23881059

  20. Heterozygous truncation mutations of the SMC1A gene cause a severe early onset epilepsy with cluster seizures in females: Detailed phenotyping of 10 new cases.

    PubMed

    Symonds, Joseph D; Joss, Shelagh; Metcalfe, Kay A; Somarathi, Suresh; Cruden, Jamie; Devlin, Anita M; Donaldson, Alan; DiDonato, Nataliya; Fitzpatrick, David; Kaiser, Frank J; Lampe, Anne K; Lees, Melissa M; McLellan, Ailsa; Montgomery, Tara; Mundada, Vivek; Nairn, Lesley; Sarkar, Ajoy; Schallner, Jens; Pozojevic, Jelena; Parenti, Ilaria; Tan, Jeen; Turnpenny, Peter; Whitehouse, William P; Zuberi, Sameer M

    2017-04-01

    The phenotype of seizure clustering with febrile illnesses in infancy/early childhood is well recognized. To date the only genetic epilepsy consistently associated with this phenotype is PCDH19, an X-linked disorder restricted to females, and males with mosaicism. The SMC1A gene, which encodes a structural component of the cohesin complex is also located on the X chromosome. Missense variants and small in-frame deletions of SMC1A cause approximately 5% of Cornelia de Lange Syndrome (CdLS). Recently, protein truncating mutations in SMC1A have been reported in five females, all of whom have been affected by a drug-resistant epilepsy, and severe developmental impairment. Our objective was to further delineate the phenotype of SMC1A truncation. Female cases with de novo truncation mutations in SMC1A were identified from the Deciphering Developmental Disorders (DDD) study (n = 8), from postmortem testing of an affected twin (n = 1), and from clinical testing with an epilepsy gene panel (n = 1). Detailed information on the phenotype in each case was obtained. Ten cases with heterozygous de novo mutations in the SMC1A gene are presented. All 10 mutations identified are predicted to result in premature truncation of the SMC1A protein. All cases are female, and none had a clinical diagnosis of CdLS. They presented with onset of epileptic seizures between <4 weeks and 28 months of age. In the majority of cases, a marked preponderance for seizures to occur in clusters was noted. Seizure clusters were associated with developmental regression. Moderate or severe developmental impairment was apparent in all cases. Truncation mutations in SMC1A cause a severe epilepsy phenotype with cluster seizures in females. These mutations are likely to be nonviable in males. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  1. SLC1A4 mutations cause a novel disorder of intellectual disability, progressive microcephaly, spasticity and thin corpus callosum.

    PubMed

    Heimer, G; Marek-Yagel, D; Eyal, E; Barel, O; Oz Levi, D; Hoffmann, C; Ruzzo, E K; Ganelin-Cohen, E; Lancet, D; Pras, E; Rechavi, G; Nissenkorn, A; Anikster, Y; Goldstein, D B; Ben Zeev, B

    2015-10-01

    Two unrelated patients, presenting with significant global developmental delay, severe progressive microcephaly, seizures, spasticity and thin corpus callosum (CC) underwent trio whole-exome sequencing. No candidate variant was found in any known genes related to the phenotype. However, crossing the data of the patients illustrated that they both manifested pathogenic variants in the SLC1A4 gene which codes the ASCT1 transporter of serine and other neutral amino acids. The Ashkenazi patient is homozygous for a deleterious missense c.766G>A, p.(E256K) mutation whereas the Ashkenazi-Iraqi patient is compound heterozygous for this mutation and a nonsense c.945delTT, p.(Leu315Hisfs*42) mutation. Structural prediction demonstrates truncation of significant portion of the protein by the nonsense mutation and speculates functional disruption by the missense mutation. Both mutations are extremely rare in general population databases, however, the missense mutation was found in heterozygous mode in 1:100 Jewish Ashkenazi controls suggesting a higher carrier rate among Ashkenazi Jews. We conclude that SLC1A4 is the disease causing gene of a novel neurologic disorder manifesting with significant intellectual disability, severe postnatal microcephaly, spasticity and thin CC. The role of SLC1A4 in the serine transport from astrocytes to neurons suggests a possible pathomechanism for this disease and implies a potential therapeutic approach. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. A novel mutation R190H in the AT-hook 1 domain of MeCP2 identified in an atypical Rett syndrome.

    PubMed

    Zhou, Xiao; Liao, Yuangao; Xu, Miaojing; Ji, Zhong; Xu, Yunqi; Zhou, Liang; Wei, Xiaoming; Hu, Peiqian; Han, Peng; Yang, Fanghan; Pan, Suyue; Hu, Yafang

    2017-10-10

    Mutations in Methyl-CpG binding protein 2 ( MECP2 ) have been identified as the disease-causing mutations in Rett Syndrome (RTT). However, no mutation in the AT-hook 1 domain of MECP2 has been reported in RTT yet. The function of AT-hook 1 domain of MECP2 has not been described either. The clinical and radiological features of a girl with progressive hyperactivity and loss of acquired linguistic and motor functions were presented. Next generation sequencing was used to screen the causative gene. Effect of the mutant protein on histone 3 methylation was assessed in vitro experiment. The patient was diagnosed with an atypical RTT at the age of nine. Magnetic resonance imaging revealed a loss of whole-brain volume and abnormal myelination. Genetic analysis identified a de novo novel missense mutation of MECP2 (NM_004992, c.570G->A, p.Arg190His). This mutation is located in the AT-hook 1 domain of MeCP2 protein. Overexpression of the mutant MeCP2 in cultured neuroblastoma cells SH-SY5Y revealed increased level of dimethylated histone 3 lysine 9, a transcriptional repressor marker. A novel missense mutation in AT-hook 1 domain of MeCP2 was identified in a patient with atypical RTT. Clinical data and in vitro experiment result imply that R190H mutation in AT-hook1 may cause dysfunction of MeCP2 and be a pathogenic variant.

  3. Whole exome sequencing identifies a recurrent RQCD1 P131L mutation in cutaneous melanoma

    PubMed Central

    Wong, Stephen Q.; Behren, Andreas; Mar, Victoria J.; Woods, Katherine; Li, Jason; Martin, Claire; Sheppard, Karen E.; Wolfe, Rory; Kelly, John; Cebon, Jonathan; Dobrovic, Alexander; McArthur, Grant A.

    2015-01-01

    Melanoma is often caused by mutations due to exposure to ultraviolet radiation. This study reports a recurrent somatic C > T change causing a P131L mutation in the RQCD1 (Required for Cell Differentiation1 Homolog) gene identified through whole exome sequencing of 20 metastatic melanomas. Screening in 715 additional primary melanomas revealed a prevalence of ~4%. This represents the first reported recurrent mutation in a member of the CCR4-NOT complex in cancer. Compared to tumors without the mutation, the P131L mutant positive tumors were associated with increased thickness (p = 0.02), head and neck (p = 0.009) and upper limb (p = 0.03) location, lentigo maligna melanoma subtype (p = 0.02) and BRAF V600K (p = 0.04) but not V600E or NRAS codon 61 mutations. There was no association with nodal disease (p = 0.3). Mutually exclusive mutations of other members of the CCR4-NOT complex were found in ~20% of the TCGA melanoma dataset suggesting the complex may play an important role in melanoma biology. Mutant RQCD1 was predicted to bind strongly to HLA-A0201 and HLA-Cw3 MHC1 complexes. From thirteen patients with mutant RQCD1, an anti-tumor CD8+ T cell response was observed from a single patient's peripheral blood mononuclear cell population stimulated with mutated peptide compared to wildtype indicating a neoantigen may be formed. PMID:25544760

  4. Mutation analysis of GM1 gangliosidosis in a Siamese cat from Japan in the 1960s.

    PubMed

    Uddin, Mohammad M; Tanimoto, Takeshi; Yabuki, Akira; Kotani, Takao; Kuwamura, Mitsuru; Chang, Hye-Sook; Yamato, Osamu

    2012-12-01

    GM1 gangliosidosis is a fatal, progressive neurodegenerative lysosomal storage disease caused by mutations of the β-galactosidase (GLB1) gene. In feline GM1 gangliosidosis, a pathogenic mutation (c.1448G>C) of the feline GLB1 gene was identified in Siamese and Korat cats previously diagnosed with the disease in the USA and Italy, respectively. The present study demonstrated the same mutation in a Siamese cat that had been diagnosed with GM1 gangliosidosis in Japan in the 1960s. The mutation was confirmed using DNA extracted from stored paraffin-embedded brain tissue by a direct sequencing method and a polymerase chain reaction-restriction fragment length polymorphism assay. This pathogenic mutation seems to have been distributed around the world.

  5. Autosomal Dominant Mutation in the Signal Peptide of Renin in a Kindred with Anemia, Hyperuricemia, and CKD

    PubMed Central

    Beck, Bodo B.; Trachtman, Howard; Gitman, Michael; Miller, Ilene; Sayer, John A.; Pannes, Andrea; Baasner, Anne; Hildebrandt, Friedhelm; Wolf, Matthias T.F.

    2012-01-01

    Homozygous or compound heterozygous Renin (REN) mutations cause renal tubular dysgenesis (RTD), which is characterized by death in utero due to renal failure and pulmonary hypoplasia. The phenotype resembles the fetopathy caused by angiotensin-converting enzyme inhibitor or angiotensin receptor blocker intake during pregnancy. Recently, heterozygous REN mutations were shown to result in early-onset hyperuricemia, anemia and chronic renal failure. So far, only three different heterozygous REN mutations were reported. We performed mutation analysis of the REN gene in 39 kindreds with hyperuricemia and chronic kidney disease (CKD) previously tested negative for mutations in the UMOD and HNF1β genes. We identified one kindred with a novel c.28T>C (p.W10R) REN mutation in the signal sequence, concluding that REN mutations are rare events in CKD patients. Affected individuals over four generations were identified carrying the novel REN mutation and were characterized by significant anemia, hyperuricemia and CKD. Anemia was severe and disproportional to the degree of renal impairment. Moreover all heterozygous REN mutations are localized in the signal sequence. Therefore, screening of the REN gene for CKD patients with hyperuricemia and anemia may be focusing on exon 1 sequencing, which encodes the signal peptide. PMID:21903317

  6. Amelogenin signal peptide mutation: Correlation between mutations in the amelogenin gene (AMGX) and manifestations of X-linked amelogenesis imperfecta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerstroem-Fermer, M.; Nilsson, M.; Pettersson, U.

    1995-03-01

    Formation of tooth enamel is a poorly understood biological process. In this study the authors describe a 9-bp deletion in exon 2 of the amelogenin gene (AMGX) causing X-linked hypoplastic amelogenesis imperfecta, a disease characterized by defective enamel. The mutation results in the loss of 3 amino acids and exchange of 1 in the signal peptide of the amelogenin protein. This deletion in the signal peptide probably interferes with translocation of the amelogenin protein during synthesis, resulting in the thin enamel observed in affected members of the family. The authors compare this mutation to a previously reported mutation in themore » amelogenin gene that causes a different disease phenotype. The study illustrates that molecular analysis can help explain the various manifestations of a tooth disorder and thereby provide insights into the mechanisms of tooth enamel formation. 16 refs., 2 figs., 1 tab.« less

  7. Identification and functional characterization of a novel ryanodine receptor mutation causing malignant hyperthermia in North American and South American families.

    PubMed

    Sambuughin, N; Nelson, T E; Jankovic, J; Xin, C; Meissner, G; Mullakandov, M; Ji, J; Rosenberg, H; Sivakumar, K; Goldfarb, L G

    2001-09-01

    Malignant hyperthermia is a pharmacogenetic disorder associated with mutations in Ca(2+) regulatory proteins. It manifests as a hypermetabolic crisis triggered by commonly used anesthetics. Malignant hyperthermia susceptibility is a dominantly inherited predisposition to malignant hyperthermia that can be diagnosed by using caffeine/halothane contracture tests. In a multigenerational North American family with a severe form of malignant hyperthermia that has caused four deaths, a novel RYR1 A2350T missense mutation was identified in all individuals testing positive for malignant hyperthermia susceptibility. The same A2350T mutation was identified in an Argentinean family with two known fatal MH reactions. Functional analysis in HEK-293 cells revealed an altered Ca(2+) dependence and increased caffeine sensitivity of the expressed mutant protein thus confirming the pathogenic potential of the RYR1 A2350T mutation.

  8. Detection of novel NF1 mutations and rapid mutation prescreening with Pyrosequencing.

    PubMed

    Brinckmann, Anja; Mischung, Claudia; Bässmann, Ingelore; Kühnisch, Jirko; Schuelke, Markus; Tinschert, Sigrid; Nürnberg, Peter

    2007-12-01

    Neurofibromatosis type 1 (NF1) is caused by mutations in the neurofibromin (NF1) gene. Mutation analysis of NF1 is complicated by its large size, the lack of mutation hotspots, pseudogenes and frequent de novo mutations. Additionally, the search for NF1 mutations on the mRNA level is often hampered by nonsense-mediated mRNA decay (NMD) of the mutant allele. In this study we searched for mutations in a cohort of 38 patients and investigated the relationship between mutation type and allele-specific transcription from the wild-type versus mutant alleles. Quantification of relative mRNA transcript numbers was done by Pyrosequencing, a novel real-time sequencing method whose signals can be quantified very accurately. We identified 21 novel mutations comprising various mutation types. Pyrosequencing detected a definite relationship between allelic NF1 transcript imbalance due to NMD and mutation type in 24 of 29 patients who all carried frame-shift or nonsense mutations. NMD was absent in 5 patients with missense and silent mutations, as well as in 4 patients with splice-site mutations that did not disrupt the reading frame. Pyrosequencing was capable of detecting NMD even when the effects were only moderate. Diagnostic laboratories could thus exploit this effect for rapid prescreening for NF1 mutations as more than 60% of the mutations in this gene disrupt the reading frame and are prone to NMD.

  9. A synonymous mutation in TCOF1 causes Treacher Collins syndrome due to mis-splicing of a constitutive exon.

    PubMed

    Macaya, D; Katsanis, S H; Hefferon, T W; Audlin, S; Mendelsohn, N J; Roggenbuck, J; Cutting, G R

    2009-08-01

    Interpretation of the pathogenicity of sequence alterations in disease-associated genes is challenging. This is especially true for novel alterations that lack obvious functional consequences. We report here on a patient with Treacher Collins syndrome (TCS) found to carry a previously reported mutation, c.122C > T, which predicts p.A41V, and a novel synonymous mutation, c.3612A > C. Pedigree analysis showed that the c.122C > T mutation segregated with normal phenotypes in multiple family members while the c.3612A > C was de novo in the patient. Analysis of TCOF1 RNA in lymphocytes showed a transcript missing exon 22. These results show that TCS in the patient is due to haploinsufficiency of TCOF1 caused by the synonymous de novo c.3612A > C mutation. This study highlights the importance of clinical and pedigree evaluation in the interpretation of known and novel sequence alterations. 2009 Wiley-Liss, Inc.

  10. A novel mutation in the AGXT gene causing primary hyperoxaluria type I: genotype-phenotype correlation.

    PubMed

    M'Dimegh, Saoussen; Aquaviva-Bourdain, Cécile; Omezzine, Asma; M'Barek, Ibtihel; Souche, Geneviéve; Zellama, Dorsaf; Abidi, Kamel; Achour, Abdelattif; Gargah, Tahar; Abroug, Saoussen; Bouslama, Ali

    2016-09-01

    Primary hyperoxaluria type I (PH1) is an autosomal recessive metabolic disorder caused by inherited mutations in the AGXT gene encoding liver peroxisomal alanine : glyoxylate aminotransferase (AGT) which is deficient or mistargeted to mitochondria. PH1 shows considerable phenotypic and genotypic heterogeneity. The incidence and severity of PH1 varies in different geographic regions. DNA samples of the affected members from two unrelated Tunisian families were tested by amplifying and sequencing each of the AGXT exons and intron-exon junctions. We identified a novel frameshift mutation in the AGXT gene, the c.406_410dupACTGC resulting in a truncated protein (p.Gln137Hisfs*19). It is found in homozygous state in two nonconsanguineous unrelated families from Tunisia. These molecular findings provide genotype/phenotype correlations in the intrafamilial phenotypic and permit accurate carrier detection, and prenatal diagnosis. The novel p.Gln137Hisfs*19 mutation detected in our study extend the spectrum of known AGXT gene mutations in Tunisia.

  11. Growth Hormone Receptor Mutations Related to Individual Dwarfism

    PubMed Central

    Li, Charles; Zhang, Xiquan

    2018-01-01

    Growth hormone (GH) promotes body growth by binding with two GH receptors (GHRs) at the cell surface. GHRs interact with Janus kinase, signal transducers, and transcription activators to stimulate metabolic effects and insulin-like growth factor (IGF) synthesis. However, process dysfunctions in the GH–GHR–IGF-1 axis cause animal dwarfism. If, during the GH process, GHR is not successfully recognized and/or bound, or GHR fails to transmit the GH signal to IGF-1, the GH dysfunction occurs. The goal of this review was to focus on the GHR mutations that lead to failures in the GH–GHR–IGF-1 signal transaction process in the dwarf phenotype. Until now, more than 90 GHR mutations relevant to human short stature (Laron syndrome and idiopathic short stature), including deletions, missense, nonsense, frameshift, and splice site mutations, and four GHR defects associated with chicken dwarfism, have been described. Among the 93 identified mutations of human GHR, 68 occur extracellularly, 13 occur in GHR introns, 10 occur intracellularly, and two occur in the transmembrane. These mutations interfere with the interaction between GH and GHRs, GHR dimerization, downstream signaling, and the expression of GHR. These mutations cause aberrant functioning in the GH-GHR-IGF-1 axis, resulting in defects in the number and diameter of muscle fibers as well as bone development. PMID:29748515

  12. HNF1 alpha gene coding regions mutations screening, in a Caucasian population clinically characterized as MODY from Argentina.

    PubMed

    Lopez, Ariel Pablo; Foscaldi, Sabrina Andrea; Perez, Maria Silvia; Rodriguez, Martín; Traversa, Mercedes; Puchulu, Félix Miguel; Bergada, Ignacio; Frechtel, Gustavo Daniel

    2011-02-01

    There are at least six subtypes of Maturity Onset Diabetes of the Young (MODY) with distinctive genetic causes. MODY 3 is caused by mutations in HNF1A gene, an insulin transcription factor, so mutations in this gene are associated with impaired insulin secretion. MODY 3 prevalence differs according to the population analyzed, but it is one of the most frequent subtypes. Therefore, our aims in this work were to find mutations present in the HNF1A gene and provide information on their prevalence. Mutations screening was done in a group of 80 unrelated patients (average age 17.1 years) selected by clinical characterization of MODY, by SSCP electrophoresis followed by sequenciation. We found eight mutations, of which six were novel and four sequence variants, which were all novel. Therefore the prevalence of MODY 3 in this group was 10%. Compared clinical data between the non-MODY 3 patients and the MODY 3 diagnosed patients did not show any significant difference. Eight patients were diagnosed as MODY 3 and new data about the prevalence of that subtype is provided. Our results contribute to reveal novel mutations, providing new data about the prevalence of that subtype. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Founder mutations characterise the mutation panorama in 200 Swedish index cases referred for Long QT syndrome genetic testing.

    PubMed

    Stattin, Eva-Lena; Boström, Ida Maria; Winbo, Annika; Cederquist, Kristina; Jonasson, Jenni; Jonsson, Björn-Anders; Diamant, Ulla-Britt; Jensen, Steen M; Rydberg, Annika; Norberg, Anna

    2012-10-25

    Long QT syndrome (LQTS) is an inherited arrhythmic disorder characterised by prolongation of the QT interval on ECG, presence of syncope and sudden death. The symptoms in LQTS patients are highly variable, and genotype influences the clinical course. This study aims to report the spectrum of LQTS mutations in a Swedish cohort. Between March 2006 and October 2009, two hundred, unrelated index cases were referred to the Department of Clinical Genetics, Umeå University Hospital, Sweden, for LQTS genetic testing. We scanned five of the LQTS-susceptibility genes (KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2) for mutations by DHPLC and/or sequencing. We applied MLPA to detect large deletions or duplications in the KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 genes. Furthermore, the gene RYR2 was screened in 36 selected LQTS genotype-negative patients to detect cases with the clinically overlapping disease catecholaminergic polymorphic ventricular tachycardia (CPVT). In total, a disease-causing mutation was identified in 103 of the 200 (52%) index cases. Of these, altered exon copy numbers in the KCNH2 gene accounted for 2% of the mutations, whereas a RYR2 mutation accounted for 3% of the mutations. The genotype-positive cases stemmed from 64 distinct mutations, of which 28% were novel to this cohort. The majority of the distinct mutations were found in a single case (80%), whereas 20% of the mutations were observed more than once. Two founder mutations, KCNQ1 p.Y111C and KCNQ1 p.R518*, accounted for 25% of the genotype-positive index cases. Genetic cascade screening of 481 relatives to the 103 index cases with an identified mutation revealed 41% mutation carriers who were at risk of cardiac events such as syncope or sudden unexpected death. In this cohort of Swedish index cases with suspected LQTS, a disease-causing mutation was identified in 52% of the referred patients. Copy number variations explained 2% of the mutations and 3 of 36 selected cases (8%) harboured a mutation in the RYR2 gene. The mutation panorama is characterised by founder mutations (25%), even so, this cohort increases the amount of known LQTS-associated mutations, as approximately one-third (28%) of the detected mutations were unique.

  14. Differential Effects of CSF-1R D802V and KIT D816V Homologous Mutations on Receptor Tertiary Structure and Allosteric Communication

    PubMed Central

    Da Silva Figueiredo Celestino Gomes, Priscila; Panel, Nicolas; Laine, Elodie; Pascutti, Pedro Geraldo; Solary, Eric; Tchertanov, Luba

    2014-01-01

    The colony stimulating factor-1 receptor (CSF-1R) and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs), are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR) and facilitated its departure from the kinase domain (KD). In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind. PMID:24828813

  15. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability.

    PubMed

    Tatton-Brown, Katrina; Seal, Sheila; Ruark, Elise; Harmer, Jenny; Ramsay, Emma; Del Vecchio Duarte, Silvana; Zachariou, Anna; Hanks, Sandra; O'Brien, Eleanor; Aksglaede, Lise; Baralle, Diana; Dabir, Tabib; Gener, Blanca; Goudie, David; Homfray, Tessa; Kumar, Ajith; Pilz, Daniela T; Selicorni, Angelo; Temple, I Karen; Van Maldergem, Lionel; Yachelevich, Naomi; van Montfort, Robert; Rahman, Nazneen

    2014-04-01

    Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism. To identify new causes of human overgrowth, we performed exome sequencing in ten proband-parent trios and detected two de novo DNMT3A mutations. We identified 11 additional de novo mutations by sequencing DNMT3A in a further 142 individuals with overgrowth. The mutations alter residues in functional DNMT3A domains, and protein modeling suggests that they interfere with domain-domain interactions and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P < 0.0001). Mutation carriers had a distinctive facial appearance, intellectual disability and greater height. DNMT3A encodes a DNA methyltransferase essential for establishing methylation during embryogenesis and is commonly somatically mutated in acute myeloid leukemia. Thus, DNMT3A joins an emerging group of epigenetic DNA- and histone-modifying genes associated with both developmental growth disorders and hematological malignancies.

  16. Novel autosomal dominant TNNT1 mutation causing nemaline myopathy.

    PubMed

    Konersman, Chamindra G; Freyermuth, Fernande; Winder, Thomas L; Lawlor, Michael W; Lagier-Tourenne, Clotilde; Patel, Shailendra B

    2017-11-01

    Nemaline myopathy (NEM) is one of the three major forms of congenital myopathy and is characterized by diffuse muscle weakness, hypotonia, respiratory insufficiency, and the presence of nemaline rod structures on muscle biopsy. Mutations in troponin T1 (TNNT1) is 1 of 10 genes known to cause NEM. To date, only homozygous nonsense mutations or compound heterozygous truncating or internal deletion mutations in TNNT1 gene have been identified in NEM. This extended family is of historical importance as some members were reported in the 1960s as initial evidence that NEM is a hereditary disorder. Proband and extended family underwent Sanger sequencing for TNNT1. We performed RT-PCR and immunoblot on muscle to assess TNNT1 RNA expression and protein levels in proband and father. We report a novel heterozygous missense mutation of TNNT1 c.311A>T (p.E104V) that segregated in an autosomal dominant fashion in a large family residing in the United States. Extensive sequencing of the other known genes for NEM failed to identify any other mutant alleles. Muscle biopsies revealed a characteristic pattern of nemaline rods and severe myofiber hypotrophy that was almost entirely restricted to the type 1 fiber population. This novel mutation alters a residue that is highly conserved among vertebrates. This report highlights not only a family with autosomal dominant inheritance of NEM, but that this novel mutation likely acts via a dominant negative mechanism. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  17. Structural Impact of Three Parkinsonism-Associated Missense Mutations on Human DJ-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakshminarasimhan, M.; Maldonado, M.T.; Zhou, W.

    2009-05-20

    A number of missense mutations in the oxidative stress response protein DJ-1 are implicated in rare forms of familial Parkinsonism. The best-characterized Parkinsonian DJ-1 missense mutation, L166P, disrupts homodimerization and results in a poorly folded protein. The molecular basis by which the other Parkinsonism-associated mutations disrupt the function of DJ-1, however, is incompletely understood. In this study we show that three different Parkinsonism-associated DJ-1 missense mutations (A104T, E163K, and M26I) reduce the thermal stability of DJ-1 in solution by subtly perturbing the structure of DJ-1 without causing major folding defects or loss of dimerization. Atomic resolution X-ray crystallography shows thatmore » the A104T substitution introduces water and a discretely disordered residue into the core of the protein, E163K disrupts a key salt bridge with R145, and M26I causes packing defects in the core of the dimer. The deleterious effect of each Parkinsonism-associated mutation on DJ-1 is dissected by analysis of engineered substitutions (M26L, A104V, and E163K/R145E) that partially alleviate each of the defects introduced by the A104T, E163K and M26I mutations. In total, our results suggest that the protective function of DJ-1 can be compromised by diverse perturbations in its structural integrity, particularly near the junctions of secondary structural elements.« less

  18. Autosomal recessive retinitis pigmentosa caused by mutations in the MAK gene.

    PubMed

    Stone, Edwin M; Luo, Xunda; Héon, Elise; Lam, Byron L; Weleber, Richard G; Halder, Jennifer A; Affatigato, Louisa M; Goldberg, Jacqueline B; Sumaroka, Alexander; Schwartz, Sharon B; Cideciyan, Artur V; Jacobson, Samuel G

    2011-12-28

    To determine the disease expression in autosomal recessive (ar) retinitis pigmentosa (RP) caused by mutations in the MAK (male germ cell-associated kinase) gene. Patients with RP and MAK gene mutations (n = 24; age, 32-77 years at first visit) were studied by ocular examination, perimetry, and optical coherence tomography (OCT). All but one MAK patient were homozygous for an identical truncating mutation in exon 9 and had Ashkenazi Jewish heritage. The carrier frequency of this mutation among 1207 unrelated Ashkenazi control subjects was 1 in 55, making it the most common cause of heritable retinal disease in this population and MAK-associated RP the sixth most common Mendelian disease overall in this group. Visual acuities could be normal into the eighth decade of life. Kinetic fields showed early loss in the superior-temporal quadrant. With more advanced disease, superior and midperipheral function was lost, but the nasal field remained. Only a central island was present at late stages. Pigmentary retinopathy was less prominent in the superior nasal quadrant. Rod-mediated vision was abnormal but detectable in the residual field; all patients had rod>cone dysfunction. Photoreceptor layer thickness was normal centrally but decreased with eccentricity. At the stages studied, there was no evidence of photoreceptor ciliary elongation. The patterns of disease expression in the MAK form of arRP showed some resemblance to patterns described in autosomal dominant RP, especially the form caused by RP1 mutations. The similarity in phenotypes is of interest, considering that there is experimental evidence of interaction between Mak and RP1 in the photoreceptor cilium.

  19. C1q deficiency: identification of a novel missense mutation and treatment with fresh frozen plasma.

    PubMed

    Topaloglu, Rezan; Taskiran, Ekim Z; Tan, Cagman; Erman, Baran; Ozaltin, Fatih; Sanal, Ozden

    2012-07-01

    A Turkish patient with C1q deficiency presented with a lupus-like disease, and a new missense mutation at A chain is presented. To characterize the genetic defect, all exons of the genes for the A, B, and C chains of C1q were sequenced in the patient. This revealed a missense mutation in the collagen-like domain of the A chain, p.Gly31 Arg. No other sequence variants, including the common silent mutations, were found in the three chains. Exon 1 of the C1q A chain was sequenced in 105 samples from healthy controls for this particular mutation. None of these carried the mutation. The C1q-deficient patient was treated with fresh frozen plasma infusions. Our findings showed that Turkish patients may have different mutations than the previously described common mutation, and once again, not only nonsense mutations but also missense mutations cause hereditary C1q deficiency. Regular fresh frozen plasma infusions to the patient have been clinically and therapeutically successful.

  20. Genotype and phenotype correlations in Iranian patients with hyperinsulinaemic hypoglycaemia.

    PubMed

    Senniappan, Senthil; Sadeghizadeh, Atefeh; Flanagan, Sarah E; Ellard, Sian; Hashemipour, Mahin; Hosseinzadeh, Majid; Salehi, Mansour; Hussain, Khalid

    2015-08-13

    Hyperinsulinaemic hypoglycaemia (HH) is a group of clinically and genetically heterogeneous disorders characterized by unregulated insulin secretion. Abnormalities in nine different genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, HNF4A, UCP2 and HNF1A) have been reported in HH, the most common being ABCC8 and KCNJ11. We describe the genetic aetiology and phenotype of Iranian patients with HH. Retrospective clinical, biochemical and genetic information was collected on 23 patients with biochemically confirmed HH. Mutation analysis was carried out for the ATP-sensitive potassium (K(ATP)) channel genes (ABCC8 and KCNJ11), GLUD1, GCK, HADH and HNF4A. 78% of the patients were identified to have a genetic cause for HH. 48% of patients had mutation in HADH, whilst ABCC8/KCNJ11 mutations were identified in 30% of patients. Among the diazoxide-responsive patients (18/23), mutations were identified in 72%. These include two novel homozygous ABCC8 mutations. Of the five patients with diazoxide-unresponsive HH, three had homozygous ABCC8 mutation, one had heterozygous ABCC8 mutation inherited from an unaffected father and one had homozygous KCNJ11 mutation. 52% of children in our cohort were born to consanguineous parents. Patients with ABCC8/KCNJ11 mutations were noted to be significantly heavier than those with HADH mutation (p = 0.002). Our results revealed neurodevelopmental deficits in 30% and epilepsy in 52% of all patients. To the best of our knowledge, this is the first study of its kind in Iran. We found disease-causing mutations in 78% of HH patients. The predominance of HADH mutation might be due to a high incidence of consanguineous marriage in this population. Further research involving a larger cohort of HH patients is required in Iranian population.

  1. SGCE mutations cause psychiatric disorders: clinical and genetic characterization

    PubMed Central

    Peall, Kathryn J.; Smith, Daniel J.; Kurian, Manju A.; Wardle, Mark; Waite, Adrian J.; Hedderly, Tammy; Lin, Jean-Pierre; Smith, Martin; Whone, Alan; Pall, Hardev; White, Cathy; Lux, Andrew; Jardine, Philip; Bajaj, Narinder; Lynch, Bryan; Kirov, George; O’Riordan, Sean; Samuel, Michael; Lynch, Timothy; King, Mary D.; Chinnery, Patrick F.; Warner, Thomas T.; Blake, Derek J.; Owen, Michael J.; Morris, Huw R.

    2014-01-01

    Myoclonus dystonia syndrome is a childhood onset hyperkinetic movement disorder characterized by predominant alcohol responsive upper body myoclonus and dystonia. A proportion of cases are due to mutations in the maternally imprinted SGCE gene. Previous studies have suggested that patients with SGCE mutations may have an increased rate of psychiatric disorders. We established a cohort of patients with myoclonus dystonia syndrome and SGCE mutations to determine the extent to which psychiatric disorders form part of the disease phenotype. In all, 89 patients with clinically suspected myoclonus dystonia syndrome were recruited from the UK and Ireland. SGCE was analysed using direct sequencing and for copy number variants. In those patients where no mutation was found TOR1A (GAG deletion), GCH1, THAP1 and NKX2-1 were also sequenced. SGCE mutation positive cases were systematically assessed using standardized psychiatric interviews and questionnaires and compared with a disability-matched control group of patients with alcohol responsive tremor. Nineteen (21%) probands had a SGCE mutation, five of which were novel. Recruitment of family members increased the affected SGCE mutation positive group to 27 of whom 21 (77%) had psychiatric symptoms. Obsessive–compulsive disorder was eight times more likely (P < 0.001) in mutation positive cases, compulsivity being the predominant feature (P < 0.001). Generalized anxiety disorder (P = 0.003) and alcohol dependence (P = 0.02) were five times more likely in mutation positive cases than tremor controls. SGCE mutations are associated with a specific psychiatric phenotype consisting of compulsivity, anxiety and alcoholism in addition to the characteristic motor phenotype. SGCE mutations are likely to have a pleiotropic effect in causing both motor and specific psychiatric symptoms. PMID:23365103

  2. MtDNA mutations are a common cause of severe disease phenotypes in children with Leigh syndrome.

    PubMed

    Naess, Karin; Freyer, Christoph; Bruhn, Helene; Wibom, Rolf; Malm, Gunilla; Nennesmo, Inger; von Döbeln, Ulrika; Larsson, Nils-Göran

    2009-05-01

    Leigh syndrome is a common clinical manifestation in children with mitochondrial disease and other types of inborn errors of metabolism. We characterised clinical symptoms, prognosis, respiratory chain function and performed extensive genetic analysis of 25 Swedish children suffering from Leigh syndrome with the aim to obtain insights into the molecular pathophysiology and to provide a rationale for genetic counselling. We reviewed the clinical history of all patients and used muscle biopsies in order to perform molecular, biochemical and genetic investigations, including sequencing the entire mitochondrial DNA (mtDNA), the mitochondrial DNA polymerase (POLGA) gene and the surfeit locus protein 1 (SURF1) gene. Respiratory chain enzyme activity measurements identified five patients with isolated complex I deficiency and five with combined enzyme deficiencies. No patient presented with isolated complex IV deficiency. Seven patients had a decreased ATP production rate. Extensive sequence analysis identified eight patients with pathogenic mtDNA mutations and one patient with mutations in POLGA. Mutations of mtDNA are a common cause of LS and mtDNA analysis should always be included in the diagnosis of LS patients, whereas SURF1 mutations are not a common cause of LS in Sweden. Unexpectedly, age of onset, clinical symptoms and prognosis did not reveal any clear differences in LS patients with mtDNA or nuclear DNA mutations.

  3. The R403Q Myosin Mutation Implicated in Familial Hypertrophic Cardiomyopathy Causes Disorder at the Actomyosin Interface

    PubMed Central

    Volkmann, Niels; Lui, HongJun; Hazelwood, Larnele; Trybus, Kathleen M.; Lowey, Susan; Hanein, Dorit

    2007-01-01

    Background Mutations in virtually all of the proteins comprising the cardiac muscle sarcomere have been implicated in causing Familial Hypertrophic Cardiomyopathy (FHC). Mutations in the β-myosin heavy chain (MHC) remain among the most common causes of FHC, with the widely studied R403Q mutation resulting in an especially severe clinical prognosis. In vitro functional studies of cardiac myosin containing the R403Q mutation have revealed significant changes in enzymatic and mechanical properties compared to wild-type myosin. It has been proposed that these molecular changes must trigger events that ultimately lead to the clinical phenotype. Principal Findings Here we examine the structural consequences of the R403Q mutation in a recombinant smooth muscle myosin subfragment (S1), whose kinetic features have much in common with slow β-MHC. We obtained three-dimensional reconstructions of wild-type and R403Q smooth muscle S1 bound to actin filaments in the presence (ADP) and absence (apo) of nucleotide by electron cryomicroscopy and image analysis. We observed that the mutant S1 was attached to actin at highly variable angles compared to wild-type reconstructions, suggesting a severe disruption of the actin-myosin interaction at the interface. Significance These results provide structural evidence that disarray at the molecular level may be linked to the histopathological myocyte disarray characteristic of the diseased state. PMID:17987111

  4. Exome Sequencing Discerns Syndromes in Patients from Consanguineous Families with Congenital Anomalies of the Kidneys and Urinary Tract

    PubMed Central

    Vivante, Asaf; Hwang, Daw-Yang; Kohl, Stefan; Chen, Jing; Shril, Shirlee; Schulz, Julian; van der Ven, Amelie; Daouk, Ghaleb; Soliman, Neveen A.; Kumar, Aravind Selvin; Senguttuvan, Prabha; Kehinde, Elijah O.; Tasic, Velibor

    2017-01-01

    Congenital anomalies of the kidneys and urinary tract (CAKUT) are the leading cause of CKD in children, featuring a broad variety of malformations. A monogenic cause can be detected in around 12% of patients. However, the morphologic clinical phenotype of CAKUT frequently does not indicate specific genes to be examined. To determine the likelihood of detecting causative recessive mutations by whole-exome sequencing (WES), we analyzed individuals with CAKUT from 33 different consanguineous families. Using homozygosity mapping and WES, we identified the causative mutations in nine of the 33 families studied (27%). We detected recessive mutations in nine known disease–causing genes: ZBTB24, WFS1, HPSE2, ATRX, ASPH, AGXT, AQP2, CTNS, and PKHD1. Notably, when mutated, these genes cause multiorgan syndromes that may include CAKUT as a feature (syndromic CAKUT) or cause renal diseases that may manifest as phenocopies of CAKUT. None of the above monogenic disease–causing genes were suspected on clinical grounds before this study. Follow-up clinical characterization of those patients allowed us to revise and detect relevant new clinical features in a more appropriate pathogenetic context. Thus, applying WES to the diagnostic approach in CAKUT provides opportunities for an accurate and early etiology–based diagnosis and improved clinical management. PMID:27151922

  5. Mutations in CTC1, Encoding the CTS Telomere Maintenance Complex Component 1, Cause Cerebroretinal Microangiopathy with Calcifications and Cysts

    PubMed Central

    Polvi, Anne; Linnankivi, Tarja; Kivelä, Tero; Herva, Riitta; Keating, James P.; Mäkitie, Outi; Pareyson, Davide; Vainionpää, Leena; Lahtinen, Jenni; Hovatta, Iiris; Pihko, Helena; Lehesjoki, Anna-Elina

    2012-01-01

    Cerebroretinal microangiopathy with calcifications and cysts (CRMCC) is a rare multisystem disorder characterized by extensive intracranial calcifications and cysts, leukoencephalopathy, and retinal vascular abnormalities. Additional features include poor growth, skeletal and hematological abnormalities, and recurrent gastrointestinal bleedings. Autosomal-recessive inheritance has been postulated. The pathogenesis of CRMCC is unknown, but its phenotype has key similarities with Revesz syndrome, which is caused by mutations in TINF2, a gene encoding a member of the telomere protecting shelterin complex. After a whole-exome sequencing approach in four unrelated individuals with CRMCC, we observed four recessively inherited compound heterozygous mutations in CTC1, which encodes the CTS telomere maintenance complex component 1. Sanger sequencing revealed seven more compound heterozygous mutations in eight more unrelated affected individuals. Two individuals who displayed late-onset cerebral findings, a normal fundus appearance, and no systemic findings did not have CTC1 mutations, implying that systemic findings are an important indication for CTC1 sequencing. Of the 11 mutations identified, four were missense, one was nonsense, two resulted in in-frame amino acid deletions, and four were short frameshift-creating deletions. All but two affected individuals were compound heterozygous for a missense mutation and a frameshift or nonsense mutation. No individuals with two frameshift or nonsense mutations were identified, which implies that severe disturbance of CTC1 function from both alleles might not be compatible with survival. Our preliminary functional experiments did not show evidence of severely affected telomere integrity in the affected individuals. Therefore, determining the underlying pathomechanisms associated with deficient CTC1 function will require further studies. PMID:22387016

  6. Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease.

    PubMed

    Luty, Agnes A; Kwok, John B J; Dobson-Stone, Carol; Loy, Clement T; Coupland, Kirsten G; Karlström, Helena; Sobow, Tomasz; Tchorzewska, Joanna; Maruszak, Aleksandra; Barcikowska, Maria; Panegyres, Peter K; Zekanowski, Cezary; Brooks, William S; Williams, Kelly L; Blair, Ian P; Mather, Karen A; Sachdev, Perminder S; Halliday, Glenda M; Schofield, Peter R

    2010-11-01

    Frontotemporal lobar degeneration (FTLD) is the most common cause of early-onset dementia. Pathological ubiquitinated inclusion bodies observed in FTLD and motor neuron disease (MND) comprise trans-activating response element (TAR) DNA binding protein (TDP-43) and/or fused in sarcoma (FUS) protein. Our objective was to identify the causative gene in an FTLD-MND pedigree with no mutations in known dementia genes. A mutation screen of candidate genes, luciferase assays, and quantitative polymerase chain reaction (PCR) was performed to identify the biological role of the putative mutation. Neuropathological characterization of affected individuals and western blot studies of cell lines were performed to identify the pathological mechanism of the mutation. We identified a nonpolymorphic mutation (c.672*51G>T) in the 3'-untranslated region (UTR) of the Sigma nonopioid intracellular receptor 1 (SIGMAR1) gene in affected individuals from the FTLD-MND pedigree. The c.672*51G>T mutation increased gene expression by 1.4-fold, corresponding with a significant 1.5-fold to 2-fold change in the SIGMAR1 transcript or Sigma-1 protein in lymphocyte or brain tissue. Brains of SIGMAR1 mutation carriers displayed a unique pathology with cytoplasmic inclusions immunopositive for either TDP-43 or FUS but not Sigma-1. Overexpression of SIGMAR1 shunted TDP-43 and FUS from the nucleus to the cytoplasm by 2.3-fold and 5.2-fold, respectively. Treatment of cells with Sigma-1 ligands significantly altered translocation of TDP-43 by up to 2-fold. SIGMAR1 is a causative gene for familial FTLD-MND with a unique neuropathology that differs from other FTLD and MND cases. Our findings also suggest Sigma-1 drugs as potential treatments for the TDP-43/FUS proteinopathies.

  7. De novo point mutations in patients diagnosed with ataxic cerebral palsy

    PubMed Central

    Parolin Schnekenberg, Ricardo; Perkins, Emma M.; Miller, Jack W.; Davies, Wayne I. L.; D’Adamo, Maria Cristina; Pessia, Mauro; Fawcett, Katherine A.; Sims, David; Gillard, Elodie; Hudspith, Karl; Skehel, Paul; Williams, Jonathan; O’Regan, Mary; Jayawant, Sandeep; Jefferson, Rosalind; Hughes, Sarah; Lustenberger, Andrea; Ragoussis, Jiannis

    2015-01-01

    Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies. PMID:25981959

  8. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita.

    PubMed

    Ballew, Bari J; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Boland, Joseph; Burdett, Laurie; Alter, Blanche P; Savage, Sharon A

    2013-04-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. In addition, inheritance of only the missense mutation led to very short telomeres in the proband's brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC.

  9. Germline Mutations of Regulator of Telomere Elongation Helicase 1, RTEL1, In Dyskeratosis Congenita

    PubMed Central

    Ballew, Bari J.; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Boland, Joseph; Burdett, Laurie; Alter, Blanche P.; Savage, Sharon A.

    2013-01-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. Additionally, inheritance of only the missense mutation led to very short telomeres in the proband’s brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC. PMID:23329068

  10. Novel association of neurofibromatosis type 1-causing mutations in families with neurofibromatosis-Noonan syndrome.

    PubMed

    Ekvall, Sara; Sjörs, Kerstin; Jonzon, Anders; Vihinen, Mauno; Annerén, Göran; Bondeson, Marie-Louise

    2014-03-01

    Neurofibromatosis-Noonan syndrome (NFNS) is a rare condition with clinical features of both neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). All three syndromes belong to the RASopathies, which are caused by dysregulation of the RAS-MAPK pathway. The major gene involved in NFNS is NF1, but co-occurring NF1 and PTPN11 mutations in NFNS have been reported. Knowledge about possible involvement of additional RASopathy-associated genes in NFNS is, however, very limited. We present a comprehensive clinical and molecular analysis of eight affected individuals from three unrelated families displaying features of NF1 and NFNS. The genetic etiology of the clinical phenotypes was investigated by mutation analysis, including NF1, PTPN11, SOS1, KRAS, NRAS, BRAF, RAF1, SHOC2, SPRED1, MAP2K1, MAP2K2, and CBL. All three families harbored a heterozygous NF1 variant, where the first family had a missense variant, c.5425C>T;p.R1809C, the second family a recurrent 4bp-deletion, c.6789_6792delTTAC;p.Y2264Tfs*6, and the third family a splice-site variant, c.2991-1G>A, resulting in skipping of exon 18 and an in-frame deletion of 41 amino acids. These NF1 variants have all previously been reported in NF1 patients. Surprisingly, both c.6789_6792delTTAC and c.2991-1G>A are frequently associated with NF1, but association to NFNS has, to our knowledge, not previously been reported. Our results support the notion that NFNS represents a variant of NF1, genetically distinct from NS, and is caused by mutations in NF1, some of which also cause classical NF1. Due to phenotypic overlap between NFNS and NS, we propose screening for NF1 mutations in NS patients, preferentially when café-au-lait spots are present. © 2013 Wiley Periodicals, Inc.

  11. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist.

    PubMed

    Aksentijevich, Ivona; Masters, Seth L; Ferguson, Polly J; Dancey, Paul; Frenkel, Joost; van Royen-Kerkhoff, Annet; Laxer, Ron; Tedgård, Ulf; Cowen, Edward W; Pham, Tuyet-Hang; Booty, Matthew; Estes, Jacob D; Sandler, Netanya G; Plass, Nicole; Stone, Deborah L; Turner, Maria L; Hill, Suvimol; Butman, John A; Schneider, Rayfel; Babyn, Paul; El-Shanti, Hatem I; Pope, Elena; Barron, Karyl; Bing, Xinyu; Laurence, Arian; Lee, Chyi-Chia R; Chapelle, Dawn; Clarke, Gillian I; Ohson, Kamal; Nicholson, Marc; Gadina, Massimo; Yang, Barbara; Korman, Benjamin D; Gregersen, Peter K; van Hagen, P Martin; Hak, A Elisabeth; Huizing, Marjan; Rahman, Proton; Douek, Daniel C; Remmers, Elaine F; Kastner, Daniel L; Goldbach-Mansky, Raphaela

    2009-06-04

    Autoinflammatory diseases manifest inflammation without evidence of infection, high-titer autoantibodies, or autoreactive T cells. We report a disorder caused by mutations of IL1RN, which encodes the interleukin-1-receptor antagonist, with prominent involvement of skin and bone. We studied nine children from six families who had neonatal onset of sterile multifocal osteomyelitis, periostitis, and pustulosis. Response to empirical treatment with the recombinant interleukin-1-receptor antagonist anakinra in the first patient prompted us to test for the presence of mutations and changes in proteins and their function in interleukin-1-pathway genes including IL1RN. We identified homozygous mutations of IL1RN in nine affected children, from one family from Newfoundland, Canada, three families from The Netherlands, and one consanguineous family from Lebanon. A nonconsanguineous patient from Puerto Rico was homozygous for a genomic deletion that includes IL1RN and five other interleukin-1-family members. At least three of the mutations are founder mutations; heterozygous carriers were asymptomatic, with no cytokine abnormalities in vitro. The IL1RN mutations resulted in a truncated protein that is not secreted, thereby rendering cells hyperresponsive to interleukin-1beta stimulation. Patients treated with anakinra responded rapidly. We propose the term deficiency of the interleukin-1-receptor antagonist, or DIRA, to denote this autosomal recessive autoinflammatory disease caused by mutations affecting IL1RN. The absence of interleukin-1-receptor antagonist allows unopposed action of interleukin-1, resulting in life-threatening systemic inflammation with skin and bone involvement. (ClinicalTrials.gov number, NCT00059748.) 2009 Massachusetts Medical Society

  12. Mutations in the human GlyT2 gene define a presynaptic component of human startle disease

    PubMed Central

    Rees, Mark I.; Harvey, Kirsten; Pearce, Brian R.; Chung, Seo-Kyung; Duguid, Ian C.; Thomas, Philip; Beatty, Sarah; Graham, Gail E.; Armstrong, Linlea; Shiang, Rita; Abbott, Kim J.; Zuberi, Sameer M.; Stephenson, John B.P.; Owen, Michael J.; Tijssen, Marina A.J.; van den Maagdenberg, Arn M.J.M.; Smart, Trevor G.; Supplisson, Stéphane; Harvey, Robert J.

    2011-01-01

    Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) α1 subunit (GLRA1)1-3. Genetic heterogeneity has been confirmed in isolated sporadic cases with mutations in other postsynaptic glycinergic proteins including the GlyR β subunit (GLRB)4, gephyrin (GPHN)5 and RhoGEF collybistin (ARHGEF9)6. However, many sporadic patients diagnosed with hyperekplexia do not carry mutations in these genes2-7. Here we reveal that missense, nonsense and frameshift mutations in the presynaptic glycine transporter 2 (GlyT2) gene (SLC6A5)8 also cause hyperekplexia. Patients harbouring mutations in SLC6A5 presented with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnoea episodes. GlyT2 mutations result in defective subcellular localisation and/or decreased glycine uptake, with selected mutations affecting predicted glycine and Na+ binding sites. Our results demonstrate that SLC6A5 is a major gene for hyperekplexia and define the first neurological disorder linked to mutations in a Na+/Cl−-dependent transporter for a classical fast neurotransmitter. By analogy, we suggest that in other human disorders where defects in postsynaptic receptors have been identified, similar symptoms could result from defects in the cognate presynaptic neurotransmitter transporter. PMID:16751771

  13. Deleting a Single Protein Restores Critical DNA Repair Process in Mice with Brca1 Gene Mutations | Center for Cancer Research

    Cancer.gov

    Women who carry a harmful mutation in the BRCA1 gene have up to an 85 percent greater lifetime risk of developing breast cancer than other women, and up to a 40 percent greater chance of developing ovarian cancer. Thus far, no effective therapies have been developed that overcome the susceptibility to cancer caused by mutations in BRCA1.

  14. Novel insertion in exon 5 of the TCOF1 gene in twin sisters with Treacher Collins syndrome.

    PubMed

    Marszałek-Kruk, Bożena Anna; Wójcicki, Piotr; Smigiel, Robert; Trzeciak, Wiesław H

    2012-08-01

    Treacher Collins syndrome (TCS) is associated with an abnormal differentiation of the first and second pharyngeal arches during fetal development. This causes mostly craniofacial deformities, which require numerous corrective surgeries. TCS is an autosomal dominant disorder and it occurs in the general population at a frequency of 1 in 50,000 live births. The syndrome is caused by mutations in the TCOF1 gene, which encodes the serine/alanine-rich protein named Treacle. Over 120 mutations of the TCOF1 gene responsible for TCS have been described. About 70% of recognized mutations are deletions, which lead to a frame shift, formation of a termination codon, and shortening of the protein product of the gene. Herewith, a new heterozygotic insertion, c.484_668ins185bp, was described in two monozygotic twin sisters suffering from TCS. This mutation was absent in their father, brother, and uncle, indicating a de novo origin. The insertion causes a shift in the reading frame and premature termination of translation at 167 aa. The novel insertion is the longest ever found in the TCOF1 gene and the only one found among monozygotic twin sisters.

  15. Genetic causes of isolated and combined pituitary hormone deficiency.

    PubMed

    Giordano, Mara

    2016-12-01

    Research over the last 20 years has led to the elucidation of the genetic aetiologies of Isolated Growth Hormone Deficiency (IGHD) and Combined Pituitary Hormone Deficiency (CPHD). The pituitary plays a central role in growth regulation, coordinating the multitude of central and peripheral signals to maintain the body's internal balance. Naturally occurring mutation in humans and in mice have demonstrated a role for several factors in the aetiology of IGHD/CPHD. Mutations in the GH1 and GHRHR genes shed light on the phenotype and pathogenesis of IGHD whereas mutations in transcription factors such as HESX1, PROP1, POU1F1, LHX3, LHX4, GLI2 and SOX3 contributed to the understanding of CPHD. Depending upon the expression patterns of these molecules, the phenotype may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Although numerous monogenic causes of growth disorders have been identified, most of the patients with IGHD/CPHD remain with an explained aetiology as shown by the relatively low mutation detection rate. The introduction of novel diagnostic approaches is now leading to the disclosure of novel genetic causes in disorders characterized by pituitary hormone defects. Copyright © 2016. Published by Elsevier Ltd.

  16. Inhibition of mutant IDH1 decreases D-2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines.

    PubMed

    Suijker, Johnny; Oosting, Jan; Koornneef, Annemarie; Struys, Eduard A; Salomons, Gajja S; Schaap, Frank G; Waaijer, Cathelijn J F; Wijers-Koster, Pauline M; Briaire-de Bruijn, Inge H; Haazen, Lizette; Riester, Scott M; Dudakovic, Amel; Danen, Erik; Cleton-Jansen, Anne-Marie; van Wijnen, Andre J; Bovée, Judith V M G

    2015-05-20

    Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are found in a subset of benign and malignant cartilage tumors, gliomas and leukaemias. The mutant enzyme causes the production of D-2-hydroxyglutarate (D-2-HG), affecting CpG island and histone methylation. While mutations in IDH1/2 are early events in benign cartilage tumors, we evaluated whether these mutations play a role in malignant chondrosarcomas. Compared to IDH1/2 wildtype cell lines, chondrosarcoma cell lines harboring an endogenous IDH1 (n=3) or IDH2 mutation (n=2) showed up to a 100-fold increase in intracellular and extracellular D-2-HG levels. Specific inhibition of mutant IDH1 using AGI-5198 decreased levels of D-2-HG in a dose dependent manner. After 72 hours of treatment one out of three mutant IDH1 cell lines showed a moderate decrease in viability , while D-2-HG levels decreased >90%. Likewise, prolonged treatment (up to 20 passages) did not affect proliferation and migration. Furthermore, global gene expression, CpG island methylation as well as histone H3K4, -9, and -27 trimethylation levels remained unchanged. Thus, while IDH1/2 mutations cause enchondroma, malignant progression towards central chondrosarcoma renders chondrosarcoma growth independent of these mutations. Thus, monotherapy based on inhibition of mutant IDH1 appears insufficient for treatment of inoperable or metastasized chondrosarcoma patients.

  17. A novel mutation in HESX1 causes combined pituitary hormone deficiency without septo optic dysplasia phenotypes.

    PubMed

    Takagi, Masaki; Takahashi, Mai; Ohtsu, Yoshiaki; Sato, Takeshi; Narumi, Satoshi; Arakawa, Hirokazu; Hasegawa, Tomonobu

    2016-04-25

    Heterozygous and/or homozygous HESX1 mutations have been reported to cause isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD), in association with septo optic dysplasia (SOD). We report a novel heterozygous HESX1 mutation in a CPHD patient without SOD phenotypes. The propositus was a one-year-old Japanese girl. Shortly after birth, she was found to be hypoglycemic. She was diagnosed with central adrenal insufficiency based on low cortisol and ACTH at a time of severe hypoglycemia. Further endocrine studies indicated that the patient also had central hypothyroidism and growth hormone deficiency. Using a next-generation sequencing strategy, we identified a novel heterozygous HESX1 mutation, c.326G>A (p.Arg109Gln). Western blotting and subcellular localization revealed no significant difference between wild type and mutant HESX1. Electrophoretic mobility shift assays showed that the mutant HESX1 abrogated DNA-binding ability. Mutant HESX1 was unable to repress PROP1-mediated activation. In conclusion, this study identified Arg109 as a critical residue in the HESX1 protein and extends our understanding of the phenotypic features, molecular mechanism, and developmental course associated with mutations in HESX1. When multiple genes need to be analyzed for mutations simultaneously, targeted sequence analysis of interesting genomic regions is an attractive approach.

  18. Diverse growth hormone receptor gene mutations in Laron syndrome.

    PubMed Central

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  19. A glycine-to-glutamate substitution abolishes alanine:glyoxylate aminotransferase catalytic activity in a subset of patients with primary hyperoxaluria type 1.

    PubMed

    Purdue, P E; Lumb, M J; Allsop, J; Minatogawa, Y; Danpure, C J

    1992-05-01

    We have synthesized and sequenced alanine:glyoxylate aminotransferase (AGT; HGMW-approved symbol for the gene--AGXT) cDNA from the liver of a primary hyperoxaluria type 1 (PH1) patient who had normal levels of hepatic peroxisomal immunoreactive AGT protein, but no AGT catalytic activity. This revealed the presence of a single point mutation (G----A at cDNA nucleotide 367), which is predicted to cause a glycine-to-glutamate substitution at residue 82 of the AGT protein. This mutation is located in exon 2 of the AGT gene and leads to the loss of an AvaI restriction site. Exon 2-specific PCR followed by AvaI digestion showed that this patient was homozygous for this mutation. In addition, three other PH1 patients, one related to and two unrelated to, but with enzymological phenotype similar to that of the first patient, were also shown to be homozygous for the mutation. However, one other phenotypically similar PH1 patient was shown to lack this mutation. The mechanism by which the glycine-to-glutamate substitution at residue 82 causes loss of catalytic activity remains to be resolved. However, the protein sequence in this region is highly conserved between different mammals, and the substitution at residue 82 is predicted to cause significant local structural alterations.

  20. Exome sequencing reveals riboflavin transporter mutations as a cause of motor neuron disease.

    PubMed

    Johnson, Janel O; Gibbs, J Raphael; Megarbane, Andre; Urtizberea, J Andoni; Hernandez, Dena G; Foley, A Reghan; Arepalli, Sampath; Pandraud, Amelie; Simón-Sánchez, Javier; Clayton, Peter; Reilly, Mary M; Muntoni, Francesco; Abramzon, Yevgeniya; Houlden, Henry; Singleton, Andrew B

    2012-09-01

    Brown-Vialetto-Van Laere syndrome was first described in 1894 as a rare neurodegenerative disorder characterized by progressive sensorineural deafness in combination with childhood amyotrophic lateral sclerosis. Mutations in the gene, SLC52A3 (formerly C20orf54), one of three known riboflavin transporter genes, have recently been shown to underlie a number of severe cases of Brown-Vialetto-Van Laere syndrome; however, cases and families with this disease exist that do not appear to be caused by SLC52A3 mutations. We used a combination of linkage and exome sequencing to identify the disease causing mutation in an extended Lebanese Brown-Vialetto-Van Laere kindred, whose affected members were negative for SLC52A3 mutations. We identified a novel mutation in a second member of the riboflavin transporter gene family (gene symbol: SLC52A2) as the cause of disease in this family. The same mutation was identified in one additional subject, from 44 screened. Within this group of 44 patients, we also identified two additional cases with SLC52A3 mutations, but none with mutations in the remaining member of this gene family, SLC52A1. We believe this strongly supports the notion that defective riboflavin transport plays an important role in Brown-Vialetto-Van Laere syndrome. Initial work has indicated that patients with SLC52A3 defects respond to riboflavin treatment clinically and biochemically. Clearly, this makes an excellent candidate therapy for the SLC52A2 mutation-positive patients identified here. Initial riboflavin treatment of one of these patients shows promising results.

  1. Exome sequencing reveals riboflavin transporter mutations as a cause of motor neuron disease

    PubMed Central

    Johnson, Janel O.; Gibbs, J. Raphael; Megarbane, Andre; Urtizberea, J. Andoni; Hernandez, Dena G.; Foley, A. Reghan; Arepalli, Sampath; Pandraud, Amelie; Simón-Sánchez, Javier; Clayton, Peter; Reilly, Mary M.; Muntoni, Francesco; Abramzon, Yevgeniya; Houlden, Henry

    2012-01-01

    Brown–Vialetto–Van Laere syndrome was first described in 1894 as a rare neurodegenerative disorder characterized by progressive sensorineural deafness in combination with childhood amyotrophic lateral sclerosis. Mutations in the gene, SLC52A3 (formerly C20orf54), one of three known riboflavin transporter genes, have recently been shown to underlie a number of severe cases of Brown–Vialetto–Van Laere syndrome; however, cases and families with this disease exist that do not appear to be caused by SLC52A3 mutations. We used a combination of linkage and exome sequencing to identify the disease causing mutation in an extended Lebanese Brown–Vialetto–Van Laere kindred, whose affected members were negative for SLC52A3 mutations. We identified a novel mutation in a second member of the riboflavin transporter gene family (gene symbol: SLC52A2) as the cause of disease in this family. The same mutation was identified in one additional subject, from 44 screened. Within this group of 44 patients, we also identified two additional cases with SLC52A3 mutations, but none with mutations in the remaining member of this gene family, SLC52A1. We believe this strongly supports the notion that defective riboflavin transport plays an important role in Brown–Vialetto–Van Laere syndrome. Initial work has indicated that patients with SLC52A3 defects respond to riboflavin treatment clinically and biochemically. Clearly, this makes an excellent candidate therapy for the SLC52A2 mutation-positive patients identified here. Initial riboflavin treatment of one of these patients shows promising results. PMID:22740598

  2. Novel homozygous FANCL mutation and somatic heterozygous SETBP1 mutation in a Chinese girl with Fanconi Anemia.

    PubMed

    Wu, Weiqing; Liu, Yang; Zhou, Qinghua; Wang, Qin; Luo, Fuwei; Xu, Zhiyong; Geng, Qian; Li, Peining; Zhang, Hui Z; Xie, Jiansheng

    2017-07-01

    Fanconi Anemia (FA) is a rare genetically heterogeneous disorder with 17 known complement groups caused by mutations in different genes. FA complementation group L (FA-L, OMIM #608111) occurred in 0.2% of all FA and only eight mutant variants in the FANCL gene were documented. Phenotype and genotype correlation in FANCL associated FA is still obscure. Here we describe a Chinese girl with FA-L caused by a novel homozygous mutation c.822_823insCTTTCAGG (p.Asp275LeufsX13) in the FANCL gene. The patient's clinical course was typical for FA with progression to bone marrow failure, and death from acute myelomonocytic leukemia (AML-M4) at 9 years of age. Mutation analysis also detected a likely somatic c.2608G > A (p.Gly870Ser) in the SETBP1 gene. Consistent copy number losses of 7q and 18p and gains of 3q and 21q and accumulated non-clonal single cell chromosomal abnormalities were detected in blood leukocytes as her FA progressed. This is the first Chinese FA-L case caused by a novel FANCL mutation. The somatic gene mutation and copy number aberrations could be used to monitor disease progression and the clinical findings provide further information for genotype-phenotype correlation for FA-L. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. The CDC Hemophilia A Mutation Project (CHAMP) Mutation List: a New Online Resource

    PubMed Central

    Payne, Amanda B.; Miller, Connie H.; Kelly, Fiona M.; Soucie, J. Michael; Hooper, W. Craig

    2015-01-01

    Genotyping efforts in hemophilia A (HA) populations in many countries have identified large numbers of unique mutations in the Factor VIII gene (F8). To assist HA researchers conducting genotyping analyses, we have developed a listing of F8 mutations including those listed in existing locus-specific databases as well as those identified in patient populations and reported in the literature. Each mutation was reviewed and uniquely identified using Human Genome Variation Society (HGVS) nomenclature standards for coding DNA and predicted protein changes as well as traditional nomenclature based on the mature, processed protein. Listings also include the associated hemophilia severity classified by International Society of Thrombosis and Haemostasis (ISTH) criteria, associations of the mutations with inhibitors, and reference information. The mutation list currently contains 2,537 unique mutations known to cause HA. HA severity caused by the mutation is available for 2,022 mutations (80%) and information on inhibitors is available for 1,816 mutations (72%). The CDC Hemophilia A Mutation Project (CHAMP) Mutation List is available at http://www.cdc.gov/hemophiliamutations for download and search and will be updated quarterly based on periodic literature reviews and submitted reports. PMID:23280990

  4. [New mutation in a young woman diagnosed with Niemann-Pick disease type C].

    PubMed

    Lario, Ana; de Miguel, Carlos; Ojeda, Emilio; Gil, Santiago; Coll, María J; Alfonso, Pilar

    2016-06-03

    To describe a new molecular variant of Niemann-Pick disease type C (NPC) in a 27 year-old patient with splenomegaly and abolition of osteotendinous reflexes. NPC1 is the main gene with described mutation in NPC disease. Here we report a case with a new mutation, p.N916S, not described before in a patient diagnosed with NPC. p.N916S was described as a cause of NPC disease by predictive programmes Mutation Master, PolyPhen2 and SIFT. p.N916S is a new mutation detected as a cause of NPC disease in a patient without severe neurological symptoms. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  5. Common mutation underlying primary hyperoxaluria type1 in three Indian children

    PubMed Central

    Chanchlani, R.; Sinha, A.; Gulati, A.; Agarwal, V.; Bagga, A.

    2012-01-01

    Primary hyperoxaluria is an autosomal recessive disorder caused by deficiency of alanine-glyoxylate aminotransferase, which is encoded by the AGXT gene. We report three Indian children with primary hyperoxaluria type1 having a common mutation in this gene. All patients had evidence of chronic kidney disease at the time of diagnosis, with subsequent progression to end-stage renal disease. The detection of an identical mutation in the AGXT gene suggests that specific genetic screening for this mutation may be useful when considering the diagnosis of primary hyperoxaluria type1. PMID:23439734

  6. Common mutation underlying primary hyperoxaluria type1 in three Indian children.

    PubMed

    Chanchlani, R; Sinha, A; Gulati, A; Agarwal, V; Bagga, A

    2012-11-01

    Primary hyperoxaluria is an autosomal recessive disorder caused by deficiency of alanine-glyoxylate aminotransferase, which is encoded by the AGXT gene. We report three Indian children with primary hyperoxaluria type1 having a common mutation in this gene. All patients had evidence of chronic kidney disease at the time of diagnosis, with subsequent progression to end-stage renal disease. The detection of an identical mutation in the AGXT gene suggests that specific genetic screening for this mutation may be useful when considering the diagnosis of primary hyperoxaluria type1.

  7. Mutational analysis of the HGO gene in Finnish alkaptonuria patients

    PubMed Central

    de Bernabe, D. B.-V.; Peterson, P.; Luopajarvi, K.; Matintalo, P.; Alho, A.; Konttinen, Y.; Krohn, K.; de Cordoba, S. R.; Ranki, A.

    1999-01-01

    Alkaptonuria (AKU), the prototypic inborn error of metabolism, has recently been shown to be caused by loss of function mutations in the homogentisate-1,2-dioxygenase gene (HGO). So far 17 mutations have been characterised in AKU patients of different ethnic origin. We describe three novel mutations (R58fs, R330S, and H371R) and one common AKU mutation (M368V), detected by mutational and polymorphism analysis of the HGO gene in five Finnish AKU pedigrees. The three novel AKU mutations are most likely specific for the Finnish population and have originated recently.


Keywords: alkaptonuria; homogentisate-1,2-dioxygenase; Finland PMID:10594001

  8. Molecular and Clinical Characterization of Albinism in a Large Cohort of Italian Patients

    PubMed Central

    Gargiulo, Annagiusi; Testa, Francesco; Rossi, Settimio; Di Iorio, Valentina; Fecarotta, Simona; de Berardinis, Teresa; Iovine, Antonello; Magli, Adriano; Signorini, Sabrina; Fazzi, Elisa; Galantuomo, Maria Silvana; Fossarello, Maurizio; Montefusco, Sandro; Ciccodicola, Alfredo; Neri, Alberto; Macaluso, Claudio; Simonelli, Francesca; Surace, Enrico Maria

    2011-01-01

    Purpose. The purpose of this study was to identify the molecular basis of albinism in a large cohort of Italian patients showing typical ocular landmarks of the disease and to provide a full characterization of the clinical ophthalmic manifestations. Methods. DNA samples from 45 patients with ocular manifestations of albinism were analyzed by direct sequencing analysis of five genes responsible for albinism: TYR, P, TYRP1, SLC45A2 (MATP), and OA1. All patients studied showed a variable degree of skin and hair hypopigmentation. Eighteen patients with distinct mutations in each gene associated with OCA were evaluated by detailed ophthalmic analysis, optical coherence tomography (OCT), and fundus autofluorescence. Results. Disease-causing mutations were identified in more than 95% of analyzed patients with OCA (28/45 [62.2%] cases with two or more mutations; 15/45 [33.3%] cases with one mutation). Thirty-five different mutant alleles were identified of which 15 were novel. Mutations in TYR were the most frequent (73.3%), whereas mutations in P occurred more rarely (13.3%) than previously reported. Novel mutations were also identified in rare loci such as TYRP1 and MATP. Mutations in the OA1 gene were not detected. Clinical assessment revealed that patients with iris and macular pigmentation had significantly higher visual acuity than did severe hypopigmented phenotypes. Conclusions. TYR gene mutations represent a relevant cause of oculocutaneous albinism in Italy, whereas mutations in P present a lower frequency than that found in other populations. Clinical analysis revealed that the severity of the ocular manifestations depends on the degree of retinal pigmentation. PMID:20861488

  9. Frequency of SMARCB1 mutations in familial and sporadic schwannomatosis.

    PubMed

    Smith, Miriam J; Wallace, Andrew J; Bowers, Naomi L; Rustad, Cecilie F; Woods, C Geoff; Leschziner, Guy D; Ferner, Rosalie E; Evans, D Gareth R

    2012-05-01

    Mutations of the SMARCB1 gene have been implicated in several human tumour predisposing syndromes. They have recently been identified as an underlying cause of the tumour suppressor syndrome schwannomatosis. There is a much higher rate of mutation detection in familial disease than in sporadic disease. We have carried out extensive genetic testing on a cohort of familial and sporadic patients who fulfilled clinical diagnostic criteria for schwannomatosis. In our current cohort, we identified novel mutations within the SMARCB1 gene and detected several mutations that have been previously identified in other schwannomatosis cohorts. Of the schwannomatosis screens reported to date, including our current dataset, SMARCB1 mutations have been found in 45 % of familial probands and 7 % of sporadic patients. The exon 1 mutation, c.41C >A, and the 3' untranslated region mutation, c.*82C >T, are the most common changes reported in schwannomatosis disease so far, indicating mutation hotspots at both 5' and 3' portions of the gene. SMARCB1 mutations are found in a significant proportion of schwannomatosis patients, but there remains the possibility that further causative genes remain to be found.

  10. Disease-causing mutations C277R and C277Y modify gating of human ClC-1 chloride channels in myotonia congenita

    PubMed Central

    Weinberger, Sebastian; Wojciechowski, Daniel; Sternberg, Damien; Lehmann-Horn, Frank; Jurkat-Rott, Karin; Becher, Toni; Begemann, Birgit; Fahlke, Christoph; Fischer, Martin

    2012-01-01

    Myotonia congenita is a genetic condition that is caused by mutations in the muscle chloride channel gene CLCN1 and characterized by delayed muscle relaxation and muscle stiffness. We here investigate the functional consequences of two novel disease-causing missense mutations, C277R and C277Y, using heterologous expression in HEK293T cells and patch clamp recording. Both mutations reduce macroscopic anion currents in transfected cells. Since hClC-1 is a double-barrelled anion channel, this reduction in current amplitude might be caused by altered gating of individual protopores or of joint openings and closing of both protopores. We used non-stationary noise analysis and single channel recordings to separate the mutants’ effects on individual and common gating processes. We found that C277Y inverts the voltage dependence and reduces the open probabilities of protopore and common gates resulting in decreases of absolute open probabilities of homodimeric channels to values below 3%. In heterodimeric channels, C277R and C277Y also reduce open probabilities and shift the common gate activation curve towards positive potentials. Moreover, C277Y modifies pore properties of hClC-1. It reduces single protopore current amplitudes to about two-thirds of wild-type values, and inverts the anion permeability sequence to I− = NO3− > Br− > Cl−. Our findings predict a dramatic reduction of the muscle fibre resting chloride conductance and thus fully explain the disease-causing effects of mutations C277R and C277Y. Moreover, they provide additional insights into the function of C277, a residue recently implicated in common gating of ClC channels. PMID:22641783

  11. CDKN1C mutation affecting the PCNA-binding domain as a cause of familial Russell Silver syndrome.

    PubMed

    Brioude, F; Oliver-Petit, I; Blaise, A; Praz, F; Rossignol, S; Le Jule, M; Thibaud, N; Faussat, A-M; Tauber, M; Le Bouc, Y; Netchine, I

    2013-12-01

    Russell Silver syndrome (RSS) leads to prenatal and postnatal growth retardation. About 55% of RSS patients present a loss-of-methylation of the paternal ICR1 domain on chromosome 11p15. CDKN1C is a cell proliferation inhibitor encoded by an imprinted gene in the 11p15 ICR2 domain. CDKN1C mutations lead to Beckwith Wiedemann syndrome (BWS, overgrowth syndrome) and in IMAGe syndrome which associates growth retardation and adrenal insufficiency. We searched for CDKN1C mutations in a cohort of clinically diagnosed RSS patients with no molecular anomaly. The coding sequence and intron-exon boundaries of CDKN1C were analysed in 97 RSS patients. The impact of CDKN1C variants on the cell cycle in vitro were determined by flow cytometry. Stability of CDKN1C was studied by western immunoblotting after inhibition of translation with cycloheximide. We identified the novel c.836G>[G;T] (p.Arg279Leu) mutation in a familial case of intrauterine growth retardation (IUGR) with RSS phenotype and no evidence of IMAGe. All the RSS patients inherited this mutation from their mothers (consistent with monoallelic expression from the maternal allele of the gene). A mutation of this amino acid (p.Arg279Pro) has been reported in cases of IMAGe. Functional analysis showed that Arg279Leu (RSS) did not affect the cell cycle, whereas the Arg279Pro mutation (IMAGe) led to a gain of function. Arg279Leu (RSS) led to an increased stability which could explain an increased activity of CDKN1C. CDKN1C mutations cause dominant maternally transmitted RSS, completing the molecular mirror with BWS. CDKN1C should be investigated in cases with family history of RSS.

  12. Pulmonary phenotypes associated with genetic variation in telomere-related genes.

    PubMed

    Hoffman, Thijs W; van Moorsel, Coline H M; Borie, Raphael; Crestani, Bruno

    2018-05-01

    Genomic mutations in telomere-related genes have been recognized as a cause of familial forms of idiopathic pulmonary fibrosis (IPF). However, it has become increasingly clear that telomere syndromes and telomere shortening are associated with various types of pulmonary disease. Additionally, it was found that also single nucleotide polymorphisms (SNPs) in telomere-related genes are risk factors for the development of pulmonary disease. This review focuses on recent updates on pulmonary phenotypes associated with genetic variation in telomere-related genes. Genomic mutations in seven telomere-related genes cause pulmonary disease. Pulmonary phenotypes associated with these mutations range from many forms of pulmonary fibrosis to emphysema and pulmonary vascular disease. Telomere-related mutations account for up to 10% of sporadic IPF, 25% of familial IPF, 10% of connective-tissue disease-associated interstitial lung disease, and 1% of COPD. Mixed disease forms have also been found. Furthermore, SNPs in TERT, TERC, OBFC1, and RTEL1, as well as short telomere length, have been associated with several pulmonary diseases. Treatment of pulmonary disease caused by telomere-related gene variation is currently based on disease diagnosis and not on the underlying cause. Pulmonary phenotypes found in carriers of telomere-related gene mutations and SNPs are primarily pulmonary fibrosis, sometimes emphysema and rarely pulmonary vascular disease. Genotype-phenotype relations are weak, suggesting that environmental factors and genetic background of patients determine disease phenotypes to a large degree. A disease model is presented wherever genomic variation in telomere-related genes cause specific pulmonary disease phenotypes whenever triggered by environmental exposure, comorbidity, or unknown factors.

  13. Concentration of mutations causing Schmid metaphyseal chondrodysplasia in the NC1 domain of type X collagen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntosh, I.; Abbott, M.H.; Francomano, C.A.

    1994-09-01

    Schmid metaphyseal chondrodysplasia (SMCD, MIM 156500) is an autosomal dominant disorder of the osseous skeleton resulting in short stature, coxa vara and a waddling gait. Type X collagen is an extracellular matrix protein expressed exclusively by hypertrophic chondrocytes. We have previously identified four mutations in the type X collagen gene (COL10A1) in patients with SMCD. Each of these mutations, as well as another three reported by other investigators, are in the carboxy-terminal non-collagenous domain (NC1). Here, we present data for another three mutations each predicted to cause premature termination of translation within the NC1 domain. Two are nonsense mutations, Y628Xmore » and W651X, while the third is a frameshift resulting from the deletion of two nucleotides, 1856delCC. Each of these mutations occurred de novo, resulting in sporadic cases of SMCD. Four frameshift mutations have now been reported to initiate within 10bp of each other in the NC1 domain, namely 1865delC, 1856delCC, 1856del13 and 1866del10. These findings further support the hypothesis that SMCD is the result of the mutant type X collagen molecule being unable to participate in trimerization, although a dominant-negative model of disease pathogenesis has not been formally excluded.« less

  14. Coffin-Siris syndrome with café-au-lait spots, obesity and hyperinsulinism caused by a mutation in the ARID1B gene

    PubMed Central

    Sonmez, Fatma Mujgan; Uctepe, Eyyup; Gunduz, Mehmet; Gormez, Zeliha; Erpolat, Seval; Oznur, Murat; Sagiroglu, Mahmut Samil; Demirci, Huseyin; Gunduz, Esra

    2016-01-01

    Summary Coffin-Siris syndrome (CSS) (MIM 135900) is characterized by developmental delay, severe speech impairment, distinctive facial features, hypertrichosis, aplasia or hypoplasia of the distal phalanx or nail of the fifth digit and agenesis of the corpus callosum. Recently, it was shown that mutations in the ARID1B gene are the main cause of CSS, accounting for 76% of identified mutations. Here, we report a 15 year-old female patient who was admitted to our clinic with seizures, speech problems, dysmorphic features, bilaterally big, large thumb, café-au-lait (CAL) spots, obesity and hyperinsulinism. First, the patient was thought to have an association of neurofibromatosis and Rubinstein Taybi syndrome. Because of the large size of the NF1 gene for neurofibromatosis and CREBBP gene for Rubinstein Taybi syndrome, whole exome sequence analysis (WES) was conducted and a novel ARID1B mutation was identified. The proband WES test identified a novel heterozygous frameshift mutation c.3394_3395insTA in exon 13 of ARID1B (NM_017519.2) predicting a premature stop codon p.(Tyr1132Leufs*67). Sanger sequencing confirmed the heterozygous c.3394_3395insTA mutation in the proband and that it was not present in her parents indicating de novo mutation. Further investigation and new cases will help to understand this phenomenon better. PMID:27672547

  15. Coffin-Siris syndrome with café-au-lait spots, obesity and hyperinsulinism caused by a mutation in the ARID1B gene.

    PubMed

    Sonmez, Fatma Mujgan; Uctepe, Eyyup; Gunduz, Mehmet; Gormez, Zeliha; Erpolat, Seval; Oznur, Murat; Sagiroglu, Mahmut Samil; Demirci, Huseyin; Gunduz, Esra

    2016-08-01

    Coffin-Siris syndrome (CSS) (MIM 135900) is characterized by developmental delay, severe speech impairment, distinctive facial features, hypertrichosis, aplasia or hypoplasia of the distal phalanx or nail of the fifth digit and agenesis of the corpus callosum. Recently, it was shown that mutations in the ARID1B gene are the main cause of CSS, accounting for 76% of identified mutations. Here, we report a 15 year-old female patient who was admitted to our clinic with seizures, speech problems, dysmorphic features, bilaterally big, large thumb, café-au-lait (CAL) spots, obesity and hyperinsulinism. First, the patient was thought to have an association of neurofibromatosis and Rubinstein Taybi syndrome. Because of the large size of the NF1 gene for neurofibromatosis and CREBBP gene for Rubinstein Taybi syndrome, whole exome sequence analysis (WES) was conducted and a novel ARID1B mutation was identified. The proband WES test identified a novel heterozygous frameshift mutation c.3394_3395insTA in exon 13 of ARID1B (NM_017519.2) predicting a premature stop codon p.(Tyr1132Leufs*67). Sanger sequencing confirmed the heterozygous c.3394_3395insTA mutation in the proband and that it was not present in her parents indicating de novo mutation. Further investigation and new cases will help to understand this phenomenon better.

  16. Mutations in RIT1 cause Noonan syndrome - additional functional evidence and expanding the clinical phenotype.

    PubMed

    Koenighofer, M; Hung, C Y; McCauley, J L; Dallman, J; Back, E J; Mihalek, I; Gripp, K W; Sol-Church, K; Rusconi, P; Zhang, Z; Shi, G-X; Andres, D A; Bodamer, O A

    2016-03-01

    RASopathies are a clinically heterogeneous group of conditions caused by mutations in 1 of 16 proteins in the RAS-mitogen activated protein kinase (RAS-MAPK) pathway. Recently, mutations in RIT1 were identified as a novel cause for Noonan syndrome. Here we provide additional functional evidence for a causal role of RIT1 mutations and expand the associated phenotypic spectrum. We identified two de novo missense variants p.Met90Ile and p.Ala57Gly. Both variants resulted in increased MEK-ERK signaling compared to wild-type, underscoring gain-of-function as the primary functional mechanism. Introduction of p.Met90Ile and p.Ala57Gly into zebrafish embryos reproduced not only aspects of the human phenotype but also revealed abnormalities of eye development, emphasizing the importance of RIT1 for spatial and temporal organization of the growing organism. In addition, we observed severe lymphedema of the lower extremity and genitalia in one patient. We provide additional evidence for a causal relationship between pathogenic mutations in RIT1, increased RAS-MAPK/MEK-ERK signaling and the clinical phenotype. The mutant RIT1 protein may possess reduced GTPase activity or a diminished ability to interact with cellular GTPase activating proteins; however the precise mechanism remains unknown. The phenotypic spectrum is likely to expand and includes lymphedema of the lower extremities in addition to nuchal hygroma. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. A new missense mutation in the BCKDHB gene causes the classic form of maple syrup urine disease (MSUD).

    PubMed

    Miryounesi, Mohammad; Ghafouri-Fard, Soudeh; Goodarzi, Hamedreza; Fardaei, Majid

    2015-05-01

    Maple syrup urine disease (MSUD) is an autosomal recessive metabolic disease caused by mutations in the BCKDHA, BCKDHB, DBT and DLD genes, which encode the E1α, E1β, E2 and E3 subunits of the branched chain α ketoacid dehydrogenase (BCKD) complex, respectively. This complex is involved in the metabolism of branched-chain amino acids. In this study, we analyzed the DNA sequences of BCKDHA and BCKDHB genes in an infant who suffered from MSUD and died at the age of 6 months. We found a new missense mutation in exon 5 of BCKDHB gene (c.508C>T). The heterozygosity of the parents for the mentioned nucleotide change was confirmed by direct sequence analysis of the corresponding segment. Another missense mutation has been found in the same codon previously and shown by in silico analyses to be deleterious. This report provides further evidence that this amino acid change can cause classic MSUD.

  18. Comprehensive Mutation Scanning of LMNA in 268 Patients With Lone Atrial Fibrillation

    PubMed Central

    Brauch, Katharine M.; Chen, Lin Y.; Olson, Timothy M.

    2009-01-01

    Atrial fibrillation (AF) is a heritable, genetically heterogeneous disorder. To identify gene defects that cause or confer susceptibility to AF, a cohort of 268 unrelated patients with idiopathic forms of familial and sporadic AF was recruited. LMNA, encoding the nuclear membrane proteins, lamin A/C, was selected as a candidate gene for lone AF based on its established association with a syndrome of dilated cardiomyopathy, conduction system disease, and AF. Comprehensive mutation scanning identified only 1 potentially pathogenic mutation. In conclusion, LMNA mutations rarely cause lone AF and routine genetic testing of LMNA in these patients does not appear warranted. PMID:19427440

  19. Next-generation sequencing and a novel COL3A1 mutation associated with vascular Ehlers-Danlos syndrome with severe intestinal involvement: a case report.

    PubMed

    Cortini, Francesca; Marinelli, Barbara; Seia, Manuela; De Giorgio, Barbara; Pesatori, Angela Cecilia; Montano, Nicola; Bassotti, Alessandra

    2016-10-31

    The vascular type of Ehlers-Danlos syndrome is an autosomal dominant connective tissue disorder caused by a mutation in the COL3A1 gene encoding pro-alpha1 chain of type III collagen. The vascular type of Ehlers-Danlos syndrome causes severe fragility of connective tissues with arterial and intestinal ruptures and complications in surgical and radiological treatments. We present a case of a 38-year-old Italian woman who was diagnosed as having the vascular type of Ehlers-Danlos syndrome. Genetic testing, conducted by Target Enrichment approach (Agilent Technologies), identified a new mutation c.1493G>A, p.G498D in exon 21 of COL3A1 gene (heterozygous state). This mutation disrupts the normal glycine-X-Y repetitions of type III procollagen by converting glycine to aspartic acid. We report a new genetic mutation associated with the vascular type of Ehlers-Danlos syndrome. We also describe clinical and genetic findings that are important to understand the genotype/phenotype correlation in patients with the vascular type of Ehlers-Danlos syndrome.

  20. Genetic basis of congenital erythrocytosis: mutation update and online databases.

    PubMed

    Bento, Celeste; Percy, Melanie J; Gardie, Betty; Maia, Tabita Magalhães; van Wijk, Richard; Perrotta, Silverio; Della Ragione, Fulvio; Almeida, Helena; Rossi, Cedric; Girodon, François; Aström, Maria; Neumann, Drorit; Schnittger, Susanne; Landin, Britta; Minkov, Milen; Randi, Maria Luigia; Richard, Stéphane; Casadevall, Nicole; Vainchenker, William; Rives, Susana; Hermouet, Sylvie; Ribeiro, M Leticia; McMullin, Mary Frances; Cario, Holger; Chauveau, Aurelie; Gimenez-Roqueplo, Anne-Paule; Bressac-de-Paillerets, Brigitte; Altindirek, Didem; Lorenzo, Felipe; Lambert, Frederic; Dan, Harlev; Gad-Lapiteau, Sophie; Catarina Oliveira, Ana; Rossi, Cédric; Fraga, Cristina; Taradin, Gennadiy; Martin-Nuñez, Guillermo; Vitória, Helena; Diaz Aguado, Herrera; Palmblad, Jan; Vidán, Julia; Relvas, Luis; Ribeiro, Maria Leticia; Luigi Larocca, Maria; Luigia Randi, Maria; Pedro Silveira, Maria; Percy, Melanie; Gross, Mor; Marques da Costa, Ricardo; Beshara, Soheir; Ben-Ami, Tal; Ugo, Valérie

    2014-01-01

    Congenital erythrocytosis (CE), or congenital polycythemia, represents a rare and heterogeneous clinical entity. It is caused by deregulated red blood cell production where erythrocyte overproduction results in elevated hemoglobin and hematocrit levels. Primary congenital familial erythrocytosis is associated with low erythropoietin (Epo) levels and results from mutations in the Epo receptor gene (EPOR). Secondary CE arises from conditions causing tissue hypoxia and results in increased Epo production. These include hemoglobin variants with increased affinity for oxygen (HBB, HBA mutations), decreased production of 2,3-bisphosphoglycerate due to BPGM mutations, or mutations in the genes involved in the hypoxia sensing pathway (VHL, EPAS1, and EGLN1). Depending on the affected gene, CE can be inherited either in an autosomal dominant or recessive mode, with sporadic cases arising de novo. Despite recent important discoveries in the molecular pathogenesis of CE, the molecular causes remain to be identified in about 70% of the patients. With the objective of collecting all the published and unpublished cases of CE the COST action MPN&MPNr-Euronet developed a comprehensive Internet-based database focusing on the registration of clinical history, hematological, biochemical, and molecular data (http://www.erythrocytosis.org/). In addition, unreported mutations are also curated in the corresponding Leiden Open Variation Database. © 2013 WILEY PERIODICALS, INC.

  1. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria

    PubMed Central

    Karicheva, Olga Z.; Kolesnikova, Olga A.; Schirtz, Tom; Vysokikh, Mikhail Y.; Mager-Heckel, Anne-Marie; Lombès, Anne; Boucheham, Abdeldjalil; Krasheninnikov, Igor A.; Martin, Robert P.; Entelis, Nina; Tarassov, Ivan

    2011-01-01

    Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNALeu(UUR). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNALeu(UUR) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders. PMID:21724600

  2. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria.

    PubMed

    Karicheva, Olga Z; Kolesnikova, Olga A; Schirtz, Tom; Vysokikh, Mikhail Y; Mager-Heckel, Anne-Marie; Lombès, Anne; Boucheham, Abdeldjalil; Krasheninnikov, Igor A; Martin, Robert P; Entelis, Nina; Tarassov, Ivan

    2011-10-01

    Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNA(Leu(UUR)) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.

  3. Erythrocytic Pyruvate Kinase Mutations Causing Hemolytic Anemia, Osteosclerosis, and Secondary Hemochromatosis in Dogs

    PubMed Central

    Gultekin, G. Inal; Raj, K.; Foureman, P.; Lehman, S.; Manhart, K.; Abdulmalik, O.; Giger, U.

    2013-01-01

    Background Erythrocytic pyruvate kinase (PK) deficiency, first documented in Basenjis, is the most common inherited erythroenzymopathy in dogs. Objectives To report 3 new breed-specific PK-LR gene mutations and a retrospective survey of PK mutations in a small and selected group of Beagles and West Highland White Terriers (WHWT). Animals Labrador Retrievers (2 siblings, 5 unrelated), Pugs (2 siblings, 1 unrelated), Beagles (39 anemic, 29 other), WHWTs (22 anemic, 226 nonanemic), Cairn Terrier (n = 1). Methods Exons of the PK-LR gene were sequenced from genomic DNA of young dogs (<2 years) with persistent highly regenerative hemolytic anemia. Results A nonsense mutation (c.799C>T) resulting in a premature stop codon was identified in anemic Labrador Retriever siblings that had osteosclerosis, high serum ferritin concentrations, and severe hepatic secondary hemochromatosis. Anemic Pug and Beagle revealed 2 different missense mutations (c.848T>C, c.994G>A, respectively) resulting in intolerable amino acid changes to protein structure and enzyme function. Breed-specific mutation tests were developed. Among the biased group of 248 WHWTs, 9% and 35% were homozygous (affected) and heterozygous, respectively, for the previously described mutation (mutant allele frequency 0.26). A PK-deficient Cairn Terrier had the same insertion mutation as the affected WHWTs. Of the selected group of 68 Beagles, 35% were PK-deficient and 3% were carriers (0.37). Conclusions and Clinical Importance Erythrocytic PK deficiency is caused by different mutations in different dog breeds and causes chronic severe hemolytic anemia, hemosiderosis, and secondary hemochromatosis because of chronic hemolysis and, an as yet unexplained osteosclerosis. The newly developed breed-specific mutation assays simplify the diagnosis of PK deficiency. PMID:22805166

  4. Cardiomyopathy mutations in the tail of β-cardiac myosin modify the coiled-coil structure and affect integration into thick filaments in muscle sarcomeres in adult cardiomyocytes.

    PubMed

    Wolny, Marcin; Colegrave, Melanie; Colman, Lucy; White, Ed; Knight, Peter J; Peckham, Michelle

    2013-11-01

    It is unclear why mutations in the filament-forming tail of myosin heavy chain (MHC) cause hypertrophic or dilated cardiomyopathy as these mutations should not directly affect contraction. To investigate this, we first investigated the impact of five hypertrophic cardiomyopathy-causing (N1327K, E1356K, R1382W, E1555K, and R1768K) and one dilated cardiomyopathy-causing (R1500W) tail mutations on their ability to incorporate into muscle sarcomeres in vivo. We used adenoviral delivery to express full-length wild type or mutant enhanced GFP-MHC in isolated adult cardiomyocytes. Three mutations (N1327K, E1356K, and E1555K) reduced enhanced GFP-MHC incorporation into muscle sarcomeres, whereas the remainder had no effect. No mutations significantly affected contraction. Fluorescence recovery after photobleaching showed that fluorescence recovery for the mutation that incorporated least well (N1327K) was significantly faster than that of WT with half-times of 25.1 ± 1.8 and 32.2 ± 2.5 min (mean ± S.E.), respectively. Next, we determined the effects of each mutation on the helical properties of wild type and seven mutant peptides (7, 11, or 15 heptads long) from the myosin tail by circular dichroism. R1382W and E1768K slightly increased the α-helical nature of peptides. The remaining mutations reduced α-helical content, with N1327K showing the greatest reduction. Only peptides containing residues 1301-1329 were highly α-helical suggesting that this region helps in initiation of coiled coil. These results suggest that small effects of mutations on helicity translate into a reduced ability to incorporate into sarcomeres, which may elicit compensatory hypertrophy.

  5. Genetics Home Reference: succinyl-CoA:3-ketoacid CoA transferase deficiency

    MedlinePlus

    ... more common in particular ethnic groups? Genetic Changes Mutations in the OXCT1 gene cause SCOT deficiency. The ... as during illness or when exercising. OXCT1 gene mutations result in the production of a SCOT enzyme ...

  6. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajiwara, K.; Berson, E.L.; Dryja, T.P.

    1994-06-10

    In spite of recent advances in identifying genes causing monogenic human disease, very little is known about the genes involved in polygenic disease. Three families were identified with mutations in the unlinked photoreceptor-specific genes ROM 1 and peripherin/RDS, in which only double heterozygotes develop retinitis pigmentosa (RP). These findings indicate that the allelic and nonallelic heterogeneity known to be a feature of monogenic RP is complicated further by interactions between unlinked mutations causing digenic RP. Recognition of the inheritance pattern exemplified by these three families might facilitate the identification of other examples of digenic inheritance in human disease.

  7. Mutation Update and Genotype–Phenotype Correlations of Novel and Previously Described Mutations in TPM2 and TPM3 Causing Congenital Myopathies

    PubMed Central

    Marttila, Minttu; Lehtokari, Vilma-Lotta; Marston, Steven; Nyman, Tuula A.; Barnerias, Christine; Beggs, Alan H.; Bertini, Enrico; Ceyhan-Birsoy, OÖzge; Cintas, Pascal; Gerard, Marion; Gilbert-Dussardier, Brigitte; Hogue, Jacob S.; Longman, Cheryl; Eymard, Bruno; Frydman, Moshe; Kang, Peter B.; Klinge, Lars; Kolski, Hanna; Lochmüller, Hans; Magy, Laurent; Manel, Véronique; Mayer, Michèle; Mercuri, Eugenio; North, Kathryn N.; Peudenier-Robert, Sylviane; Pihko, Helena; Probst, Frank J.; Reisin, Ricardo; Stewart, Willie; Taratuto, Ana Lia; de Visser, Marianne; Wilichowski, Ekkehard; Winer, John; Nowak, Kristen; Laing, Nigel G.; Winder, Tom L.; Monnier, Nicole; Clarke, Nigel F.; Pelin, Katarina; Grönholm, Mikaela; Wallgren-Pettersson, Carina

    2014-01-01

    Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca2+ sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin–actin association or tropomyosin head-to-tail binding. PMID:24692096

  8. Novel mutation of OCRL1 in Lowe syndrome.

    PubMed

    Liu, Ting; Yue, Zhihui; Wang, Haiyan; Tong, Huajuan; Sun, Liangzhong

    2015-01-01

    Lowe syndrome is a rare, X-linked recessive genetic disease with multi-organ involvement. The pathogenic gene is OCRL1. The authors analyzed the OCRL1 mutation and summarized the clinical features of a Chinese child with Lowe syndrome. The patient is a 3 year 7 mo-old boy. He presented with hypotonia at birth and gradually presented with bilateral congenital cataracts, psychomotor retardation, hypophosphatemic rickets and renal tubular function disorder. Sequence analysis of OCRL1 revealed a novel insertion mutation, c.2367insA (p. Ala813X), in exon 22. This mutation was suspected to cause a premature stop codon of OCRL1 and truncation of the OCRL1 protein. His mother, who carried a heterozygous mutation, had no sign of abnormality.

  9. Clustered Mutation Signatures Reveal that Error-Prone DNA Repair Targets Mutations to Active Genes.

    PubMed

    Supek, Fran; Lehner, Ben

    2017-07-27

    Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype.

    PubMed

    Sawyer, Sarah L; Tian, Lei; Kähkönen, Marketta; Schwartzentruber, Jeremy; Kircher, Martin; Majewski, Jacek; Dyment, David A; Innes, A Micheil; Boycott, Kym M; Moreau, Lisa A; Moilanen, Jukka S; Greenberg, Roger A

    2015-02-01

    Deficiency in BRCA-dependent DNA interstrand crosslink (ICL) repair is intimately connected to breast cancer susceptibility and to the rare developmental syndrome Fanconi anemia. Bona fide Fanconi anemia proteins, BRCA2 (FANCD1), PALB2 (FANCN), and BRIP1 (FANCJ), interact with BRCA1 during ICL repair. However, the lack of detailed phenotypic and cellular characterization of a patient with biallelic BRCA1 mutations has precluded assignment of BRCA1 as a definitive Fanconi anemia susceptibility gene. Here, we report the presence of biallelic BRCA1 mutations in a woman with multiple congenital anomalies consistent with a Fanconi anemia-like disorder and breast cancer at age 23. Patient cells exhibited deficiency in BRCA1 and RAD51 localization to DNA-damage sites, combined with radial chromosome formation and hypersensitivity to ICL-inducing agents. Restoration of these functions was achieved by ectopic introduction of a BRCA1 transgene. These observations provide evidence in support of BRCA1 as a new Fanconi anemia gene (FANCS). We establish that biallelic BRCA1 mutations cause a distinct FA-S, which has implications for risk counselling in families where both parents harbor BRCA1 mutations. The genetic basis of hereditary cancer susceptibility syndromes provides diagnostic information, insights into treatment strategies, and more accurate recurrence risk counseling to families. ©2014 American Association for Cancer Research.

  11. Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): Evidence for a phenotypic series involving three chondrodysplasias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haestbacka, J.; Lander, E.S.; Superti-Furga, A.

    1996-02-01

    Atelosteogenesis type II (AO II) is a neonatally lethal chondrodysplasia whose clinical and histological characteristics resemble those of another chondrodysplasia, the much less severe diastrophic dysplasia (DTD). The similarity suggests a shared pathogenesis involving lesions in the same biochemical pathway and perhaps the same gene. DTD is caused by mutations in the recently identified diastrophic dysplasia sulfate-transporter gene (DTDST). Here, we report that AOII patients also have DTDST mutations, which lead to defective uptake of inorganic sulfate and insufficient sulfation of macromolecules by patient mesenchymal cells in vitro. Together with our recent observation that a third even more severe chondrodysplasia,more » achondrogenesis type IB, is also caused by mutations in DTDST, these results demonstrate a phenotypic series of three chondrodysplasias of increasing severity caused by lesions in a single sulfate-transporter gene. The severity of the phenotype appears to be correlated with the predicted effect of the mutations on the residual activity of the DTDST protein. 24 refs., 6 figs., 1 tab.« less

  12. Neonatal Diabetes Caused by Mutations in Sulfonylurea Receptor 1: Interplay between Expression and Mg-Nucleotide Gating Defects of ATP-Sensitive Potassium Channels

    PubMed Central

    Zhou, Qing; Garin, Intza; Castaño, Luis; Argente, Jesús; Muñoz-Calvo, Ma. Teresa; Perez de Nanclares, Guiomar; Shyng, Show-Ling

    2010-01-01

    Context: ATP-sensitive potassium (KATP) channels regulate insulin secretion by coupling glucose metabolism to β-cell membrane potential. Gain-of-function mutations in the sulfonylurea receptor 1 (SUR1) or Kir6.2 channel subunit underlie neonatal diabetes. Objective: The objective of the study was to determine the mechanisms by which two SUR1 mutations, E208K and V324M, associated with transient neonatal diabetes affect KATP channel function. Design: E208K or V324M mutant SUR1 was coexpressed with Kir6.2 in COS cells, and expression and gating properties of the resulting channels were assessed biochemically and electrophysiologically. Results: Both E208K and V324M augment channel response to MgADP stimulation without altering sensitivity to ATP4− or sulfonylureas. Surprisingly, whereas E208K causes only a small increase in MgADP response consistent with the mild transient diabetes phenotype, V324M causes a severe activating gating defect. Unlike E208K, V324M also impairs channel expression at the cell surface, which is expected to dampen its functional impact on β-cells. When either mutation was combined with a mutation in the second nucleotide binding domain of SUR1 previously shown to abolish Mg-nucleotide response, the activating effect of E208K and V324M was also abolished. Moreover, combination of E208K and V324M results in channels with Mg-nucleotide sensitivity greater than that seen in individual mutations alone. Conclusion: The results demonstrate that E208K and V324M, located in distinct domains of SUR1, enhance transduction of Mg-nucleotide stimulation from the SUR1 nucleotide binding folds to Kir6.2. Furthermore, they suggest that diabetes severity is determined by interplay between effects of a mutation on channel expression and channel gating. PMID:20810569

  13. De Novo Truncating Mutations in the Last and Penultimate Exons of PPM1D Cause an Intellectual Disability Syndrome.

    PubMed

    Jansen, Sandra; Geuer, Sinje; Pfundt, Rolph; Brough, Rachel; Ghongane, Priyanka; Herkert, Johanna C; Marco, Elysa J; Willemsen, Marjolein H; Kleefstra, Tjitske; Hannibal, Mark; Shieh, Joseph T; Lynch, Sally Ann; Flinter, Frances; FitzPatrick, David R; Gardham, Alice; Bernhard, Birgitta; Ragge, Nicola; Newbury-Ecob, Ruth; Bernier, Raphael; Kvarnung, Malin; Magnusson, E A Helena; Wessels, Marja W; van Slegtenhorst, Marjon A; Monaghan, Kristin G; de Vries, Petra; Veltman, Joris A; Lord, Christopher J; Vissers, Lisenka E L M; de Vries, Bert B A

    2017-04-06

    Intellectual disability (ID) is a highly heterogeneous disorder involving at least 600 genes, yet a genetic diagnosis remains elusive in ∼35%-40% of individuals with moderate to severe ID. Recent meta-analyses statistically analyzing de novo mutations in >7,000 individuals with neurodevelopmental disorders highlighted mutations in PPM1D as a possible cause of ID. PPM1D is a type 2C phosphatase that functions as a negative regulator of cellular stress-response pathways by mediating a feedback loop of p38-p53 signaling, thereby contributing to growth inhibition and suppression of stress-induced apoptosis. We identified 14 individuals with mild to severe ID and/or developmental delay and de novo truncating PPM1D mutations. Additionally, deep phenotyping revealed overlapping behavioral problems (ASD, ADHD, and anxiety disorders), hypotonia, broad-based gait, facial dysmorphisms, and periods of fever and vomiting. PPM1D is expressed during fetal brain development and in the adult brain. All mutations were located in the last or penultimate exon, suggesting escape from nonsense-mediated mRNA decay. Both PPM1D expression analysis and cDNA sequencing in EBV LCLs of individuals support the presence of a stable truncated transcript, consistent with this hypothesis. Exposure of cells derived from individuals with PPM1D truncating mutations to ionizing radiation resulted in normal p53 activation, suggesting that p53 signaling is unaffected. However, a cell-growth disadvantage was observed, suggesting a possible effect on the stress-response pathway. Thus, we show that de novo truncating PPM1D mutations in the last and penultimate exons cause syndromic ID, which provides additional insight into the role of cell-cycle checkpoint genes in neurodevelopmental disorders. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Congenital glaucoma and CYP1B1: an old story revisited.

    PubMed

    Alsaif, Hessa S; Khan, Arif O; Patel, Nisha; Alkuraya, Hisham; Hashem, Mais; Abdulwahab, Firdous; Ibrahim, Niema; Aldahmesh, Mohammed A; Alkuraya, Fowzan S

    2018-03-19

    Primary congenital glaucoma is a trabecular meshwork dysgenesis with resultant increased intraocular pressure and ocular damage. CYP1B1 mutations remain the most common identifiable genetic cause. However, important questions about the penetrance of CYP1B1-related congenital glaucoma remain unanswered. Furthermore, mutations in other genes have been described although their exact contribution and potential genetic interaction, if any, with CYP1B1 mutations are not fully explored. In this study, we employed modern genomic approaches to re-examine CYP1B1-related congenital glaucoma. A cohort of 193 patients (136 families) diagnosed with congenital glaucoma. We identified biallelic CYP1B1 mutations in 80.8% (87.5 and 66.1% in familial and sporadic cases, respectively, p < 0.0086). The large family size of the study population allowed us to systematically examine penetrance of all identified alleles. With the exception of c.1103G>A (p.R368H), previously reported pathogenic mutations were highly penetrant (91.2%). We conclude from the very low penetrance and genetic epidemiological analyses that c.1103G>A (p.R368H) is unlikely to be a disease-causing recessive mutation in congenital glaucoma as previously reported. All cases that lacked biallelic CYP1B1 mutations underwent whole exome sequencing. No mutations in LTBP2, MYOC or TEK were encountered. On the other hand, mutations were identified in genes linked to other ophthalmic phenotypes, some inclusive of glaucoma, highlighting conditions that might phenotypically overlap with primary congenital glaucoma (SLC4A4, SLC4A11, CPAMD8, and KERA). We also encountered candidate causal variants in genes not previously linked to human diseases: BCO2, TULP2, and DGKQ. Our results both expand and refine the genetic spectrum of congenital glaucoma with important clinical implications.

  15. A masked NES in INI1/hSNF5 mediates hCRM1-dependent nuclear export: implications for tumorigenesis

    PubMed Central

    Craig, Errol; Zhang, Zhi-Kai; Davies, Kelvin P.; Kalpana, Ganjam V.

    2002-01-01

    INI1 (integrase interactor 1)/hSNF5 is a component of the mammalian SWI/SNF complex and a tumor suppressor mutated in malignant rhabdoid tumors (MRT). We have identified a nuclear export signal (NES) in the highly conserved repeat 2 domain of INI1 that is unmasked upon deletion of a downstream sequence. Mutation of conserved hydrophobic residues within the NES, as well as leptomycin B treatment abrogated the nuclear export. Full-length INI1 specifically associated with hCRM1/exportin1 in vivo and in vitro. A mutant INI1 [INI1(1–319) delG950] found in MRT lacking the 66 C-terminal amino acids mislocalized to the cytoplasm. Full-length INI1 but not the INI1(1–319 delG950) mutant caused flat cell formation and cell cycle arrest in cell lines derived from MRT. Disruption of the NES in the delG950 mutant caused nuclear localization of the protein and restored its ability to cause cell cycle arrest. These observations demonstrate that INI1 has a masked NES that mediates regulated hCRM1/exportin1-dependent nuclear export and we propose that mutations that cause deregulated nuclear export of the protein could lead to tumorigenesis. PMID:11782423

  16. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D.

    PubMed

    Bolz, H; von Brederlow, B; Ramírez, A; Bryda, E C; Kutsche, K; Nothwang, H G; Seeliger, M; del C-Salcedó Cabrera, M; Vila, M C; Molina, O P; Gal, A; Kubisch, C

    2001-01-01

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa (RP). So far, six loci (USH1A-USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A for USH1B and the gene encoding harmonin for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G-->C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, Delta M1281 and IVS51+5G-->A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.

  17. Mutations in LOXHD1, a Recessive-Deafness Locus, Cause Dominant Late-Onset Fuchs Corneal Dystrophy

    PubMed Central

    Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D.

    2012-01-01

    Fuchs corneal dystrophy (FCD) is a genetic disorder of the corneal endothelium and is the most common cause of corneal transplantation in the United States. Previously, we mapped a late-onset FCD locus, FCD2, on chromosome 18q. Here, we present next-generation sequencing of all coding exons in the FCD2 critical interval in a multigenerational pedigree in which FCD segregates as an autosomal-dominant trait. We identified a missense change in LOXHD1, a gene causing progressive hearing loss in humans, as the sole variant capable of explaining the phenotype in this pedigree. We observed LOXHD1 mRNA in cultured human corneal endothelial cells, whereas antibody staining of both human and mouse corneas showed staining in the corneal epithelium and endothelium. Corneal sections of the original proband were stained for LOXHD1 and demonstrated a distinct increase in antibody punctate staining in the endothelium and Descemet membrane; punctate staining was absent from both normal corneas and FCD corneas negative for causal LOXHD1 mutations. Subsequent interrogation of a cohort of >200 sporadic affected individuals identified another 15 heterozygous missense mutations that were absent from >800 control chromosomes. Furthermore, in silico analyses predicted that these mutations reside on the surface of the protein and are likely to affect the protein's interface and protein-protein interactions. Finally, expression of the familial LOXHD1 mutant allele as well as two sporadic mutations in cells revealed prominent cytoplasmic aggregates reminiscent of the corneal phenotype. All together, our data implicate rare alleles in LOXHD1 in the pathogenesis of FCD and highlight how different mutations in the same locus can potentially produce diverse phenotypes. PMID:22341973

  18. Molecular modeling of retinoschisin with functional analysis of pathogenic mutations from human X-linked retinoschisis

    PubMed Central

    Sergeev, Y.V.; Caruso, R.C.; Meltzer, M.R.; Smaoui, N.; MacDonald, I.M.; Sieving, P.A.

    2010-01-01

    Gene mutations that encode retinoschisin (RS1) cause X-linked retinoschisis (XLRS), a form of juvenile macular and retinal degeneration that affects males. RS1 is an adhesive protein which is proposed to preserve the structural and functional integrity of the retina, but there is very little evidence of the mechanism by which protein changes are related to XLRS disease. Here, we report molecular modeling of the RS1 protein and consider perturbations caused by mutations found in human XLRS subjects. In 60 XLRS patients who share 27 missense mutations, we then evaluated possible correlations of the molecular modeling with retinal function as determined by the electroretinogram (ERG) a- and b-waves. The b/a-wave ratio reflects visual-signal transfer in retina. We sorted the ERG b/a-ratios by patient age and by the mutation impact on protein structure. The majority of RS1 mutations caused minimal structure perturbation and targeted the protein surface. These patients' b/a-ratios were similar across younger and older subjects. Maximum structural perturbations from either the removal or insertion of cysteine residues or changes in the hydrophobic core were associated with greater difference in the b/a-ratio with age, with a significantly smaller ratio at younger ages, analogous to the ERG changes with age observed in mice with no RS1-protein expression due to a recombinant RS1-knockout gene. The molecular modeling suggests an association between the predicted structural alteration and/or damage to retinoschisin and the severity of XLRS as measured by the ERG analogous to the RS1-knockout mouse. PMID:20061330

  19. An Ethyl-Nitrosourea-Induced Point Mutation in Phex Causes Exon Skipping, X-Linked Hypophosphatemia, and Rickets

    PubMed Central

    Carpinelli, Marina R.; Wicks, Ian P.; Sims, Natalie A.; O’Donnell, Kristy; Hanzinikolas, Katherine; Burt, Rachel; Foote, Simon J.; Bahlo, Melanie; Alexander, Warren S.; Hilton, Douglas J.

    2002-01-01

    We describe the clinical, genetic, biochemical, and molecular characterization of a mouse that arose in the first generation (G1) of a random mutagenesis screen with the chemical mutagen ethyl-nitrosourea. The mouse was observed to have skeletal abnormalities inherited with an X-linked dominant pattern of inheritance. The causative mutation, named Skeletal abnormality 1 (Ska1), was shown to be a single base pair mutation in a splice donor site immediately following exon 8 of the Phex (phosphate-regulating gene with homologies to endopeptidases located on the X-chromosome) gene. This point mutation caused skipping of exon 8 from Phex mRNA, hypophosphatemia, and features of rickets. This experimentally induced phenotype mirrors the human condition X-linked hypophosphatemia; directly confirms the role of Phex in phosphate homeostasis, normal skeletal development, and rickets; and illustrates the power of mutagenesis in exploring animal models of human disease. PMID:12414538

  20. An ethyl-nitrosourea-induced point mutation in phex causes exon skipping, x-linked hypophosphatemia, and rickets.

    PubMed

    Carpinelli, Marina R; Wicks, Ian P; Sims, Natalie A; O'Donnell, Kristy; Hanzinikolas, Katherine; Burt, Rachel; Foote, Simon J; Bahlo, Melanie; Alexander, Warren S; Hilton, Douglas J

    2002-11-01

    We describe the clinical, genetic, biochemical, and molecular characterization of a mouse that arose in the first generation (G(1)) of a random mutagenesis screen with the chemical mutagen ethyl-nitrosourea. The mouse was observed to have skeletal abnormalities inherited with an X-linked dominant pattern of inheritance. The causative mutation, named Skeletal abnormality 1 (Ska1), was shown to be a single base pair mutation in a splice donor site immediately following exon 8 of the Phex (phosphate-regulating gene with homologies to endopeptidases located on the X-chromosome) gene. This point mutation caused skipping of exon 8 from Phex mRNA, hypophosphatemia, and features of rickets. This experimentally induced phenotype mirrors the human condition X-linked hypophosphatemia; directly confirms the role of Phex in phosphate homeostasis, normal skeletal development, and rickets; and illustrates the power of mutagenesis in exploring animal models of human disease.

  1. Pitfalls in genetic testing: the story of missed SCN1A mutations.

    PubMed

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah; Carvill, Gemma L; Jaehn, Johanna; Anttonen, Anna-Kaisa; Brilstra, Eva; Caglayan, Hande S; de Kovel, Carolien G; Depienne, Christel; Gaily, Eija; Gennaro, Elena; Giraldez, Beatriz G; Gormley, Padhraig; Guerrero-López, Rosa; Guerrini, Renzo; Hämäläinen, Eija; Hartmann, Corinna; Hernandez-Hernandez, Laura; Hjalgrim, Helle; Koeleman, Bobby P C; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R; Leu, Costin; Marini, Carla; McMahon, Jacinta M; Mei, Davide; Møller, Rikke S; Muhle, Hiltrud; Myers, Candace T; Nava, Caroline; Serratosa, Jose M; Sisodiya, Sanjay M; Stephani, Ulrich; Striano, Pasquale; van Kempen, Marjan J A; Verbeek, Nienke E; Usluer, Sunay; Zara, Federico; Palotie, Aarno; Mefford, Heather C; Scheffer, Ingrid E; De Jonghe, Peter; Helbig, Ingo; Suls, Arvid

    2016-07-01

    Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations. We sent out a survey to 16 genetic centers performing SCN1A testing. We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors. We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated.

  2. Genetics of Migraine: Insights into the Molecular Basis of Migraine Disorders.

    PubMed

    Sutherland, Heidi G; Griffiths, Lyn R

    2017-04-01

    Migraine is a complex, debilitating neurovascular disorder, typically characterized by recurring, incapacitating attacks of severe headache often accompanied by nausea and neurological disturbances. It has a strong genetic basis demonstrated by rare migraine disorders caused by mutations in single genes (monogenic), as well as familial clustering of common migraine which is associated with polymorphisms in many genes (polygenic). Hemiplegic migraine is a dominantly inherited, severe form of migraine with associated motor weakness. Family studies have found that mutations in three different ion channels genes, CACNA1A, ATP1A2, and SCN1A can be causal. Functional studies of these mutations has shown that they can result in defective regulation of glutamatergic neurotransmission and the excitatory/inhibitory balance in the brain, which lowers the threshold for cortical spreading depression, a wave of cortical depolarization thought to be involved in headache initiation mechanisms. Other putative genes for monogenic migraine include KCKN18, PRRT2, and CSNK1D, which can also be involved with other disorders. There are a number of primarily vascular disorders caused by mutations in single genes, which are often accompanied by migraine symptoms. Mutations in NOTCH3 causes cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebrovascular disease that leads to ischemic strokes and dementia, but in which migraine is often present, sometimes long before the onset of other symptoms. Mutations in the TREX1 and COL4A1 also cause vascular disorders, but often feature migraine. With respect to common polygenic migraine, genome-wide association studies have now identified single nucleotide polymorphisms at 38 loci significantly associated with migraine risk. Functions assigned to the genes in proximity to these loci suggest that both neuronal and vascular pathways also contribute to the pathophysiology of common migraine. Further studies are required to fully understand these findings and translate them into treatment options for migraine patients. © 2017 American Headache Society.

  3. A novel missense mutation p.L76P in the GJB2 gene causing nonsyndromic recessive deafness in a Brazilian family.

    PubMed

    Batissoco, A C; Auricchio, M T B M; Kimura, L; Tabith-Junior, A; Mingroni-Netto, R C

    2009-02-01

    Mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of nonsyndromic recessive hearing loss in many countries. We report here on a novel point mutation in GJB2, p.L76P (c.227C>T), in compound heterozygosity with a c.35delG mutation, in two Brazilian sibs, one presenting mild and the other profound nonsyndromic neurosensorial hearing impairment. Their father, who carried a wild-type allele and a p.L76P mutation, had normal hearing. The mutation leads to the substitution of leucine (L) by proline (P) at residue 76, an evolutionarily conserved position in Cx26 as well as in other connexins. This mutation is predicted to affect the first extracellular domain (EC1) or the second transmembrane domain (TM2). EC1 is important for connexon-connexon interaction and for the control of channel voltage gating. The segregation of the c.227C>T (p.L76P) mutation together with c.35delG in this family indicates a recessive mode of inheritance. The association between the p.L76P mutation and hearing impairment is further supported by its absence in a normal hearing control group of 100 individuals, 50 European-Brazilians and 50 African-Brazilians.

  4. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis.

    PubMed

    Daga, Ankana; Majmundar, Amar J; Braun, Daniela A; Gee, Heon Yung; Lawson, Jennifer A; Shril, Shirlee; Jobst-Schwan, Tilman; Vivante, Asaf; Schapiro, David; Tan, Weizhen; Warejko, Jillian K; Widmeier, Eugen; Nelson, Caleb P; Fathy, Hanan M; Gucev, Zoran; Soliman, Neveen A; Hashmi, Seema; Halbritter, Jan; Halty, Margarita; Kari, Jameela A; El-Desoky, Sherif; Ferguson, Michael A; Somers, Michael J G; Traum, Avram Z; Stein, Deborah R; Daouk, Ghaleb H; Rodig, Nancy M; Katz, Avi; Hanna, Christian; Schwaderer, Andrew L; Sayer, John A; Wassner, Ari J; Mane, Shrikant; Lifton, Richard P; Milosevic, Danko; Tasic, Velibor; Baum, Michelle A; Hildebrandt, Friedhelm

    2018-01-01

    The incidence of nephrolithiasis continues to rise. Previously, we showed that a monogenic cause could be detected in 11.4% of individuals with adult-onset nephrolithiasis or nephrocalcinosis and in 16.7-20.8% of individuals with onset before 18 years of age, using gene panel sequencing of 30 genes known to cause nephrolithiasis/nephrocalcinosis. To overcome the limitations of panel sequencing, we utilized whole exome sequencing in 51 families, who presented before age 25 years with at least one renal stone or with a renal ultrasound finding of nephrocalcinosis to identify the underlying molecular genetic cause of disease. In 15 of 51 families, we detected a monogenic causative mutation by whole exome sequencing. A mutation in seven recessive genes (AGXT, ATP6V1B1, CLDN16, CLDN19, GRHPR, SLC3A1, SLC12A1), in one dominant gene (SLC9A3R1), and in one gene (SLC34A1) with both recessive and dominant inheritance was detected. Seven of the 19 different mutations were not previously described as disease-causing. In one family, a causative mutation in one of 117 genes that may represent phenocopies of nephrolithiasis-causing genes was detected. In nine of 15 families, the genetic diagnosis may have specific implications for stone management and prevention. Several factors that correlated with the higher detection rate in our cohort were younger age at onset of nephrolithiasis/nephrocalcinosis, presence of multiple affected members in a family, and presence of consanguinity. Thus, we established whole exome sequencing as an efficient approach toward a molecular genetic diagnosis in individuals with nephrolithiasis/nephrocalcinosis who manifest before age 25 years. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  5. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome.

    PubMed

    Burrage, Lindsay C; Charng, Wu-Lin; Eldomery, Mohammad K; Willer, Jason R; Davis, Erica E; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S; Akdemir, Zeynep C; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P; Schoots, Jeroen; de Munnik, Sonja A; Roepman, Ronald; Pearring, Jillian N; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E L M; Brunner, Han G; Beaudet, Arthur L; Rosenfeld, Jill A; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Xia, Fan; Lalani, Seema R; Lupski, James R; Bongers, Ernie M H F; Yang, Yaping

    2015-12-03

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome

    PubMed Central

    Burrage, Lindsay C.; Charng, Wu-Lin; Eldomery, Mohammad K.; Willer, Jason R.; Davis, Erica E.; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S.; Akdemir, Zeynep C.; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P.; Schoots, Jeroen; de Munnik, Sonja A.; Roepman, Ronald; Pearring, Jillian N.; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E.L.M.; Brunner, Han G.; Beaudet, Arthur L.; Rosenfeld, Jill A.; Muzny, Donna M.; Gibbs, Richard A.; Eng, Christine M.; Xia, Fan; Lalani, Seema R.; Lupski, James R.; Bongers, Ernie M.H.F.; Yang, Yaping

    2015-01-01

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5′ end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1st coding exon), c.16A>T (p.Lys6∗) and c.35_38delTCAA (p.Ile12Lysfs∗4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5′ end of the geminin protein. All three GMNN mutations identified alter sites 5′ to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. PMID:26637980

  7. Exome sequencing identifies a novel SMCHD1 mutation in facioscapulohumeral muscular dystrophy 2.

    PubMed

    Mitsuhashi, Satomi; Boyden, Steven E; Estrella, Elicia A; Jones, Takako I; Rahimov, Fedik; Yu, Timothy W; Darras, Basil T; Amato, Anthony A; Folkerth, Rebecca D; Jones, Peter L; Kunkel, Louis M; Kang, Peter B

    2013-12-01

    FSHD2 is a rare form of facioscapulohumeral muscular dystrophy (FSHD) characterized by the absence of a contraction in the D4Z4 macrosatellite repeat region on chromosome 4q35 that is the hallmark of FSHD1. However, hypomethylation of this region is common to both subtypes. Recently, mutations in SMCHD1 combined with a permissive 4q35 allele were reported to cause FSHD2. We identified a novel p.Lys275del SMCHD1 mutation in a family affected with FSHD2 using whole-exome sequencing and linkage analysis. This mutation alters a highly conserved amino acid in the ATPase domain of SMCHD1. Subject III-11 is a male who developed asymmetrical muscle weakness characteristic of FSHD at 13 years. Physical examination revealed marked bilateral atrophy at biceps brachii, bilateral scapular winging, some asymmetrical weakness at tibialis anterior and peroneal muscles, and mild lower facial weakness. Biopsy of biceps brachii in subject II-5, the father of III-11, demonstrated lobulated fibers and dystrophic changes. Endomysial and perivascular inflammation was found, which has been reported in FSHD1 but not FSHD2. Given the previous report of SMCHD1 mutations in FSHD2 and the clinical presentations consistent with the FSHD phenotype, we conclude that the SMCHD1 mutation is the likely cause of the disease in this family. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Fragile X spectrum disorders

    PubMed Central

    Lozano, Reymundo; Rosero, Carolina Alba; Hagerman, Randi J

    2014-01-01

    Summary The fragile X mental retardation 1 gene (FMR1), which codes for the fragile X mental retardation 1 protein (FMRP), is located at Xp27.3. The normal allele of the FMR1 gene typically has 5 to 40 CGG repeats in the 5′ untranslated region; abnormal alleles of dynamic mutations include the full mutation (> 200 CGG repeats), premutation (55–200 CGG repeats) and the gray zone mutation (45–54 CGG repeats). Premutation carriers are common in the general population with approximately 1 in 130–250 females and 1 in 250–810 males, whereas the full mutation and Fragile X syndrome (FXS) occur in approximately 1 in 4000 to 1 in 7000. FMR1 mutations account for a variety of phenotypes including the most common monogenetic cause of inherited intellectual disability (ID) and autism (FXS), the most common genetic form of ovarian failure, the fragile X-associated primary ovarian insufficiency (FXPOI, premutation); and fragile X-associated tremor/ataxia syndrome (FXTAS, premutation). The premutation can also cause developmental problems including ASD and ADHD especially in boys and psychopathology including anxiety and depression in children and adults. Some premutation carriers can have a deficit of FMRP and some unmethylated full mutation individuals can have elevated FMR1 mRNA that is considered a premutation problem. Therefore the term “Fragile X Spectrum Disorder” (FXSD) should be used to include the wide range of overlapping phenotypes observed in affected individuals with FMR1 mutations. In this review we focus on the phenotypes and genotypes of children with FXSD. PMID:25606363

  9. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism

    PubMed Central

    Bianco, Suzy D. C.; Kaiser, Ursula B.

    2010-01-01

    Idiopathic hypogonadotropic hypogonadism (IHH) has an incidence of 1–10 cases per 100,000 births. About 60% of patients with IHH present with associated anosmia, also known as Kallmann syndrome, characterized by total or partial loss of olfaction. Many of the gene mutations associated with Kallmann syndrome have been mapped to KAL1 or FGFR1. However, together, these mutations account for only about 15% of Kallmann syndrome cases. More recently, mutations in PROK2 and PROKR2 have been linked to the syndrome and may account for an additional 5–10% of cases. The remaining 40% of patients with IHH have a normal sense of smell. Prior to 2003, the only gene linked to normosmic IHH was the gonadotropin-releasing hormone receptor gene. However, mutations in this receptor are believed to account for only 10% of cases. Subsequently, mutations in KISS1R, TAC3 and TACR3 were identified as causes of normosmic IHH. Certain genes, including PROK2 and FGFR1, are associated with both anosmic and normosmic IHH. Despite recent advances in the field, the genetic causes of the majority of cases of IHH remain unknown. This Review discusses genes associated with hypogonadotropic disorders and the molecular mechanisms by which mutations in these genes may result in IHH. PMID:19707180

  10. Synonymous mutations in RNASEH2A create cryptic splice sites impairing RNase H2 enzyme function in Aicardi-Goutières syndrome.

    PubMed

    Rice, Gillian I; Reijns, Martin A M; Coffin, Stephanie R; Forte, Gabriella M A; Anderson, Beverley H; Szynkiewicz, Marcin; Gornall, Hannah; Gent, David; Leitch, Andrea; Botella, Maria P; Fazzi, Elisa; Gener, Blanca; Lagae, Lieven; Olivieri, Ivana; Orcesi, Simona; Swoboda, Kathryn J; Perrino, Fred W; Jackson, Andrew P; Crow, Yanick J

    2013-08-01

    Aicardi-Goutières syndrome is an inflammatory disorder resulting from mutations in TREX1, RNASEH2A/2B/2C, SAMHD1, or ADAR1. Here, we provide molecular, biochemical, and cellular evidence for the pathogenicity of two synonymous variants in RNASEH2A. Firstly, the c.69G>A (p.Val23Val) mutation causes the formation of a splice donor site within exon 1, resulting in an out of frame deletion at the end of exon 1, leading to reduced RNase H2 protein levels. The second mutation, c.75C>T (p.Arg25Arg), also introduces a splice donor site within exon 1, and the internal deletion of 18 amino acids. The truncated protein still forms a heterotrimeric RNase H2 complex, but lacks catalytic activity. However, as a likely result of leaky splicing, a small amount of full-length active protein is apparently produced in an individual homozygous for this mutation. Recognition of the disease causing status of these variants allows for diagnostic testing in relevant families. © 2013 WILEY PERIODICALS, INC.

  11. [A study on mutations of the overlapping hepatitis B virus surface and polymerase gene in patients with HBV reinfection after liver transplantations].

    PubMed

    Song, Hong-li; Shen, Zhong-yang; Wang, Jian; Zheng, Wei-ping; Wang, Zheng-lu

    2008-04-01

    To investigate the influence of combined hepatitis B immune globulin (HBIG) and lamivudine (LMV) treatment on hepatitis B virus (HBV) surface antigen and polymerase overlapping gene mutations in HBV reinfected liver transplant recipients. From June 2002 to December 2003, 320 patients who underwent liver transplantations due to HBV-related end-stage liver diseases were followed-up for 1.5 to 3 years postoperatively. Fourteen patients developed HBV reinfection. They had LMV before their liver transplantations and had LMV and HBIG after the transplantations to prevent HBV infections. Their serum levels of HBV DNA were measured by polymerase chain reaction. Gene sequencing method was used to analyze HBV genotype and mutations of the S gene. Micro-particle enzyme immunoassay was used to measure the serum concentration of HBIG. (1) There was no obvious difference in the number of amino acid mutation sites in S and P regions before and after the transplantations. (2) The HBV genotypes were B-type (n=2) and C-type (n=12) in the reinfected group before the transplantations, and genotypes after the transplantations remained the same. (3) HBIG concentrations were 0 U/L in 7 patients, less than 100 U/L in 5 patients, and more than 100 U/L in 2 patients. Mutations were detected as I126S, T131N, S143T and G145R in 'a' determinant and L110F, I113S, T160K in up- or down-stream of 'a' determinant. (4) Mutations in S gene caused missense mutation in the surface antigen region. These mutations also caused corresponding missense mutations in the polymerase region. The missense mutation in the polymerase region involved lamivudine mutation sites and other mutation sites. Immunosuppressant therapy has no obvious influence on the numbers of mutations, but it can influence the sites of the mutations. Besides 'a' determinant mutations, there exist mutations in up- or down-streams of 'a' determinant and they may cause HBV reinfection.

  12. Autosomal Dominant Growth Hormone Deficiency (Type II).

    PubMed

    Alatzoglou, Kyriaki S; Kular, Dalvir; Dattani, Mehul T

    2015-06-01

    Isolated growth hormone deficiency (IGHD) is the commonest pituitary hormone deficiency resulting from congenital or acquired causes, although for most patients its etiology remains unknown. Among the known factors, heterozygous mutations in the growth hormone gene (GH1) lead to the autosomal dominant form of GHD, also known as type II GHD. In many cohorts this is the commonest form of congenital isolated GHD and is mainly caused by mutations that affect the correct splicing of GH-1. These mutations cause skipping of the third exon and lead to the production of a 17.5-kDa GH isoform that exerts a dominant negative effect on the secretion of the wild type GH. The identification of these mutations has clinical implications for the management of patients, as there is a well-documented correlation between the severity of the phenotype and the increased expression of the 17.5-kDa isoform. Patients with type II GHD have a variable height deficit and severity of GHD and may develop additional pituitary hormone defiencies over time, including ACTH, TSH and gonadotropin deficiencies. Therefore, their lifelong follow-up is recommended. Detailed studies on the effect of heterozygous GH1 mutations on the trafficking, secretion and action of growth hormone can elucidate their mechanism on a cellular level and may influence future treatment options for GHD type II.

  13. Tyrosinase is the modifier of retinoschisis in mice.

    PubMed

    Johnson, Britt A; Cole, Brian S; Geisert, Eldon E; Ikeda, Sakae; Ikeda, Akihiro

    2010-12-01

    X-linked retinoschisis (XLRS) is a form of macular degeneration with a juvenile onset. This disease is caused by mutations in the retinoschisin (RS1) gene. The major clinical pathologies of this disease include splitting of the retina (schisis) and a loss in synaptic transmission. Human XLRS patients display a broad range in phenotypic severity, even among family members with the same mutation. This variation suggests the existence of genetic modifiers that may contribute to disease severity. Previously, we reported the identification of a modifier locus, named Mor1, which affects severity of schisis in a mouse model of XLRS (the Rs1tmgc1 mouse). Homozygosity for the protective AKR allele of Mor1 restores cell adhesion in Rs1tmgc1 mice. Here, we report our study to identify the Mor1 gene. Through collecting recombinant mice followed by progeny testing, we have localized Mor1 to a 4.4-Mb region on chromosome 7. In this genetic region, the AKR strain is known to carry a mutation in the tyrosinase (Tyr) gene. We observed that the schisis phenotype caused by the Rs1 mutation is rescued by a Tyr mutation in the C57BL/6J genetic background, strongly suggesting that Tyr is the Mor1 gene.

  14. Osteopoikilosis and multiple exostoses caused by novel mutations in LEMD3 and EXT1 genes respectively - coincidence within one family

    PubMed Central

    2010-01-01

    Background Osteopoikilosis is a rare autosomal dominant genetic disorder, characterised by the occurrence of the hyperostotic spots preferentially localized in the epiphyses and metaphyses of the long bones, and in the carpal and tarsal bones [1]. Heterozygous LEMD3 gene mutations were shown to be the primary cause of the disease [2]. Association of the primarily asymptomatic osteopokilosis with connective tissue nevi of the skin is categorized as Buschke-Ollendorff syndrome (BOS) [3]. Additionally, osteopoikilosis can coincide with melorheostosis (MRO), a more severe bone disease characterised by the ectopic bone formation on the periosteal and endosteal surface of the long bones [4-6]. However, not all MRO affected individuals carry germ-line LEMD3 mutations [7]. Thus, the genetic cause of MRO remains unknown. Here we describe a familial case of osteopoikilosis in which a novel heterozygous LEMD3 mutation coincides with a novel mutation in EXT1, a gene involved in aetiology of multiple exostosis syndrome. The patients affected with both LEMD3 and EXT1 gene mutations displayed typical features of the osteopoikilosis. There were no additional skeletal manifestations detected however, various non-skeletal pathologies coincided in this group. Methods We investigated LEMD3 and EXT1 in the three-generation family from Poland, with 5 patients affected with osteopoikilosis and one child affected with multiple exostoses. Results We found a novel c.2203C > T (p.R735X) mutation in exon 9 of LEMD3, resulting in a premature stop codon at amino acid position 735. The mutation co-segregates with the osteopoikilosis phenotype and was not found in 200 ethnically matched controls. Another new substitution G > A was found in EXT1 gene at position 1732 (cDNA) in Exon 9 (p.A578T) in three out of five osteopoikilosis affected family members. Evolutionary conservation of the affected amino acid suggested possible functional relevance, however no additional skeletal manifestations were observed other then those specific for osteopoikilosis. Finally in one member of the family we found a splice site mutation in the EXT1 gene intron 5 (IVS5-2 A > G) resulting in the deletion of 9 bp of cDNA encoding three evolutionarily conserved amino acid residues. This child patient suffered from a severe form of exostoses, thus a causal relationship can be postulated. Conclusions We identified a new mutation in LEMD3 gene, accounting for the familial case of osteopoikilosis. In the same family we identified two novel EXT1 gene mutations. One of them A598T co-incided with the LEMD3 mutation. Co-incidence of LEMD3 and EXT1 gene mutations was not associated with a more severe skeletal phenotype in those patients. PMID:20618940

  15. IDH1(R132H) mutation causes a less aggressive phenotype and radiosensitizes human malignant glioma cells independent of the oxygenation status.

    PubMed

    Kessler, Jacqueline; Güttler, Antje; Wichmann, Henri; Rot, Swetlana; Kappler, Matthias; Bache, Matthias; Vordermark, Dirk

    2015-09-01

    In malignant glioma the presence of the IDH1 mutation (IDH1(R132H)) is associated with better clinical outcome. However, it is unclear whether IDH1 mutation is associated with a less aggressive phenotype or directly linked to increased sensitivity to radiotherapy. We determined the influence of IDH1(R132H) mutant protein on proliferation and growth in 3D culture, migration, cell survival and radiosensitivity in vitro under normoxia (21% O2) and hypoxia (<1% O2) in a panel of human malignant glioma cell lines (U-251MG, U-343MG, LN-229) with stable overexpression of wild-type (IDH1(wt)) and mutated IDH1 (IDH1(R132H)). Overexpression of IDH1(R132H) in glioma cells resulted in slightly decreased cell proliferation, considerably reduced cell migration and caused differences in growth properties in 3D spheroid cultures. Furthermore, IDH1(R132H)-positive cells consistently demonstrated an increased radiosensitivity in human malignant glioma cells U-251MG (DMF10: 1.52, p<0.01 and 1.42, p<0.01), U-343MG (DMF10: 1.78, p<0.01 and 1.75, p<0.01) and LN-229 (DMF10: 1.41, p<0.05 and 1.68, p<0.01) under normoxia and hypoxia, respectively. Our data indicate that IDH1(R132H) mutation causes both a less aggressive biological behavior and direct radiosensitization of human malignant glioma cells. Targeting IDH1 appears to be an attractive approach in combination with radiotherapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1.

    PubMed

    Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo

    2016-01-01

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism.

  17. A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1

    PubMed Central

    Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo

    2016-01-01

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism. PMID:27081571

  18. "ATP1A3" Mutations in Infants: A New Rapid-Onset Dystonia-Parkinsonism Phenotype Characterized by Motor Delay and Ataxia

    ERIC Educational Resources Information Center

    Brashear, Allison; Mink, Jonathan W.; Hill, Deborah F.; Boggs, Niki; McCall, W. Vaughn; Stacy, Mark A.; Snively, Beverly; Light, Laney S.; Sweadner, Kathleen J.; Ozelius, Laurie J.; Morrison, Leslie

    2012-01-01

    We report new clinical features of delayed motor development, hypotonia, and ataxia in two young children with mutations (R756H and D923N) in the "ATP1A3" gene. In adults, mutations in "ATP1A3" cause rapid-onset dystonia-Parkinsonism (RDP, DYT12) with abrupt onset of fixed dystonia. The parents and children were examined and videotaped, and…

  19. Novel compound heterozygous mutations in MYO7A gene associated with autosomal recessive sensorineural hearing loss in a Chinese family.

    PubMed

    Ma, Yalin; Xiao, Yun; Zhang, Fengguo; Han, Yuechen; Li, Jianfeng; Xu, Lei; Bai, Xiaohui; Wang, Haibo

    2016-04-01

    Mutations in MYO7A gene have been reported to be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Most mutations in MYO7A gene caused USH1B, whereas only a few reported mutations led to DFNB2 and DFNA11. The current study was designed to investigate the mutations among a Chinese family with autosomal recessive hearing loss. In this study, we present the clinical, genetic and molecular characteristics of a Chinese family. Targeted capture of 127 known deafness genes and next-generation sequencing were employed to study the genetic causes of two siblings in the Chinese family. Sanger sequencing was employed to examine those variant mutations in the members of this family and other ethnicity-matched controls. We identified the novel compound heterozygous mutant alleles of MYO7A gene: a novel missense mutation c.3671C>A (p.A1224D) and a reported insert mutation c.390_391insC (p.P131PfsX9). Variants were further confirmed by Sanger sequencing. These two compound heterozygous variants were co-segregated with autosomal recessive hearing loss phenotype. The gene mutation analysis and protein sequence alignment further supported that the novel compound heterozygous mutations were pathogenic. The novel compound heterozygous mutations (c.3671C>A and c.390_391insC) in MYO7A gene identified in this study were responsible for the autosomal recessive sensorineural hearing loss of this Chinese family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Dysfunction of outer segment guanylate cyclase caused by retinal disease related mutations

    PubMed Central

    Zägel, Patrick; Koch, Karl-Wilhelm

    2014-01-01

    Membrane bound guanylate cyclases are expressed in rod and cone cells of the vertebrate retina and mutations in several domains of rod outer segment guanylate cyclase 1 (ROS-GC1 encoded by the gene GUCY2D) correlate with different forms of retinal degenerations. In the present work we investigated the biochemical consequences of three point mutations, one is located in position P575L in the juxtamembrane domain close to the kinase homology domain and two are located in the cyclase catalytic domain at H1019P and P1069R. These mutations correlate with various retinal diseases like autosomal dominant progressive cone degeneration, e.g., Leber Congenital Amaurosis and a juvenile form of retinitis pigmentosa. Wildtype and mutant forms of ROS-GC1 were heterologously expressed in HEK cells, their cellular distribution was investigated and activity profiles in the presence and absence of guanylate cyclase-activating proteins were measured. The mutant P575L was active under all tested conditions, but it displayed a twofold shift in the Ca2+-sensitivity, whereas the mutant P1069R remained inactive despite normal expression levels. The mutation H1019P caused the cyclase to become more labile. The different biochemical consequences of these mutations seem to reflect the different clinical symptoms. The mutation P575L induces a dysregulation of the Ca2+-sensitive cyclase activation profile causing a slow progression of the disease by the distortion of the Ca2+-cGMP homeostasis. In contrast, a strong reduction in cGMP synthesis due to an inactive or structurally unstable ROS-GC1 would trigger more severe forms of retinal diseases. PMID:24616660

Top