Sample records for snm monitoring technology

  1. Evaluation of the axonics modulation technologies sacral neuromodulation system for the treatment of urinary and fecal dysfunction.

    PubMed

    Cohn, Joshua A; Kowalik, Casey G; Kaufman, Melissa R; Reynolds, W Stuart; Milam, Douglas F; Dmochowski, Roger R

    2017-01-01

    Sacral neuromodulation (SNM) remains one of the few effective treatments for refractory bladder and bowel dysfunction. However, SNM is associated with frequent need for surgical intervention, in many cases because of a failed battery. A rechargeable SNM system, with a manufacturer-reported battery life of 15 years or more, has entered post-market clinical testing in Europe but has not yet been approved for clinical testing in the United States. Areas covered: We review existing neuromodulation technologies for the treatment of lower urinary tract and bowel dysfunction and explore the limitations of available technology. In addition, we discuss implantation technique and device specifications and programming of the rechargeable SNM system in detail. Lastly, we present existing evidence for the use of SNM in bladder and bowel dysfunction and evaluate the anticipated trajectory of neuromodulation technologies over the next five years. Expert commentary: A rechargeable system for SNM is a welcome technological advance. However surgical revision not related to battery changes is not uncommon. Therefore, while a rechargeable system would be expected to reduce costs, it will not eliminate the ongoing maintenance associated with neuromodulation. No matter the apparent benefits, all new technologies require extensive post-market monitoring to ensure safety and efficacy.

  2. Special nuclear material simulation device

    DOEpatents

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  3. Benefits of Time Correlation Measurements for Passive Screening

    NASA Astrophysics Data System (ADS)

    Murer, David; Blackie, Douglas; Peerani, Paolo

    2014-02-01

    The “FLASH Portals Project” is a collaboration between Arktis Radiation Detectors Ltd (CH), the Atomic Weapons Establishment (UK), and the Joint Research Centre (European Commission), supported by the Technical Support Working Group (TSWG). The program's goal was to develop and demonstrate a technology to detect shielded special nuclear materials (SNM) more efficiently and less ambiguously by exploiting time correlation. This study presents experimental results of a two-sided portal monitor equipped with in total 16 4He fast neutron detectors as well as four polyvinyltoluene (PVT) plastic scintillators. All detectors have been synchronized to nanosecond precision, thereby allowing the resolution of time correlations from timescales of tens of microseconds (such as (n, γ) reactions) down to prompt fission correlations directly. Our results demonstrate that such correlations can be detected in a typical radiation portal monitor (RPM) geometry and within operationally acceptable time scales, and that exploiting these signatures significantly improves the performance of the RPM compared to neutron counting. Furthermore, the results show that some time structure remains even in the presence of heavy shielding, thus significantly improving the sensitivity of the detection system to shielded SNM.

  4. An isolated SNM model for high-stability multi-port register file in 65 nm CMOS

    NASA Astrophysics Data System (ADS)

    Zhang, Yuejun; Wang, Pengjun; Li, Gang

    2017-09-01

    In modern microprocessors, the multi-port register file is one of the key modules which provides fast and multiple data access for instructions. As the number of access ports in register files increases, stability becomes a key issue due to the voltage fluctuation on bit lines. We propose to apply an isolated inverter to address the voltage fluctuation. To assess the register stability, we derive a closed-form expression of static noise margin (SNM) for our register file. The proposed SNM model can be used as a guideline to predict the impact of several register parameters on the stability and optimize register file designs. To validate the proposed SNM model, we fabricated a test chip of two-write-four-read (2W4R) 1024 bits register file in a TSMC 65 nm low-power CMOS technology. The experimental result shows that the stability of our register file cells with an isolated inverter improve the conventional cells by approximately 2.4 times. Also, the supply voltage causes a fluctuation of SNM of about 65%, while temperature and transistor mismatch cause a fluctuation of SNM of about 20%. Project supported by the National Natural Science Foundation of China (Nos, 61404076, 61474068), the Zhejiang Provincial Natural Science Foundation of China (No. LQ14F040001), the S&T Plan of Zhejiang Provincial Science and Technology Department (No. 2015C31010), the China Spark Program (No. 2015GA701053), the Ningbo Natural Science Foundation (Nos. 2014A610148, 2015A610107), and the K. C. Wong Magna Fund in Ningbo University, China.

  5. Prompt Neutron Spectrometry for Identification of SNM in Unknown Shielding Configurations: FY16 ONR YIP Final Report

    DTIC Science & Technology

    2016-05-31

    UMKC-YIP-TR-2016 May 2016 Technical Report Prompt Neutron Spectrometry for Identification of SNM in Unknown Shielding...University of Missouri – Kansas City MSND: Micro-structured Neutron Detector HRM: Handheld Radiation Monitor PHS: Pulse Height Spectrum ANI: Active... Neutron Interrogation Distribution Statement A 6 Administrative Information and Acknowledgements Members of the University of Missouri

  6. Characterization of the human SNM1A and SNM1B/Apollo DNA repair exonucleases.

    PubMed

    Sengerová, Blanka; Allerston, Charles K; Abu, Mika; Lee, Sook Y; Hartley, Janet; Kiakos, Konstantinos; Schofield, Christopher J; Hartley, John A; Gileadi, Opher; McHugh, Peter J

    2012-07-27

    Human SNM1A and SNM1B/Apollo have both been implicated in the repair of DNA interstrand cross-links (ICLs) by cellular studies, and SNM1B is also required for telomere protection. Here, we describe studies on the biochemical characterization of the SNM1A and SNM1B proteins. The results reveal some fundamental differences in the mechanisms of the two proteins. Both SNM1A and SNM1B digest double-stranded and single-stranded DNA with a 5'-to-3' directionality in a reaction that is stimulated by divalent cations, and both nucleases are inhibited by the zinc chelator o-phenanthroline. We find that SNM1A has greater affinity for single-stranded DNA over double-stranded DNA that is not observed with SNM1B. Although both proteins demonstrate a low level of processivity on low molecular weight DNA oligonucleotide substrates, when presented with high molecular weight DNA, SNM1A alone is rendered much more active, being capable of digesting kilobase-long stretches of DNA. Both proteins can digest past ICLs induced by the non-distorting minor groove cross-linking agent SJG-136, albeit with SNM1A showing a greater capacity to achieve this. This is consistent with the proposal that SNM1A and SNM1B might exhibit some redundancy in ICL repair. Together, our work establishes differences in the substrate selectivities of SNM1A and SNM1B that are likely to be relevant to their in vivo roles and which might be exploited in the development of selective inhibitors.

  7. Latest technologic and surgical developments in using InterStim Therapy for sacral neuromodulation: impact on treatment success and safety.

    PubMed

    Spinelli, Michele; Sievert, Karl-Dietrich

    2008-12-01

    This article accompanies a "surgery in motion" DVD on sacral neuromodulation (SNM) with InterStim Therapy, which visualizes the implantation of the InterStim II system. The article describes the technical and surgical developments of SNM and their impact on treatment success, safety, and patient's quality of life (QoL). Relevant literature on SNM with regard to technical changes and related clinical outcomes has been reviewed. Since its introduction in the early 1990s, SNM has proven useful in the treatment of several types of chronic urinary (and bowel) dysfunction. Recent technical improvements in devices and, in particular, the introduction of the tined lead 5 yr ago made SNM progress from an elaborate, open-surgery, general anesthesia, one-stage implant procedure to a minimally invasive, local anesthesia, percutaneous technique in two stages. The permanent tined lead implant enables a longer patient testing period (minimum of 14 d recommended) and less lead migration. This has considerably reduced technical failures and improved the success rate of the test phase; the response rate was almost doubled to approximately 80%. These improvements also affected tolerability, resulting in increased QoL for the patient. The use of the recently introduced smaller implantable neurostimulator InterStim II seems to further improve patient comfort and makes the implant procedure for the physician easier and shorter. However, this must be further addressed in clinical studies. SNM with InterStim Therapy using the tined lead offers an efficient treatment modality for patients in whom conservative treatment has failed.

  8. Characterization of the Human SNM1A and SNM1B/Apollo DNA Repair Exonucleases*

    PubMed Central

    Sengerová, Blanka; Allerston, Charles K.; Abu, Mika; Lee, Sook Y.; Hartley, Janet; Kiakos, Konstantinos; Schofield, Christopher J.; Hartley, John A.; Gileadi, Opher; McHugh, Peter J.

    2012-01-01

    Human SNM1A and SNM1B/Apollo have both been implicated in the repair of DNA interstrand cross-links (ICLs) by cellular studies, and SNM1B is also required for telomere protection. Here, we describe studies on the biochemical characterization of the SNM1A and SNM1B proteins. The results reveal some fundamental differences in the mechanisms of the two proteins. Both SNM1A and SNM1B digest double-stranded and single-stranded DNA with a 5′-to-3′ directionality in a reaction that is stimulated by divalent cations, and both nucleases are inhibited by the zinc chelator o-phenanthroline. We find that SNM1A has greater affinity for single-stranded DNA over double-stranded DNA that is not observed with SNM1B. Although both proteins demonstrate a low level of processivity on low molecular weight DNA oligonucleotide substrates, when presented with high molecular weight DNA, SNM1A alone is rendered much more active, being capable of digesting kilobase-long stretches of DNA. Both proteins can digest past ICLs induced by the non-distorting minor groove cross-linking agent SJG-136, albeit with SNM1A showing a greater capacity to achieve this. This is consistent with the proposal that SNM1A and SNM1B might exhibit some redundancy in ICL repair. Together, our work establishes differences in the substrate selectivities of SNM1A and SNM1B that are likely to be relevant to their in vivo roles and which might be exploited in the development of selective inhibitors. PMID:22692201

  9. Do "clicker" educational sessions enhance the effectiveness of a social norms marketing campaign?

    PubMed

    Killos, Lydia F; Hancock, Linda C; Wattenmaker McGann, Amanda; Keller, Adrienne E

    2010-01-01

    social norms campaigns are a cost-effective way to reduce high-risk drinking on college campuses. This study compares effectiveness of a "standard" social norms media (SNM) campaign for those with and without exposure to additional educational sessions using audience response technology ("clickers"). American College Health Association's National College Health Assessment questions are used to evaluate actual and perceived use. Additional survey questions assess individual exposure to the interventions. the authors find "clicker" technology to be more effective than social norms poster media alone in reducing misperceptions of normative alcohol use for those students who attended clicker sessions. poster SNM campaigns may be most effective when supported by group "clicker" heath-related sessions.

  10. Cephalosporins inhibit human metallo β-lactamase fold DNA repair nucleases SNM1A and SNM1B/apollo.

    PubMed

    Lee, Sook Y; Brem, Jürgen; Pettinati, Ilaria; Claridge, Timothy D W; Gileadi, Opher; Schofield, Christopher J; McHugh, Peter J

    2016-05-10

    Bacterial metallo-β-lactamases (MBLs) are involved in resistance to β-lactam antibiotics including cephalosporins. Human SNM1A and SNM1B are MBL superfamily exonucleases that play a key role in the repair of DNA interstrand cross-links, which are induced by antitumour chemotherapeutics, and are therefore targets for cancer chemosensitization. We report that cephalosporins are competitive inhibitors of SNM1A and SNM1B exonuclease activity; both the intact β-lactam and their hydrolysed products are active. This discovery provides a lead for the development of potent and selective SNM1A and SNM1B inhibitors.

  11. The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities

    PubMed Central

    Allerston, Charles K.; Lee, Sook Y.; Newman, Joseph A.; Schofield, Christopher J.; McHugh, Peter J.; Gileadi, Opher

    2015-01-01

    The human SNM1A and SNM1B/Apollo proteins are members of an extended family of eukaryotic nuclease containing a motif related to the prokaryotic metallo-β-lactamase (MBL) fold. SNM1A is a key exonuclease during replication-dependent and transcription-coupled interstrand crosslink repair, while SNM1B/Apollo is required for maintaining telomeric overhangs. Here, we report the crystal structures of SNM1A and SNM1B at 2.16 Å. While both proteins contain a typical MBL-β-CASP domain, a region of positive charge surrounds the active site of SNM1A, which is absent in SNM1B and explains the greater apparent processivity of SNM1A. The structures of both proteins also reveal a putative, wide DNA-binding groove. Extensive mutagenesis of this groove, coupled with detailed biochemical analysis, identified residues that did not impact on SNM1A catalytic activity, but drastically reduced its processivity. Moreover, we identified a key role for this groove for efficient digestion past DNA interstrand crosslinks, facilitating the key DNA repair reaction catalysed by SNM1A. Together, the architecture and dimensions of this groove, coupled to the surrounding region of high positive charge, explain the remarkable ability of SNM1A to accommodate and efficiently digest highly distorted DNA substrates, such as those containing DNA lesions. PMID:26582912

  12. Comparison of Fast Neutron Detector Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stange, Sy; Mckigney, Edward Allen

    2015-02-09

    This report documents the work performed for the Department of Homeland Security Domestic Nuclear Detection O ce as the project Fast Neutron Detection Evaluation under contract HSHQDC-14-X-00022. This study was performed as a follow-on to the project Study of Fast Neutron Signatures and Measurement Techniques for SNM Detection - DNDO CFP11-100 STA-01. That work compared various detector technologies in a portal monitor con guration, focusing on a comparison between a number of fast neutron detection techniques and two standard thermal neutron detection technologies. The conclusions of the earlier work are contained in the report Comparison of Fast Neutron Detector Technologies.more » This work is designed to address questions raised about assumptions underlying the models built for the earlier project. To that end, liquid scintillators of two di erent sizes{ one a commercial, o -the-shelf (COTS) model of standard dimensions and the other a large, planer module{were characterized at Los Alamos National Laboratory. The results of those measurements were combined with the results of the earlier models to gain a more complete picture of the performance of liquid scintillator as a portal monitor technology.« less

  13. The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities.

    PubMed

    Allerston, Charles K; Lee, Sook Y; Newman, Joseph A; Schofield, Christopher J; McHugh, Peter J; Gileadi, Opher

    2015-12-15

    The human SNM1A and SNM1B/Apollo proteins are members of an extended family of eukaryotic nuclease containing a motif related to the prokaryotic metallo-β-lactamase (MBL) fold. SNM1A is a key exonuclease during replication-dependent and transcription-coupled interstrand crosslink repair, while SNM1B/Apollo is required for maintaining telomeric overhangs. Here, we report the crystal structures of SNM1A and SNM1B at 2.16 Å. While both proteins contain a typical MBL-β-CASP domain, a region of positive charge surrounds the active site of SNM1A, which is absent in SNM1B and explains the greater apparent processivity of SNM1A. The structures of both proteins also reveal a putative, wide DNA-binding groove. Extensive mutagenesis of this groove, coupled with detailed biochemical analysis, identified residues that did not impact on SNM1A catalytic activity, but drastically reduced its processivity. Moreover, we identified a key role for this groove for efficient digestion past DNA interstrand crosslinks, facilitating the key DNA repair reaction catalysed by SNM1A. Together, the architecture and dimensions of this groove, coupled to the surrounding region of high positive charge, explain the remarkable ability of SNM1A to accommodate and efficiently digest highly distorted DNA substrates, such as those containing DNA lesions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. SNM detection with an optimized water Cherenkov neutron detector

    NASA Astrophysics Data System (ADS)

    Dazeley, S.; Sweany, M.; Bernstein, A.

    2012-11-01

    Special Nuclear Material (SNM) can either spontaneously fission or be induced to do so: either case results in neutron emission. For this reason, neutron detection performs a crucial role in the functionality of Radiation Portal Monitoring (RPM) devices. Since neutrons are highly penetrating and difficult to shield, they could potentially be detected escaping even a well-shielded cargo container. If the shielding were sophisticated, detecting escaping neutrons would require a highly efficient detector with close to full solid angle coverage. In 2008, we reported the successful detection of neutrons with a 250 liter (l) gadolinium doped water Cherenkov prototype [1]—a technology that could potentially be employed cost effectively with full solid angle coverage. More recently we have built and tested both 1-kl and 3.5-kl versions [2], demonstrating that very large, cost effective, non-flammable and environmentally benign neutron detectors can be operated efficiently without being overwhelmed by background. In this paper, we present a new design for a modular system of water-based neutron detectors that could be deployed as a real RPM. The modules contain a number of optimizations that have not previously been combined within a single system. We present simulations of the new system, based on the performance of our previous detectors. Our simulations indicate that an optimized system such as is presented here could achieve SNM sensitivity competitive with a large 3He-based system. Moreover, the realization of large, cost effective neutron detectors could, for the first time, enable the detection of multiple neutrons per fission from within a large object such as a cargo container. Such a signal would provide a robust indication of the presence of fissioning material, reducing the frequency of false alarms while increasing sensitivity.

  15. SNM Detection with an Optimized Water Cherenkov Neutron Detector

    DOE PAGES

    Dazeley, S.; Sweany, M.; Bernstein, A.

    2012-07-23

    Special Nuclear Material (SNM) can either spontaneously fission or be induced to do so: either case results in neutron emission. For this reason, neutron detection performs a crucial role in the functionality of Radiation Portal Monitoring (RPM) devices. Since neutrons are highly penetrating and difficult to shield, they could potentially be detected escaping even a well-shielded cargo container. If the shielding were sophisticated, detecting escaping neutrons would require a highly efficient detector with close to full solid angle coverage. In 2008, we reported the successful detection of neutrons with a 250 liter (l) gadolinium doped water Cherenkov prototype—a technology thatmore » could potentially be employed cost effectively with full solid angle coverage. More recently we have built and tested both 1-kl and 3.5-kl versions, demonstrating that very large, cost effective, non-flammable and environmentally benign neutron detectors can be operated efficiently without being overwhelmed by background. In our paper, we present a new design for a modular system of water-based neutron detectors that could be deployed as a real RPM. The modules contain a number of optimizations that have not previously been combined within a single system. We present simulations of the new system, based on the performance of our previous detectors. These simulations indicate that an optimized system such as is presented here could achieve SNM sensitivity competitive with a large 3He-based system. Moreover, the realization of large, cost effective neutron detectors could, for the first time, enable the detection of multiple neutrons per fission from within a large object such as a cargo container. Such a signal would provide a robust indication of the presence of fissioning material, reducing the frequency of false alarms while increasing sensitivity.« less

  16. Design and Fabrication of Cherenkov Counters for the Detection of SNM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Anna S.; Lanza, Richard; Galaitsis, Anthony

    2011-12-13

    The need for large-size detectors for long-range active interrogation (AI) detection of SNM has generated interest in water-based detector technologies. Water Cherenkov Detectors (WCD) were selected for this research because of their transportability, scalability, and an inherent energy threshold. The detector design and analysis was completed using the Geant4 toolkit. It was demonstrated both computationally and experimentally that it is possible to use WCD to detect and characterize gamma rays. Absolute efficiency of the detector (with no energy cuts applied) was determined to be around 30% for a {sup 60}Co source.

  17. SNM1B/Apollo interacts with astrin and is required for the prophase cell cycle checkpoint.

    PubMed

    Liu, Lingling; Akhter, Shamima; Bae, Jae-Bum; Mukhopadhyay, Sudit S; Richie, Christopher T; Liu, Xiaojun; Legerski, Randy

    2009-02-15

    Previously, we have shown that SNM1A is a multifunctional gene involved in both the DNA damage response and in an early mitotic checkpoint in response to spindle stress. Another member of the SNM1 gene family, SNM1B/Apollo, has been shown to have roles in both the response to DNA interstrand cross-linking agents and in telomere protection during S phase. Here, we demonstrate a novel role for SNM1B/Apollo in mitosis in response to spindle stress. SNM1B-deficient cells exhibit a defect in the prophase checkpoint. Loss of the prophase checkpoint induces an extended mitotic delay, which is due to prolonged activation of the spindle checkpoint. In addition, we show that SNM1B/Apollo interacts with the essential microtubule binding protein Astrin. SNM1B/Apollo interacts with Astrin through its conserved metallo-beta-lactamase domain, and disruption of this interaction by point mutations results in a deficient prophase checkpoint. These findings suggest that SNM1B/Apollo and Astrin function together to enforce the prophase checkpoint in response to spindle stress.

  18. The telomeric protein SNM1B/Apollo is required for normal cell proliferation and embryonic development

    PubMed Central

    Akhter, Shamima; Lam, Yung C.; Chang, Sandy; Legerski, Randy J.

    2013-01-01

    Summary Conserved metallo β-Lactamase and β-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end-to-end fusions. Deficiency of the nonhomologous end-joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo-deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ-mediated repair, which results in genomic instability and the consequent multi-organ developmental failure. Although Snm1B/Apollo-deficient MEFs exhibited high levels of apoptosis, abrogation of p53-dependent programmed cell death did not rescue the multi-organ developmental failure in the mice. PMID:20854421

  19. Evidence for hSNM1B/Apollo functioning in the HSP70 mediated DNA damage response.

    PubMed

    Anders, Marco; Mattow, Jens; Digweed, Martin; Demuth, Ilja

    2009-06-01

    The hSNM1B/Apollo protein is involved in the cellular response to DNA-damage as well as in the maintenance of telomeres during S-phase. TRF2 has been shown to interact physically with hSNM1B. As a core component of shelterin, TRF2 functions in organization and protection of telomeres. However, TRF2 was also shown to have a role in the early DNA-damage response, suggesting that hSNM1B and TRF2 cooperate in this dual function. Here we have used Tandem-Affinity-Purification in combination with mass spectrometry to identify additional binding partners of hSNM1B. This revealed HSC70, HSP72, HSP60 and beta-Tubulin to be hSNM1B-interactors. We have confirmed the interaction of hSNM1B and HSP70 in co-immunoprecipitation assays and found that hSNM1B binds to a C-terminal fragment of HSP72, known to contain the substrate binding domain. Depletion of HSP72 in human fibroblasts resulted in a significant reduction of nuclear hSNM1B foci. We also found the phosphorylation of CHK1 at serine 317 to be attenuated in response to UVC irradiation as a consequence of hSNM1B depletion, a result which extends our previous findings on the DNA-damage response function of hSNM1B. HSP70 chaperones have been implicated in the maintenance of genome stability and their expression is often aberrant in cancer. Our results presented here, suggest that the role in genome stability might not be specific to HSP70 but rather can be attributed, at least in part, to hSNM1B. This, together with its stimulating effect on ATM and ATR substrate phosphorylation in response to DNA-damage qualify hSNM1B as a putative target in cancer therapy.

  20. The telomeric protein SNM1B/Apollo is required for normal cell proliferation and embryonic development.

    PubMed

    Akhter, Shamima; Lam, Yung C; Chang, Sandy; Legerski, Randy J

    2010-12-01

    Conserved metallo β-Lactamase and β-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end-to-end fusions. Deficiency of the nonhomologous end-joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo-deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ-mediated repair, which results in genomic instability and the consequent multi-organ developmental failure. Although Snm1B/Apollo-deficient MEFs exhibited high levels of apoptosis, abrogation of p53-dependent programmed cell death did not rescue the multi-organ developmental failure in the mice. © 2010 The Authors. Aging Cell © 2010 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  1. Cost profiles and budget impact of rechargeable versus non-rechargeable sacral neuromodulation devices in the treatment of overactive bladder syndrome.

    PubMed

    Noblett, Karen L; Dmochowski, Roger R; Vasavada, Sandip P; Garner, Abigail M; Liu, Shan; Pietzsch, Jan B

    2017-03-01

    Sacral neuromodulation (SNM) is a guideline-recommended third-line treatment option for managing overactive bladder. Current SNM devices are not rechargeable, and require neurostimulator replacement every 3-6 years. Our study objective was to assess potential cost effects to payers of adopting a rechargeable SNM neurostimulator device. We constructed a cost-consequence model to estimate the costs of long-term SNM-treatment with a rechargeable versus non-rechargeable device. Costs were considered from the payer perspective at 2015 reimbursement levels. Adverse events, therapy discontinuation, and programming rates were based on the latest published data. Neurostimulator longevity was assumed to be 4.4 and 10.0 years for non-rechargeable and rechargeable devices, respectively. A 15-year horizon was modeled, with costs discounted at 3% per year. Total budget impact to the United States healthcare system was estimated based on the computed per-patient cost findings. Over the 15-year horizon, per-patient cost of treatment with a non-rechargeable device was $64,111 versus $36,990 with a rechargeable device, resulting in estimated payer cost savings of $27,121. These cost savings were found to be robust across a wide range of scenarios. Longer analysis horizon, younger patient age, and longer rechargeable neurostimulator lifetime were associated with increased cost savings. Over a 15-year horizon, adoption of a rechargeable device strategy was projected to save the United States healthcare system up to $12 billion. At current reimbursement rates, our analysis suggests that rechargeable neurostimulator SNM technology for managing overactive bladder syndrome may deliver significant cost savings to payers over the course of treatment. Neurourol. Urodynam. 36:727-733, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. The SNM1B/APOLLO DNA nuclease functions in resolution of replication stress and maintenance of common fragile site stability.

    PubMed

    Mason, Jennifer M; Das, Ishita; Arlt, Martin; Patel, Neil; Kraftson, Stephanie; Glover, Thomas W; Sekiguchi, JoAnn M

    2013-12-15

    SNM1B/Apollo is a DNA nuclease that has important functions in telomere maintenance and repair of DNA interstrand crosslinks (ICLs) within the Fanconi anemia (FA) pathway. SNM1B is required for efficient localization of key repair proteins, such as the FA protein, FANCD2, to sites of ICL damage and functions epistatically to FANCD2 in cellular survival to ICLs and homology-directed repair. The FA pathway is also activated in response to replication fork stalling. Here, we sought to determine the importance of SNM1B in cellular responses to stalled forks in the absence of a blocking lesion, such as ICLs. We found that depletion of SNM1B results in hypersensitivity to aphidicolin, a DNA polymerase inhibitor that causes replication stress. We observed that the SNM1B nuclease is required for efficient localization of the DNA repair proteins, FANCD2 and BRCA1, to subnuclear foci upon aphidicolin treatment, thereby indicating SNM1B facilitates direct repair of stalled forks. Consistent with a role for SNM1B subsequent to recognition of the lesion, we found that SNM1B is dispensable for upstream events, including activation of ATR-dependent signaling and localization of RPA, γH2AX and the MRE11/RAD50/NBS1 complex to aphidicolin-induced foci. We determined that a major consequence of SNM1B depletion is a marked increase in spontaneous and aphidicolin-induced chromosomal gaps and breaks, including breakage at common fragile sites. Thus, this study provides evidence that SNM1B functions in resolving replication stress and preventing accumulation of genomic damage.

  3. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Nuclear Materials and Equipment * Nuclear Regulatory Commission, Office of International Programs, Tel. (301) 415-2344, Fax: (301) 415-2395. 10 CFR part 110. Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors...

  4. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors, Enrichment, Reprocessing, Fuel Fabrication, and Heavy Water...-6050. 10 CFR 205.300 through 205.379 and part 590. Nuclear Materials and Equipment * Nuclear Regulatory...

  5. GNSS Spoofing Network Monitoring Based on Differential Pseudorange.

    PubMed

    Zhang, Zhenjun; Zhan, Xingqun

    2016-10-23

    Spoofing is becoming a serious threat to various Global Navigation Satellite System (GNSS) applications, especially for those that require high reliability and security such as power grid synchronization and applications related to first responders and aviation safety. Most current works on anti-spoofing focus on spoofing detection from the individual receiver side, which identifies spoofing when it is under an attack. This paper proposes a novel spoofing network monitoring (SNM) mechanism aiming to reveal the presence of spoofing within an area. Consisting of several receivers and one central processing component, it keeps detecting spoofing even when the network is not attacked. The mechanism is based on the different time difference of arrival (TDOA) properties between spoofing and authentic signals. Normally, TDOAs of spoofing signals from a common spoofer are identical while those of authentic signals from diverse directions are dispersed. The TDOA is measured as the differential pseudorange to carrier frequency ratio (DPF). In a spoofing case, the DPFs include those of both authentic and spoofing signals, among which the DPFs of authentic are dispersed while those of spoofing are almost overlapped. An algorithm is proposed to search for the DPFs that are within a pre-defined small range, and an alarm will be raised if several DPFs are found within such range. The proposed SNM methodology is validated by simulations and a partial field trial. Results show 99.99% detection and 0.01% false alarm probabilities are achieved. The SNM has the potential to be adopted in various applications such as (1) alerting dedicated users when spoofing is occurring, which could significantly shorten the receiver side spoofing cost; (2) in combination with GNSS performance monitoring systems, such as the Continuous Operating Reference System (CORS) and GNSS Availability, Accuracy, Reliability anD Integrity Assessment for Timing and Navigation (GAARDIAN) System, to provide more reliable monitoring services.

  6. Nanomanufacturing-related programs at NSF

    NASA Astrophysics Data System (ADS)

    Cooper, Khershed P.

    2015-08-01

    The National Science Foundation is meeting the challenge of transitioning lab-scale nanoscience and technology to commercial-scale through several nanomanufacturing-related research programs. The goal of the core Nanomanufacturing (NM) and the inter-disciplinary Scalable Nanomanufacturing (SNM) programs is to meet the barriers to manufacturability at the nano-scale by developing the fundamental principles for the manufacture of nanomaterials, nanostructures, nanodevices, and engineered nanosystems. These programs address issues such as scalability, reliability, quality, performance, yield, metrics, and cost, among others. The NM and SNM programs seek nano-scale manufacturing ideas that are transformative, that will be widely applicable and that will have far-reaching technological and societal impacts. It is envisioned that the results from these basic research programs will provide the knowledge base for larger programs such as the manufacturing Nanotechnology Science and Engineering Centers (NSECs) and the Nanosystems Engineering Research Centers (NERCs). Besides brief descriptions of these different programs, this paper will include discussions on novel

  7. Human SNM1B is required for normal cellular response to both DNA interstrand crosslink-inducing agents and ionizing radiation.

    PubMed

    Demuth, Ilja; Digweed, Martin; Concannon, Patrick

    2004-11-11

    DNA interstrand crosslinks (ICLs) are critical lesions for the mammalian cell since they affect both DNA strands and block transcription and replication. The repair of ICLs in the mammalian cell involves components of different repair pathways such as nucleotide-excision repair and the double-strand break/homologous recombination repair pathways. However, the mechanistic details of mammalian ICL repair have not been fully delineated. We describe here the complete coding sequence and the genomic organization of hSNM1B, one of at least three human homologs of the Saccharomyces cerevisiae PSO2 gene. Depletion of hSNM1B by RNA interference rendered cells hypersensitive to ICL-inducing agents. This requirement for hSNM1B in the cellular response to ICL has been hypothesized before but never experimentally verified. In addition, siRNA knockdown of hSNM1B rendered cells sensitive to ionizing radiation, suggesting the possibility of hSNM1B involvement in homologous recombination repair of double-strand breaks arising as intermediates of ICL repair. Monoubiquitination of FANCD2, a key step in the FANC/BRCA pathway, is not affected in hSNM1B-depleted HeLa cells, indicating that hSNM1B is probably not a part of the Fanconi anemia core complex. Nonetheless, similarities in the phenotype of hSNM1B-depleted cells and cultured cells from patients suffering from Fanconi anemia make hSNM1B a candidate for one of the as yet unidentified Fanconi anemia genes not involved in monoubiquitination of FANCD2.

  8. Sacral neuromodulations for female lower urinary tract, pelvic floor, and bowel disorders.

    PubMed

    Wehbe, Salim A; Whitmore, Kristene; Ho, Mat H

    2010-10-01

    In recent years, sacral neuromodulation (SNM) has been investigated for the treatment of various types of lower urinary tract and bowel dysfunctions. This review discusses recently published data related to the therapeutic applications of SNM in female lower urinary tract, pelvic floor, and bowel disorders. SNM has been employed initially in the treatment of refractory idiopathic overactive bladder, urge urinary incontinence, and chronic nonobstructive urinary retention. Since then, several studies, including randomized and controlled trials, have confirmed the therapeutic effects of SNM in these disorders. The applications of SNM are now extended to the treatment of other female pelvic problems, such as fecal incontinence, chronic constipation, interstitial cystitis/painful bladder syndrome, sexual dysfunction, and neurogenic disorders, with similar promising results. SNM is approved by the Food and Drug Administration for the treatment of idiopathic overactive bladder, urge urinary incontinence, and chronic nonobstructive urinary retention. SNM is not yet an approved method for the treatment of other pelvic disorders, but data supporting its benefit are emerging. The major advantage of SNM lies in its potential to treat the bladder, urethral sphincter, anal sphincters, and pelvic floor muscles simultaneously, which might result in better therapeutic effects.

  9. Regulation of SNM1, an inducible Saccharomyces cerevisiae gene required for repair of DNA cross-links.

    PubMed

    Wolter, R; Siede, W; Brendel, M

    1996-02-05

    The interstrand cross-link repair gene SNM1 of Saccharomyces cerevisiae was examined for regulation in response to DNA-damaging agents. Induction of SNM1-lacZ fusions was detected in response to nitrogen mustard, cis-platinum (II) diamine dichloride, UV light, and 8-methoxypsoralen + UVA, but not after heat-shock treatment or incubation with 2-dimethylaminoethylchloride, methylmethane sulfonate or 4-nitroquinoline-N-oxide. The promoter of SNM1 contains a 15 bp motif, which shows homology to the DRE2 box of the RAD2 promoter. Similar motifs have been found in promoter regions of other damage-inducible DNA repair genes. Deletion of this motif results in loss of inducibility of SNM1. Also, a putative negative upstream regulation sequence was found to be responsible for repression of constitutive transcription of SNM1. Surprisingly, no inducibility of SNM1 was found after treatment with DNA-damaging agents in strains without an intact DUN1 gene, while regulation seems unchanged in sad1 mutants.

  10. Technical solutions to nonproliferation challenges

    NASA Astrophysics Data System (ADS)

    Satkowiak, Lawrence

    2014-05-01

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

  11. Technical solutions to nonproliferation challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satkowiak, Lawrence

    2014-05-09

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversionmore » of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.« less

  12. Silicon nanoporous membranes as a rigorous platform for validation of biomolecular transport models

    PubMed Central

    Feinberg, Benjamin J.; Hsiao, Jeff C.; Park, Jaehyun; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo

    2017-01-01

    Microelectromechanical systems (MEMS), a technology that resulted from significant innovation in semiconductor fabrication, have recently been applied to the development of silicon nanopore membranes (SNM). In contrast to membranes fabricated from polymeric materials, SNM exhibit slit-shaped pores, monodisperse pore size, constant surface porosity, zero pore overlap, and sub-micron thickness. This development in membrane fabrication is applied herein for the validation of the XDLVO (extended Derjaguin, Landau, Verwey, and Overbeek) theory of membrane transport within the context of hemofiltration. In this work, the XDLVO model has been derived for the unique slit pore structure of SNM. Beta-2-microglobulin (B2M), a clinically relevant “middle molecular weight” solute in kidney disease, is highlighted in this study as the solute of interest. In order to determine interaction parameters within the XDLVO model for B2M and SNM, goniometric measurements were conducted, yielding a Hamaker constant of 4.61× 10−21 J and an acid-base Gibbs free energy at contact of 41 mJ/m2. The XDLVO model was combined with existing models for membrane sieving, with predictions of the refined model in good agreement with experimental data. Furthermore, the results show a significant difference between the XDLVO model and the simpler steric predictions typically applied in membrane transport. The refined model can be used as a tool to tailor membrane chemistry and maximize sieving or rejection of different biomolecules. PMID:28936029

  13. SNM1B/Apollo in the DNA damage response and telomere maintenance

    PubMed Central

    Schmiester, Maren; Demuth, Ilja

    2017-01-01

    hSNM1B/Apollo is a member of the highly conserved β-CASP subgroup within the MBL superfamily of proteins. It interacts with several DNA repair proteins and functions within the Fanconi anemia pathway in response to DNA interstrand crosslinks. As a shelterin accessory protein, hSNM1B/Apollo is also vital for the generation and maintenance of telomeric overhangs. In this review, we will summarize studies on hSNM1B/Apollo's function, including its contribution to DNA damage signaling, replication fork maintenance, control of topological stress and telomere protection. Furthermore, we will highlight recent studies illustrating hSNM1B/Apollo's putative role in human disease. PMID:28430596

  14. SNM1B/Apollo in the DNA damage response and telomere maintenance.

    PubMed

    Schmiester, Maren; Demuth, Ilja

    2017-07-18

    hSNM1B/Apollo is a member of the highly conserved β-CASP subgroup within the MBL superfamily of proteins. It interacts with several DNA repair proteins and functions within the Fanconi anemia pathway in response to DNA interstrand crosslinks. As a shelterin accessory protein, hSNM1B/Apollo is also vital for the generation and maintenance of telomeric overhangs. In this review, we will summarize studies on hSNM1B/Apollo's function, including its contribution to DNA damage signaling, replication fork maintenance, control of topological stress and telomere protection. Furthermore, we will highlight recent studies illustrating hSNM1B/Apollo's putative role in human disease.

  15. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: (301) 594-4715. 21 U.S.C. 301 et seq. Natural Gas and Electric Power Department of Energy, Office of.... (301) 415-2344, Fax: (301) 415-2395. 10 CFR part 110. Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors...

  16. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: (301) 594-4715. 21 U.S.C. 301 et seq. Natural Gas and Electric Power Department of Energy, Office of.... (301) 415-2344, Fax: (301) 415-2395. 10 CFR part 110. Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors...

  17. Computational Age Dating of Special Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2012-06-30

    This slide-show presented an overview of the Constrained Progressive Reversal (CPR) method for computing decays, age dating, and spoof detecting. The CPR method is: Capable of temporal profiling a SNM sample; Precise (compared with known decay code, such a ORIGEN); Easy (for computer implementation and analysis). We have illustrated with real SNM data using CPR for age dating and spoof detection. If SNM is pure, may use CPR to derive its age. If SNM is mixed, CPR will indicate that it is mixed or spoofed.

  18. Diffusive Silicon Nanopore Membranes for Hemodialysis Applications

    PubMed Central

    Kim, Steven; Feinberg, Benjamin; Kant, Rishi; Chui, Benjamin; Goldman, Ken; Park, Jaehyun; Moses, Willieford; Blaha, Charles; Iqbal, Zohora; Chow, Clarence; Wright, Nathan; Fissell, William H.; Zydney, Andrew; Roy, Shuvo

    2016-01-01

    Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up. PMID:27438878

  19. Optical detection of special nuclear materials: an alternative approach for standoff and remote sensing

    NASA Astrophysics Data System (ADS)

    Johnson, J. Bruce; Reeve, S. W.; Burns, W. A.; Allen, Susan D.

    2010-04-01

    Termed Special Nuclear Material (SNM) by the Atomic Energy Act of 1954, fissile materials, such as 235U and 239Pu, are the primary components used to construct modern nuclear weapons. Detecting the clandestine presence of SNM represents an important capability for Homeland Security. An ideal SNM sensor must be able to detect fissile materials present at ppb levels, be able to distinguish between the source of the detected fissile material, i.e., 235U, 239Pu, 233U or other fission source, and be able to perform the discrimination in near real time. A sensor with such capabilities would provide not only rapid identification of a threat but, ultimately, information on the potential source of the threat. For example, current detection schemes for monitoring clandestine nuclear testing and nuclear fuel reprocessing to provide weapons grade fissile material rely largely on passive air sampling combined with a subsequent instrumental analysis or some type of wet chemical analysis of the collected material. It would be highly useful to have a noncontact method of measuring isotopes capable of providing forensic information rapidly at ppb levels of detection. Here we compare the use of Kr, Xe and I as "canary" species for distinguishing between 235U and 239Pu fission sources by spectroscopic methods.

  20. New Non-Intrusive Inspection Technologies for Nuclear Security and Nonproliferation

    NASA Astrophysics Data System (ADS)

    Ledoux, Robert J.

    2015-10-01

    Comprehensive monitoring of the supply chain for nuclear materials has historically been hampered by non-intrusive inspection systems that have such large false alarm rates that they are impractical in the flow of commerce. Passport Systems, Inc. (Passport) has developed an active interrogation system which detects fissionable material, high Z material, and other contraband in land, sea and air cargo. Passport's design utilizes several detection modalities including high resolution imaging, passive radiation detection, effective-Z (EZ-3D™) anomaly detection, Prompt Neutrons from Photofission (PNPF), and Nuclear Resonance Fluorescence (NRF) isotopic identification. These technologies combine to: detect fissionable, high-Z, radioactive and contraband materials, differentiate fissionable materials from high-Z shielding materials, and isotopically identify actinides, Special Nuclear Materials (SNM), and other contraband (e.g. explosives, drugs, nerve agents). Passport's system generates a 3-D image of the scanned object which contains information such as effective-Z and density, as well as a 2-D image and isotopic and fissionable information for regions of interest.

  1. Sacral neuromodulation for lower urinary tract dysfunction.

    PubMed

    Van Kerrebroeck, Philip E V; Marcelissen, Tom A T

    2012-08-01

    To review the technique, indications, results and working mechanisms of sacral neuromodulation (SNM) for lower urinary tract dysfunction. The available literature on SNM for lower urinary tract dysfunction was searched. Based on the information available in the literature and also based on personal experience, the urological indications, technique, mechanisms of action and results of SNM are presented and discussed. SNM for lower urinary tract dysfunction involves stimulation of the 3rd sacral nerve with an electrode implanted in the sacral foramen and connected to a pulse generator. The technique is accepted by the FDA since 1997. Currently, SNM for lower urinary tract dysfunction has been successfully used in about 26,000 patients with various forms of lower urinary tract dysfunction, including urgency, frequency and urgency incontinence as well as non-obstructive urinary retention. The actual procedure of SNM consists of a minimal invasive technique and is effective in about 70% of the patients who have been implanted with a permanent system. Also, in pelvic pain, interesting results have been described. SNM modulates the micturition reflexes at different levels in the central nervous system. Sacral neuromodulation is a safe and effective therapy for various forms of lower urinary tract dysfunction, including urgency, frequency and urgency incontinence as well as non-obstructive urinary retention. It should be the first choice after failure of maximal conservative therapy.

  2. Economic evaluation of sacral neuromodulation in overactive bladder: A Canadian perspective.

    PubMed

    Hassouna, Magdy M; Sadri, Hamid

    2015-01-01

    Refractory overactive bladder (OAB) with urge incontinence is an underdiagnosed condition with substantial burden on the healthcare system and diminished patient's quality-of-life. Many patients will fail conservative treatment with optimized medical-therapy (OMT) and may benefit from minimally invasive procedures, including sacral-neuromodulation (SNM) or botulinum-toxin (BonT-A). The goal of this study was to estimate the cost-efectiveness of SNM vs. OMT and BonT-A as important parameters from coverage and access to a therapy. A Markov model with Monte-Carlo simulation was used to assess the incremental cost effectiveness ratio (ICER) of SNM vs. BonT-A and OMT both in deterministic and probabilistic analysis from a provincial payer perspective over a 10-year time horizon with 9-month Markov-cycles. Clinical data, healthcare resource utilization, and utility scores were acquired from recent publications and an expert panel of 7 surgeons. Cost data (2014-Dollars) were derived from provincial health insurance policy, drug benefit formulary, and hospital data. All cost and outcomes were discounted at a 3% rate. The annual (year 1-10) incremental quality-adjusted life years for SNM vs. BonT-A was 0.05 to 0.51 and SNM vs. OMT was 0.19 to 1.76. The annual incremental cost of SNM vs. BonT-A was $7237 in year 1 and -$9402 in year 10 and was between $8878 and -$11 447 vs. OMT. In the base-case deterministic analysis, the ICER for SNM vs. BonT-A and OMT were within the acceptable range ($44 837 and $15 130, respectively) at the second year of therapy, and SNM was dominant in consequent years. In the base-case analysis the probability of ICER being below the acceptability curve (willingness-to-pay $50 000) was >99% for SNM vs. BonT-A at year 3 and >95% for OMT at year 2. SNM is a cost-effective treatment option to manage patients with refractory OAB when compared to either BonT-A or OMT. From a Canadian payers' perspective, SNM may be considered a first-line treatment option in management of patients with OAB with superior long-term outcomes. Similar to all economic analysis, this study has limitations which are based on the assumptions of the used model.

  3. 76 FR 46329 - Notice of Issuance of Renewed Materials License No. SNM-2504; Department of Energy; Fort St...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... Materials License No. SNM-2504; Department of Energy; Fort St. Vrain Independent Spent Fuel Storage... INFORMATION CONTACT: Christopher Staab, Project Manager, Division of Spent Fuel Storage and Transportation... issued renewed Materials License No. SNM-2504 to the Department of Energy (DOE) for the receipt...

  4. 10 CFR 810.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pursuant to section 142 of the Atomic Energy Act. Sensitive nuclear technology means any information... nuclear material (SNM) or which a U.S. provider of assistance knows or has reason to know will be used for... International Atomic Energy Agency. Non-nuclear-weapon state is a country not recognized as a nuclear-weapon...

  5. SNM-DAT: Simulation of a heterogeneous network for nuclear border security

    NASA Astrophysics Data System (ADS)

    Nemzek, R.; Kenyon, G.; Koehler, A.; Lee, D. M.; Priedhorsky, W.; Raby, E. Y.

    2007-08-01

    We approach the problem of detecting Special Nuclear Material (SNM) smuggling across open borders by modeling a heterogeneous sensor network using an agent-based simulation. Our simulation SNM Data Analysis Tool (SNM-DAT) combines fixed seismic, metal, and radiation detectors with a mobile gamma spectrometer. Decision making within the simulation determines threat levels by combined signatures. The spectrometer is a limited-availability asset, and is only deployed for substantial threats. "Crossers" can be benign or carrying shielded SNM. Signatures and sensors are physics based, allowing us to model realistic sensor networks. The heterogeneous network provides great gains in detection efficiency compared to a radiation-only system. We can improve the simulation through better sensor and terrain models, additional signatures, and crossers that mimic actual trans-border traffic. We expect further gains in our ability to design sensor networks as we learn the emergent properties of heterogeneous detection, and potential adversary responses.

  6. 78 FR 8194 - Exemption of Material for Proposed Disposal Procedures for the Westinghouse Electric Company, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... disposal cells. SNM quantities, below what the NRC would consider to be a critical mass (i.e., 350 grams of... grams of SNM. This revision to the EnergySolutions license was approved after the NRC independently... grams of SNM. The selection of this alternative would allow WEC to meet the requirements of 10 CFR 20...

  7. Personnel Dose Assessment during Active Interrogation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Thomas Martin; Akkurt, Hatice; Patton, Bruce W

    A leading candidate in the detection of special nuclear material (SNM) is active interrogation (AI). Unlike passive interrogation, AI uses a source to enhance or create a detectable signal from SNM (usually fission), particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. During the development of AI sources, significant effort is put into determining the source strength required to detect SNM in specific scenarios. Usually during this process, but not always, an evaluation of personnel dosemore » is also completed. In this instance personnel dose could involve any of the following: (1) personnel performing the AI; (2) unknown stowaways who are inside the object being interrogated; or (3) in clandestine interrogations, personnel who are known to be inside the object being interrogated but are unaware of the interrogation. In most instances, dose to anyone found smuggling SNM will be a secondary issue. However, for the organizations performing the AI, legal if not moral considerations should make dose to the personnel performing the AI, unknown stowaways, or innocent bystanders in clandestine interrogations a serious concern.« less

  8. Pregnancy in women with Fowler's syndrome treated with sacral neuromodulation.

    PubMed

    Khunda, Azar; Karmarkar, Roopali; Abtahi, Bahareh; Gonzales, Gwen; Elneil, Sohier

    2013-07-01

    Our aim was to determine the impact of pregnancy on sacral neuromodulation (SNM) and vice versa in patients with Fowler's syndrome (FS), which is typified by chronic urinary retention (CUR). We performed a retrospective study of pregnancy in patients with FS who underwent a two-stage SNM implantation. Data were obtained using a standard questionnaire and clinical interview. There were a total of ten patients with 13 pregnancies. The SNM was switched off in ten of the 13 pregnancies, with CUR recurring in nine of the ten pregnancies and recurrent urinary tract infections (UTI) occurring in four of these pregnancies (more than three UTI in the pregnancy). Those in whom the device was left on continued to void normally. One woman had a first trimester miscarriage, eight pregnancies went to term, and four deliveries were premature. Caesarean section was performed in eight pregnancies for obstetric reasons. Four pregnancies resulted in a vaginal delivery. There were no congenital anomalies reported. Following delivery, four of nine women experienced dysfunction of their SNM device when it was switched back on. Turing off the SNM during pregnancy results in recurrence of CUR, with an increased risk of recurrent UTI associated with preterm delivery. This did not impact foetal well-being. The option of keeping the SNM on during pregnancy should therefore be considered, and as caesarean section affects the SNM device, we advise that caesarean section should only be performed for obstetric reasons.

  9. The nuclease hSNM1B/Apollo is linked to the Fanconi anemia pathway via its interaction with FANCP/SLX4.

    PubMed

    Salewsky, Bastian; Schmiester, Maren; Schindler, Detlev; Digweed, Martin; Demuth, Ilja

    2012-11-15

    The recessive genetic disorder Fanconi anemia (FA) is clinically characterized by congenital defects, bone marrow failure and an increased incidence of cancer. Cells derived from FA patients exhibit hypersensitivity to DNA interstrand crosslink (ICL)-inducing agents. We have earlier reported a similar cellular phenotype for human cells depleted of hSNM1B/Apollo (siRNA). In fact, hSNM1B/Apollo has a dual role in the DNA damage response and in generation and maintenance of telomeres, the latter function involving interaction with the shelterin protein TRF2. Here we find that ectopically expressed hSNM1B/Apollo co-immunoprecipitates with SLX4, a protein recently identified as a new FA protein, FANCP, and known to interact with several structure-specific nucleases. As shown by immunofluorescence analysis, FANCP/SLX4 depletion (siRNA) resulted in a significant reduction of hSNM1B/Apollo nuclear foci, supporting the functional relevance of this new protein interaction. Interestingly, as an additional consequence of FANCP/SLX4 depletion, we found a reduction of cellular TRF2, in line with its telomere-related function. Finally, analysis of human cells following double knockdown of hSNM1B/Apollo and FANCP/SLX4 indicated that they function epistatically. These findings further substantiate the role of hSNM1B/Apollo in a downstream step of the FA pathway during the repair of DNA ICLs.

  10. Snm1B/Apollo functions in the Fanconi anemia pathway in response to DNA interstrand crosslinks.

    PubMed

    Mason, Jennifer M; Sekiguchi, JoAnn M

    2011-07-01

    Fanconi anemia (FA) is an inherited chromosomal instability disorder characterized by childhood aplastic anemia, developmental abnormalities and cancer predisposition. One of the hallmark phenotypes of FA is cellular hypersensitivity to agents that induce DNA interstrand crosslinks (ICLs), such as mitomycin C (MMC). FA is caused by mutation in at least 14 genes which function in the resolution of ICLs during replication. The FA proteins act within the context of a protein network in coordination with multiple repair factors that function in distinct pathways. SNM1B/Apollo is a member of metallo-β-lactamase/βCASP family of nucleases and has been demonstrated to function in ICL repair. However, the relationship between SNM1B and the FA protein network is not known. In the current study, we establish that SNM1B functions epistatically to the central FA factor, FANCD2, in cellular survival after ICL damage and homology-directed repair of DNA double-strand breaks. We also demonstrate that MMC-induced chromosomal anomalies are increased in SNM1B-depleted cells, and this phenotype is not further exacerbated upon depletion of either FANCD2 or another key FA protein, FANCI. Furthermore, we find that SNM1B is required for proper localization of critical repair factors, including FANCD2, BRCA1 and RAD51, to MMC-induced subnuclear foci. Our findings demonstrate that SNM1B functions within the FA pathway during the repair of ICL damage.

  11. Do "Clicker" Educational Sessions Enhance the Effectiveness of a Social Norms Marketing Campaign?

    ERIC Educational Resources Information Center

    Killos, Lydia F.; Hancock, Linda C.; McGann, Amanda Wattenmaker; Keller, Adrienne E.

    2010-01-01

    Objective: Social norms campaigns are a cost-effective way to reduce high-risk drinking on college campuses. This study compares effectiveness of a "standard" social norms media (SNM) campaign for those with and without exposure to additional educational sessions using audience response technology ("clickers"). Methods: American College Health…

  12. Detecting special nuclear material using muon-induced neutron emission

    NASA Astrophysics Data System (ADS)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius, Joseph, II; Hecht, Adam; Milner, Edward C.; Miyadera, Haruo; Morris, Christopher L.; Perry, John; Poulson, Daniel

    2015-07-01

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  13. Dual Neutral Particle Beam Interrogation of Intermodal Shipping Containers for Special Nuclear Material

    NASA Astrophysics Data System (ADS)

    Keith, Rodney Lyman

    Intermodal shipping containers entering the United States provide an avenue to smuggle unsecured or stolen special nuclear material (SNM). The only direct method fielded to indicate the presence of SNM is by passive photon/neutron radiation detection. Active interrogation using neutral particle beams to induce fission in SNM is a method under consideration. One by-product of fission is the creation of fragments that undergo radioactive decay over a time period on the order of tens of seconds after the initial event. The "delayed" gamma-rays emitted from these fragments over this period are considered a hallmark for the presence of SNM. A fundamental model is developed using homogenized cargos with a SNM target embedded at the center and computationally interrogated using simultaneous neutron and photon beams. Findings from analysis of the delayed gamma emissions from these experiments are intended to mitigate the effects of poor quality information about the composition and disposition of suspect cargo before examination in an active interrogation portal.

  14. 78 FR 76328 - Application for Renewal of Special Nuclear Material License SNM-2014 From Tennessee Valley...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... SNM in the form of fully-assembled fuel assemblies that would later form the initial reactor core of WBN2. The SNM in the fuel assemblies is enriched up to 5% in the isotope U-235. The fresh fuel... received the initial core for WBN2. The NRC has not yet issued the OL for the Unit 2 reactor. The...

  15. Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport

    NASA Astrophysics Data System (ADS)

    Song, Shang; Faleo, Gaetano; Yeung, Raymond; Kant, Rishi; Posselt, Andrew M.; Desai, Tejal A.; Tang, Qizhi; Roy, Shuvo

    2016-03-01

    Problems associated with islet transplantation for Type 1 Diabetes (T1D) such as shortage of donor cells, use of immunosuppressive drugs remain as major challenges. Immune isolation using encapsulation may circumvent the use of immunosuppressants and prolong the longevity of transplanted islets. The encapsulating membrane must block the passage of host’s immune components while providing sufficient exchange of glucose, insulin and other small molecules. We report the development and characterization of a new generation of semipermeable ultrafiltration membrane, the silicon nanopore membrane (SNM), designed with approximately 7 nm-wide slit-pores to provide middle molecule selectivity by limiting passage of pro-inflammatory cytokines. Moreover, the use of convective transport with a pressure differential across the SNM overcomes the mass transfer limitations associated with diffusion through nanometer-scale pores. The SNM exhibited a hydraulic permeability of 130 ml/hr/m2/mmHg, which is more than 3 fold greater than existing polymer membranes. Analysis of sieving coefficients revealed 80% reduction in cytokines passage through SNM under convective transport. SNM protected encapsulated islets from infiltrating cytokines and retained islet viability over 6 hours and remained responsive to changes in glucose levels unlike non-encapsulated controls. Together, these data demonstrate the novel membrane exhibiting unprecedented hydraulic permeability and immune-protection for islet transplantation therapy.

  16. A multisite randomized trial of social norms marketing campaigns to reduce college student drinking.

    PubMed

    DeJong, William; Schneider, Shari Kessel; Towvim, Laura Gomberg; Murphy, Melissa J; Doerr, Emily E; Simonsen, Neal R; Mason, Karen E; Scribner, Richard A

    2006-11-01

    An 18-site randomized trial was conducted to determine the effectiveness of social norms marketing (SNM) campaigns in reducing college student drinking. The SNM campaigns are intended to correct misperceptions of subjective drinking norms and thereby drive down alcohol consumption. Institutions of higher education were randomly assigned to treatment and control groups. At the treatment group institutions, SNM campaigns delivered school-specific, data-driven messages through a mix of campus media venues. Cross-sectional student surveys were conducted by mail at baseline (n = 2,771) and at posttest 3 years later (n = 2,939). Hierarchical linear modeling was applied to examine multiple drinking outcomes, taking intraclass correlation into account. Controlling for other predictors, having an SNM campaign was significantly associated with lower perceptions of student drinking levels and lower alcohol consumption, as measured by a composite drinking scale, recent maximum consumption, blood alcohol concentration for recent maximum consumption, drinks consumed when partying, and drinks consumed per week. A moderate mediating effect of normative perceptions on student drinking was demonstrated by an attenuation of the Experimental Group x Time interaction, ranging from 16.4% to 39.5% across measures. Additional models that took into account the intensity of SNM campaign activity at the treatment institutions suggested that there was a dose-response relationship. This study is the most rigorous evaluation of SNM campaigns conducted to date. Analysis revealed that students attending institutions that implemented an SNM campaign had a lower relative risk of alcohol consumption than students attending control group institutions.

  17. Nutrient Limitation Governs Staphylococcus aureus Metabolism and Niche Adaptation in the Human Nose

    PubMed Central

    Krismer, Bernhard; Liebeke, Manuel; Janek, Daniela; Nega, Mulugeta; Rautenberg, Maren; Hornig, Gabriele; Unger, Clemens; Weidenmaier, Christopher; Lalk, Michael; Peschel, Andreas

    2014-01-01

    Colonization of the human nose by Staphylococcus aureus in one-third of the population represents a major risk factor for invasive infections. The basis for adaptation of S. aureus to this specific habitat and reasons for the human predisposition to become colonized have remained largely unknown. Human nasal secretions were analyzed by metabolomics and found to contain potential nutrients in rather low amounts. No significant differences were found between S. aureus carriers and non-carriers, indicating that carriage is not associated with individual differences in nutrient supply. A synthetic nasal medium (SNM3) was composed based on the metabolomics data that permits consistent growth of S. aureus isolates. Key genes were expressed in SNM3 in a similar way as in the human nose, indicating that SNM3 represents a suitable surrogate environment for in vitro simulation studies. While the majority of S. aureus strains grew well in SNM3, most of the tested coagulase-negative staphylococci (CoNS) had major problems to multiply in SNM3 supporting the notion that CoNS are less well adapted to the nose and colonize preferentially the human skin. Global gene expression analysis revealed that, during growth in SNM3, S. aureus depends heavily on de novo synthesis of methionine. Accordingly, the methionine-biosynthesis enzyme cysteine-γ-synthase (MetI) was indispensable for growth in SNM3, and the MetI inhibitor DL-propargylglycine inhibited S. aureus growth in SNM3 but not in the presence of methionine. Of note, metI was strongly up-regulated by S. aureus in human noses, and metI mutants were strongly abrogated in their capacity to colonize the noses of cotton rats. These findings indicate that the methionine biosynthetic pathway may include promising antimicrobial targets that have previously remained unrecognized. Hence, exploring the environmental conditions facultative pathogens are exposed to during colonization can be useful for understanding niche adaptation and identifying targets for new antimicrobial strategies. PMID:24453967

  18. Wide-range structurally optimized channel for monitoring the certified power of small-core reactors

    NASA Astrophysics Data System (ADS)

    Koshelev, A. S.; Kovshov, K. N.; Ovchinnikov, M. A.; Pikulina, G. N.; Sokolov, A. B.

    2016-12-01

    The results of tests of a prototype version of a channel for monitoring the certified power of small-core reactors performed at the BR-K1 reactor at the All-Russian Scientific Research Institute of Experimental Physics are reported. An SNM-11 counter and commercial KNK-4 and KNK-3 compensated ion chambers were used as neutron detectors in the tested channel, and certified NCMM and CCMM measurement modules controlled by a PC with specialized software were used as measuring instruments. The specifics of metrological assurance of calibration of the channel in the framework of reactor power monitoring are discussed.

  19. Wide-range structurally optimized channel for monitoring the certified power of small-core reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Kovshov, K. N.; Ovchinnikov, M. A.

    The results of tests of a prototype version of a channel for monitoring the certified power of small-core reactors performed at the BR-K1 reactor at the All-Russian Scientific Research Institute of Experimental Physics are reported. An SNM-11 counter and commercial KNK-4 and KNK-3 compensated ion chambers were used as neutron detectors in the tested channel, and certified NCMM and CCMM measurement modules controlled by a PC with specialized software were used as measuring instruments. The specifics of metrological assurance of calibration of the channel in the framework of reactor power monitoring are discussed.

  20. Imaging and Radiography with Nuclear Resonance Fluorescence and Effective-Z (EZ-3D) Determination; SNM Detection Using Prompt Neutrons from Photon Induced Fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertozzi, William; Hasty, Richard; Klimenko, Alexei

    Four new technologies have been developed for use in non-intrusive inspection systems to detect nuclear materials, explosives and contraband. Nuclear Resonance Fluorescence (NRF) provides a three dimensional image of the isotopic content of a container. NRF determines the isotopic composition of a region and specifies the isotopic structure of the neighboring regions, thus providing the detailed isotopic composition of any threat. In transmission mode, NRF provides a two dimensional projection of the isotopic content of a container, much as standard X-ray radiography provides for density. The effective-Z method (EZ-3D) uses electromagnetic scattering processes to yield a three-dimensional map of themore » effective-Z and the density in a container. The EZ-3D method allows for a rapid discrimination based on effective Z and mass of materials such as those with high Z, as well as specifying regions of interest for other contraband. The energy spectrum of prompt neutrons from photon induced fission (PNPF) provides a unique identification of the presence of actinides and SNM. These four new technologies can be used independently or together to automatically determine the presence of hazardous materials or contraband. They can also be combined with other technologies to provide added specificity.« less

  1. Neonatal Morbidity at Term, Early Child Development, and School Performance: A Population Study.

    PubMed

    Bentley, Jason P; Schneuer, Francisco J; Lain, Samantha J; Martin, Andrew J; Gordon, Adrienne; Nassar, Natasha

    2018-02-01

    Investigate the association between severe neonatal morbidity (SNM) and child development and school performance among term infants. The study population included term infants without major congenital conditions born between 2000 and 2007 in New South Wales, Australia, with a linked record of developmental assessment at ages 4 to 6 years in 2009 or 2012 ( n = 144 535) or school performance at ages 7 to 9 years from 2009 to 2014 ( n = 253 447). Developmental outcomes included special needs or being vulnerable and/or at risk in 1 of 5 developmental domains. School performance outcomes were test exemption, or performing <-1 SD on reading or numeracy tests. Binary generalized estimating equations were used to estimate associations between SNM and outcomes, adjusting for sociodemographic, perinatal, and assessment and/or test characteristics. Overall, 2.1% of infants experienced SNM. The adjusted odds ratio (95% confidence interval) for SNM and physical health was 1.18 (1.08-1.29), 1.14 (1.02-1.26) for language and cognitive skills, and 1.14 (1.06-1.24) and 1.13 (1.05-1.21) for scoring <-1 SD in reading and numeracy, respectively. SNM was most strongly associated with special needs 1.34 (1.15-1.55) and test exemption 1.50 (1.25-1.81). SNM infants born at 37 to 38 weeks' gestation and who were small for gestational age had the greatest likelihood of poorer outcomes. Term infants with SNM have greater odds of poor neurodevelopment in childhood. These findings provide population-based information for families and can inform clinical counseling and guidelines for follow-up and early intervention. Copyright © 2018 by the American Academy of Pediatrics.

  2. Destruction and Vitrification of Asbestos Using Plasma Arc Technology (Construction Productivity Advancement Research (CPAR) Program)

    DTIC Science & Technology

    1993-09-01

    DOCUMENTATION PAGE M N Public mpsMIs b~ b•r tOr coleton of ia nlormmn ias edsimad to aevue 1 hour pw response , indudng the Snm ta raing e. taeu"tig aining...Asbestos Emergency Response Act of 1986 (AHERA), which mandates inspection in school grades Kindergarten through 12. Congress is currently...CRC), Georgia Institute of Technology, Atlanta, GA. The CRC was responsible for the technical portion of the research program; i.e., developing the test

  3. Applications of Digitized 3-D Position-Sensitive CdZnTe Spectrometers for National Security and Nuclear Nonproliferation

    NASA Astrophysics Data System (ADS)

    Streicher, Michael W.

    A nuclear weapon detonation remains one of the gravest threats to the global community. Although the likelihood of a nuclear event remains small, the economic and political ramifications of an event are vast. The surest way to reduce the probability of an incident is to account for the special nuclear materials (SNM) which can be used to produce a nuclear weapon. Materials which can be used to manufacture a radiological dispersion device ("dirty bomb") must also be monitored. Rapidly-deployable, commercially-available, room-temperature imaging gamma-ray spectrometers are improving the ability of authorities to intelligently and quickly respond to threats. New electronics which digitally-sample the radiation-induced signals in CdZnTe detectors have expanded the capabilities of these sensors. This thesis explores national security applications where digital readout of CdZnTe detectors significantly enhances capabilities. Radioactive sources can be detected more quickly using digitally-sampled CdZnTe detector due to the improved energy resolution. The excellent energy resolution also improves the accuracy of measurements of uranium enrichment and allows users to measure plutonium grade. Small differences in the recorded gamma-ray energy spectrum can be used to estimate the effective atomic number and mass thickness of materials shielding SNM sources. Improved position resolution of gamma-ray interactions through digital readout allows high resolution gamma-ray images of SNM revealing information about the source configuration. CdZnTe sensors can detect the presence of neutrons, indirectly, through measurement of gamma rays released during capture of thermal neutrons by Cd-113 or inelastic scattering with any constituent nuclei. Fast neutrons, such as those released following fission, can be directly detected through elastic scattering interactions in the detector. Neutrons are a strong indicator of fissile material, and the background neutron rate is much lower than the gamma-ray background rate. Neutrons can more easily penetrate shielding materials as well which can greatly aid in the detection of shielded SNM. Digital CdZnTe readout enables the sensors to maintain excellent energy resolution at high count rates. Pulse pile-up and preamplifier decay can be monitored and corrected for on an event-by-event basis limiting energy resolution degradation in dose rates higher than 100 mR/hr. Finally, new iterations of the digital electronics have enhanced gamma-ray detection capabilities at high photon energies. Currently, gamma rays with energy up to 4.4 MeV have been detected. High-energy photon detection is critical for many proposed active interrogation systems.

  4. New perspectives for undoped CaF2 scintillator as a threshold activation neutron detector

    NASA Astrophysics Data System (ADS)

    Sibczynski, Pawel; Dziedzic, Andrzej; Grodzicki, Krystian; Iwanowska-Hanke, Joanna; Moszyński, Marek; Swiderski, Lukasz; Syntfeld-Każuch, Agnieszka; Wolski, Dariusz; Carrel, Frédérick; Grabowski, Amélie; Hamel, Matthieu; Laine, Frederic; Sari, Adrien; Iovene, Alessandro; Tintori, Carlo; Fontana, Cristiano; Pino, Felix

    2018-01-01

    In this paper we present the prompt photofission neutron detection performance of undoped CaF2 scintillator using Threshold Activation Detection (TAD). The study is carried out in the frame of C-BORD Horizon 2020 project, during which an efficient toolbox for high volume freight non-intrusive inspection (NII) is under development. Technologies for radiation monitoring are the part of the project. Particularly, detection of various radiological threats on country borders plays an important significant role in Homeland Security applications. Detection of illegal transfer of Special Nuclear Material (SNM) - 235U, 233U and 239Pu - is particular due to the potential use for production of nuclear weapon as well as radiological dispersal device (RDD) V known also as a "dirty bomb". This technique relies on activation of 19F nuclei in the scintillator medium by fast neutrons and registration of high-energy β particles and γ-rays from the decay of reaction products. The radiation from SNM is detected after irradiation in order to avoid detector blinding. Despite the low 19F(n,α)16N or 19F(n,p)19O reaction cross-section, the method could be a good solution for detection of shielded nuclear material. Results obtained with the CaF2 detector were compared with the previous study done for BaF2 and 3He detector. These experimental results were obtained using 252Cf source and 9 MeV Varian Linatron M9 linear accelerator (LINAC). Finally, performance of the prompt neutron detection system based on CaF2 will be validated at Rotterdam Seaport during field trails in 2018.

  5. [Cystomanometric study of bladder sensation during sacral neuromodulation test].

    PubMed

    Leclers, François; Mourey, Eric; Galas, Jean Marie; Cormier, Luc; Mangin, Philippe

    2005-04-01

    Prospective clinical and urodynamic study evaluating modification of bladder sensation during sacral neuromodulation (SNM). 24 consecutive patients with non-neurological hyperactive bladder underwent an SNM test. Questioned about their symptoms before and during the test by the urinary handicap assessment scale, patients were divided into two groups: A (improved) and B (not improved). Group A consisted of patients obtaining 50% improvement of their symptoms with SNM followed by return of symptoms at the end of the test, while the other patients constituted group B. We then compared the cystomanometric results according to their clinical response. The mean age was 53 years: 10 patients with a good response constituted group A (n=10, i.e. 42%) and 14 patients with a poor response constituted group B (n=14, i.e. 58%). Clinically, in patients with a good response, SNM decreased urge incontinence by 100%, day-time frequency by 89% and protections by 55%. Urodynamic assessment in group A during the test demonstrated a significant increase of +23% of bladder capacity (p<0.01), +57% of the volume of onset of the first unstable contraction (p<0.004), +83% of bladder volume to the first urge to urinate BI (p<0.001) and +46% to urgency B3 (p<0.04). During SNM, cystometry revealed that 1 or 2 bladder filling volumes were increased at B1 and/or B3 in 100% of improved subjects. In contrast, 1 or 2 volumes decreased at B1 and/or B3 in 58% of non-improved subjects. No significant difference of intensity of unstable contractions was observed between the 2 groups during SNM (p=0.31). A significant correlation was observed between the two methods of clinical and urodynamic assessment. Our results suggest the use of the cystomanometric increase of bladder volume at B1 and B3 as selection criterion for candidates for SNM with non-neurological hyperactive bladder.

  6. Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same

    DOEpatents

    McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.

    2010-12-21

    Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

  7. A dynamic sandwich assay on magnetic beads for selective detection of single-nucleotide mutations at room temperature.

    PubMed

    Wang, Junxiu; Xiong, Guoliang; Ma, Liang; Wang, Shihui; Zhou, Xu; Wang, Lei; Xiao, Lehui; Su, Xin; Yu, Changyuan

    2017-08-15

    Single-nucleotide mutation (SNM) has proven to be associated with a variety of human diseases. Development of reliable methods for the detection of SNM is crucial for molecular diagnosis and personalized medicine. The sandwich assays are widely used tools for detecting nucleic acid biomarkers due to their low cost and rapid signaling. However, the poor hybridization specificity of signal probe at room temperature hampers the discrimination of mutant and wild type. Here, we demonstrate a dynamic sandwich assay on magnetic beads for SNM detection based on the transient binding between signal probe and target. By taking the advantage of mismatch sensitive thermodynamics of transient DNA binding, the dynamic sandwich assay exhibits high discrimination factor for mutant with a broad range of salt concentration at room temperature. The beads used in this assay serve as a tool for separation, and might be helpful to enhance SNM selectivity. Flexible design of signal probe and facile magnetic separation allow multiple-mode downstream analysis including colorimetric detection and isothermal amplification. With this method, BRAF mutations in the genomic DNA extracted from cancer cell lines were tested, allowing sensitive detection of SNM at very low abundances (0.1-0.5% mutant/wild type). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. High reliability - low noise radionuclide signature identification algorithms for border security applications

    NASA Astrophysics Data System (ADS)

    Lee, Sangkyu

    Illicit trafficking and smuggling of radioactive materials and special nuclear materials (SNM) are considered as one of the most important recent global nuclear threats. Monitoring the transport and safety of radioisotopes and SNM are challenging due to their weak signals and easy shielding. Great efforts worldwide are focused at developing and improving the detection technologies and algorithms, for accurate and reliable detection of radioisotopes of interest in thus better securing the borders against nuclear threats. In general, radiation portal monitors enable detection of gamma and neutron emitting radioisotopes. Passive or active interrogation techniques, present and/or under the development, are all aimed at increasing accuracy, reliability, and in shortening the time of interrogation as well as the cost of the equipment. Equally important efforts are aimed at advancing algorithms to process the imaging data in an efficient manner providing reliable "readings" of the interiors of the examined volumes of various sizes, ranging from cargos to suitcases. The main objective of this thesis is to develop two synergistic algorithms with the goal to provide highly reliable - low noise identification of radioisotope signatures. These algorithms combine analysis of passive radioactive detection technique with active interrogation imaging techniques such as gamma radiography or muon tomography. One algorithm consists of gamma spectroscopy and cosmic muon tomography, and the other algorithm is based on gamma spectroscopy and gamma radiography. The purpose of fusing two detection methodologies per algorithm is to find both heavy-Z radioisotopes and shielding materials, since radionuclides can be identified with gamma spectroscopy, and shielding materials can be detected using muon tomography or gamma radiography. These combined algorithms are created and analyzed based on numerically generated images of various cargo sizes and materials. In summary, the three detection methodologies are fused into two algorithms with mathematical functions providing: reliable identification of radioisotopes in gamma spectroscopy; noise reduction and precision enhancement in muon tomography; and the atomic number and density estimation in gamma radiography. It is expected that these new algorithms maybe implemented at portal scanning systems with the goal to enhance the accuracy and reliability in detecting nuclear materials inside the cargo containers.

  9. 32 CFR Appendix B to Part 223 - Guidelines for the Determination of DoD UCNI

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Systems a. Information on the layout or design of security and alarm systems at a specific DoD SNM.... Frequency and schedule of DoD SNM inventories. 3. Facility Description a. Maps, conceptual design, and...

  10. 32 CFR Appendix B to Part 223 - Guidelines for the Determination of DoD UCNI

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Systems a. Information on the layout or design of security and alarm systems at a specific DoD SNM.... Frequency and schedule of DoD SNM inventories. 3. Facility Description a. Maps, conceptual design, and...

  11. 32 CFR Appendix B to Part 223 - Guidelines for the Determination of DoD UCNI

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Systems a. Information on the layout or design of security and alarm systems at a specific DoD SNM.... Frequency and schedule of DoD SNM inventories. 3. Facility Description a. Maps, conceptual design, and...

  12. Fission Meter Information Barrier Attribute Measurement System: Task 1 Report: Document existing Fission Meter neutron IB system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, P. L.

    An SNM attribute Information Barrier (IB) system was developed for a 2011 US/UK Exercise. The system was modified and extensively tested in a 2013-2014 US-UK Measurement Campaign. This work demonstrated rapid deployment of an IB system for potential treaty use. The system utilizes an Ortec Fission Meter neutron multiplicity counter and custom computer code. The system demonstrates a proof-of-principle automated Pu-240 mass determination with an information barrier. After a software start command is issued, the system automatically acquires and downloads data, performs an analysis, and displays the results. This system conveys the results of a Pu mass threshold measurements inmore » a way the does not reveal sensitive information. In full IB mode, only red/green ‘lights’ are displayed in the software. In test mode, more detailed information is displayed. The code can also read in, analyze, and display results from previously acquired or simulated data. Because the equipment is commercial-off-the-shelf (COTS), the system demonstrates a low-cost short-lead-time technology for treaty SNM attribute measurements. A deployed system will likely require integration of additional authentication and tamper-indicating technologies. This will be discussed for the project in this and future progress reports.« less

  13. Calibrating and training of neutron based NSA techniques with less SNM standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, William H; Swinhoe, Martyn T; Bracken, David S

    2010-01-01

    Accessing special nuclear material (SNM) standards for the calibration of and training on nondestructive assay (NDA) instruments has become increasingly difficult in light of enhanced safeguards and security regulations. Limited or nonexistent access to SNM has affected neutron based NDA techniques more than gamma ray techniques because the effects of multiplication require a range of masses to accurately measure the detector response. Neutron based NDA techniques can also be greatly affected by the matrix and impurity characteristics of the item. The safeguards community has been developing techniques for calibrating instrumentation and training personnel with dwindling numbers of SNM standards. Montemore » Carlo methods have become increasingly important for design and calibration of instrumentation. Monte Carlo techniques have the ability to accurately predict the detector response for passive techniques. The Monte Carlo results are usually benchmarked to neutron source measurements such as californium. For active techniques, the modeling becomes more difficult because of the interaction of the interrogation source with the detector and nuclear material; and the results cannot be simply benchmarked with neutron sources. A Monte Carlo calculated calibration curve for a training course in Indonesia of material test reactor (MTR) fuel elements assayed with an active well coincidence counter (AWCC) will be presented as an example. Performing training activities with reduced amounts of nuclear material makes it difficult to demonstrate how the multiplication and matrix properties of the item affects the detector response and limits the knowledge that can be obtained with hands-on training. A neutron pulse simulator (NPS) has been developed that can produce a pulse stream representative of a real pulse stream output from a detector measuring SNM. The NPS has been used by the International Atomic Energy Agency (IAEA) for detector testing and training applications at the Agency due to the lack of appropriate SNM standards. This paper will address the effect of reduced access to SNM for calibration and training of neutron NDA applications along with the advantages and disadvantages of some solutions that do not use standards, such as the Monte Carlo techniques and the NPS.« less

  14. 76 FR 60557 - Environmental Assessment and Finding of No Significant Impact for a License Amendment to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... Electric Company, LLC, Hematite Decommissioning Project, Hematite, MO AGENCY: Nuclear Regulatory Commission... (SNM) License number SNM-33, issued to Westinghouse Electric Company, LLC (WEC) to authorize... radioactively contaminated material by rail car to an offsite facility located in Idaho was also confirmed in...

  15. Detection of Nuclear Weapons and Materials: Science, Technologies, Observations

    DTIC Science & Technology

    2010-06-04

    extensive use of photons, packets of energy with no rest mass and no electrical charge. Electromagnetic radiation consists of photons, and may be measured...bulk property, expressed as mass per unit volume. In general, the densest materials are those of high Z. These properties may be used to detect...SNM by detecting the time pattern of neutron generation. A subcritical mass of highly enriched uranium or weapons-grade plutonium can support a

  16. Sacral nerve stimulation for neuromodulation of the lower urinary tract.

    PubMed

    Hubsher, Chad P; Jansen, Robert; Riggs, Dale R; Jackson, Barbara J; Zaslau, Stanley

    2012-10-01

    Sacral neuromodulation (SNM) has become a standard treatment option for patients suffering from urinary urge incontinence, urgency-frequency, and/or nonobstructive urinary retention refractory to conservative and pharmacologic treatment. Since its initial development, the manufacturer of InterStim therapy (Medtronic, Inc., Minneapolis, MN, USA), has introduced technical modifications, while surgeons and researchers have adapted and published various innovations and alterations of the implantation technique. In this article, we feature our SNM technique including patient selection, comprehensive dialogue/evaluation, procedure details, and appropriate follow up. Although there is often great variability in patients with lower urinary tract dysfunction, we maintain that great success can be achieved with a systematic and methodical approach to SNM.

  17. Sexual response in patients treated with sacral neuromodulation for lower urinary tract symptoms or fecal incontinence.

    PubMed

    van Voskuilen, A C; Oerlemans, D J; Gielen, N; Lansen-Koch, S M P; Weil, E H J; van Lankveld, J J D M; van den Hombergh, U; Baeten, C G M I; van Kerrenbroeck, P E V

    2012-01-01

    To determine whether sacral neuromodulation (SNM) for urinary symptoms or fecal incontinence gives improvement of female sexual function and whether improvement is due to physiological or psychological factors. Between 2002 and 2008, 8 patients had an array of questionnaires before and after SNM implantation. The questionnaires were: the Questionnaire for Screening for Sexual Dysfunctions, the Golombok Rust Inventory of Sexual Satisfaction, the Symptom Checklist-90, the Maudsley Marital Questionnaire and the McGill-Mah Orgasm Questionnaire. Three of these 8 patients underwent vaginal plethysmography before and after implantation. No statistically significant changes were found, although there seems to be a trend toward improvement in orgasm scores. In plethysmography all 3 patients showed increased vaginal pulse amplitude with the stimulator turned on with both erotic and non-erotic stimuli. This study does not show a clear effect of SNM on sexual function, although there seems to be an improvement in orgasm scores. The lack of response on psychological questionnaires and the increase in vaginal pulse amplitude after SNM implantation indicate that there might be a physiological response. Copyright © 2012 S. Karger AG, Basel.

  18. Baseline factors predictive of patient satisfaction with sacral neuromodulation for idiopathic fecal incontinence.

    PubMed

    Duelund-Jakobsen, Jakob; van Wunnik, Bart; Buntzen, Steen; Lundby, Lilli; Laurberg, Søren; Baeten, Cor

    2014-07-01

    Sacral neuromodulation (SNM) is an established treatment for fecal incontinence (FI). A recent study from our group found that the relationship between patient satisfaction and clinical outcome is complex and does not match the traditional used success criteria. Therefore, the ability to predict patient satisfaction must be given priority. The aim of the present study is to identify baseline factors predictive of patient satisfaction, with SNM, for idiopathic FI. We analyzed data from patients treated with SNM for idiopathic FI in Aarhus, Denmark, and Maastricht, The Netherlands. A questionnaire considering self-reported satisfaction was mailed to these patients and compared to baseline characteristics. Logistic regression was used to determine the predictive value of baseline demographic and diagnostic variables. In total, 131 patients were included in the analysis. Patient satisfaction with the current treatment result was reported in 75 patients. Fifty-six patients were dissatisfied with SNM treatment, after median 46 months (range 11-122) with permanent implantation. Pudendal nerve terminal motor latency (PNTML) was the solely identified predictor for long-term patient satisfaction. A subgroup univariate-logistic regression analysis showed that PNTML ≤ 2.3 ms at the side of lead implantation was a statistically significant predictor for patient satisfaction (odds ratio (OR) 2.3, 95% confidence interval (CI) 1.01-5.24, p = 0.048). Baseline PNTML measurement may be predictive of long-term satisfaction with SNM therapy for idiopathic FI. Further studies are needed to confirm this result.

  19. Investigation of Active Interrogation Techniques to Detect Special Nuclear Material in Maritime Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Thomas Martin; Patton, Bruce W

    The detection and interdiction of special nuclear material (SNM) is still a high-priority focus area for many organizations around the world. One method that is commonly considered a leading candidate in the detection of SNM is active interrogation (AI). AI is different from its close relative, passive interrogation, in that an active source is used to enhance or create a detectable signal (usually fission) from SNM, particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. Inmore » this work the signal from prompt neutrons and photons as well as delayed neutrons and photons will be combined, as is typically done in AI. In previous work AI has been evaluated experimentally and computationally. However, for the purposes of this work, past scenarios are considered lightly shielded and tightly coupled spatially. At most, the previous work interrogated the contents of one standard cargo container (2.44 x 2.60 x 6.10 m) and the source and detector were both within a few meters of the object being interrogated. A few examples of this type of previous work can be found in references 1 and 2. Obviously, more heavily shielded AI scenarios will require larger source intensities, larger detector surface areas (larger detectors or more detectors), greater detector efficiencies, longer count times, or some combination of these.« less

  20. RNomics in Drosophila melanogaster: identification of 66 candidates for novel non-messenger RNAs

    PubMed Central

    Yuan, Guozhong; Klämbt, Christian; Bachellerie, Jean-Pierre; Brosius, Jürgen; Hüttenhofer, Alexander

    2003-01-01

    By generating a specialised cDNA library from four different developmental stages of Drosophila melanogaster, we have identified 66 candidates for small non-messenger RNAs (snmRNAs) and have confirmed their expression by northern blot analysis. Thirteen of them were expressed at certain stages of D.melanogaster development, only. Thirty-five species belong to the class of small nucleolar RNAs (snoRNAs), divided into 15 members from the C/D subclass and 20 members from the H/ACA subclass, which mostly guide 2′-O-methylation and pseudouridylation, respectively, of rRNA and snRNAs. These also include two outstanding C/D snoRNAs, U3 and U14, both functioning as pre-rRNA chaperones. Surprisingly, the sequence of the Drosophila U14 snoRNA reflects a major change of function of this snoRNA in Diptera relative to yeast and vertebrates. Among the 22 snmRNAs lacking known sequence and structure motifs, five were located in intergenic regions, two in introns, five in untranslated regions of mRNAs, eight were derived from open reading frames, and two were transcribed opposite to an intron. Interestingly, detection of two RNA species from this group implies that certain snmRNA species are processed from alternatively spliced pre-mRNAs. Surprisingly, a few snmRNA sequences could not be found on the published D.melanogaster genome, which might suggest that more snmRNA genes (as well as mRNAs) are hidden in unsequenced regions of the genome. PMID:12736298

  1. Sacral neuromodulation for lower urinary tract dysfunction and impact on erectile function.

    PubMed

    Lombardi, Giuseppe; Mondaini, Nicola; Giubilei, Gianluca; Macchiarella, Angelo; Lecconi, Filippo; Del Popolo, Giulio

    2008-09-01

    The first sacral nerve stimulators were for urinary urgency incontinence, urgency-frequency, and nonobstructive urinary retention. Since then, observations have been made for benefits beyond voiding disorders. To evaluate if sacral neuromodulation (SNM) using the InterStim system (Medtronic Inc., Minneapolis, MN, USA) improves erectile function. From January 1999 to January 2007, 54 males, mean age 42.8, underwent a permanent SNM for lower urinary tract symptoms (LUTS). Pre-SNM only subjects with concomitant erectile impairment according to the five-item version of the International Index of Erectile Function (IIEF-5), with normal blood sexual hormonal status, and responding to an intracavernous injection test 10 microg were enrolled in our study. Three months after permanent implantation, the IIEF-5 was completed again. Those who benefited significantly in erectile function completed the IIEF-5 semiannually. A final checkup was performed in July 2007. A score of IIEF-5 equal to or higher than 25% compared to baseline indicated remarkable clinical enhancement. Presurgery, two patients were excluded. Overall, 22 subjects (42.3%) showed erectile impairment (14 were neurogenic). In the first visit post-SNM, five retentionists of neurogenic origin and two with overactive bladder syndrome of idiopathic origin achieved noticeable erectile improvement. Their median IIEF-5 score shifted from 14.6 to 22.2, and 15.5 to 22.5, respectively. During follow-up, two neurogenics lost the benefits concerning voiding and erection and recovered them after a new implant in the contralateral sacral S3 root. In the final visit, the seven responders reached an IIEF-5 score of at least 22. Our study showed a clinically important benefit of sexual function mainly for neurogenic retentionists. Future research should test SNM in a larger sample of subjects, exclusively with sexual dysfunctions, in order to better understand the mechanism of action of SNM on erectile function.

  2. [Sacral neuromodulation as second-line treatment strategy for lower urinary tract symptoms of various aetiologies: experience of a German high-volume clinic].

    PubMed

    Otto, W; Nowrotek, A; Burger, M; Wieland, W F; Rößler, W; Denzinger, S

    2012-05-01

    Lower urinary tract symptoms (LUTS) are a common and multiform micturition disorder of various possible origins. Several second-line techniques are available in the event of first-line medicinal treatment failure. These include the intravesical injection of Botulinum toxin, bladder augmentation and sacral neuromodulation (SNM). This study presents current data and results from a prospective study of patients with LUTS of various aetiologies. Clinical success was investigated for all patients who underwent SNM for LUTS with or without urge incontinence caused by chronic pelvic pain syndrome, multiple sclerosis and idiopathic disease between May 2007 and December 2010. The preoperatively determined symptoms were compared with current follow-up data. Median follow-up time was 11 months (1 - 43). A total of 47 patients were indicated for SNM over the investigated period. 80.9 % were female, median patient age was 67 years (19 - 84). The testing phase was successful in 38 cases (80.9 %) with 9 electrodes being explanted (19.1 %). In the case of idiopathic LUTS we could show a statistically significant increase of micturition volume and reduction of incontinence pad use. There was no statistically significant improvement of any micturition parameter for patients with multiple sclerosis, patients with chronic pelvic pain syndrome showed a statistically significant reduction of micturition frequency and a subjective improvement of symptoms in 75 %. In the selected patient groups SNM is a promising and, in experienced hands, a low-complication second-line therapy for the treatment of LUTS of idiopathic aetiology. However, the general recommendation of SNM for multiple sclerosis and chronic pelvic pain syndrome patients cannot be given on the basis of our results. Further prospective, randomised multicentre studies are need to further refine the indications for SNM in LUTS of neurogenic and non-neurogenic origins. © Georg Thieme Verlag KG Stuttgart · New York.

  3. 32 CFR Appendix A to Part 223 - Procedures for Identifying and Controlling DoD UCNI

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... security measures, including security plans, procedures, and equipment, for the physical protection of DoD... sabotage of DoD SNM, equipment, or facilities (e.g., relative importance of a facility or the location... equipment, for the physical protection of DoD SNM, equipment, or facilities. c. Meet the adverse effects...

  4. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    PubMed Central

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641

  5. Special Nuclear Material Gamma-Ray Signatures for Reachback Analysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph; Myers, Steven Charles

    2016-08-29

    These are slides on special nuclear material gamma-ray signatures for reachback analysts for an LSS Spectroscopy course. The closing thoughts for this presentation are the following: SNM materials have definite spectral signatures that should be readily recognizable to analysts in both bare and shielded configurations. One can estimate burnup of plutonium using certain pairs of peaks that are a few keV apart. In most cases, one cannot reliably estimate uranium enrichment in an analogous way to the estimation of plutonium burnup. The origin of the most intense peaks from some SNM items may be indirect and from ‘associated nuclides.' Indirectmore » SNM signatures sometimes have commonalities with the natural gamma-ray background.« less

  6. Locating sensors for detecting source-to-target patterns of special nuclear material smuggling: a spatial information theoretic approach.

    PubMed

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  7. 78 FR 56944 - Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Class C (GTCC) process waste at the Humboldt Bay ISFSI. PG&E submitted its license amendment request by... proposed amendment to License No. SNM-2514 to allow storage of GTCC process waste at the Humboldt Bay ISFSI... fuel and is authorized by NRC, under License No. SNM-2514, to also store GTCC activated metal waste at...

  8. A novel three-dimensional printed guiding device for electrode implantation of sacral neuromodulation.

    PubMed

    Cui, Z; Wang, Z; Ye, G; Zhang, C; Wu, G; Lv, J

    2018-01-01

    The aim was to test the feasibility of a novel three-dimensional (3D) printed guiding device for electrode implantation of sacral neuromodulation (SNM). A 3D printed guiding device for electrode implantation was customized to patients' anatomy of the sacral region. Liquid photopolymer was selected as the printing material. The details of the device designation and prototype building are described. The guiding device was used in two patients who underwent SNM for intractable constipation. Details of the procedure and the outcomes are given. With the help of the device, the test needle for stimulation was placed in the target sacral foramen successfully at the first attempt of puncture in both patients. The time to implant a tined SNM electrode was less than 20 min and no complications were observed. At the end of the screening phase, symptoms of constipation were relieved by more than 50% in both patients and permanent stimulation was established. The customized 3D printed guiding device for implantation of SNM is a promising instrument that facilitates a precise and quick implantation of the electrode into the target sacral foramen. Colorectal Disease © 2017 The Association of Coloproctology of Great Britain and Ireland.

  9. Total Ionizing Dose Influence on the Single-Event Upset Sensitivity of 130-nm PD SOI SRAMs

    NASA Astrophysics Data System (ADS)

    Zheng, Qiwen; Cui, Jiangwei; Liu, Mengxin; Zhou, Hang; Liu, Mohan; Wei, Ying; Su, Dandan; Ma, Teng; Lu, Wu; Yu, Xuefeng; Guo, Qi; He, Chengfa

    2017-07-01

    Effect of total ionizing dose (TID) on single-event upset (SEU) hardness of 130 nm partially depleted (PD) silicon-on-insulator (SOI) static random access memories (SRAMs) is investigated in this paper. The measurable synergistic effect of TID on SEU sensitivity of 130-nm PD SOI SRAM was observed in our experiment, even though that is far less than micrometer and submicrometer devices. Moreover, SEU cross section after TID irradiation has no dependence on the data pattern that was applied during TID exposure: SEU cross sections are characterized by TID data pattern and its complement data pattern are decreased consistently rather than a preferred state and a nonpreferred state as micrometer and sub-micrometer SRAMs. The memory cell test structure allowing direct measurement of static noise margin (SNM) under standby operation was designed using identical memory cell layout of SRAM. Direct measurement of the memory cell SNM shows that both data sides' SNM is decreased by TID, indicating that SEU cross section of 130-nm PD SOI SRAM will be increased by TID. And, the decreased SNM is caused by threshold shift in memory cell transistors induced by “radiation-induced narrow channel effect”.

  10. OR14-V-Uncertainty-PD2La Uncertainty Quantification for Nuclear Safeguards and Nondestructive Assay Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Andrew D.; Croft, Stephen; McElroy, Robert Dennis

    2017-08-01

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically provide error bars and also partition total uncertainty into “random” and “systematic” components so that, for example, an error bar can be developed for the total mass estimate in multiple items. Uncertainty Quantification (UQ) for NDA has always been important, but itmore » is recognized that greater rigor is needed and achievable using modern statistical methods.« less

  11. Sacral neuromodulation and pregnancy: Results of a national survey carried out for the neuro-urology committee of the French Association of Urology (AFU).

    PubMed

    Roulette, Pauline; Castel-Lacanal, Evelyne; Sanson, Sylvain; Caremel, Romain; Phé, Véronique; Bart, Stéphane; Duchêne, Franck; De Sèze, Marianne; Even, Alexia; Manunta, Andréa; Scheiber-Nogueira, Maria C; Mouracade, Pascal; Loche, Catherine-Marie; Chartier-Kastler, Emmanuel; Ruffion, Alain; Karsenty, Gilles; Gamé, Xavier

    2018-02-01

    To assess the impact of sacral neuromodulation (SNM) on pregnancy and vice-versa, by identifying women who had received SNM for lower-urinary tract symptoms (LUTS) and had become pregnant. A cross-sectional descriptive study was carried out based on responses to an on-line questionnaire sent to practitioners listed on the InterStim enCaptureTM National Registry. Questions were related to pre-pregnancy health and SNM efficacy, deactivation of the device, its impact on LUTS, childbirth, the infant, its reactivation and postpartum effectiveness. Twenty-seven pregnancies were recorded among 21 women. Six women had had a pregnancy prior to implantation, two of whom had had a c-section. A total of 18.5% of women had the device disabled prior to conception. The others had their device disabled during the first trimester and did not reactivate it before delivery. Complications were reported in 25.9% of pregnancies: six women had urinary infections, including three of the four treated for chronic retention of urine (CRU), and 1 woman had pain at the stimulation site. There were 24 live births (including one premature birth and four c-sections), one spontaneous miscarriage and two voluntary interruptions of pregnancy. No neonatal disorders have been reported. Effectiveness of sacral neuromodulation decreased in 20% in postpartum. In 27 pregnancies established during SNM for LUTS, 18.5% of patients deactivated their case before pregnancy and the others switched it off during the first trimester. Three-quarters of women with CRU had urinary infection. No adverse effects on fetuses were found. SNM effectiveness deteriorated in 20% cases after childbirth. © 2017 Wiley Periodicals, Inc.

  12. Hybrid Monte Carlo/Deterministic Methods for Accelerating Active Interrogation Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peplow, Douglas E.; Miller, Thomas Martin; Patton, Bruce W

    2013-01-01

    The potential for smuggling special nuclear material (SNM) into the United States is a major concern to homeland security, so federal agencies are investigating a variety of preventive measures, including detection and interdiction of SNM during transport. One approach for SNM detection, called active interrogation, uses a radiation source, such as a beam of neutrons or photons, to scan cargo containers and detect the products of induced fissions. In realistic cargo transport scenarios, the process of inducing and detecting fissions in SNM is difficult due to the presence of various and potentially thick materials between the radiation source and themore » SNM, and the practical limitations on radiation source strength and detection capabilities. Therefore, computer simulations are being used, along with experimental measurements, in efforts to design effective active interrogation detection systems. The computer simulations mostly consist of simulating radiation transport from the source to the detector region(s). Although the Monte Carlo method is predominantly used for these simulations, difficulties persist related to calculating statistically meaningful detector responses in practical computing times, thereby limiting their usefulness for design and evaluation of practical active interrogation systems. In previous work, the benefits of hybrid methods that use the results of approximate deterministic transport calculations to accelerate high-fidelity Monte Carlo simulations have been demonstrated for source-detector type problems. In this work, the hybrid methods are applied and evaluated for three example active interrogation problems. Additionally, a new approach is presented that uses multiple goal-based importance functions depending on a particle s relevance to the ultimate goal of the simulation. Results from the examples demonstrate that the application of hybrid methods to active interrogation problems dramatically increases their calculational efficiency.« less

  13. The efficacy of botulinum toxin A and sacral neuromodulation in the management of interstitial cystitis (IC)/bladder pain syndrome (BPS), what do we know? ICI-RS 2017 think thank, Bristol.

    PubMed

    Rahnama'i, Mohammad S; Marcelissen, Tom; Apostolidis, Apostolos; Veit-Rubin, Nikolaus; Schurch, Brigitte; Cardozo, Linda; Dmochowski, Roger

    2018-01-24

    This manuscript aims to address the evidence availale in the literature on the efficacy of Botulinum Toxin A (BoNT-A) and sacral neuromodulation (SNM) in patients suffering from Interstitial Cystitis (IC)/BPS and propose further research to identify mechanisms of action and establish the clinical efficacy of either therapy. At the International Consultation on Incontinence-Research Society (ICI-RS) in 2017, a panel of Functional Urologists and Urogynaecologists participated in a Think Tank (TT) discussing the management of IC/BPS by BoNT-A and SNM, using available data from both PubMed and Medicine literature searches. The role of BoNT-A and SNM in the treatment of IC/BPS are discussed and mechanisms of actions are proposed. Despite the available randomized trial data on the effect of intravesical BoNT-A treatment on symptoms of IC/BPS, a consistent conclusion of a positive effect cannot be drawn at the moment, as the published studies are small and heterogeneous in design. There is substantive evidence for the positive effects of SNM on symptoms of IC/BPS patients however, during patient selection, it is important to distinguish the degree and the location of pain in order to tailor the best therapy to the right patients. Both intravesical BoNT-A treatment and SNM have been shown to have positive effects in patients with IC/BPS. However, firm conclusions cannot yet be drawn. Patient-reported outcomes and quality of life should be assessed in addition to urinary and pain symptoms. Since current treatments mainly focus on symptomatic relief, future research should also focus on clarifying the pathogenic mechanisms involved in IC/BPS. © 2018 Wiley Periodicals, Inc.

  14. Update on the Department of Energy's 1994 plutonium vulnerability assessment for the plutonium finishing plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HERZOG, K.R.

    1999-09-01

    A review of the environmental, safety, and health vulnerabilities associated with the continued storage of PFP's inventory of plutonium bearing materials and other SNM. This report re-evaluates the five vulnerabilities identified in 1994 at the PFP that are associated with SNM storage. This new evaluation took a more detailed look and applied a risk ranking process to help focus remediation efforts.

  15. NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL ASSOCIATED WITH A CLOSED FUEL CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, C. G.; Ebbinghaus, B.; Sleaford, Brad W.

    2010-06-11

    This paper examines the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with the various processing steps required for a closed fuel cycle. This paper combines the results from earlier studies that examined the attractiveness of SNM associated with the processing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR with new results for the final, repeated burning of SNM in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). The results of this paper suggest that all reprocessing products evaluated so farmore » need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of "attractiveness levels" that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented. Additionally, how these attractiveness levels relate to proliferation resistance (e.g. by increasing impediments to the diversion, theft, or undeclared production of SNM for the purpose of acquiring a nuclear weapon), and how they could be used to help inform policy makers, will be discussed.« less

  16. Report on Concepts & Approaches for SSBD for eCHEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Chantell Lynne-Marie

    The verification of special nuclear material (SNM) in spent fuel pyroprocessing is an important safeguards challenge. The detection of spontaneous fission (SF) neutrons from curium is an accepted, non-destructive technique that has been applied to verify special nuclear material (SNM) content in used fuel and other materials in the fuel cycle. The nuclear material accounting (NMA) technique at the Korea Atomic Energy Research Institute’s Reference Engineering-scale Pyroprocessing Facility (REPF) is based on the Cm balance technique. Several publications have demonstrated the safeguards benefit from using process monitoring (PM) on nuclear facilities as a complementary measure to NMA. More recently, thismore » concept was expanded and preliminarily demonstrated for pyroprocessing. The concept of Signature Based Safeguards (SBS) is part of this expansion, and is built around the interpretation of input from various sensors in a declared facility coupled with complementary NMA methods to increase confidence and lower standard error inventory differences (SEID). The SBS methodology was conceptually developed and relies on near real time analysis of process monitoring data to detect material diversion complemented by robust containment and surveillance (C/S) measures. This work demonstrates one example of how the SBS framework can be used in the electrorefiner. In this SBS application, a combination of cyclic voltammetry (CV) and neutron counting is applied to track and monitor Pu mass balance. The main purpose of this experiment is to determine if meaningful information can be gained from CV measurements with regard to the Mg/Gd ratio. This data will be coupled with ICP-MS to verify Gd concentrations and analyzed for statistical significance. It is expected the CV data will register a significant change under the off-normal operating conditions. Knowing how to identify and interpret those changes may help inform how to target more traditional neutron counting methods, which could support a more efficient safeguards system. The experimental results will be compared with theoretical calculations and the ERAD simulations.« less

  17. Spatial and seasonal patterns of particulate matter less than 2.5 microns in the Sierra Nevada Mountains, California

    Treesearch

    Ricardo Cisneros; Don Schweizer; Haiganoush Preisler; Deborah H. Bennett; Glenn Shaw; Andrzej Bytnerowicz

    2014-01-01

    This paper presents particulate matter data collected in the California southern Sierra Nevada Mountains (SNM) during 2002 to 2009 from the Central Valley (elevation 91 m) into the SNM (elevation 2,598 m). Annual average concentrations of particles smaller than 2.5 µm in diameter (PM2.5) for all sites during this study ranged from 3.1 to 22.2 µg...

  18. Nuclear Resonance Fluorescence and Isotopic Mapping of Containers

    NASA Astrophysics Data System (ADS)

    Johnson, Micah S.; McNabb, Dennis P.

    2009-03-01

    National security programs have expressed interest in developing systems to isotopically map shipping containers, fuel assemblies, and waste barrels for various materials including special nuclear material (SNM). Current radiographic systems offer little more than an ambiguous density silhouette of a container's contents. In this paper we will present a system being developed at LLNL to isotopically map containers using the nuclear resonance fluorescence (NRF) method. Recent experimental measurements on NRF strengths in SNM are discussed.

  19. Effects of Appropriate Prolonged Sacral Neuromodulation Testing in Improving Implantation Rate of a Permanent Implantable Pulse Generator in Patients with Refractory Lower Urinary Tract Dysfunctions in Mainland China.

    PubMed

    Zhang, Peng; Zhang, Jian-Zhong; Wu, Li-Yang; Zhang, Xiao-Dong

    2017-02-20

    Sacral neuromodulation (SNM) has become an effective method for treating lower urinary tract voiding dysfunction during the past 20 years. Because of the expensive cost, the number of implantable pulse generator (IPG) implantations per year in China is far lower than that in Western developed countries since 2012. This study was to summarize the effects of the appropriate prolonged SNM testing time in improving the implantation rate of a permanent IPG in patients with refractory lower urinary tract symptoms (LUTS) in mainland China. From January 2013 to June 2016, 51 patients with refractory LUTS received SNM therapy. In this study, we compared the conversion rate 2 weeks after the Stage I test and final actual conversion rate. We also observed the complications (such as pain, infection, and electrode displacement) and effectiveness. We tried to improve an appropriate prolonged test time which was favorable for improving the SNM conversion rate while ensuring safety and effectiveness. Among 51 patients receiving SNM therapy, 19 patients (mean age 45.0 ± 16.9 years) had poor Stage I test results, and on an average, the electrode was removed 27.4 ± 9.6 days after the surgery. In one patient, the electrode was removed within 2 weeks; when the remaining 18 patients were questioned 2 weeks after testing, none of the patients wanted to terminate the test, and all the 18 patients desired to prolong the testing time to further observe the treatment effect. The remaining 32 patients (mean age 46.7 ± 15.3 years) received Stage II permanent implantation at 19.6 ± 10.4 days after the surgery. The overall Stage I-II conversion was 62.7% (32/51) in this study. Within 2 weeks after the surgery, only eight patients received Stage II permanent implantation, and the conversion rate was only 15.7% (8/51), which was much lower than the overall conversion rate of 62.7%. Nearly 84.4% (27/32) of the patients received Stage II implantation within 4 weeks. None of the patients had incision infections. In one patient, the entire system was removed 1 month after Stage II implantation due to pain in the implantation site. Appropriate extension of the Stage I testing time of an SNM-barbed electrode could significantly improve the Stage II permanent implantation rate in Chinese refractory LUTS patients; there were no wound infections, and the postoperative complication rate was low. This study recommended that Stage I period of SNM therapy should be 4 weeks according to safety and successful conversion rate.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Timothy; Nelson, Roger

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes atmore » the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)« less

  1. Preliminary Diffusive Clearance of Silicon Nanopore Membranes in a Parallel Plate Configuration for Renal Replacement Therapy

    PubMed Central

    Kim, Steven; Heller, James; Iqbal, Zohora; Kant, Rishi; Kim, Eun Jung; Durack, Jeremy; Saeed, Maythem; Do, Loi; Hetts, Steven; Wilson, Mark; Brakeman, Paul; Fissell, William H.; Roy, Shuvo

    2015-01-01

    Silicon nanopore membranes (SNM) with compact geometry and uniform pore size distribution have demonstrated a remarkable capacity for hemofiltration. These advantages could potentially be used for hemodialysis. Here we present an initial evaluation of the SNM’s mechanical robustness, diffusive clearance, and hemocompatibility in a parallel plate configuration. Mechanical robustness of the SNM was demonstrated by exposing membranes to high flows (200ml/min) and pressures (1,448mmHg). Diffusive clearance was performed in an albumin solution and whole blood with blood and dialysate flow rates of 25ml/min. Hemocompatibility was evaluated using scanning electron microscopy and immunohistochemistry after 4-hours in an extra-corporeal porcine model. The pressure drop across the flow cell was 4.6mmHg at 200ml/min. Mechanical testing showed that SNM could withstand up to 775.7mmHg without fracture. Urea clearance did not show an appreciable decline in blood versus albumin solution. Extra-corporeal studies showed blood was successfully driven via the arterial-venous pressure differential without thrombus formation. Bare silicon showed increased cell adhesion with a 4.1 fold increase and 1.8 fold increase over polyethylene-glycol (PEG)-coated surfaces for tissue plasminogen factor (t-PA) and platelet adhesion (CD-41), respectively. These initial results warrant further design and development of a fully scaled SNM-based parallel plate dialyzer for renal replacement therapy. PMID:26692401

  2. [Sacral neuromodulation in urology - development and current status].

    PubMed

    Schwalenberg, T; Stolzenburg, J-U; Kriegel, C; Gonsior, A

    2012-01-01

    Sacral neuromodulation (SNM) in urology is employed to treat refractory lower urinary tract dysfunction as well as chronic pelvic pain. Electrical stimulation of the sacral afferents (S2 - S4) causes activation and conditioning of higher autonomic and somatic neural structures and thereby influences the efferents controlling the urinary bladder, the rectum and their related sphincter systems. It is therefore possible to treat overactivity as well as hypocontractility and functional bladder neck obstruction. SNM treatment is conducted biphasically. Initially, test electrodes are placed to evaluate changes in micturition and pain parameters. If, in this first phase - called peripheral nerve evaluation (PNE test) - sufficient improvements are observed, the patient progresses to phase two which involves implantation of the permanent electrodes and impulse generator system. In recent years, the "two stage approach" with initial implantation of the permanent electrodes has been favoured as it increases treatment success rates. Long-term success rates of SNM vary significantly in the literature (50 - 80 %) due to heterogeneous patient populations as well as improved surgical approaches. With the introduction of "tined lead electrodes" (2002), tissue damage is reduced to a minimum. Technical innovation, financial feasibility (reimbursed in Germany since 2004) and wider application, especially in otherwise therapy-refractory patients or complex dysfunctions of the pelvis, have established SNM as a potent treatment option in urology. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Delayed Gamma-ray Spectroscopy for Safeguards Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mozin, Vladimir

    The delayed gamma-ray assay technique utilizes an external neutron source (D-D, D-T, or electron accelerator-driven), and high-resolution gamma-ray spectrometers to perform characterization of SNM materials behind shielding and in complex configurations such as a nuclear fuel assembly. High-energy delayed gamma-rays (2.5 MeV and above) observed following the active interrogation, provide a signature for identification of specific fissionable isotopes in a mixed sample, and determine their relative content. Potential safeguards applications of this method are: 1) characterization of fresh and spent nuclear fuel assemblies in wet or dry storage; 2) analysis of uranium enrichment in shielded or non-characterized containers or inmore » the presence of a strong radioactive background and plutonium contamination; 3) characterization of bulk and waste and product streams at SNM processing plants. Extended applications can include warhead confirmation and warhead dismantlement confirmation in the arms control area, as well as SNM diagnostics for the emergency response needs. In FY16 and prior years, the project has demonstrated the delayed gamma-ray measurement technique as a robust SNM assay concept. A series of empirical and modeling studies were conducted to characterize its response sensitivity, develop analysis methodologies, and analyze applications. Extensive experimental tests involving weapons-grade Pu, HEU and depleted uranium samples were completed at the Idaho Accelerator Center and LLNL Dome facilities for various interrogation time regimes and effects of the neutron source parameters. A dedicated delayed gamma-ray response modeling technique was developed and its elements were benchmarked in representative experimental studies, including highresolution gamma-ray measurements of spent fuel at the CLAB facility in Sweden. The objective of the R&D effort in FY17 is to experimentally demonstrate the feasibility of the delayed gamma-ray interrogation of shielded SNM samples with portable neutron sources suitable for field applications.« less

  4. Fission Meter Information Barrier Attribute Measurement System - NA-243 FNI/UKC FY2017 Task 1-2 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, P. L.; Decman, D.; Prasad, M.

    An SNM attribute Information Barrier (IB) system was developed for a 2011 US/UK Exercise. The system was modified and extensively tested in a 2013-2014 US-UK Measurement Campaign. This work demonstrated rapid deployment of an IB system for potential treaty use. The system utilizes an Ortec Fission Meter neutron multiplicity counter and custom computer code. The system demonstrates a proof-of-principle automated Pu-240 mass determination with an information barrier. After a software start command is issued, the system automatically acquires and downloads data, performs an analysis, and displays the results. This system conveys the results of a Pu mass threshold measurements inmore » a way the does not reveal sensitive information. In full IB mode, only the pass/fail result is displayed as a “Mass <= Threshold Amount” or “Mass >= Threshold Amount” as shown in Figure 4. This can easily be adapted to a red/green “lights” display similar to the Detective IB system for Pu isotopics as shown in Figure 6. In test mode, more detailed information is displayed. The code can also read in, analyze, and display results from previously acquired or simulated data. Because the equipment is commercial-off-the-shelf (COTS), the system demonstrates a low-cost short-lead-time technology for treaty SNM attribute measurements. A deployed system will likely require integration of additional authentication and tamper-indicating technologies. This will be discussed for the project in this and future progress reports.« less

  5. RoboCal: An automated nondestructive assay system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staley, H.C.; Hollen, R.M.; Bonner, C.A.

    1990-01-01

    The manager of a facility handling special nuclear material (SNM) is caught in a squeeze between increased state and federal regulations and tighter funding. RoboCal uses a robot to manipulate canisters containing SNM to lower worker radiation exposure and to provide increased utilization of expensive assay equipment. In addition, it helps with accountability and material tracking. It consists of a hierarchical network of more than a dozen computers and provides a single point of contact for the user to accomplish multiple assays.

  6. Poly- Versus Mono-Energetic Dual-Spectrum Non-Intrusive Inspection of Cargo Containers

    NASA Astrophysics Data System (ADS)

    Martz, Harry E.; Glenn, Steven M.; Smith, Jerel A.; Divin, Charles J.; Azevedo, Stephen G.

    2017-07-01

    In this paper, based on an invited talk at SORMA (May 2016), we present an overview of x-ray sources, detectors and system configurations for non-intrusive inspection (NII) of cargo containers. Our emphasis is on dual-energy x-ray NII for detecting high-atomic-number (Z ≥ 72) materials such as tungsten shielding and special nuclear materials (SNM). Standard single-energy (MeV and above) x-rays needed to penetrate and image cargo provide little SNM contrast, whereas dual-energy x-ray NII is demonstrated as a way to improve the selectivity of materials with Z<;72 vs. those with Z ≥ 72. For two possible dual-energy x-ray source technologies - polyenergetic dual-energy (PDE) and quasi-monoenergetic x-ray sources (QMXS) - we investigate their trade-offs and future prospects using experimental and simulated results. The reduced scatter and larger separation of low- and high-energy photons provided by QMXS offers improved high-Z material contrast, but practical considerations such as flux and pulse rate need to be solved before making a deployable system. Straight-ray simulations show factor of four increases in contrast for QMXS over PDE scans of tin (Z=50) and iron (Z=26) relative to a uranium plate (Z=92) behind 20 cm of iron simulated cargo.

  7. Formation of Sn-M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gao, Song; Huang, Hao; Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing; Cao, Guozhong

    2016-10-01

    A direct current arc-discharge method was applied to prepare the Sn-M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn-M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn-Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g-1/366.6 mA h g-1) and optimal cycle stability (a specific reversible capacity of 240 mA h g-1 maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process.

  8. Sacral Neuromodulation for Refractory Bladder Pain Syndrome/Interstitial Cystitis: a Global Systematic Review and Meta-analysis.

    PubMed

    Wang, Junpeng; Chen, Yang; Chen, Jiawei; Zhang, Guihao; Wu, Peng

    2017-09-08

    Bladder pain syndrome/interstitial cystitis (BPS/IC) is a common debilitating disease and there has not been consistently effective treatment. We aimed to evaluate all available literature regarding the efficacy and safety of sacral neuromodulation (SNM) for refractory BPS/IC. A comprehensive search of Pubmed, Web of Science and Cochrane Library through May 2016 was conducted. A total of 17 studies enrolling 583 patients were identified. Pooled analyses demonstrated that SNM was associated with great reduction in pelvic pain (weighted mean difference [WMD] -3.99; 95% confidence interval [CI] -5.22 to -2.76; p < 0.00001), Interstitial Cystitis Problem and Symptom Index scores (WMD -6.34; 95% CI -9.57 to -3.10; p = 0.0001; and WMD -7.17; 95% CI -9.90 to -4.45; p < 0.00001, respectively), daytime frequency (WMD -7.45; 95% CI -9.68 to -5.22; p < 0.00001), nocturia (WMD -3.01; 95% CI -3.56 to -2.45; p < 0.00001), voids per 24 hours (WMD -9.32; 95% CI -10.90 to -7.74; p < 0.00001) and urgency (WMD -1.08; 95% CI -1.79 to -0.37; p = 0.003) as well as significant improvement in average voided volume (WMD 95.16 ml; 95% CI 63.64 to 126.69; p < 0.0001). The pooled treatment success rate was 84% (95% CI 76% to 91%). SNM-related adverse events were minimal. Current evidence indicates that SNM might be effective and safe for treating refractory BPS/IC.

  9. Programming settings and recharge interval in a prospective study of a rechargeable sacral neuromodulation system for the treatment of overactive bladder.

    PubMed

    Blok, Bertil; Van Kerrebroeck, Philip; de Wachter, Stefan; Ruffion, Alain; Van der Aa, Frank; Jairam, Ranjana; Perrouin-Verbe, Marie; Elneil, Sohier

    2018-02-01

    The RELAX-OAB study is designed to confirm the safety, efficacy, and technical performance of the Axonics r-SNM System, a miniaturized, rechargeable SNM system approved in Europe and Canada for the treatment of bladder and bowel dysfunction. The purpose of this article is to describe study subjects' ability to charge the rechargeable neurostimulator and to document their neurostimulator program settings and recharge interval over time. Fifty-one OAB patients were implanted in a single-stage procedure. These results represent the 3-month charging experience for 48 subjects who completed the 3-month follow-up. Recharge intervals were estimated using therapy stimulation settings and subject experience was evaluated using questionnaires. Forty-seven of forty-eight (98%) subjects were able to successfully charge their device prior to follow-up within 1-month post-implant. At 3-month post-implant, 98% of subjects were able to charge prior to their follow-up visit. Average stimulation amplitude across all subjects was 1.8 mA (±1.1 mA). A total of 69% of subjects had ≥14-day recharge intervals (time between charging) and 98% of subjects had ≥7-day recharge interval. No charging related adverse events occurred. Study subjects were able to charge the Axonics r-SNM System and stimulation settings provided 2 weeks of therapy between recharging for most subjects. Subject satisfaction indicates that subjects are satisfied with rechargeable SNM therapy. © 2018 The Authors. Neurourology and Urodynamics Published by Wiley Periodicals, Inc.

  10. A system to measure minute hydraulic permeability of nanometer scale devices in a non-destructive manner

    NASA Astrophysics Data System (ADS)

    Smith, Ross A.; Fleischman, Aaron J.; Fissell, William H.; Zorman, Christian A.; Roy, Shuvo

    2011-04-01

    We report an automated system for measuring the hydraulic permeability of nanoporous membranes in a tangential-flow configuration. The system was designed and built specifically for micromachined silicon nanoporous membranes (SNM) with monodisperse slit-shaped pores. These novel membranes are under development for water filtration, artificial organ and drug delivery applications. The filtration cell permits non-destructive testing of the membrane over many remove-modify-replace testing cycles, allowing for direct experiments into the effects of surface modifications on such membranes. The experimental apparatus was validated using microfluidic tubing with circular cross sections that provided similar fluidic resistances to SNM. Further validation was performed with SNM chips for which the pore dimensions were known from scanning electron microscopy measurements. The system was then used to measure the hydraulic permeability of nanoporous membranes before and after surface modification. The system yields measurements with low variance and excellent agreement with predicted values, providing a platform for determining pore sizes in micro/nanofluidic systems with tight pore size distributions to a higher degree of precision than can be achieved with traditional techniques.

  11. Multimodal Imaging Using a 11B(d,nγ)12C Source

    NASA Astrophysics Data System (ADS)

    Nattress, Jason; Rose, Paul; Mayer, Michal; Wonders, Marc; Wilhelm, Kyle; Erickson, Anna; Jovanovic, Igor; Multimodal Imaging; Nuclear Detection (MIND) in Active Interrogation Collaboration

    2016-03-01

    Detection of shielded special nuclear material (SNM) still remains one of the greatest challenges facing nuclear security, where small signal-to-background ratios result from complex, challenging configurations of practical objects. Passive detection relies on the spontaneous radioactive decay, whereas active interrogation (AI) uses external probing radiation to identify and characterize the material. AI provides higher signal intensity, providing a more viable method for SNM detection. New and innovative approaches are needed to overcome specific application constraints, such as limited scanning time. We report on a new AI approach that integrates both neutron and gamma transmission signatures to deduce specific material properties that can be utilized to aid SNM identification. The approach uses a single AI source, single detector type imaging system based on the 11B(d,nγ)12C reaction and an array of eight EJ-309 liquid scintillators, respectively. An integral transmission imaging approach has been employed initially for both neutrons and photons, exploiting the detectors' particle discrimination properties. Representative object images using neutrons and photons will be presented.

  12. Commissioning and field tests of a van-mounted system for the detection of radioactive sources and Special Nuclear Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cester, D.; Lunardon, M.; Stevanato, L.

    2015-07-01

    MODES SNM project aimed to carry out technical research in order to develop a prototype for a mobile, modular detection system for radioactive sources and Special Nuclear Materials (SNM). Its main goal was to deliver a tested prototype of a modular mobile system capable of passively detecting weak or shielded radioactive sources with accuracy higher than that of currently available systems. By the end of the project all the objectives have been successfully achieved. Results from the laboratory commissioning and the field tests will be presented. (authors)

  13. Final Technical Report: Imaging a Dry Storage Cask with Cosmic Ray Muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haori; Hayward, Jason; Chichester, David

    The goal of this project is to build a scaled prototype system for monitoring used nuclear fuel (UNF) dry storage casks (DSCs) through cosmic ray muon imaging. Such a system will have the capability of verifying the content inside a DSC without opening it. Because of the growth of the nuclear power industry in the U.S. and the policy decision to ban reprocessing of commercial UNF, the used fuel inventory at commercial reactor sites has been increasing. Currently, UNF needs to be moved to independent spent fuel storage installations (ISFSIs), as its inventory approaches the limit on capacity of on-sitemore » wet storage. Thereafter, the fuel will be placed in shipping containers to be transferred to a final disposal site. The ISFSIs were initially licensed as temporary facilities for ~20-yr periods. Given the cancellation of the Yucca mountain project and no clear path forward, extended dry-cask storage (~100 yr.) at ISFSIs is very likely. From the point of view of nuclear material protection, accountability and control technologies (MPACT) campaign, it is important to ensure that special nuclear material (SNM) in UNF is not stolen or diverted from civilian facilities for other use during the extended storage.« less

  14. Spectroscopic neutron detection using composite scintillators

    NASA Astrophysics Data System (ADS)

    Jovanovic, I.; Foster, A.; Kukharev, V.; Mayer, M.; Meddeb, A.; Nattress, J.; Ounaies, Z.; Trivelpiece, C.

    2016-09-01

    Shielded special nuclear material (SNM), especially highly enriched uranium, is exceptionally difficult to detect without the use of active interrogation (AI). We are investigating the potential use of low-dose active interrogation to realize simultaneous high-contrast imaging and photofission of SNM using energetic gamma-rays produced by low-energy nuclear reactions, such as 11B(d,nγ)12C and 12C(p,p‧)12C. Neutrons produced via fission are one reliable signature of the presence of SNM and are usually identified by their unique timing characteristics, such as the delayed neutron die-away. Fast neutron spectroscopy may provide additional useful discriminating characteristics for SNM detection. Spectroscopic measurements can be conducted by recoil-based or thermalization and capture-gated detectors; the latter may offer unique advantages since they facilitate low-statistics and event-by-event neutron energy measurements without spectrum unfolding. We describe the results of the development and characterization of a new type of capture-gated spectroscopic neutron detector based on a composite of scintillating polyvinyltoluene and lithium-doped scintillating glass in the form of millimeter-thick rods. The detector achieves >108 neutron-gamma discrimination resulting from its geometric properties and material selection. The design facilitates simultaneous pulse shape and pulse height discrimination, despite the fact that no materials intrinsically capable of pulse shape discrimination have been used to construct the detector. Accurate single-event measurements of neutron energy may be possible even when the energy is relatively low, such as with delayed fission neutrons. Simulation and preliminary measurements using the new composite detector are described, including those conducted using radioisotope sources and the low-dose active interrogation system based on low-energy nuclear reactions.

  15. Paired N and O isotopic analysis of nitrate and nitrite in the Arabian Sea oxygen deficient zone

    NASA Astrophysics Data System (ADS)

    Martin, T. S.; Casciotti, K. L.

    2017-03-01

    The Arabian Sea is home to one of the three main oceanic oxygen deficient zones (ODZs). We present paired nitrogen (N) and oxygen (O) isotope measurements of nitrate (NO3-) and nitrite (NO2-) from the central Arabian Sea in order to understand the effects of N biogeochemistry on the distribution of these species in the low oxygen waters. Within the ODZ, NO2- accumulated in a secondary NO2- maximum (SNM), though the shape and magnitude of the SNM, along with the isotopic composition of NO3- and NO2-, were highly dependent on the location within the ODZ. We also explored water mass mixing within the Arabian Sea as an explanatory factor in the distribution of NO2- in the SNM. The intrusion of Persian Gulf Water at depth may influence the shape of the NO2- peak by introducing small amounts of dissolved oxygen (O2), favoring NO2- oxidation. There was also evidence that vertical mixing may play a role in shaping the top of the SNM peak. Finally, we present evidence for NO2- oxidation and NO2- reduction co-occurring within the ODZ, as has been previously suggested in the Arabian Sea, as well as in other ODZs. The decoupling of the N and O isotopes of NO3-, deviating from the expected 1:1 ratio for dissimilatory NO3- reduction, indicates that NO2- oxidation has a significant influence on the isotopic composition of NO3-. Additionally, the N isotopes of NO2- were generally fit well by Rayleigh curves for NO2- oxidation. However, the removal of dissolved inorganic nitrogen (DIN) within the domain reflects the importance of NO2- reduction to N2.

  16. Sacral neuromodulation and Botulinum toxin A for refractory idiopathic overactive bladder: a cost-utility analysis in the perspective of Italian Healthcare System.

    PubMed

    Bertapelle, Maria Paola; Vottero, Mario; Popolo, Giulio Del; Mencarini, Marco; Ostardo, Edoardo; Spinelli, Michele; Giannantoni, Antonella; D'Ausilio, Anna

    2015-08-01

    To assess the relative cost-effectiveness of two therapeutic strategies: one starting with sacral neuromodulation (SNM) versus one starting with Botulinum toxin A (BTX-A) for the management of refractory incontinent idiopathic overactive bladder (OAB) patients, from the perspective of the Italian National Health Service (INHS). Direct medical costs (2011) and benefits (quality-adjusted life years-QALYs) were assessed over a ten-year time frame adapting to the Italian practice a published Markov model. Clinical inputs were based on the published literature and on the expert opinion. Resource consumption rates were provided by clinical experts; unit costs were collected from a single hospital accounting and from standard tariff lists and public prices. Interventional procedures and management of adverse events were costed through a micro-costing approach. The primary outcome was incremental costs per QALYs gained (i.e. differential costs divided by differential benefits). Deterministic (DSA) and probabilistic (PSA) sensitivity analyses were conducted to assess the robustness of the model. Starting with SNM appears to be cost effective (i.e. under 40.000/QALY) from year three (21,259/QALY) onwards and becomes dominant (i.e. more effective and less costly) at year ten: cumulative costs were 32,975 for early SNM and 33,309 for early BTX-A, while cumulative QALYs were 7.52 and 6.93, respectively. At year ten, DSA suggests the results robustness and 99.8 % of the PSA iterations fell within the cost-effectiveness threshold. A therapeutic strategy starting with SNM may be considered cost effective in the midterm and cost saving in the long-term treatment of idiopathic OAB from the INHS perspective.

  17. Radiation Detection for Homeland Security Applications

    NASA Astrophysics Data System (ADS)

    Ely, James

    2008-05-01

    In the past twenty years or so, there have been significant changes in the strategy and applications for homeland security. Recently there have been significant at deterring and interdicting terrorists and associated organizations. This is a shift in the normal paradigm of deterrence and surveillance of a nation and the `conventional' methods of warfare to the `unconventional' means that terrorist organizations resort to. With that shift comes the responsibility to monitor international borders for weapons of mass destruction, including radiological weapons. As a result, countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders. These efforts include deployments at land, rail, air, and sea ports of entry in the US and in European and Asian countries. Radioactive signatures of concern include radiation dispersal devices (RDD), nuclear warheads, and special nuclear material (SNM). Radiation portal monitors (RPMs) are used as the main screening tool for vehicles and cargo at borders, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. This talk will present an overview of radiation detection equipment with emphasis on radiation portal monitors. In the US, the deployment of radiation detection equipment is being coordinated by the Domestic Nuclear Detection Office within the Department of Homeland Security, and a brief summary of the program will be covered. Challenges with current generation systems will be discussed as well as areas of investigation and opportunities for improvements. The next generation of radiation portal monitors is being produced under the Advanced Spectroscopic Portal program and will be available for deployment in the near future. Additional technologies, from commercially available to experimental, that provide additional information for radiation screening, such as density imaging equipment, will be reviewed. Opportunities for further research and development to improve the current equipment and methodologies for radiation detection for the important task of homeland security will be the final topic to be discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, S. D.; Hamel, M. C.; Bourne, M. M.

    Active interrogation creates an environment that is particularly challenging from a radiation-detection standpoint: the elevated background levels from the source can mask the desired signatures from the SNM. Neutron based interrogation experiments have shown that nanosecond-level timing is required to discriminate induced-fission neutrons from the scattered source neutrons. Previous experiments using high-energy bremsstrahlung X-rays have demonstrated the ability to induce and detect prompt photofission neutrons from single target materials; however, a real-world application would require spectroscopic capability to discern between photofission neutrons emitted by SNM and neutrons emitted by other reactions in non-SNM. Using digital pulseshape discrimination, organic liquid scintillatorsmore » are capable of reliably detecting neutrons in an intense gamma-ray field. Photon misclassification rates as low as 1 in 10 6 have been achieved, which is approaching the level of gaseous neutron detectors such as 3He without the need for neutron moderation. These scintillators also possess nanosecond-timing resolution, making them candidates for both neutron-and photon-driven active interrogation systems. Lastly, we have applied an array of liquid and NaI(Tl) scintillators to successfully image 13.7 kg of HEU interrogated by a DT neutron generator; the system was in the direct presence of the accelerator during the experiment.« less

  19. Detectors for Active Interrogation Applications

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Hamel, M. C.; Bourne, M. M.; Pozzi, S. A.

    Active interrogation creates an environment that is particularly challenging from a radiation-detection standpoint: the elevated background levels from the source can mask the desired signatures from the SNM. Neutron based interrogation experiments have shown that nanosecond-level timing is required to discriminate induced-fission neutrons from the scattered source neutrons. Previous experiments using high-energy bremsstrahlung X-rays have demonstrated the ability to induce and detect prompt photofission neutrons from single target materials; however, a real-world application would require spectroscopic capability to discern between photofission neutrons emitted by SNM and neutrons emitted by other reactions in non-SNM. Using digital pulse-shape discrimination, organic liquid scintillators are capable of reliably detecting neutrons in an intense gamma-ray field. Photon misclassification rates as low as 1 in 106 have been achieved, which is approaching the level of gaseous neutron detectors such as 3He without the need for neutron moderation. These scintillators also possess nanosecond-timing resolution, making them candidates for both neutron-and photon-driven active interrogation systems. We have applied an array of liquid and NaI(Tl) scintillators to successfully image 13.7 kg of HEU interrogated by a DT neutron generator; the system was in the direct presence of the accelerator during the experiment.

  20. Combining Radiography and Passive Measurements for Radiological Threat Localization in Cargo

    NASA Astrophysics Data System (ADS)

    Miller, Erin A.; White, Timothy A.; Jarman, Kenneth D.; Kouzes, Richard T.; Kulisek, Jonathan A.; Robinson, Sean M.; Wittman, Richard A.

    2015-10-01

    Detecting shielded special nuclear material (SNM) in a cargo container is a difficult problem, since shielding reduces the amount of radiation escaping the container. Radiography provides information that is complementary to that provided by passive gamma-ray detection systems: while not directly sensitive to radiological materials, radiography can reveal highly shielded regions that may mask a passive radiological signal. Combining these measurements has the potential to improve SNM detection, either through improved sensitivity or by providing a solution to the inverse problem to estimate source properties (strength and location). We present a data-fusion method that uses a radiograph to provide an estimate of the radiation-transport environment for gamma rays from potential sources. This approach makes quantitative use of radiographic images without relying on image interpretation, and results in a probabilistic description of likely source locations and strengths. We present results for this method for a modeled test case of a cargo container passing through a plastic-scintillator-based radiation portal monitor and a transmission-radiography system. We find that a radiograph-based inversion scheme allows for localization of a low-noise source placed randomly within the test container to within 40 cm, compared to 70 cm for triangulation alone, while strength estimation accuracy is improved by a factor of six. Improvements are seen in regions of both high and low shielding, but are most pronounced in highly shielded regions. The approach proposed here combines transmission and emission data in a manner that has not been explored in the cargo-screening literature, advancing the ability to accurately describe a hidden source based on currently-available instrumentation.

  1. Detectors for Active Interrogation Applications

    DOE PAGES

    Clarke, S. D.; Hamel, M. C.; Bourne, M. M.; ...

    2017-10-26

    Active interrogation creates an environment that is particularly challenging from a radiation-detection standpoint: the elevated background levels from the source can mask the desired signatures from the SNM. Neutron based interrogation experiments have shown that nanosecond-level timing is required to discriminate induced-fission neutrons from the scattered source neutrons. Previous experiments using high-energy bremsstrahlung X-rays have demonstrated the ability to induce and detect prompt photofission neutrons from single target materials; however, a real-world application would require spectroscopic capability to discern between photofission neutrons emitted by SNM and neutrons emitted by other reactions in non-SNM. Using digital pulseshape discrimination, organic liquid scintillatorsmore » are capable of reliably detecting neutrons in an intense gamma-ray field. Photon misclassification rates as low as 1 in 10 6 have been achieved, which is approaching the level of gaseous neutron detectors such as 3He without the need for neutron moderation. These scintillators also possess nanosecond-timing resolution, making them candidates for both neutron-and photon-driven active interrogation systems. Lastly, we have applied an array of liquid and NaI(Tl) scintillators to successfully image 13.7 kg of HEU interrogated by a DT neutron generator; the system was in the direct presence of the accelerator during the experiment.« less

  2. FURTHER ASSESSMENTS OF THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FROM A SAFEGUARDS PERSPECTIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, C. G.; Jarvinen, G. D.; Wallace, R. K.

    2008-10-01

    This paper summarizes the results of an extension to an earlier study [ ] that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with the PUREX, UREX+, and COEX reprocessing schemes. This study focuses on the materials associated with the UREX, COEX, THOREX, and PYROX reprocessing schemes. This study also examines what is required to render plutonium as “unattractive.” Furthermore, combining the results of this study with those from the earlier study permits a comparison of the uranium and thorium based fuel cycles on the basis of the attractiveness of the SNM associated with each fuelmore » cycle. Both studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of “attractiveness levels” that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities [ ]. The methodology and key findings will be presented. Additionally, how these attractiveness levels relate to proliferation resistance (e.g. by increasing impediments to the diversion, theft, undeclared production of SNM for the purpose of acquiring a nuclear weapon), and how they could be used to help inform policy makers, will be discussed.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore » achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less

  4. A Delayed Neutron Counting System for the Analysis of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Sellers, Madison Theresa

    Nuclear forensic analysis is a modem science that uses numerous analytical techniques to identify and attribute nuclear materials in the event of a nuclear explosion, radiological terrorist attack or the interception of illicit nuclear material smuggling. The Canadian Department of National Defence has participated in recent international exercises that have highlighted the Nation's requirement to develop nuclear forensics expertise, protocol and capabilities, specifically pertaining to the analysis of special nuclear materials (SNM). A delayed neutron counting (DNC) system has been designed and established at the Royal Military College of Canada (RMC) to enhance the Government's SNM analysis capabilities. This analytical technique complements those already at RMC by providing a rapid and non-destructive method for the analysis of the fissile isotopes of both uranium (U) and plutonium (Pu). The SLOWPOKE-2 reactor at RMC produces a predominately thermal neutron flux. These neutrons induce fission in the SNM isotopes 233U, 235U and 239Pu releasing prompt fast neutrons, energy and radioactive fission fragments. Some of these fission fragments undergo beta - decay and subsequently emit neutrons, which can be recorded by an array of sensitive 3He detectors. The significant time period between the fission process and the release of these neutrons results in their identification as 'delayed neutrons'. The recorded neutron spectrum varies with time and the count rate curve is unique to each fissile isotope. In-house software, developed by this project, can analyze this delayed neutron curve and provides the fissile mass in the sample. Extensive characterization of the DNC system has been performed with natural U samples with 235 U content ranging from 2--7 microg. The system efficiency and dead time behaviour determined by the natural uranium sample analyses were validated by depleted uranium samples with similar quantities of 235 U resulting in a typical relative error of 3.6%. The system has accurately determined 235U content over three orders of magnitude with 235U amounts as low as 10 ng. The results have also been proven to be independent of small variations in total analyte volume and geometry, indicating that it is an ideal technique for the analysis of samples containing SNM in a variety of different matrices. The Analytical Sciences Group at RMC plans to continue DNC system development to include 233U and 239pu analysis and mixtures of SNM isotopes. Keywords: delayed neutron counting, special nuclear materials, nuclear forensics.

  5. Integrated Performance Testing Workshop, Modules 6 - 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leach, Janice; Torres, Teresa M.

    These modules cover performance testing of: Interior Detection Systems; Access Controls; Exterior Detection Systems; Video Assessment Systems; SNM / Contraband Detection Systems; Access Delay Elements

  6. Prototype Demonstration of Gamma- Blind Tensioned Metastable Fluid Neutron/Multiplicity/Alpha Detector – Real Time Methods for Advanced Fuel Cycle Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDeavitt, Sean M.

    The content of this report summarizes a multi-year effort to develop prototype detection equipment using the Tensioned Metastable Fluid Detector (TMFD) technology developed by Taleyarkhan [1]. The context of this development effort was to create new methods for evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU)more » isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The Tensioned Metastable Fluid Detector (TMFD) is a transformational technology that is uniquely capable of both alpha and neutron spectroscopy while being “blind” to the intense gamma field that typically accompanies used fuel – simultaneously with the ability to provide multiplicity information as well [1-3]. The TMFD technology was proven (lab-scale) as part of a 2008 NERI-C program [1-7]. The bulk of this report describes the advancements and demonstrations made in TMFD technology. One final point to present before turning to the TMFD demonstrations is the context for discussing real-time monitoring of SNM. It is useful to review the spectrum of isotopes generated within nuclear fuel during reactor operations. Used nuclear fuel (UNF) from a light water reactor (LWR) contains fission products as well as TRU elements formed through neutron absorption/decay chains. The majority of the fission products are gamma and beta emitters and they represent the more significant hazards from a radiation protection standpoint. However, alpha and neutron emitting uranium and TRU elements represent the more significant safeguards and security concerns. Table 1.1 presents a representative PWR inventory of the uranium and actinide isotopes present in a used fuel assembly. The uranium and actinide isotopes (chiefly the Pu, Am and Cm elements) are all emitters of alpha particles and some of them release significant quantities of neutrons through spontaneous fissions« less

  7. Radiation Detection at Borders for Homeland Security

    NASA Astrophysics Data System (ADS)

    Kouzes, Richard

    2004-05-01

    Countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders at land, rail, air, and sea ports of entry. These efforts include deployments in the US and a number of European and Asian countries by governments and international agencies. Items of concern include radiation dispersal devices (RDD), nuclear warheads, and special nuclear material (SNM). Radiation portal monitors (RPMs) are used as the main screening tool for vehicles and cargo at borders, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. Some cargo contains naturally occurring radioactive material (NORM) that triggers "nuisance" alarms in RPMs at these border crossings. Individuals treated with medical radiopharmaceuticals also produce nuisance alarms and can produce cross-talk between adjacent lanes of a multi-lane deployment. The operational impact of nuisance alarms can be significant at border crossings. Methods have been developed for reducing this impact without negatively affecting the requirements for interdiction of radioactive materials of interest. Plastic scintillator material is commonly used in RPMs for the detection of gamma rays from radioactive material, primarily due to the efficiency per unit cost compared to other detection materials. The resolution and lack of full-energy peaks in the plastic scintillator material prohibits detailed spectroscopy. However, the limited spectroscopic information from plastic scintillator can be exploited to provide some discrimination. Energy-based algorithms used in RPMs can effectively exploit the crude energy information available from a plastic scintillator to distinguish some NORM. Whenever NORM cargo limits the level of the alarm threshold, energy-based algorithms produce significantly better detection probabilities for small SNM sources than gross-count algorithms. This presentation discusses experience with RPMs for interdiction of radioactive materials at borders.

  8. Combining Radiography and Passive Measurements for Radiological Threat Localization in Cargo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; White, Timothy A.; Jarman, Kenneth D.

    Detecting shielded special nuclear material (SNM) in a cargo container is a difficult problem, since shielding reduces the amount of radiation escaping the container. Radiography provides information that is complementary to that provided by passive gamma-ray detection systems: while not directly sensitive to radiological materials, radiography can reveal highly shielded regions that may mask a passive radiological signal. Combining these measurements has the potential to improve SNM detection, either through improved sensitivity or by providing a solution to the inverse problem to estimate source properties (strength and location). We present a data-fusion method that uses a radiograph to provide anmore » estimate of the radiation-transport environment for gamma rays from potential sources. This approach makes quantitative use of radiographic images without relying on image interpretation, and results in a probabilistic description of likely source locations and strengths. We present results for this method for a modeled test case of a cargo container passing through a plastic-scintillator-based radiation portal monitor and a transmission-radiography system. We find that a radiograph-based inversion scheme allows for localization of a low-noise source placed randomly within the test container to within 40 cm, compared to 70 cm for triangulation alone, while strength estimation accuracy is improved by a factor of six. Improvements are seen in regions of both high and low shielding, but are most pronounced in highly shielded regions. The approach proposed here combines transmission and emission data in a manner that has not been explored in the cargo-screening literature, advancing the ability to accurately describe a hidden source based on currently-available instrumentation.« less

  9. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    DOE PAGES

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore » achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less

  10. Monte Carlo parametric studies of neutron interrogation with the Associated Particle Technique for cargo container inspections

    NASA Astrophysics Data System (ADS)

    Deyglun, Clément; Carasco, Cédric; Pérot, Bertrand

    2014-06-01

    The detection of Special Nuclear Materials (SNM) by neutron interrogation is extensively studied by Monte Carlo simulation at the Nuclear Measurement Laboratory of CEA Cadarache (French Alternative Energies and Atomic Energy Commission). The active inspection system is based on the Associated Particle Technique (APT). Fissions induced by tagged neutrons (i.e. correlated to an alpha particle in the DT neutron generator) in SNM produce high multiplicity coincidences which are detected with fast plastic scintillators. At least three particles are detected in a short time window following the alpha detection, whereas nonnuclear materials mainly produce single events, or pairs due to (n,2n) and (n,n'γ) reactions. To study the performances of an industrial cargo container inspection system, Monte Carlo simulations are performed with the MCNP-PoliMi transport code, which records for each neutron history the relevant information: reaction types, position and time of interactions, energy deposits, secondary particles, etc. The output files are post-processed with a specific tool developed with ROOT data analysis software. Particles not correlated with an alpha particle (random background), counting statistics, and time-energy resolutions of the data acquisition system are taken into account in the numerical model. Various matrix compositions, suspicious items, SNM shielding and positions inside the container, are simulated to assess the performances and limitations of an industrial system.

  11. The Impact of Gate Width Setting and Gate Utilization Factors on Plutonium Assay in Passive Correlated Neutron Counting

    DOE PAGES

    Henzlova, Daniela; Menlove, Howard Olsen; Croft, Stephen; ...

    2015-06-15

    In the field of nuclear safeguards, passive neutron multiplicity counting (PNMC) is a method typically employed in non-destructive assay (NDA) of special nuclear material (SNM) for nonproliferation, verification and accountability purposes. PNMC is generally performed using a well-type thermal neutron counter and relies on the detection of correlated pairs or higher order multiplets of neutrons emitted by an assayed item. To assay SNM, a set of parameters for a given well-counter is required to link the measured multiplicity rates to the assayed item properties. Detection efficiency, die-away time, gate utilization factors (tightly connected to die-away time) as well as optimummore » gate width setting are among the key parameters. These parameters along with the underlying model assumptions directly affect the accuracy of the SNM assay. In this paper we examine the role of gate utilization factors and the single exponential die-away time assumption and their impact on the measurements for a range of plutonium materials. In addition, we examine the importance of item-optimized coincidence gate width setting as opposed to using a universal gate width value. Finally, the traditional PNMC based on multiplicity shift register electronics is extended to Feynman-type analysis and application of this approach to Pu mass assay is demonstrated.« less

  12. Feasibility study for early removal of HEU from CPP-651-Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C.V.; Henry, R.; Milligan, C.

    1997-09-01

    A two-phase feasibility study was initiated in late 1996 to identify a way to expedite the removal of SNM from the CPP-651 vault. The first phase of this study provided preliminary information that appeared promising, but needed additional detailed planning and evaluate to validate the concepts and conclusions. The focus of Phase 2 was to provide the validation via resource-loaded schedules and more detailed cost estimates. Section 1 describes the purpose and objectives of the Phase 2 tasks and the programmatic drivers that influence related CPP-651 high-enriched uranium (HEU) management issues. Section 2 identifies the evaluation criteria and methodology andmore » the transfer issues and barriers preventing shipment. Section 3 provides site-specific background information for the CPP-651 facility and the Idaho National Engineering and Environmental Laboratory (INEEL) and describes the development of the basic material removal schedule, the proposed base case plan for removal of SNM, and the proposed HEU material management/shipping issues and strategies. Section 4 identifies the proposed options for accelerated removal of SNM and how they were evaluated via detailed scheduling, resource histograms, and cost analysis. Section 5 summarizes principal tasks for implementing this plan and other related HEU CPP-651 management issues that require continued planning efforts to assure successful implementation of this proposed early removal strategy.« less

  13. Counting neutrons from the spontaneous fission of {sup 238}U using scintillation detectors and mixed field analysers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Helen M. O'D.; Joyce, Malcolm J.; Jones, Ashley

    2015-07-01

    It is well documented that {sup 238}U decays by spontaneous fission, and that it is the main component of most nuclear fuels. As nuclear fuels are largely classed as Special Nuclear Material (SNM), they have to be fully accounted for by owners and processing facilities. One possible method for verifying declared amounts of SNM is to count the spontaneous neutrons produced from {sup 238}U. Using four EJ-309 liquid scintillation detectors and a mixed field analyser, spontaneous neutrons from 16.4 g of depleted uranium (0.3% enrichment) have been assayed. The assay method shows promising results and this proof of principle willmore » be researched further in order for it to be applied in an industrial setting. (authors)« less

  14. 77 FR 14838 - General Electric-Hitachi Global Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... safety, chemical process safety, fire safety, emergency management, environmental protection... the transportation of SNM of low strategic significance, human factors engineering, and electrical...

  15. ACR-SNM Task Force on Nuclear Medicine Training: report of the task force.

    PubMed

    Guiberteau, Milton J; Graham, Michael M

    2011-06-01

    The expansion of knowledge and technological advances in nuclear medicine and radiology require physicians to have more expertise in functional and anatomic imaging. The convergence of these two specialties into the new discipline of molecular imaging has also begun to place demands on residency training programs for additional instruction in physiology and molecular biology. These changes have unmasked weaknesses in current nuclear medicine and radiology training programs. Adding to the impetus for change are the attendant realities of the job market and uncertain employment prospects for physicians trained in nuclear medicine but not also trained in diagnostic radiology. With this background, the ACR and the Society of Nuclear Medicine convened the Task Force on Nuclear Medicine Training to define the issues and develop recommendations for resident training.

  16. [Control of vertical dimension in the Root technique. Part 2. Class II].

    PubMed

    Labarrère, H

    2005-03-01

    Hyperdivergent, or high angle, Class II skeletal malocclusions require a reduction in that angle so that an optimal counter-reduction of the mandible can be obtained. Four of these types of cases are analyzed here to show: in the first, treated without extractions, the limitations of this approach: the poor esthetic result derives from the incomplete retraction of incisors because of the occlusal deficits further correction would have incurred; in the second, treated with extractions of upper and lower first bicuspids, that a reduction of the angles SNM from 45 degrees to 40 degrees, FMA from 27 degrees to 24 degrees and ANB from 90 to 40 was obtained; in the third case, treated with extractions of the upper first bicuspids and the lower second bicuspids, that a counter-rotation of the mandible was required in order not to aggravate the esthetic problem while the dental deformity was being corrected. Angle SNM was reduced from 30 degrees to 25 degrees, FMA from 26 degrees to 20 degrees, and ANB from 7 degrees to 2 degrees; and, in the fourth case, where an atypical extraction scheme was elected, that an effective orthodonticsurgical alternative is available. Thanks to an anchorage conception specifically designed for this case by T. Root allowing for extraction of upper first molars, angle SNM was reduced from 38 degrees to 35 degrees, FMA was changed from 28 degrees to 23 degrees, and ANB dropped from 10 degrees to 3.5 degrees.

  17. Analysis of electrical characteristics and proposal of design guide for ultra-scaled nanoplate vertical FET and 6T-SRAM

    NASA Astrophysics Data System (ADS)

    Seo, Youngsoo; Kim, Shinkeun; Ko, Kyul; Woo, Changbeom; Kim, Minsoo; Lee, Jangkyu; Kang, Myounggon; Shin, Hyungcheol

    2018-02-01

    In this paper, electrical characteristics of gate-all-around (GAA) nanoplate (NP) vertical FET (VFET) were analyzed for single transistor and 6T-SRAM cell through 3D technology computer-aided design (TCAD) simulation. In VFET, gate and extension lengths are not limited by the area of device because theses lengths are vertically located. The height of NP is assumed in 40 nm considering device fabrication method (top-down approach). According to the sizes of devices, we analyzed the performances of device such as total resistance, capacitance, intrinsic gate delay, sub-threshold swing (S.S), drain-induced barrier lowering (DIBL) and static noise margin (SNM). As the gate length becomes larger, the resistance should be smaller because the total height of NP is fixed in 40 nm. Also, when the channel thickness becomes thicker, the total resistance becomes smaller since the sheet resistances of channel and extension become smaller and the contact resistance becomes smaller due to the increasing contact area. In addition, as the length of channel pitch increases, the parasitic capacitance comes to be larger due to the increasing area of gate-drain and gate-source. The performance of RC delay is best in the shortest gate length (12 nm), the thickest channel (6 nm) and the shortest channel pitch (17 nm) owing to the reduced resistance and parasitic capacitance. However, the other performances such as DIBL, S.S, on/off ratio and SNM are worst because the short channel effect is highest in this situation. Also, we investigated the performance of the multi-channel device. As the number of channels increases, the performance of device and the reliability of SRAM improve because of reduced contact resistance, increased gate dimension and multi-channel compensation effect.

  18. 32 CFR 223.7 - Procedures-determination of DoD UCNI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Detection and Security Alarm Systems. (i) Information on the layout or design of security and alarm systems...) Frequency and schedule of DoD SNM inventories. (3) Facility Description. (i) Maps, conceptual design, and...

  19. 32 CFR 223.7 - Procedures-determination of DoD UCNI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Detection and Security Alarm Systems. (i) Information on the layout or design of security and alarm systems...) Frequency and schedule of DoD SNM inventories. (3) Facility Description. (i) Maps, conceptual design, and...

  20. Assessment of Impact of Monoenergetic Photon Sources on Prioritized Nonproliferation Applications: Simulation Study Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geddes, Cameron; Ludewigt, Bernhard; Valentine, John

    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current broad-band, bremsstrahlung photon sources (e.g., linacs and betatrons) deliver unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations,more » and must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they are technically challenging to produce. Candidate MPS technologies for nonproliferation applications are now being developed, each of which have different properties (e.g. broad divergence vs. narrow). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. To guide development, requirements for each application of interest must be defined and simulations conducted to define MPS parameters that deliver benefit relative to current systems. The present project conducted a broad assessment of potential nonproliferation applications where MPSs may provide new capabilities or significant performance enhancement (reported separately), which led to prioritization of several applications for detailed analysis. The applications prioritized were: cargo screening and interdiction of Special Nuclear Materials (SNM), detection of hidden SNM, treaty/dismantlement verification, and spent fuel dry storage cask content verification. High resolution imaging for stockpile stewardship was considered as a sub-area of the treaty topic, as it is also of interest for future treaty use. This report presents higher-fidelity calculations and modeling results to quantitatively evaluate the prioritized applications, and to derive the key MPS properties that drive application benefit. Simulations focused on the conventional signatures of radiography, photofission, and NRF to enable comparison to present methods and evaluation of benefit.« less

  1. 78 FR 47009 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... action to submit an information collection request to the Office of Management and Budget (OMB) and... accounting programs and to confirm the absence of (or detect the occurrence of) SNM theft or diversion. NUREG...

  2. 78 FR 71532 - Amendments to Material Control and Accounting Regulations and Proposed Guidance for Fuel Cycle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Accounting Regulations and Proposed Guidance for Fuel Cycle Facility Material Control and Accounting Plans... material control and accounting (MC&A) of special nuclear material (SNM) and the proposed guidance...

  3. Comparative study of three-nucleon potentials in nuclear matter

    NASA Astrophysics Data System (ADS)

    Lovato, Alessandro; Benhar, Omar; Fantoni, Stefano; Schmidt, Kevin E.

    2012-02-01

    A new generation of local three-body potentials providing an excellent description of the properties of light nuclei, as well as of the neutron-deuteron doublet scattering length, has been recently derived. We have performed a comparative analysis of the equations of state of both pure neutron matter (PNM) and symmetric nuclear matter (SNM) at zero temperature obtained using these models of three-nucleon forces. In particular, we have carried out both variational and auxiliary field diffusion Monte Carlo calculations of the equation of state of PNM, while in the case of SNM we have only the variational approach has been considered. None of the considered potentials simultaneously explains the empirical equilibrium density and binding energy of symmetric nuclear matter. However, two of them provide reasonable values of the saturation density. The ambiguity concerning the treatment of the contact term of the chiral inspired potentials is discussed.

  4. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, J. N.; Chin, M. R.; Sjoden, G. E.

    2013-07-01

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reactionmore » rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)« less

  5. Experimental evaluation of the extended Dytlewski-style dead time correction formalism for neutron multiplicity counting

    NASA Astrophysics Data System (ADS)

    Lockhart, M.; Henzlova, D.; Croft, S.; Cutler, T.; Favalli, A.; McGahee, Ch.; Parker, R.

    2018-01-01

    Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli(DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory and implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. The current paper discusses and presents the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. In order to assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. The DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.

  6. 75 FR 26807 - Notice of Acceptance of Application for Special Nuclear Materials License From Oregon State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... use SNM to experimentally acquire hydro-mechanical properties of single fuel elements. The fuel... proceeding; (2) the nature and extent of the petitioner's property, financial, or other interest in the...

  7. 78 FR 79328 - Amendments to Material Control and Accounting Regulations and Proposed Guidance for Fuel Cycle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... Accounting Regulations and Proposed Guidance for Fuel Cycle Facility Material Control and Accounting Plans... accounting (MC&A) of special nuclear material (SNM). The public meeting has been rescheduled for January 9...

  8. 77 FR 28407 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... and Management System (ADAMS): You may access publicly-available documents online in the NRC Library... revised ANSI N15.8 in February 2009. ANSI N15.8-2009 provides guidance on the fundamentals of an SNM...

  9. Active Interrogation of Depleted Uranium Using a Single Pulse, High-Intensity Photon and Mixed Photon-Neutron Source

    NASA Astrophysics Data System (ADS)

    Clemett, Ceri D.; Martin, Philip N.; Hill, Cassie; Threadgold, James R.; Maddock, Robert C.; Campbell, Ben; O'Malley, John; Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.; Zier, Jacob C.; Jackson, Stuart L.; Commisso, Robert J.; Schumer, Joseph W.

    2015-04-01

    Active interrogation is a method used to enhance the likelihood of detection of shielded special nuclear material (SNM); an external source of radiation is used to interrogate a target and to stimulate fission within any SNM present. Radiation produced by the fission process can be detected and used to infer the presence of the SNM. The Atomic Weapons Establishment (AWE) and the Naval Research Laboratory (NRL) have carried out a joint experimental study into the use of single pulse, high-intensity sources of bremsstrahlung x-rays and D(γb, n)H photoneutrons in an active interrogation system. The source was operated in both x-ray-only and mixed x-ray/photoneutron modes, and was used to irradiate a depleted uranium (DU) target which was enclosed by up to 150 g·cm - 2 of steel shielding. Resulting radiation signatures were measured by a suite of over 80 detectors and the data used to characterise detectable fission signatures as a function of the areal mass of the shielding. This paper describes the work carried out and discusses data collected with 3He proportional counters, NaI(Tl) scintillators and Eljen EJ-309 liquid scintillators. Results with the x-ray-only source demonstrate detection ( > 3\\sigmab) of the DU target through a minimum of 113 g·cm - 2 of steel, dropping to 85 g·cm- 2 when using a mixed x-ray/photoneutron source. The 3He proportional counters demonstrate detection ( > 3\\sigmab) of the DU target through the maximum 149. 7 g·cm - 2 steel shielding deployed for both photon and mixed x-ray/photoneutron sources.

  10. Experimental evaluation of the extended Dytlewski-style dead time correction formalism for neutron multiplicity counting

    DOE PAGES

    Lockhart, M.; Henzlova, D.; Croft, S.; ...

    2017-09-20

    Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli (DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory andmore » implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. Here, we discuss and present the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. To assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. In conclusion, the DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.« less

  11. Experimental evaluation of the extended Dytlewski-style dead time correction formalism for neutron multiplicity counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockhart, M.; Henzlova, D.; Croft, S.

    Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli (DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory andmore » implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. Here, we discuss and present the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. To assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. In conclusion, the DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.« less

  12. RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse

    PubMed Central

    Hüttenhofer, Alexander; Kiefmann, Martin; Meier-Ewert, Sebastian; O’Brien, John; Lehrach, Hans; Bachellerie, Jean-Pierre; Brosius, Jürgen

    2001-01-01

    In mouse brain cDNA libraries generated from small RNA molecules we have identified a total of 201 different expressed RNA sequences potentially encoding novel small non-messenger RNA species (snmRNAs). Based on sequence and structural motifs, 113 of these RNAs can be assigned to the C/D box or H/ACA box subclass of small nucleolar RNAs (snoRNAs), known as guide RNAs for rRNA. While 30 RNAs represent mouse homologues of previously identified human C/D or H/ACA snoRNAs, 83 correspond to entirely novel snoRNAs. Among these, for the first time, we identified four C/D box snoRNAs and four H/ACA box snoRNAs predicted to direct modifications within U2, U4 or U6 small nuclear RNAs (snRNAs). Furthermore, 25 snoRNAs from either class lacked antisense elements for rRNAs or snRNAs. Therefore, additional snoRNA targets have to be considered. Surprisingly, six C/D box snoRNAs and one H/ACA box snoRNA were expressed exclusively in brain. Of the 88 RNAs not belonging to either snoRNA subclass, at least 26 are probably derived from truncated heterogeneous nuclear RNAs (hnRNAs) or mRNAs. Short interspersed repetitive elements (SINEs) are located on five RNA sequences and may represent rare examples of transcribed SINEs. The remaining RNA species could not as yet be assigned either to any snmRNA class or to a part of a larger hnRNA/mRNA. It is likely that at least some of the latter will represent novel, unclassified snmRNAs. PMID:11387227

  13. Programming scheme based optimization of hybrid 4T-2R OxRAM NVSRAM

    NASA Astrophysics Data System (ADS)

    Majumdar, Swatilekha; Kingra, Sandeep Kaur; Suri, Manan

    2017-09-01

    In this paper, we present a novel single-cycle programming scheme for 4T-2R NVSRAM, exploiting pulse engineered input signals. OxRAM devices based on 3 nm thick bi-layer active switching oxide and 90 nm CMOS technology node were used for all simulations. The cell design is implemented for real-time non-volatility rather than last-bit, or power-down non-volatility. Detailed analysis of the proposed single-cycle, parallel RRAM device programming scheme is presented in comparison to the two-cycle sequential RRAM programming used for similar 4T-2R NVSRAM bit-cells. The proposed single-cycle programming scheme coupled with the 4T-2R architecture leads to several benefits such as- possibility of unconventional transistor sizing, 50% lower latency, 20% improvement in SNM and ∼20× reduced energy requirements, when compared against two-cycle programming approach.

  14. 10 CFR 810.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of neutrons used to effect SNM production in the “subcritical assembly.” Agreement for cooperation... International Atomic Energy Agency. Non-nuclear-weapon state is a country not recognized as a nuclear-weapon...-Proliferation of Nuclear Weapons. Nuclear reactor means an apparatus, other than a nuclear explosive device...

  15. 10 CFR 810.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of neutrons used to effect SNM production in the “subcritical assembly.” Agreement for cooperation... International Atomic Energy Agency. Non-nuclear-weapon state is a country not recognized as a nuclear-weapon...-Proliferation of Nuclear Weapons. Nuclear reactor means an apparatus, other than a nuclear explosive device...

  16. 75 FR 58446 - Notice of Issuance of Amendment No. 1 for Special Nuclear Material License No. SNM-1227 [AREVA NP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... CONTACT: Rafael L. Rodriguez, Project Manager, Fuel Manufacturing Branch, Division of Fuel Cycle Safety..., Rockville, MD 20852. Telephone: (301) 492-3111; Fax Number: (301) 492-3363; E-mail: Rafael[email protected

  17. 78 FR 67225 - Amendments to Material Control and Accounting Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... Amendments to Material Control and Accounting Regulations AGENCY: Nuclear Regulatory Commission. ACTION... for material control and accounting (MC&A) of special nuclear material (SNM). The goal of this... added to designate material balance areas, item control areas, and custodians? N. Why would calendar...

  18. Enhancing the performance of a tensioned metastable fluid detector based active interrogation system for the detection of SNM in <1 m3 containers using a D-D neutron interrogation source in moderated/reflected geometries

    NASA Astrophysics Data System (ADS)

    Grimes, T. F.; Hagen, A. R.; Archambault, B. C.; Taleyarkhan, R. P.

    2018-03-01

    This paper describes the development of a SNM detection system for interrogating 1m3 cargos via the combination of a D-D neutron interrogation source (with and without reflectors) and tensioned metastable fluid detectors (TMFDs). TMFDs have been previously shown (Taleyarkhan et al., 2008; Grimes et al., 2015; Grimes and Taleyarkhan, 2016; Archambault et al., 2017; Hagen et al., 2016) to be capable of using Threshold Energy Neutron Analysis (TENA) techniques to reject the ∼2.45 MeV D-D interrogating neutrons while still remaining sensitive to >2.45 MeV neutrons resulting from fission in the target (HEU) material. In order to enhance the performance, a paraffin reflector was included around the accelerator head. This reflector was used to direct neutrons into the package to increase the fission signal, lower the energy of the interrogating neutrons to increase the fission cross-section with HEU, and, also to direct interrogating neutrons away from the detectors in order to enhance the required discrimination between interrogating and fission neutrons. Experiments performed with a 239 Pu-Be neutron source and MnO2 indicated that impressive performance gains could be made by placing a parabolic paraffin moderator between the interrogation source and an air-filled cargo container with HEU placed at the center. However, experiments with other cargo fillers (as specified in the well-known ANSI N42.41-2007 report), and with HEU placed in locations other than the center of the package indicated that other reflector geometries might be superior due to over-"focusing" and the increased solid angle effects due to the accommodation of the moderator geometry. The best performance for the worst case of source location and box fill was obtained by placing the reflector only behind the D-D neutron source rather than in front of it. Finally, it was shown that there could be significant gains in the ability to detect concealed SNM by operating the system in multiple geometric configurations. Worst case scenarios were created by filling the box with hydrogenous material and placing the HEU as far away as possible from the neutron source. The performance of the system in the worst-case scenarios were greatly improved by exchanging the location of the accelerator and the opposite TMFD panel half way through interrogation. Using this operation, scenarios with positions of the concealed SNM that were once the most challenging to successfully detect became readily detectable.

  19. Effect of Sacral Neuromodulation on Outcome Measures and Urine Chemokines in Interstitial Cystitis/Painful Bladder Syndrome Patients.

    PubMed

    Peters, Kenneth M; Jayabalan, Nirmal; Bui, Don; Killinger, Kim; Chancellor, Michael; Tyagi, Pradeep

    2015-05-01

    Sacral neuromodulation (SNM) may improve interstitial cystitis/painful bladder syndrome (IC/BPS) symptoms of urinary frequency, urgency and perhaps even pain, but objective measures of improvement are lacking. We evaluated the potential for urinary chemokines to serve as measures of treatment response over time to SNM. Women with IC/BPS undergoing SNM consented for this study. Three-day bladder/pain diaries were collected at baseline and validated Interstitial Cystitis Symptom Problem Index (ICSPI) scores and mid-stream urine specimens were collected at baseline and at 24 weeks after successful implant. Collected urine was screened for infection by dipstick and analyzed for chemokines by luminex xMAP analysis. At baseline (n = 16), urine levels of CXCL-1 positively correlated with pain score (r = 0.63, P = 0.009), urgency (r = 0.61, P = 0.01), ICSPI (r = 0.43, P = 0.09) and daily voids (r = 0.44, P = 0.08). ICSPI and pain scores also positively correlated with sIL-1ra (r = 0.50, P = 0.04) and monocyte chemotactic protein-1 (MCP-1) or CCL2 positively correlated with daily voids (r = 0.45, P = 0.07) only. At 24 weeks, the median ICSPI index fell from 28 to 15 (n = 7, P = 0.008). Urine levels of sIL-1ra (633.8 ± 188.2 vs. 149.9 ± 41.62 pg/mL) and MCP-1 (448.3 ± 11.6 vs. 176.9 ± 46.16 pg/mL) and CCL5 (20.78 ± 4.09 vs. 11.21 ± 4.12 pg/mL) were also significantly reduced at the follow-up relative to baseline values (P = 0.04). Multivariable analysis of data revealed that sIL-1ra and MCP-1 together explained the majority of variance in data. Levels of CXCL-1, CXCL-10, interleukin (IL)-8, vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) were also reduced at 24 weeks, but differences were not significant. Concomitant decrease in urine levels of chemokines especially MCP-1 was associated with treatment response of SNM. These results support the role of chemokines as downstream effectors of neuromodulation response and could serve as potential non-invasive measures of treatment response. NCT01739946. © 2014 Wiley Publishing Asia Pty Ltd.

  20. 78 FR 46829 - Assistance to Foreign Atomic Energy Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... Departments of Commerce and State Approved Activities 9. Medical Isotope Production 10. Activities Carried Out... production of special nuclear material (SNM). Proposed Sec. 810.2(c) would identify exempt activities, some... activities do not involve the production or use of special nuclear material; Production or extraction of...

  1. 75 FR 2163 - Constellation Energy; Notice of Docketing of Special Nuclear Material License SNM-2505 Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 72-8; NRC-2010-0011] Constellation Energy; Notice of... Independent Spent Fuel Storage Installation AGENCY: Nuclear Regulatory Commission. ACTION: Notice of license..., Division of Spent Fuel Storage and Transportation, Office of Nuclear Material Safety and Safeguards, U.S...

  2. 32 CFR 223.5 - Responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regarding nuclear weapons security and the protection of SNM at DoD nuclear reactor facilities as DoD UCNI... UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION (UCNI) § 223.5 Responsibilities. (a) The Under Secretary of Defense... compliance with the DOE program for controlling DOE UCNI. (b) The Assistant Secretary of Defense for Nuclear...

  3. 32 CFR 223.5 - Responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regarding nuclear weapons security and the protection of SNM at DoD nuclear reactor facilities as DoD UCNI... UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION (UCNI) § 223.5 Responsibilities. (a) The Under Secretary of Defense... compliance with the DOE program for controlling DOE UCNI. (b) The Assistant Secretary of Defense for Nuclear...

  4. Effective Atomic Number, Mass Attenuation Coefficient Parameterization, and Implications for High-Energy X-Ray Cargo Inspection Systems

    NASA Astrophysics Data System (ADS)

    Langeveld, Willem G. J.

    The most widely used technology for the non-intrusive active inspection of cargo containers and trucks is x-ray radiography at high energies (4-9 MeV). Technologies such as dual-energy imaging, spectroscopy, and statistical waveform analysis can be used to estimate the effective atomic number (Zeff) of the cargo from the x-ray transmission data, because the mass attenuation coefficient depends on energy as well as atomic number Z. The estimated effective atomic number, Zeff, of the cargo then leads to improved detection capability of contraband and threats, including special nuclear materials (SNM) and shielding. In this context, the exact meaning of effective atomic number (for mixtures and compounds) is generally not well-defined. Physics-based parameterizations of the mass attenuation coefficient have been given in the past, but usually for a limited low-energy range. Definitions of Zeff have been based, in part, on such parameterizations. Here, we give an improved parameterization at low energies (20-1000 keV) which leads to a well-defined Zeff. We then extend this parameterization up to energies relevant for cargo inspection (10 MeV), and examine what happens to the Zeff definition at these higher energies.

  5. 10 CFR 73.71 - Reporting of safeguards events.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... after discovery of the loss of any shipment of SNM or spent fuel, and within one hour after recovery of... Notification System, if the licensee is party to that system. If the Emergency Notification System is... service or other dedicated telephonic system or any other methods that will ensure that a report is...

  6. 10 CFR 73.71 - Reporting of safeguards events.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... after discovery of the loss of any shipment of SNM or spent fuel, and within one hour after recovery of... Notification System, if the licensee is party to that system. If the Emergency Notification System is... service or other dedicated telephonic system or any other methods that will ensure that a report is...

  7. 76 FR 62857 - Notice of Acceptance of Application for Special Nuclear Materials Licensen From Rapiscan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... the following methods: NRC's Public Document Room (PDR): The public may examine and have copied, for a... Manager, Fuel Manufacturing Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear... systems. The SNM would be used as test objects for concept demonstrations and characterization testing...

  8. 76 FR 63672 - Notice of Acceptance of Application for Special Nuclear Materials License From Passport Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Application for Special Nuclear Materials License From Passport Systems, Inc., Opportunity To Request a... special nuclear material (SNM), submitted by Passport Systems, Inc. (Passport or the Applicant). The..., if approved, would authorize Passport to possess and use special nuclear materials under 10 CFR Part...

  9. 77 FR 43506 - DoD Unclassified Controlled Nuclear Information (UCNI)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... Systems. (i) Information on the layout or design of security and alarm systems at a specific DoD SNM or... information is not observable from a public area. (iii) Performance characteristics of installed systems. (5... 0790-AI64 DoD Unclassified Controlled Nuclear Information (UCNI) AGENCY: Department of Defense. ACTION...

  10. 76 FR 68792 - Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ...: Submission for the Office of Management and Budget (OMB) Review; Comment Request AGENCY: Nuclear Regulatory... Control and Accounting of Special Nuclear Material. 3. Current OMB approval number: 3150-0123. 4. The form... requirements for material control and accounting of SNM, and specific performance-based regulations for...

  11. SNM Movement Detection/Radiation Sensors and Advanced Materials Portfolio Review, CdMnTe (CMT) Gamma Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov,A.

    2009-06-02

    The project goals are: (1) Develop CMT radiation detectors - Demonstrate feasibility (Phase 1 is complete) and Improve material properties and device performance; (2) This project will lead to novel radiation detectors - high detection efficiency, high energy-resolution, ambient-temperature operation, and low production cost; and (3) Such detectors are needed in areas of nonproliferation and national security for detection of SNM. Research highlights are: (1) We achieved our Phase-I goal - Demonstration of CMT detector performance approaching that of CZT detectors; (2) Demonstrated that In-doped CMT is much closer to its anticipated performance as radiation detectors than other alternative materials,more » TlBr and HgI{sub 2} - Large crystal volumes, 10{sup 10}{Omega}{center_dot}cm, 3 x 10{sup -3}cm{sup 2}/V, and stable response; and (3) Conducted material and device characterization experiments - Detectors: I-V, {mu}{sub e}, ({mu}{tau}){sub e}, internal E fields, energy spectra, and high-resolution x-ray response mapping data and Materials - DLTS, TCT, PL, EPDs, XRD, PCD and IR transmission.« less

  12. A Neutron Based Interrogation System For SNM In Cargo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Steven Z.; Koltick, David S.

    A complete system has been simulated using experimentally obtained input parameters for the detection of special nuclear materials (SNM). A variation of the associated particle imaging (API) technique, referred to as reverse associated particle imaging detection (RAPID), has been developed in the context of detecting 5-kg spherical samples of U-235 in cargo. The RAPID technique allows for the interrogation of containers at neutron production rates between {approx}1x10{sup 8} neutrons/s and {approx}3x10{sup 8} neutrons/s. The merit of performance for the system is the time to detect the threat material with 95% probability of detection and 10{sup -4} false positive rate permore » interrogated voxel of cargo. Detection times of 5 minutes were found for a maximally loaded cargo container uniformly filled with iron and as low as 1 second in containers loaded to 1/4 of full capacity with either iron or wood. The worse case system performance, 30 minutes interrogation time, occurs for a maximally loaded container containing wood at 0.4 g/cm{sup 3}.« less

  13. The neutron skin thickness in nuclei with clustering at low densities

    NASA Astrophysics Data System (ADS)

    Nooraihan, A.; Usmani, Q. N.; Sauli, Z.; Anwar, K.

    2016-11-01

    This study concentrates on searching for a dependable, fully microscopic theory to find out new behaviours and understand their consequences for theoretical pictures. The models for nuclear structure are tested, refined and developed by acquiring new data [1][2][3]. This data is useful for astrophysical calculations and predictions. In density functional theories, including the ETF theory, the equation of state (EOS) of symmetric nuclear matter (SNM), is an important measure. Empirically, we receive information about quantities relating to SNM, all these measures are thoroughly tested. In the absence of any unswerving knowledge below this density we shall take that energy still rises up to some density, neglecting possible small fluctuations, as the density is brought down. Our discussion at the moment is without the Coulomb forces applicable only for the hypothetical nuclear matter; they are added finally to correctly portray the actual picture in nuclei. Our approach in this study is macroscopic. This work concludes that the neutron skin thickness in nuclei is found to reduce significantly, for the reason of clustering.

  14. Fast Neutron Detection using Pixelated CdZnTe Spectrometers

    DOE PAGES

    Streicher, Michael; Goodman, David; Zhu, Yuefeng; ...

    2017-05-29

    One important important signature of special nuclear materials (SNM) are fast neutrons. Fast neutrons have a low natural background rate and readily penetrate high atomic number materials which easily shield gamma-ray signatures. Thus, fast neutrons provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the smallmore » signals from these recoils. Here, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9 keV x-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally-sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.« less

  15. NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL FROM PHWR'S IN A CLOSED THORIUM FUEL CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleaford, B W; Collins, B A; Ebbinghaus, B B

    2010-04-26

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that {sup 233}U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined to date needmore » to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented.« less

  16. Nuclear Material Attractiveness: An Assessment of Material from PHWR's in a Closed Thorium Fuel Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleaford, Brad W.; Ebbinghaus, B. B.; Bradley, Keith S.

    2010-06-11

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies [ , ] that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that 233U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined tomore » date need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of "attractiveness levels" that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities [ ]. The methodology and key findings will be presented.« less

  17. Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China.

    PubMed

    Zhang, Wanqin; Lang, Qianqian; Wu, Shubiao; Li, Wei; Bah, Hamidou; Dong, Renjie

    2014-03-01

    The characteristics of anaerobic digestion of pig manure from different growth stages were investigated. According to growth stage, batch experiments were performed using gestating sow manure (GSM), swine nursery with post-weaned piglet manure (SNM), growing fattening manure (GFM) and mixed manure (MM) as substrates at four substrate concentrations (40, 50, 65 and 80gVS/L) under mesophilic conditions. The maximum methane yields of MM, SNM, GSM and GFM were 354.7, 328.7, 282.4 and 263.5mLCH4/gVSadded, respectively. Volatile fatty acids/total inorganic carbon (VFA/TIC) ratio increased from 0.10 to 0.89 when loading increased from 40 to 80gVS/L for GFM. The modified Gompertz model shows a better fit to the experimental results than the first order model with a lower difference between measured and predicted methane yields. The kinetic parameters indicated that the methane production curve on the basis of differences in biodegradability of the pig manure at different growth stages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks.

    PubMed

    Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El-Sagheer, Afaf H; Brown, Tom; McHugh, Peter J

    2017-07-14

    During replication-coupled DNA interstrand crosslink (ICL) repair, the XPF-ERCC1 endonuclease is required for the incisions that release, or "unhook", ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL Here, we report that while purified XPF-ERCC1 incises simple ICL-containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single-stranded DNA (ssDNA)-binding replication protein A (RPA) selectively restores XPF-ERCC1 endonuclease activity on this structure. The 5'-3' exonuclease SNM1A can load from the XPF-ERCC1-RPA-induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF-ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo . © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Linac based photofission inspection system employing novel detection concepts

    NASA Astrophysics Data System (ADS)

    Stevenson, John; Gozani, Tsahi; Elsalim, Mashal; Condron, Cathie; Brown, Craig

    2011-10-01

    Rapiscan Systems is developing a LINAC based cargo inspection system for detection of special nuclear material (SNM) in cargo containers. The system, called Photofission Based Alarm Resolution (PBAR) is being developed under a DHD/DNDO Advanced Technology Demonstration (ATD) program. The PBAR system is based on the Rapiscan Eagle P9000 X-ray system, which is a portal system with a commercial 9 MeV LINAC X-ray source. For the purposes of the DNDO ATD program, a conveyor system was installed in the portal to allow scanning and precise positioning of 20 ft ISO cargo containers. The system uses a two step inspection process. In the first step, the basic scan, the container is quickly and completely inspected using two independent radiography arrays: the conventional primary array with high spatial resolution and a lower resolution spectroscopic array employing the novel Z-Spec method. The primary array uses cadmium tungstate (CdWO 4) detectors with conventional current mode readouts using photodiodes. The Z-Spec array uses small plastic scintillators capable of performing very fast (up to 10 8 cps) gamma-ray spectroscopy. The two radiography arrays are used to locate high-Z objects in the image such as lead, tungsten, uranium, which could be potential shielding materials as well as SNM itself. In the current system, the Z-Spec works by measuring the energy spectrum of transmitted X-rays. For high-Z materials the higher end of the energy spectrum is more attenuated than for low-Z materials and thus has a lower mean energy and a narrower width than low- and medium-Z materials. The second step in the inspection process is the direct scan or alarm clearing scan. In this step, areas of the container image, which were identified as high Z, are re-inspected. This is done by precisely repositioning the container to the location of the high-Z object and performing a stationary irradiation of the area with X-ray beam. Since there are a large number of photons in the 9 MV Bremsstrahlung spectrum above the photofission "threshold" of about 6 MeV, the X-ray beam induces numerous fissions if nuclear material is present. The PBAR system looks for the two most prolific fission signatures to confirm the presence of special nuclear materials (SNM). These are prompt neutrons and delayed gamma rays. The PBAR system uses arrays of two types of fast and highly efficient gamma ray detectors: plastic and fluorocarbon scintillators. The latter serves as a detector of fission prompt neutrons using the novel threshold activation detector (TAD) concept as well as a very efficient delayed gamma ray detector. The major advantage of TAD for detecting the prompt neutrons is its insensitivity to the intense source related backgrounds. The current status of the system and experimental results will be shown and discussed.

  20. Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based onmore » current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF.« less

  1. Detection Of Special Nuclear Materials Tagged Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deyglun, Clement; Perot, Bertrand; Carasco, Cedric

    In order to detect Special Nuclear Materials (SNM) in unattended luggage or cargo containers in the field of homeland security, fissions are induced by 14 MeV neutrons produced by an associated particle DT neutron generator, and prompt fission particles correlated with tagged neutron are detected by plastic scintillators. SMN produce high multiplicity events due to induced fissions, whereas nonnuclear materials produce low multiplicity events due to cross-talk, (n,2n) or (n,n'γ) reactions. The data acquisition electronics is made of compact FPGA boards. The coincidence window is triggered by the alpha particle detection, allowing to tag the emission date and direction ofmore » the 14 MeV interrogating neutron. The first part of the paper presents experiment vs. calculation comparisons to validate MCNP-PoliMi simulations and the post-processing tools developed with the data analysis framework ROOT. Measurements have been performed using different targets (iron, lead, graphite), first with small plastic scintillators (10 x 10 x 10 cm{sup 3}) and then with large detectors (10 x 10 x 100 cm{sup 3}) to demonstrate that nuclear materials can be differentiated from nonnuclear dense materials (iron, lead) in iron and wood matrixes. A special attention is paid on SNM detection in abandoned luggage. In the second part of the paper, the performances of a cargo container inspection system are studied by numerical simulation, following previous work reported in. Detectors dimensions and shielding against the neutron generator background are optimized for container inspection. Events not correlated to an alpha particle (uncorrelated background), counting statistics, time and energy resolutions of the data acquisition system are all taken into account in a realistic numerical model. The impact of the container matrix (iron, ceramic, wood) has been investigated by studying the system capability to detect a few kilograms of SNM in different positions in the cargo container, within 10 min acquisitions. (authors)« less

  2. Task-discriminative space-by-time factorization of muscle activity

    PubMed Central

    Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien

    2015-01-01

    Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment. PMID:26217213

  3. Task-discriminative space-by-time factorization of muscle activity.

    PubMed

    Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien

    2015-01-01

    Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment.

  4. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  5. Cellular GABAergic neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) immunostaining levels are increased in the ventral tegmental area of the human Alcohol Use Disorder patients: A postmortem study

    PubMed Central

    Hasirci, A. Sait; Maldonado-Devincci, Antoniette M.; Beattie, Matthew C.; O'Buckley, Todd K.; Morrow, A. Leslie

    2016-01-01

    Background The GABAergic neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP, allopregnanolone) enhances GABAergic activity and produces subjective effects similar to ethanol. The effect of chronic alcohol exposure on 3α,5α-THP concentrations has been studied in mouse, rat, and monkey limbic brain areas. Chronic ethanol exposure produced divergent brain region and cell specific changes in 3α,5α-THP concentrations in animal studies. However, 3α,5α-THP levels in similar human brain regions have never been examined in individuals diagnosed with alcohol use disorder (AUD). Therefore, we used immunohistochemistry to examine 3α,5α-THP levels in the ventral tegmental area (VTA), substantia nigra pars medialis (SNM), and amygdala of human postmortem brains of patients diagnosed with AUD compared to social drinkers. The effects of sex and liver disease on 3α,5α-THP concentrations were examined in the aforementioned brain regions. Methods Human postmortem brains of AUD patients and age-matched controls were obtained from the New South Wales Brain Tissue Resource Center. Immunohistochemistry was performed using anti-3α,5α-THP antibody on formalin fixed and paraffin embedded brain sections to detect cellular 3α,5α-THP levels. Immunoreactivity was analyzed by pixel density/mm2 for the comparison between AUD patients and controls. Results 3α,5α-THP immunoreactivity was increased by 23.2±9% in the VTA of AUD patients compared to age matched controls (p= 0.014). Moreover, a 29.6±10% increase in 3α,5α-THP immunoreactivity was observed in the SNM of male AUD patients compared to male controls (p<0.01), but not in female subjects. 3α,5α-THP immunoreactivity in the VTA and SNM regions did not differ between non-cirrhotic and cirrhotic AUD patients. A sex difference in 3α,5α-THP immunoreactivity (female 51±18% greater than male) was observed among control subjects in the SNM, but no other brain region. 3α,5α-THP immunoreactivity in the basolateral and lateral amygdala were negatively correlated with the length of the tissue fixation time as well as the age of the subjects, precluding assessment of the effect of AUD. Conclusions Cellular 3α,5α-THP levels in VTA are increased in human AUD patients, an effect that is likely independent of sex and liver disease. The differences between animal models and human studies should be factored into the interpretation of the physiological significance of elevated 3α,5α-THP levels in humans. PMID:28068457

  6. A highly symmetrical 10 transistor 2-read/write dual-port static random access memory bitcell design in 28 nm high-k/metal-gate planar bulk CMOS technology

    NASA Astrophysics Data System (ADS)

    Ishii, Yuichiro; Tanaka, Miki; Yabuuchi, Makoto; Sawada, Yohei; Tanaka, Shinji; Nii, Koji; Lu, Tien Yu; Huang, Chun Hsien; Sian Chen, Shou; Tse Kuo, Yu; Lung, Ching Cheng; Cheng, Osbert

    2018-04-01

    We propose a highly symmetrical 10 transistor (10T) 2-read/write (2RW) dual-port (DP) static random access memory (SRAM) bitcell in 28 nm high-k/metal-gate (HKMG) planar bulk CMOS. It replaces the conventional 8T 2RW DP SRAM bitcell without any area overhead. It significantly improves the robustness of process variations and an asymmetric issue between the true and bar bitline pairs. Measured data show that read current (I read) and read static noise margin (SNM) are respectively boosted by +20% and +15 mV by introducing the proposed bitcell with enlarged pull-down (PD) and pass-gate (PG) N-channel MOSs (NMOSs). The minimum operating voltage (V min) of the proposed 256 kbit 10T DP SRAM is 0.53 V in the TT process, 25 °C under the worst access condition with read/write disturbances, and improved by 90 mV (15%) compared with the conventional one.

  7. 78 FR 78411 - Consideration of Approval of Transfer of Renewed Facility Operating Licenses, Materials Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... licenses for nuclear power plants and spent fuel storage facilities from the current holder, Constellation... Independent Spent Fuel Storage Installation (ISFSI) Materials License No. SNM-2505; Nine Mile Point Nuclear.... A request for a hearing must be filed by January 15, 2014. Any potential party as defined in Sec. 2...

  8. 75 FR 23820 - Notice of Docketing of Amendment Request for Materials License No. SNM-2506; Northern States...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... INFORMATION CONTACT: Pamela Longmire, Ph.D., Project Manager, Licensing Branch, Division of Spent Fuel Storage... Generating Plant (PINGP), Unit Nos. 1 and 2, site in Goodhue County, Minnesota. The TN-40 cask is currently..., higher burnup spent fuel used in the PINGP reactor as well as associated changes to the ISFSI's technical...

  9. 76 FR 55711 - Confirmatory Order Modifying License No. SNM-2001 for the Shallow Land Disposal Area, Parks...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ..., relax or rescind any of the above conditions upon demonstration by the Licensee of good cause. V Any... within 20 days of its publication in the Federal Register. Where good cause is shown, consideration will..., and include a statement of good cause for the extension. All documents filed in NRC adjudicatory...

  10. Tagged Neutron Source for API Inspection Systems with Greatly Enhanced Spatial Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-06-04

    We recently developed induced fission and transmission imaging methods with time- and directionally-tagged neutrons offer new capabilities for characterization of fissile material configurations and enhanced detection of special nuclear materials (SNM). An Advanced Associated Particle Imaging (API) generator with higher angular resolution and neutron yield than existing systems is needed to fully exploit these methods.

  11. A Multisite Randomized Trial of Social Norms Marketing Campaigns to Reduce College Student Drinking: A Replication Failure

    ERIC Educational Resources Information Center

    DeJong, William; Schneider, Shari Kessel; Towvim, Laura Gomberg; Murphy, Melissa J.; Doerr, Emily E.; Simonsen, Neal R.; Mason, Karen E.; Scribner, Richard A.

    2009-01-01

    A 14-site randomized trial tested the effectiveness of social norms marketing (SNM) campaigns, which present accurate student survey data in order to correct misperceptions of subjective drinking norms and thereby drive down alcohol use. Cross-sectional student surveys were conducted by mail at baseline and at posttest 3 years later. Hierarchical…

  12. 77 FR 22362 - Exemption Requests for Special Nuclear Material License SNM-362, Department of Commerce...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... irradiation room at a panoramic irradiator be equipped with a fire extinguishing system capable of extinguishing a fire without the entry of personnel into the room. The system for the irradiation room must have... 10 CFR 36.27(b) is to deny the exemption request and require NIST to provide the irradiation room...

  13. Development of a Time-tagged Neutron Source for SNM Detection

    DOE PAGES

    Ji, Qing; Ludewigt, Bernhard; Wallig, Joe; ...

    2015-06-18

    Associated particle imaging (API) is a powerful technique for special nuclear material (SNM) detection and characterization of fissile material configurations. A sealed-tube neutron generator has been under development by Lawrence Berkeley National Laboratory to reduce the beam spot size on the neutron production target to 1 mm in diameter for a several-fold increase in directional resolution and simultaneously increases the maximum attainable neutron flux. A permanent magnet 2.45 GHz microwave-driven ion source has been adopted in this time-tagged neutron source. This type of ion source provides a high plasma density that allows the use of a sub-millimeter aperture for themore » extraction of a sufficient ion beam current and lets us achieve a much reduced beam spot size on target without employing active focusing. The design of this API generator uses a custom-made radial high voltage insulator to minimize source to neutron production target distance and to provide for a simple ion source cooling arrangement. Preliminary experimental results showed that more than 100 µA of deuterium ions have been extracted, and the beam diameter on the neutron production target is around 1 mm.« less

  14. MCNP Simulation Benchmarks for a Portable Inspection System for Narcotics, Explosives, and Nuclear Material Detection

    NASA Astrophysics Data System (ADS)

    Alfonso, Krystal; Elsalim, Mashal; King, Michael; Strellis, Dan; Gozani, Tsahi

    2013-04-01

    MCNPX simulations have been used to guide the development of a portable inspection system for narcotics, explosives, and special nuclear material (SNM) detection. The system seeks to address these threats to national security by utilizing a high-yield, compact neutron source to actively interrogate the threats and produce characteristic signatures that can then be detected by radiation detectors. The portability of the system enables rapid deployment and proximity to threats concealed in small spaces. Both dD and dT electronic neutron generators (ENG) were used to interrogate ammonium nitrate fuel oil (ANFO) and cocaine hydrochloride, and the detector response of NaI, CsI, and LaBr3 were compared. The effect of tungsten shielding on the neutron flux in the gamma ray detectors was investigated, while carbon, beryllium, and polyethylene ENG moderator materials were optimized by determining the reaction rate density in the threats. In order to benchmark the modeling results, experimental measurements are compared with MCNPX simulations. In addition, the efficiency and die-away time of a portable differential die-away analysis (DDAA) detector using 3He proportional counters for SNM detection has been determined.

  15. Nickel Ferrite Nanoparticles Anchored onto Silica Nanofibers for Designing Magnetic and Flexible Nanofibrous Membranes.

    PubMed

    Hong, Feifei; Yan, Chengcheng; Si, Yang; He, Jianxin; Yu, Jianyong; Ding, Bin

    2015-09-16

    Many applications proposed for magnetic silica nanofibers require their assembly into a cellular membrane structure. The feature to keep structure stable upon large deformation is crucial for a macroscopic porous material which functions reliably. However, it remains a key issue to realize robust flexibility in two-dimensional (2D) magnetic silica nanofibrous networks. Here, we report that the combination of electrospun silica nanofibers with zein dip-coating can lead to the formation of flexible, magnetic, and hierarchical porous silica nanofibrous membranes (SNM). The 290 nm diameter silica nanofibers act as templates for the uniform anchoring of nickel ferrite nanoparticles (size of 50 nm). Benefiting from the homogeneous and stable nanofiber-nanoparticle composite structure, the resulting magnetic SNM can maintain their structure integrity under repeated bending as high as 180° and can facilely recover. The unique hierarchical structure also provides this new class of silica membrane with integrated properties of ultralow density, high porosity, large surface area, good magnetic responsiveness, robust dye adsorption capacity, and effective emulsion separation performance. Significantly, the synthesis of such fascinating membranes may provide new insight for further application of silica in a self-supporting, structurally adaptive, and 2D membrane form.

  16. Simulations of Multi-Gamma Coincidences From Neutron-Induced Fission in Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Kane, Steven; Gozani, Tsahi; King, Michael J.; Kwong, John; Brown, Craig; Gary, Charles; Firestone, Murray I.; Nikkel, James A.; McKinsey, Daniel N.

    2013-04-01

    A study is presented on the detection of illicit special nuclear materials (SNM) in cargo containers using a conceptual neutron-based inspection system with xenon-doped liquefied argon (LAr(Xe)) scintillation detectors for coincidence gamma-ray detection. For robustness, the system is envisioned to exploit all fission signatures, namely both prompt and delayed neutron and gamma emissions from fission reactions induced in SNM. However, this paper focuses exclusively on the analysis of the prompt gamma ray emissions. The inspection system probes a container using neutrons produced either by (d, D) or (d, T) in pulsed form or from an associated particle neutron generator to exploit the associated particle imaging (API) technique, thereby achieving background reduction and imaging. Simulated signal and background estimates were obtained in MCNPX (2.7) for a 2 kg sphere of enriched uranium positioned at the center of a 1m × 1m × 1m container, which is filled uniformly with wood or iron cargos at 0.1 g/cc or 0.4 g/cc. Detection time estimates are reported assuming probabilities of detection of 95% and false alarm of 0.5%.

  17. Rapid response sensor for analyzing Special Nuclear Material

    DOE PAGES

    Mitra, S. S.; Doron, O.; Chen, A. X.; ...

    2015-06-18

    Rapid in-situ analytical techniques are attractive for characterizing Special Nuclear Material (SNM). Present techniques are time consuming, and require sample dissolution. Proof-of-principal studies are performed to demonstrate the utility of employing low energy neutrons from a portable pulsed neutron generator for non-destructive isotopic analysis of nuclear material. In particular, time-sequenced data acquisition, operating synchronously with the pulsing of a neutron generator, partitions the characteristic elemental prompt gamma-rays according to the type of the reaction; inelastic neutron scattering reactions during the ON state and thermal neutron capture reactions during the OFF state of the generator. Thus, the key challenge is isolatingmore » these signature gamma- rays from the prompt fission and β-delayed gamma-rays that are also produced during the neutron interrogation. A commercial digital multi-channel analyzer has been specially customized to enable time-resolved gamma-ray spectral data to be acquired in multiple user-defined time bins within each of the ON/OFF gate periods of the neutron generator. Preliminary results on new signatures from depleted uranium as well as modeling and benchmarking of the concept are presented, however this approach should should be applicable for virtually all forms of SNM.« less

  18. Homeland Security and Contraband Detection

    NASA Astrophysics Data System (ADS)

    Lanza, R. C.

    Detection of contraband and illicit materials has become increasingly important, especially since the terrorist attacks in the United States on September 11, 2001. The nature of the detection problem embodies both physics issues and a set of operational constraints that limit the practical application of neutrons. The issue under consideration is detection of materials that are considered serious threats; these may include explosives; radioactive materials, fissile materials, and other materials associated with nuclear weapons, often referred to as special nuclear material (SNM). The overriding constraint is in the physics: systems must be based on clean physics; but unlike physics experiments, detection systems work under the limitation that materials must be identified nonintrusively, without interrupting the normal flow of commerce and with a high probability of detection and a low probability of false alarms. A great deal of work has been reported in the literature on neutron-based techniques for detecting explosives and drugs. The largest impetus by far for detecting explosives comes from aviation industry requirements for inspecting luggage and, to a lesser extent, cargo. The major alternative techniques are either X-ray-based or chemical trace detection methods that look for small traces of explosive residues. The limitations of the X-ray and trace methods in detecting explosives are well known, but currently (2008) it is safe to say that no neutron- or nuclear-based technique is being used routinely for security inspection, despite extensive development of these methods. Smuggling of nuclear materials has become a concern, and neutron techniques are particularly attractive for detecting them. Given the limitations of X-ray techniques and the need for SNM detection, it is now useful to reexamine neutron methodologies, particularly imaging. A significant number of neutron-based techniques have been proposed and are under development for security applications, especially SNM detection, but describing how they work is beyond the scope of the chapter. Instead, one particular approach to neutron imaging, neutron resonance radiography (NRR), is discussed in detail as it illustrates many of the issues connected with imaging and detection.

  19. Left Handed Materials Based on Magnetic Nanocomposites

    DTIC Science & Technology

    2006-10-18

    theory that unifies DNMs and SNMs as a function of two flmdamental material parameters: quality factors for permittivity (Qe=e’/e") and permeability (Qu...simultaneously negative effective permeability/uff and permittivity Seff to form LHM or only single negative parameter (SNM) to form negative indexed...developed a theory that unifies DNMs and SNMs as a function of two fundamental material parameters: quality factors for permittivity (Q, = -’/ 6") and

  20. Development of an Integrated Robotic Radioisotope Identification and Location System

    DTIC Science & Technology

    2009-05-05

    TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Development of an Integrated Robotic Radioisotope...system within a robotic base in order to inspect an area for either radioisotopes that could be used for a radiological dispersal device (RDD) or are...classified as Special Nuclear Material (SNM). In operation, at a given location in the room, the robot rotates about its circumference searching for

  1. The Efficacy of Denaturing Actinide Elements as a Means of Decreasing Materials Attractiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hase, Kevin R.; Ebbinghaus, Bartley B.; Sleaford, Brad W.

    2013-07-01

    This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM). This study considers the concept of denaturing as applied to the actinide elements present in spent fuel as a means to reduce materials attractiveness. Highly attractive materials generally have low values of bare critical mass, heat content, and dose.

  2. Numerical convergence and validation of the DIMP inverse particle transport model

    DOE PAGES

    Nelson, Noel; Azmy, Yousry

    2017-09-01

    The data integration with modeled predictions (DIMP) model is a promising inverse radiation transport method for solving the special nuclear material (SNM) holdup problem. Unlike previous methods, DIMP is a completely passive nondestructive assay technique that requires no initial assumptions regarding the source distribution or active measurement time. DIMP predicts the most probable source location and distribution through Bayesian inference and quasi-Newtonian optimization of predicted detector re-sponses (using the adjoint transport solution) with measured responses. DIMP performs well with for-ward hemispherical collimation and unshielded measurements, but several considerations are required when using narrow-view collimated detectors. DIMP converged well to themore » correct source distribution as the number of synthetic responses increased. DIMP also performed well for the first experimental validation exercise after applying a collimation factor, and sufficiently reducing the source search vol-ume's extent to prevent the optimizer from getting stuck in local minima. DIMP's simple point detector response function (DRF) is being improved to address coplanar false positive/negative responses, and an angular DRF is being considered for integration with the next version of DIMP to account for highly collimated responses. Overall, DIMP shows promise for solving the SNM holdup inverse problem, especially once an improved optimization algorithm is implemented.« less

  3. Containment Prospectus for the PIANO Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhard, N R

    2001-03-23

    PIANO is a dynamic, subcritical, zero-yield experiment intended for execution in the U1a.102C drift of the U1a complex at the Nevada Test Site (NTS) (Figure 1). The data from the PIANO experiment will be used in the Stockpile Stewardship Program to assess the aging of nuclear weapon components and to better model the long-term performance of the weapons in the enduring stockpile. The PIANO experiment is composed of one experimental package. The experimental package will have high explosive (HE) and special nuclear material (SNM) in a subcritical assembly. The containment plan for the PIANO series of experiments utilizes a two-containment-vesselmore » concept. The first Containment vessel is formed by the primary containment barrier that seals the U1a.102C drift. The second containment vessel is formed by the secondary containment barrier in the U100 drift. The PIANO experiment is the final experiment to be conducted in the U1a.102C alcove. It will be an ''open'' experiment--meaning that PIANO will not utilize a confinement vessel as the previous OBOE experiments in this alcove did. We expect that the SNM from the PIANO experiment will be fully contained within the first containment vessel.« less

  4. A Prototype Large Area Detector Module for Muon Scattering Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steer, C.A.; Boakes, J.; Burns, J.

    Abstract-Shielded special nuclear materials (SNM) are of concern as some fissile isotopes have low gamma and neutron emission rates. These materials are also easily shielded to the point where their passive emissions are comparable to background. Consequently, shielded SNM is very challenging for passive radiation detection portals which scan cargo containers. One potential solution for this is to utilise the natural cosmic ray muon background and examine how these muons scatter from materials inside the container volume, terms; the muon scattering tomography (MST) technique measures the three-dimensional localised scattering at all points within a cargo container, providing a degree ofmore » material discrimination. There is the additional benefit that the MST signal increases with the presence of more high density shielding materials, in contrast to passive radiation detection. Simulations and calculations suggest that the effectiveness of the technique is sensitive to the tracking accuracy amongst other parameters, motivating the need to develop practical detector systems that are capable of tracking cosmic ray muons. To this end, we have constructed and tested a 2 m by 2 m demonstration module based on gaseous drift chambers and triggered by a large area scintillator-based detector, which is readout by wavelength shifting fibres. We discuss its design, construction, characterisation and operational challenges. (authors)« less

  5. Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mckerley, Bill; Bustamante, Jacqueline M; Costa, David A

    2010-01-01

    We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is inmore » support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the locations of special nuclear material (SNM) to reduce the cost of securing many SNM facilities. The removal of SPR-II from SNL was a significant accomplishment in SNL's de-inventory efforts and played a key role in reducing the number of locations requiring the expensive security measures required for category 1 and 2 SNM facilities. A similar pulse reactor was fabricated at the Y-12 National Security Complex beginning in the late 1960's. This Aberdeen Pulse Reactor (APR) was operated at the Army Pulse Radiation Facility (APRF) located at the Aberdeen Test Center (ATC) in Maryland. When the APRF was shut down in 2003, a portion of the DOE-owned Special Nuclear Material (SNM) was shipped to an interim facility for storage. Subsequently, the DOE determined that the material from both the SPR-II and the APR would be processed in the H-Canyon at the Savannah River Site (SRS). Because of the SRS receipt requirements some of the material was sent to the Los Alamos National Laboratory (LANL) for size-reduction prior to shipment to the SRS for final disposition.« less

  6. Silicon Photomultipliers for Compact Neutron Scatter Cameras

    NASA Astrophysics Data System (ADS)

    Ruch, Marc L.

    The ability to locate and identify special nuclear material (SNM) is critical for treaty verification and emergency response applications. SNM is used as the nuclear explosive in a nuclear weapon. This material emits neutrons, either spontaneously or when interrogated. The ability to form an image of the neutron source can be used for characterization and/or to confirm that the item is a weapon by determining whether its shape is consistent with that of a weapon. Additionally, treaty verification and emergency response applications might not be conducive to non-portable instruments. In future weapons treaties, for example, it is unlikely that host countries will make great efforts to facilitate large, bulky, and/or fragile inspection equipment. Furthermore, inspectors and especially emergency responders may need to access locations not easily approachable by vehicles. Therefore, there is a considerable need for a compact, human-portable neutron imaging system. Of the currently available neutron imaging technologies, only neutron scatter cameras (NSCs) can be made truly compact because aperture-based imagers, and time-encoded imagers, rely on large amounts of materials to modulate the neutron signal. NSCs, in contrast, can be made very small because most of the volume of the imager can be filled with active detector material. Also, unlike other neutron imaging technologies, NSCs have the inherent ability to act as neutron spectrometers which gives them an additional means of identifying a neutron source. Until recently, NSCs have relied on photomultiplier tubes (PMT) readouts, which are bulky and fragile, require high voltage, and are very sensitive to magnetic fields. Silicon photomultipliers (SiPMs) do not suffer from these drawbacks and are comparable to PMTs in many respects such as gain, and cost with better time resolution. Historically, SiPMs have been too noisy for these applications; however, recent advancements have greatly reduced this issue and they have now been shown to be viable alternatives to PMTs for neutron detection applications. In this thesis, the development of a handheld NSC based on SiPMs coupled to stilbene bars is presented. An algorithm for performing image reconstruction with this type of device is detailed. Prototype design optimization is achieved using a series of simulations and the construction of the optimized prototype is described. The device is calibrated through a series of collimated measurements, backscatter-gated measurements, and a time-of-flight measurement. Experimental imaging and spectroscopic results are presented for a measurement of a Cf-252 spontaneous fission source. Simulated detector response, based on measurements performed with components of the design, demonstrates that fission sources of different sizes would be distinguishable. Notably, a significant quantity of plutonium can be confidently distinguished from a point neutron source.

  7. High Cycle Fatigue Prediction for Mistuned Bladed Disks with Fully Coupled Fluid-Structural Interaction

    DTIC Science & Technology

    2006-06-01

    response (time domain) structural vibration model for mistuned rotor bladed disk based on the efficient SNM model has been developed. The vi- bration...airfoil and 3D wing, unsteady vortex shedding of a stationary cylinder, induced vibration of a cylinder, forced vibration of a pitching airfoil, induced... vibration and flutter boundary of 2D NACA 64A010 transonic airfoil, 3D plate wing structural response. The predicted results agree well with benchmark

  8. Holdup measurement for nuclear fuel manufacturing plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zucker, M.S.; Degen, M.; Cohen, I.

    1981-07-13

    The assay of nuclear material holdup in fuel manufacturing plants is a laborious but often necessary part of completing the material balance. A range of instruments, standards, and a methodology for assaying holdup has been developed. The objectives of holdup measurement are ascertaining the amount, distribution, and how firmly fixed the SNM is. The purposes are reconciliation of material unbalance during or after a manufacturing campaign or plant decommissioning, to decide security requirements, or whether further recovery efforts are justified.

  9. A Comparative Study of Single-pulse and Double-pulse Laser-Induced Breakdown Spectroscopy with Uranium-containing Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrodzki, P. J.; Becker, J. R.; Diwakar, P. K.

    Laser-induced breakdown spectroscopy (LIBS) holds potential advantages in special nuclear material (SNM) sensing and nuclear forensics which require rapid analysis, minimal sample preparation and stand-off distance capability. SNM, such as U, however, result in crowded emission spectra with LIBS, and characteristic emission lines are challenging to discern. It is well-known that double-pulse LIBS (DPLIBS) improves the signal intensity for analytes over conventional single-pulse LIBS (SPLIBS). This study investigates U signal in a glass matrix using DPLIBS and compares to signal features obtained using SPLIBS. DPLIBS involves sequential firing of 1.06 µm Nd:YAG pre-pulse and 10.6 µm TEA CO2 heating pulsemore » in near collinear geometry. Optimization of experimental parameters including inter-pulse delay and energy follows identification of characteristic lines and signals for bulk analyte Ca and minor constituent analyte U for both DPLIBS and SPLIBS. Spatial and temporal coupling of the two pulses in the proposed DPLIBS technique yields improvements in analytical merits with negligible further damage to the sample compared to SPLIBS. Subsequently, the study discusses optimum plasma emission conditions of U lines and relative figures of merit in both SPLIBS and DPLIBS. Investigation into plasma characteristics also addresses plausible mechanisms related to observed U analyte signal variation between SPLIBS and DPLIBS.« less

  10. Explosives (and other threats) detection using pulsed neutron interrogation and optimized detectors

    NASA Astrophysics Data System (ADS)

    Strellis, Dan A.; Elsalim, Mashal; Gozani, Tsahi

    2011-06-01

    We have previously reported results from a human-portable system using neutron interrogation to detect contraband and explosives. We summarized our methodology for distinguishing threat materials such as narcotics, C4, and mustard gas in the myriad of backgrounds present in the maritime environment. We are expanding our mission for the Domestic Nuclear Detection Office (DNDO) to detect Special Nuclear Material (SNM) through the detection of multiple fission signatures without compromising the conventional threat detection performance. This paper covers our initial investigations into using neutrons from compact pulsed neutron generators via the d(D,n)3He or d(T,n)α reactions with energies of ~2.5 and 14 MeV, respectively, for explosives (and other threats) detection along with a variety of gamma-ray detectors. Fast neutrons and thermal neutrons (after successive collisions) can stimulate the emission of various threat detection signatures. For explosives detection, element-specific gamma-ray signatures via the (n,n'γ) inelastic scattering reaction and the (n,'γ) thermal capture reaction are detected. For SNM, delayed gamma-rays following fission can be measured with the same detector. Our initial trade-off investigations of several gamma-ray detectors types (NaI, CsI, LaBr3, HPGe) for measuring gamma-ray signatures in a pulsed neutron environment for potential application in a human-portable active interrogation system are covered in this paper.

  11. Active Neutron-Based Interrogation System with D-D Neutron Source for Detection of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Misawa, T.; Yagi, T.; Pyeon, C. H.; Kimura, M.; Masuda, K.; Ohgaki, H.

    2015-10-01

    The detection of special nuclear materials (SNM) is an important issue for nuclear security. The interrogation systems used in a sea port and an airport are developed in the world. The active neutron-based interrogation system is the one of the candidates. We are developing the active neutron-based interrogation system with a D-D fusion neutron source for the nuclear security application. The D-D neutron source is a compact discharge-type fusion neutron source called IEC (Inertial-Electrostatic Confinement fusion) device which provides 2.45 MeV neutrons. The nuclear materials emit the highenergy neutrons by fission reaction. High-energy neutrons with energies over 2.45 MeV amount to 30% of all the fission neutrons. By using the D-D neutron source, the detection of SNMs is considered to be possible with the attention of fast neutrons if there is over 2.45 MeV. Ideally, neutrons at En>2.45 MeV do not exist if there is no nuclear materials. The detection of fission neutrons over 2.45 MeV are hopeful prospect for the detection of SNM with a high S/N ratio. In the future, the experiments combined with nuclear materials and a D-D neutron source will be conducted. Furthermore, the interrogation system will be numerically investigated by using nuclear materials, a D-D neutron source, and a steel container.

  12. Detection of special nuclear materials with the associate particle technique

    NASA Astrophysics Data System (ADS)

    Carasco, Cédric; Deyglun, Clément; Pérot, Bertrand; Eléon, Cyrille; Normand, Stéphane; Sannié, Guillaume; Boudergui, Karim; Corre, Gwenolé; Konzdrasovs, Vladimir; Pras, Philippe

    2013-04-01

    In the frame of the French trans-governmental R&D program against chemical, biological, radiological, nuclear and explosives (CBRN-E) threats, CEA is studying the detection of Special Nuclear Materials (SNM) by neutron interrogation with fast neutrons produced by an associated particle sealed tube neutron generator. The deuterium-tritium fusion reaction produces an alpha particle and a 14 MeV neutron almost back to back, allowing tagging neutron emission both in time and direction with an alpha particle position-sensitive sensor embedded in the generator. Fission prompt neutrons and gamma rays induced by tagged neutrons which are tagged by an alpha particle are detected in coincidence with plastic scintillators. This paper presents numerical simulations performed with the MCNP-PoliMi Monte Carlo computer code and with post processing software developed with the ROOT data analysis package. False coincidences due to neutron and photon scattering between adjacent detectors (cross talk) are filtered out to increase the selectivity between nuclear and benign materials. Accidental coincidences, which are not correlated to an alpha particle, are also taken into account in the numerical model, as well as counting statistics, and the time-energy resolution of the data acquisition system. Such realistic calculations show that relevant quantities of SNM (few kg) can be distinguished from cargo and shielding materials in 10 min acquisitions. First laboratory tests of the system under development in CEA laboratories are also presented.

  13. DNDO Report: Predicting Solar Modulation Potentials for Modeling Cosmic Background Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behne, Patrick Alan

    The modeling of the detectability of special nuclear material (SNM) at ports and border crossings requires accurate knowledge of the background radiation at those locations. Background radiation originates from two main sources, cosmic and terrestrial. Cosmic background is produced by high-energy galactic cosmic rays (GCR) entering the atmosphere and inducing a cascade of particles that eventually impact the earth’s surface. The solar modulation potential represents one of the primary inputs to modeling cosmic background radiation. Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit charge] of a cosmic ray particle inside the heliosphere…” Modulationmore » potential, a function of elevation, location, and time, shares an inverse relationship with cosmic background radiation. As a result, radiation detector thresholds require adjustment to account for differing background levels, caused partly by differing solar modulations. Failure to do so can result in higher rates of false positives and failed detection of SNM for low and high levels of solar modulation potential, respectively. This study focuses on solar modulation’s time dependence, and seeks the best method to predict modulation for future dates using Python. To address the task of predicting future solar modulation, we utilize both non-linear least squares sinusoidal curve fitting and cubic spline interpolation. This material will be published in transactions of the ANS winter meeting of November, 2016.« less

  14. Area efficient layout design of CMOS circuit for high-density ICs

    NASA Astrophysics Data System (ADS)

    Mishra, Vimal Kumar; Chauhan, R. K.

    2018-01-01

    Efficient layouts have been an active area of research to accommodate the greater number of devices fabricated on a given chip area. In this work a new layout of CMOS circuit is proposed, with an aim to improve its electrical performance and reduce the chip area consumed. The study shows that the design of CMOS circuit and SRAM cells comprising tapered body reduced source fully depleted silicon on insulator (TBRS FD-SOI)-based n- and p-type MOS devices. The proposed TBRS FD-SOI n- and p-MOSFET exhibits lower sub-threshold slope and higher Ion to Ioff ratio when compared with FD-SOI MOSFET and FinFET technology. Other parameters like power dissipation, delay time and signal-to-noise margin of CMOS inverter circuits show improvement when compared with available inverter designs. The above device design is used in 6-T SRAM cell so as to see the effect of proposed layout on high density integrated circuits (ICs). The SNM obtained from the proposed SRAM cell is 565 mV which is much better than any other SRAM cell designed at 50 nm gate length MOS device. The Sentaurus TCAD device simulator is used to design the proposed MOS structure.

  15. Enhanced Palletized Flatrack (EPF) Transportability Testing on the Palletized Loading System (PLS) Truck/Trailer

    DTIC Science & Technology

    1994-03-01

    AND THE 7.X 4 C12’r RIGE PA SBOON PER NSONS OF BOX AND HAVINM BIYENSI1ON OF 17-AND2 LONG BY 11-1/2" WIDE BY 8-14’" HIOP, MRE SN)M. MAIMUM LADO WEIGHT O...INSTALL EACH STRAP FROM A TIEDOWN ANCHOR ON SIDE OF FATRACK, AROUND ENC OF PALLET AT EACH LOCATION SHOWN. TO A TI MWN ACHOR ON THE OPPOSITE SIDE OF

  16. Nuclear Weapons Materials Gone Missing: What Does History Teach?

    DTIC Science & Technology

    2014-11-01

    ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army War...Strategic Studies Institute of the U.S. Army War College. The volume features re- search done over the last 2 years. Funding for this project came from the...Cochran: The statistical distribution of MUF will have a given one- sigma and two- sigma range. A MUF of zero does not mean that SNM [special nuclear

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, H.; Fullwood, R.; Glancy, J.

    This is the second volume of a two volume report on the VISA method for evaluating safeguards at fixed-site facilities. This volume contains appendices that support the description of the VISA concept and the initial working version of the method, VISA-1, presented in Volume I. The information is separated into four appendices, each describing details of one of the four analysis modules that comprise the analysis sections of the method. The first appendix discusses Path Analysis methodology, applies it to a Model Fuel Facility, and describes the computer codes that are being used. Introductory material on Path Analysis given inmore » Chapter 3.2.1 and Chapter 4.2.1 of Volume I. The second appendix deals with Detection Analysis, specifically the schemes used in VISA-1 for classifying adversaries and the methods proposed for evaluating individual detection mechanisms in order to build the data base required for detection analysis. Examples of evaluations on identity-access systems, SNM portal monitors, and intrusion devices are provided. The third appendix describes the Containment Analysis overt-segment path ranking, the Monte Carlo engagement model, the network simulation code, the delay mechanism data base, and the results of a sensitivity analysis. The last appendix presents general equations used in Interruption Analysis for combining covert-overt segments and compares them with equations given in Volume I, Chapter 3.« less

  18. Is Technology-Mediated Parental Monitoring Related to Adolescent Substance Use?

    PubMed

    Rudi, Jessie; Dworkin, Jodi

    2018-01-03

    Prevention researchers have identified parental monitoring leading to parental knowledge to be a protective factor against adolescent substance use. In today's digital society, parental monitoring can occur using technology-mediated communication methods, such as text messaging, email, and social networking sites. The current study aimed to identify patterns, or clusters, of in-person and technology-mediated monitoring behaviors, and examine differences between the patterns (clusters) in adolescent substance use. Cross-sectional survey data were collected from 289 parents of adolescents using Facebook and Amazon Mechanical Turk (MTurk). Cluster analyses were computed to identify patterns of in-person and technology-mediated monitoring behaviors, and chi-square analyses were computed to examine differences in substance use between the identified clusters. Three monitoring clusters were identified: a moderate in-person and moderate technology-mediated monitoring cluster (moderate-moderate), a high in-person and high technology-mediated monitoring cluster (high-high), and a high in-person and low technology-mediated monitoring cluster (high-low). Higher frequency of technology-mediated parental monitoring was not associated with lower levels of substance use. Results show that higher levels of technology-mediated parental monitoring may not be associated with adolescent substance use.

  19. Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture.

    PubMed

    Aspinall, Tanya V; Gordon, James M B; Bennett, Hayley J; Karahalios, Panagiotis; Bukowski, John-Paul; Walker, Scott C; Engelke, David R; Avis, Johanna M

    2007-01-01

    Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.

  20. Termination of Safeguards for Accountable Nuclear Materials at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Holzemer; Alan Carvo

    2012-04-01

    Termination of safeguards ends requirements of Nuclear Material Control and Accountability (MC&A) and thereby removes the safeguards basis for applying physical protection requirements for theft and diversion of nuclear material, providing termination requirements are met as described. Department of Energy (DOE) M 470.4 6 (Nuclear Material Control and Accountability [8/26/05]) stipulates: 1. Section A, Chapter I (1)( q) (1): Safeguards can be terminated on nuclear materials provided the following conditions are met: (a) 'If the material is special nuclear material (SNM) or protected as SNM, it must be attractiveness level E and have a measured value.' (b) 'The material hasmore » been determined by DOE line management to be of no programmatic value to DOE.' (c) 'The material is transferred to the control of a waste management organization where the material is accounted for and protected in accordance with waste management regulations. The material must not be collocated with other accountable nuclear materials.' Requirements for safeguards termination depend on the safeguards attractiveness levels of the material. For attractiveness level E, approval has been granted from the DOE Idaho Operations Office (DOE ID) to Battelle Energy Alliance, LLC (BEA) Safeguards and Security (S&S). In some cases, it may be necessary to dispose of nuclear materials of attractiveness level D or higher. Termination of safeguards for such materials must be approved by the Departmental Element (this is the DOE Headquarters Office of Nuclear Energy) after consultation with the Office of Security.« less

  1. Managing Waste Inventory and License Limits at the Perma-Fix Northwest Facility to Meet CH2M Hill Plateau Remediation Company (CHPRC) American Recovery and Reinvestment Act (ARRA) Deliverables - 12335

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moak, Don J.; Grondin, Richard L.; Triner, Glen C.

    CH2M Hill Plateau Remediation Company (CHRPC) is a prime contractor to the U.S. Department of Energy (DOE) focused on the largest ongoing environmental remediation project in the world at the DOE Hanford Site Central Plateau, i.e. the DOE Hanford Plateau Remediation Contract. The East Tennessee Materials and Energy Corporation (M and EC); a wholly owned subsidiary of Perma-Fix Environmental Services, Inc. (PESI), is a small business team member to CHPRC. Our scope includes project management; operation and maintenance of on-site storage, repackaging, treatment, and disposal facilities; and on-site waste management including waste receipt from generators and delivery to on-site andmore » off-site treatment, storage, and disposal facilities. As part of this scope, M and EC staffs the centralized Waste Support Services organization responsible for all waste characterization and acceptance required to support CHPRC and waste generators across the Hanford Site. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m{sup 3}) of legacy waste was defined as 'no-path-forward waste'. A significant portion of this waste (7,650 m{sup 3}) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from the Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed that took advantage of commercial treatment capabilities at a nearby vendor facility, Perma-Fix Northwest (PFNW). In the spring of 2009, CHPRC initiated a pilot program under which they began shipping large package, low gram suspect TRU (<15 g SNM per container), and large package contact and remote handled MLLW to the off-site PFNW facility for treatment. PFNW is restricted by the SNM limits set for the total quantity of SNM allowed at the facility in accordance with the facility's radioactive materials license(s) (RML). While both CHPRC and PFNW maintain waste databases to track all waste movements, it became evident early in the process that a tool was needed that married the two systems to better track SNM inventories and sequence waste from the point of generation, through the PFNW facility, and back to the Hanford site for final disposition. This tool, known as the Treatment Integration and Planning Tool (TIPT), has become a robust planning tool that provides real-time data to support compliant and efficient waste generation, transportation, treatment, and disposition. TIPT is developing into the next generation tool that will change the way in which legacy wastes, retrieval wastes and decontamination and decommissioning operations are conducted on the Plateau Remediation Contract (PRC). The real value of the TIPT is its predictive capability. It allows the W and FMP to map out optimal windows for processing waste through the PFNW facility, or through any process that is in some way resource limited. It allows project managers to identify and focus on problem areas before shipments are affected. It has been modified for use in broader applications to predict turnaround times and identify windows of opportunity for processing higher gram wastes through PFNW and to allow waste generators, site-wide, to accurately predict scope, cost, and schedule for waste generation to optimize processing and eliminate storage, double handling, and related costs and unnecessary safety risks. The TIPT addresses the years old problem of how to effectively predict not only what needs to be done, but when. 'When' is the key planning parameter that has been ignored by the generator and processor for many years, but has proven to be the most important parameter for both parties. While further refinement is a natural part of any development process, the current improvements on the TIPT have shown that prediction is a powerful consideration. Even in lean times expected for the foreseeable future, the improved TIPT continues to play a central role in managing our way through those times to assure facilities remain viable and available. It is recommended that other major remediation projects and waste processing facilities incorporate a tool such as TIPT to improve customer-commercial supplier communications and better optimization of resources. (authors)« less

  2. Spatial Investigation of Columnar AOD and Near-Surface PM2.5 Concentrations During the 2013 American and Yosemite Rim Fires

    NASA Astrophysics Data System (ADS)

    Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.; Moosmuller, H.; Liming, A.; Echevarria, B.

    2014-12-01

    The study of aerosol pollution transport and optical properties in the western U.S. is a challenge due to the complex terrain, bright surfaces, presence of anthropogenic and biogenic emissions, secondary organic aerosol formation, and smoke from wild fires. In addition, the complex terrain influences transport phenomena by recirculating mountain air from California to Nevada, where air pollution from the Sierra Nevada Mountains (SNM) is mixed with urban air from the Central Valley in California. Previous studies in Reno hypothesize that elevated aerosol concentrations aloft, above the convective boundary layer height, make air quality monitoring in Reno challenging with MODIS products. Here, we analyze data from August 2013 as a case study for wildfire smoke plumes in California and Nevada. During this time period, northern California was impacted by large wild fires known as the American and Yosemite Rim fires. Thousands of acres burned, generating large quantities of aerosol pollutants that were transported downwind. The aim of the present work is to investigate the fire plume behavior and transport phenomena using ground level PM2.5 concentrations from routine monitoring networks and aerosol optical properties from AERONET, both at multiple locations in California and Nevada. In addition, the accuracy of MODIS (Collection 6) and VIIRS aerosol satellite products will be evaluated. The multispectral photoacoustic instruments and reciprocal nephelometers located in Reno support the estimation of approximated aerosol height. The objectives are to investigate the impact of the vertical distribution of PM concentrations on satellite aerosol optical depth (AOD) retrievals; assess the ability to estimate ground level PM2.5 mass concentrations for wildfire smoke plumes from satellite remote sensing; and investigate the influence of complex terrain on the transport of pollutants, convective boundary layer depth, and aerosol optical height.

  3. [Research advances in water quality monitoring technology based on UV-Vis spectrum analysis].

    PubMed

    Wei, Kang-Lin; Wen, Zhi-yu; Wu, Xin; Zhang, Zhong-Wei; Zeng, Tian-Ling

    2011-04-01

    The application of spectral analysis to water quality monitoring is an important developing trend in the field of modern environment monitoring technology. The principle and characteristic of water quality monitoring technology based on UV-Vis spectrum analysis are briefly reviewed. And the research status and advances are introduced from two aspects, on-line monitoring and in-situ monitoring. Moreover, the existent key technical problems are put forward. Finally, the technology trends of multi-parameter water quality monitoring microsystem and microsystem networks based on microspectrometer are prospected, which has certain reference value for the research and development of environmental monitoring technology and modern scientific instrument in the authors' country.

  4. Literature review on monitoring technologies and their outcomes in independently living elderly people.

    PubMed

    Peetoom, Kirsten K B; Lexis, Monique A S; Joore, Manuela; Dirksen, Carmen D; De Witte, Luc P

    2015-07-01

    To obtain insight into what kind of monitoring technologies exist to monitor activity in-home, what the characteristics and aims of applying these technologies are, what kind of research has been conducted on their effects and what kind of outcomes are reported. A systematic document search was conducted within the scientific databases Pubmed, Embase, Cochrane, PsycINFO and Cinahl, complemented by Google Scholar. Documents were included in this review if they reported on monitoring technologies that detect activities of daily living (ADL) or significant events, e.g. falls, of elderly people in-home, with the aim of prolonging independent living. Five main types of monitoring technologies were identified: PIR motion sensors, body-worn sensors, pressure sensors, video monitoring and sound recognition. In addition, multicomponent technologies and smart home technologies were identified. Research into the use of monitoring technologies is widespread, but in its infancy, consisting mainly of small-scale studies and including few longitudinal studies. Monitoring technology is a promising field, with applications to the long-term care of elderly persons. However, monitoring technologies have to be brought to the next level, with longitudinal studies that evaluate their (cost-) effectiveness to demonstrate the potential to prolong independent living of elderly persons. [Box: see text].

  5. An Investigation Into the Feasibility of Using a Modern Gravity Gradient Instrument for Passive Aircraft Navigation and Terrain Avoidance

    DTIC Science & Technology

    2009-03-01

    the research objectives for this study are presented. It should be noted that sensor cost was not considered for this study. Additionally, further...development costs ) for gravity compensation require- ments of its trident submarine inertial navigation systems and by the Air Force Geo- physics...52]: T (r, φ, λ) = GM ae Nmax∑ n=2 n∑ m=0 (a r )n+1 (Cnm cosmλ+ Snm sinmλ)P nm(cos φ) (31) 44 where r, φ, λ are the geocentric distance, lattitude and

  6. Lessons-Learned from D and D Activities at the Five Gaseous Diffusion Buildings (K-25, K- 27, K-29, K-31 and K-33) East Tennessee Technology Park, Oak Ridge, TN - 13574

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopotic, James D.; Ferri, Mark S.; Buttram, Claude

    The East Tennessee Technology Park (ETTP) is the site of five former gaseous diffusion plant (GDP) process buildings that were used to enrich uranium from 1945 to 1985. The process equipment in the original two buildings (K-25 and K-27) was used for the production of highly enriched uranium (HEU), while that in the three later buildings (K-29, K-31 and K-33) produced low enriched uranium (LEU). Equipment was contaminated primarily with uranium and to a lesser extent technetium (Tc). Decommissioning of the GDP process buildings has presented several unique challenges and produced many lessons-learned. Among these is the importance of good,more » up-front characterization in developing the best demolition approach. Also, chemical cleaning of process gas equipment and piping (PGE) prior to shutdown should be considered to minimize the amount of hold-up material that must be removed by demolition crews. Another lesson learned is to maintain shutdown buildings in a dry state to minimize structural degradation which can significantly complicate characterization, deactivation and demolition efforts. Perhaps the most important lesson learned is that decommissioning GDP process buildings is first and foremost a waste logistics challenge. Innovative solutions are required to effectively manage the sheer volume of waste generated from decontamination and demolition (D and D) of these enormous facilities. Finally, close coordination with Security is mandatory to effectively manage Special Nuclear Material (SNM) and classified equipment issues. (authors)« less

  7. Finding concealed high atomic numbered materials hidden in cargo containers using dual-energy high-energy x-rays from a linear accelerator with the unique signature from photofission

    NASA Astrophysics Data System (ADS)

    Clayton, James E.; Bjorkholm, Paul

    2006-05-01

    The Dual Energy X-ray technique employs two X-ray projection images of an object with X-ray energy spectra at a low X-ray energy and a high X-ray energy. The two energies are both high enough to penetrate all cargoes. The endpoint energies for low and high will be approximately 5-6 MeV and 8-9.5 MeV respectively. These energies are chosen such that pair production is the dominant energy loss mechanism for the high energy mode. By defining the ratio of the transmitted X-ray photon R = T high/T low it can be shown that there is a difference in the ratio that will permit the detection of materials that are significantly higher in atomic number than the low to mid atomic numbered elements that normally appear in the stream of commerce. This difference can be used to assist in the automatic detection of high atomic numbered materials. These materials might be a WMD or dirty bomb. When coupled with detectors that can observe the delayed signature of photon induced fission a confirmation of a WMD may be made. The use of the delayed photons and neutrons from Photofission can confirm the presence of Special Nuclear Materials (SNM). The energy required to induce fission in SNM by a photon is approximately 6 MeV with the maximum fission production rate from X-ray photons in the energy range of 12-15 MeV.

  8. An interactive ontology-driven information system for simulating background radiation and generating scenarios for testing special nuclear materials detection algorithms

    DOE PAGES

    Sorokine, Alexandre; Schlicher, Bob G.; Ward, Richard C.; ...

    2015-05-22

    This paper describes an original approach to generating scenarios for the purpose of testing the algorithms used to detect special nuclear materials (SNM) that incorporates the use of ontologies. Separating the signal of SNM from the background requires sophisticated algorithms. To assist in developing such algorithms, there is a need for scenarios that capture a very wide range of variables affecting the detection process, depending on the type of detector being used. To provide such a cpability, we developed an ontology-driven information system (ODIS) for generating scenarios that can be used in creating scenarios for testing of algorithms for SNMmore » detection. The ontology-driven scenario generator (ODSG) is an ODIS based on information supplied by subject matter experts and other documentation. The details of the creation of the ontology, the development of the ontology-driven information system, and the design of the web user interface (UI) are presented along with specific examples of scenarios generated using the ODSG. We demonstrate that the paradigm behind the ODSG is capable of addressing the problem of semantic complexity at both the user and developer levels. Compared to traditional approaches, an ODIS provides benefits such as faithful representation of the users' domain conceptualization, simplified management of very large and semantically diverse datasets, and the ability to handle frequent changes to the application and the UI. Furthermore, the approach makes possible the generation of a much larger number of specific scenarios based on limited user-supplied information« less

  9. Experimental demonstration of multiple monoenergetic gamma radiography for effective atomic number identification in cargo inspection

    NASA Astrophysics Data System (ADS)

    Henderson, Brian S.; Lee, Hin Y.; MacDonald, Thomas D.; Nelson, Roberts G.; Danagoulian, Areg

    2018-04-01

    The smuggling of special nuclear materials (SNMs) through international borders could enable nuclear terrorism and constitutes a significant threat to global security. This paper presents the experimental demonstration of a novel radiographic technique for quantitatively reconstructing the density and type of material present in commercial cargo containers, as a means of detecting such threats. Unlike traditional techniques which use sources of bremsstrahlung photons with a continuous distribution of energies, multiple monoenergetic gamma radiography utilizes monoenergetic photons from nuclear reactions, specifically the 4.4 and 15.1 MeV photons from the 11B(d,nγ)12C reaction. By exploiting the Z-dependence of the photon interaction cross sections at these two specific energies, it is possible to simultaneously determine the areal density and the effective atomic number as a function of location for a 2D projection of a scanned object. The additional information gleaned from using and detecting photons of specific energies for radiography substantially increases the resolving power between different materials. This paper presents results from the imaging of mock cargo materials ranging from Z ≈5 -92 , demonstrating accurate reconstruction of the effective atomic number and areal density of the materials over the full range. In particular, the system is capable of distinguishing pure materials with Z ≳ 70 , such as lead and uranium—a critical requirement of a system designed to detect SNM. This methodology could be used to screen commercial cargoes with high material specificity, to distinguish most benign materials from SNM, such as uranium and plutonium.

  10. A Method to Estimate the Atomic Number and Mass Thickness of Intervening Materials in Uranium and Plutonium Gamma-Ray Spectroscopy Measurements

    NASA Astrophysics Data System (ADS)

    Streicher, Michael; Brown, Steven; Zhu, Yuefeng; Goodman, David; He, Zhong

    2016-10-01

    To accurately characterize shielded special nuclear materials (SNM) using passive gamma-ray spectroscopy measurement techniques, the effective atomic number and the thickness of shielding materials must be measured. Intervening materials between the source and detector may affect the estimated source isotopics (uranium enrichment and plutonium grade) for techniques which rely on raw count rates or photopeak ratios of gamma-ray lines separated in energy. Furthermore, knowledge of the surrounding materials can provide insight regarding the configuration of a device containing SNM. The described method was developed using spectra recorded using high energy resolution CdZnTe detectors, but can be expanded to any gamma-ray spectrometers with energy resolution of better than 1% FWHM at 662 keV. The effective atomic number, Z, and mass thickness of the intervening shielding material are identified by comparing the relative attenuation of different gamma-ray lines and estimating the proportion of Compton scattering interactions to photoelectric absorptions within the shield. While characteristic Kα x-rays can be used to identify shielding materials made of high Z elements, this method can be applied to all shielding materials. This algorithm has adequately estimated the effective atomic number for shields made of iron, aluminum, and polyethylene surrounding uranium samples using experimental data. The mass thicknesses of shielding materials have been estimated with a standard error of less than 1.3 g/cm2 for iron shields up to 2.5 cm thick. The effective atomic number was accurately estimated to 26 ± 5 for all iron thicknesses.

  11. Clinal variation at phenology-related genes in spruce: parallel evolution in FTL2 and Gigantea?

    PubMed

    Chen, Jun; Tsuda, Yoshiaki; Stocks, Michael; Källman, Thomas; Xu, Nannan; Kärkkäinen, Katri; Huotari, Tea; Semerikov, Vladimir L; Vendramin, Giovanni G; Lascoux, Martin

    2014-07-01

    Parallel clines in different species, or in different geographical regions of the same species, are an important source of information on the genetic basis of local adaptation. We recently detected latitudinal clines in SNPs frequencies and gene expression of candidate genes for growth cessation in Scandinavian populations of Norway spruce (Picea abies). Here we test whether the same clines are also present in Siberian spruce (P. obovata), a close relative of Norway spruce with a different Quaternary history. We sequenced nine candidate genes and 27 control loci and genotyped 14 SSR loci in six populations of P. obovata located along the Yenisei river from latitude 56°N to latitude 67°N. In contrast to Scandinavian Norway spruce that both departs from the standard neutral model (SNM) and shows a clear population structure, Siberian spruce populations along the Yenisei do not depart from the SNM and are genetically unstructured. Nonetheless, as in Norway spruce, growth cessation is significantly clinal. Polymorphisms in photoperiodic (FTL2) and circadian clock (Gigantea, GI, PRR3) genes also show significant clinal variation and/or evidence of local selection. In GI, one of the variants is the same as in Norway spruce. Finally, a strong cline in gene expression is observed for FTL2, but not for GI. These results, together with recent physiological studies, confirm the key role played by FTL2 and circadian clock genes in the control of growth cessation in spruce species and suggest the presence of parallel adaptation in these two species. Copyright © 2014 by the Genetics Society of America.

  12. THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FOR VARIOUS PROLIFERATION AND THEFT SCENARIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, C. G.; Ebbinghaus, Bartley B.; Collins, Brian A.

    2012-08-29

    We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides amore » set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no 'silver bullet' fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed.« less

  13. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials

    NASA Astrophysics Data System (ADS)

    Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth

    2015-06-01

    Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the "stopping power" of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.

  14. Review of current neutron detection systems for emergency response

    DOE PAGES

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; ...

    2014-09-05

    Neutron detectors are utilized in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 ( 3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution.more » Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 ( 10B), lithium-6 ( 6Li), and gadollinium-157 ( 157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 ( 4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Finally, modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.« less

  15. Long-term follow-up of sacral neuromodulation for lower urinary tract dysfunction.

    PubMed

    Peeters, Karlien; Sahai, Arun; De Ridder, Dirk; Van Der Aa, Frank

    2014-05-01

    To report our long-term experience of sacral neuromodulation (SNM) for various lower urinary tract dysfunctions but with a focus on efficacy, safety, re-interventions and degree of success. This is a single tertiary referral centre study that included 217 patients (86% female) who received an implantable pulse generator (IPG) (Interstim™, Medtronic, Minneapolis, USA) between 1996 and 2010. Success was considered if the initial ≥50% improvement in any of primary voiding diary variables persisted compared with baseline, but was further stratified. The mean duration of follow-up was 46.88 months. Success and cure rates were ≈70% and 20% for urgency incontinence, 68% and 33% for urgency frequency syndrome and 73% and 58% for idiopathic retention. In those patients with an unsuccessful therapy outcome, the mean time to failure was 24.6 months after implantation. There were 88 (41%) patients who had at least one device or treatment related surgical re-intervention. The re-intervention rate was 1.7 per patient with most of them (47%) occurring ≤2 years of follow-up. SNM appears effective in the long-term with a success rate after definitive IPG implant of ≈70% and complete cure rates ranging between 20% and 58% depending on indication. Patients with idiopathic retention appear to do best. The re-intervention rate is high with most occurring ≤2 years of implantation. It is likely that with the newer techniques used, efficacy and re-intervention rates will improve. © 2013 The Authors. BJU International © 2013 BJU International.

  16. Review of current neutron detection systems for emergency response

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; Kruschwitz, Craig

    2014-09-01

    Neutron detectors are used in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.

  17. Microchannel plate special nuclear materials sensor

    NASA Astrophysics Data System (ADS)

    Feller, W. B.; White, P. L.; White, P. B.; Siegmund, O. H. W.; Martin, A. P.; Vallerga, J. V.

    2011-10-01

    Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR #HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to 3He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing 10B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to 3He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of 3He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small 3He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a 252Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial 3He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.

  18. Supervised normalization of microarrays

    PubMed Central

    Mecham, Brigham H.; Nelson, Peter S.; Storey, John D.

    2010-01-01

    Motivation: A major challenge in utilizing microarray technologies to measure nucleic acid abundances is ‘normalization’, the goal of which is to separate biologically meaningful signal from other confounding sources of signal, often due to unavoidable technical factors. It is intuitively clear that true biological signal and confounding factors need to be simultaneously considered when performing normalization. However, the most popular normalization approaches do not utilize what is known about the study, both in terms of the biological variables of interest and the known technical factors in the study, such as batch or array processing date. Results: We show here that failing to include all study-specific biological and technical variables when performing normalization leads to biased downstream analyses. We propose a general normalization framework that fits a study-specific model employing every known variable that is relevant to the expression study. The proposed method is generally applicable to the full range of existing probe designs, as well as to both single-channel and dual-channel arrays. We show through real and simulated examples that the method has favorable operating characteristics in comparison to some of the most highly used normalization methods. Availability: An R package called snm implementing the methodology will be made available from Bioconductor (http://bioconductor.org). Contact: jstorey@princeton.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20363728

  19. An equivalent n-source for WGPu derived from a spectrum-shifted PuBe source

    NASA Astrophysics Data System (ADS)

    Ghita, Gabriel; Sjoden, Glenn; Baciak, James; Walker, Scotty; Cornelison, Spring

    2008-04-01

    We have designed, built, and laboratory-tested a unique shield design that transforms the complex neutron spectrum from PuBe source neutrons, generated at high energies, to nearly exactly the neutron signature leaking from a significant spherical mass of weapons grade plutonium (WGPu). This equivalent "X-material shield assembly" (Patent Pending) enables the harder PuBe source spectrum (average energy of 4.61 MeV) from a small encapsulated standard 1-Ci PuBe source to be transformed, through interactions in the shield, so that leakage neutrons are shifted in energy and yield to become a close reproduction of the neutron spectrum leaking from a large subcritical mass of WGPu metal (mean energy 2.11 MeV). The utility of this shielded PuBe surrogate for WGPu is clear, since it directly enables detector field testing without the expense and risk of handling large amounts of Special Nuclear Materials (SNM) as WGPu. Also, conventional sources using Cf-252, which is difficult to produce, and decays with a 2.7 year half life, could be replaced by this shielded PuBe technology in order to simplify operational use, since a sealed PuBe source relies on Pu-239 (T½=24,110 y), and remains viable for more than hundreds of years.

  20. Smart homes and home health monitoring technologies for older adults: A systematic review.

    PubMed

    Liu, Lili; Stroulia, Eleni; Nikolaidis, Ioanis; Miguel-Cruz, Antonio; Rios Rincon, Adriana

    2016-07-01

    Around the world, populations are aging and there is a growing concern about ways that older adults can maintain their health and well-being while living in their homes. The aim of this paper was to conduct a systematic literature review to determine: (1) the levels of technology readiness among older adults and, (2) evidence for smart homes and home-based health-monitoring technologies that support aging in place for older adults who have complex needs. We identified and analyzed 48 of 1863 relevant papers. Our analyses found that: (1) technology-readiness level for smart homes and home health monitoring technologies is low; (2) the highest level of evidence is 1b (i.e., one randomized controlled trial with a PEDro score ≥6); smart homes and home health monitoring technologies are used to monitor activities of daily living, cognitive decline and mental health, and heart conditions in older adults with complex needs; (3) there is no evidence that smart homes and home health monitoring technologies help address disability prediction and health-related quality of life, or fall prevention; and (4) there is conflicting evidence that smart homes and home health monitoring technologies help address chronic obstructive pulmonary disease. The level of technology readiness for smart homes and home health monitoring technologies is still low. The highest level of evidence found was in a study that supported home health technologies for use in monitoring activities of daily living, cognitive decline, mental health, and heart conditions in older adults with complex needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Applications of aerospace technology in biomedicine. A technology transfer profile: Patient monitoring

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    NASA contributions to cardiovascular monitoring are described along with innovations in intracardiac blood pressure monitoring. A brief overview of the process of NASA technology transfer in patient monitoring is presented and a list of bioinstrumentation tech briefs and the number of requests for technical support is included.

  2. Alpha-v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    DTIC Science & Technology

    2006-08-01

    64Cu -Labeled Abegrin™, a Humanized Monoclonal Antibody against Integrin αvβ3 Cancer Res. 2006;66(19):9673-81. 11. Hsu AR, Hou LC, Veeravagu A...FL, March, 2006. 5. Wu Y, Cai W, Zhang X, Chen K, Cao Q, Tice D, Chen X. In Vitro and In Vivo Characterization of 64Cu -Labeled Vitaxin, a...53rd SNM Annual meeting, San Diego, CA, June 2006 9. Cai W, Wu Y, Cao Q, Chen K, Zhang X, Tice D, Chen X 64Cu -Labeled Humanized Anti

  3. Ultra-Low-Energy Sub-Threshold Circuits: Program Overview

    DTIC Science & Technology

    2007-04-10

    with global > 0.1 corner, but so does VUL, VIH 0 .0 5 -_ "or ni n a Global Variatlion 0.0a 0•,lN& 0.24.. 7 Mir" Output Swing Metrics " Need a... VIH . lines plot the VTCs when random local VT mismatch is ap- In Figure 1(b), a NAND gate has sufficient output swing plied to the inverter. One case...the VTC is input-dependent, all inputs are varied simultaneously to >P 1 0 SNM side of largest obtain the worst case ViH and VIL. > 0 ins0nbedsquare

  4. Direct measurement of 235U in spent fuel rods with Gamma-ray mirrors

    NASA Astrophysics Data System (ADS)

    Ruz, J.; Brejnholt, N. F.; Alameda, J. B.; Decker, T. A.; Descalle, M. A.; Fernandez-Perea, M.; Hill, R. M.; Kisner, R. A.; Melin, A. M.; Patton, B. W.; Soufli, R.; Ziock, K.; Pivovaroff, M. J.

    2015-03-01

    Direct measurement of plutonium and uranium X-rays and gamma-rays is a highly desirable non-destructive analysis method for the use in reprocessing fuel environments. The high background and intense radiation from spent fuel make direct measurements difficult to implement since the relatively low activity of uranium and plutonium is masked by the high activity from fission products. To overcome this problem, we make use of a grazing incidence optic to selectively reflect Kα and Kβ fluorescence of Special Nuclear Materials (SNM) into a high-purity position-sensitive germanium detector and obtain their relative ratios.

  5. Evaluation of outputs from a 'Sustainable Nutrient Management Decision Support System' (SNM-DSS) compared to farmer opinion

    NASA Astrophysics Data System (ADS)

    Kerebel, A.; Cassidy, R.; Jordan, P.; Holden, N. M.

    2012-04-01

    Eutrophication of both fresh and coastal water bodies is one of the greatest threats to water quality in Europe and other developed countries. Sources of pollution are multiple but agriculture is known to be a large contributor, due to farm nutrient management such as land spreading of fertilisers and their subsequent loss via overland flow to surface waters. The stringent targets set for compliance with the Water Framework Directive by 2015 have led to action by the Irish regulatory authorities to reduce risk and prevent further deterioration of water status. One step was to prohibit the spreading of fertilisers over the winter period, with closed periods in 3 zones based on annual rainfall statistics. While this calendar approach is supported by scientific evidence, its justification has been debated by the farming community. A consequence of the regulation has been the concentration of hazard on dates directly preceding and following the closed period when soils can be heavily loaded with organic slurries and manures. An alternative lies in a Sustainable Nutrient Management Decision Support System (SNM-DSS), which has been developed to predict optimum conditions for fertiliser application depending on real-time observations of soil and weather conditions. The Hybrid Soil Moisture Deficit (HSMD) model forms the basis of this system and is essential for defining the thresholds for optimum management. The model outputs were tested against field water content data (θ) and evaluated by comparison with farmer opinion over a 3-year period. Daily Soil Moisture Deficit (SMD) was calculated from weather data collected on 5 sites and θ was estimated using time domain Reflectometry probes on 10 fields (2 × 5 sites). The question "Can slurry be spread today?" was also answered on a daily basis by 6 farmers located at the instrumented sites and the responses were related to calculated SMD values. A significant relationship between SMD and θ for all test sites showed that the HSMD model acceptably captured temporal variations in θ, suggesting that it should be able to predict when risk of nutrient transport by gravity moveable water is high. It was also found that the decision whether to spread the nutrients was determined by soil moisture conditions relative to field capacity. According to farmer opinion, slurry should not be spread when the soil is at or wetter than field capacity but conditions would be suitable when drier. The HSMD model showed great potential and could therefore be used as a core component in a decision support tool for daily farm management practices such as slurry spreading. Although the SNM-DSS has been designed to work at the farm scale, such tools should be able to devise sustainable nutrient management plans for agricultural catchments.

  6. Health Monitoring System Technology Assessments: Cost Benefits Analysis

    NASA Technical Reports Server (NTRS)

    Kent, Renee M.; Murphy, Dennis A.

    2000-01-01

    The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.

  7. A review of electrostatic monitoring technology: The state of the art and future research directions

    NASA Astrophysics Data System (ADS)

    Wen, Zhenhua; Hou, Junxing; Atkin, Jason

    2017-10-01

    Electrostatic monitoring technology is a useful tool for monitoring and detecting component faults and degradation, which is necessary for system health management. It encompasses three key research areas: sensor technology; signal detection, processing and feature extraction; and verification experimentation. It has received considerable recent attention for condition monitoring due to its ability to provide warning information and non-obstructive measurements on-line. A number of papers in recent years have covered specific aspects of the technology, including sensor design optimization, sensor characteristic analysis, signal de-noising and practical applications of the technology. This paper provides a review of the recent research and of the development of electrostatic monitoring technology, with a primary emphasis on its application for the aero-engine gas path. The paper also presents a summary of some of the current applications of electrostatic monitoring technology in other industries, before concluding with a brief discussion of the current research situation and possible future challenges and research gaps in this field. The aim of this paper is to promote further research into this promising technology by increasing awareness of both the potential benefits of the technology and the current research gaps.

  8. Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya

    2017-09-01

    Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.

  9. Personal radiation detector at a high technology readiness level that satisfies DARPA's SN-13-47 and SIGMA program requirements

    NASA Astrophysics Data System (ADS)

    Ginzburg, D.; Knafo, Y.; Manor, A.; Seif, R.; Ghelman, M.; Ellenbogen, M.; Pushkarsky, V.; Ifergan, Y.; Semyonov, N.; Wengrowicz, U.; Mazor, T.; Kadmon, Y.; Cohen, Y.; Osovizky, A.

    2015-06-01

    There is a need to develop new personal radiation detector (PRD) technologies that can be mass produced. On August 2013, DARPA released a request for information (RFI) seeking innovative radiation detection technologies. In addition, on December 2013, a Broad Agency Announcement (BAA) for the SIGMA program was released. The RFI requirements focused on a sensor that should possess three main properties: low cost, high compactness and radioisotope identification capabilities. The identification performances should facilitate the detection of a hidden threat, ranging from special nuclear materials (SNM) to commonly used radiological sources. Subsequently, the BAA presented the specific requirements at an instrument level and provided a comparison between the current market status (state-of-the-art) and the SIGMA program objectives. This work presents an optional alternative for both the detection technology (sensor with communication output and without user interface) for DARPA's initial RFI and for the PRD required by the SIGMA program. A broad discussion is dedicated to the method proposed to fulfill the program objectives and to the selected alternative that is based on the PDS-GO design and technology. The PDS-GO is the first commercially available PRD that is based on a scintillation crystal optically coupled with a silicon photomultiplier (SiPM), a solid-state light sensor. This work presents the current performance of the instrument and possible future upgrades based on recent technological improvements in the SiPM design. The approach of utilizing the SiPM with a commonly available CsI(Tl) crystal is the key for achieving the program objectives. This approach provides the appropriate performance, low cost, mass production and small dimensions; however, it requires a creative approach to overcome the obstacles of the solid-state detector dark current (noise) and gain stabilization over a wide temperature range. Based on the presented results, we presume that the proposed approach of SiPM, with pixel size of 35 μm, coupled to a scintillation material (for gamma and neutron detection) ensures the availability and low cost of the key components. Furthermore, automated manufacturing process enables mass production, thereby fulfilling the SIGMA program requirements, both as a sensor (assimilated with mobile device) and as a full detection device.

  10. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].

    PubMed

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C

    2018-06-01

    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as studies evaluating alternatives to the finger for capturing the raw signals for hemodynamic assessment, and, finally, studies evaluating technologies based on a flow time measurement are current topics of clinical research.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT ANR PIPELINE COMPANY PARAMETRIC EMISSIONS MONITORING SYSTEM (PEMS)

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of a gaseous-emissions monitoring system for large, natural-gas-fired internal combustion engines. The device tested is the Parametric Emissions Monitoring System (PEMS) manufactured by ANR ...

  12. Supplementation of selenium, vitamin E, chromium and betaine above recommended levels improves lactating performance of sows over summer.

    PubMed

    Liu, Fan; Cottrell, Jeremy James; Collins, Cherie Louise; Henman, David James; O'Halloran, Kirrily Sharon Beatrice; Dunshea, Frank Rowland

    2017-10-01

    Heat stress (HS) exacerbates the body weight loss of lactating sows and reduces litter weight gain. Selenium (Se), vitamin E (VE), chromium (Cr) and betaine have been shown to ameliorate symptoms of HS, and yeast nucleotides and mannan oligosaccharides have been reported to improve lactational performance and immune response in pigs. Therefore, a combination of these nutrients may improve lactational performance of sows in summer. The effects of two nutritionally enhanced diets on lactational performance of sows in summer were investigated in two experiments. In experiment 1, we compared the effects of a nutritionally fortified diet (0.4 ppm Se, 95 IU/kg VE, 0.4 ppm Cr and 0.2% betaine; named as SVCB diet) with the NRC 2012 standard diet (0.15 ppm Se, 44 IU/kg VE) on lactational performance of sows in summer. Results showed that the SVCB diet reduced body weight loss (P = 0.039) and tended to reduce backfat loss (P = 0.075) of sows without affecting feed intake, while litter weight gain was not influenced. In experiment 2, we further enhanced the nutrients in the SVCB diet (0.8 ppm Se, 1% yeast nucleotides, and 0.1% mannan oligosaccharides; named as SNM diet). Results showed that the SNM diet did not improve feed intake of sows, farrowing performance, or litter weight gain compared with the SVCB diet, but increased body weight loss of the third parity sows (P = 0.037). Overall, a combined supplementation of Se, VE, Cr, and betaine above the NRC recommended levels can reduce mobilisation of body reserve of lactating sows in summer.

  13. Digital Signal Processing Methods for Safety Systems Employed in Nuclear Power Industry

    NASA Astrophysics Data System (ADS)

    Popescu, George

    Some of the major safety concerns in the nuclear power industry focus on the readiness of nuclear power plant safety systems to respond to an abnormal event, the security of special nuclear materials in used nuclear fuels, and the need for physical security to protect personnel and reactor safety systems from an act of terror. Routine maintenance and tests of all nuclear reactor safety systems are performed on a regular basis to confirm the ability of these systems to operate as expected. However, these tests do not determine the reliability of these safety systems and whether the systems will perform for the duration of an accident and whether they will perform their tasks without failure after being engaged. This research has investigated the progression of spindle asynchronous error motion determined from spindle accelerations to predict bearings failure onset. This method could be applied to coolant pumps that are essential components of emergency core cooling systems at all nuclear power plants. Recent security upgrades mandated by the Nuclear Regulatory Commission and the Department of Homeland Security have resulted in implementation of multiple physical security barriers around all of the commercial and research nuclear reactors in the United States. A second part of this research attempts to address an increased concern about illegal trafficking of Special Nuclear Materials (SNM). This research describes a multi element scintillation detector system designed for non - invasive (passive) gamma ray surveillance for concealed SNM that may be within an area or sealed in a package, vehicle or shipping container. Detection capabilities of the system were greatly enhanced through digital signal processing, which allows the combination of two very powerful techniques: 1) Compton Suppression (CS) and 2) Pulse Shape Discrimination (PSD) with less reliance on complicated analog instrumentation.

  14. LaBr3γ-ray spectrometer for detecting 10B in debris of melted nuclear fuel

    NASA Astrophysics Data System (ADS)

    Koizumi, Mitsuo; Tsuchiya, Harufumi; Kitatani, Fumito; Harada, Hideo; Heyse, Jan; Kopecky, Stefan; Mondelaers, Willy; Paradela, Carlos; Schillebeeckx, Peter

    2016-11-01

    Neutron resonance densitometry has been proposed as a nondestructive analytical method for quantifying special nuclear material (SNM) in the rock- and particle-like debris that is to be removed from the Fukushima Daiichi nuclear power plant. The method is based on neutron resonance transmission analysis (NRTA) and neutron resonance capture analysis combined with prompt-γ-ray analysis (NRCA/PGA). Although quantification of SNM will predominantly rely on NRTA, this will be hampered by the presence of strong neutron-absorbing matrix materials, in particular 10B. Results obtained with NRCA/PGA are used to improve the interpretation of NRTA data. Prompt γ rays originating from the 10B(n, αγ) reaction are used to assess the amount of 10B. The 478 keV γ rays from 10B, however, need to be measured under a high-radiation environment, especially because of 137Cs. To meet this requirement, we developed a well-shaped γ-ray spectrometer consisting of one cylindrical and four rectangular-cuboid LaBr3 scintillators combined with a fast data-acquisition system. Furthermore, to improve the gain stability of the main detector, a special high-voltage divider was developed. Because of the reduction in gain shift, a 3.8% resolution at 662 keV was obtained for long-term measurements. By using the data-acquisition system, which consists of eight 250 MHz digitizers, input signals of over 500 kHz per channel were recorded. The work reported herein demonstrates that, with such a spectrometer, the impact of the Compton edge of 662 keV γ rays from 137Cs is significantly reduced, which allows the 10B amount to be determined with greater sensitivity.

  15. Environmental Technology Verification (ETV) Program: Site Characterization and Monitoring Technologies Center

    EPA Pesticide Factsheets

    The ETV Site Characterization and Monitoring Technology Pilot is composed of EPA, DoD, DOE, other Federal agencies, state regulators, technology evaluation and verification entities, and potential end users of these technologies to facilitate independent..

  16. Overview of Microbial Monitoring Technologies Considered for Use Inside Long Duration Spaceflights and Planetary Habitats

    NASA Astrophysics Data System (ADS)

    Roman, M. C.; Ott, C. M.

    2015-03-01

    NASA has been looking at microbial monitoring technologies that could be used in long duration missions. This presentation will provide an overview of the microbial monitoring technologies that are been considered for use inside spacecrafts and planetary habitats.

  17. Remote monitoring technologies for the prevention of metabolic syndrome: the Diabetes and Technology for Increased Activity (DaTA) study.

    PubMed

    Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert

    2011-07-01

    Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. © 2011 Diabetes Technology Society.

  18. Smart storage technologies applied to fresh foods: A review.

    PubMed

    Wang, Jingyu; Zhang, Min; Gao, Zhongxue; Adhikari, Benu

    2017-06-30

    Fresh foods are perishable, seasonal and regional in nature and their storage, transportation, and preservation of freshness are quite challenging. Smart storage technologies can online detection and monitor the changes of quality parameters and storage environment of fresh foods during storage, so that operators can make timely adjustments to reduce the loss. This article reviews the smart storage technologies from two aspects: online detection technologies and smartly monitoring technologies for fresh foods. Online detection technologies include electronic nose, nuclear magnetic resonance (NMR), near infrared spectroscopy (NIRS), hyperspectral imaging and computer vision. Smartly monitoring technologies mainly include some intelligent indicators for monitoring the change of storage environment. Smart storage technologies applied to fresh foods need to be highly efficient and nondestructive and need to be competitively priced. In this work, we have critically reviewed the principles, applications, and development trends of smart storage technologies.

  19. Impact of newer self-monitoring technology and brief phone-based intervention on weight loss: A randomized pilot study.

    PubMed

    Ross, Kathryn M; Wing, Rena R

    2016-08-01

    Despite the proliferation of newer self-monitoring technology (e.g., activity monitors and smartphone apps), their impact on weight loss outside of structured in-person behavioral intervention is unknown. A randomized, controlled pilot study was conducted to examine efficacy of self-monitoring technology, with and without phone-based intervention, on 6-month weight loss in adults with overweight and obesity. Eighty participants were randomized to receive standard self-monitoring tools (ST, n = 26), technology-based self-monitoring tools (TECH, n = 27), or technology-based tools combined with phone-based intervention (TECH + PHONE, n = 27). All participants attended one introductory weight loss session and completed assessments at baseline, 3 months, and 6 months. Weight loss from baseline to 6 months differed significantly between groups P = 0.042; there was a trend for TECH + PHONE (-6.4 ± 1.2 kg) to lose more weight than ST (-1.3 ± 1.2 kg); weight loss in TECH (-4.1 ± 1.4 kg) was between ST and TECH + PHONE. Fewer ST (15%) achieved ≥5% weight losses compared with TECH and TECH + PHONE (44%), P = 0.039. Adherence to self-monitoring caloric intake was higher in TECH + PHONE than TECH or ST, Ps < 0.05. These results suggest use of newer self-monitoring technology plus brief phone-based intervention improves adherence and weight loss compared with traditional self-monitoring tools. Further research should determine cost-effectiveness of adding phone-based intervention when providing self-monitoring technology. © 2016 The Obesity Society.

  20. Impact of newer self-monitoring technology and brief phone-based intervention on weight loss: a randomized pilot study

    PubMed Central

    Ross, Kathryn M.; Wing, Rena R.

    2016-01-01

    Objective Despite the proliferation of newer self-monitoring technology (e.g., activity monitors and smartphone apps), their impact on weight loss outside of structured in-person behavioral intervention is unknown. Methods A randomized, controlled pilot study was conducted to examine efficacy of self-monitoring technology, with and without phone-based intervention, on 6-month weight loss in adults with overweight and obesity. Eighty participants were randomized to receive standard self-monitoring tools (ST, n=26), technology-based self-monitoring tools (TECH, n=27), or technology-based tools combined with phone-based intervention (TECH+PHONE, n=27). All participants attended one introductory weight loss session and completed assessments at baseline, 3 months, and 6 months. Results Weight loss from baseline to 6 months differed significantly between groups p=.042; there was a trend for TECH+PHONE (−6.4±1.2kg) to lose more weight than ST (−1.3±1.2kg); weight loss in TECH (−4.1±1.4kg) was between ST and TECH+PHONE. Fewer ST (15%) achieved ≥5% weight losses compared to TECH and TECH+PHONE (44%), p=.039. Adherence to self-monitoring caloric intake was higher in TECH+PHONE than TECH or ST, ps<.05. Conclusion These results suggest use of newer self-monitoring technology plus brief phone-based intervention improves adherence and weight loss compared to traditional self-monitoring tools. Further research should determine cost-effectiveness of adding phone-based intervention when providing self-monitoring technology. PMID:27367614

  1. Analysis of Land Subsidence Monitoring in Mining Area with Time-Series Insar Technology

    NASA Astrophysics Data System (ADS)

    Sun, N.; Wang, Y. J.

    2018-04-01

    Time-series InSAR technology has become a popular land subsidence monitoring method in recent years, because of its advantages such as high accuracy, wide area, low expenditure, intensive monitoring points and free from accessibility restrictions. In this paper, we applied two kinds of satellite data, ALOS PALSAR and RADARSAT-2, to get the subsidence monitoring results of the study area in two time periods by time-series InSAR technology. By analyzing the deformation range, rate and amount, the time-series analysis of land subsidence in mining area was realized. The results show that InSAR technology could be used to monitor land subsidence in large area and meet the demand of subsidence monitoring in mining area.

  2. Brainwave Monitoring Software Improves Distracted Minds

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Neurofeedback technology developed at Langley Research Center to monitor pilot awareness inspired Peter Freer to develop software for improving student performance. His company, Fletcher, North Carolina-based Unique Logic and Technology Inc., has gone on to develop technology for improving workplace and sports performance, monitoring drowsiness, and encouraging relaxation.

  3. Sensor Technologies on Flexible Substrates

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica

    2016-01-01

    NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.

  4. Characterization monitoring & sensor technology crosscutting program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

  5. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: ARSENIC MONITORING TECHNOLOGIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This technology ...

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, KMC CONTROLS, INC. SLE-1001 SIGHT GLASS MONITOR

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the KMC SLE-1001 Sight Glass Monitor manufactured by KMC Controls, Inc. The sight glass monitor (SGM) fits over the sight glass that may be installed in a refrigeration system for the pur...

  7. Education technology with continuous real time monitoring of the current functional and emotional students' states

    NASA Astrophysics Data System (ADS)

    Alyushin, M. V.; Kolobashkina, L. V.

    2017-01-01

    The education technology with continuous monitoring of the current functional and emotional students' states is suggested. The application of this technology allows one to increase the effectiveness of practice through informed planning of the training load. For monitoring the current functional and emotional students' states non-contact remote technologies of person bioparameters registration are encouraged to use. These technologies are based on recording and processing in real time the main person bioparameters in a purely passive mode. Experimental testing of this technology has confirmed its effectiveness.

  8. Accountability Tanks Calibration Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, James G.; Salazar, William Richard; Finstad, Casey Charles

    2017-04-25

    MET-1 utilizes tanks to store plutonium in solution. The Nuclear Material Control & Accountability group at LANL requires that MET-1 be able to determine the amount of SNM remaining in solution in the tanks for accountability purposes. For this reason it is desired to determine how well various operators may read the volume of liquid left in the tank with the tank measurement device (glass column or slab). The accuracy of the measurement is then compared to the current SAFE-NMCA acceptance criteria for lean and rich plutonium solutions to determine whether or not the criteria are reasonable and may bemore » met.« less

  9. Biomedical Monitoring By A Novel Noncontact Radio Frequency Technology Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life. The extraterrestrial environment can result in the deconditioning of various human physiological systems and thus require easy to use physiological monitoring technologies in order to better monitor space crews for appropriate health management and successful space missions and space operations. Furthermore, the Space Technology Roadmap's Technology Area Breakdown Structure calls for improvements in research to support human health and performance (Technology Area 06). To address these needs, this project investigated a potential noncontact and noninvasive radio frequency-based technique of monitoring central hemodynamic function in human research subjects in response to orthostatic stress.

  10. Noncontacting measurement technologies for space propulsion condition monitoring

    NASA Technical Reports Server (NTRS)

    Randall, M. R.; Barkhoudarian, S.; Collins, J. J.; Schwartzbart, A.

    1987-01-01

    This paper describes four noncontacting measurement technologies that can be used in a turbopump condition monitoring system. The isotope wear analyzer, fiberoptic deflectometer, brushless torque-meter, and fiberoptic pyrometer can be used to monitor component wear, bearing degradation, instantaneous shaft torque, and turbine blade cracking, respectively. A complete turbopump condition monitoring system including these four technologies could predict remaining component life, thus reducing engine operating costs and increasing reliability.

  11. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossabi, J.; Jenkins, R.A.; Wise, M.B.

    1993-12-31

    The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise.more » Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.« less

  12. Space Biosensor Systems: Implications for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)

    1997-01-01

    To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.

  13. Remote Monitoring Technologies for the Prevention of Metabolic Syndrome: The Diabetes and Technology for Increased Activity (DaTA) Study

    PubMed Central

    Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert

    2011-01-01

    Objectives Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. Research Design and Methods The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Results Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Conclusions Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. PMID:21880237

  14. Application of near field communication for health monitoring in daily life.

    PubMed

    Strömmer, Esko; Kaartinen, Jouni; Pärkkä, Juha; Ylisaukko-Oja, Arto; Korhonen, Ilkka

    2006-01-01

    We study the possibility of applying an emerging RFID-based communication technology, NFC (Near Field Communication), to health monitoring. We suggest that NFC is, compared to other competing technologies, a high-potential technology for short-range connectivity between health monitoring devices and mobile terminals. We propose practices to apply NFC to some health monitoring applications and study the benefits that are attainable with NFC. We compare NFC to other short-range communication technologies such as Bluetooth and IrDA, and study the possibility of improving the usability of health monitoring devices with NFC. We also introduce a research platform for technical evaluation, applicability study and application demonstrations of NFC.

  15. History of technology in the intensive care unit.

    PubMed

    Puri, Nitin; Puri, Vinod; Dellinger, R P

    2009-01-01

    Critical care medicine is a young specialty and since its inception has been heavily reliant upon technology. Invasive monitoring has its humble beginnings in the continuous monitoring of heart rate and rhythm. From the development of right heart catheterization to the adaption of the echocardiogram for use in shock, intensivists have used technology to monitor hemodynamics. The care of the critically ill has been buoyed by investigators who sought to offer renal replacement therapy to unstable patients and worked to improve the monitoring of oxygen saturation. The evolution of mechanical ventilation for the critically ill embodies innumerable technological advances. More recently, critical care has insisted upon rigorous testing and cost-benefit analysis of technological advances.

  16. Technology platforms for remote monitoring of vital signs in the new era of telemedicine.

    PubMed

    Zhao, Fang; Li, Meng; Tsien, Joe Z

    2015-07-01

    Driven by healthcare cost and home healthcare need, the development of remote monitoring technologies is poised to improve and revolutionize healthcare delivery and accessibility. This paper reviews the recent progress in the field of remote monitoring technologies that may have the potential to become the basic platforms for telemedicine. In particular, key techniques and devices for monitoring cardiorespiratory activity, blood pressure and blood glucose concentration are summarized and discussed. In addition, the US FDA approved remote vital signs monitoring devices currently available on the market are presented.

  17. Development of a Dual-Particle Imaging System for Nonproliferation Applications

    NASA Astrophysics Data System (ADS)

    Poitrasson-Riviere, Alexis Pierre Valere

    A rising concern in our society is preventing the proliferation of nuclear weapons and fissionable material. This prevention can be incorporated at multiple levels, from the use of nuclear safeguards in nuclear facilities to the detection of threat objects in the field. At any level, systems used for such tasks need to be specially designed for use with Special Nuclear Material (SNM) which is defined by the NRC as plutonium and uranium enriched in U-233 or U-235 isotopes. These radioactive materials have the particularity of emitting both fast neutrons and gamma rays; thus, systems able to detect both particles simultaneously are particularly desirable. In the field of nuclear nonproliferation and safeguards, detection systems capable of accurately imaging various sources of radiation can greatly simplify any monitoring or detection task. The localization of the radiation sources can allow users of the system to focus their efforts on the areas of interest, whether it be for radiation detection or radiation characterization. This thesis describes the development of a dual-particle imaging system at the University of Michigan to address these technical challenges. The imaging system relies on the use of organic liquid scintillators that can detect both fast neutrons and gamma rays, and inorganic NaI(Tl) scintillators that are not very sensitive to neutrons yet yield photoelectric absorptions from gamma rays. A prototype of the imaging system has been constructed and operated. The system will aid the remote monitoring of nuclear materials within facilities, and it has the scalability for standoff detection in the field. A software suite has been developed to analyze measured data in real time, in an effort to obtain a system as close to field-ready as possible. The system's performance has been tested with various materials of interest, such as MOX and plutonium metal, measured at the PERLA facility of the Joint Research Center in Ispra, Italy. The robust and versatile imaging system is an attractive alternative to the current imaging systems.

  18. NASA's contributions to patient monitoring, appendix

    NASA Technical Reports Server (NTRS)

    Murray, D. M.; Siemens, W. D.

    1971-01-01

    Health care problems, and markets for patient monitoring equipment are discussed along with contributions to all phases of patient monitoring, and technology transfer to nonaerospace problems. Health care medical requirements, and NASA achievements in patient monitoring are described, and a summary of the technology transfer is included.

  19. Sensors for High Frequency monitoring of cyanoHABs and cyanotoxin production

    EPA Science Inventory

    The use of sensors in environmental monitoring is an area of constant evolution. As monitoring needs present themselves, technology development follows. Here, the use of high frequency data to monitor and predict HABs is presented illustrating the successful use of technology a...

  20. Integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Farrar, Charles R.; Sohn, Hoon; Fugate, Michael L.; Czarnecki, Jerry J.

    2001-07-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the author's opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  1. New Continuous Monitoring Technologies for Vapor Intrusion, Remediation and Site Assessment: Benefits of Time Series Data

    DTIC Science & Technology

    2011-03-31

    00-00-2011 4. TITLE AND SUBTITLE New Continuous Monitoring Technologies for Vapor Intrusion, Remediation and Site Assessment . Benefits of Time...Std Z39-18 Dr Peter Morris, Geoff Hewitt New Continuous Monitoring Technologies for Vapor Intrusion, Remediation and Site Assessment . Benefits of...but which poses a greater risk ? V O C p p m Acetone Industrial facility with VOC Leak Site characterisation and Real time monitoring of Remediation

  2. A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.

    PubMed

    Yu, Sung-Nien; Cheng, Jen-Chieh

    2005-01-01

    This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.

  3. EPA-developed, patented technologies related to water monitoring and remediation that are available for licensing

    EPA Pesticide Factsheets

    Under the Federal Technology Transfer Act (FTTA), Federal Agencies can patent inventions developed during the course of research. These technologies can then be licensed to businesses or individuals for further development and sale in the marketplace. These technologies relate to water monitoring and treatment technologies.

  4. Applied breath analysis: an overview of the challenges and opportunities in developing and testing sensor technology for human health monitoring in aerospace and clinical applications

    PubMed Central

    Hunter, Gary W; Dweik, Raed A

    2010-01-01

    The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A family of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption, and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity. However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This paper gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology. Clinical applications and the potential impact to the biomedical field of miniaturized smart gas sensor technology are discussed. PMID:20622933

  5. Environmental Technology Verification Report for Applikon MARGA Semi-Continuous Ambient Air Monitoring System

    EPA Science Inventory

    The verification test was conducted oer a period of 30 days (October 1 to October 31, 2008) and involved the continuous operation of duplicate semi-continuous monitoring technologies at the Burdens Creek Air Monitoring Site, an existing ambient-air monitoring station located near...

  6. Examining Korean and Korean American older adults' perceived acceptability of home-based monitoring technologies in the context of culture.

    PubMed

    Chung, Jane; Thompson, Hilaire J; Joe, Jonathan; Hall, Amanda; Demiris, George

    2017-01-01

    Despite the increasing use of home-based monitoring technologies by older adults, few studies have examined older adults' acceptance of these technologies, especially among people from diverse cultural groups. The purpose of this study was to explore Korean and Korean American older adults' attitudes toward and perceptions of home-based monitoring technologies in a cultural context. A qualitative analysis of focus groups and individual interviews using inductive coding methods and a constant comparative approach for emerging themes was conducted. Several cultural factors that determine the acceptability of home-based monitoring technologies were identified. Most notably, the necessity of living alone due to loosened filial tradition and immigration was a main motivator for adopting these technologies for both Korean and Korean Americans. The level of satisfaction with the health care system or therapeutic interaction affected participants' perceived need for technologies. Compared with the Korean American group, Korean older adults regarded the government's role as more important in increasing adoption and use of new technologies. Contextual factors need to be considered when explaining perceptions of home-based monitoring technologies among older adults from various ethnic groups and developing diffusion strategies according to end users' attitudes, experiences, and cultural backgrounds.

  7. Effective technologies for noninvasive remote monitoring in heart failure.

    PubMed

    Conway, Aaron; Inglis, Sally C; Clark, Robyn A

    2014-06-01

    Trials of new technologies to remotely monitor for signs and symptoms of worsening heart failure are continually emerging. The extent to which technological differences impact the effectiveness of noninvasive remote monitoring for heart failure management is unknown. This study examined the effect of specific technology used for noninvasive remote monitoring of people with heart failure on all-cause mortality and heart failure-related hospitalizations. A subanalysis of a large systematic review and meta-analysis was conducted. Studies were stratified according to the specific type of technology used, and separate meta-analyses were performed. Four different types of noninvasive remote monitoring technologies were identified, including structured telephone calls, videophone, interactive voice response devices, and telemonitoring. Only structured telephone calls and telemonitoring were effective in reducing the risk of all-cause mortality (relative risk [RR]=0.87; 95% confidence interval [CI], 0.75-1.01; p=0.06; and RR=0.62; 95% CI, 0.50-0.77; p<0.0001, respectively) and heart failure-related hospitalizations (RR=0.77; 95% CI, 0.68-0.87; p<0.001; and RR=0.75; 95% CI, 0.63-0.91; p=0.003, respectively). More research data are required for videophone and interactive voice response technologies. This subanalysis identified that only two of the four specific technologies used for noninvasive remote monitoring in heart failure improved outcomes. When results of studies that involved these disparate technologies were combined in previous meta-analyses, significant improvements in outcomes were identified. As such, this study has highlighted implications for future meta-analyses of randomized controlled trials focused on evaluating the effectiveness of remote monitoring in heart failure.

  8. EXHIBIT OF EMPACT ESTUARY MONITORING HANDBOOKS

    EPA Science Inventory

    Related EMPACT documents were displayed at the National Estuary Day Celebration held in Washington, DC, September 30-Octuber 4, 2002. The estuary monitoring technology transfer handbooks displayed were prepared based on information and monitoring technologies developed from selec...

  9. An overview of ecological monitoring based on geographic information system (GIS) and remote sensing (RS) technology in China

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zhang, Jia; Du, Xiangyang; Kang, Hou; Qiao, Minjuan

    2017-11-01

    Due to the rapid development of human economy and society, the resulting ecological problems are becoming more and more prominent, and the dynamic monitoring of the various elements in the ecosystem has become the focus of the current research. For the complex structure and function of the ecological environment monitoring, advanced technical means should be adopted. With the development of spatial information technology, the ecological monitoring technology based on GIS and RS is becoming more and more perfect, and spatial analysis will play an important role in the field of environmental protection. Based on the GIS and RS technology, this paper analyzes the general centralized ecological monitoring model, and makes an objective analysis of the current ecological monitoring trend of China. These are important for the protection and management of ecological environment in China.

  10. GREENHOUSE GAS (GHG) MITIGATION AND MONITORING TECHNOLOGY PERFORMANCE: ACTIVITIES OF THE GHG TECHNOLOGY VERIFICATION CENTER

    EPA Science Inventory

    The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the U.S. EPA's Office of Research and Development. It...

  11. Implementing monitoring technologies in care homes for people with dementia: A qualitative exploration using Normalization Process Theory.

    PubMed

    Hall, Alex; Wilson, Christine Brown; Stanmore, Emma; Todd, Chris

    2017-07-01

    Ageing societies and a rising prevalence of dementia are associated with increasing demand for care home places. Monitoring technologies (e.g. bed-monitoring systems; wearable location-tracking devices) are appealing to care homes as they may enhance safety, increase resident freedom, and reduce staff burden. However, there are ethical concerns about the use of such technologies, and it is unclear how they might be implemented to deliver their full range of potential benefits. This study explored facilitators and barriers to the implementation of monitoring technologies in care homes. Embedded multiple-case study with qualitative methods. Three dementia-specialist care homes in North-West England. Purposive sample of 24 staff (including registered nurses, clinical specialists, senior managers and care workers), 9 relatives and 9 residents. 36 semi-structured interviews with staff, relatives and residents; 175h of observation; resident care record review. Data collection informed by Normalization Process Theory, which seeks to account for how novel interventions become routine practice. Data analysed using Framework Analysis. Findings are presented under three main themes: 1. Reasons for using technologies: The primary reason for using monitoring technologies was to enhance safety. This often seemed to override consideration of other potential benefits (e.g. increased resident freedom) or ethical concerns (e.g. resident privacy); 2. Ways in which technologies were implemented: Some staff, relatives and residents were not involved in discussions and decision-making, which seemed to limit understandings of the potential benefits and challenges from the technologies. Involvement of residents appeared particularly challenging. Staff highlighted the importance of training, but staff training appeared mainly informal which did not seem sufficient to ensure that staff fully understood the technologies; 3. Use of technologies in practice: Technologies generated frequent alarms that placed a burden upon staff, but staff were able to use their contextual knowledge to help to counter some of this burden. Some technologies offered a range of data-gathering capabilities, but were not always perceived as useful complements to practice. Implementation of monitoring technologies may be facilitated by the extent to which the technologies are perceived to enhance safety. Implementation may be further facilitated through greater involvement of all stakeholders in discussions and decision-making in order to deepen understandings about the range of potential benefits and challenges from the use of monitoring technologies. Staff training might need to move beyond functional instruction to include deeper exploration of anticipated benefits and the underlying rationale for using monitoring technologies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Cutting Edge Technologies Presentation: An Overview of Developing Sensor Technology Directions and Possible Barriers to New Technology Implementation

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2007-01-01

    The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A range of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption; and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity, However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This presentation gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology.

  13. Methyl transfer from Fe (and Mo) to Sn: formation of (eta(5)-C(5)H(5))M(CO)(n)Sn(t)Bu(2)Me (M = Fe, n = 2; M = Mo, n = 3) complexes from photochemical irradiation of (eta(5)-C(5)H(5))M(CO)(n)Me and (t)Bu(2)SnH(2).

    PubMed

    Sharma, Hemant K; Arias-Ugarte, Renzo; Metta-Magana, Alejandro; Pannell, Keith H

    2010-07-07

    Formation of an Sn-CH(3) bond, concomitantly with an Sn-M (M = Fe, Mo), is readily achieved from the photochemical reactions of (t)Bu(2)SnH(2) with (eta(5)-C(5)H(5))M(CO)(n)Me (M = Fe, n = 2; M = Mo, n = 3) via the intermediacy of (eta(5)-C(5)H(5))M(CO)(n)Sn(t)Bu(2)H.

  14. [A wireless mobile monitoring system based on bluetooth technology].

    PubMed

    Sun, Shou-jun; Wu, Kai; Wu, Xiao-Ming

    2006-09-01

    This paper presents a wireless mobile monitoring system based on Bluetooth technology. This system realizes the remote mobile monitoring of multiple physiological parameters, and has the characters of easy use, low cost, good reliability and strong capability of anti-jamming.

  15. Blue sensors : technology and cooperative monitoring in UN peacekeeping.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorn, A. Walter Dr.

    2004-04-01

    For over a half-century, the soldiers and civilians deployed to conflict areas in UN peacekeeping operations have monitored ceasefires and peace agreements of many types with varying degrees of effectiveness. Though there has been a significant evolution of peacekeeping, especially in the 1990s, with many new monitoring functions, the UN has yet to incorporate monitoring technologies into its operations in a systematic fashion. Rather, the level of technology depends largely on the contributing nations and the individual field commanders. In most missions, sensor technology has not been used at all. So the UN has not been able to fully benefitmore » from the sensor technology revolution that has seen effectiveness greatly amplified and costs plummet. This paper argues that monitoring technologies need not replace the human factor, which is essential for confidence building in conflict areas, but they can make peacekeepers more effective, more knowledgeable and safer. Airborne, ground and underground sensors can allow peacekeepers to do better monitoring over larger areas, in rugged terrain, at night (when most infractions occur) and in adverse weather conditions. Technology also allows new ways to share gathered information with the parties to create confidence and, hence, better pre-conditions for peace. In the future sensors should become 'tools of the trade' to help the UN keep the peace in war-torn areas.« less

  16. Remote patient monitoring in chronic heart failure.

    PubMed

    Palaniswamy, Chandrasekar; Mishkin, Aaron; Aronow, Wilbert S; Kalra, Ankur; Frishman, William H

    2013-01-01

    Heart failure (HF) poses a significant economic burden on our health-care resources with very high readmission rates. Remote monitoring has a substantial potential to improve the management and outcome of patients with HF. Readmission for decompensated HF is often preceded by a stage of subclinical hemodynamic decompensation, where therapeutic interventions would prevent subsequent clinical decompensation and hospitalization. Various methods of remote patient monitoring include structured telephone support, advanced telemonitoring technologies, remote monitoring of patients with implanted cardiac devices such as pacemakers and defibrillators, and implantable hemodynamic monitors. Current data examining the efficacy of remote monitoring technologies in improving outcomes have shown inconsistent results. Various medicolegal and financial issues need to be addressed before widespread implementation of this exciting technology can take place.

  17. Technological advances in perioperative monitoring: Current concepts and clinical perspectives

    PubMed Central

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any. PMID:25788767

  18. Technological advances in perioperative monitoring: Current concepts and clinical perspectives.

    PubMed

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any.

  19. Continuous intra-arterial blood-gas monitoring

    NASA Astrophysics Data System (ADS)

    Divers, George A.; Riccitelli, Samuel D.; Blais, Maurice; Hui, Henry K.

    1993-05-01

    Fiber optic technology and optical fluorescence have made the continuous monitoring of arterial blood gases a reality. Practical products that continuously monitor blood gases by use of an invasive sensor are now available. Anesthesiologists and intensive care physicians are beginning to explore the practical implications of this technology. With the advent of intra- arterial blood gas monitors it is possible to assess arterial blood gas values without the labor intensive steps of drawing blood and transporting a blood sample to the lab followed by the actual analysis. These intra-arterial blood gas monitors use new optical sensor technologies that can be reduced in size to the point that the sensor can be inserted into the arterial blood flow through a 20-gauge arterial cannula. In the best of these technologies the sensors accuracy and precision are similar to those in vitro analyzers. This presentation focuses on background technology and in vivo performance of a device developed, manufactured, and marketed by Puritan-Bennett Corporation.

  20. Cell Phone-Based and Adherence Device Technologies for HIV Care and Treatment in Resource-Limited Settings: Recent Advances.

    PubMed

    Campbell, Jeffrey I; Haberer, Jessica E

    2015-12-01

    Numerous cell phone-based and adherence monitoring technologies have been developed to address barriers to effective HIV prevention, testing, and treatment. Because most people living with HIV and AIDS reside in resource-limited settings (RLS), it is important to understand the development and use of these technologies in RLS. Recent research on cell phone-based technologies has focused on HIV education, linkage to and retention in care, disease tracking, and antiretroviral therapy adherence reminders. Advances in adherence devices have focused on real-time adherence monitors, which have been used for both antiretroviral therapy and pre-exposure prophylaxis. Real-time monitoring has recently been combined with cell phone-based technologies to create real-time adherence interventions using short message service (SMS). New developments in adherence technologies are exploring ingestion monitoring and metabolite detection to confirm adherence. This article provides an overview of recent advances in these two families of technologies and includes research on their acceptability and cost-effectiveness when available. It additionally outlines key challenges and needed research as use of these technologies continues to expand and evolve.

  1. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review.

    PubMed

    Sanders, James P; Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart J H; Esliger, Dale W

    2016-05-04

    It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma). There are a large number of devices that self-monitor PA; however, there is a greater need for the development of tools to self-monitor sedentary time. The novelty of these devices means they have yet to be used in behavior change interventions, although the growing field of wearable technology may facilitate this to change.

  2. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review

    PubMed Central

    Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart JH; Esliger, Dale W

    2016-01-01

    Background It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. Objective The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. Methods To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. Results The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma). Conclusions There are a large number of devices that self-monitor PA; however, there is a greater need for the development of tools to self-monitor sedentary time. The novelty of these devices means they have yet to be used in behavior change interventions, although the growing field of wearable technology may facilitate this to change. PMID:27145905

  3. U-tube based near-surface environmental monitoring in the Shenhua carbon dioxide capture and storage (CCS) project.

    PubMed

    Li, Qi; Song, Ranran; Shi, Hui; Ma, Jianli; Liu, Xuehao; Li, Xiaochun

    2018-04-01

    The CO 2 injected into deep formations during implementation of carbon dioxide (CO 2 ) capture and storage (CCS) technology may leak and migrate into shallow aquifers or ground surfaces through a variety of pathways over a long period. The leaked CO 2 can threaten shallow environments as well as human health. Therefore, almost all monitoring programs for CCS projects around the world contain near-surface monitoring. This paper presents a U-tube based near-surface monitoring technology focusing on its first application in the Shenhua CCS demonstration project, located in the Ordos Basin, Inner Mongolia, China. First, background information on the site monitoring program of the Shenhua CCS demonstration project was provided. Then, the principle of fluid sampling and the monitoring methods were summarized for the U-tube sampler system, and the monitoring data were analyzed in detail. The U-tube based monitoring results showed that the U-tube sampler system is accurate, flexible, and representative of the subsurface fluid sampling process. The monitoring indicators for the subsurface water and soil gas at the Shenhua CCS site indicate good stratification characteristics. The concentration level of each monitoring indicator decreases with increasing depth. Finally, the significance of this near-surface environmental monitoring technology for CO 2 leakage assessments was preliminarily confirmed at the Shenhua CCS site. The application potential of the U-tube based monitoring technology was also demonstrated during the subsurface environmental monitoring of other CCS projects.

  4. Non-invasive hemoglobin monitoring.

    PubMed

    Joseph, Bellal; Haider, Ansab; Rhee, Peter

    2016-09-01

    Technology has transformed the practice of medicine and surgery in particular over the last several decades. This change in practice has allowed diagnostic and therapeutic tests to be performed less invasively. Hemoglobin monitoring remains one of the most commonly performed diagnostic tests in the United States. Recently, non-invasive hemoglobin monitoring technology has gained popularity. The aim of this article is to review the principles of how this technology works, pros and cons, and the implications of non-invasive hemoglobin technology particularly in trauma surgery. Copyright © 2015 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Privacy versus autonomy: a tradeoff model for smart home monitoring technologies.

    PubMed

    Townsend, Daphne; Knoefel, Frank; Goubran, Rafik

    2011-01-01

    Smart homes are proposed as a new location for the delivery of healthcare services. They provide healthcare monitoring and communication services, by using integrated sensor network technologies. We validate a hypothesis regarding older adults' adoption of home monitoring technologies by conducting a literature review of articles studying older adults' attitudes and perceptions of sensor technologies. Using current literature to support the hypothesis, this paper applies the tradeoff model to decisions about sensor acceptance. Older adults are willing to trade privacy (by accepting a monitoring technology), for autonomy. As the information captured by the sensor becomes more intrusive and the infringement on privacy increases, sensors are accepted if the loss in privacy is traded for autonomy. Even video cameras, the most intrusive sensor type were accepted in exchange for the height of autonomy which is to remain in the home.

  6. REAL-TIME ENVIRONMENTAL MONITORING: APPLICATIONS FOR HOMELAND SECURITY

    EPA Science Inventory

    Real-time monitoring technology developed as part of the EMPACT program has a variety of potential applications. These tools can measure a variety of potential contaminants in the air, water, in buildings, or in the soil. Real-time monitoring technology allows these detection sys...

  7. Overview of Emerging Air Quality Monitoring Technologies and Their Data

    EPA Science Inventory

    This is a webinar presentation as part of a series on Air Quality Planning for Wildland Smoke. The purpose of the talk is to provide a basic overview of monitoring technologies and specifically focus on emerging technologies for PM2.5.

  8. SUPERFUND INNOVATIVE TECHNOLOGIES EVALUATION (SITE) PROGRAM FOR MONITORING AND CHARACTERIZATION TECHNOLOGIES

    EPA Science Inventory

    This task seeks to identify high priority needs of the Regions and Program Offices for innovative field sampling, characterization, monitoring, and measurement technologies. When an appropriate solution to a specific problem is identified, a field demonstration is conducted to d...

  9. Advanced applications of cosmic-ray muon radiography

    NASA Astrophysics Data System (ADS)

    Perry, John

    The passage of cosmic-ray muons through matter is dominated by the Coulomb interaction with electrons and atomic nuclei. The muon's interaction with electrons leads to continuous energy loss and stopping through the process of ionization. The muon's interaction with nuclei leads to angular diffusion. If a muon stops in matter, other processes unfold, as discussed in more detail below. These interactions provide the basis for advanced applications of cosmic-ray muon radiography discussed here, specifically: 1) imaging a nuclear reactor with near horizontal muons, and 2) identifying materials through the analysis of radiation lengths weighted by density and secondary signals that are induced by cosmic-ray muon trajectories. We have imaged a nuclear reactor, type AGN-201m, at the University of New Mexico, using data measured with a particle tracker built from a set of sealed drift tubes, the Mini Muon Tracker (MMT). Geant4 simulations were compared to the data for verification and validation. In both the data and simulation, we can identify regions of interest in the reactor including the core, moderator, and shield. This study reinforces our claims for using muon tomography to image reactors following an accident. Warhead and special nuclear materials (SNM) imaging is an important thrust for treaty verification and national security purposes. The differentiation of SNM from other materials, such as iron and aluminum, is useful for these applications. Several techniques were developed for material identification using cosmic-ray muons. These techniques include: 1) identifying the radiation length weighted by density of an object and 2) measuring the signals that can indicate the presence of fission and chain reactions. By combining the radiographic images created by tracking muons through a target plane with the additional fission neutron and gamma signature, we are able to locate regions that are fissionable from a single side. The following materials were imaged with this technique: aluminum, concrete, steel, lead, and uranium. Provided that there is sufficient mass, U-235 could be differentiated from U-238 through muon induced fission.

  10. Modeling the Production of Beta-Delayed Gamma Rays for the Detection of Special Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, J M; Pruet, J A; Brown, D A

    2005-02-14

    The objective of this LDRD project was to develop one or more models for the production of {beta}-delayed {gamma} rays following neutron-induced fission of a special nuclear material (SNM) and to define a standardized formatting scheme which will allow them to be incorporated into some of the modern, general-purpose Monte Carlo transport codes currently being used to simulate inspection techniques proposed for detecting fissionable material hidden in sea-going cargo containers. In this report, we will describe a Monte Carlo model for {beta}-delayed {gamma}-ray emission following the fission of SNM that can accommodate arbitrary time-dependent fission rates and photon collection histories.more » The model involves direct sampling of the independent fission yield distributions of the system, the branching ratios for decay of individual fission products and spectral distributions representing photon emission from each fission product and for each decay mode. While computationally intensive, it will be shown that this model can provide reasonably detailed estimates of the spectra that would be recorded by an arbitrary spectrometer and may prove quite useful in assessing the quality of evaluated data libraries and identifying gaps in the libraries. The accuracy of the model will be illustrated by comparing calculated and experimental spectra from the decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general-purpose transport calculations, where a detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may not be necessary, it will be shown that a simple parameterization of the {gamma}-ray source function can be defined which provides high-quality average spectral distributions that should suffice for calculations describing photons being transported through thick attenuating media. Finally, a proposal for ENDF-compatible formats that describe each of the models and allow for their straightforward use in Monte Carlo codes will be presented.« less

  11. Advanced Environmental Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  12. Emerging role of digital technology and remote monitoring in the care of cardiac patients.

    PubMed

    Banchs, Javier E; Scher, David Lee

    2015-07-01

    Current available mobile health technologies make possible earlier diagnosis and long-term monitoring of patients with cardiovascular diseases. Remote monitoring of patients with implantable devices and chronic diseases has resulted in better outcomes reducing health care costs and hospital admissions. New care models, which shift point of care to the outpatient setting and the patient's home, necessitate innovations in technology. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Lack of irrefutable validation does not negate clinical utility of near-infrared spectroscopy monitoring: learning to trust new technology.

    PubMed

    Kane, Jason M; Steinhorn, David M

    2009-09-01

    Reliance on new monitoring device technology is based upon an understanding of how the device operates and its reliability in a specific clinical setting. The introduction of new monitoring devices will therefore elicit either distrust of the new technology and the data presented or adoption of new devices. The use of near-infrared spectroscopy (NIRS) technology to monitor vital organs in postoperative pediatric cardiac surgery patients has been extensively described yet controversy remains as to the use of this monitoring device. The following retrospective case series demonstrates how learning from trends in data elicited from 2-site NIRS monitoring provided important bedside insights. These insights led to changes in clinician behavior and reliance on NIRS monitoring for early recognition of clinically silent deteriorations. Disregard for the NIRS data may have led to a fatal outcome in an unstable patient who might have received more timely intervention if the NIRS data had been acknowledged earlier. This case series demonstrates that 2-site NIRS monitoring accurately reflects situations in which poor clinical outcomes may occur when declining trends in somatic tissue oxygen saturations are not corrected. Physician management of the postoperative pediatric cardiac surgery patient can change based upon the insights gained through the application of NIRS monitoring.

  14. Performance of Off-the-Shelf Technologies for Spacecraft Cabin Atmospheric Major Constituent Monitoring

    NASA Technical Reports Server (NTRS)

    Tatara, J. D.; Perry, J. L.

    2004-01-01

    Monitoring the atmospheric composition of a crewed spacecraft cabin is central to successfully expanding the breadth and depth of first-hand human knowledge and understanding of space. Highly reliable technologies must be identified and developed to monitor atmospheric composition. This will enable crewed space missions that last weeks, months, and eventually years. Atmospheric composition monitoring is a primary component of any environmental control and life support system. Instrumentation employed to monitor atmospheric composition must be inexpensive, simple, and lightweight and provide robust performance. Such a system will ensure an environment that promotes human safety and health, and that the environment can be maintained with a high degree of confidence. Key to this confidence is the capability for any technology to operate autonomously, with little intervention from the crew or mission control personnel. A study has been conducted using technologies that, with further development, may reach these goals.

  15. Application of structural health monitoring technologies to bio-systems: current status and path forward

    NASA Astrophysics Data System (ADS)

    Bhalla, Suresh; Srivastava, Shashank; Suresh, Rupali; Moharana, Sumedha; Kaur, Naveet; Gupta, Ashok

    2015-03-01

    This paper presents a case for extension of structural health monitoring (SHM) technologies to offer solutions for biomedical problems. SHM research has made remarkable progress during the last two/ three decades. These technologies are now being extended for possible applications in the bio-medical field. Especially, smart materials, such as piezoelectric ceramic (PZT) patches and fibre-Bragg grating (FBG) sensors, offer a new set of possibilities to the bio-medical community to augment their conventional set of sensors, tools and equipment. The paper presents some of the recent extensions of SHM, such as condition monitoring of bones, monitoring of dental implant post surgery and foot pressure measurement. Latest developments, such as non-bonded configuration of PZT patches for monitoring bones and possible applications in osteoporosis detection, are also discussed. In essence, there is a whole new gamut of new possibilities for SHM technologies making their foray into the bi-medical sector.

  16. DEVELOPING AND IMPLEMENTING AN ESTUARINE WATER QUALITY MONITORING, ASSESSMENT AND OUTREACH PROGRAM/THE MYSOUND PROJECT

    EPA Science Inventory

    EPA has developed a technology transfer handbook for the EMPACT MYSound Project. The handbook highlights information and monitoring technologies developed from the EMPACT Long Island Sound Marine Monitoring (MYSound) Project. As part of the MYSound effort, telemetering data-buoys...

  17. Test/QA Plan (TQAP) for Verification of Semi-Continuous Ambient Air Monitoring Systems

    EPA Science Inventory

    The purpose of the semi-continuous ambient air monitoring technology (or MARGA) test and quality assurance plan is to specify procedures for a verification test applicable to commercial semi-continuous ambient air monitoring technologies. The purpose of the verification test is ...

  18. Delay-Line Three-Dimensional Position Sensitive Radiation Detection

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee

    High-resistivity silicon(Si) in large volumes and with good charge carrier transport properties has been produced and achieved success as a radiation detector material over the past few years due to its relatively low cost as well as the availability of well-established processing technologies. One application of that technology is in the fabrication of various position-sensing topologies from which the incident radiation's direction can be determined. We have succeeded in developing the modeling tools for investigating different position-sensing schemes and used those tools to examine both amplitude-based and time-based methods, an assessment that indicates that fine position-sensing can be achieved with simpler readout designs than are conventionally deployed. This realization can make ubiquitous and inexpensive deployment of special nuclear materials (SNM) detecting technology becomes more feasible because if one can deploy position-sensitive semiconductor detectors with only one or two contacts per side. For this purpose, we have described the delay-line radiation detector and its optimized fabrication. The semiconductor physics were simulated, the results from which guided the fabrication of the guard ring structure and the detector electrode, both of which included metal-field-plates. The measured improvement in the leakage current was confirmed with the fabricated devices, and the structures successfully suppressed soft-breakdown. We also demonstrated that fabricating an asymmetric strip-line structure successfully minimizing the pulse shaping and increases the distance through which one can propagate the information of the deposited charge distribution. With fabricated delay-line detectors we can acquire alpha spectra (Am-241) and gamma spectra (Ba-133, Co-57 and Cd-109). The delay-line detectors can therefore be used to extract the charge information from both ion and gamma-ray interactions. Furthermore, standard charge-sensitive circuits yield high SNR pulses. The detectors and existing electronics can therefore be used to yield imaging instruments for neutron and gamma-rays, in the case of silicon. For CZT, we would prefer to utilize current sensing to be able to clearly isolate the effects of the various charge-transport non-idealities, the full realization of which awaits the fabrication of the custom-designed TIA chip.

  19. FinFET memory cell improvements for higher immunity against single event upsets

    NASA Astrophysics Data System (ADS)

    Sajit, Ahmed Sattar

    The 21st century is witnessing a tremendous demand for transistors. Life amenities have incorporated the transistor in every aspect of daily life, ranging from toys to rocket science. Day by day, scaling down the transistor is becoming an imperious necessity. However, it is not a straightforward process; instead, it faces overwhelming challenges. Due to these scaling changes, new technologies, such as FinFETs for example, have emerged as alternatives to the conventional bulk-CMOS technology. FinFET has more control over the channel, therefore, leakage current is reduced. FinFET could bridge the gap between silicon devices and non-silicon devices. The semiconductor industry is now incorporating FinFETs in systems and subsystems. For example, Intel has been using them in their newest processors, delivering potential saving powers and increased speeds to memory circuits. Memory sub-systems are considered a vital component in the digital era. In memory, few rows are read or written at a time, while the most rows are static; hence, reducing leakage current increases the performance. However, as a transistor shrinks, it becomes more vulnerable to the effects from radioactive particle strikes. If a particle hits a node in a memory cell, the content might flip; consequently, leading to corrupting stored data. Critical fields, such as medical and aerospace, where there are no second chances and cannot even afford to operate at 99.99% accuracy, has induced me to find a rigid circuit in a radiated working environment. This research focuses on a wide spectrum of memories such as 6T SRAM, 8T SRAM, and DICE memory cells using FinFET technology and finding the best platform in terms of Read and Write delay, susceptibility level of SNM, RSNM, leakage current, energy consumption, and Single Event Upsets (SEUs). This research has shown that the SEU tolerance that 6T and 8T FinFET SRAMs provide may not be acceptable in medical and aerospace applications where there is a very high likelihood of SEUs. Consequently, FinFET DICE memory can be a good candidate due to its high ability to tolerate SEUs of different amplitudes and long periods for both read and hold operations.

  20. TECHNOLOGY EVALUATION REPORT CEREX ENVIRONMENTAL SERVICES UV HOUND POINT SAMPLE AIR MONITOR

    EPA Science Inventory

    The USEPA's National Homeland Security Research Center (NHSRC) Technology Testing and Evaluation Program (TTEP) is carrying out performance tests on homeland security technologies. Under TTEP, Battelle evaluated the performance of the Cerex UV Hound point sample air monitor in de...

  1. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: MERCURY CONTINUOUS EMISSION MONITORS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techn...

  2. SITE CHARACTERIZATION AND MONITORING TECHNOLOGY VERIFICATION: PROGRESS AND RESULTS

    EPA Science Inventory

    The Site Characterization and Monitoring Technology Pilot of the U.S. Environmental Protection Agency's Environmental Technology Verification Program (ETV) has been engaged in verification activities since the fall of 1994 (U.S. EPA, 1997). The purpose of the ETV is to promote th...

  3. Monitoring Technological Change.

    ERIC Educational Resources Information Center

    Brinkworth, B. J.; Eckersall, K. E.

    A project was conducted to design and pilot a scheme for monitoring trade/industry/commerce technological changes and reporting them to Technical and Further Education (TAFE) teachers and authorities. A matrix of information categories was used to facilitate the collection and storage of information relative to technological advancements in the…

  4. Study on embedding fiber Bragg grating sensor into the 3D printing structure for health monitoring

    NASA Astrophysics Data System (ADS)

    Li, Ruiya; Tan, Yuegang; Zhou, Zude; Fang, Liang; Chen, Yiyang

    2016-10-01

    3D printing technology is a rapidly developing manufacturing technology, which is known as a core technology in the third industrial revolution. With the continuous improvement of the application of 3D printing products, the health monitoring of the 3D printing structure is particularly important. Fiber Bragg grating (FBG) sensing technology is a new type of optical sensing technology with unique advantages comparing to traditional sensing technology, and it has great application prospects in structural health monitoring. In this paper, the FBG sensors embedded in the internal structure of the 3D printing were used to monitor the static and dynamic strain variation of 3D printing structure during loading process. The theoretical result and experimental result has good consistency and the characteristic frequency detected by FBG sensor is consistent with the testing results of traditional accelerator in the dynamic experiment. The results of this paper preliminary validate that FBG embedded in the 3D printing structure can effectively detecting the static and dynamic stain change of the 3D printing structure, which provide some guidance for the health monitoring of 3D printing structure.

  5. Monitoring human health behaviour in one's living environment: a technological review.

    PubMed

    Lowe, Shane A; Ólaighin, Gearóid

    2014-02-01

    The electronic monitoring of human health behaviour using computer techniques has been an active research area for the past few decades. A wide array of different approaches have been investigated using various technologies including inertial sensors, Global Positioning System, smart homes, Radio Frequency IDentification and others. It is only in recent years that research has turned towards a sensor fusion approach using several different technologies in single systems or devices. These systems allow for an increased volume of data to be collected and for activity data to be better used as measures of behaviour. This change may be due to decreasing hardware costs, smaller sensors, increased power efficiency or increases in portability. This paper is intended to act as a reference for the design of multi-sensor behaviour monitoring systems. The range of technologies that have been used in isolation for behaviour monitoring both in research and commercial devices are reviewed and discussed. Filtering, range, sensitivity, usability and other considerations of different technologies are discussed. A brief overview of commercially available activity monitors and their technology is also included. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Technology review: prototyping platforms for monitoring ambient conditions.

    PubMed

    Afolaranmi, Samuel Olaiya; Ramis Ferrer, Borja; Martinez Lastra, Jose Luis

    2018-05-08

    The monitoring of ambient conditions in indoor spaces is very essential owing to the amount of time spent indoors. Specifically, the monitoring of air quality is significant because contaminated air affects the health, comfort and productivity of occupants. This research work presents a technology review of prototyping platforms for monitoring ambient conditions in indoor spaces. It involves the research on sensors (for CO 2 , air quality and ambient conditions), IoT platforms, and novel and commercial prototyping platforms. The ultimate objective of this review is to enable the easy identification, selection and utilisation of the technologies best suited for monitoring ambient conditions in indoor spaces. Following the review, it is recommended to use metal oxide sensors, optical sensors and electrochemical sensors for IAQ monitoring (including NDIR sensors for CO 2 monitoring), Raspberry Pi for data processing, ZigBee and Wi-Fi for data communication, and ThingSpeak IoT platform for data storage, analysis and visualisation.

  7. Modeling of human movement monitoring using Bluetooth Low Energy technology.

    PubMed

    Mokhtari, G; Zhang, Q; Karunanithi, M

    2015-01-01

    Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design.

  8. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?

    PubMed

    Morawska, Lidia; Thai, Phong K; Liu, Xiaoting; Asumadu-Sakyi, Akwasi; Ayoko, Godwin; Bartonova, Alena; Bedini, Andrea; Chai, Fahe; Christensen, Bryce; Dunbabin, Matthew; Gao, Jian; Hagler, Gayle S W; Jayaratne, Rohan; Kumar, Prashant; Lau, Alexis K H; Louie, Peter K K; Mazaheri, Mandana; Ning, Zhi; Motta, Nunzio; Mullins, Ben; Rahman, Md Mahmudur; Ristovski, Zoran; Shafiei, Mahnaz; Tjondronegoro, Dian; Westerdahl, Dane; Williams, Ron

    2018-07-01

    Over the past decade, a range of sensor technologies became available on the market, enabling a revolutionary shift in air pollution monitoring and assessment. With their cost of up to three orders of magnitude lower than standard/reference instruments, many avenues for applications have opened up. In particular, broader participation in air quality discussion and utilisation of information on air pollution by communities has become possible. However, many questions have been also asked about the actual benefits of these technologies. To address this issue, we conducted a comprehensive literature search including both the scientific and grey literature. We focused upon two questions: (1) Are these technologies fit for the various purposes envisaged? and (2) How far have these technologies and their applications progressed to provide answers and solutions? Regarding the former, we concluded that there is no clear answer to the question, due to a lack of: sensor/monitor manufacturers' quantitative specifications of performance, consensus regarding recommended end-use and associated minimal performance targets of these technologies, and the ability of the prospective users to formulate the requirements for their applications, or conditions of the intended use. Numerous studies have assessed and reported sensor/monitor performance under a range of specific conditions, and in many cases the performance was concluded to be satisfactory. The specific use cases for sensors/monitors included outdoor in a stationary mode, outdoor in a mobile mode, indoor environments and personal monitoring. Under certain conditions of application, project goals, and monitoring environments, some sensors/monitors were fit for a specific purpose. Based on analysis of 17 large projects, which reached applied outcome stage, and typically conducted by consortia of organizations, we observed that a sizable fraction of them (~ 30%) were commercial and/or crowd-funded. This fact by itself signals a paradigm change in air quality monitoring, which previously had been primarily implemented by government organizations. An additional paradigm-shift indicator is the growing use of machine learning or other advanced data processing approaches to improve sensor/monitor agreement with reference monitors. There is still some way to go in enhancing application of the technologies for source apportionment, which is of particular necessity and urgency in developing countries. Also, there has been somewhat less progress in wide-scale monitoring of personal exposures. However, it can be argued that with a significant future expansion of monitoring networks, including indoor environments, there may be less need for wearable or portable sensors/monitors to assess personal exposure. Traditional personal monitoring would still be valuable where spatial variability of pollutants of interest is at a finer resolution than the monitoring network can resolve. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. HISTORY AND ACCOMPLISHMENTS OF THE US EPA'S SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) MONITORING AND MEASUREMENT (MMT) PROGRAM

    EPA Science Inventory

    This manuscript presents the history and evolution of the U.S. Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) Monitoring and Measurement Technology (MMT) Program. This includes a discussion of how the fundamental concepts of a performanc...

  10. Monitoring the Thickness of Coal-Conversion Slag

    NASA Technical Reports Server (NTRS)

    Walsh, J. V.

    1984-01-01

    Technique adapts analogous ocean-floor-mapping technology. Existing ocean floor acoustic technology adapted for real-time monitoring of thickness and viscosity of flowing slag in coal-conversion processing.

  11. Amperometric Gas Sensors as a Low Cost Emerging Technology Platform for Air Quality Monitoring Applications: A Review.

    PubMed

    Baron, Ronan; Saffell, John

    2017-11-22

    This review examines the use of amperometric electrochemical gas sensors for monitoring inorganic gases that affect urban air quality. First, we consider amperometric gas sensor technology including its development toward specifically designed air quality sensors. We then review recent academic and research organizations' studies where this technology has been trialed for air quality monitoring applications: early studies showed the potential of electrochemical gas sensors when colocated with reference Air Quality Monitoring (AQM) stations. Spatially dense networks with fast temporal resolution provide information not available from sparse AQMs with longer recording intervals. We review how this technology is being offered as commercial urban air quality networks and consider the remaining challenges. Sensors must be sensitive, selective, and stable; air quality monitors/nodes must be electronically and mechanically well designed. Data correction is required and models with differing levels of sophistication are being designed. Data analysis and validation is possibly the biggest remaining hurdle needed to deliver reliable concentration readings. Finally, this review also considers the roles of companies, urban infrastructure requirements, and public research in the development of this technology.

  12. Perceptions of seniors with heart failure regarding autonomous zero-effort monitoring of physiological parameters in the smart-home environment.

    PubMed

    Grace, Sherry L; Taherzadeh, Golnoush; Jae Chang, Isaac Sung; Boger, Jennifer; Arcelus, Amaya; Mak, Susanna; Chessex, Caroline; Mihailidis, Alex

    Technological advances are leading to the ability to autonomously monitor patient's health status in their own homes, to enable aging-in-place. To understand the perceptions of seniors with heart failure (HF) regarding smart-home systems to monitor their physiological parameters. In this qualitative study, HF outpatients were invited to a smart-home lab, where they completed a sequence of activities, during which the capacity of 5 autonomous sensing modalities was compared to gold standard measures. Afterwards, a semi-structured interview was undertaken. These were transcribed and analyzed using an interpretive-descriptive approach. Five themes emerged from the 26 interviews: (1) perceptions of technology, (2) perceived benefits of autonomous health monitoring, (3) disadvantages of autonomous monitoring, (4) lack of perceived need for continuous health monitoring, and (5) preferences for autonomous monitoring. Patient perception towards autonomous monitoring devices was positive, lending credence to zero-effort technology as a viable and promising approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. An intervention fidelity framework for technology-based behavioral interventions.

    PubMed

    Devito Dabbs, Annette; Song, Mi-Kyung; Hawkins, Robert; Aubrecht, Jill; Kovach, Karen; Terhorst, Lauren; Connolly, Mary; McNulty, Mary; Callan, Judith

    2011-01-01

    Despite the proliferation of health technologies, descriptions of the unique considerations and practical guidance for evaluating the intervention fidelity of technology-based behavioral interventions are lacking. The aims of this study were to (a) discuss how technology-based behavioral interventions challenge conventions about how intervention fidelity is conceptualized and evaluated, (b) propose an intervention fidelity framework that may be more appropriate for technology-based behavioral interventions, and (c) present a plan for operationalizing each concept in the framework using the intervention fidelity monitoring plan for Pocket PATH (Personal Assistant for Tracking Health), a mobile health technology designed to promote self-care behaviors after lung transplantation, as an exemplar. The literature related to intervention fidelity and technology acceptance was used to identify the issues that are unique to the fidelity of technology-based behavioral interventions and thus important to include in a proposed intervention fidelity framework. An intervention fidelity monitoring plan for technology-based behavioral interventions was developed as an example. The intervention fidelity monitoring plan was deemed feasible and practical to implement and showed utility in operationalizing the concepts such as assessing interventionists' delivery and participants' acceptance of the technology-based behavioral intervention. The framework has the potential to guide the development of implementation fidelity monitoring tools for other technology-based behavioral interventions. Further application and testing of this framework will allow for a better understanding of the role that technology acceptance plays in the adoption and enactment of the behaviors that technology-based behavioral interventions are intended to promote.

  14. Applications in bridge structure health monitoring using distributed fiber sensing

    NASA Astrophysics Data System (ADS)

    Feng, Yafei; Zheng, Huan; Ge, Huiliang

    2017-10-01

    In this paper, Brillouin Optical Time Domain Analysis (BOTDA) is proposed to solve the problem that the traditional point sensor is difficult to realize the comprehensive safety monitoring of bridges and so on. This technology not only breaks through the bottleneck of traditional monitoring point sensor, realize the distributed measurement of temperature and strain on a transmission path; can also be used for bridge and other structures of the damage identification, fracture positioning, settlement monitoring. The effectiveness and frontier of the technology are proved by comparing the test of the indoor model beam and the external field bridge, and the significance of the distributed optical fiber sensing technology to the monitoring of the important structure of the bridge is fully explained.

  15. Application of Insar Technology in Geographical Situation Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tian, Q.

    2018-04-01

    In this paper, based on the geographical situation monitoring project of the earthquake zone of ludian county, zhaotong city, yunnan province,using the data of the radarsat-2 satellite (time frame is 20140304-20150416), InSAR technology is used to monitor the topography of the earthquake zone(about 420 square kilometers of monitoring area). Through the analysis of topographic deformation results, the scope of the terrain change is obtained, and the application and problems of InSAR technique in topographic geomorphological monitoring are discussed.

  16. Design and validation of wireless system for oil monitoring base on optical sensing unit

    NASA Astrophysics Data System (ADS)

    Niu, Liqun; Wang, Weiming; Zhang, Shuaishuai; Li, Zhirui; Yu, Yan; Huang, Hui

    2017-04-01

    According to the situation of oil leakage and the development of oil detection technology, a wireless monitoring system, combining with the sensor technology, optical measurement technology, and wireless technology, is designed. In this paper, the architecture of a wireless system is designed. In the hardware, the collected data, acquired by photoelectric conversion and analog to digital conversion equipment, will be sent to the upper machine where they are saved and analyzed. The experimental results reveals that the wireless system has the characteristics of higher precision, more real-time and more convenient installation, it can reflect the condition of the measuring object truly and implement the dynamic monitoring for a long time on-site, stability—thus it has a good application prospect in the oil monitoring filed.

  17. Informed Decision Making for In-Home Use of Motion Sensor-Based Monitoring Technologies

    ERIC Educational Resources Information Center

    Bruce, Courtenay R.

    2012-01-01

    Motion sensor-based monitoring technologies are designed to maintain independence and safety of older individuals living alone. These technologies use motion sensors that are placed throughout older individuals' homes in order to derive information about eating, sleeping, and leaving/returning home habits. Deviations from normal behavioral…

  18. EXPERIMENTAL DESIGN CONSIDERATIONS WHEN VERIFYING THE PERFORMANCE OF MONITORING TECHNOLOGIES FOR DIOXIN AND DIOXIN-LIKE COMPOUNDS IN SOILS AND SEDIMENTS

    EPA Science Inventory

    A performance verification demonstration of technologies capable of detecting dioxin and dioxin-like compounds in soil and sediment samples was conducted in April 2004 under the U.S. Environmental Protection Agency's Superfund Innovative Technology Evaluation (SITE) Monitoring an...

  19. Tweets, Texts, and Tablets:The Emergence of Technology-Based Self-Monitoring

    ERIC Educational Resources Information Center

    Bruhn, Allison Leigh; Waller, LaNeisha; Hasselbring, Ted S.

    2016-01-01

    Students with behavior problems often lack the self-regulation skills necessary for success. One strategy shown to improve these skills is self-monitoring. Traditionally, self-monitoring has been done using paper and pencil, with some sort of prompt to complete the procedures. Prompts have involved teacher cues as well as technology. Current…

  20. Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system.

    PubMed

    Hannan, M A; Arebey, Maher; Begum, R A; Basri, Hassan

    2011-12-01

    This paper deals with a system of integration of Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system. RFID, GPS, GPRS and GIS along with camera technologies have been integrated and developed the bin and truck intelligent monitoring system. A new kind of integrated theoretical framework, hardware architecture and interface algorithm has been introduced between the technologies for the successful implementation of the proposed system. In this system, bin and truck database have been developed such a way that the information of bin and truck ID, date and time of waste collection, bin status, amount of waste and bin and truck GPS coordinates etc. are complied and stored for monitoring and management activities. The results showed that the real-time image processing, histogram analysis, waste estimation and other bin information have been displayed in the GUI of the monitoring system. The real-time test and experimental results showed that the performance of the developed system was stable and satisfied the monitoring system with high practicability and validity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Development of ship structure health monitoring system based on IOT technology

    NASA Astrophysics Data System (ADS)

    Yang, Sujun; Shi, Lei; Chen, Demin; Dong, Yuqing; Hu, Zhenyi

    2017-06-01

    It is very important to monitor the ship structure, because ships are affected by all kinds of wind wave and current environment factor. At the same time, internet of things (IOT) technology plays more and more important role of in the development of industrial process. In the paper, real-time online monitoring of the ship can be realized by means of IOT technology. Ship stress, vibration and dynamic parameters are measured. Meanwhile, data is transmitted to remote monitoring system through intelligent data gateway. Timely remote support can be realized for dangerous stage of ship. Safe navigation of ships is guaranteed through application of the system.

  2. Rule Based Expert System for Monitoring Real Time Drug Supply in Hospital Using Radio Frequency Identification Technology

    NASA Astrophysics Data System (ADS)

    Driandanu, Galih; Surarso, Bayu; Suryono

    2018-02-01

    A radio frequency identification (RFID) has obtained increasing attention with the emergence of various applications. This study aims to examine the implementation of rule based expert system supported by RFID technology into a monitoring information system of drug supply in a hospital. This research facilitates in monitoring the real time drug supply by using data sample from the hospital pharmacy. This system able to identify and count the number of drug and provide warning and report in real time. the conclusion is the rule based expert system and RFID technology can facilitate the performance in monitoring the drug supply quickly and precisely.

  3. WLCG Transfers Dashboard: a Unified Monitoring Tool for Heterogeneous Data Transfers

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Beche, A.; Belov, S.; Kadochnikov, I.; Saiz, P.; Tuckett, D.

    2014-06-01

    The Worldwide LHC Computing Grid provides resources for the four main virtual organizations. Along with data processing, data distribution is the key computing activity on the WLCG infrastructure. The scale of this activity is very large, the ATLAS virtual organization (VO) alone generates and distributes more than 40 PB of data in 100 million files per year. Another challenge is the heterogeneity of data transfer technologies. Currently there are two main alternatives for data transfers on the WLCG: File Transfer Service and XRootD protocol. Each LHC VO has its own monitoring system which is limited to the scope of that particular VO. There is a need for a global system which would provide a complete cross-VO and cross-technology picture of all WLCG data transfers. We present a unified monitoring tool - WLCG Transfers Dashboard - where all the VOs and technologies coexist and are monitored together. The scale of the activity and the heterogeneity of the system raise a number of technical challenges. Each technology comes with its own monitoring specificities and some of the VOs use several of these technologies. This paper describes the implementation of the system with particular focus on the design principles applied to ensure the necessary scalability and performance, and to easily integrate any new technology providing additional functionality which might be specific to that technology.

  4. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plumemore » Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.« less

  5. 4onse: four times open & non-conventional technology for sensing the environment

    NASA Astrophysics Data System (ADS)

    Cannata, Massimiliano; Ratnayake, Rangageewa; Antonovic, Milan; Strigaro, Daniele; Cardoso, Mirko; Hoffmann, Marcus

    2017-04-01

    The availability of complete, quality and dense monitoring hydro-meteorological data is essential to address a number of practical issues including, but not limited to, flood-water and urban drainage management, climate change impact assessment, early warning and risk management, now-casting and weather predictions. Thanks to the recent technological advances such as Internet Of Things, Big Data and Ubiquitous Internet, non-conventional monitoring systems based on open technologies and low cost sensors may represent a great opportunity either as a complement of authoritative monitoring network or as a vital source of information wherever existing monitoring networks are in decline or completely missing. Nevertheless, scientific literature on such a kind of open and non-conventional monitoring systems is still limited and often relates to prototype engineering and testing in rather limited case studies. For this reason the 4onse project aims at integrating existing open technologies in the field of Free & Open Source Software, Open Hardware, Open Data, and Open Standards and evaluate this kind of system in a real case (about 30 stations) for a medium period of 2 years to better scientifically understand strengths, criticalities and applicabilities in terms of data quality; system durability; management costs; performances; sustainability. The ultimate objective is to contribute in non-conventional monitoring systems adoption based on four open technologies.

  6. Survey of Technologies for Monitoring Containment Liners and Covers

    EPA Pesticide Factsheets

    The report provides information on innovative long-term monitoring technologies to detect contaminant releases beneath a liner containment system and identify potential problems with the integrity of final containment covers.

  7. Non-invasive monitoring of below ground cassava storage root bulking by ground penetrating radar technology

    NASA Astrophysics Data System (ADS)

    Ruiz Vera, U. M.; Larson, T. H.; Mwakanyamale, K. E.; Grennan, A. K.; Souza, A. P.; Ort, D. R.; Balikian, R. J.

    2017-12-01

    Agriculture needs a new technological revolution to be able to meet the food demands, to overcome weather and natural hazards events, and to monitor better crop productivity. Advanced technologies used in other fields have recently been applied in agriculture. Thus, imagine instrumentation has been applied to phenotype above-ground biomass and predict yield. However, the capability to monitor belowground biomass is still limited. There are some existing technologies available, for example the ground penetrating radar (GPR) which has been used widely in the area of geology and civil engineering to detect different kind of formations under the ground without the disruption of the soil. GPR technology has been used also to monitor tree roots but as yet not crop roots. Some limitation are that the GPR cannot discern roots smaller than 2 cm in diameter, but it make it feasible for application in tuber crops like Cassava since harvest diameter is greater than 4 cm. The objective of this research is to test the availability to use GPR technology to monitor the growth of cassava roots by testing this technique in the greenhouse and in the field. So far, results from the greenhouse suggest that GPR can detect mature roots of cassava and this data could be used to predict biomass.

  8. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops.

    PubMed

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming

    2015-12-03

    Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi(®) Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops.

  9. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops

    PubMed Central

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming

    2015-01-01

    Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi® Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops. PMID:26633418

  10. Gerontechnologies for Older Patients with Heart Failure: What is the Role of Smartphones, Tablets, and Remote Monitoring Devices in Improving Symptom Monitoring and Self-Care Management?

    PubMed

    Masterson Creber, Ruth M; Hickey, Kathleen T; Maurer, Mathew S

    2016-10-01

    Older adults with heart failure have multiple chronic conditions and a large number and range of symptoms. A fundamental component of heart failure self-care management is regular symptom monitoring. Symptom monitoring can be facilitated by cost-effective, easily accessible technologies that are integrated into patients' lives. Technologies that are tailored to older adults by incorporating gerontological design principles are called gerontechnologies. Gerontechnology is an interdisciplinary academic and professional field that combines gerontology and technology with the goals of improving prevention, care, and enhancing the quality of life for older adults. The purpose of this article is to discuss the role of gerontechnologies, specifically the use of mobile applications available on smartphones and tablets as well as remote monitoring systems, for outpatient disease management among older adults with heart failure. While largely unproven, these rapidly developing technologies have great potential to improve outcomes among older persons.

  11. Technical literature review.

    PubMed

    Nußbeck, Gunnar; Gök, Murat

    2013-01-01

    This review gives a comprehensive overview on the technical perspective of personal health monitoring. It is designed to build a mutual basis for the project partners of the PHM-Ethics project. A literature search was conducted to screen pertinent literature databases for relevant publications. All review papers that were retrieved were analyzed. The increasing number of publications that are published per year shows that the field of personal health monitoring is of growing interest in the research community. Most publications deal with telemonitoring, thus forming the core technology of personal health monitoring. Measured parameters, fields of application, participants and stakeholders are described. Moreover an outlook on information and communication technology that foster the integration possibilities of personal health monitoring into decision making and remote monitoring of individual people's health is provided. The removal of the technological barriers opens new perspectives in health and health care delivery using home monitoring applications.

  12. Real-time long term measurement using integrated framework for ubiquitous smart monitoring

    NASA Astrophysics Data System (ADS)

    Heo, Gwanghee; Lee, Giu; Lee, Woosang; Jeon, Joonryong; Kim, Pil-Joong

    2007-04-01

    Ubiquitous monitoring combining internet technologies and wireless communication is one of the most promising technologies of infrastructure health monitoring against the natural of man-made hazards. In this paper, an integrated framework of the ubiquitous monitoring is developed for real-time long term measurement in internet environment. This framework develops a wireless sensor system based on Bluetooth technology and sends measured acceleration data to the host computer through TCP/IP protocol. And it is also designed to respond to the request of web user on real time basis. In order to verify this system, real time monitoring tests are carried out on a prototype self-anchored suspension bridge. Also, wireless measurement system is analyzed to estimate its sensing capacity and evaluate its performance for monitoring purpose. Based on the evaluation, this paper proposes the effective strategies for integrated framework in order to detect structural deficiencies and to design an early warning system.

  13. Lower cost air measurement technology – what is on the ...

    EPA Pesticide Factsheets

    This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology. This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology.

  14. Using Data to Individualize a Multicomponent, Technology-Based Self-Monitoring Intervention

    ERIC Educational Resources Information Center

    Bruhn, Allison Leigh; Vogelgesang, Kari; Fernando, Josephine; Lugo, Wilbeth

    2016-01-01

    Technology in schools is abundant as is the call for evidence-based interventions for students who need additional support to be successful. One promising use of technology is for self-monitoring interventions aimed at improving classroom behavior. In this study, two middle school students with disabilities used a multicomponent, self-monitoring…

  15. SMALL DRINKING WATER SYSTEMS HANDBOOK A GUIDE TO "PACKAGED" FILTRATION AND DISINFECTION TECHNOLOGIES WITH REMOTE MONITORING AND CONTROL TOOLS

    EPA Science Inventory

    The intent of this handbook is to highlight information appropriate to small systems with an emphasis on filtration and disinfection technologies and how they can be "packaged" with remote monitoring and control technologies to provide a healthy and affordable solution for small ...

  16. Configurable technology development for reusable control and monitor ground systems

    NASA Technical Reports Server (NTRS)

    Uhrlaub, David R.

    1994-01-01

    The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.

  17. Caregivers’ Willingness to Pay for Technologies to Support Caregiving

    PubMed Central

    Schulz, Richard; Beach, Scott R.; Matthews, Judith T.; Courtney, Karen; De Vito Dabbs, Annette; Mecca, Laurel Person

    2016-01-01

    Purpose of the Study: We report the results of a study designed to assess whether and how much informal caregivers are willing to pay for technologies designed to help monitor and support care recipients (CRs) in performing kitchen and personal care tasks. Design and Methods: We carried out a web survey of a national sample of adult caregivers (age 18–64) caring for an older adult (N = 512). Respondents completed a 25min online survey that included questions about their caregiving situation, current use of everyday technology, use of specific caregiving technologies, general attitudes toward technology, and questions about technologies designed to help them monitor and provide assistance for CRs’ kitchen and self-care activities. Results: About 20% of caregivers were not willing to pay anything for kitchen and self-care technologies. Among those willing to pay something, the mean amount was approximately $50 per month for monitoring technologies and $70 per month for technologies that both monitored and provided some assistance. Younger caregivers, those caring for a person with Alzheimer’s disease, and caregivers with more positive attitudes toward and experience with technology were willing to pay more. Most caregivers feel that the government or private insurance should help pay for these technologies. Implications: Caregivers are receptive and willing to pay for technologies that help them care for their CR, although the amount they are willing to pay is capped at around $70 per month. The combination of private pay and government subsidy may facilitate development and dissemination of caregiver technologies. PMID:26035899

  18. Integration of Wireless Sensor Networks into Cyberinfrastructure for Monitoring Hawaiian ``Mountain-to-Sea'' Environments

    NASA Astrophysics Data System (ADS)

    Kido, Michael H.; Mundt, Carsten W.; Montgomery, Kevin N.; Asquith, Adam; Goodale, David W.; Kaneshiro, Kenneth Y.

    2008-10-01

    Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.

  19. Integration of wireless sensor networks into cyberinfrastructure for monitoring Hawaiian "mountain-to-sea" environments.

    PubMed

    Kido, Michael H; Mundt, Carsten W; Montgomery, Kevin N; Asquith, Adam; Goodale, David W; Kaneshiro, Kenneth Y

    2008-10-01

    Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.

  20. Students, Teachers, and Schools as Sources of Variability, Integrity, and Sustainability in Implementing Progress Monitoring

    ERIC Educational Resources Information Center

    Bolt, Daniel M.; Ysseldyke, Jim; Patterson, Michael J.

    2010-01-01

    A three-level variance decomposition analysis was used to examine the sources of variability in implementation of a technology-enhanced progress monitoring system within each year of a 2-year study using a randomized-controlled design. We show that results of technology-enhanced progress monitoring are not necessarily a measure of student…

  1. New and emerging technologies for the diagnosis and monitoring of chronic obstructive pulmonary disease: A horizon scanning review.

    PubMed

    Dixon, Louise C; Ward, Derek J; Smith, Joanna; Holmes, Steve; Mahadeva, Ravi

    2016-03-11

    There is a need for straightforward, novel diagnostic and monitoring technologies to enable the early diagnosis of COPD and its differentiation from other respiratory diseases, to establish the cause of acute exacerbations and to monitor disease progression. We sought to establish whether technologies already in development could potentially address these needs. A systematic horizon scanning review was undertaken to identify technologies in development from a wide range of commercial and non-commercial sources. Technologies were restricted to those likely to be available within 18 months, and then evaluated for degree of innovation, potential for impact, acceptability to users and likelihood of adoption by clinicians and patients with COPD. Eighty technologies were identified, of which 25 were considered particularly promising. Biomarker tests, particularly those using sputum or saliva samples and/or available at the point of care, were positively evaluated, with many offering novel approaches to early diagnosis and to determining the cause for acute exacerbations. Several wrist-worn devices and smartphone-based spirometers offering the facility for self-monitoring and early detection of exacerbations were also considered promising. The most promising identified technologies have the potential to improve COPD care and patient outcomes. Further research and evaluation activities should be focused on these technologies. © The Author(s) 2016.

  2. Feasibility and usability of a home monitoring concept based on mobile phones and near field communication (NFC) technology.

    PubMed

    Morak, Jürgen; Kollmann, Alexander; Schreier, Günter

    2007-01-01

    Utilization of mobile information and communication technologies in home monitoring applications is becoming more and more common. The mobile phone, acting as a patient terminal for patients suffering from chronic diseases, provides an active link to the caregiver to transmit health status information and receive feedback. In such a concept the usability is still limited by the necessity of entering the values via the mobile phone's small keypad. The near field communication technology (NFC), a touch-based wireless interface that became available recently, may improve the usability level of such applications significantly. The focus of this paper is to describe the development of a prototype application based on this technology embedded in a home monitoring system. The feasibility and usability of this approach are evaluated and compared with concepts used in previous approaches. The high quantifier with respect to overall usability indicates that NFC may be the technology of choice for some tasks in home monitoring applications.

  3. Chemical Gas Sensors for Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  4. Application of World Wide Web (W3) Technologies in Payload Operations

    NASA Technical Reports Server (NTRS)

    Sun, Charles; Windrem, May; Picinich, Lou

    1996-01-01

    World Wide Web (W3) technologies are considered in relation to their application to space missions. It is considered that such technologies, including the hypertext transfer protocol and the Java object-oriented language, offer a powerful and relatively inexpensive framework for distributed application software development. The suitability of these technologies for payload monitoring systems development is discussed, and the experience gained from the development of an insect habitat monitoring system based on W3 technologies is reported.

  5. Bladder Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Diagnostic Ultrasound Corporation's Bladder Scan Monitor continuously records and monitors bladder fullness and alerts the wearer or caretaker when voiding is required. The sensor is held against the lower abdomen by a belt and connected to the monitor by a cable. The sensor obtains bladder volume data from sound waves reflecting off the bladder wall. The device was developed by Langley Research Center, the Ames Research Center and the NASA Technology Applications Team. It utilizes Langley's advanced ultrasound technology. It is licensed to the ARC for medical applications, and sublicensed to Diagnostics Ultrasound. Central monitoring systems are planned for the future.

  6. [Development of wireless monitoring system based on Zigbee technology in blood and bacterin cold chain].

    PubMed

    Zhao, Peng; Sun, Jian-Jun; Wu, Tai-Hu

    2008-11-01

    Real-time monitoring for temperature is required in cold chain for the medical products that are sensible with temperature, such as blood and bacterin, to guarantee the quality and reduce their wastage. This wireless monitoring system in cold chain is developed with Zigbee technology. Functions such as real-time monitoring, analyzing, alarming are realized. The system boasts such characteristics as low power consumption, low cost, big capacity and high reliability, and could improve the capability of real-time monitoring and management in cold chain effectively.

  7. Characteristics and applications of small, portable gaseous air pollution monitors.

    PubMed

    McKercher, Grant R; Salmond, Jennifer A; Vanos, Jennifer K

    2017-04-01

    Traditional approaches for measuring air quality based on fixed measurements are inadequate for personal exposure monitoring. To combat this issue, the use of small, portable gas-sensing air pollution monitoring technologies is increasing, with researchers and individuals employing portable and mobile methods to obtain more spatially and temporally representative air pollution data. However, many commercially available options are built for various applications and based on different technologies, assumptions, and limitations. A review of the monitor characteristics of small, gaseous monitors is missing from current scientific literature. A state-of-the-art review of small, portable monitors that measure ambient gaseous outdoor pollutants was developed to address broad trends during the last 5-10 years, and to help future experimenters interested in studying gaseous air pollutants choose monitors appropriate for their application and sampling needs. Trends in small, portable gaseous air pollution monitor uses and technologies were first identified and discussed in a review of literature. Next, searches of online databases were performed for articles containing specific information related to performance, characteristics, and use of such monitors that measure one or more of three criteria gaseous air pollutants: ozone, nitrogen dioxide, and carbon monoxide. All data were summarized into reference tables for comparison between applications, physical features, sensing capabilities, and costs of the devices. Recent portable monitoring trends are strongly related to associated applications and audiences. Fundamental research requires monitors with the best individual performance, and thus the highest cost technology. Monitor networking favors real-time capabilities and moderate cost for greater reproduction. Citizen science and crowdsourcing applications allow for lower-cost components; however important strengths and limitations for each application must be addressed or acknowledged for the given use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. An Overview of the NASA Aviation Safety Program Propulsion Health Monitoring Element

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2000-01-01

    The NASA Aviation Safety Program (AvSP) has been initiated with aggressive goals to reduce the civil aviation accident rate, To meet these goals, several technology investment areas have been identified including a sub-element in propulsion health monitoring (PHM). Specific AvSP PHM objectives are to develop and validate propulsion system health monitoring technologies designed to prevent engine malfunctions from occurring in flight, and to mitigate detrimental effects in the event an in-flight malfunction does occur. A review of available propulsion system safety information was conducted to help prioritize PHM areas to focus on under the AvSP. It is noted that when a propulsion malfunction is involved in an aviation accident or incident, it is often a contributing factor rather than the sole cause for the event. Challenging aspects of the development and implementation of PHM technology such as cost, weight, robustness, and reliability are discussed. Specific technology plans are overviewed including vibration diagnostics, model-based controls and diagnostics, advanced instrumentation, and general aviation propulsion system health monitoring technology. Propulsion system health monitoring, in addition to engine design, inspection, maintenance, and pilot training and awareness, is intrinsic to enhancing aviation propulsion system safety.

  9. Ambient Monitoring Technology Information Center (AMTIC)

    EPA Pesticide Factsheets

    This site contains information on ambient air quality monitoring programs, monitoring methods, quality assurance and control procedures, and federal regulations related to ambient air quality monitoring.

  10. Field application of smart SHM using field programmable gate array technology to monitor an RC bridge in New Mexico

    NASA Astrophysics Data System (ADS)

    Azarbayejani, M.; Jalalpour, M.; El-Osery, A. I.; Reda Taha, M. M.

    2011-08-01

    In this paper, an innovative field application of a structural health monitoring (SHM) system using field programmable gate array (FPGA) technology and wireless communication is presented. The new SHM system was installed to monitor a reinforced concrete (RC) bridge on Interstate 40 (I-40) in Tucumcari, New Mexico. This newly installed system allows continuous remote monitoring of this bridge using solar power. Details of the SHM component design and installation are discussed. The integration of FPGA and solar power technologies make it possible to remotely monitor infrastructure with limited access to power. Furthermore, the use of FPGA technology enables smart monitoring where data communication takes place on-need (when damage warning signs are met) and on-demand for periodic monitoring of the bridge. Such a system enables a significant cut in communication cost and power demands which are two challenges during SHM operation. Finally, a three-dimensional finite element (FE) model of the bridge was developed and calibrated using a static loading field test. This model is then used for simulating damage occurrence on the bridge. Using the proposed automation process for SHM will reduce human intervention significantly and can save millions of dollars currently spent on prescheduled inspection of critical infrastructure worldwide.

  11. Health technology assessment to optimize health technology utilization: using implementation initiatives and monitoring processes.

    PubMed

    Frønsdal, Katrine B; Facey, Karen; Klemp, Marianne; Norderhaug, Inger Natvig; Mørland, Berit; Røttingen, John-Arne

    2010-07-01

    The way in which a health technology is used in any particular health system depends on the decisions and actions of a variety of stakeholders, the local culture, and context. In 2009, the HTAi Policy Forum considered how health technology assessment (HTA) could be improved to optimize the use of technologies (in terms of uptake, change in use, or disinvestment) in such complex systems. In scoping, it was agreed to focus on initiatives to implement evidence-based guidance and monitoring activities. A review identified systematic reviews of implementation initiatives and monitoring activities. A two-day deliberative workshop was held to discuss key papers, members' experiences, and collectively address key questions. This consensus paper was developed by email and finalized at a postworkshop meeting. Evidence suggests that the impact and use of HTA could be increased by ensuring timely delivery of relevant reports to clearly determined policy receptor (decision-making) points. To achieve this, the breadth of assessment, implementation initiatives such as incentives and targeted, intelligent dissemination of HTA result, needs to be considered. HTA stakeholders undertake a variety of monitoring activities, which could inform optimal use of a technology. However, the quality of these data varies and is often not submitted to an HTA. Monitoring data should be sufficiently robust so that they can be used in HTA to inform optimal use of technology. Evidence-based implementation initiatives should be developed for HTA, to better inform decision makers at all levels in a health system about the optimal use of technology.

  12. Change in practice: a qualitative exploration of midwives' and doctors' views about the introduction of STan monitoring in an Australian hospital.

    PubMed

    Mayes, M E; Wilkinson, C; Kuah, S; Matthews, G; Turnbull, D

    2018-02-17

    The present study examines the introduction of an innovation in intrapartum foetal monitoring practice in Australia. ST-Analysis (STan) is a technology that adds information to conventional fetal monitoring (cardiotocography) during labour, with the aim of reducing unnecessary obstetric intervention. Adoption of this technology has been controversial amongst obstetricians and midwives, particularly as its use necessitates a more invasive means of monitoring (a scalp clip), compared to external monitoring from cardiotocography alone. If adoption of this technology is going to be successful, then understanding staff opinions about the implementation of STan in an Australian setting is an important issue for maternity care providers and policy makers. Using a maximum variation purposive sampling method, 18 interviews were conducted with 10 midwives and 8 doctors from the Women's and Children's Hospital, South Australia to explore views about the introduction of the new technology. The data were analysed using Framework Analysis. Midwives and doctors indicated four important areas of consideration when introducing STan: 1) philosophy of care; 2) the implementation process including training and education; 3) the existence of research evidence; and 4) attitudes towards the new technology. Views were expressed about the management of change process, the fit of the new technology within the current models of care, the need for ongoing training and the importance of having local evidence. These findings, coupled with the general literature about introducing innovation and change, can be used by other centres looking to introduce STan technology.

  13. Personal health technologies, micropolitics and resistance: A new materialist analysis.

    PubMed

    Fox, Nick J

    2017-03-01

    Personal health technologies are near-body devices or applications designed for use by a single individual, principally outside healthcare facilities. They enable users to monitor physiological processes or body activity, are frequently communication-enabled and sometimes also intervene therapeutically. This article explores a range of personal health technologies, from blood pressure or blood glucose monitors purchased in pharmacies and fitness monitors such as Fitbit and Nike+ Fuelband to drug pumps and implantable medical devices. It applies a new materialist analysis, first reverse engineering a range of personal health technologies to explore their micropolitics and then forward engineering personal health technologies to meet, variously, public health, corporate, patient and resisting-citizen agendas. This article concludes with a critical discussion of personal health technologies and the possibilities of designing devices and apps that might foster subversive micropolitics and encourage collective and resisting 'citizen health'.

  14. The PartoPen: Using Digital Pen Technology to Improve Maternal Labor Monitoring in the Developing World

    ERIC Educational Resources Information Center

    Underwood, Heather Marie

    2013-01-01

    This dissertation presents the PartoPen, a new approach to addressing maternal labor monitoring challenges in developing countries. The PartoPen is a hardware and software system that uses digital pen technology to enhance, rather than replace, the paper-based labor monitoring tool known as the partograph. In the developing world, correct use of…

  15. Technology transfer potential of an automated water monitoring system. [market research

    NASA Technical Reports Server (NTRS)

    Jamieson, W. M.; Hillman, M. E. D.; Eischen, M. A.; Stilwell, J. M.

    1976-01-01

    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes.

  16. Feasibility of the Diabetes and Technology for Increased Activity (DaTA) Study: a pilot intervention in high-risk rural adults.

    PubMed

    Read, Emily

    2014-01-01

    Rural Canadians are at increased risk of metabolic syndrome. Physical inactivity is a primary target for preventing and reversing metabolic syndrome. Adherence to lifestyle interventions may be enhanced using cell phones and self-monitoring technologies. This study investigated the feasibility of a physical activity and self-monitoring intervention targeting high-risk adults in rural Ontario. Rural adults (n = 25, mean = 57.0 ± 8.7 years) with ≥ 2 criteria for metabolic syndrome participated in an 8-week stage-matched physical activity and self-monitoring intervention. Participants monitored blood glucose, blood pressure, weight, and physical activity using self-monitoring devices and Blackberry Smart phones. VO2max, stage of change, waist circumference, weight, blood lipids, and HbA1c were measured at weeks 1, 4, and 8. Adherence to self-monitoring was > 94%. Participants' experiences and perceptions of the technology were positive. Mean stage of change increased 1 stage, physical activity increased 26%, and predicted VO2max increased 17% (P < .05). Significant changes in weight, waist circumference, diastolic blood pressure, LDL cholesterol, and total cholesterol were found. This stage-matched technology intervention for increased physical activity was feasible and effective.

  17. Design of Remote Monitoring System of Irrigation based on GSM and ZigBee Technology

    NASA Astrophysics Data System (ADS)

    Xiao xi, Zheng; Fang, Zhao; Shuaifei, Shao

    2018-03-01

    To solve the problems of low level of irrigation and waste of water resources, a remote monitoring system for farmland irrigation based on GSM communication technology and ZigBee technology was designed. The system is composed of sensors, GSM communication module, ZigBee module, host computer, valve and so on. The system detects and closes the pump and the electromagnetic valve according to the need of the system, and transmits the monitoring information to the host computer or the user’s Mobile phone through the GSM communication network. Experiments show that the system has low power consumption, friendly man-machine interface, convenient and simple. It can monitor agricultural environment remotely and control related irrigation equipment at any time and place, and can better meet the needs of remote monitoring of farmland irrigation.

  18. Monitoring technologies for ocean disposal of radioactive waste

    NASA Astrophysics Data System (ADS)

    Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.

    1982-01-01

    The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.

  19. Measuring bed load discharge in rivers: bedload-surrogate monitoring workshop Minneapolis, Minnesota, 11-14 April 2007

    USGS Publications Warehouse

    Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2007-01-01

    The International Bedload-Surrogate Monitoring Workshop (http://www.nced.umn.edu/BRIC_2007.html), organized by the Bedload Research International Cooperative (BRIC; www.bedloadresearch.org), was held to assess and abet progress in continuous, semiautomated, or fully automated (surrogate) technologies for monitoring bed load discharge in gravel-, sand-, and mixed gravel-sand-bedded rivers. Direct bed load measurements, particularly at medium and high flows, during which most bed load occurs, tend to be time-consuming, expensive, and potentially hazardous. Surrogate technologies developed largely over the past decade and used at a number of research sites around the world show considerable promise toward providing relatively dense, robust, and quantifiably reliable bed load data sets. However, information on the efficacy of selected technologies for use in monitoring programs is needed, as is identification of the ways and means for bringing the most promising and practical of the technologies to fruition.

  20. A light intensity monitoring method based on fiber Bragg grating sensing technology and BP neural network

    NASA Astrophysics Data System (ADS)

    Li, Lu-Ming; Zhu, Qian; Zhang, Zhi-Guo; Cai, Zhi-Min; Liao, Zhi-Jun; Hu, Zhen-Yan

    2017-04-01

    In this paper, a light intensity monitoring method based on FBG is proposed. The method establishes a light intensity monitoring model with cantilever beam structure and BP neural network algorithm, which is based on fiber grating sensing technology. The accuracy of the model can meet the requirements of engineering project and it can monitor light intensity in real time. The experimental results show that the method has good stability and high sensitivity.

  1. Status and Needs Research for On-line Monitoring of VOCs Emissions from Stationary Sources

    NASA Astrophysics Data System (ADS)

    Zhou, Gang; Wang, Qiang; Zhong, Qi; Zhao, Jinbao; Yang, Kai

    2018-01-01

    Based on atmospheric volatile organic compounds (VOCs) pollution control requirements during the twelfth-five year plan and the current status of monitoring and management at home and abroad, instrumental architecture and technical characteristics of continuous emission monitoring systems (CEMS) for VOCs emission from stationary sources are investigated and researched. Technological development needs of VOCs emission on-line monitoring techniques for stationary sources in china are proposed from the system sampling pretreatment technology and analytical measurement techniques.

  2. Caregivers' Willingness to Pay for Technologies to Support Caregiving.

    PubMed

    Schulz, Richard; Beach, Scott R; Matthews, Judith T; Courtney, Karen; De Vito Dabbs, Annette; Mecca, Laurel Person

    2016-10-01

    We report the results of a study designed to assess whether and how much informal caregivers are willing to pay for technologies designed to help monitor and support care recipients (CRs) in performing kitchen and personal care tasks. We carried out a web survey of a national sample of adult caregivers (age 18-64) caring for an older adult (N = 512). Respondents completed a 25min online survey that included questions about their caregiving situation, current use of everyday technology, use of specific caregiving technologies, general attitudes toward technology, and questions about technologies designed to help them monitor and provide assistance for CRs' kitchen and self-care activities. About 20% of caregivers were not willing to pay anything for kitchen and self-care technologies. Among those willing to pay something, the mean amount was approximately $50 per month for monitoring technologies and $70 per month for technologies that both monitored and provided some assistance. Younger caregivers, those caring for a person with Alzheimer's disease, and caregivers with more positive attitudes toward and experience with technology were willing to pay more. Most caregivers feel that the government or private insurance should help pay for these technologies. Caregivers are receptive and willing to pay for technologies that help them care for their CR, although the amount they are willing to pay is capped at around $70 per month. The combination of private pay and government subsidy may facilitate development and dissemination of caregiver technologies. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Nurse-Technology Interactions and Patient Safety.

    PubMed

    Ruppel, Halley; Funk, Marjorie

    2018-06-01

    Nurses are the end-users of most technology in intensive care units, and the ways in which they interact with technology affect quality of care and patient safety. Nurses' interactions include the processes of ensuring proper input of data into the technology as well as extracting and interpreting the output (clinical data, technical data, alarms). Current challenges in nurse-technology interactions for physiologic monitoring include issues regarding alarm management, workflow interruptions, and monitor surveillance. Patient safety concepts, like high reliability organizations and human factors, can advance efforts to enhance nurse-technology interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, D. J.

    1983-01-01

    Utilization of NASA technology and its application to medicine is discussed. The introduction of new or improved commercially available medical products and incorporation of aerospace technology is outlined. A biopolar donor-recipient model of medical technology transfer is presented to provide a basis for the methodology. The methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the ocular screening device, a system for quick detection of vision problems in preschool children, and Porta-Fib III, a hospital monitoring unit. Two institutional transfers were completed: implant materials testing, the application of NASA fracture control technology to improve reliability of metallic prostheses, and incinerator monitoring, a quadrupole mass spectrometer to monitor combustion products of municipal incinerators. Mobility aids for the blind and ultrasound diagnosis of burn depth are also studied.

  5. Exploring morally relevant issues facing families in their decisions to monitor the health-related behaviours of loved ones.

    PubMed

    Gammon, D; Christiansen, E K; Wynn, R

    2009-07-01

    Patient self-management of disease is increasingly supported by technologies that can monitor a wide range of behavioural and biomedical parameters. Incorporated into everyday devices such as cell phones and clothes, these technologies become integral to the psychosocial aspects of everyday life. Many technologies are likely to be marketed directly to families with ill members, and families may enlist the support of clinicians in shaping use. Current ethical frameworks are mainly conceptualised from the perspective of caregivers, researchers, developers and regulators in order to ensure the ethics of their own practices. This paper focuses on families as autonomous decision-makers outside the regulated context of healthcare. We discuss some morally relevant issues facing families in their decisions to monitor the health-related behaviours of loved ones. An example - remote parental monitoring of adolescent blood glucose - is presented and discussed through the lens of two contrasting accounts of ethics; one reflecting the predominant focus on health outcomes within the health technology assessment (HTA) framework and the other that attends to the broader sociocultural contexts shaping technologies and their implications. Issues discussed include the focus of assessments, informed consent and child assent, and family co-creation of system characteristics and implications. The parents' decisions to remotely monitor their child has relational implications that are likely to influence conflict levels and thus also health outcomes. Current efforts to better integrate outcome assessments with social and ethical assessments are particularly relevant for informed decision-making about health monitoring technologies in families.

  6. Monitored Natural Attenuation For Radionuclides In Ground Water - Technical Issues

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attentuation) within the subsurface. In gen...

  7. Advanced sensors and applications : commercial motor vehicle tire pressure monitoring and maintenance : [technology brief].

    DOT National Transportation Integrated Search

    2014-04-01

    Tire pressure monitoring and automatic tire inflation technologies show significant promise for improving safety and reducing costs in the commercial vehicle industry. Improved tire pressure management directly relates to improved vehicle stability, ...

  8. Technology-mediated information sharing between patients and clinicians in primary care encounters.

    PubMed

    Asan, Onur; Montague, Enid

    The aim of this study was to identify and describe the use of electronic health records for information sharing between patients and clinicians in primary care encounters. This topic is particularly important as computers and other technologies are increasingly implemented in multi-user health care settings where interactions and communication between patients and clinicians are integral to interpersonal and organizational outcomes. An ethnographic approach was used to classify the encounters into distinct technology-use patterns based on clinicians` interactions with the technology and patients. Each technology-use pattern was quantitatively analysed to assist with comparison. Quantitative analysis was based on duration of patient and clinician gaze at EHR. Physicians employed three different styles to share information using EHRs: Active information-sharing, in which a clinician turns the monitor towards the patient and uses the computer to actively share information with the patient;Passive information-sharing, when a clinician does not move the monitor, but the patient might see the monitor by leaning in if they choose; andTechnology withdrawal, when a clinician does not share the monitor with the patient. A variety of technology-mediated information-sharing styles may be effective in providing patient-centred care. New EHR designs may be needed to facilitate information sharing between patients and clinicians.

  9. Environmental Technology Verification Program Advanced ...

    EPA Pesticide Factsheets

    Black carbon is a term that is commonly used to describe strongly light absorbing carbon (LAC), which is thought to play a significant role in global climate change through direct absorption of light, interaction with clouds, and by reducing the reflectivity of snow and ice. BC is formed from the incomplete combustion of fossil fuels, biofuels, and biomass and can be emitted from both anthropogenic and natural sources. It is a primary component of soot and has been linked to adverse health effects and visibility reduction. Consequently, there is a great deal of interest in monitoring BC in the atmosphere. However, differences in measurement techniques result in measurements that are operationally defined and characterize the particulate matter based on either its light absorbing properties (leading to determination of BC) or its refractory properties (leading to determination of EC). The ETV Program’s AMS Center conducts third-party performance testing of commercially available technologies that detect or monitor natural species or contaminants in air, water, and soil. Stakeholder committees of buyers and users of such technologies recommend technology categories, and technologies within those categories, as priorities for testing. Among the technology categories recommended for testing are “black carbon” monitors. Because of the nature of “black carbon”, this technology category includes monitors for both BC and elemental carbon (EC). Although

  10. Camera-Based Microswitch Technology to Monitor Mouth, Eyebrow, and Eyelid Responses of Children with Profound Multiple Disabilities

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Bellini, Domenico; Oliva, Doretta; Singh, Nirbhay N.; O'Reilly, Mark F.; Lang, Russell; Didden, Robert

    2011-01-01

    A camera-based microswitch technology was recently used to successfully monitor small eyelid and mouth responses of two adults with profound multiple disabilities (Lancioni et al., Res Dev Disab 31:1509-1514, 2010a). This technology, in contrast with the traditional optic microswitches used for those responses, did not require support frames on…

  11. Graphene hybrids: synthesis strategies and applications in sensors and sensitized solar cells

    PubMed Central

    Badhulika, Sushmee; Terse-Thakoor, Trupti; Villarreal, Claudia; Mulchandani, Ashok

    2015-01-01

    Graphene exhibits unique 2-D structural, chemical, and electronic properties that lead to its many potential applications. In order to expand the scope of its usage, graphene hybrids which combine the synergetic properties of graphene along with metals/metal oxides and other nanostructured materials have been synthesized and are a widely emerging field of research. This review presents an overview of the recent progress made in the field of graphene hybrid architectures with a focus on the synthesis of graphene-carbon nanotube (G-CNT), graphene-semiconductor nanomaterial (G-SNM), and graphene-metal nanomaterial (G-MNM) hybrids. It attempts to identify the bottlenecks involved and outlines future directions for development and comprehensively summarizes their applications in the field of sensing and sensitized solar cells. PMID:26176007

  12. A study of mass data storage technology for rocket engine data

    NASA Technical Reports Server (NTRS)

    Ready, John F.; Benser, Earl T.; Fritz, Bernard S.; Nelson, Scott A.; Stauffer, Donald R.; Volna, William M.

    1990-01-01

    The results of a nine month study program on mass data storage technology for rocket engine (especially the Space Shuttle Main Engine) health monitoring and control are summarized. The program had the objective of recommending a candidate mass data storage technology development for rocket engine health monitoring and control and of formulating a project plan and specification for that technology development. The work was divided into three major technical tasks: (1) development of requirements; (2) survey of mass data storage technologies; and (3) definition of a project plan and specification for technology development. The first of these tasks reviewed current data storage technology and developed a prioritized set of requirements for the health monitoring and control applications. The second task included a survey of state-of-the-art and newly developing technologies and a matrix-based ranking of the technologies. It culminated in a recommendation of optical disk technology as the best candidate for technology development. The final task defined a proof-of-concept demonstration, including tasks required to develop, test, analyze, and demonstrate the technology advancement, plus an estimate of the level of effort required. The recommended demonstration emphasizes development of an optical disk system which incorporates an order-of-magnitude increase in writing speed above the current state of the art.

  13. Plant stress analysis technology deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebadian, M.A.

    1998-01-01

    Monitoring vegetation is an active area of laser-induced fluorescence imaging (LIFI) research. The Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) is assisting in the transfer of the LIFI technology to the agricultural private sector through a market survey. The market survey will help identify the key eco-agricultural issues of the nations that could benefit from the use of sensor technologies developed by the Office of Science and Technology (OST). The principal region of interest is the Western Hemisphere, particularly, the rapidly growing countries of Latin America and the Caribbean. The analysis of needs will assure thatmore » the focus of present and future research will center on economically important issues facing both hemispheres. The application of the technology will be useful to the agriculture industry for airborne crop analysis as well as in the detection and characterization of contaminated sites by monitoring vegetation. LIFI airborne and close-proximity systems will be evaluated as stand-alone technologies and additions to existing sensor technologies that have been used to monitor crops in the field and in storage.« less

  14. Monitored Natural Attenuation For Inorganic Contaminants In Ground Water - Technical Issues

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  15. Integrated controls and health monitoring for chemical transfer propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.; Binder, Michael P.

    1990-01-01

    NASA is reviewing various propulsion technologies for exploring space. The requirements are examined for one enabling propulsion technology: Integrated Controls and Health Monitoring (ICHM) for Chemical Transfer Propulsion (CTP). Functional requirements for a CTP-ICHM system are proposed from tentative mission scenarios, vehicle configurations, CTP specifications, and technical feasibility. These CTP-ICHM requirements go beyond traditional reliable operation and emergency shutoff control to include: (1) enhanced mission flexibility; (2) continuously variable throttling; (3) tank-head start control; (4) automated prestart and post-shutoff engine check; (5) monitoring of space exposure degradation; and (6) product evolution flexibility. Technology development plans are also discussed.

  16. [Intelligent watch system for health monitoring based on Bluetooth low energy technology].

    PubMed

    Wang, Ji; Guo, Hailiang; Ren, Xiaoli

    2017-08-01

    According to the development status of wearable technology and the demand of intelligent health monitoring, we studied the multi-function integrated smart watches solution and its key technology. First of all, the sensor technology with high integration density, Bluetooth low energy (BLE) and mobile communication technology were integrated and used in develop practice. Secondly, for the hardware design of the system in this paper, we chose the scheme with high integration density and cost-effective computer modules and chips. Thirdly, we used real-time operating system FreeRTOS to develop the friendly graphical interface interacting with touch screen. At last, the high-performance application software which connected with BLE hardware wirelessly and synchronized data was developed based on android system. The function of this system included real-time calendar clock, telephone message, address book management, step-counting, heart rate and sleep quality monitoring and so on. Experiments showed that the collecting data accuracy of various sensors, system data transmission capacity, the overall power consumption satisfy the production standard. Moreover, the system run stably with low power consumption, which could realize intelligent health monitoring effectively.

  17. Mobile health in cardiology: a review of currently available medical apps and equipment for remote monitoring.

    PubMed

    Treskes, Roderick Willem; van der Velde, Enno Tjeerd; Barendse, Rogier; Bruining, Nico

    2016-09-01

    Recent developments in implantable cardioverter-defibrillators (ICDs) and smartphone technology have increased the possibilities for remote monitoring. It is the purpose of this review to give an overview of these new possibilities. Remote monitoring in ICD allows for early detection of lead fractures and remote follow-up of patients. Possible limitations are the lack of standardization and the possible unsafety of the data stored on the ICD. Secondly, remote monitoring of health parameters using smartphone compatible wearables and smartphone medical apps is addressed. Possible limitations include the fact that the majority of smartphone apps are unregulated by the regulatory authorities and privacy issues such as selling of app-generated data to third parties. Lastly, clinical studies with smartphone apps are discussed. Expert commentary: New technologies in ICDs and smartphones have the potential to be used for remote monitoring. However, unreliability of smartphone technology, inadequate legislation and lack of reimbursement impede implementation.

  18. Unconventional Staging Package Selection Leads to Cost Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ,

    2012-06-07

    In late 2010, U.S. Department of Energy (DOE) Deputy Secretary of Energy, Daniel Poneman, directed that an analysis be conducted on the U-233 steel-clad, Zero Power Reactor (ZPR) fuel plates that were stored at Oak Ridge National Laboratory (ORNL), focusing on cost savings and any potential DOE programmatic needs for the special nuclear material (SNM). The NA-162 Nuclear Criticality Safety Program requested retention of these fuel plates for use in experiments at the Nevada National Security Site (NNSS). A Secretarial Initiative challenged ORNL to make the first shipment to the NNSS by the end of the 2011 calendar year, andmore » this effort became known as the U-233 Project Accelerated Shipping Campaign. To meet the Secretarial Initiative, National Security Technologies, LLC (NSTec), the NNSS Management and Operations contractor, was asked to facilitate the receipt and staging of the U-233 fuel plates in the Device Assembly Facility (DAF). Because there were insufficient staging containers available for the fuel plates, NSTec conducted an analysis of alternatives. The project required a staging method that would reduce the staging footprint while addressing nuclear criticality safety and radiation exposure concerns. To accommodate an intermediate staging method of approximately five years, the NSTec project team determined that a unique and unconventional staging package, the AT-400R, was available to meet the project requirements. By using the AT-400R containers, NSTec was able to realize a cost savings of approximately $10K per container, a total cost savings of nearly $450K.« less

  19. Patient attitudes towards remote continuous vital signs monitoring on general surgery wards: An interview study.

    PubMed

    Downey, C L; Brown, J M; Jayne, D G; Randell, R

    2018-06-01

    Vital signs monitoring is used to identify deteriorating patients in hospital. The most common tool for vital signs monitoring is an early warning score, although emerging technologies allow for remote, continuous patient monitoring. A number of reviews have examined the impact of continuous monitoring on patient outcomes, but little is known about the patient experience. This study aims to discover what patients think of monitoring in hospital, with a particular emphasis on intermittent early warning scores versus remote continuous monitoring, in order to inform future implementations of continuous monitoring technology. Semi-structured interviews were undertaken with 12 surgical inpatients as part of a study testing a remote continuous monitoring device. All patients were monitored with both an early warning score and the new device. Interviews were audio-recorded, transcribed verbatim and analysed using thematic analysis. Patients can see the value in remote, continuous monitoring, particularly overnight. However, patients appreciate the face-to-face aspect of early warning score monitoring as it allows for reassurance, social interaction, and gives them further opportunity to ask questions about their medical care. Early warning score systems are widely used to facilitate detection of the deteriorating patient. Continuous monitoring technologies may provide added reassurance. However, patients value personal contact with their healthcare professionals and remote monitoring should not replace this. We suggest that remote monitoring is best introduced in a phased manner, and initially as an adjunct to usual care, with careful consideration of the patient experience throughout. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Applications of Advanced Technology for Monitoring Forest Carbon to Support Climate Change Mitigation

    NASA Astrophysics Data System (ADS)

    Birdsey, R.; Hurtt, G. C.; Dubayah, R.; Hagen, S. C.; Vargas, R.; Nehrkorn, T.; Domke, G. M.; Houghton, R. A.

    2015-12-01

    Measurement, Reporting, and Verification (MRV) is a broad concept guiding the application of monitoring technology to the needs of countries or entities for reporting and verifying reductions in greenhouse gas emissions or increases in greenhouse gas sinks. Credibility, cost-effectiveness, and compatibility are important features of global MRV efforts that can support implementation of climate change mitigation programs such as Reducing Emissions from Deforestation and Forest Degradation and Sustainable Forest Management (REDD+). Applications of MRV technology may be tailored to individual country circumstances following guidance provided by the Intergovernmental Panel on Climate Change; hence, there is no single approach that is uniquely viable but rather a range of ways to integrate new MRV methods. MRV technology is advancing rapidly with new remote sensing and advanced measurement of atmospheric CO2, and in situ terrestrial and ocean measurements, coupled with improvements in data analysis, modeling, and assessing uncertainty. Here we briefly summarize some of the most application-ready MRV technologies being developed under NASA's Carbon Monitoring System (CMS) program, and illustrate how these technologies may be applied for monitoring forests using several case studies that span a range of scales, country circumstances, and stakeholder reporting requirements. We also include remarks about the potential role of advanced monitoring technology in the context of the global climate accord that is expected to result from the 21st session of the Conference of the Parties to the United Nations Framework Convention on Climate Change, which is expected to take place in December 2015, in Paris, France.

  1. Personnel reliability impact on petrochemical facilities monitoring system's failure skipping probability

    NASA Astrophysics Data System (ADS)

    Kostyukov, V. N.; Naumenko, A. P.

    2017-08-01

    The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under control - not more than 0.027. In case when only pump and compressor units are under control, the failure skipping risk is not more than 0.022, when the probability of error in operator's action is not more than 0.011. The work output shows that on the basis of the researches results an assessment of operators' reliability can be made in terms of almost any kind of production, but considering only technological capabilities, since operators' psychological and general training considerable vary in different production industries. Using latest technologies of engineering psychology and design of data support systems, situation assessment systems, decision-making and responding system, as well as achievement in condition monitoring in various production industries one can evaluate hazardous condition skipping risk probability considering static, dynamic errors and human factor.

  2. Advanced Monitoring Technology: Opportunities and Challenges - A Path Forward for EPA and States

    EPA Science Inventory

    Rapid changes in monitoring technology have the potential to dramatically improve environmental protection by providing industry, government, and the public with more complete and real-time information on pollution releases and environmental conditions. With more real-time monito...

  3. Environmental Technology Verification Report for Instrumentation Northwest, Inc., Aquistar® TempHion Smart Sensor and Datalogger Nitrate-specific Ion-selective Electrode for Groundwater Remediation Monitoring

    EPA Science Inventory

    Environmental Technology Verification Report for Instrumentation Northwest, Inc., Aquistar® TempHion Smart Sensor and Datalogger Nitrate-specific Ion-selective Electrode for Groundwater Remediation Monitoring

  4. Probe sampling strategies for traffic monitoring systems based on wireless location technology.

    DOT National Transportation Integrated Search

    2007-01-01

    Transportation agencies have become very interested in traffic monitoring systems based on wireless location technology (WLT) since they offer the potential of collecting travel time data across a wide portion of the road system. Prior tests of WLT-b...

  5. An assessment of monitoring requirements and costs of 'Reduced Emissions from Deforestation and Degradation'

    PubMed Central

    Böttcher, Hannes; Eisbrenner, Katja; Fritz, Steffen; Kindermann, Georg; Kraxner, Florian; McCallum, Ian; Obersteiner, Michael

    2009-01-01

    Background Negotiations on a future climate policy framework addressing Reduced Emissions from Deforestation and Degradation (REDD) are ongoing. Regardless of how such a framework will be designed, many technical solutions of estimating forest cover and forest carbon stock change exist to support policy in monitoring and accounting. These technologies typically combine remotely sensed data with ground-based inventories. In this article we assess the costs of monitoring REDD based on available technologies and requirements associated with key elements of REDD policy. Results We find that the design of a REDD policy framework (and specifically its rules) can have a significant impact on monitoring costs. Costs may vary from 0.5 to 550 US$ per square kilometre depending on the required precision of carbon stock and area change detection. Moreover, they follow economies of scale, i.e. single country or project solutions will face relatively higher monitoring costs. Conclusion Although monitoring costs are relatively small compared to other cost items within a REDD system, they should be shared not only among countries but also among sectors, because an integrated monitoring system would have multiple benefits for non-REDD management. Overcoming initialization costs and unequal access to monitoring technologies is crucial for implementation of an integrated monitoring system, and demands for international cooperation. PMID:19709413

  6. [Development of an embedded mobile terminal for real-time remote monitoring of out-of-hospital cardiac patients].

    PubMed

    Xu, Zhi-min; Fang, Zu-Xiang; Lai, Da-Kun; Song, Hai-Lang

    2007-05-01

    A kind of real-time remote monitoring embedded terminal which is combined with mobile communication technology and GPS localization technology, has been developed. The results of preliminary experiments show that the terminal can transmit ECG signals and localization information in real time and continuously, supply a real-time monitoring of out-of-hospital cardiac patients and trace the patients.

  7. Fiber‐optic distributed temperature sensing: A new tool for assessment and monitoring of hydrologic processes

    USGS Publications Warehouse

    Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Dawson, Cian B.; Nelms, David L.; Miller, Cheryl; Wheeler, Jerrod D.; Harvey, Charles F.; Karam, Hanan N.

    2008-01-01

    Fiber‐optic distributed temperature sensing (FO DTS) is an emerging technology for characterizing and monitoring a wide range of important earth processes. FO DTS utilizes laser light to measure temperature along the entire length of standard telecommunications optical fibers. The technology can measure temperature every meter over FO cables up to 30 kilometers (km) long. Commercially available systems can measure fiber temperature as often as 4 times per minute, with thermal precision ranging from 0.1 to 0.01 °C depending on measurement integration time. In 2006, the U.S. Geological Survey initiated a project to demonstrate and evaluate DTS as a technology to support hydrologic studies. This paper demonstrates the potential of the technology to assess and monitor hydrologic processes through case‐study examples of FO DTS monitoring of stream‐aquifer interaction on the Shenandoah River near Locke's Mill, Virginia, and on Fish Creek, near Jackson Hole, Wyoming, and estuary‐aquifer interaction on Waquoit Bay, Falmouth, Massachusetts. The ability to continuously observe temperature over large spatial scales with high spatial and temporal resolution provides a new opportunity to observe and monitor a wide range of hydrologic processes with application to other disciplines including hazards, climate‐change, and ecosystem monitoring.

  8. Revolutionary optical sensor for physiological monitoring in the battlefield

    NASA Astrophysics Data System (ADS)

    Kingsley, Stuart A.; Sriram, Sriram; Pollick, Andrea; Marsh, John

    2004-09-01

    SRICO has developed a revolutionary approach to physiological status monitoring using state-of-the-art optical chip technology. The company"s patent pending Photrode is a photonic electrode that uses unique optical voltage sensing technology to measure and monitor electrophysiological parameters. The optical-based monitoring system enables dry-contact measurements of EEG and ECG signals that require no surface preparation or conductive gel and non-contact measurements of ECG signals through the clothing. The Photrode applies high performance optical integrated circuit technology, that has been successfully implemented in military & commercial aerospace, missile, and communications applications for sensing and signal transmission. SRICO"s award winning Photrode represents a new paradigm for the measurement of biopotentials in a reliable, convenient, and non-intrusive manner. Photrode technology has significant applications on the battlefield for rapid triage to determine the brain dead from those with viable brain function. An ECG may be obtained over the clothing without any direct skin contact. Such applications would enable the combat medic to receive timely medical information and to make important decisions regarding identification, location, triage priority and treatment of casualties. Other applications for the Photrode include anesthesia awareness monitoring, sleep medicine, mobile medical monitoring for space flight, emergency patient care, functional magnetic resonance imaging, various biopotential signal acquisition (EMG, EOG), and routine neuro and cardio diagnostics.

  9. Technologies for physical activity self-monitoring: a study of differences between users and non-users

    PubMed Central

    Åkerberg, Anna; Söderlund, Anne; Lindén, Maria

    2017-01-01

    Background Different kinds of physical activity (PA) self-monitoring technologies are used today to monitor and motivate PA behavior change. The user focus is essential in the development process of this technology, including potential future users such as representatives from the group of non-users. There is also a need to study whether there are differences between the groups of users and non-users. The aims of this study were to investigate possible differences between users and non-users regarding their opinions about PA self-monitoring technologies and to investigate differences in demographic variables between the groups. Materials and methods Participants were randomly selected from seven municipalities in central Sweden. In total, 107 adults responded to the Physical Activity Products Questionnaire, which consisted of 22 questions. Results Significant differences between the users and non-users were shown for six of the 20 measurement-related items: measures accurately (p=0.007), measures with high precision (p=0.024), measures distance (p=0.020), measures speed (p=0.003), shows minutes of activity (p=0.004), and shows geographical position (p=0.000). Significant differences between the users and non-users were also found for two of the 29 encouragement items: measures accurately (p=0.001) and has long-term memory (p=0.019). Significant differences between the groups were also shown for level of education (p=0.030) and level of physical exercise (p=0.037). Conclusion With a few exceptions, the users and the non-users in this study had similar opinions about PA self-monitoring technologies. Because this study showed significant differences regarding level of education and level of physical exercise, these demographic variables seemed more relevant to investigate than differences in opinions about the PA self-monitoring technologies. PMID:28280399

  10. Telemonitoring in heart failure: Big Brother watching over you.

    PubMed

    Dierckx, R; Pellicori, P; Cleland, J G F; Clark, A L

    2015-01-01

    Heart failure (HF) is a leading cause of hospitalisations in older people. Several strategies, supported by novel technologies, are now available to monitor patients' health from a distance. Although studies have suggested that remote monitoring may reduce HF hospitalisations and mortality, the study of different patient populations, the use of different monitoring technologies and the use of different endpoints limit the generalisability of the results of the clinical trials reported, so far. In this review, we discuss the existing home monitoring modalities, relevant trials and focus on future directions for telemonitoring.

  11. Tool path strategy and cutting process monitoring in intelligent machining

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei

    2018-06-01

    Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.

  12. Vital signs monitoring and patient tracking over a wireless network.

    PubMed

    Gao, Tia; Greenspan, Dan; Welsh, Matt; Juang, Radford; Alm, Alex

    2005-01-01

    Patients at a disaster scene can greatly benefit from technologies that continuously monitor their vital status and track their locations until they are admitted to the hospital. We have designed and developed a real-time patient monitoring system that integrates vital signs sensors, location sensors, ad-hoc networking, electronic patient records, and web portal technology to allow remote monitoring of patient status. This system shall facilitate communication between providers at the disaster scene, medical professionals at local hospitals, and specialists available for consultation from distant facilities.

  13. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments

    PubMed Central

    Ghamari, Mohammad; Janko, Balazs; Sherratt, R. Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna

    2016-01-01

    Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments. PMID:27338377

  14. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments.

    PubMed

    Ghamari, Mohammad; Janko, Balazs; Sherratt, R Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna

    2016-06-07

    Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.

  15. Wearable PWV technologies to measure Blood Pressure: eliminating brachial cuffs.

    PubMed

    Solá, J; Proença, M; Chételat, O

    2013-01-01

    The clinical demand for technologies to monitor Blood Pressure (BP) in ambulatory scenarios with minimal use of inflation cuffs is strong: new generation of BP monitors are expected to be not only accurate, but also non-occlusive. In this paper we review recent advances on the use of the so-called Pulse Wave Velocity (PWV) technologies to estimate BP in a beat-by-beat basis. After introducing the working principle and underlying methodological limitations, two implementation examples are provided. Pilot studies have demonstrated that novel PWV-based BP monitors depict accuracy scores falling within the limits of the British Hypertensive Society (BHS) Grade A standard. The reported techniques pave the way towards ambulatory-compliant, continuous and non-occlusive BP monitoring devices, where the use of inflation cuffs is drastically reduced.

  16. Wireless technology in disease management and medicine.

    PubMed

    Clifford, Gari D; Clifton, David

    2012-01-01

    Healthcare information, and to some extent patient management, is progressing toward a wireless digital future. This change is driven partly by a desire to improve the current state of medicine using new technologies, partly by supply-and-demand economics, and partly by the utility of wireless devices. Wired technology can be cumbersome for patient monitoring and can restrict the behavior of the monitored patients, introducing bias or artifacts. However, wireless technologies, while mitigating some of these issues, have introduced new problems such as data dropout and "information overload" for the clinical team. This review provides an overview of current wireless technology used for patient monitoring and disease management. We identify some of the major related issues and describe some existing and possible solutions. In particular, we discuss the rapidly evolving fields of telemedicine and mHealth in the context of increasingly resource-constrained healthcare systems.

  17. Orbit transfer rocket engine integrated control and health monitoring system technology readiness assessment

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Collamore, F. N.; Gage, M. L.; Morgan, D. B.; Thomas, E. R.

    1992-01-01

    The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'.

  18. Rehabilitation Risk Management: Enabling Data Analytics with Quantified Self and Smart Home Data.

    PubMed

    Hamper, Andreas; Eigner, Isabella; Wickramasinghe, Nilmini; Bodendorf, Freimut

    2017-01-01

    A variety of acute and chronic diseases require rehabilitation at home after treatment. Outpatient rehabilitation is crucial for the quality of the medical outcome but is mainly performed without medical supervision. Non-Compliance can lead to severe health risks and readmission to the hospital. While the patient is closely monitored in the hospital, methods and technologies to identify risks at home have to be developed. We analyze state-of-the-art monitoring systems and technologies and show possibilities to transfer these technologies into rehabilitation monitoring. For this purpose, we analyze sensor technology from the field of Quantified Self and Smart Homes. The available sensor data from this consumer grade technology is summarized to give an overview of the possibilities for medical data analytics. Subsequently, we show a conceptual roadmap to transfer data analytics methods to sensor based rehabilitation risk management.

  19. SUPERFUND INNOVATIVE TECHNOLOGIES EVALUATION ...

    EPA Pesticide Factsheets

    This task seeks to identify high priority needs of the Regions and Program Offices for innovative field sampling, characterization, monitoring, and measurement technologies. When an appropriate solution to a specific problem is identified, a field demonstration is conducted to document the performance and cost of the proposed technologies. The use of field analysis almost always provides a savings in time and cost over the usual sample and ship to a conventional laboratory for analysis approach to site characterization and monitoring. With improvements in technology and appropriate quality assurance/quality control, field analysis has been shown to provide high quality data, useful for most environmental monitoring or characterization projects. An emphasis of the program is to seek out innovative solutions to existing problems and to provide the cost and performance data a user would require to make an informed decision regarding the adequacy of a technology to address a specific environmental problem. The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented performance and cost data obtained from field demonstrations.

  20. Keeping Up with the Diabetes Technology: 2016 Endocrine Society Guidelines of Insulin Pump Therapy and Continuous Glucose Monitor Management of Diabetes.

    PubMed

    Galderisi, Alfonso; Schlissel, Elise; Cengiz, Eda

    2017-09-23

    Decades after the invention of insulin pump, diabetes management has encountered a technology revolution with the introduction of continuous glucose monitoring, sensor-augmented insulin pump therapy and closed-loop/artificial pancreas systems. In this review, we discuss the significance of the 2016 Endocrine Society Guidelines for insulin pump therapy and continuous glucose monitoring and summarize findings from relevant diabetes technology studies that were conducted after the publication of the 2016 Endocrine Society Guidelines. The 2016 Endocrine Society Guidelines have been a great resource for clinicians managing diabetes in this new era of diabetes technology. There is good body of evidence indicating that using diabetes technology systems safely tightens glycemic control while managing both type 1 and type 2 diabetes. The first-generation diabetes technology systems will evolve as we gain more experience and collaboratively work to improve them with an ultimate goal of keeping people with diabetes complication and burden-free until the cure for diabetes becomes a reality.

  1. Testing and Evaluating the Effectiveness of Advanced Technologies for Work Zones in Nevada

    DOT National Transportation Integrated Search

    2008-08-30

    The objective of this study was to evaluate two advanced technologies for improving safety in work zones: 1) speed monitoring display and 2) automatic work zone information system. In the evaluation of the speed monitoring display (also called a spee...

  2. THE U.S. EVIRONMENTAL PROTECTION AGENCY ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM—AN OVERVIEW

    EPA Science Inventory

    This is an article about monitoring technologies in the Environmental Technolgy Verification (ETV) Program which will be published in the Journal of Occupational And Environmental Hygiene. This article gives an overview of the entire ETV program with emphasis on monitoring techn...

  3. 15 CFR 296.30 - Monitoring and evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Monitoring and evaluation. 296.30 Section 296.30 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION...

  4. 15 CFR 296.30 - Monitoring and evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Monitoring and evaluation. 296.30 Section 296.30 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION...

  5. 15 CFR 296.30 - Monitoring and evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Monitoring and evaluation. 296.30 Section 296.30 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION...

  6. 15 CFR 296.30 - Monitoring and evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Monitoring and evaluation. 296.30 Section 296.30 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION...

  7. 15 CFR 296.30 - Monitoring and evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Monitoring and evaluation. 296.30 Section 296.30 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION...

  8. Five years of designing wireless sensor networks in the Doñana Biological Reserve (Spain): an applications approach.

    PubMed

    Larios, Diego F; Barbancho, Julio; Sevillano, José L; Rodríguez, Gustavo; Molina, Francisco J; Gasull, Virginia G; Mora-Merchan, Javier M; León, Carlos

    2013-09-10

    Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task.

  9. DEVELOPMENT OF EMERGING TECHNOLOGIES WITHIN THE SITE PROGRAM

    EPA Science Inventory

    The Site Program is formed by five research programs: the Demonstration Program, the Emerging Technology Program, the Measurement and Monitoring Technology Development Program, the Innovative Technology Program, and the Technology Transfer Program. The Emerging Technology (ET) P...

  10. Can we achieve a radionuclide radiation dose equal to or less than that of 99mTc-hydroxymethane diphosphonate bone scintigraphy with a low-dose 18F-sodium fluoride time-of-flight PET of diagnostic quality?

    PubMed

    Ohnona, Jessica; Michaud, Laure; Balogova, Sona; Paycha, Frédéric; Nataf, Valérie; Chauchat, Paul; Talbot, Jean-Noël; Kerrou, Khaldoun

    2013-05-01

    18F-Sodium fluoride is a bone tracer with a high signal-to-noise ratio, but its dosimetry is higher than that of 99mTc-labeled phosphonates at the recommended activities. The study's purpose was to determine whether the reduction by half of F-sodium fluoride-injected activity, mimicked by a short-timed reconstruction image, simulating a total dose less than or equal to that of 99mTc-hydroxymethane diphosphonate scintigraphy, had an impact on the accuracy of PET semiquantitative measurements and image quality. Whole-body time-of-flight 18F-sodium fluoride PET/computed tomography (CT) images were acquired prospectively from 40 adult patients for detection of bone metastases. 18F-Sodium fluoride was administered according to the European Association of Nuclear Medicine (EANM) and Society of Nuclear Medicine (SNM) practice guidelines. From the acquired 1 min/bed position list-mode data, 30-s reconstructions were extracted. Measurements of maximum standard uptake value were recorded with a region of interest applied to the same location on the 1-min and 30-s images, which were displayed side by side, and were analyzed using Bland-Altman plots. A masked reading was performed by two senior nuclear medicine physicians who counted the foci of visually increased uptake. Bland-Altman plots showed an excellent agreement between the maximum standard uptake value measurements of the 60- and 30-s images. The paired Wilcoxon test results between the corresponding 60- and 30-s images read by masked readers A and B were not significant (P=0.15 and 0.19, respectively). Reducing acquisition duration by half or injecting half of the activity recommended by the EANM and SNM practice guidelines can lead to 18F-sodium fluoride time-of-flight PET images of diagnostic quality, achieving a radiation dose less than or equal to that of 99mTc-labeled phosphonates.

  11. Active interrogation of highly enriched uranium

    NASA Astrophysics Data System (ADS)

    Fairrow, Nannette Lea

    Safeguarding special nuclear material (SNM) in the Department of Energy Complex is vital to the national security of the United States. Active and passive nondestructive assays are used to confirm the presence of SNM in various configurations ranging from waste to nuclear weapons. Confirmation measurements for nuclear weapons are more challenging because the design complicates the detection of a distinct signal for highly enriched uranium. The emphasis of this dissertation was to investigate a new nondestructive assay technique that provides an independent and distinct signal to confirm the presence of highly enriched uranium (HEU). Once completed and tested this assay method could be applied to confirmation measurements of nuclear weapons. The new system uses a 14-MeV neutron source for interrogation and records the arrival time of neutrons between the pulses with a high efficiency detection system. The data is then analyzed by the Feynman reduced variance method. The analysis determined the amount of correlation in the data and provided a unique signature of correlated fission neutrons. Measurements of HEU spheres were conducted at Los Alamos with the new system. Then, Monte Carlo calculations were performed to verify hypothesis made about the behavior of the neutrons in the experiment. Comparisons of calculated counting rates by the Monte Carlo N-Particle Transport Code (MCNP) were made with the experimental data to confirm that the measured response reflected the desired behavior of neutron interactions in the highly enriched uranium. In addition, MCNP calculations of the delayed neutron build-up were compared with the measured data. Based on the results obtained from this dissertation, this measurement method has the potential to be expanded to include mass determinations of highly enriched uranium. Although many safeguards techniques exist for measuring special nuclear material, the number of assays that can be used to confirm HEU in shielded systems is limited. These assays also rely on secondary characteristics of the material to be measured. A review of the nondestructive techniques with potential applications for nuclear weapons confirmatory measurements were evaluated with summaries of the pros and cons involved in implementing the methods at production type facilities.

  12. Savannah River Site Eastern Transportation Hub: A Concept For a DOE Eastern Packaging, Staging and Maintenance Center - 13143

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, Jeffery L.; Adams, Karen; Maxted, Maxcine

    2013-07-01

    The Department of Energy (DOE) is working to de-inventory sites and consolidate hazardous materials for processing and disposal. The DOE administers a wide range of certified shipping packages for the transport of hazardous materials to include Special Nuclear Material (SNM), radioactive materials, sealed sources and radioactive wastes. A critical element to successful and safe transportation of these materials is the availability of certified shipping packages. There are over seven thousand certified packagings (i.e., Type B/Type AF) utilized within the DOE for current missions. The synergistic effects of consolidated maintenance, refurbishment, testing, certification, and costing of these services would allow formore » efficient management of the packagings inventory and to support anticipated future in-commerce shipping needs. The Savannah River Site (SRS) receives and ships radioactive materials (including SNM) and waste on a regular basis for critical missions such as consolidated storage, stabilization, purification, or disposition using H-Canyon and HB-Line. The Savannah River National Laboratory (SRNL) has the technical capability and equipment for all aspects of packaging management. SRS has the only active material processing facility in the DOE complex and is one of the sites of choice for nuclear material consolidation. SRS is a logical location to perform maintenance and periodic testing of the DOE fleet of certified packagings. This initiative envisions a DOE Eastern Packaging Staging and Maintenance Center (PSMC) at the SRS and a western hub at the Nevada National Security Site (NNSS), an active DOE Regional Disposal Site. The PSMC's would be the first place DOE would go to meet their radioactive packaging needs and the primary locations projects would go to disposition excess packaging for beneficial reuse. These two hubs would provide the centralized management of a packaging fleet rather than the current approach to design, procure, maintain and dispose of packagings on a project-by-project basis. This initiative provides significant savings in packaging costs and acceleration of project schedules. In addition to certified packaging, the PSMC would be well suited for select designs of 7A Type A packaging and Industrial Packaging. (authors)« less

  13. Optimization and Characterization of a Novel Self Powered Solid State Neutron Detector

    NASA Astrophysics Data System (ADS)

    Clinton, Justin

    There is a strong interest in detecting both the diversion of special nuclear material (SNM) from legitimate, peaceful purposes and the transport of illicit SNM across domestic and international borders and ports. A simple solid-state detector employs a planar solar-cell type p-n junction and a thin conversion layer that converts incident neutrons into detectable charged particles, such as protons, alpha-particles, and heavier ions. Although simple planar devices can act as highly portable, low cost detectors, they have historically been limited to relatively low detection efficiencies; ˜10% and ˜0.2% for thermal and fast detectors, respectively. To increase intrinsic detection efficiency, the incorporation of 3D microstructures into p-i-n silicon devices was proposed. In this research, a combination of existing and new types of detector microstructures were investigated; Monte Carlo models, based on analytical calculations, were constructed and characterized using the GEANT4 simulation toolkit. The simulation output revealed that an array of etched hexagonal holes arranged in a honeycomb pattern and filled with either enriched (99% 10B) boron or parylene resulted in the highest intrinsic detection efficiencies of 48% and 0.88% for thermal and fast neutrons, respectively. The optimal parameters corresponding to each model were utilized as the basis for the fabrication of several prototype detectors. A calibrated 252Cf spontaneous fission source was utilized to generate fast neutrons, while thermal neutrons were created by placing the 252Cf in an HDPE housing designed and optimized using the MCNP simulation software. Upon construction, thermal neutron calibration was performed via activation analysis of gold foils and measurements from a 6Li loaded glass scintillator. Experimental testing of the prototype detectors resulted in maximum intrinsic efficiencies of 4.5 and 0.12% for the thermal and fast devices, respectively. The prototype thermal device was filled with natural (19% 10B) boron; scaling the response to 99% 10B enriched boron resulted in an intrinsic efficiency of 22.5%, one of the highest results in the literature. A comparison of simulated and experimental detector responses demonstrated a high degree of correlation, validating the conceptual models.

  14. Technologies for Metabolic Monitoring Military Section Editorials in Diabetes Technologies and Therapeutics

    DTIC Science & Technology

    2004-12-01

    monitoring, diabetes, IGF-I, patient decision assist, hyperspectral imaging, actigraphy, accelerometry, foot contact time, Con A-glucose sensing, lactate...was reduced in both con - mottling, and rebound of a skin fold could all ditions. contribute to a diagnosis. Current technologies Hyperspectral imaging...information such as ambient con - responses in the context of various external ditions, meals and recent activity, and specific challenges ("green light

  15. Existing Resources, Standards, and Procedures for Precise Monitoring and Analysis of Structural Deformations. Volume 1

    DTIC Science & Technology

    1992-09-01

    Vsurveyors’ at the technician level or even without any formal education. In this case, even the most technologically advanced instrumentation will not... technologically advanced instrumentation system will not supply the expected information. UNB Report on Deformation Monitoring, 1992 163 The worldwide review... Technology ( CANMET ) Report 77-15. Lazzarini, T. (1975). "The identification of reference points in trigonometrical and linear networks established for

  16. Ion-Specific Nutrient Management in Closed Systems: The Necessity for Ion-Selective Sensors in Terrestrial and Space-Based Agriculture and Water Management Systems

    PubMed Central

    Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael

    2012-01-01

    The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided. PMID:23201999

  17. Ion-specific nutrient management in closed systems: the necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems.

    PubMed

    Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael

    2012-10-01

    The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided.

  18. Sensing Solutions for Collecting Spatio-Temporal Data for Wildlife Monitoring Applications: A Review

    PubMed Central

    Baratchi, Mitra; Meratnia, Nirvana; Havinga, Paul J. M.; Skidmore, Andrew K.; Toxopeus, Bert A. G.

    2013-01-01

    Movement ecology is a field which places movement as a basis for understanding animal behavior. To realize this concept, ecologists rely on data collection technologies providing spatio-temporal data in order to analyze movement. Recently, wireless sensor networks have offered new opportunities for data collection from remote places through multi-hop communication and collaborative capability of the nodes. Several technologies can be used in such networks for sensing purposes and for collecting spatio-temporal data from animals. In this paper, we investigate and review technological solutions which can be used for collecting data for wildlife monitoring. Our aim is to provide an overview of different sensing technologies used for wildlife monitoring and to review their capabilities in terms of data they provide for modeling movement behavior of animals. PMID:23666132

  19. Applications of geophysical methods to volcano monitoring

    USGS Publications Warehouse

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley caldera in collaboration with the US Forest Service. 

  20. Geochemical Monitoring Considerations for the FutureGen 2.0 Project

    DOE PAGES

    Amonette, James E.; Johnson, Timothy A.; Spencer, Clayton F.; ...

    2014-12-31

    Geochemical monitoring is an essential component of a suite of monitoring technologies designed to evaluate CO2 mass balance and detect possible loss of containment at the FutureGen 2.0 geologic sequestration site near Jacksonville, IL. This presentation gives an overview of the potential geochemical approaches and tracer technologies that were considered, and describes the evaluation process by which the most cost-effective and robust of these were selected for implementation

  1. FutureGen 2.0 Monitoring Program: An Overview of the Monitoring Approach and Technologies Selected for Implementation

    DOE PAGES

    Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; ...

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoringmore » strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.« less

  2. Health Monitoring and Evaluation of Long-Span Bridges Based on Sensing and Data Analysis: A Survey

    PubMed Central

    Zhou, Jianting; Li, Xiaogang; Xia, Runchuan; Yang, Jun; Zhang, Hong

    2017-01-01

    Aimed at the health monitoring and evaluation of bridges based on sensing technology, the monitoring contents of different structural types of long-span bridges were defined. Then, the definition, classification, selection principle, and installation requirements of the sensors were summarized. The concept was proposed that new adaptable long-life sensors could be developed by new theories and new effects. The principle and methods to select controlled sections and optimize the layout design of measuring points were illustrated. The functional requirements were elaborated on about the acquisition, transmission, processing, and management of sensing information. Some advanced concepts about the method of bridge safety evaluation were demonstrated and technology bottlenecks in the current safety evaluation were also put forward. Ultimately, combined with engineering practices, an application was carried out. The results showed that new, intelligent, and reliable sensor technology would be one of the main future development directions in the long-span bridge health monitoring and evaluation field. Also, it was imperative to optimize the design of the health monitoring system and realize its standardization. Moreover, it is a heavy responsibility to explore new thoughts and new concepts regarding practical bridge safety and evaluation technology. PMID:28300785

  3. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    NASA Technical Reports Server (NTRS)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  4. Process Document for the joint ETV/NOWATECH verification of the Sorbisense GSW40 passive sampler

    EPA Science Inventory

    Nordic Water Technology Verification Center’s (NOWATECH) DHI Water Monitoring Center (DHI WMC), a pilot Environmental Technology Verification (ETV) program in the European Union, and the United States Environmental Protection Agency ETV (US EPA ETV) program’s Advanced Monitoring ...

  5. Remote Sensing and the Kyoto Protocol: A Review of Available and Future Technology for Monitoring Treaty Compliance

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Rosenquist, A.; Milne, A. K.; Dobson, M. C.; Qi, J.

    2000-01-01

    An International workshop was held to address how remote sensing technology could be used to support the environmental monitoring requirements of the Kyoto Protocol. An overview of the issues addressed and the findings of the workshop are discussed.

  6. Integrating Omic Technologies into Aquatic Ecological Risk Assessment and Environmental Monitoring: Hurdles, Achievements and Future Outlook

    EPA Science Inventory

    In this commentary we present the findings from an international consortium on fish toxicogenomics sponsored by the UK Natural Environment Research Council (NERC) with an objective of moving omic technologies into chemical risk assessment and environmental monitoring. Objectiv...

  7. Integrating Omic Technologies into Aquatic Ecological Risk Assessment and Environmental Monitoring: Hurdles, Achievements and Future Outlook

    EPA Science Inventory

    Background: In this commentary we present the findings from an international consortium on fish toxicogenomics sponsored by the UK Natural Environment Research Council (NERC) with a remit of moving omic technologies into chemical risk assessment and environmental monitoring. Obj...

  8. GREENHOUSE GAS (GHG) VERIFICATION GUIDELINE SERIES: ANR Pipeline Company PARAMETRIC EMISSIONS MONITORING SYSTEM (PEMS) VERSION 1.0

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Parametric Emissions Monitoring System (PEMS) manufactured by ANR Pipeline Company, a subsidiary of Coastal Corporation, now El Paso Corporation. The PEMS predicts carbon doixide (CO2...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvers, Kurt

    Program Manager Kurt Silvers helped protect the safety of U.S. troops who fought in Iraq and Afghanistan. PNNL researchers developed technology that monitored the battle-readiness of Hellfire II missiles onboard Army Apache helicopters. The technology continually monitors factors like vibration and temperature, providing key data when making decisions to deploy or retire weapons.

  10. A Systematic and Integrated Review of Mobile-Based Technology to Promote Active Lifestyles in People With Type 2 Diabetes.

    PubMed

    McMillan, Kathryn Anne; Kirk, Alison; Hewitt, Allan; MacRury, Sandra

    2017-03-01

    The aim was to review studies examining the effectiveness, acceptability, and feasibility of mobile-based technology for promoting active lifestyles in people with type 2 diabetes (T2D). Benefits of leading an active lifestyle following a diagnosis of T2D, including improved glycemic control, have been reported. Studies examining the specific use of mobile-based technologies to promote an active lifestyle in T2D have not previously been reviewed. Research studies examining effectiveness, feasibility or acceptability of mobile-based technology for active lifestyle promotion for T2D management were included (n = 9). The databases searched included PubMed, Medline, ScienceDirect, and ACM Digital Library (January 2005 to October 2015). Studies were categorized as (1) informing, (2) monitoring, (3) provoking, or (4) sustaining behavior change. Technologies used included smartphone or tablet apps, diabetes personal digital assistant, continuous glucose monitor and accelerometer, pedometer, and a website delivered by a smartphone. No articles examined the effectiveness of mobile-based technology in monitoring health behaviors and behavior change. Four of the studies found mobile-based technology to be motivational and supportive for behavior change. The visual reinforcement was identified as motivational. The feasibility and acceptability of using mobile-based technology to provide sustained lifestyle change and the effectiveness of mobile-based technology in monitoring health behaviors and behavior change have not been investigated. No studies examined all 3 of the outcomes or focused decreasing the participants' sedentary behavior. Limited research has examined the feasibility, acceptability, and effectiveness of mobile-based technology to promote active lifestyles and subsequently good diabetes management in people with T2D.

  11. Psychology, technology, and diabetes management.

    PubMed

    Gonder-Frederick, Linda A; Shepard, Jaclyn A; Grabman, Jesse H; Ritterband, Lee M

    2016-10-01

    Use of technology in diabetes management is rapidly advancing and has the potential to help individuals with diabetes achieve optimal glycemic control. Over the past 40 years, several devices have been developed and refined, including the blood glucose meter, insulin pump, and continuous glucose monitor. When used in tandem, the insulin pump and continuous glucose monitor have prompted the Artificial Pancreas initiative, aimed at developing control system for fully automating glucose monitoring and insulin delivery. In addition to devices, modern technology, such as the Internet and mobile phone applications, have been used to promote patient education, support, and intervention to address the behavioral and emotional challenges of diabetes management. These state-of-the-art technologies not only have the potential to improve clinical outcomes, but there are possible psychological benefits, such as improved quality of life, as well. However, practical and psychosocial limitations related to advanced technology exist and, in the context of several technology-related theoretical frameworks, can influence patient adoption and continued use. It is essential for future diabetes technology research to address these barriers given that the clinical benefits appear to largely depend on patient engagement and consistence of technology use. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. [Application of electronic fence technology based on GIS in Oncomelania hupensis snail monitoring].

    PubMed

    Zhi-Hua, Chen; Yi-Sheng, Zhu; Zhi-Qiang, Xue; Xue-Bing, Li; Yi-Min, Ding; Li-Jun, Bi; Kai-Min, Gao; You, Zhang

    2017-07-27

    To study the application of Geographic Information System (GIS) electronic fence technique in Oncomelania hupensis snail monitoring. The electronic fence was set around the history and existing snail environments in the electronic map, the information about snail monitoring and controlling was linked to the electronic fence, and the snail monitoring information system was established on these bases. The monitoring information was input through the computer and smart phone. The electronic fence around the history and existing snail environments was set in the electronic map (Baidu map), and the snail monitoring information system and smart phone APP were established. The monitoring information was input and upload real-time, and the snail monitoring information was demonstrated in real time on Baidu map. By using the electronic fence technology based on GIS, the unique "environment electronic archives" for each snail monitoring environment can be established in the electronic map, and real-time, dynamic monitoring and visual management can be realized.

  13. The ethics of an ordinary medical technology.

    PubMed

    van Manen, Michael A

    2015-07-01

    Some routinely applied hospital technologies may have unintended consequences for patients and their families. The neonatal cardiorespiratory monitor, a computer-like display used to show an infant's vital functions, is one such technology that may become part of a parent's day-to-day being with his or her hospitalized child. In this phenomenological study, I explored how the monitor may mediate parental sensibilities, reshaping the contact of parent and child. This exploration speaks to understanding the relational ethics of even the seemingly most ordinary of medical technologies in clinical contexts. © The Author(s) 2014.

  14. Air Quality Monitoring and Sensor Technologies

    EPA Pesticide Factsheets

    EPA scientist Ron Williams presented on the features, examination, application, examples, and data quality of continuous monitoring study designs at EPA's Community Air Monitoring Training in July 2015.

  15. Remote Arrhythmia Monitoring System Developed

    NASA Technical Reports Server (NTRS)

    York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.

    2004-01-01

    Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.

  16. New Criteria for Assessing the Accuracy of Blood Glucose Monitors meeting, October 28, 2011.

    PubMed

    Walsh, John; Roberts, Ruth; Vigersky, Robert A; Schwartz, Frank

    2012-03-01

    Glucose meters (GMs) are routinely used for self-monitoring of blood glucose by patients and for point-of-care glucose monitoring by health care providers in outpatient and inpatient settings. Although widely assumed to be accurate, numerous reports of inaccuracies with resulting morbidity and mortality have been noted. Insulin dosing errors based on inaccurate GMs are most critical. On October 28, 2011, the Diabetes Technology Society invited 45 diabetes technology clinicians who were attending the 2011 Diabetes Technology Meeting to participate in a closed-door meeting entitled New Criteria for Assessing the Accuracy of Blood Glucose Monitors. This report reflects the opinions of most of the attendees of that meeting. The Food and Drug Administration (FDA), the public, and several medical societies are currently in dialogue to establish a new standard for GM accuracy. This update to the FDA standard is driven by improved meter accuracy, technological advances (pumps, bolus calculators, continuous glucose monitors, and insulin pens), reports of hospital and outpatient deaths, consumer complaints about inaccuracy, and research studies showing that several approved GMs failed to meet FDA or International Organization for Standardization standards in postapproval testing. These circumstances mandate a set of new GM standards that appropriately match the GMs' analytical accuracy to the clinical accuracy required for their intended use, as well as ensuring their ongoing accuracy following approval. The attendees of the New Criteria for Assessing the Accuracy of Blood Glucose Monitors meeting proposed a graduated standard and other methods to improve GM performance, which are discussed in this meeting report. © 2012 Diabetes Technology Society.

  17. A Survey of Current Rotorcraft Propulsion Health Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Dempsey, Paula J.; Simon, Donald L.

    2012-01-01

    A brief review is presented on the state-of-the-art in rotorcraft engine health monitoring technologies including summaries on current practices in the area of sensors, data acquisition, monitoring and analysis. Also, presented are guidelines for verification and validation of Health Usage Monitoring System (HUMS) and specifically for maintenance credits to extend part life. Finally, a number of new efforts in HUMS are summarized as well as lessons learned and future challenges. In particular, gaps are identified to supporting maintenance credits to extend rotorcraft engine part life. A number of data sources were consulted and include results from a survey from the HUMS community, Society of Automotive Engineers (SAE) documents, American Helicopter Society (AHS) papers, as well as references from Defence Science & Technology Organization (DSTO), Civil Aviation Authority (CAA), and Federal Aviation Administration (FAA).

  18. Injection of Contaminants into a Simulated Water Distribution System Equipped with Continuous Multi-Parameter Water Monitors

    EPA Science Inventory

    The U.S. EPA’s Technology Testing and Evaluation Program has been charged by EPA to evaluate the performance of commercially available water security-related technologies. Multi-parameter water monitors for distributions systems have been evaluated as such a water security techn...

  19. Smart rock technology for real-time monitoring of bridge scour and riprap effectiveness - design guidelines and visualization tool.

    DOT National Transportation Integrated Search

    2016-12-31

    This study aims to further develop and demonstrate the recently-proposed smart rock technology for : scour depth and protection effectiveness monitoring. A smart rock is one or two stacked magnets encased : in a concrete sphere with a specially-desig...

  20. Migration monitoring with automated technology

    Treesearch

    Rhonda L. Millikin

    2005-01-01

    Automated technology can supplement ground-based methods of migration monitoring by providing: (1) unbiased and automated sampling; (2) independent validation of current methods; (3) a larger sample area for landscape-level analysis of habitat selection for stopover, and (4) an opportunity to study flight behavior. In particular, radar-acoustic sensor fusion can...

  1. Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements : tech transfer summary.

    DOT National Transportation Integrated Search

    2016-08-01

    Micro-electromechanical sensors and systems- (MEMS)-based and : wireless-based smart-sensing technologies have, until now, rarely : been used for monitoring pavement response in the field, and the : requirements for using such smart sensing technolog...

  2. Force Projection Technology Overview

    DTIC Science & Technology

    2011-08-12

    Technologies • Fuel Efficient Powertrain Lubricant • Nanotechnology for Fuels and Lubes • Water from Air • Water Reuse • In-line Water Monitoring...purification systems with new pretreatment, desalination and post treatment technologies. Payoff: • Reduces the logistical footprint associated with water...FY11 FY12 FY13 FY14 FY15 FY16 FY17 •Water From Air •Water Quality Monitoring •Water Reuse •Pre and Post Treatment • Desalination 6 5 5

  3. Corrosion probe. Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less

  4. The Monitoring Case of Ground-Based Synthetic Aperture Radar with Frequency Modulated Continuous Wave System

    NASA Astrophysics Data System (ADS)

    Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.

    2017-09-01

    The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.

  5. The design of composite monitoring scheme for multilevel information in crop early diseases

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Meng, Qinglong; Shang, Jing

    2018-02-01

    It is difficult to monitor and predict the crops early diseases in that the crop disease monitoring is usually monitored by visible light images and the availabilities in early warning are poor at present. The features of common nondestructive testing technology applied to the crop diseases were analyzed in this paper. Based on the changeable characteristics of the virus from the incubation period to the onset period of crop activities, the multilevel composite information monitoring scheme were designed by applying infrared thermal imaging, visible near infrared hyperspectral imaging, micro-imaging technology to the monitoring of multilevel information of crop disease infection comprehensively. The early warning process and key monitoring parameters of compound monitoring scheme are given by taking the temperature, color, structure and texture of crops as the key monitoring characteristics of disease. With overcoming the deficiency that the conventional monitoring scheme is only suitable for the observation of diseases with naked eyes, the monitoring and early warning of the incubation and early onset of the infection crops can be realized by the composite monitoring program as mentioned in this paper.

  6. Information technologies in optimization process of monitoring of software and hardware status

    NASA Astrophysics Data System (ADS)

    Nikitin, P. V.; Savinov, A. N.; Bazhenov, R. I.; Ryabov, I. V.

    2018-05-01

    The article describes a model of a hardware and software monitoring system for a large company that provides customers with software as a service (SaaS solution) using information technology. The main functions of the monitoring system are: provision of up-todate data for analyzing the state of the IT infrastructure, rapid detection of the fault and its effective elimination. The main risks associated with the provision of these services are described; the comparative characteristics of the software are given; author's methods of monitoring the status of software and hardware are proposed.

  7. Implementation of New Technologies to Monitor Phytoplankton Blooms in the South of Chile

    NASA Astrophysics Data System (ADS)

    Rodríguez-Benito, C.; Haag, C.; Alvial, A.

    2004-05-01

    A pilot project has been carried out to demonstrate the applicability of remote sensing in the Xth region of Chile, related to the monitoring of algal blooms. Most of the fish farms of the country are located in this area, where considerable economic losses for this activity are the consequence of algal blooms. The implementation of new technologies to monitor this natural disaster is one of the main goals of local institutions. The project has been developed using ENVISAT/MERIS and AATSR images and oceanographic instrumentation in order to improve the information of the ongoing coastal monitoring programs.

  8. Active subjects of passive monitoring: responses to a passive monitoring system in low-income independent living

    PubMed Central

    BERRIDGE, CLARA

    2016-01-01

    Passive monitoring technology is beginning to be reimbursed by third-party payers in the United States of America. Given the low voluntary uptake of these technologies on the market, it is important to understand the concerns and perspectives of users, former users and non-users. In this paper, the range of ways older adults relate to passive monitoring in low-income independent-living residences is presented. This includes experiences of adoption, non-adoption, discontinuation and creative ‘misuse’. The analysis of interviews reveals three key insights. First, assumptions built into the technology about how older adults live present a problem for many users who experience unwanted disruptions and threats to their behavioural autonomy. Second, resident response is varied and challenges the dominant image of residents as passive subjects of a passive monitoring system. Third, the priorities of older adults (e.g. safety, autonomy, privacy, control, contact) are more diverse and multi-faceted than those of the housing organisation staff and family members (e.g. safety, efficiency) who drive the passive monitoring intervention. The tension between needs, desires and the daily lives of older adults and the technological solutions offered to them is made visible by their active responses, including resistance to them. This exposes the active and meaningful qualities of older adults’ decisions and practices. PMID:28239211

  9. Next-generation air measurement technologies | Science ...

    EPA Pesticide Factsheets

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology. This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology.

  10. Technology to optimize pediatric diabetes management and outcomes.

    PubMed

    Markowitz, Jessica T; Harrington, Kara R; Laffel, Lori M B

    2013-12-01

    Technology for diabetes management is rapidly developing and changing. With each new development, there are numerous factors to consider, including medical benefits, impact on quality of life, ease of use, and barriers to use. It is also important to consider the interaction between developmental stage and technology. This review considers a number of newer diabetes-related technologies and explores issues related to their use in the pediatric diabetes population (including young adults), with a focus on psychosocial factors. Areas include trend technology in blood glucose monitoring, continuous glucose monitoring, sensor-augmented insulin pumps and low glucose suspend functions, internet applications including videoconferencing, mobile applications (apps), text messaging, and online gaming.

  11. Wireless body sensor networks for health-monitoring applications.

    PubMed

    Hao, Yang; Foster, Robert

    2008-11-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system.

  12. DYNSYL: a general-purpose dynamic simulator for chemical processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, G.K.; Rozsa, R.B.

    1978-09-05

    Lawrence Livermore Laboratory is conducting a safeguards program for the Nuclear Regulatory Commission. The goal of the Material Control Project of this program is to evaluate material control and accounting (MCA) methods in plants that handle special nuclear material (SNM). To this end we designed and implemented the dynamic chemical plant simulation program DYNSYL. This program can be used to generate process data or to provide estimates of process performance; it simulates both steady-state and dynamic behavior. The MCA methods that may have to be evaluated range from sophisticated on-line material trackers such as Kalman filter estimators, to relatively simplemore » material balance procedures. This report describes the overall structure of DYNSYL and includes some example problems. The code is still in the experimental stage and revision is continuing.« less

  13. Combining Radiography and Passive Measurements for Radiological Threat Detection in Cargo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; White, Timothy A.; Jarman, Kenneth D.

    Abstract Radiography is widely understood to provide information complimentary to passive detection: while not directly sensitive to radiological materials, radiography can reveal highly shielded regions which may mask a passive radiological signal. We present a method for combining radiographic and passive data which uses the radiograph to provide an estimate of scatter and attenuation for possible sources. This approach allows quantitative use of radiographic images without relying on image interpretation, and results in a probabilistic description of likely source locations and strengths. We present first results for this method for a simple modeled test case of a cargo container drivingmore » through a PVT portal. With this inversion approach, we address criteria for an integrated passive and radiographic screening system and how detection of SNM threats might be improved in such a system.« less

  14. Novel Cyclotron-Based Radiometal Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGrado, Timothy R.

    2013-10-31

    Accomplishments: (1) Construction of prototype solution target for radiometal production; (2) Testing of prototype target for production of following isotopes: a. Zr-89. Investigation of Zr-89 production from Y-89 nitrate solution. i. Defined problems of gas evolution and salt precipitation. ii. Solved problem of precipitation by addition of nitric acid. iii. Solved gas evolution problem with addition of backpressure regulator and constant degassing of target during irradiations. iv. Investigated effects of Y-89 nitrate concentration and beam current. v. Published abstracts at SNM and ISRS meetings; (3) Design of 2nd generation radiometal solution target. a. Included reflux chamber and smaller target volumemore » to conserve precious target materials. b. Included aluminum for prototype and tantalum for working model. c. Included greater varicosities for improved heat transfer; and, (4) Construction of 2nd generation radiometal solution target started.« less

  15. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: INNOVATION MAKING A DIFFERENCE

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program encourages commercialization of innovative technologies for characterizing and remediating hazardous waste site contamination through four components: Demonstration, Emerging Technology, and Monitoring & Measurement Pr...

  16. Wireless fetal heart rate monitoring in inpatient full-term pregnant women: testing functionality and acceptability.

    PubMed

    Boatin, Adeline A; Wylie, Blair; Goldfarb, Ilona; Azevedo, Robin; Pittel, Elena; Ng, Courtney; Haberer, Jessica

    2015-01-01

    We tested functionality and acceptability of a wireless fetal monitoring prototype technology in pregnant women in an inpatient labor unit in the United States. Women with full-term singleton pregnancies and no evidence of active labor were asked to wear the prototype technology for 30 minutes. We assessed functionality by evaluating the ability to successfully monitor the fetal heartbeat for 30 minutes, transmit this data to Cloud storage and view the data on a web portal. Three obstetricians also rated fetal cardiotocographs on ease of readability. We assessed acceptability by administering closed and open-ended questions on perceived utility and likeability to pregnant women and clinicians interacting with the prototype technology. Thirty-two women were enrolled, 28 of whom (87.5%) successfully completed 30 minutes of fetal monitoring including transmission of cardiotocographs to the web portal. Four sessions though completed, were not successfully uploaded to the Cloud storage. Six non-study clinicians interacted with the prototype technology. The primary technical problem observed was a delay in data transmission between the prototype and the web portal, which ranged from 2 to 209 minutes. Delays were ascribed to Wi-Fi connectivity problems. Recorded cardiotocographs received a mean score of 4.2/5 (± 1.0) on ease of readability with an interclass correlation of 0.81(95%CI 0.45, 0.96). Both pregnant women and clinicians found the prototype technology likable (81.3% and 66.7% respectively), useful (96.9% and 66.7% respectively), and would either use it again or recommend its use to another pregnant woman (77.4% and 66.7% respectively). In this pilot study we found that this wireless fetal monitoring prototype technology has potential for use in a United States inpatient setting but would benefit from some technology changes. We found it to be acceptable to both pregnant women and clinicians. Further research is needed to assess feasibility of using this technology in busy inpatient settings.

  17. Spiral Bevel Gear Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spiral bevel gears was developed. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Rigs. Data was collected during experiments performed in this test rig when pitting damage occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears.

  18. In-line and Real-time Monitoring of Resonant Acoustic Mixing by Near-infrared Spectroscopy Combined with Chemometric Technology for Process Analytical Technology Applications in Pharmaceutical Powder Blending Systems.

    PubMed

    Tanaka, Ryoma; Takahashi, Naoyuki; Nakamura, Yasuaki; Hattori, Yusuke; Ashizawa, Kazuhide; Otsuka, Makoto

    2017-01-01

    Resonant acoustic ® mixing (RAM) technology is a system that performs high-speed mixing by vibration through the control of acceleration and frequency. In recent years, real-time process monitoring and prediction has become of increasing interest, and process analytical technology (PAT) systems will be increasingly introduced into actual manufacturing processes. This study examined the application of PAT with the combination of RAM, near-infrared spectroscopy, and chemometric technology as a set of PAT tools for introduction into actual pharmaceutical powder blending processes. Content uniformity was based on a robust partial least squares regression (PLSR) model constructed to manage the RAM configuration parameters and the changing concentration of the components. As a result, real-time monitoring may be possible and could be successfully demonstrated for in-line real-time prediction of active pharmaceutical ingredients and other additives using chemometric technology. This system is expected to be applicable to the RAM method for the risk management of quality.

  19. Potential for the Use of Wireless Sensor Networks for Monitoring of CO2 Leakage Risks

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Illangasekare, T. H.; Han, Q.; Jayasumana, A.

    2015-12-01

    Storage of supercritical CO2 in deep saline geologic formation is under study as a means to mitigate potential global climate change from green house gas loading to the atmosphere. Leakage of CO2 from these formations poses risk to the storage permanence goal of 99% of injected CO2 remaining sequestered from the atmosphere,. Leaked CO2 that migrates into overlying groundwater aquifers may cause changes in groundwater quality that pose risks to environmental and human health. For these reasons, technologies for monitoring, measuring and accounting of injected CO2 are necessary for permitting of CO2 sequestration projects under EPA's class VI CO2 injection well regulations. While the probability of leakage related to CO2 injection is thought to be small at characterized and permitted sites, it is still very important to protect the groundwater resources and develop methods that can efficiently and accurately detect CO2 leakage. Methods that have been proposed for leakage detection include remote sensing, soil gas monitoring, geophysical techniques, pressure monitoring, vegetation stress and eddy covariance measurements. We have demonstrated the use of wireless sensor networks (WSN) for monitoring of subsurface contaminant plumes. The adaptability of this technology for leakage monitoring of CO2 through geochemical changes in the shallow subsurface is explored. For this technology to be viable, it is necessary to identify geochemical indicators such as pH or electrical conductivity that have high potential for significant change in groundwater in the event of CO2 leakage. This talk presents a conceptual approach to use WSNs for CO2 leakage monitoring. Based on our past work on the use of WSN for subsurface monitoring, some of the challenges that need to be over come for this technology to be viable for leakage detection will be discussed.

  20. Monitoring and control requirement definition study for Dispersed Storage and Generation (DSG). Volume 2, appendix A: Selected DSG technologies and their general control requirements

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A consistent approach was sought for both hardware and software which will handle the monitoring and control necessary to integrate a number of different DSG technologies into a common distribution dispatch network. It appears that the control of each of the DSG technologies is compatible with a supervisory control method of operation that lends itself to remote control from a distribution dispatch center.

  1. Application of ubiquitous computing in personal health monitoring systems.

    PubMed

    Kunze, C; Grossmann, U; Stork, W; Müller-Glaser, K D

    2002-01-01

    A possibility to significantly reduce the costs of public health systems is to increasingly use information technology. The Laboratory for Information Processing Technology (ITIV) at the University of Karlsruhe is developing a personal health monitoring system, which should improve health care and at the same time reduce costs by combining micro-technological smart sensors with personalized, mobile computing systems. In this paper we present how ubiquitous computing theory can be applied in the health-care domain.

  2. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology.

    PubMed

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M B

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet.

  3. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology

    PubMed Central

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M. B.

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet. PMID:27006940

  4. Implementation of a Self-Monitoring Application to Improve On-Task Behavior: A High-School Pilot Study

    ERIC Educational Resources Information Center

    Wills, Howard P.; Mason, Benjamin A.

    2014-01-01

    Technological innovations offer promise for improving intervention implementation in secondary, inclusive classrooms. A withdrawal design was employed with two high-school students in order to assess the effectiveness of a technologically delivered, self-monitoring intervention in improving on-task behavior in a science classroom. Two students…

  5. Educational Technology, E.C.I.A. Chapter 2. Final Evaluation Report.

    ERIC Educational Resources Information Center

    District of Columbia Public Schools, Washington, DC. Div. of Quality Assurance.

    The Planning, Monitoring and Implementing (PMI) Evaluation Model for Decision-Making was used by the District of Columbia Public Schools to monitor their Office of Educational Technology in its efforts to provide direction and coordination for computer related activities, and to plan and implement educational television projects in math and…

  6. Cabin Pressure Monitors Notify Pilots to Save Lives

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In 2013, San Diego-based Aviation Technology Inc. obtained an exclusive license for the technology behind the cabin pressure monitor invented at Kennedy Space Center and built its own version of the product. The Alt Alert is designed to save lives by alerting aircraft pilots and crews when cabin pressure becomes dangerously low.

  7. Improved maintainability of space-based reusable rocket engines

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.; Szemenyei, B.; Nelson, R. S.; Pauckert, R.; Harmon, T.

    1988-01-01

    Advanced, noninferential, noncontacting, in situ measurement technologies, combined with automated testing and expert systems, can provide continuous, automated health monitoring of critical space-based rocket engine components, requiring minimal disassembly and no manual data analysis, thus enhancing their maintainability. This paper concentrates on recent progress of noncontacting combustion chamber wall thickness condition-monitoring technologies.

  8. Spatiotemporal models for data-anomaly detection in dynamic environmental monitoring campaigns

    Treesearch

    E.W. Dereszynski; T.G. Dietterich

    2011-01-01

    The ecological sciences have benefited greatly from recent advances in wireless sensor technologies. These technologies allow researchers to deploy networks of automated sensors, which can monitor a landscape at very fine temporal and spatial scales. However, these networks are subject to harsh conditions, which lead to malfunctions in individual sensors and failures...

  9. GUIDANCE MANUAL FOR THE PREPARATION OF DEMONSTRATION AND QUALITY ASSURANCE PROJECT PLANS FOR THE VERIFICATION OF FIELD CHARACTERIZATION AND MONITORING TECHNOLOGIES

    EPA Science Inventory

    This work represents the technical and editorial contributions of a large number of U.S. Environmental Protection Agency (EPA) employees and others familiar with or interested in the demonstration and evaluation of innovative site characterization and monitoring technologies. In ...

  10. Evaluating Technology-Based Self-Monitoring as a Tier 2 Intervention across Middle School Settings

    ERIC Educational Resources Information Center

    Bruhn, Allison Leigh; Woods-Groves, Suzanne; Fernando, Josephine; Choi, Taehoon; Troughton, Leonard

    2017-01-01

    Multitiered frameworks like Positive Behavior Interventions and Supports (PBIS) have been recommended for preventing and remediating behavior problems. In this study, technology-based self-monitoring was used as a Tier 2 intervention to improve the academic engagement and disruptive behavior of three middle school students who were identified as…

  11. Recent advances in PV systems technology development in Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imamura, M.; Grottke, M.; Weiss, I.

    1995-11-01

    The objectives of the photovoltaics (PV) systems technology development were to study several aspects of plant design, monitoring, control, operation, and management of different types of photovoltaic plants. Unsolved problems were to be identified and analysed, and guidelines to improve the monitoring system were to be developed. Principal studies are summarized.

  12. JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.

    DTIC Science & Technology

    1991-01-17

    Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,

  13. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?

    EPA Science Inventory

    Over the past decade, a range of sensor technologies became available on the market, enabling a revolutionary shift in air pollution monitoring and assessment. With their cost of up to three orders of magnitude lower than standard/reference instruments, many avenues for applicati...

  14. 1999 Leak Detection and Monitoring and Mitigation Strategy Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OHL, P.C.

    This document is a complete revision of WHC-SD-WM-ES-378, Rev 1. This update includes recent developments in Leak Detection, Leak Monitoring, and Leak Mitigation technologies, as well as, recent developments in single-shell tank retrieval technologies. In addition, a single-shell tank retrieval release protection strategy is presented.

  15. An improved method for collecting and monitoring pine oleoresin

    Treesearch

    Dick Karsky; Brian Strom; Harold Thistle

    2004-01-01

    A new method for collecting and monitoring pine oleoresin has been developed through a cooperative project involving the Missoula Technology Development Center (MTDC), Southern Research Station (Brian Strom, research entomologist), and the Forest Health Technology Enterprise Team. The new sampling unit (figure 1) is cast from rugged plastic. It provides a closed system...

  16. Effect of Technology-Enhanced Continuous Progress Monitoring on Math Achievement

    ERIC Educational Resources Information Center

    Ysseldyke, Jim; Bolt, Daniel M.

    2007-01-01

    We examined the extent to which use of a technology-enhanced continuous progress monitoring system would enhance the results of math instruction, examined variability in teacher implementation of the program, and compared math results in classrooms in which teachers did and did not use the system. Classrooms were randomly assigned to within-school…

  17. Five Years of Designing Wireless Sensor Networks in the Doñana Biological Reserve (Spain): An Applications Approach

    PubMed Central

    Larios, Diego F.; Barbancho, Julio; Sevillano, José L.; Rodríguez, Gustavo; Molina, Francisco J.; Gasull, Virginia G.; Mora-Merchan, Javier M.; León, Carlos

    2013-01-01

    Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task. PMID:24025554

  18. The web-rhetoric of companies offering home-based personal health monitoring.

    PubMed

    Nordgren, Anders

    2012-06-01

    In this paper I investigate the web-rhetoric of companies offering home-based personal health monitoring to patients and elderly people. Two main rhetorical methods are found, namely a reference to practical benefits and a use of prestige words like "quality of life" and "independence". I interpret the practical benefits in terms of instrumental values and the prestige words in terms of final values. I also reconstruct the arguments on the websites in terms of six different types of argument. Finally, I articulate a general critique of the arguments, namely that the websites neglect the context of use of personal health monitoring technologies. Whether or not a technology is good depends on the use of the technology by a particular individual in a particular context. The technology is not good-or bad-in itself. I support this critique with a number of more specific arguments such as the risk for reduced personal contact. For some elderly people social contact with care providers is more valuable than the independent living made possible by remote monitoring, for others independence is more important.

  19. Review on energy harvesting for structural health monitoring in aeronautical applications

    NASA Astrophysics Data System (ADS)

    Le, Minh Quyen; Capsal, Jean-Fabien; Lallart, Mickaël; Hebrard, Yoann; Van Der Ham, Andre; Reffe, Nicolas; Geynet, Lionel; Cottinet, Pierre-Jean

    2015-11-01

    This paper reviews recent developments in energy harvesting technologies for structural health monitoring (SHM) in aeronautical applications. Aeronautical industries show a great deal of interest in obtaining technologies that can be used to monitor the health of machinery and structures. In particular, the need for self-sufficient monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, and elements for data acquisition, wireless communication, and energy harvesting. Among all of these components, this paper focuses on energy harvesting technologies. Actually, low-power sensors and wireless communication components are used in newer SHM systems, and a number of researchers have recently investigated such techniques to extract energy from the local environment to power these stand-alone systems. The first part of the paper is dedicated to the different energy sources available in aeronautical applications, i.e., for airplanes and helicopters. The second part gives a presentation of the various devices developed for converting ambient energy into electric power. The last part is dedicated to a comparison of the different technologies and the future development of energy harvesting for aeronautical applications.

  20. Smart sensor systems for human health breath monitoring applications.

    PubMed

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

Top