Snow-cover condition in Japan and damage of the Sugi (Cryptomeria Japonica D. Don)
Taira Hideaki
1991-01-01
Japan is one of the most snowiest regions in the world. Particularly the mountainous area of Honshu (the main island), along the Japan Sea has heavy snow in winter. In some places, snow piles up more than four meters and the ground is covered with snow about one hundred and forty days a year. The sugi tree is widely planted in snowy regions, and snow-pressure damages,...
Phenological change in a spring ephemeral: implications for pollination and plant reproduction.
Gezon, Zachariah J; Inouye, David W; Irwin, Rebecca E
2016-05-01
Climate change has had numerous ecological effects, including species range shifts and altered phenology. Altering flowering phenology often affects plant reproduction, but the mechanisms behind these changes are not well-understood. To investigate why altering flowering phenology affects plant reproduction, we manipulated flowering phenology of the spring herb Claytonia lanceolata (Portulacaceae) using two methods: in 2011-2013 by altering snow pack (snow-removal vs. control treatments), and in 2013 by inducing flowering in a greenhouse before placing plants in experimental outdoor arrays (early, control, and late treatments). We measured flowering phenology, pollinator visitation, plant reproduction (fruit and seed set), and pollen limitation. Flowering occurred approx. 10 days earlier in snow-removal than control plots during all years of snow manipulation. Pollinator visitation patterns and strength of pollen limitation varied with snow treatments, and among years. Plants in the snow removal treatment were more likely to experience frost damage, and frost-damaged plants suffered low reproduction despite lack of pollen limitation. Plants in the snow removal treatment that escaped frost damage had higher pollinator visitation rates and reproduction than controls. The results of the array experiment supported the results of the snow manipulations. Plants in the early and late treatments suffered very low reproduction due either to severe frost damage (early treatment) or low pollinator visitation (late treatment) relative to control plants. Thus, plants face tradeoffs with advanced flowering time. While early-flowering plants can reap the benefits of enhanced pollination services, they do so at the cost of increased susceptibility to frost damage that can overwhelm any benefit of flowering early. In contrast, delayed flowering results in dramatic reductions in plant reproduction through reduced pollination. Our results suggest that climate change may constrain the success of early-flowering plants not through plant-pollinator mismatch but through the direct impacts of extreme environmental conditions. © 2016 John Wiley & Sons Ltd.
Investigation of the impact of snow removal activities on pavement markings in Virginia.
DOT National Transportation Integrated Search
1995-01-01
Snow removal activities resulted in substantial damage to pavement markings in Virginia over the last 2 years. Typically, the estimates of the extent of pavement marking damage are based on the observations of the staff of the Virginia Department of ...
Numerical simulation of microstructural damage and tensile strength of snow
NASA Astrophysics Data System (ADS)
Hagenmuller, Pascal; Theile, Thiemo C.; Schneebeli, Martin
2014-01-01
This contribution uses finite-element analysis to simulate microstructural failure processes and the tensile strength of snow. The 3-D structure of snow was imaged by microtomography. Modeling procedures used the elastic properties of ice with bond fracture assumptions as inputs. The microstructure experiences combined tensile and compressive stresses in response to macroscopic tensile stress. The simulated nonlocalized failure of ice lattice bonds before or after reaching peak stress creates a pseudo-plastic yield curve. This explains the occurrence of acoustic events observed in advance of global failure. The measured and simulated average tensile strengths differed by 35%, a typical range for strength measurements in snow given its low Weibull modulus. The simulation successfully explains damage, fracture nucleation, and strength according to the geometry of the microstructure of snow and the mechanical properties of ice. This novel method can be applied to more complex snow structures including the weak layers that cause avalanches.
Severe snow loads on mountain afforestation in Japan
Ryuzo Nitta; Yoshio Ozeki; Shoichi Niwano
1991-01-01
A simple device for estimating snow settling force on tree branches was used to determine the distribution of snow settling force at various heights in a snowy mountainous region in Japan. A trapezoidal distribution of snow settling force was found to exist at all sites tested. It is thought that a zoning scheme based on the damaging potential of snow on young man-made...
76 FR 7238 - Pipeline Safety: Dangers of Abnormal Snow and Ice Build-Up on Gas Distribution Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-09
... been related to either the stress of snow and ice or the malfunction of pressure control equipment due... to have been related to either the stress of snow and ice or malfunction of pressure control... from the stresses imposed by the additional loading of the snow or ice. Damage to facilities may also...
Snow breakage in a pole-sized ponderosa pine plantation ... more damage at high stand-densities
Robert F. Powers; William W. Oliver
1970-01-01
Damage by snow breakage to pole-sized ponderosa pine (Pinus pondvosa Laws.) increased as stand density increased. In a plantation on the west slope of California's Sierra Nevada, the tallest trees were most often broken. Thinning in the sapling stage is recommended as a preventative measure in dense plantations subject to heavy snowfall.
Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change
Lehtonen, Ilari; Kamarainen, Matti; Gregow, Hilppa; ...
2016-10-17
This study examined the impacts of projected climate change on heavy snow loads on Finnish forests, where snow-induced forest damage occurs frequently. For snow-load calculations, we used daily data from five global climate models under representative concentration pathway (RCP) scenarios RCP4.5 and RCP8.5, statistically downscaled onto a high-resolution grid using a quantile-mapping method. Our results suggest that projected climate warming results in regionally asymmetric response on heavy snow loads in Finnish forests. In eastern and northern Finland, the annual maximum snow loads on tree crowns were projected to increase during the present century, as opposed to southern and western parts ofmore » the country. The change was rather similar both for heavy rime loads and wet snow loads, as well as for frozen snow loads. Only the heaviest dry snow loads were projected to decrease over almost the whole of Finland. Our results are aligned with previous snowfall projections, typically indicating increasing heavy snowfalls over the areas with mean temperature below -8 °C. In spite of some uncertainties related to our results, we conclude that the risk for snow-induced forest damage is likely to increase in the future in the eastern and northern parts of Finland, i.e. in the areas experiencing the coldest winters in the country. In conclusion, the increase is partly due to the increase in wet snow hazards but also due to more favourable conditions for rime accumulation in a future climate that is more humid but still cold enough.« less
Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehtonen, Ilari; Kamarainen, Matti; Gregow, Hilppa
This study examined the impacts of projected climate change on heavy snow loads on Finnish forests, where snow-induced forest damage occurs frequently. For snow-load calculations, we used daily data from five global climate models under representative concentration pathway (RCP) scenarios RCP4.5 and RCP8.5, statistically downscaled onto a high-resolution grid using a quantile-mapping method. Our results suggest that projected climate warming results in regionally asymmetric response on heavy snow loads in Finnish forests. In eastern and northern Finland, the annual maximum snow loads on tree crowns were projected to increase during the present century, as opposed to southern and western parts ofmore » the country. The change was rather similar both for heavy rime loads and wet snow loads, as well as for frozen snow loads. Only the heaviest dry snow loads were projected to decrease over almost the whole of Finland. Our results are aligned with previous snowfall projections, typically indicating increasing heavy snowfalls over the areas with mean temperature below -8 °C. In spite of some uncertainties related to our results, we conclude that the risk for snow-induced forest damage is likely to increase in the future in the eastern and northern parts of Finland, i.e. in the areas experiencing the coldest winters in the country. In conclusion, the increase is partly due to the increase in wet snow hazards but also due to more favourable conditions for rime accumulation in a future climate that is more humid but still cold enough.« less
Basic Snow Pressure Calculation
NASA Astrophysics Data System (ADS)
Hao, Shouzhi; Su, Jian
2018-03-01
As extreme weather rising in recent years, the damage of large steel structures caused by weather is frequent in China. How to consider the effect of wind and snow loads on the structure in structural design has become the focus of attention in engineering field. In this paper, based on the serious snow disasters in recent years and comparative analysis of some scholars, influence factors and the value of the snow load, the probability model are described.
Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi
2016-01-01
At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity. PMID:27254100
Martz, Françoise; Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi
2016-01-01
At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity.
Kreyling, Juergen; Haei, Mahsa; Laudon, Hjalmar
2012-02-01
Snow regimes affect biogeochemistry of boreal ecosystems and are altered by climate change. The effects on plant communities, however, are largely unexplored despite their influence on relevant processes. Here, the impact of snow cover on understory community composition and below-ground production in a boreal Picea abies forest was investigated using a long-term (8-year) snow cover manipulation experiment consisting of the treatments: snow removal, increased insulation (styrofoam pellets), and control. The snow removal treatment caused longer (118 vs. 57 days) and deeper soil frost (mean minimum temperature -5.5 vs. -2.2°C) at 10 cm soil depth in comparison to control. Understory species composition was strongly altered by the snow cover manipulations; vegetation cover declined by more than 50% in the snow removal treatment. In particular, the dominant dwarf shrub Vaccinium myrtillus (-82%) and the most abundant mosses Pleurozium schreberi (-74%) and Dicranum scoparium (-60%) declined strongly. The C:N ratio in V. myrtillus leaves and plant available N in the soil indicated no altered nitrogen nutrition. Fine-root biomass in summer, however, was negatively affected by the reduced snow cover (-50%). Observed effects are attributed to direct frost damage of roots and/ or shoots. Besides the obvious relevance of winter processes on plant ecology and distribution, we propose that shifts in the vegetation caused by frost damage may be an important driver of the reported alterations in biogeochemistry in response to altered snow cover. Understory plant performance clearly needs to be considered in the biogeochemistry of boreal systems in the face of climate change.
How does tree age influence damage and recovery in forests impacted by freezing rain and snow?
Zhu, LiRong; Zhou, Ting; Chen, BaoMing; Peng, ShaoLin
2015-05-01
The response and recovery mechanisms of forests to damage from freezing rain and snow events are a key topic in forest research and management. However, the relationship between the degree of damage and tree age, i.e., whether seedlings, young trees, or adult trees are most vulnerable, remains unclear and is rarely reported. We investigated the effect of tree age on the degrees of vegetation damage and subsequent recovery in three subtropical forest types-coniferous, mixed, and broad-leaved-in the Tianjing Mountains, South China, after a series of rare icy rain and freezing snow events in 2008. The results showed that damage and recovery rates were both dependent on tree age, with the proportion of damaged vegetation increasing with age (estimated by diameter at breast height, DBH) in all three forest types and gradually plateauing. Significant variation occurred among forest types. Young trees in the coniferous forest were more vulnerable than those in the broad-leaved forest. The type of damage also varied with tree age in different ways in the three forest types. The proportion of young seedlings that were uprooted (the most severe type of damage) was highest in the coniferous forest. In the mixed forest, young trees were significantly more likely to be uprooted than seedlings and adult trees, while in the broad-leaved forest, the proportion of uprooted adult trees was significantly higher than that of seedlings and young trees. There were also differences among forest types in how tree age affected damage recovery. In the coniferous forest, the recovery rate of trees with broken trunks or crowns (DBH > 2.5 cm) increased with tree age. However, in the mixed and broad-leaved forests, no obvious correlation between the recovery rate of trees with broken trunks or crowns and tree age was observed. Trees with severe root damage did not recover; they were uprooted and died. In these forests, vegetation damage and recovery showed tree age dependencies, which varied with tree shape, forest type, and damage type. Understanding this dependency will guide restoration after freezing rain and snow disturbances.
Prevent Eye Damage: Protect Yourself from UV Radiation
... vision. ® Snow Blindness (Photokeratitis): A temporary but painful burn to the cornea caused by a day at the beach without sunglasses; reflections off of snow, water, or concrete; or exposure to artificial light sources such as ...
Dynamics of glide avalanches and snow gliding
NASA Astrophysics Data System (ADS)
Ancey, Christophe; Bain, Vincent
2015-09-01
In recent years, due to warmer snow cover, there has been a significant increase in the number of cases of damage caused by gliding snowpacks and glide avalanches. On most occasions, these have been full-depth, wet-snow avalanches, and this led some people to express their surprise: how could low-speed masses of wet snow exert sufficiently high levels of pressure to severely damage engineered structures designed to carry heavy loads? This paper reviews the current state of knowledge about the formation of glide avalanches and the forces exerted on simple structures by a gliding mass of snow. One particular difficulty in reviewing the existing literature on gliding snow and on force calculations is that much of the theoretical and phenomenological analyses were presented in technical reports that date back to the earliest developments of avalanche science in the 1930s. Returning to these primary sources and attempting to put them into a contemporary perspective are vital. A detailed, modern analysis of them shows that the order of magnitude of the forces exerted by gliding snow can indeed be estimated correctly. The precise physical mechanisms remain elusive, however. We comment on the existing approaches in light of the most recent findings about related topics, including the physics of granular and plastic flows, and from field surveys of snow and avalanches (as well as glaciers and debris flows). Methods of calculating the forces exerted by glide avalanches are compared quantitatively on the basis of two case studies. This paper shows that if snow depth and density are known, then certain approaches can indeed predict the forces exerted on simple obstacles in the event of glide avalanches or gliding snow cover.
Snow fracture: From micro-cracking to global failure
NASA Astrophysics Data System (ADS)
Capelli, Achille; Reiweger, Ingrid; Schweizer, Jürg
2017-04-01
Slab avalanches are caused by a crack forming and propagating in a weak layer within the snow cover, which eventually causes the detachment of the overlying cohesive slab. The gradual damage process leading to the nucleation of the initial failure is still not entirely understood. Therefore, we studied the damage process preceding snow failure by analyzing the acoustic emissions (AE) generated by bond failure or micro-cracking. The AE allow studying the ongoing progressive failure in a non-destructive way. We performed fully load-controlled failure experiments on snow samples presenting a weak layer and recorded the generated AE. The size and frequency of the generated AE increased before failure revealing an acceleration of the damage process with increased size and frequency of damage and/or microscopic cracks. The AE energy was power-law distributed and the exponent (b-value) decreased approaching failure. The waiting time followed an exponential distribution with increasing exponential coefficient λ before failure. The decrease of the b-value and the increase of λ correspond to a change in the event distribution statistics indicating a transition from homogeneously distributed uncorrelated damage producing mostly small AE to localized damage, which cause larger correlated events which leads to brittle failure. We observed brittle failure for the fast experiment and a more ductile behavior for the slow experiments. This rate dependence was reflected also in the AE signature. In the slow experiments the b value and λ were almost constant, and the energy rate increase was moderate indicating that the damage process was in a stable state - suggesting the damage and healing processes to be balanced. On a shorter time scale, however, the AE parameters varied indicating that the damage process was not steady but consisted of a sum of small bursts. We assume that the bursts may have been generated by cascades of correlated micro-cracks caused by localization of stresses at a small scale. The healing process may then have prevented the self-organization of this small scale damage and, therefore, the total failure of the sample.
Frost risk for overwintering crops in a changing climate
NASA Astrophysics Data System (ADS)
Vico, Giulia; Weih, Martin
2013-04-01
Climate change scenarios predict a general increase in daily temperatures and a decline in snow cover duration. On the one hand, higher temperature in fall and spring may facilitate the development of overwintering crops and allow the expansion of winter cropping in locations where the growing season is currently too short. On the other hand, higher temperatures prior to winter crop dormancy slow down frost hardening, enhancing crop vulnerability to temperature fluctuation. Such vulnerability may be exacerbated by reduced snow cover, with potential further negative impacts on yields in extremely low temperatures. We propose a parsimonious probabilistic model to quantify the winter frost damage risk for overwintering crops, based on a coupled model of air temperature, snow cover, and crop minimum tolerable temperature. The latter is determined by crop features, previous history of temperature, and snow cover. The temperature-snow cover model is tested against meteorological data collected over 50 years in Sweden and applied to winter wheat varieties differing in their ability to acquire frost resistance. Hence, exploiting experimental results assessing crop frost damage under limited temperature and snow cover realizations, this probabilistic framework allows the quantification of frost risk for different crop varieties, including in full temperature and precipitation unpredictability. Climate change scenarios are explored to quantify the effects of changes in temperature mean and variance and precipitation regime over crops differing in winter frost resistance and response to temperature.
7 CFR 916.356 - California Nectarine Grade and Size Regulation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... causes. Damage to any nectarine is serious when it causes a waste of 10 percent or more, by volume, of... container of Arctic Star, Burnectone (Spring Ray®), Burnecttwelve (Sweet Flair® 21), Burnectthirteen (Snow Flare® 22), Burnectfourteen (Snow Flare® 21), Diamond Bright, Diamond Pearl, Early Pearl, Gee Sweet...
7 CFR 916.356 - California Nectarine Grade and Size Regulation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... causes. Damage to any nectarine is serious when it causes a waste of 10 percent or more, by volume, of..., Burnectone (Spring Ray®), Burnecttwelve (Sweet Flair® 21), Burnectthirteen (Snow Flare® 22), Burnectfourteen (Snow Flare® 21), Diamond Bright, Diamond Pearl, Gee Sweet, Honey Lite, June Pearl, June Sweet, Kay...
Floods of April-June 1952 in Utah and Nevada
Wells, J.V.B.
1957-01-01
The floods of April-June 1952 in the Great Basin and in the Green River basin in Utah came as the result of the heaviest snow cover recorded, a long period of near-record subnormal temperature during March and early April, and an abrupt change to above-normal temperature that induced rapid melting.Rainfall played an insignificant part. Low- and intermediate-elevation snow melted, bringing many streams to record-high level. Large diurnal fluctuations of discharge were evident on smaller streams. The temperature remained high until mid-May. As high-elevation snow became primed for runoff, the temperature dropped enough to refreeze and alter the structure of snow cover, thus reducing the effectiveness of the subsequent melting temperature. Had there been no respite from melting temperatures much greater peak discharges would have occurred, with damage greatly exceeding that experienced. Streams remained at high levels for several weeks.Record peaks were reached on Strawberry River, lower Weber River, Ogden River, Spanish Fork, lower Provo River, and Jordan River in Utah; Humboldt River and its tributaries draining the north area of the basin in Nevada; and the central Bear River in Idaho and Wyoming. Record volumes for the water year were measured on many streams in the northcentral part of Utah, the northeastern part of Nevada, and the central part of the Bear River basin in Idaho and Wyoming. Damage in the Great Basin reached \\$10 million and in the Green River basin, more than$300,000. Two lives were lost on Ogden River. The greatest urban damage, in Salt Lake City, totaled \\$1.9 million; the greatest single damage, to Denver and Rio Grande Western Railroad, was \\$510,000.
Rodent Damage to Natural and Replanted Mountain Forest Regeneration
Heroldová, Marta; Bryja, Josef; Jánová, Eva; Suchomel, Josef; Homolka, Miloslav
2012-01-01
Impact of small rodents on mountain forest regeneration was studied in National Nature Reserve in the Beskydy Mountains (Czech Republic). A considerable amount of bark damage was found on young trees (20%) in spring after the peak abundance of field voles (Microtus agrestis) in combination with long winter with heavy snowfall. In contrast, little damage to young trees was noted under high densities of bank voles (Myodes glareolus) with a lower snow cover the following winter. The bark of deciduous trees was more attractive to voles (22% damaged) than conifers (8%). Young trees growing in open and grassy localities suffered more damage from voles than those under canopy of forest stands (χ 2 = 44.04, P < 0.001). Natural regeneration in Nature Reserve was less damaged compared to planted trees (χ 2 = 55.89, P < 0.001). The main factors influencing the impact of rodent species on tree regeneration were open, grassy habitat conditions, higher abundance of vole species, tree species preferences- and snow-cover condition. Under these conditions, the impact of rodents on forest regeneration can be predicted. Foresters should prefer natural regeneration to the artificial plantings. PMID:22666163
1990-06-01
western U.S. Ten additional windows contain basin boundary data sets to map snow cover for the Upper Midwest , the Great Lakes, New England, and... Midwest and in the East. The User’s Guide gives the data format. 4.3.2 Satellite Areal Extent of Snow Cover by Basin/Zone (MCI/AFOS-ASCII) Alphanumeric...acres) of lake shore land in the snowbelt and this perennial vine is susceptible to winter cold damage. County extension agents indicated that winter
NASA Astrophysics Data System (ADS)
Qiao, C.; Huang, Q.; Chen, T.; Zhang, X.
2017-12-01
In the context of global warming, the snowmelt flood events in the mountainous area of the middle and high latitudes are increasingly frequent and create severe casualties and property damages. Carrying out the prediction and risk assessment of the snowmelt flood is of great importance in the water resources management, the flood warning and prevention. Based on the remote sensing and GIS techniques, the relationships of the variables influencing the snowmelt flood such as the snow area, the snow depth, the air temperature, the precipitation, the land topography and land covers are analyzed and a prediction and damage assessment model for snowmelt floods is developed. This model analyzes and predicts the flood submerging area, flood depth, flood grade, and the damages of different underlying surfaces in the study area in a given time period based on the estimation of snowmelt amount, the snowmelt runoff, the direction and velocity of the flood. Then it was used to predict a snowmelt flood event in the Ertis River Basin in northern Xinjiang, China, during March and June, 2005 and to assess its damages including the damages of roads, transmission lines, settlements caused by the floods and the possible landslides using the hydrological and meteorological data, snow parameter data, DEM data and land use data. A comparison was made between the prediction results from this model and observation data including the flood measurement and its disaster loss data, which suggests that this model performs well in predicting the strength and impact area of snowmelt flood and its damage assessment. This model will be helpful for the prediction and damage assessment of snowmelt flood events in the mountainous area in the middle and high latitudes in spring, which has great social and economic significance because it provides a relatively reliable method for snowmelt flood prediction and reduces the possible damages caused by snowmelt floods.
Lessons learned from the snow emergency management of winter season 2008-2009 in Piemonte
NASA Astrophysics Data System (ADS)
Bovo, Dr.; Pelosini, Dr.; Cordola, Dr.
2009-09-01
The winter season 2008-2009 has been characterized by heavy snowfalls over the whole Piemonte, in the Western Alps region. The snowfalls have been exceptional because of their earliness, persistence and intensity. The impact on the regional environment and territory has been relevant, also from the economical point of view, as well as the effort of the people involved in the forecasting, prevention and fighting actions. The environmental induced effects have been shown until late spring. The main critical situations have been arisen from the snowfalls earliness in season, the several snow precipitation events over the plains, the big amount of snow accumulation on the ground, as well as the anomaly with respect to the last 30 years climatic trend of snow conditions in Piemonte. The damage costs to the public property caused by the snowfalls have been estimated by the Regione Piemonte to be 470 million euros, giving evidence of the real emergency dimension of the event, never occurred during the last 20 years. The technical support from the Regional Agency for Environmental Protection of Regione Piemonte (Arpa Piemonte) to the emergency management allowed to analyse and highlight the direct and induced effects of the heavy snowfalls, outlining risk scenarios characterized by different space and time scales. The risk scenarios deployment provided a prompt recommendation list, both for the emergency management and for the natural phenomena evolution surveillance planning to assure the people and property safety. The risk scenarios related to the snow emergency are different according to the geographical and anthropic territory aspects. In the mountains, several natural avalanche releases, characterized frequently by a large size, may affect villages, but they may also interrupt the main and secondary roads both down in the valleys and small villages road access, requiring a long time for the complete and safe snow removal and road re-opening. The avalanches often cause the service breakdowns and damage the infrastructures in the built-up areas and the forest heritage. Critical situations due to the snow loading and the snow removal necessity involve all the mountain people directly. Over the plain and the hill country, where the new snow density is generally high giving rise to effects related to its load capacity, to the isolation of little residential and rural settlements, several damages on the secondary road system due to the tree and tree branch falls comes up , together with many public services interruptions (electric power and telephone), warehouse and barn collapses, determining a widespread critical situation. The urban and commuting traffic during the snow emergency enhances the difficulties related to the road management and traffic control over the whole road system in the plains, even with little snow accumulation on the ground. Critical situations may also arise from road frost and intense freezing spells. The operational implementation of the technical rules for the snow emergency management, tested the first time during the event in a dynamic way, pointed out its drawbacks and potentiality, highlighting the "emergency preparedness" importance at different institutional levels, with the population and stakeholder involvement. Some measures have to be especially underlined: the coordination of the snow monitoring over the territory performed by the local operators (avalanche activity and linked damages reporting) and the steps taken locally; the improvement of the tools for the snow pack evaluation to drive the avalanche artificial triggering off, in case of snow mass hazard assessment, and their regional coordination. Moreover it is important to define the standard, acknowledged and accepted prevention actions suited to minimize the heavy snowfall effects, with particular attention to the viableness,to the school systemopening/closing and to the preventive information care in order to avoid the missing perception of the risk. Special attention must be paid to the hydrogeological risk condition assessment, forecasting and surveillance. In fact they are enhanced by the winter heavy snowfalls and show their effects during the following season. The improvement in the prediction of the risk evolution scenarios and in the prevention action planning helps the decision making to a considerable degree.
Modeling outcomes of approaches to sustained human and snow leopard coexistence.
Wilman, Elizabeth A; Wilman, Elspeth N
2016-02-01
The snow leopard (Uncia uncia) is in danger of extinction. Killing to protect livestock is among the primary causes of its decline. Efforts to mitigate this threat have focused on balancing the need to conserve the snow leopard with the needs of local people in snow leopard habitat, many of whom rely on raising livestock for their livelihoods. Conservation of the snow leopard has the characteristics of a public good, and outside funding is required to support conservation efforts. There are 5 commonly discussed approaches to resolving this issue: (1) direct payments for conservation, (2) investments in protection from predation, (3) damage compensation payments, (4) investments in better livestock husbandry, and (5) leases of pastureland for wild prey. After a review of these 5 conservation strategies, an economic-ecologic model, which includes the interactions between the snow leopard, its wild prey, and livestock, is used to evaluate the 2 most promising conservation strategies. The model reveals that investments in protection from predation and leases of pastureland for wild prey are effective but only in delaying the eventual extinction of the snow leopard. To preserve the snow leopard, these approaches must be applied more aggressively and new ones explored. © 2015 Society for Conservation Biology.
Salt attack in parking garage in block of flats
NASA Astrophysics Data System (ADS)
Beran, Pavel; Frankeová, Dita; Pavlík, Zbyšek
2017-07-01
In recent years many new block of flats with parking garages placed inside the buildings were constructed. This tendency brings beyond question benefits for residents and also for city planning, but it requires new design and structural approaches and advanced material and construction solutions. The analysis of plaster damage on partition wall in parking garage in one of these buildings is presented in the paper. The damage of studied plaster is caused by the salts which are transported together with snow on cars undercarriage into garage area during winter. The snow melts and water with dissolved salts is transported by the capillary suction from concrete floor into the rendered partition wall. Based on the interior temperature, adsorbed water with dissolved chlorides evaporates and from the over saturated pore solution are formed salt crystals that damages the surface plaster layers. This damage would not occur if the partition wall was correctly isolated from the floor finish layer in the parking garage.
From the Scientistic to the Humanistic in the Construction of Contemporary Educational Knowledge
ERIC Educational Resources Information Center
Bridges, David
2011-01-01
The starting point for this article is a lecture given fifty years ago by C.P. Snow under the title "The Two Cultures and the Scientific Revolution", in which Snow critiques what he sees as the damaging intellectual division between the arts and humanities on the one side and the sciences on the other. Fifty years later this problem is, perhaps,…
G. L. Wooldridge; R. C. Musselman; R. A. Sommerfeld; D. G. Fox; B. H. Connell
1996-01-01
1. Deformations of Engelmann spruce and subalpine fir trees were surveyed for the purpose of determining climatic wind speeds and directions and snow depths in the Glacier Lakes Ecosystem Experiments Site (GLEES) in the Snowy Range of southeastern Wyoming, USA. Tree deformations were recorded at 50- and 100-m grid intervals over areas of c. 30 ha and 300 ha,...
Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.
Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K
2010-10-01
Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more frequent in some regions of the Arctic and that may ultimately drive plant community shifts. Copyright © Physiologia Plantarum 2010.
NASA Astrophysics Data System (ADS)
Garcia-Hernandez, Cristina; Ruiz-Fernández, Jesús; Gallinar, David
2015-04-01
In this paper we study the events triggered by the Great Blizzard of 1888 in the Asturian Massif as a case study that shows how one hazard can be the main cause of another hazard occurring. The reconstruction of the chain of hazards triggered by the episode has been done on the basis of nivo-meteorogical conditions, event geographical location, and socio-economic impact. The episode has been studied through the analysis of the issues published in six different newspapers between the 20th of January and 30th of May 1888. We have collected the data of the ancient meteorological station of the University of Oviedo, and those contained in parish documents. Field work consisted in visual inspection and interviews to the contemporary residents. The information has been stored and crossed for statistical analysis using a logical database structure that has been designed with this purpose. The snowfall episode consisted in four consecutive snowstorms that occurred between the 14th of February 1888 and the 8th of April 1888, creating snow covers with an average depth ranging between 5 and 7 m. The snow accumulations were the main cause of material damage, affecting 27 high- and mid-elevation mountain municipalities. However, we have to consider that the newspapers only reflected those events affecting densely populated areas along with those which affected vital economic spaces (railway lines, roads in mountain passes, etc.). There were more than 200 interruptions with the traffic flow and communication outages, hampering economic activities. Snow built up on the roofs added extra weight to the structure of the buildings so more than 900 constructions collapsed, killing three persons and causing the loss of more than 19.000 head of cattle. Moreover, these snow accumulations were the basis of an episode of sixty-four snow avalanches that, undoubtedly, meant the main personal damage with a number of dead and wounded that reached 29 and 23 respectively. During the snowfall breaks, snow-melting processes became important: the river rising affected all the main hydrological basins, 29 news related to material damage were documented and three people died drowned. In addition, snow avalanches caused fast damming followed of violent river risings in at least two cases, causing even worse damages because of the surprise effect. Finally, we have to consider the connection that can be made between the melting process and thirty-six mass movements that were documented, destroying six buildings, causing the death of one person and dozens of interruptions in communications: the increase in such events is clearly associated with the temperature rising and, at the same time, its decline can be observed with the temperature dropping. These events took place mainly during the second snowfall break, so we must take into account the cumulative effect on the water saturation of the surface formations.
Analysis of geohazards events along Swiss roads from autumn 2011 to present
NASA Astrophysics Data System (ADS)
Voumard, Jérémie; Jaboyedoff, Michel; Derron, Marc-Henri
2014-05-01
In Switzerland, roads and railways are threatened throughout the year by several natural hazards. Some of these events reach transport infrastructure many time per year leading to the closing of transportation corridors, loss of access, deviation travels and sometimes infrastructures damages and loss of human lives (3 fatalities during the period considered). The aim of this inventory of events is to investigate the number of natural events affecting roads and railways in Switzerland since autumn 2011 until now. Natural hazards affecting roads and railway can be classified in five categories: rockfalls, landslides, debris flows, snow avalanches and floods. They potentially cause several important direct damages on transportation infrastructure (roads, railway), vehicles (slightly or very damaged) or human life (slightly or seriously injured person, death). These direct damages can be easily evaluated from press articles or from Swiss police press releases. Indirect damages such as deviation cost are not taken into account in this work. During the two a half last years, about 50 events affecting the Swiss roads and Swiss railways infrastructures were inventoried. The proportion of events due to rockfalls is 45%, to landslides 25%, to debris flows 15%, to snow avalanches 10% and to floods 5%. During this period, three fatalities and two persons were injured while 23 vehicles (car, trains and coach) and 24 roads and railways were damaged. We can see that floods occur mainly on the Swiss Plateau whereas rockfalls, debris flow, snow avalanches and landslides are mostly located in the Alpine area. Most of events occur on secondary mountain roads and railways. The events are well distributed on the whole Alpine area except for the Gotthard hotspot, where an important European North-South motorway (hit in 2003 with two fatalities) and railway (hit three times in 2012 with one fatalities) are more frequently affected. According to the observed events in border regions of Switzerland, the trend in the Alps is similar.
Climate warming enhances snow avalanche risk in the Western Himalayas
Ballesteros-Cánovas, J. A.; Trappmann, D.; Madrigal-González, J.; Eckert, N.; Stoffel, M.
2018-01-01
Ongoing climate warming has been demonstrated to impact the cryosphere in the Indian Himalayas, with substantial consequences for the risk of disasters, human well-being, and terrestrial ecosystems. Here, we present evidence that the warming observed in recent decades has been accompanied by increased snow avalanche frequency in the Western Indian Himalayas. Using dendrogeomorphic techniques, we reconstruct the longest time series (150 y) of the occurrence and runout distances of snow avalanches that is currently available for the Himalayas. We apply a generalized linear autoregressive moving average model to demonstrate linkages between climate warming and the observed increase in the incidence of snow avalanches. Warming air temperatures in winter and early spring have indeed favored the wetting of snow and the formation of wet snow avalanches, which are now able to reach down to subalpine slopes, where they have high potential to cause damage. These findings contradict the intuitive notion that warming results in less snow, and thus lower avalanche activity, and have major implications for the Western Himalayan region, an area where human pressure is constantly increasing. Specifically, increasing traffic on a steadily expanding road network is calling for an immediate design of risk mitigation strategies and disaster risk policies to enhance climate change adaption in the wider study region. PMID:29535224
NASA Astrophysics Data System (ADS)
Mjachina, Ksenya; Hu, Zhiyong; Chibilyev, Alexander
2018-01-01
Oil production in a steppe region disturbs the landscape and damages the steppe ecosystem. The objective of this research was to detect areas damaged by oil production in an oil field within the Russian Volga-Ural steppe region using winter Landsat imagery. We developed a practicable and effective approach using winter snow season multispectral Landsat satellite imagery. To this end, we applied seven algorithms of spectral or texture-based transformation: K-means, maximum likelihood estimation, topsoil grain size index, soil brightness, normalized differential snow index, tasselled cap, and co-occurrence measures. The co-occurrence texture measure variance shows the optimal result of identifying damaged areas. The unique feature of our method is that it can differentiate damaged areas from the bare soil of cropland within a cold steppe region where the area damaged by oil production is mixed with bare (fallow) croplands that have a polygonal shape similar to well pads. Such similarities can lead to confusion in object-based classification. Using the co-occurrence measures, we found that from 1988 to 2015, damaged area is nearly three times as big in the peak period of the oil field development (2001 and 2009) as in 1988. Landscape fragmentation also peaked in 2001 and 2009. Our approach for this project is useful and cost effective regular monitoring of damages from oil production for both the Volga-Ural steppe region and other cold steppe regions.
A Full Snow Season in Yellowstone: A Database of Restored Aqua Band 6
NASA Technical Reports Server (NTRS)
Gladkova, Irina; Grossberg, Michael; Bonev, George; Romanov, Peter; Riggs, George; Hall, Dorothy
2013-01-01
The algorithms for estimating snow extent for the Moderate Resolution Imaging Spectroradiometer (MODIS) optimally use the 1.6- m channel which is unavailable for MODIS on Aqua due to detector damage. As a test bed to demonstrate that Aqua band 6 can be restored, we chose the area surrounding Yellowstone and Grand Teton national parks. In such rugged and difficult-to-access terrain, satellite images are particularly important for providing an estimation of snow-cover extent. For the full 2010-2011 snow season covering the Yellowstone region, we have used quantitative image restoration to create a database of restored Aqua band 6. The database includes restored radiances, normalized vegetation index, normalized snow index, thermal data, and band-6-based snow-map products. The restored Aqua-band-6 data have also been regridded and combined with Terra data to produce a snow-cover map that utilizes both Terra and Aqua snow maps. Using this database, we show that the restored Aqua-band-6-based snow-cover extent has a comparable performance with respect to ground stations to the one based on Terra. The result of a restored band 6 from Aqua is that we have an additional band-6 image of the Yellowstone region each day. This image can be used to mitigate cloud occlusion, using the same algorithms used for band 6 on Terra. We show an application of this database of restored band-6 images to illustrate the value of creating a cloud gap filling using the National Aeronautics and Space Administration s operational cloud masks and data from both Aqua and Terra.
1978-10-01
stated, they are, in reality , indexed to a single aspect of the weapon phenomena, e.g., damage levels for airblast-sensitive objects are indexed to...of Burst Propagation Related Airblast Representation Target Altitude Wheather (snow/rain) Terrain Temperature Air Pressure Around Structures 1. d) 3-38...with opaque material. Simply closing a shutter can be quite effective in virtually eliminating all possibility of interior fire starts from a single
NASA Astrophysics Data System (ADS)
Vico, G.; Weih, M.
2014-12-01
Autumn-sown crops act as winter cover crop, reducing soil erosion and nutrient leaching, while potentially providing higher yields than spring varieties in many environments. Nevertheless, overwintering crops are exposed for longer periods to the vagaries of weather conditions. Adverse winter conditions, in particular, may negatively affect the final yield, by reducing crop survival or its vigor. The net effect of the projected shifts in climate is unclear. On the one hand, warmer temperatures may reduce the frequency of low temperatures, thereby reducing damage risk. On the other hand, warmer temperatures, by reducing plant acclimation level and the amount and duration of snow cover, may increase the likelihood of damage. Thus, warmer climates may paradoxically result in more extensive low temperature damage and reduced viability for overwintering plants. The net effect of a shift in climate is explored by means of a parsimonious probabilistic model, based on a coupled description of air temperature, snow cover, and crop tolerable temperature. Exploiting an extensive dataset of winter wheat responses to low temperature exposure, the risk of winter damage occurrence is quantified under conditions typical of northern temperate latitudes. The full spectrum of variations expected with climate change is explored, quantifying the joint effects of alterations in temperature averages and their variability as well as shifts in precipitation. The key features affecting winter wheat vulnerability to low temperature damage under future climates are singled out.
The social impact of the snowfall of 8 March 2010 in Catalonia
NASA Astrophysics Data System (ADS)
Amaro, J.; Llasat, M. C.; Aran, M.
2010-09-01
The snowfall of 8 March 2010 affected almost all Catalonia, but especially the northeast where snow thickness was between 20 and 30 cm, locally with higher values up to 60 cm. Strong winds followed the event, exceeding 90 km/h in some places. As a result, infrastructures and public services, also private properties were damaged. Thousands of people were left stranded by the circulatory collapse, suspensions of railway service and by falling branches or trees on road infrastructures blocking accesses to residential areas. The regional government approved funds of 21.4 millions of Euros to mitigate the damage caused by this event, mainly invested in forest cleanup operations and in repairing road damage. The social impact of this event has been so high that 210 news have been published in a newspaper until 23 April, 190 of them during the month of March. From the study of the characteristics of this episode it can be stated that in the coast and pre-costal area, temperature at the same moment of precipitation was between 0ºC and 2ºC and humidity was high. In these zones, the type of precipitation was wet snow. It has to be considered that the combination of wet snow and wind can be a risk because of the ice-weight accumulated on objects (trees, electricity pylons...). As a consequence important damage happened in power network with significant collateral effects and more than 450,000 customers were affected by a power outage during some days. In this study we will compare the consequences of this event with others by means of information published in press. As a result, some set of consequences that are repeated regardless of the magnitude of the phenomenon will be identified. Finally, this event is also an example of the incision of social networks. This snowfall has been classified by mass media as the first "snowfall 2.0": 81600 entrances in Google, 132 Facebook groups and 750 videos made by amateurs in internet. From this study, we will present some reflexions that could be useful to improve the snow emergency plan in Catalonia, released in 2004, and mitigating the effects of future snow storms. A campaign focused on motivate population in order to increase more social commitment in these events, seems to be necessary to prevent avoidable risks. Information campaigns and some educational tasks have to be carried out to make warnings and forecasts reports clearer to citizens and to increase population sensitivity in emergency situations.
Essential Outdoor Sun Safety Tips for Winter
... the risk for damage. Both snow and strong wind can wear away sunscreen and reduce its effectiveness, ... protect your skin from the bitter cold, heavy winds and winter sun, follow these important sun protection ...
The 2008 South China Freeze and its Impact on the Forests
NASA Astrophysics Data System (ADS)
Zhou, B.; Ai, C.; Wang, Y.; Li, Z.; Cao, Y.; Wang, X.
2008-12-01
An unprecedented calamity caused by snow and freezing rain occurred in South China in 2008. This freeze was closely related to the La Nina phenomenon according to a report from the World Meteorological Organization. The freeze stroke 19 provinces in China, and damaged forests of 19.33 million ha with a standing volume loss of 371 million m3. It is estimated that the direct economic loss in the form of destroyed forests is over $8 billion. The indirect loss in the form of impaired ecological functions, such as water and soil conservation, water resources conservancy, biodiversity and forest carbon pool etc is enormous. The calamity of snow and freezing rain affected the structure and function of forest ecosystems. The snow load and freezing rain caused mechanical damage to the trees, with the species of Pinus massoniana, Cunninghamia lanceolata, Pinus elliottii and Phyllostachys pubescens etc. being the most seriously affected. The cold weather could also cause the physiological hurt to the trees. The change of the biotic components leads to the change of abiotic components in the ecosystems. The sunlight under the canopy was intensified due to the opening up of the canopy. The air temperature in the forest, the nutrient and microorganism in soil, the litterfall dynamic were also affected. The alteration of the forest ecosystem structure brought in the alteration of its functions. The damage of the ecosystem structure weakened the capacity of the water and soil conservation, water resources conservancy and reduced the biodiversity in forest ecosystems. Forest gaps allow more sunlight into the freeze-damaged ecosystem, inducing the invasion of more masculine species. The direction and progress of the community succession was therefore altered. At the same time, the freeze made a great impact on the stability and health of the forest ecosystem, increasing the potential risk of outbreak of forest fire and plant diseases/insect pests. Some suggestions on the rebuilding and recovery of damaged forest were given in this paper.
Effects of Planting of Calluna Vulgaris for Stable Snow Accumulation in Winter
NASA Astrophysics Data System (ADS)
Ibuki, R.; Harada, K.
2017-12-01
Recent year climate of the winter season is changing and the period of snow accumulation is reduced compared with before. It affects the management of the ski resort. Snowfall had occurred in December 2016, but the snow accumulated after January 2017 at the ski resort located in the Pacific Ocean side of the Northeast region of Japan. This situation is thought to be originated from two reasons, one is snow thawing, another is to be blown away by the strong monsoon wind. We are considering utilizing planting to stabilize snow accumulation. Currently building rock gardens with shrubs, mainly Calluna Vulgaris in the ski resort for attracting customers in the summer. These are difficult to raise in the lowlands of Japan because they are too hot, but because of their good growth in relatively low-temperature highlands, it is rare for local residents to appreciate the value of these. In addition, it is excellent in low temperature resistance, and it will not die even under the snow. We investigated the pressure resistance performance due to snowfall and the appropriateness of growth under the weather conditions of the area. Regarding Calluna Vulgaris, Firefly, the plants were not damaged even under snow more than 1 m. In addition, three years have passed since planting, relatively good growth is shown, and the stock has been growing every year. Based on these results, we plan to stabilize the snow accumulation by carrying out planting of Calluna vulgaris inside the slope. The growth of the Calluna species is gentle and the tree height grows only about 50 cm even if 15 years have passed since planting. Therefore, it is considered that the plant body is hard to put out their head on the snow surface during the ski season. Next season will monitor the snow accumulation around the planting area through the snow season.
Early performance of knobcone x monterey pine hybrids...on marginal timber sites
James R. Griffin; M. Thompson. Conkle
1967-01-01
Three plantations of knobcone X Monterey pine hybrids were established on marginal timber sites at elevations of 671 m.(2,200 ft.) to 991 m. (3,200 ft.) in northern California in 1964. After 3 years, the hybrids appear more promising than either parent species. Damage from snow and windthrow suggests high risk of storm damage to hybrids planted at higher elevations....
Flood Losses Associated with Winter Storms in the U.S. Northeast
NASA Astrophysics Data System (ADS)
Ting, M.; Shimkus, C.
2015-12-01
Winter storms pose a number of hazards to coastal communities in the U.S. Northeast including heavy rain, snow, strong wind, cold temperatures, and flooding. These hazards can cause millions in property damages from one storm alone. This study addresses the impacts of winter storms from 2001 - 2012 on coastal counties in the U.S. Northeast and underscores the significant economic consequences extreme winter storms have on property. The analysis on the types of hazards (floods, strong wind, snow, etc.) and associated damage from the National Climatic Data Center Storm Events Database indicates that floods were responsible for the highest damages. This finding suggests that winter storm vulnerability could grow in the future as precipitation intensity increases and sea level rise exacerbate flood losses. Flood loss maps are constructed based on damage amount, which can be compared to the flood exposure maps constructed by the NOAA Office of Coastal Management. Interesting agreements and discrepancies exist between the two methods, which warrant further examination. Furthermore, flood losses often came from storms characterized as heavy precipitation storms and strong surge storms, and sometimes both, illustrating the compounding effect of flood risks in the region. While New Jersey counties experienced the most damage per unit area, there is no discernable connection between population density and damage amount, which suggests that societal impacts may rely less on population characteristics and more on infrastructure types and property values, which vary throughout the region.
Impact of wild prey availability on livestock predation by snow leopards.
Suryawanshi, Kulbhushansingh R; Redpath, Stephen M; Bhatnagar, Yash Veer; Ramakrishnan, Uma; Chaturvedi, Vaibhav; Smout, Sophie C; Mishra, Charudutt
2017-06-01
An increasing proportion of the world's poor is rearing livestock today, and the global livestock population is growing. Livestock predation by large carnivores and their retaliatory killing is becoming an economic and conservation concern. A common recommendation for carnivore conservation and for reducing predation on livestock is to increase wild prey populations based on the assumption that the carnivores will consume this alternative food. Livestock predation, however, could either reduce or intensify with increases in wild prey depending on prey choice and trends in carnivore abundance. We show that the extent of livestock predation by the endangered snow leopard Panthera uncia intensifies with increases in the density of wild ungulate prey, and subsequently stabilizes. We found that snow leopard density, estimated at seven sites, was a positive linear function of the density of wild ungulates-the preferred prey-and showed no discernible relationship with livestock density. We also found that modelled livestock predation increased with livestock density. Our results suggest that snow leopard conservation would benefit from an increase in wild ungulates, but that would intensify the problem of livestock predation for pastoralists. The potential benefits of increased wild prey abundance in reducing livestock predation can be overwhelmed by a resultant increase in snow leopard populations. Snow leopard conservation efforts aimed at facilitating increases in wild prey must be accompanied by greater assistance for better livestock protection and offsetting the economic damage caused by carnivores.
NASA Astrophysics Data System (ADS)
Edwards, B. R.; Belousov, A.; Belousova, M.; Izbekov, P. E.; Bindeman, I. N.; Gardeev, E.; Muravyev, Y. D.; Melnikov, D.
2013-12-01
More than a dozen volcanic eruptions in the past twenty years have produced lava interaction with snow or ice, some of which have produced damaging floods/lahars. However, the factors controlling melting during lava-snow/ice interactions is not well understood. Recent observations from the presently ongoing eruption at Tolbachik, Kamchatka confirm some general observations from large-scale experiments, and recent eruptions (2010 Fimmvorduhals; Edwards et al, 2012), but also show new types of behavior not before described. The new observations provide further constraints on heat transfer between ice/snow and three different lava morphologies: ';a'a, pahoehoe, and toothpaste. ';A'a flows at Tolbachik commonly were able to travel over seasonal snow cover (up to 4 m thick), especially where the snow was covered by tephra within 1.5 km of the vent area. Locally, heated meltwater discharge events issued from beneath the front of advancing lava, even though snow observation pits dug in front of advancing ';a'a flows also showed that in some areas melting was not as extensive. Once, an ';a'a flow was seen to collapse through snow, generating short-lived phreatomagmatic/phreatic activity. Closer to the vent, pahoehoe flow lobes and sheet flows occasionally spilled over onto snow and were able to rapidly transit snow with few obvious signs of melting/steam generation. Most of these flows did melt through basal snow layers within 24 hours however. We were also able to closely observe ';toothpaste' lava flows ';intruding' into snow in several locations, including snow-pits, and to watch it pushing up through snow forming temporary snow domes. Toothpaste lava caused the most rapid melting and most significant volumes of steam, as the meltwater drained down into the intruding lava. Behaviour seen at Tolbachik is similar to historic (e.g., Hekla 1947; Einarrson, 1949) and recent observations (e.g. Fimmvorduhals), as well as large-scale experiments (Edwards et al., 2013). While lava flows have been seen to eventually melt through up to 5 m of snow, melting generally is relatively slow (cm / hr); presence of ash cover on snow slows melting. Temperatures of meltwater discharging from beneath lava flows at Tolbachik were up to 40 deg C, which is similar to maximum temperatures measured during experiments. While meltwater discharge was documented on both subhorizontal and steeper slows (~10 degrees), the only explosive activity was observed where topography likely prevented fast meltwater escape from beneath lava. All of these observations hopefully will lead to a new and better understanding of the hazards associated with lava-ice/snow interactions. Meltwater discharge from beneath 'a'a flow.
Point pattern analysis applied to flood and landslide damage events in Switzerland (1972-2009)
NASA Astrophysics Data System (ADS)
Barbería, Laura; Schulte, Lothar; Carvalho, Filipe; Peña, Juan Carlos
2017-04-01
Damage caused by meteorological and hydrological extreme events depends on many factors, not only on hazard, but also on exposure and vulnerability. In order to reach a better understanding of the relation of these complex factors, their spatial pattern and underlying processes, the spatial dependency between values of damage recorded at sites of different distances can be investigated by point pattern analysis. For the Swiss flood and landslide damage database (1972-2009) first steps of point pattern analysis have been carried out. The most severe events have been selected (severe, very severe and catastrophic, according to GEES classification, a total number of 784 damage points) and Ripley's K-test and L-test have been performed, amongst others. For this purpose, R's library spatstat has been used. The results confirm that the damage points present a statistically significant clustered pattern, which could be connected to prevalence of damages near watercourses and also to rainfall distribution of each event, together with other factors. On the other hand, bivariate analysis shows there is no segregated pattern depending on process type: flood/debris flow vs landslide. This close relation points to a coupling between slope and fluvial processes, connectivity between small-size and middle-size catchments and the influence of spatial distribution of precipitation, temperature (snow melt and snow line) and other predisposing factors such as soil moisture, land-cover and environmental conditions. Therefore, further studies will investigate the relationship between the spatial pattern and one or more covariates, such as elevation, distance from watercourse or land use. The final goal will be to perform a regression model to the data, so that the adjusted model predicts the intensity of the point process as a function of the above mentioned covariates.
Plant Adaptation to Cold. 1: Chlorophyll. 2: Minerals. M.S. Thesis
NASA Technical Reports Server (NTRS)
Rosen, P.
1972-01-01
A number of montane herbs in northern Utah typically form flower buds beneath the snow cover and flower either through it or immediately after its recession. Two of these species, one naturally occurring, Claytonia lanceolata, and one cultivated bulb, Galanthus nivalis, were investigated for their response to this stress environment. Snow depth patterns, chlorophyll content of tissues, and plants grown in light-tight boxes, suggest that light passing through the snow to reach plants growing underneath is not critically involved in the timing of their developmental cycles or in their ability to endure this low temperature environment. Ability to endure stress seems to be closely related in a number of ways to activity at the plant membranes. Plants were protected from low temperature damage by application of cytokinin or calcium, both of which probably acted at the membrane. Potassium calcium antagonisms were reflected in the internal distribution of the ions under natural stress conditions; and plants that differentiated at the meristem while growing through the snow accumulated calcium at the tip during this growth.
Winter storm intensity, hazards, and property losses in the New York tristate area.
Shimkus, Cari E; Ting, Mingfang; Booth, James F; Adamo, Susana B; Madajewicz, Malgosia; Kushnir, Yochanan; Rieder, Harald E
2017-07-01
Winter storms pose numerous hazards to the Northeast United States, including rain, snow, strong wind, and flooding. These hazards can cause millions of dollars in damages from one storm alone. This study investigates meteorological intensity and impacts of winter storms from 2001 to 2014 on coastal counties in Connecticut, New Jersey, and New York and underscores the consequences of winter storms. The study selected 70 winter storms on the basis of station observations of surface wind strength, heavy precipitation, high storm tide, and snow extremes. Storm rankings differed between measures, suggesting that intensity is not easily defined with a single metric. Several storms fell into two or more categories (multiple-category storms). Following storm selection, property damages were examined to determine which types lead to high losses. The analysis of hazards (or events) and associated damages using the Storm Events Database of the National Centers for Environmental Information indicates that multiple-category storms were responsible for a greater portion of the damage. Flooding was responsible for the highest losses, but no discernible connection exists between the number of storms that afflict a county and the damage it faces. These results imply that losses may rely more on the incidence of specific hazards, infrastructure types, and property values, which vary throughout the region. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Severe wind and snow storms hit the Pacific Northwest region on December 14 – 15, 2006, following severe flooding during the past few days. The severe weather resulted in major power outages through the region. At peak there were 1.8 million customers without power which included BC Hydro in Canada. Currently, there are over 1.5 million outages in the region as a result of the Pacific Northwest Storms. This represents about 42 percent of customers in affected utility service areas in Oregon and Washington. See table below. Because the current wind and snow storms are coming on the heels ofmore » extensive flooding in the region, electric utilities are experiencing damage. Wind gusts reached close to 100 mph in some areas of the region. The storm is expected to bring its strong winds and heavy snow into Idaho, Montana and Wyoming Friday and into the weekend. There are currently no reported major impacts to the petroleum and natural gas infrastructure.« less
Impact of wild prey availability on livestock predation by snow leopards
Redpath, Stephen M.; Bhatnagar, Yash Veer; Ramakrishnan, Uma; Chaturvedi, Vaibhav; Smout, Sophie C.; Mishra, Charudutt
2017-01-01
An increasing proportion of the world's poor is rearing livestock today, and the global livestock population is growing. Livestock predation by large carnivores and their retaliatory killing is becoming an economic and conservation concern. A common recommendation for carnivore conservation and for reducing predation on livestock is to increase wild prey populations based on the assumption that the carnivores will consume this alternative food. Livestock predation, however, could either reduce or intensify with increases in wild prey depending on prey choice and trends in carnivore abundance. We show that the extent of livestock predation by the endangered snow leopard Panthera uncia intensifies with increases in the density of wild ungulate prey, and subsequently stabilizes. We found that snow leopard density, estimated at seven sites, was a positive linear function of the density of wild ungulates—the preferred prey—and showed no discernible relationship with livestock density. We also found that modelled livestock predation increased with livestock density. Our results suggest that snow leopard conservation would benefit from an increase in wild ungulates, but that would intensify the problem of livestock predation for pastoralists. The potential benefits of increased wild prey abundance in reducing livestock predation can be overwhelmed by a resultant increase in snow leopard populations. Snow leopard conservation efforts aimed at facilitating increases in wild prey must be accompanied by greater assistance for better livestock protection and offsetting the economic damage caused by carnivores. PMID:28680665
High frequency acoustic reflections from an air-snow interface
NASA Astrophysics Data System (ADS)
Courville, Z.; Albert, D. G.; Lieb-Lappen, R.; Fegyveresi, J. M.
2016-12-01
High frequency wave propagation methods can be used to determine in situ near surface micro-pore geometry parameters in real Earth materials including snow. To this end, we have been developing a portable ultrasonic transducer rig to make measurements of acoustic reflections from a variety of natural porous media. Fresh natural snow, in particular, is a difficult material to characterize, as any mechanical interaction is likely to damage the fragile pores and grain bonds. Because acoustic waves are sensitive to the porous material properties, they potentially can be used to measure snow properties in a non-destructive manner. Such methods have already been demonstrated on cohesive porous materials including manufactured foams, porous metals, and sintered glass beads. We conducted high frequency, oblique-angle and near vertical reflection measurements on snow samples in a cold room. We then compare the acoustically derived snow physical parameters, including porosity, with values determined from micro-computed tomography (μCT) and with standard (but destructive) laboratory measurements. Preliminary results using a manufactured open cell foam following previous work by Fellah et al., (2003) shows very good agreement between values of porosity determined from the acoustic measurements and the values determined from μCT image analysis and gravimetric determination. Similarly, preliminary results comparing acoustic measurements of natural, dry snow samples prepared in the laboratory show good agreement between acoustically-derived porosity values and porosity values derived through independent means. Fellah, Z.E.A., S. Berger, W. Lauriks, C. Depollier, C. Aristegui, and J.Y. Chapelon, (2003b), Measuring the porosity and tortuosity of porous materials via reflected waves at oblique incidence, J. Acous. Soc. Am., 113, 2424-2433.
Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille.
Gorton, Holly L; Vogelmann, Thomas C
2003-06-01
Aplanospores of Chlamydomonas nivalis are frequently found in high-altitude, persistent snowfields where they are photosynthetically active despite cold temperatures and high levels of visible and ultraviolet (UV) radiation. The goals of this work were to characterize the UV environment of the cells in the snow and to investigate the existence and localization of screening compounds that might prevent UV damage. UV irradiance decreased precipitously in snow, with UV radiation of wavelengths 280-315 nm and UV radiation of wavelengths 315-400 nm dropping to 50% of incident levels in the top 1 and 2 cm, respectively. Isolated cell walls exhibited UV absorbance, possibly by sporopollenin, but this absorbance was weak in images of broken or plasmolyzed cells observed through a UV microscope. The cells also contained UV-absorbing cytoplasmic compounds, with the extrachloroplastic carotenoid astaxanthin providing most of the screening. Additional screening compound(s) soluble in aqueous methanol with an absorption maximum at 335 nm played a minor role. Thus, cells are protected against potentially high levels of UV radiation by the snow itself when they live several centimeters beneath the surface, and they rely on cellular screening compounds, chiefly astaxanthin, when located near the surface where UV fluxes are high.
NASA Astrophysics Data System (ADS)
Koh, D.
2016-12-01
The Yeongdong region in Korea has frequent heavy snowfall in winter, which usually results in societal and economic damages such as collapses of the greenhouse and the temporary building due to heavy snowfall weights and traffic accidents due to snow-slippery road condition. Therefore we have conducted an intensive measurement campaign of `Experiment on Snow Storms At Yeongdong (ESSAY)' using radiosonde soundings, several remote sensors and a digital camera with a magnifier for taking a photograph of snowfall crystals in the region. The analysis period is mainly limited to every winter from 2014 to 2016The typical synoptic situation for the heavy snowfall is Low pressure system passing by the far South of the Korean peninsula along with the Siberian High extending to northern Japan, leading to the northeasterly or easterly flows frequently accompanied by the long-lasting snowfall in the Yeongdong region. The snow crystal habits observed in the ESSAY campaign are mainly dendrite, consisting of about 70% of the entire habits, indicative of relatively warmer East Sea effect. Meanwhile, the rimed habits are frequently captured specifically when two-layered clouds are observed. The homogeneous habit such as dendrite is shown in case of shallow clouds with its thickness below 500 m, whereas various habits are captured such as graupel, dendrites, rimed dendrites, etc in the thicker cloud with its thickness greater than 1.5 km. The association of snow crystal habits with temperature and supersaturation in the cloud will be more discussed.
Effects of the May 5-6, 1973, storm in the Greater Denver area, Colorado
Hansen, Wallace R.
1973-01-01
Rain began falling on the Greater Denver area the evening of Saturday, May 5, 1973, and continued through most of Sunday, May 6. Below about 7,000 feet altitude, the precipitation was mostly rain; above that altitude, it was mostly snow. Although the rate of fall was moderate, at least 4 inches of rain or as much as 4 feet of snow accumulated in some places. Sustained precipitation falling at a moderate rate thoroughly saturated the ground and by midday Sunday sent most of the smaller streams into flood stage. The South Platte River and its major tributaries began to flood by late Sunday evening and early Monday morning. Geologic and hydrologic processes activated by the May 5-6 storm caused extensive damage to lands and to manmade structures in the Greater Denver area. Damage was generally most intense in areas where man had modified the landscape--by channel constrictions, paving, stripping of vegetation and topsoil, and oversteepening of hillslopes. Roads, bridges, culverts, dams, canals, and the like were damaged or destroyed by erosion and sedimentation. Streambanks and structures along them were scoured. Thousands of acres of croplands, pasture, and developed urban lands were coated with mud and sand. Flooding was intensified by inadequate storm sewers, blocked drains, and obstructed drainage courses. Saturation of hillslopes along the Front Range caused rockfalls, landslides, and mudflows as far west as Berthoud Pass. Greater attention to geologic conditions in land-use planning, design, and construction would minimize storm damage in the future.
Ladinig, Ursula; Hacker, Jürgen; Neuner, Gilbert; Wagner, Johanna
2013-03-01
In temperate-zone mountains, summer frosts usually occur during unpredictable cold spells with snow-falls. Earlier studies have shown that vegetative aboveground organs of most high-mountain plants tolerate extracellular ice in the active state. However, little is known about the impact of frost on reproductive development and reproductive success. In common plant species from the European Alps (Cerastium uniflorum, Loiseleuria procumbens, Ranunculus glacialis, Rhododendron ferrugineum, Saxifraga bryoides, S. moschata, S. caesia), differing in growth form, altitudinal distribution and phenology, frost resistance of reproductive and vegetative shoots was assessed in different reproductive stages. Intact plants were exposed to simulated night frosts between -2 and -14 °C in temperature-controlled freezers. Nucleation temperatures, freezing damage and subsequent reproductive success (fruit and seed set, seed germination) were determined. During all reproductive stages, reproductive shoots were significantly less frost resistant than vegetative shoots (mean difference for LT50 -4.2 ± 2.7 K). In most species, reproductive shoots were ice tolerant before bolting and during fruiting (mean LT50 -7 and -5.7 °C), but were ice sensitive during bolting and anthesis (mean LT50 around -4 °C). Only R. glacialis remained ice tolerant during all reproductive stages. Frost injury in reproductive shoots usually led to full fruit loss. Reproductive success of frost-treated but undamaged shoots did not differ significantly from control values. Assessing the frost damage risk on the basis of summer frost frequency and frost resistance shows that, in the alpine zone, low-statured species are rarely endangered as long as they are protected by snow. The situation is different in the subnival and nival zone, where frost-sensitive reproductive shoots may become frost damaged even when covered by snow. Unprotected individuals are at high risk of suffering from frost damage, particularly at higher elevations. It appears that ice tolerance in reproductive structures is an advantage but not an absolute precondition for colonizing high altitudes with frequent frost events.
NASA Astrophysics Data System (ADS)
García-Hernández, Cristina; Ruiz-Fernández, Jesús; Sánchez-Posada, Covadonga; Pereira, Susana; Oliva, Marc; Vieira, Gonçalo
2017-06-01
Natural conditions that explain the triggering of snow avalanches are becoming better-known, but our understanding of how socio-environmental changes can influence the occurrence of damaging avalanches is still limited. This study analyses the evolution of snow avalanche damage in the Asturian Massif (NW Spain) between 1800 and 2015, paying special attention to changes in land-use and land-cover patterns. A damage index has been performed using historical sources, photointerpretation and fieldwork-based data, which were introduced in a GIS and processed by means of statistical analysis. Mapping allowed connecting spatiotemporal variations of damage and changes in human-environment interactions. The total number of victims was 342 (192 dead and 150 injured). Results show stability in the number of avalanches during the study period, but a progressive decrease in the damage per avalanche. Changes in land use explain the evolution of damage and its spatial/temporal behaviour. The role played by vegetation cover is at the root of this process: damage was the highest during the late 19th and early 20th centuries, when a massive deforestation process affected the protective forest. This deforestation was the result of demographic growth and intensive grazing, disentailment laws and emerging coal mining. Since the mid-20th century, the transformation of a traditional land-management system based on overexploitation into a system based on land marginalization and reforestation, together with the decline of deforestation due to industrial and legal causes, resulted in the decrease of avalanches that affected settlements (mostly those released below the potential timberline). The decrease of damage has been sharper in the western sector of the Asturian Massif, where oak deforestation was very intense in the past and where lithology allows for a more successful ecological succession at present. Taking into account that reforestation can be observed in mountain environments of developed countries worldwide, and considering present initiatives conducted to counteract its negative cultural effects by means of grazing and clearing operations, planning is imperative, and this research provides useful information for environmental management policies and risk mitigation in avalanche prone areas.
Positive Returns from Investment in Fusiform Rust Research
John M. Pye; John E. Wagner; Thomas P. Holmes; Frederick W. Cubbage
1997-01-01
Fusiform rust [Cronartium quercuum (Berk.) Miy. ex Shirai f. sp. fusiforme Burdsall et Snow] is a widespread and damaging disease of loblolly and slash pine across much of the Southern United States. Research by government and university scientists has identified families of these species with improved genetic resistance to infection by the disease, allowing production...
40 CFR Appendix II to Subpart S of... - As-Received Testing Vehicle Rejection Criteria
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES... vehicle has been used for severe duty (trailer towing for passenger cars, snow plowing, racing) 4. The vehicle has a history of extensive collision damage or major engine repair (piston, crank, cylinder head...
40 CFR Appendix II to Subpart S of... - As-Received Testing Vehicle Rejection Criteria
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES... vehicle has been used for severe duty (trailer towing for passenger cars, snow plowing, racing) 4. The vehicle has a history of extensive collision damage or major engine repair (piston, crank, cylinder head...
40 CFR Appendix II to Subpart S of... - As-Received Testing Vehicle Rejection Criteria
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES... vehicle has been used for severe duty (trailer towing for passenger cars, snow plowing, racing) 4. The vehicle has a history of extensive collision damage or major engine repair (piston, crank, cylinder head...
40 CFR Appendix II to Subpart S of... - As-Received Testing Vehicle Rejection Criteria
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES... vehicle has been used for severe duty (trailer towing for passenger cars, snow plowing, racing) 4. The vehicle has a history of extensive collision damage or major engine repair (piston, crank, cylinder head...
Reconstruction of stand dynamics over the last 2500 years from spruce remains in a treeline peatland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arseneault, D.; Payette, S.
1995-06-01
Stem remains of black spruce Picea mariana (Mill. BSP.) buried in a permafrost treeless peatland were used for the reconstruction of the long-term forest dynamics at treeline in northeastern Canada. Because most spruce remains were well preserved, forest development was assessed from stem morphology (growth form) and tree ring patterns. The peatland border was colonized by a spruce forest from at least 500 BC (2500 BP) to 1568 AD. Most spruce individuals showed an erect, monopodial bole with only minor stem damage at the snow-air interface. The forest successfully regenerated after two fire events around 350 BC and 10 AD.more » The number of damaged stems at the snow-air interface increased after another fire around 700 AD, although faster ring growth occurred between 860 and 1000 AD (Medieval period). The forest shifted to an open krummholz after the last fire in 1568 AD because of reduced postfire regeneration and site opening. Reforestation of the site would necessitate sustained warmer conditions than those presently prevailing there.« less
Soil Biogeochemistry in a Changing Climate: Effect of Snow Removal
NASA Astrophysics Data System (ADS)
Patel, K.; Tatariw, C.; Fernandez, I. J.; Macrae, J. D.; Ohno, T.
2016-12-01
Winter snowpack plays an important role in ecosystem functioning, thermally insulating the subnivean soil from freezing temperatures. Wintertime microbial mineralization of organic material results in accumulation of nutrients under the snowpack, which are available post-melt for plant root uptake. The northeastern United States has experienced declining snow accumulation, and climate models project this trend will continue in the future. Intermittent and reduced snow cover increases soil freezing and frost damage, which can have implications on spring nutrient availability and forest productivity. We conducted a 2-year snow removal experiment in the Dwight B. DeMeritt Forest at the University of Maine to study subnivean winter processes, and to examine the effect of a decreased snowpack on soil winter and spring biogeochemistry. Surface organic soils were collected during winter and spring of 2015 and 2016, years with sharply contrasting snow accumulation, to track temporal changes in nutrient dynamics as the system evolved from under the snowpack. Laboratory extractions and incubations were performed to quantify the inorganic available nitrogen, dissolved organic carbon (DOC), and potential net N-mineralization (PNNM) in field moist soils. Snow removal resulted in decreased winter soil temperatures (2-8°C colder than the reference plots). There was an increased incidence of rain-on-soil events in the winter, forming concrete frost. Freeze-thaw cycles in the treatment plots resulted in higher NH4-N and DOC concentrations, but lower PNNM, compared to the reference plots. Treatment effects on DOC and NH4-N concentrations were not seen in the spring, although the effects on PNNM persisted. Our findings demonstrated that freeze-thaw cycles play an important role in the timing and magnitude of soil nutrient availability during the vernal transition. Understanding these processes becomes increasingly important when defining forest ecosystem response to a changing climate.
Kirk M. Stueve; Ian W. Housman; Patrick L. Zimmerman; Mark D. Nelson; Jeremy B. Webb; Charles H. Perry; Robert A. Chastain; Dale D. Gormanson; Chengquan Huang; Sean P. Healey; Warren B. Cohen
2011-01-01
Accurate landscape-scale maps of forests and associated disturbances are critical to augment studies on biodiversity, ecosystem services, and the carbon cycle, especially in terms of understanding how the spatial and temporal complexities of damage sustained from disturbances influence forest structure and function. Vegetation change tracker (VCT) is a highly automated...
Bjerke, Jarle W; Treharne, Rachael; Vikhamar-Schuler, Dagrun; Karlsen, Stein R; Ravolainen, Virve; Bokhorst, Stef; Phoenix, Gareth K; Bochenek, Zbigniew; Tømmervik, Hans
2017-12-01
The exact cause of population dieback in nature is often challenging to identify retrospectively. Plant research in northern regions has in recent decades been largely focussed on the opposite trend, namely increasing populations and higher productivity. However, a recent unexpected decline in remotely-sensed estimates of terrestrial Arctic primary productivity suggests that warmer northern lands do not necessarily result in higher productivity. As large-scale plant dieback may become more frequent at high northern latitudes with increasing frequency of extreme events, understanding the drivers of plant dieback is especially urgent. Here, we report on recent extensive damage to dominant, short, perennial heath and tundra plant populations in boreal and Arctic Norway, and assess the potential drivers of this damage. In the High-Arctic archipelago of Svalbard, we recorded that 8-50% of Cassiope tetragona and Dryas octopetala shoots were dead, and that the ratios of dead shoots increased from 2014 to 2015. In boreal Norway, 38-63% of Calluna vulgaris shoots were dead, while Vaccinium myrtillus had damage to 91% of shoots in forested sites, but was healthy in non-forested sites. Analyses of numerous sources of environmental information clearly point towards a winter climate-related reason for damage to three of these four species. In Svalbard, the winters of 2011/12 and 2014/15 were documented to be unusually severe, i.e. insulation from ambient temperature fluctuation by snow was largely absent, and ground-ice enforced additional stress. In boreal Norway, the 2013/14 winter had a long period with very little snow combined with extremely low precipitation rates, something which resulted in frost drought of uncovered Calluna plants. However, extensive outbreaks of a leaf-defoliating geometrid moth were identified as the driver of Vaccinium mortality. These results suggest that weather and biotic extreme events potentially have strong impacts on the vegetation state of northern lands. Copyright © 2017 Elsevier B.V. All rights reserved.
Drones application on snow and ice surveys in alpine areas
NASA Astrophysics Data System (ADS)
La Rocca, Leonardo; Bonetti, Luigi; Fioletti, Matteo; Peretti, Giovanni
2015-04-01
First results from Climate change are now clear in Europe, and in Italy in particular, with the natural disasters that damaged irreparably the territory and the habitat due to extreme meteorological events. The Directive 2007/60/EC highlight that an "effective natural hazards prevention and mitigation that requires coordination between Member States above all on natural hazards prevention" is necessary. A climate change adaptation strategy is identified on the basis of the guidelines of the European Community program 2007-2013. Following the directives provided in the financial instrument for civil protection "Union Civil Protection Mechanism" under Decision No. 1313/2013 / EU of the European Parliament and Council, a cross-cutting approach that takes into account a large number of implementation tools of EU policies is proposed as climate change adaptation strategy. In last 7 years a network of trans-Alpine area's authorities was created between Italy and Switzerland to define an adaptive strategy on climate change effects on natural enviroment based on non structural remedies. The Interreg IT - CH STRADA Project (STRategie di ADAttamento al cambiamento climatico) was born to join all the non structural remedies to climate change effects caused by snow and avalanches, on mountain sources, extreme hydrological events and to manage all transnational hydrological resources, involving all stakeholders from Italy and Switzerland. The STRADA project involved all civil protection authorities and all research centers in charge of snow, hydrology end civil protection. The Snow - meteorological center of the Regional Agency for Environment Protection (CNM of ARPA Lombardia) and the Civil Protection of Lombardy Region created a research team to develop tools for avalanche prediction and to observe and predict snow cover on Alpine area. With this aim a lot of aerial photo using Drone as been performed in unusual landscape. Results of all surveys were really interesting on a scientific point of view. All flight was performed by remote controlled aero models with high resolution camera. Aero models were able to take off and to ground on snow covered or icy surfaces since the specific aerodynamic configuration and specific engine used to. All winter surveys were executed flying low to obtain a tridimensional reconstruction of an High resolution Digital Elevation Model (DEM) of snow cover and ice cover and on summer as been developed the DEM were snow amass in the maximum avalanche risk period. The difference between winter and summer DEM (difference between two point clouds) let to individuate the snow depth, and it was used as input data for the snow avalanche model for the Aprica site (Bergamo - Italy).
NASA Astrophysics Data System (ADS)
Storvold, R.; Karlsen, S. R.; Solbø, S. A.; Johansen, B.; Johansen, K.; Høgda, K. A.; Tømmervik, H.; Zmarz, A.; Joly, D.
2013-12-01
The study area in the surroundings of Longyearbyen on Svalbard, Arctic Norway, located at 71.2°N and 16°E is characterized by dry Arctic climate with a snow season of more than eight months, annual precipitation of less than 200mm, and a mean July temperature of about 6°C. Longyearbyen is the main settlement on Svalbard, with about 2000 inhabitants. During the last two decades the number of snowmobiles have increased from a few hundred to a number almost equals the number of inhabitants, and snowmobile trips are today the one of the main leisure activities. In addition, thousands of tourist visits every spring, and many of these go on organized snowmobile trips. Due to the often thin snow cover, and use of snowmobile even during the spring snow melt in May and early June, the rapid growth in use of snowmobile has made some damage to the vegetation. Damage on the fragile vegetation caused by the skids and belts of the snowmobile can be observed in most parts of the Adventdalen valley, close to Longyearbyen. The main aim of this study is to explore the feasibility and accuracy of using data from Unmanned Aircraft Systems (UAS) to identify vehicle tracks and damages on vegetation caused by the use of snowmobiles. Use of UAS give the opportunity to carry out research in a manner that minimizes the environmental footprint of the research activities. Small unmanned aircraft, combining both fixed wing multi rotor types allow us to collect image data for vegetation mapping without having any personnel walking into the field disturbing the sensitive High Arctic ecosystems. UAS used here are inexpensive and simple to operate. They are being developed with the goal of providing airborne capabilities for scientists at an affordable cost. The aircraft were instrumented with a normal Canon Powershot S100 RGB compact camera and a modified Canon Powershot SX230 NDVI camera. The fixed wing aircraft was taking pictures from 100 meters altitude with ground resolution of 2.5 cm mapping 2-3 sq.km per flight. The multirotor helicopter were mapping areas of a few hundred square meters with ground resolution as high as 1 mm. An automated technique using HSV (Hue, Saturation and Value) was used instead of RGB color space to automatic detect tracks and quantify area affected. This may be used to monitor future changes and effect of regulatory actions. The 2.5 cm resolution data easily detected tracks on the flat valley floor. These areas have mixed vegetation of mires and dry areas. The dry areas have silty substrate, which is easily compressed by the skids and belts of the snow scooters. The vegetation in these areas is scattered, but rather species rich. Most common is the small Arctic Willow (Salix polaris), several bryophytes and graminoides, and the small shrubs White Arctic bell heather (Cassiope tetragona) and Mountain Avens (Dryas ocopetala). Among these species Mountain Avens seems to be most affected by the scooter activity. The mires seem to be less affected by the snow scooter activity. The slopes of the valley are dominated by Mountain Avens ridges, heaths, and spots with moss tundra. However, tracks were only detected on the ridges of the valley slopes.
2012-10-01
damaged spinal cord after chronic HX are the result of reduced conduction in uncut axons (Hunanyan et al. 2011). Since elevated level of chondroitin ... sulfate proteoglycans (CSPGs) in the vicinity of the injury has been reported to be a major obstacle for recovery after SCI (Snow et al., 1990; Jones
Implications of research on lodgepole pine introduction in interior Alaska.
John N. Alden
1988-01-01
Growth, winter injury, and mortality were evaluated for 12-year-old trees of 11 subarctic lodgepole pine provenances and a jack pine provenance at Fairbanks, Alaska. Provenances from northeast British Columbia grew more than 0.003 cubic meter of wood per tree annually from 9 to 12 years after outplanting. The species sustained snow damage and winter injury, however,...
Integrated database for rapid mass movements in Norway
NASA Astrophysics Data System (ADS)
Jaedicke, C.; Lied, K.; Kronholm, K.
2009-03-01
Rapid gravitational slope mass movements include all kinds of short term relocation of geological material, snow or ice. Traditionally, information about such events is collected separately in different databases covering selected geographical regions and types of movement. In Norway the terrain is susceptible to all types of rapid gravitational slope mass movements ranging from single rocks hitting roads and houses to large snow avalanches and rock slides where entire mountainsides collapse into fjords creating flood waves and endangering large areas. In addition, quick clay slides occur in desalinated marine sediments in South Eastern and Mid Norway. For the authorities and inhabitants of endangered areas, the type of threat is of minor importance and mitigation measures have to consider several types of rapid mass movements simultaneously. An integrated national database for all types of rapid mass movements built around individual events has been established. Only three data entries are mandatory: time, location and type of movement. The remaining optional parameters enable recording of detailed information about the terrain, materials involved and damages caused. Pictures, movies and other documentation can be uploaded into the database. A web-based graphical user interface has been developed allowing new events to be entered, as well as editing and querying for all events. An integration of the database into a GIS system is currently under development. Datasets from various national sources like the road authorities and the Geological Survey of Norway were imported into the database. Today, the database contains 33 000 rapid mass movement events from the last five hundred years covering the entire country. A first analysis of the data shows that the most frequent type of recorded rapid mass movement is rock slides and snow avalanches followed by debris slides in third place. Most events are recorded in the steep fjord terrain of the Norwegian west coast, but major events are recorded all over the country. Snow avalanches account for most fatalities, while large rock slides causing flood waves and huge quick clay slides are the most damaging individual events in terms of damage to infrastructure and property and for causing multiple fatalities. The quality of the data is strongly influenced by the personal engagement of local observers and varying observation routines. This database is a unique source for statistical analysis including, risk analysis and the relation between rapid mass movements and climate. The database of rapid mass movement events will also facilitate validation of national hazard and risk maps.
NASA Astrophysics Data System (ADS)
Rössler, O.; Froidevaux, P.; Börst, U.; Rickli, R.; Martius, O.; Weingartner, R.
2014-06-01
A rain-on-snow flood occurred in the Bernese Alps, Switzerland, on 10 October 2011, and caused significant damage. As the flood peak was unpredicted by the flood forecast system, questions were raised concerning the causes and the predictability of the event. Here, we aimed to reconstruct the anatomy of this rain-on-snow flood in the Lötschen Valley (160 km2) by analyzing meteorological data from the synoptic to the local scale and by reproducing the flood peak with the hydrological model WaSiM-ETH (Water Flow and Balance Simulation Model). This in order to gain process understanding and to evaluate the predictability. The atmospheric drivers of this rain-on-snow flood were (i) sustained snowfall followed by (ii) the passage of an atmospheric river bringing warm and moist air towards the Alps. As a result, intensive rainfall (average of 100 mm day-1) was accompanied by a temperature increase that shifted the 0° line from 1500 to 3200 m a.s.l. (meters above sea level) in 24 h with a maximum increase of 9 K in 9 h. The south-facing slope of the valley received significantly more precipitation than the north-facing slope, leading to flooding only in tributaries along the south-facing slope. We hypothesized that the reason for this very local rainfall distribution was a cavity circulation combined with a seeder-feeder-cloud system enhancing local rainfall and snowmelt along the south-facing slope. By applying and considerably recalibrating the standard hydrological model setup, we proved that both latent and sensible heat fluxes were needed to reconstruct the snow cover dynamic, and that locally high-precipitation sums (160 mm in 12 h) were required to produce the estimated flood peak. However, to reproduce the rapid runoff responses during the event, we conceptually represent likely lateral flow dynamics within the snow cover causing the model to react "oversensitively" to meltwater. Driving the optimized model with COSMO (Consortium for Small-scale Modeling)-2 forecast data, we still failed to simulate the flood because COSMO-2 forecast data underestimated both the local precipitation peak and the temperature increase. Thus we conclude that this rain-on-snow flood was, in general, predictable, but requires a special hydrological model setup and extensive and locally precise meteorological input data. Although, this data quality may not be achieved with forecast data, an additional model with a specific rain-on-snow configuration can provide useful information when rain-on-snow events are likely to occur.
Decrease in sapling nutrient concentrations for six northern Rocky Mountain coniferous species
Theresa B. Jain; Russell T. Graham
2015-01-01
In the west, fire exclusion, timber harvest, and last centuryâs climate led to copious regeneration on millions of ha that now need tending. Without treatment, overcrowding increases competition, snow and ice damage potential, and ladder fuels. Limited funding prevents treating all of the affected ha, but by selling small trees for wood pellets, biofuel, or methanol,...
Susceptibility of central hardwood trees to stem breakage due to ice glazing
KaDonna C. Randolph
2014-01-01
During January 26-28, 2009, a winter storm dropped a mix of rain, ice, and snow from Texas across the Ohio River Valley and into New England. The storm caused multiple fatalities and millions of dollars of property damage and was called "the biggest natural disaster in modern Kentucky history" (Brammer and Funk 2009: 13). The storm disturbed an estimated 2.4...
Landsat - Current and future capabilities for agriculture
NASA Technical Reports Server (NTRS)
Walter, L. S.
1977-01-01
The potential of the Landsat spacecraft in applications related to agriculture is demonstrated by the examples of assessing the damage to the Brazilian coffee crop due to freezing temperatures on July 17-18, 1975; and damage assessment in the state of Iowa, following a tornado which struck a corn and soybean producing region on June 13, 1976. Some techniques which have been used to measure snow covers on the basis of Landsat data are also noted. The advantages that are expected to accrue from the installation of sophisticated equipment on the third and fourth Landsat spacecraft, scheduled to be launched in 1978 and 1981, respectively, are reviewed.
Noise exposure levels from model airplane engines.
Pearlman, R C; Miller, M
1985-01-01
Previous research indicates that noise levels from unmuffled model airplane engines produce sufficient noise to cause TTS. The present study explored SPLs of smaller engines under 3.25 cc (.19 cu. in.) and the effectiveness of engine mufflers. Results showed that model airplanes can exceed a widely used damage risk criterion (DRC) but that engine mufflers can reduce levels below DRC. Handling model gasoline engines should be added to the list of recreational activities such as snow-mobile and motorcycle riding, shooting, etc. in which the participant's hearing may be in jeopardy. Suggestions are presented to the model engine enthusiast for avoiding damage to hearing.
NASA Astrophysics Data System (ADS)
Esteban, Pere; Beck, Christoph; Philipp, Andreas
2010-05-01
Using data associated with accidents or damages caused by snow avalanches over the eastern Pyrenees (Andorra and Catalonia) several atmospheric circulation type catalogues have been obtained. For this purpose, different circulation type classification methods based on Principal Component Analysis (T-mode and S-mode using the extreme scores) and on optimization procedures (Improved K-means and SANDRA) were applied . Considering the characteristics of the phenomena studied, not only single day circulation patterns were taken into account but also sequences of circulation types of varying length. Thus different classifications with different numbers of types and for different sequence lengths were obtained using the different classification methods. Simple between type variability, within type variability, and outlier detection procedures have been applied for selecting the best result concerning snow avalanches type classifications. Furthermore, days without occurrence of the hazards were also related to the avalanche centroids using pattern-correlations, facilitating the calculation of the anomalies between hazardous and no hazardous days, and also frequencies of occurrence of hazardous events for each circulation type. Finally, the catalogues statistically considered the best results are evaluated using the avalanche forecaster expert knowledge. Consistent explanation of snow avalanches occurrence by means of circulation sequences is obtained, but always considering results from classifications with different sequence length. This work has been developed in the framework of the COST Action 733 (Harmonisation and Applications of Weather Type Classifications for European regions).
Study of Extreme Weather Hazards Using GRACE
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shum, C. K.; Shang, K.; Guo, J.; Schwartz, F. W.; Akyılmaz, O.; Feng, W.; Forootan, E.; LIU, G.; Zhong, M.
2017-12-01
Extreme weather events significantly affect humans and economics in the region. Synoptic and timely observations of these abrupt meteoro-hydrological hazards would benefit disaster management and improve storm forecasting. Contemporary processing of the Gravity Recovery and Climate Experiment (GRACE) twin-satellite data at monthly sampling would miss or under-sample abrupt events such as large ice storms with durations much shorter than a month. Here, we employ the energy balance approach processing GRACE Level 1 data, which is flexible to allow sub-monthly solutions at daily sampling covering the genesis and evolution of large winter storms. We studied the 2008 Southeast China snow and ice storm, which lasted from mid-January to mid-February, and affected 21 out of China's 34 provinces with heavy snows, ice and freezing rains, caused extensive damage and transportation disruption, displaced nearly 1.7 million people, and claimed 129 lives. We also investigated the devastating North America blizzard which occurred during late January through mid-February 2010. The massive accumulations of snow and ice in both storms slightly changed the gravity field of the Earth, and were sensitive to the GRACE satellite measurements, manifested as transient terrestrial water storage (TWS) change. We compared our solutions with other available high temporal frequency GRACE solutions. The GRACE observed total storage change for both storms are in good agreement with in situ precipitation measurements, and with GRACE observations clearly show the complex genesis, decline, strengthening and melting phases depicting the detailed evolution of these example large snow storms.
Experimental and numerical investigation of a RC wall loaded by snow-like avalanche pressure signal
NASA Astrophysics Data System (ADS)
Ousset, Isabelle; Bertrand, David; Brun, Michaël; Limam, Ali; Naaïm, Mohamed
2013-04-01
Nowadays, civil engineering structures exposed to snow avalanches are mostly designed considering static loadings involving large safety factors. These latters highlight the lack of knowledge about the effects of the loading generated by a snow flow, and generally lead to oversize the civil structure. Indeed, the transient nature of the loading signal and also the composition of the snow flow can generate dynamic phenomena which cannot be taken into account considering only static loadings. The case of the avalanche of the Taconnaz (France), which occurred in 1999 and where important parts of the defense structure were destroyed, showed that static design approaches can lead to underestimate the potential effect of the snow flow. Thus, in order to give some new insights about this issue, the effect of the temporal variations of the snow loading on the mechanical behavior of an idealized defense structure is investigated. Therefore, a reinforced concrete (RC) wall with a L-like shape has been considered which is supposed to represent a part of the defense structure situated in Taconnaz. Static pushover tests, carried out in laboratory conditions on 1/6 scale physical model of the RC structure, allowed obtaining the capacity of the tested structure (Berthet-Rambaud et al. (2007)). Finite Element (FE) models have been developed and calibrated from the previous experimental data. The FE approach allows simulating the dynamic mechanical response of the structure. The effect of the transient nature of the loading of the avalanche has been explored applying out-of-plan dynamic loadings on the RC wall. In order to be as close as possible of a "field" snow avalanche, the imposed time evolution of the loading has been generated from in situ measurements recorded at the French experimental site "le col du Lautaret" (Thibert et al. (2008)). The RC mechanical behaviour has been described by four nonlinear constitutive laws. The four behaviour laws are compared and analyzed for specific loading situations. Next, the influences of typical parameters characterizing the avalanche loading signal are proposed. In particular, a special focused is presented on the effect of the loading rate. Finally, the vulnerability of the RC wall is studied in a reliability framework. Damage index are proposed and the probability of failure of the RC wall is derived. These relations might be useful for risk analysis.
Floods of December 2004 and January 2005 in Ohio: FEMA Disaster Declaration 1580
Ebner, Andrew D.; Straub, David E.; Lageman, Jonathan D.
2008-01-01
A large snowstorm at the end of December 2004 that left more than 20 inches of snow in some areas of Ohio, followed by unseasonably warm temperatures in early January 2005, caused snowmelt to begin filling river channels. Widespread rain showers during January 2005 combined with this snowmelt to cause flooding throughout Ohio and mudslides in some areas. Record peak streamflows occurred at nine U.S. Geological Survey (USGS) streamgages. Damages caused by the snowstorms, flooding, and mudslides were severe enough for 62 counties in Ohio to be declared Federal disaster areas. In all, approximately 3,664 private structures were damaged or destroyed, and an estimated $238 million in damages occurred. This report describes the meteorological factors that resulted in severe flooding throughout Ohio between December 22, 2004, and February 1, 2005, and examines the damages caused by the storms and flooding. Peak-stage, peak-streamflow, and recurrence-interval data are reported for selected USGS streamgages. Flood profiles determined by the USGS are presented for selected streams.
Increased spring freezing vulnerability for alpine shrubs under early snowmelt.
Wheeler, J A; Hoch, G; Cortés, A J; Sedlacek, J; Wipf, S; Rixen, C
2014-05-01
Alpine dwarf shrub communities are phenologically linked with snowmelt timing, so early spring exposure may increase risk of freezing damage during early development, and consequently reduce seasonal growth. We examined whether environmental factors (duration of snow cover, elevation) influenced size and the vulnerability of shrubs to spring freezing along elevational gradients and snow microhabitats by modelling the past frequency of spring freezing events. We sampled biomass and measured the size of Salix herbacea, Vaccinium myrtillus, Vaccinium uliginosum and Loiseleuria procumbens in late spring. Leaves were exposed to freezing temperatures to determine the temperature at which 50% of specimens are killed for each species and sampling site. By linking site snowmelt and temperatures to long-term climate measurements, we extrapolated the frequency of spring freezing events at each elevation, snow microhabitat and per species over 37 years. Snowmelt timing was significantly driven by microhabitat effects, but was independent of elevation. Shrub growth was neither enhanced nor reduced by earlier snowmelt, but decreased with elevation. Freezing resistance was strongly species dependent, and did not differ along the elevation or snowmelt gradient. Microclimate extrapolation suggested that potentially lethal freezing events (in May and June) occurred for three of the four species examined. Freezing events never occurred on late snow beds, and increased in frequency with earlier snowmelt and higher elevation. Extrapolated freezing events showed a slight, non-significant increase over the 37-year record. We suggest that earlier snowmelt does not enhance growth in four dominant alpine shrubs, but increases the risk of lethal spring freezing exposure for less freezing-resistant species.
An estimated cost of lost climate regulation services caused by thawing of the Arctic cryosphere.
Euskirchen, Eugénie S; Goodstein, Eban S; Huntington, Henry P
2013-12-01
Recent and expected changes in Arctic sea ice cover, snow cover, and methane emissions from permafrost thaw are likely to result in large positive feedbacks to climate warming. There is little recognition of the significant loss in economic value that the disappearance of Arctic sea ice, snow, and permafrost will impose on humans. Here, we examine how sea ice and snow cover, as well as methane emissions due to changes in permafrost, may potentially change in the future, to year 2100, and how these changes may feed back to influence the climate. Between 2010 and 2100, the annual costs from the extra warming due to a decline in albedo related to losses of sea ice and snow, plus each year's methane emissions, cumulate to a present value cost to society ranging from US$7.5 trillion to US$91.3 trillion. The estimated range reflects uncertainty associated with (1) the extent of warming-driven positive climate feedbacks from the thawing cryosphere and (2) the expected economic damages per metric ton of CO2 equivalents that will be imposed by added warming, which depend, especially, on the choice of discount rate. The economic uncertainty is much larger than the uncertainty in possible future feedback effects. Nonetheless, the frozen Arctic provides immense services to all nations by cooling the earth's temperature: the cryosphere is an air conditioner for the planet. As the Arctic thaws, this critical, climate-stabilizing ecosystem service is being lost. This paper provides a first attempt to monetize the cost of some of those lost services.
Long-term population patterns of rodents and associated damage in German forestry.
Imholt, Christian; Reil, Daniela; Plašil, Pavel; Rödiger, Kerstin; Jacob, Jens
2017-02-01
Several rodent species can damage forest trees, especially at young tree age in afforestation. Population outbreaks of field voles (Microtus agrestis L.) and bank voles (Myodes glareolus Schreber) in particular can cause losses. Analyses of long-term time series indicate good synchrony of population abundance in rodent species associated with damage in forestry. This synchrony could be related to the effect of beech (Fagus spec.) mast in the previous year on population growth rates of both species. In shorter time series from Eastern Germany, damage in forestry was mostly associated with autumn abundances of rodents. Environmental factors such as beech mast and snow cover did not explain additional variation in rodent damage to trees. Beech mast is a good indicator of long-term rodent abundance in Northern German afforestation areas. However, rodent damage to forestry in Central Germany did not seem to depend on environmental parameters other than rodent abundance at large scale. As a result, there is still uncertainty about the link between environmental predictors and rodent damage to forestry, and further experimental work is required to identify suitable environmental drivers and their interplay with other potential factors such as the local predator community. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Dense Granular Avalanches: Mathematical Description and Experimental Validation
NASA Astrophysics Data System (ADS)
Tai, Y.-C.; Hutter, K.; Gray, J. M. N. T.
Snow avalanches, landslides, rock falls and debris flows are extremely dangerous and destructive natural phenomena. The frequency of occurrence and amplitudes of these disastrous events appear to have increased in recent years perhaps due to recent climate warming. The events endanger the personal property and infra-structure in mountainous regions. For example, from the winters 1940/41 to 1987/88 more than 7000 snow avalanches occurred in Switzerland with damaged property leading to a total of 1269 deaths. In February 1999, 36 people were buried by a single avalanche in Galtür, Austria. In August 1996, a very large debris flow in middle Taiwan resulted in 51 deaths, 22 lost and an approximate property damage of more than 19 billion NT dollars (ca. 600 million US dollars) [18]. In Europe, a suddenly released debris flow in North Italy in August 1998 buried 5 German tourists on the Superhighway "Brenner-Autobahn". The topic has gained so much significance that in 1990 the United Nations declared the International Decade for Natural Disasters Reduction (IDNDR); Germany has its own Deutsches IDNDR-Komitee für Katastrophenvorbeugung e.V. Special conferences are devoted to the theme, e.g., the CALAR conference on Avalanches, Landslides, Rock Falls and Debris Flows (Vienna, January 2000), INTERPRAEVENT, annual conferences on the protection of habitants from floods, debris flows and avalanches, special conferences on debris flow hazard mi tigation and those exclusively on Avalanches.
NASA Astrophysics Data System (ADS)
Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.
2017-12-01
To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters through mixing. Finally, the combination of a higher lead fraction and thinner ice cover, driven in part by storms, helped facilitate an early under-ice phytoplankton bloom in May, far inside the ice pack. In summary the storms entail significant effects on the ice pack that may last much longer than the short-lived storm events.
Floods of 1950 in the upper Mississippi River and Lake Superior basins in Minnesota
Paulsen, C.G.
1953-01-01
In areal coverage and magnitude of peak discharge the floods of April-May 1950 in the Missouri River Basin in North and South Dakota were unprecedented in the area. These floods were characterized by an extremely late spring breakup of ice, by great flood peaks resulting from snow melt, and by two separate floods in the James River Valley in less than a month. The primary cause of the floods was the rapid melting of the season's great accumulation of snow, one of the deepest on record. In the period between the normal spring breakup time and the actual breakup of river ice, considerably more snow accumulated. Some of this was melted by a few .warm days and the melt was stored as water behind snow barriers in upland watercourses. A sudden increase in temperature beginning April 13 and lasting until most of the snow had been converted into runoff resulted in rapid rise of flood waters. Tributary flood waters made the Missouri River from Mobridge to Yankton, S. Oak., rise to near the maximum recorded discharge. At Sioux City, Iowa, the 1950 flood peak-discharge exceeded any previously recorded by the Geological Survey. The center of the flooded area west of the Missouri River lay m the Cannonball River Basin which had the greatest water content of snow on the ground just before the ice broke up Floods north and south of this area were relatively less intense. Scattered records of the Cannonball River and a study of newspaper accounts and other information show that the flood of 1950 was greatest since the area was settled. Flooding of the James River at Jamestown was the greatest since 1897, and the floods of April and May 1950 were of nearly the same stage. Itemized flood damages were made by Federal and State agencies, and relief was sent to the area by the Department of the Army and the American National Red Cross. Data include records of stage and discharge at 54 gaging stations for the period of flood, a summary of peak discharges and comparative data for past and present maxima, a table of crest stages, and weather associated with the 1950 flood.
Kachadoorian, Reuben
1968-01-01
The great earthquake that struck Alaska about 5:36 p.m., Alaska standard time, Friday, March 27, 1964 (03:36:1.3.0, Greenwich mean time, March 28, 1964), severely crippled the highway system in the south-central part of the State. All the major highways and most secondary roads were impaired. Damage totaled more than $46 million, well over $25 million to bridges and nearly $21 million to roadways. Of the 204 bridges in south-central Alaska, 141 were damaged; 92 were severely damaged or destroyed. The earthquake damaged 186 of the 830 miles of roadway in south-central Alaska, 83 miles so severely that replacement or relocation was required. Earthquake damage to the roadways and bridges was chiefly by (1) seismic shaking, (2) compaction of fills as well as the underlying sediments, (3) lateral displacement of the roadway and bridges, (4) fractures, (5) landslides, (6) avalanches, (7) inundation by seismic sea waves, (8) scouring by seismic sea waves, (9) regional tectonic subsidence, causing inundation and erosion by high tides in subsided areas. The intensity of damage was controlled primarily by the geologic environment (including the depth of the water table) upon which the highway structures rested, and secondarily by the engineering characteristics of the structures. Structures on bedrock were only slightly damaged if at all, whereas those on unconsolidated sediments were slightly to severely damaged, or were completely destroyed by seismic shaking. The low-lying areas underlain by saturated sediments, such as the Snow River Crossing and Turnagain Arm sections of the Seward-Anchorage Highway, were the most severely damaged stretches of the highway system in south-central Alaska. At Snow River and Turnagain Arm, the sediments underlying the roadway are fine grained and the water table is shallow. These factors were responsible for the intense damage along this stretch of the highway. All the bridges on the Copper River Highway except for one on bedrock were damaged by seismic shaking. Lateral displacement of sediments toward a free face, which placed the bridges in compression, was the chief cause for the damage. This type of failure was extensive and widespread throughout the highway system. The chief engineering characteristics responsible for the type and intensity of damage include (1) thickness of roadway fills, (2) type of pile bents and masonry piers, (3) the weight ratio between the substructure and superstructure, and (4) the tie between the substructure and superstructure. The thicker the roadway fills, the more severe the damage. Wood piles did not break as extensively as piles constructed of three railroad rails welded together. Bridges that had relatively heavy superstructures, for example those with concrete decks on wood piles, were more severely damaged than those with all-wood or concrete decks or concrete piers. Failure first occurred at the tie between the superstructure and the substructure; the poorer this tie, the sooner the failure. Seismic sea waves destroyed 12 bridges on the Chiniak Highway on Kodiak Island, one bridge on Point Whitshed road near Cordova, and about 14 miles of roadway. The combination of regional tectonic subsidence and local subsidence and compaction of sediments caused inundation of many miles of highway by high tides, especially around Turnagain Arm. Total subsidence in some places amounted to more than 13 feet.
Small-area snow surveys on the northern plains of North Dakota
Emerson, Douglas G.; Carroll, T.R.; Steppuhn, Harold
1985-01-01
Snow-cover data are needed for many facets of hydrology. The variation in snow cover over small areas is the focus of this study. The feasibility of using aerial surveys to obtain information on the snow water equivalent of the snow cover in order to minimize the necessity of labor intensive ground snow surveys was- evaluated. A low-flying aircraft was used to measure attenuations of natural terrestrial gamma radiation by snow cover. Aerial and ground snow surveys of eight 1-mile snow courses and one 4-mile snow course were used in the evaluation, with ground snow surveys used as the base to evaluate aerial data. Each of the 1-mile snow courses consisted of a single land use and all had the same terrain type (plane). The 4-mile snow course consists of a variety of land uses and the same terrain type (plane). Using the aerial snow-survey technique, the snow water equivalent of the 1-mile snow courses was. measured with three passes of the aircraft. Use of more than one pass did not improve the results. The mean absolute difference between the aerial- and ground-measured snow water equivalents for the 1-mile snow courses was 26 percent (0.77 inches). The aerial snow water equivalents determined for the 1-mile snow courses were used to estimate the variations in the snow water equivalents over the 4-mile snow course. The weighted mean absolute difference for the 4-mile snow course was 27 percent (0.8 inches). Variations in snow water equivalents could not be verified adequately by segmenting the aerial snow-survey data because of the uniformity found in the snow cover. On the 4-mile snow coirse, about two-thirds of the aerial snow-survey data agreed with the ground snow-survey data within the accuracy of the aerial technique ( + 0.5 inch of the mean snow water equivalent).
NASA Astrophysics Data System (ADS)
Tiranti, Davide; Boje, Søren; Cremonini, Roberto; Devoli, Graziella; Sund, Monica
2017-04-01
Although Italy and Norway belongs to different climates, they can be influenced by the same large low pressure systems. On May 2013, ARPA in Piemonte region and NVE in Norway issued warning for flood and landslides due to the arriving of a deep and large low pressure (known as Vb-tief). This type of weather is well known to produce the largest floods in Europe. Recent studies in Norway confirm that similar systems are also responsible of triggering landslide events. In this contribution we present how the existing forecasting systems in Piemonte region and in Norway react and we summarize our experiences. Regional early warning systems (EWS) are operational both in Piemonte region (Italy) and nationally in Norway to forecast shallow landslides, debris flows and debris avalanches. Both EWSs provides daily landslide hazard assessments based on quantitative thresholds and daily rainfall forecasts coupled with qualitative expert analysis. The ARPA Piemonte warning system has been operational since 1994 while the NVE one since 2013: daily bulletins are published respectively by http://www.arpa.piemonte.gov.it/rischinaturali and www.varsom.no. From 15th May to 19nd June 2013, ARPA Piemonte rain gauges recorded more that 200mm in Piemonte and 60-90cm fresh snow over the Alps above 2000m asl. Several rivers were flooded and diffuse landslides were occurred over all the region. In Norway the same weather type lasts a bit longer from 15th May to 2nd June 2013. South-Eastern Norway received a lot of rain distributed in 2 major events, the 15th - 16th of May and between the 22nd and 23rd of May. In addition, high temperatures produced intense snow melting over a large area. Snow depth was less than normal but the snow melted within two weeks while the frost in the area was deeper than normal. From 21st to 23rd May heavy rainfall, over 70 mm in a few hours, fell over the Glomma river basin, especially over Gudbrandsdalen, causing extensive flood along Glomma river and hundreds of landslides. The large floods and landslides caused extensive damages to roads and railways as well as buildings and other infrastructure in both countries. In Norway, the Oppland and Hedmark counties suffered most of the damages, as well as railway lines and road line estimated at over 175000 Euro.
Snow, Neil; Callmander, Martin; Phillipson, Peter B
2015-01-01
Seventeen new endemic species of the genus Eugenia L. (Myrtaceae) are proposed from Madagascar, including: Eugeniaandapae N. Snow, Eugeniabarriei N. Snow, Eugeniabemangidiensis N. Snow, Eugeniacalciscopulorum N. Snow, Eugeniadelicatissima N. Snow, Callm. & Phillipson, Eugeniaechinulata N. Snow, Eugeniagandhii N. Snow, Eugeniahazonjia N. Snow, Eugeniaiantarensis N. Snow, Eugeniamalcomberi N. Snow, Eugeniamanomboensis N. Snow, Eugeniaobovatifolia N. Snow, Eugeniaranomafana N. Snow & D. Turk, Eugeniaravelonarivoi N. Snow & Callm., Eugeniarazakamalalae N. Snow & Callm., Eugeniatiampoka N. Snow & Callm., and Eugeniawilsoniana N. Snow, and one new combination, Eugeniarichardii (Blume) N. Snow, Callm. & Phillipson is provided. Detailed descriptions, information on distribution and ecology, distribution maps, vernacular names (where known), digital images of types, comparisons to morphologically similar species. Preliminary assessment of IUCN risk of extinction and conservation recommendations are provided, including Vulnerable (4 species), Endangered (2 species), and Critically Endangered (4 species). Lectotpyes are designated for Eugeniahovarum H. Perrier, Eugenianompa H. Perrier, and Eugeniascottii H. Perrier respectively.
Ethical questions in landslide management and risk reduction in Norway
NASA Astrophysics Data System (ADS)
Taurisano, A.; Lyche, E.; Thakur, V.; Wiig, T.; Øvrelid, K.; Devoli, G.
2012-04-01
The loss of lives caused by landslides in Norway is smaller than in other countries due to the low population density in exposed areas. However, annual economic losses from damage to properties and infrastructures are vast. Yet nationally coordinated efforts to manage and reduce landslide and snow avalanche risk are a recent challenge, having started only in the last decade. Since 2009, this has been a task of the Norwegian Water Resources and Energy Directorate (NVE) under the Ministry of Petroleum and Energy. Ongoing work includes collection of landslide data, production of susceptibility and hazard maps, planning of mitigation measures along with monitoring and early warning systems, assistance to areal planning, providing expertise in emergencies and disseminating information to the public. These activities are realized in collaboration with the Norwegian Geological Survey (NGU), the Meteorological Institute, the Road and Railway authorities, universities and private consultant companies. As the total need for risk mitigating initiatives is by far larger than the annual budget, priority assessment is crucial. This brings about a number of ethical questions. 1. Susceptibility maps have been produced for the whole country and provide a first indication of areas with potential landslide or snow avalanche hazard, i.e. areas where special attention and expert assessments are needed before development. Areas where no potential hazard is shown can in practice be developed without further studies, which call for relatively conservative susceptibility maps. However, conservative maps are problematic as they too often increase both cost and duration of building projects beyond the reasonable. 2. Areas where hazard maps or risk mitigation initiatives will be funded are chosen by means of cost-benefits analyses which are often uncertain. How to estimate the benefits if the real probability for damage can only be judged on a very subjective level but not really calculated? As a result, we may use large amounts of money to mitigate the risk for a few houses with a yearly probability of damage of 1/300 and not do anything for an isolated farm with a yearly probability of damage larger than 1/50. 3. Is it ethical to stop the plan to construct a pedestrian and a cycling way or a new road crossing exposed to potential landslide hazard, when the delay or disapproval of the implementation of the plan itself involves a severe consequence than the actual landslide hazard? 4. Most fatalities from natural hazards in Norway happen because of snow avalanches in recreational activities. On the one hand, this suggests that one should use a large share of the annual budget to prevent this type of accident, where there are most lives to spare. On the other hand, one could argue that the voluntary exposure to hazard shouldn't be given too much priority at the expense of buildings and public infrastructures. 5. More generally, how ethical is it to use large amounts of money to manage hazards that has a remote probability to occur or that will not cause human losses or property damage, instead of for example strengthening other social demands?
NOHRSC Interactive Snow Information
-present) RFC Basin Other (non-RFC) Basin State NSA region (Discussion) NSA subregion (Disc.) Basins by None Snow Water Equivalent Snow Depth Shallow SWE Shallow Snow Depth Snow Temperature Snow Density Snow Melt Snow Precipitation Non-Snow Precipitation Air Temperature Solar Radiation Relative Humidity
MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination
NASA Technical Reports Server (NTRS)
Riggs, George A.; Hall, Dorothy K.
2010-01-01
Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.
Climate Variations and Alaska Tundra Vegetation Productivity Declines in Spring
NASA Astrophysics Data System (ADS)
Bhatt, U. S.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.
2015-12-01
While sea ice has continued to decline, vegetation productivity increases have declined particularly during spring in Alaska as well as many parts of the Arctic tundra. To understand the processes behind these features we investigate spring climate variations that includes temperature, circulation patterns, and snow cover to determine how these may be contributing to spring browning. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2014. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), atmospheric reanalysis data, dynamically downscaled climate data, meteorological station data, and snow water equivalent (GlobSnow, assimilated snow data set). We analyzed the data for the full period (1982-2014) and for two sub-periods (1982-1998 and 1999-2014), which were chosen based on the declining Alaska SWI since 1998. MaxNDVI has increased from 1982-2014 over most of the Arctic but has declined from 1999 to 2014 southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but display widespread declines over the 1999-2014 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999 and these declines are particularly noteworthy during spring in Alaska. Spring declines in Alaska have been linked to increased spring snow cover that can delay greenup (Bieniek et al. 2015) but recent ground observations suggest that after an initial warming and greening, late season freezing temperature are damaging the plants. The late season freezing temperature hypothesis will be explored with meteorological climate/weather data sets for Alaska tundra regions. References P.A. Bieniek, US Bhatt, DA Walker, MK Raynolds, JC Comiso, HE Epstein, JE Pinzon, CJ Tucker, RL Thoman, H Tran, N Mölders, M Steele, J Zhang, and W Ermold, 2015: Climate drivers of changing seasonality of Alaska coastal tundra vegetation productivity, (conditionally accepted) Earth Interactions.
Effects of Winter Climate Change on Plant and Soil Ecology of Cryoturbated Non-Sorted Circles Tundra
NASA Astrophysics Data System (ADS)
Monteux, S.; Krab, E. J.; Rönnefarth, J.; Becher, M.; Blume-Werry, G.; Kreyling, J.; Keuper, F.; Klaminder, J.; Kobayashi, M.; Lundin, E. J.; Milbau, A.; Teuber, L. M.; Weedon, J.; Dorrepaal, E.
2014-12-01
Cryoturbation is the movement of soil particles through repeated freeze-thaw events, resulting in the burial of large amounts of soil organic carbon (SOC). Non-sorted circles are a common type of cryoturbated ground in arctic and alpine areas underlain by permafrost. They appear as sparsely vegetated areas surrounded by denser tundra vegetation. Climate change in arctic environments will likely increase winter precipitation in large parts of the Arctic in Europe, Asia and America, resulting in deeper snow cover. Snow is a good thermal insulator and modifications in freezing intensity and freeze-thaw cycles are therefore likely, which could affect the burial of organic matter. Moreover, vegetation, soil fauna and soil microbial communities, which are important drivers of SOC dynamics, may be impacted directly by the altered winter conditions and indirectly by reduced cryoturbation. We aimed to investigate this, and therefore subjected non-sorted circles in North-Swedish subarctic alpine tundra to two years of increased thermal insulation in winter and spring, using snow fences or fibre cloth (Figure 1). Both snow fences and fibre cloth manipulations increased surface soil temperatures, especially daily minimum temperatures, and strongly reduced freeze-thaw frequency. We compared the impacts of these manipulations on plant performance, soil chemistry, soil fauna and soil microbial communities between the centre of the circles and the dense tundra heath just outside. Directly after snowmelt, the extra winter insulation decreased plant leaf damage, both in the centre and in adjacent tundra, but responses differed between species. We will further present the responses of plant phenology and growth, soil pH and dissolved organic carbon content, soil fauna activity, Collembola community composition and body size distribution, as well as fungal and bacterial diversity profiles and functional groups abundance. We expect that winter warming due to increased snow cover and its effects on cryoturbation will stimulate the biotic components of non-sorted circles, but may change the interactions between organisms at different trophic levels of this ecosystem. The resulting new balance between increased productivity and decomposer activity might have large implications for this important carbon pool.
A Distributed Snow Evolution Modeling System (SnowModel)
NASA Astrophysics Data System (ADS)
Liston, G. E.; Elder, K.
2004-12-01
A spatially distributed snow-evolution modeling system (SnowModel) has been specifically designed to be applicable over a wide range of snow landscapes, climates, and conditions. To reach this goal, SnowModel is composed of four sub-models: MicroMet defines the meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowMass simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. While other distributed snow models exist, SnowModel is unique in that it includes a well-tested blowing-snow sub-model (SnowTran-3D) for application in windy arctic, alpine, and prairie environments where snowdrifts are common. These environments comprise 68% of the seasonally snow-covered Northern Hemisphere land surface. SnowModel also accounts for snow processes occurring in forested environments (e.g., canopy interception related processes). SnowModel is designed to simulate snow-related physical processes occurring at spatial scales of 5-m and greater, and temporal scales of 1-hour and greater. These include: accumulation from precipitation; wind redistribution and sublimation; loading, unloading, and sublimation within forest canopies; snow-density evolution; and snowpack ripening and melt. To enhance its wide applicability, SnowModel includes the physical calculations required to simulate snow evolution within each of the global snow classes defined by Sturm et al. (1995), e.g., tundra, taiga, alpine, prairie, maritime, and ephemeral snow covers. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) are used as SnowModel simulation examples to highlight model strengths, weaknesses, and features in forested, semi-forested, alpine, and shrubland environments.
Snow, Neil; Callmander, Martin; Phillipson, Peter B.
2015-01-01
Abstract Seventeen new endemic species of the genus Eugenia L. (Myrtaceae) are proposed from Madagascar, including: Eugenia andapae N. Snow, Eugenia barriei N. Snow, Eugenia bemangidiensis N. Snow, Eugenia calciscopulorum N. Snow, Eugenia delicatissima N. Snow, Callm. & Phillipson, Eugenia echinulata N. Snow, Eugenia gandhii N. Snow, Eugenia hazonjia N. Snow, Eugenia iantarensis N. Snow, Eugenia malcomberi N. Snow, Eugenia manomboensis N. Snow, Eugenia obovatifolia N. Snow, Eugenia ranomafana N. Snow & D. Turk, Eugenia ravelonarivoi N. Snow & Callm., Eugenia razakamalalae N. Snow & Callm., Eugenia tiampoka N. Snow & Callm., and Eugenia wilsoniana N. Snow, and one new combination, Eugenia richardii (Blume) N. Snow, Callm. & Phillipson is provided. Detailed descriptions, information on distribution and ecology, distribution maps, vernacular names (where known), digital images of types, comparisons to morphologically similar species. Preliminary assessment of IUCN risk of extinction and conservation recommendations are provided, including Vulnerable (4 species), Endangered (2 species), and Critically Endangered (4 species). Lectotpyes are designated for Eugenia hovarum H. Perrier, Eugenia nompa H. Perrier, and Eugenia scottii H. Perrier respectively. PMID:25987885
Takahashi, Koichi; Hirosawa, Tatsuru; Morishima, Ryohei
2012-05-01
Altitudinal timberlines are thought to move upward by global warming, a crucial topic in ecology. Tall tree species (the conifer Abies mariesii and the deciduous broad-leaved Betula ermanii) dominate the sub-alpine zone between 1600 and 2500 m a.s.l., the timberline, on Mount Norikura in central Japan. Dwarf pine Pinus pumila dominates above the timberline to near the summit (3026 m a.s.l.). This study evaluated how the timberline formed on Mount Norikura by examining altitudinal changes in stand structure and dynamics around the timberline. One hundred and twenty-five plots of 10 m × 10 m were established around the timberline (2350-2600 m a.s.l.). Trunk diameter growth rate during 6 years was examined for A. mariesii, B. ermanii and P. pumila. Mortality during this period and mechanical damage scars on the trunks and branches due to strong wind and snow were examined for A. mariesii only. The density, maximum trunk height and diameter of A. mariesii in plots decreased with altitude. The maximum trunk height of B. ermanii decreased with altitude, but density and maximum trunk diameter did not decrease. In contrast, the density of P. pumila abruptly increased from around the timberline. A strong negative correlation was found between the densities of P. pumila and tall tree species, indicating their interspecific competition. Trunk diameter growth rates of A. mariesii and B. ermanii did not decrease with altitude, suggesting that these two tall tree species can grow at the timberline. The ratio of trees with mechanical damage scars increased with altitude for A. mariesii, a tendency more conspicuous for larger trees. The mortality of larger A. mariesii was also greater at higher altitude. Tall tree species may not increase their trunk height and survive around the timberline because of mechanical damage. This study suggests that the altitudinal location of the timberline is mainly affected by mechanical damage due to strong wind and snow rather than by growth limitation due to low temperature. Therefore, the timberline would not move upward even under global warming if these growth and mortality characteristics do not change for a long time.
NASA Technical Reports Server (NTRS)
Riggs, George A.; Hall, Dorothy K.; Foster, James L.
2009-01-01
Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed through the seasons. A blended snow product, the Air Force Weather Agency and NASA (ANSA) snow algorithm and product has recently been developed. The ANSA algorithm blends the MODIS snow cover and AMSR-E SWE products into a single snow product that has been shown to improve the performance of snow cover mapping. In this study components of the ANSA snow algorithm are used along with additional MODIS data to monitor daily changes in snow cover over the period of 1 February to 30 June 2008.
Floods of April 1952 in the Missouri River basin
Wells, J.V.B.
1955-01-01
The floods of April 1952 in the Milk River basin, along the Missouri River from the mouth of the Little Missouri River to the mouth of the Kansas River, and for scattered tributaries of the Missouri River in North and South Dakota were the greatest ever observed. The damage amounted to an estimated $179 million. The outstanding featur6 of the floods was the extraordinary peak discharge generated in the Missouri River at and downstream from Bismarck, N. Dak., on April 6 when a large ice jam upstream from the city was suddenly released. Inflow from flooding tributaries maintained the peak discharge at approximately the same magnitude in the transit of the flood across South Dakota; downstream from Yankton, S. Dak., attenuation of the peak discharge was continuous because of natural storage in the wide flood plains. The outstanding characteristic of floods in the Milk River basin was their duration--the flood crested at Havre, Mont., on April 3 and at Nashua, Mont.. on April 18. The floods were caused by an abnormally heavy accumulation of snow that was converted into runoff in a few days of very warm weather at the end of March. The heaviest water content of the snow pack at breakup was in a narrow arc extending through Aberdeen, S. Dak., Pierre, S. Dak.. and northwestward toward the southwest corner of North Dakota. The water content in part of this concentrated cover exceeded 6 inches. The winter of 1951-52, which followed a wet cold fall that made the ground impervious, was one of the most severe ever experienced in South Dakota and northern Montana. Depths of snow and low temperatures combined to produce, at the end of March, one of the heaviest snow covers in the history of the Great Plains. The Missouri River ice was intact upstream from Chamberlain, S. Dak., at the end of March, and the breakup of the ice with inflow of local runoff was one of the spectacular features of the flood. Runoff from the Yellowstone River combining with the flood pouring from the Little Missouri River caused the Missouri River to crest at an all-time high at Elbowoods, N. Dak., on April 4. As this crest moved downstream to Bismarck, its intensity was increased by the alternate storing and release of ice jams plus the inflow from the Knife River. The crest discharge of 500,000 cfs came at Bismarck at 6 p. m. on April 6. following a very sharp rise from 80,000 cfs at 11 a.m. Overflow occurred along the Missouri River from Elbowoods to the mouth with high damage to cities. farmland, and installations located in the flood plain. Cleanup and repair operations following the flood continued for many weeks. Few of the flooded farms produced a crop during 1952. This report presents detailed records of stage and discharge for the flood period on the Missouri River and tributaries from Fort Peck. Mont., to the mouth. Information on damages and river stages collected by other agencies is also presented.
Sherwood, J.A.; Debinski, D.M.; Caragea, P.C.; Germino, Matthew
2017-01-01
Climate change can have a broad range of effects on ecosystems and organisms, and early responses may include shifts in vegetation phenology and productivity that may not coincide with the energetics and forage timing of higher trophic levels. We evaluated phenology, annual height growth, and foliar frost responses of forbs to a factorial experiment of snow removal (SR) and warming in a high-elevation meadow over two years in the Rocky Mountains, United States. Species included arrowleaf balsamroot (Balsamorhiza sagittata, early-season emergence and flowering) and buckwheat (Eriogonum umbellatum, semi-woody and late-season flowering), key forbs for pollinator and nectar-using animal communities that are widely distributed and locally abundant in western North America. Snow removal exerted stronger effects than did warming, and advanced phenology differently for each species. Specifically, SR advanced green-up by a few days for B. sagittata to >2 wk in E. umbellatum, and led to 5- to 11-d advances in flowering of B. sagittata in one year and advances in bud break in 3 of 4 species/yr combinations. Snow removal increased height of E. umbellatum appreciably (~5 cm added to ~22.8 cm in control), but led to substantial increases in frost damage to flowers of B. sagittata. Whereas warming had no effects on E. umbellatum, it increased heights of B. sagittata by >6 cm (compared to 30.7 cm in control plots) and moreover led to appreciable reductions in frost damage to flowers. These data suggest that timing of snowmelt, which is highly variable from year to year but is advancing in recent decades, has a greater impact on these critical phenological, growth, and floral survival traits and floral/nectar resources than warming per se, although warming mitigated early effects of SR on frost kill of flowers. Given the short growing season of these species, the shifts could cause uncoupling in nectar availability and timing of foraging.
A distributed snow-evolution modeling system (SnowModel)
Glen E. Liston; Kelly Elder
2006-01-01
SnowModel is a spatially distributed snow-evolution modeling system designed for application in landscapes, climates, and conditions where snow occurs. It is an aggregation of four submodels: MicroMet defines meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowPack simulates snow depth and water-equivalent evolution, and SnowTran-3D...
Zhang, J.-H.; Zhou, Z.-M.; Wang, P.-J.; Yao, F.-M.; Yang, L.
2011-01-01
The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area. The result showed that for a pure snow spectrum, the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1030 nm wavelength. Compared with fresh snow, the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300~1300, 1700~1800 and 2200~2300 nm, the lowest was from the compacted snow and frozen ice. For the vegetation and snow mixed spectral characteristics, it was indicated that the spectral reflectance increased for the snow-covered land types(including pine leaf with snow and pine leaf on snow background), due to the influence of snow background in the range of 350~1300 nm. However, the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic. In the end, based on the spectrum analysis of snow, vegetation, and mixed snow/vegetation pixels, the mixed spectral fitting equations were established, and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones(correlation coefficient R2=0.9509).
Snow cover and snow goose Anser caerulescens caerulescens distribution during spring migration
Hupp, Jerry W.; Zacheis, Amy B.; Anthony, R. Michael; Robertson, Donna G.; Erickson, Wallace P.; Palacios, Kelly C.
2001-01-01
Arctic geese often use spring migration stopover areas when feeding habitats are partially snow covered. Melting of snow during the stopover period causes spatial and temporal variability in distribution and abundance of feeding habitat. We recorded changes in snow cover and lesser snow goose Anser caerulescens caerulescens distribution on a spring migration stopover area in south-central Alaska during aerial surveys in 1993-1994. Our objectives were to determine whether geese selected among areas with different amounts of snow cover and to assess how temporal changes in snow cover affected goose distribution. We also measured temporal changes in chemical composition of forage species after snow melt. We divided an Arc/Info coverage of the approximately 210 km2 coastal stopover area into 2-km2 cells, and measured snow cover and snow goose use of cells. Cells that had 10-49.9% snow cover were selected by snow geese, whereas cells that lacked snow cover were avoided. In both years, snow cover diminished along the coast between mid-April and early May. Flock distribution changed as snow geese abandoned snow-free areas in favour of cells where snow patches were interspersed with bare ground. Snow-free areas may have been less attractive to geese because available forage had been quickly exploited as bare ground was exposed, and because soils became drier making extraction of underground forage more difficult. Fiber content of two forage species increased whereas non-structural carbohydrate concentrations of forage plants appeared to diminish after snow melt, but changes in nutrient concentrations likely occurred too slowly to account for abandonment of snow-free areas by snow geese.
NASA Technical Reports Server (NTRS)
Foster, James
2009-01-01
Seasonal snow cover in extra-tropical areas of South America was examined in this study using passive microwave satellite data from the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7 satellite and from the Special Sensor Microwave Imagers (SSM/I) on board the Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1979-2006, both snow cover extent and snow mass were estimated for the months of May-September. Most of the seasonal snow in South America occurs in the Patagonia region of Argentina. The average snow cover extent for July, the month with the greatest average extent during the 28-year period of record, is 321,674 sq km. The seasonal (May-September) 2 average snow cover extent was greatest in 1984 (464,250 sq km) and least in 1990 (69,875 sq km). In terms of snow mass, 1984 was also the biggest year (1.19 x 10(exp 13) kg) and 1990 was the smallest year (0.12 X 10(exp 13) kg). A strong relationship exists between the snow cover area and snow mass, correlated at 0.95, though no significant trend was found over the 28 year record for either snow cover extent or snow mass. For this long term climatology, snow mass and snow cover extent are shown to vary considerably from month to month and season to season. This analysis presents a consistent approach to mapping and measuring snow in South America utilizing an appropriate and readily available long term snow satellite dataset. This is the optimal dataset available, thus far, for deriving seasonal snow cover and snow mass in this region. Nonetheless, shallow snow, wet snow, snow beneath forests, as well as snow along coastal areas all may confound interpretation using passive microwave approaches. More work needs to be done to reduce the uncertainties in the data and hence, increase the confidence of the interpretation
Analysis of Extreme Snow Water Equivalent Data in Central New Hampshire
NASA Astrophysics Data System (ADS)
Vuyovich, C.; Skahill, B. E.; Kanney, J. F.; Carr, M.
2017-12-01
Heavy snowfall and snowmelt-related events have been linked to widespread flooding and damages in many regions of the U.S. Design of critical infrastructure in these regions requires spatial estimates of extreme snow water equivalent (SWE). In this study, we develop station specific and spatially explicit estimates of extreme SWE using data from fifteen snow sampling stations maintained by the New Hampshire Department of Environmental Services. The stations are located in the Mascoma, Pemigewasset, Winnipesaukee, Ossipee, Salmon Falls, Lamprey, Sugar, and Isinglass basins in New Hampshire. The average record length for the fifteen stations is approximately fifty-nine years. The spatial analysis of extreme SWE involves application of two Bayesian Hierarchical Modeling methods, one that assumes conditional independence, and another which uses the Smith max-stable process model to account for spatial dependence. We also apply additional max-stable process models, albeit not in a Bayesian framework, that better model the observed dependence among the extreme SWE data. The spatial process modeling leverages readily available and relevant spatially explicit covariate data. The noted additional max-stable process models also used the nonstationary winter North Atlantic Oscillation index, which has been observed to influence snowy weather along the east coast of the United States. We find that, for this data set, SWE return level estimates are consistently higher when derived using methods which account for the observed spatial dependence among the extreme data. This is particularly significant for design scenarios of relevance for critical infrastructure evaluation.
A Comparison of Satellite-Derived Snow Maps with a Focus on Ephemeral Snow in North Carolina
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Fuhrmann, Christopher M.; Perry, L. Baker; Riggs, George A.; Robinson, David A.; Foster, James L.
2010-01-01
In this paper, we focus on the attributes and limitations of four commonly-used daily snowcover products with respect to their ability to map ephemeral snow in central and eastern North Carolina. We show that the Moderate-Resolution Imaging Spectroradiometer (MODIS) fractional snow-cover maps can delineate the snow-covered area very well through the use of a fully-automated algorithm, but suffer from the limitation that cloud cover precludes mapping some ephemeral snow. The semi-automated Interactive Multi-sensor Snow and ice mapping system (IMS) and Rutgers Global Snow Lab (GSL) snow maps are often able to capture ephemeral snow cover because ground-station data are employed to develop the snow maps, The Rutgers GSL maps are based on the IMS maps. Finally, the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) provides some good detail of snow-water equivalent especially in deeper snow, but may miss ephemeral snow cover because it is often very thin or wet; the AMSR-E maps also suffer from coarse spatial resolution. We conclude that the southeastern United States represents a good test region for validating the ability of satellite snow-cover maps to capture ephemeral snow cover,
[Effect of different snow depth and area on the snow cover retrieval using remote sensing data].
Jiang, Hong-bo; Qin, Qi-ming; Zhang, Ning; Dong, Heng; Chen, Chao
2011-12-01
For the needs of snow cover monitoring using multi-source remote sensing data, in the present article, based on the spectrum analysis of different depth and area of snow, the effect of snow depth on the results of snow cover retrieval using normalized difference snow index (NDSI) is discussed. Meanwhile, taking the HJ-1B and MODIS remote sensing data as an example, the snow area effect on the snow cover monitoring is also studied. The results show that: the difference of snow depth does not contribute to the retrieval results, while the snow area affects the results of retrieval to some extents because of the constraints of spatial resolution.
NASA Astrophysics Data System (ADS)
Xie, Zhipeng; Hu, Zeyong
2016-04-01
Snow cover is an important component of local- and regional-scale energy and water budgets, especially in mountainous areas. This paper evaluates the snow simulations by using two snow cover fraction schemes in CLM4.5 (NY07 is the original snow-covered area parameterization used in CLM4, and SL12 is the default scheme in CLM4.5). Off-line simulations are carried out forced by the China Meteorological forcing dataset from January 1, 2001 to December 31, 2010 over the Tibetan Plateau. Simulated snow cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover product, the daily snow depth dataset of China, and China Meteorological Administration (CMA) in-situ snow depth and SWE observations. The comparison results indicate significant differences existing between those two SCF parameterizations simulations. Overall, the SL12 formulation shows a certain improvement compared to the NY07 scheme used in CLM4, with the percentage of correctly modeled snow/no snow being 75.8% and 81.8% when compared with the IMS snow product, respectively. Yet, this improvement varies both temporally and spatially. Both these two snow cover schemes overestimated the snow depth, in comparison with the daily snow depth dataset of China, the average biases of simulated snow depth are 7.38cm (8.77cm), 6.97cm (8.2cm) and 5.49cm (5.76cm) NY07 (and SL12) in the snow accumulation period (September through next February), snowmelt period (March through May) and snow-free period (June through August), respectively. When compared with the CMA in-situ snow depth observations, averaged biases are 3.18cm (4.38cm), 2.85cm (4.34cm) and 0.34cm (0.34cm) for NY07 (SL12), respectively. Though SL12 does worse snow depth simulation than NY07, the simulated SWE by SL12 is better than that by NY07, with average biases being 2.64mm, 6.22mm, 1.33mm for NY07, and 1.47mm, 2.63mm, 0.31mm for SL12, respectively. This study demonstrates that future improvements on snow simulation over the Tibetan Plateau are in urgent need for better representing the variability of snow in CLM. Furthermore, these findings lay a foundation for follow-up studies on the modification of snow cover parameterization in the land surface model. Keywords: snow cover, CLM, Tibetan Plateau, simulation.
River Flow Advisory Commission: Snow Survey
Survey River Watch Home â Snow Survey RFAC Information About Us Reports Maine Cooperative Snow Survey About the Snow Survey Snow Survey Map Compare Snow Survey Data Snow Survey Graphs River Watch MEMA Home USGS (Maine) Home Maine Cooperative Snow Survey This information is provided by a partnership with
NASA Astrophysics Data System (ADS)
Farnam, Yaghoob
Recently, there has been a dramatic increase in premature deterioration in concrete pavements and flat works that are exposed to chloride based salts. Chloride based salts can cause damage and deterioration in concrete due to the combination of factors which include: increased saturation, ice formation, salt crystallization, osmotic pressure, corrosion in steel reinforcement, and/or deleterious chemical reactions. This thesis discusses how chloride based salts interact with cementitious materials to (1) develop damage in concrete, (2) create new chemical phases in concrete, (3) alter transport properties of concrete, and (4) change the concrete freeze-thaw performance. A longitudinal guarded comparative calorimeter (LGCC) was developed to simultaneously measure heat flow, damage development, and phase changes in mortar samples exposed to sodium chloride (NaCl), calcium chloride (CaCl 2), and magnesium chloride (MgCl2) under thermal cycling. Acoustic emission and electrical resistivity measurements were used in conjunction with the LGCC to assess damage development and electrical response of mortar samples during cooling and heating. A low-temperature differential scanning calorimetry (LT-DSC) was used to evaluate the chemical interaction that occurs between the constituents of cementitious materials (i.e., pore solution, calcium hydroxide, and hydrated cement paste) and salts. Salts were observed to alter the classical phase diagram for a salt-water system which has been conventionally used to interpret the freeze-thaw behavior in concrete. An additional chemical phase change was observed for a concrete-salt-water system resulting in severe damage in cementitious materials. In a cementitious system exposed to NaCl, the chemical phase change occurs at a temperature range between -6 °C and 8 °C due to the presence of calcium sulfoaluminate phases in concrete. As a result, concrete exposed to NaCl can experience additional freeze-thaw cycles due to the chemical phase change creating cracks and damage to concrete under freezing and thawing. In a cementitious system exposed to CaCl2, the chemical phase change is mainly due to the presence of calcium hydroxide (CH) in concrete. Calcium hydroxide can react with CaCl2 solution producing calcium oxychloride. Calcium oxychloride forms at room temperature (i.e., 23 °C) for CaCl 2 salt concentrations at or above ~ 12 % by mass in the solution creating expansion and degradation in concrete. In a cementitious system exposed to MgCl2, it was observed that MgCl2 can be entirely consumed in concrete by reacting with CH and produce CaCl2. As such, it followed a response that is more similar to the concrete-CaCl2-water system than that of the MgCl2-water phase diagram. Formation of calcium/magnesium oxychloride is most likely the main source of the chemical phase change (which can cause damage) in concrete exposed to MgCl2. During the LGCC testing for CaCl2 and MgCl2 salts, it was found that the chemical reactions occur rapidly (~ 10 min) and can cause a significant decrease in subsequent fluid ingress into exposed concrete in comparison to NaCl. Isothermal calorimetry, fluid absorption, oxygen permeability, oxygen diffusivity, and X-ray fluorescence testing showed that the formation of calcium oxychloride in concrete exposed to CaCl2 and MgCl 2 can block or fill in the concrete pores on the surface of the specimen; thereby decreasing the CaCl2 and MgCl2 fluid ingress into the concrete. To mitigate the damage and degradation due to the chemical phase transition, two approaches were evaluated: (1) use of a cementitious binder that does not react with salts, and (2) use of a new practical technology to melt ice and snow, thereby decreasing the demand for deicing salt usage. For the first approach, carbonated calcium silicate based cement (CCSC) was used and the CCSC mortar showed a promising performance and resistance to salt degradation than an ordinary portland mortar does. For the second approach, phase change materials (PCM), including paraffin oil and methyl laurate, were used to store heat in concrete elements and release the stored heat during cooling to reduce ice formation and snow accumulation on the surface of concrete. PCM approach also showed a promising performance in melting ice and snow, thereby decreasing the demand for salt usage.
NASA Astrophysics Data System (ADS)
Harpold, A. A.; Dettinger, M. D.; Rajagopal, S.
2017-12-01
Although drought is a recurring problem, recent extreme snow droughts have refocused attention on the interaction of meteorological extremes and snow accumulation in mountains. Only recently have two distinct types of snow drought been defined that help to differentiate a variety of water management implications. Dry snow drought is caused by deficits of winter precipitation and resulting low snow accumulation. Warm snow drought is characterized by temperature extremes causing faster and earlier snowmelt and/or shifts from snow to rain. Here we use 462 Snow Telemetry (SNOTEL) sites in the western U.S. to quantify snow drought as 75% of the long-term average snow water equivalent (SWE). We further subdivide dry snow droughts using SWE to winter precipitation (SWE/P) ratios that were near normal from warm snow droughts where SWE/P ratios were below normal and experienced SWE losses (warm-melt) or received unusual amounts of winter rain (warm-rain snow drought). Using this method we show clear regional patterns in the type and frequency of snow drought. Warm snow droughts on April 1st were most common in all but the highest elevations of the Rocky Mountains. The middle Rocky Mountains sites also experienced less frequent snow drought than the maritime and southern mountains. Warm-melt snow droughts were the primary cause in the Cascade Mountains and the southwestern sites, with only the Sierra Nevada and Wasatch mountains showing consistent warm-rain snow drought. These regional differences limited the predictability of snow drought with simple models of temperature and precipitation. We will discuss the effects of snow drought type and magnitude on streamflow forecasting skill using empirical relationships developed by water management agencies. We expect these types of snow drought to differentially affect streamflow regime and its predictability, as well as forest growth and mortality during and following drought.
NASA Astrophysics Data System (ADS)
He, C.; Liou, K. N.; Takano, Y.; Yang, P.; Li, Q.; Chen, F.
2017-12-01
A set of parameterizations is developed for spectral single-scattering properties of clean and black carbon (BC)-contaminated snow based on geometric-optic surface-wave (GOS) computations, which explicitly resolves BC-snow internal mixing and various snow grain shapes. GOS calculations show that, compared with nonspherical grains, volume-equivalent snow spheres show up to 20% larger asymmetry factors and hence stronger forward scattering, particularly at wavelengths <1 mm. In contrast, snow grain sizes have a rather small impact on the asymmetry factor at wavelengths <1 mm, whereas size effects are important at longer wavelengths. The snow asymmetry factor is parameterized as a function of effective size, aspect ratio, and shape factor, and shows excellent agreement with GOS calculations. According to GOS calculations, the single-scattering coalbedo of pure snow is predominantly affected by grain sizes, rather than grain shapes, with higher values for larger grains. The snow single-scattering coalbedo is parameterized in terms of the effective size that combines shape and size effects, with an accuracy of >99%. Based on GOS calculations, BC-snow internal mixing enhances the snow single-scattering coalbedo at wavelengths <1 mm, but it does not alter the snow asymmetry factor. The BC-induced enhancement ratio of snow single-scattering coalbedo, independent of snow grain size and shape, is parameterized as a function of BC concentration with an accuracy of >99%. Overall, in addition to snow grain size, both BC-snow internal mixing and snow grain shape play critical roles in quantifying BC effects on snow optical properties. The present parameterizations can be conveniently applied to snow, land surface, and climate models including snowpack radiative transfer processes.
IFKIS - a basis for managing avalanche risk in settlements and on roads in Switzerland
NASA Astrophysics Data System (ADS)
Bründl, M.; Etter, H.-J.; Steiniger, M.; Klingler, Ch.; Rhyner, J.; Ammann, W. J.
2004-04-01
After the avalanche winter of 1999 in Switzerland, which caused 17 deaths and damage of over CHF 600 mill. in buildings and on roads, the project IFKIS, aimed at improving the basics of organizational measures (closure of roads, evacuation etc.) in avalanche risk management, was initiated. The three main parts of the project were the development of a compulsory checklist for avalanche safety services, a modular education and training course program and an information system for safety services. The information system was developed in order to improve both the information flux between the national centre for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local safety services on the one hand and the communication between avalanche safety services in the communities on the other hand. The results of this project make a valuable contribution to strengthening organizational measures in avalanche risk management and to closing the gaps, which became apparent during the avalanche winter of 1999. They are not restricted to snow avalanches but can also be adapted for dealing with other natural hazard processes and catastrophes.
BOREAS HYD-3 Snow Measurements
NASA Technical Reports Server (NTRS)
Hardy, Janet P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Davis, Robert E.; Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-3 team collected several data sets related to the hydrology of forested areas. This data set contains measurements of snow depth, snow density in three cm intervals, an integrated snow pack density and snow water equivalent (SWE), and snow pack physical properties from snow pit evaluation taken in 1994 and 1996. The data were collected from several sites in both the southern study area (SSA) and the northern study area (NSA). A variety of standard tools were used to measure the snow pack properties, including a meter stick (snow depth), a 100 cc snow density cutter, a dial stem thermometer, and the Canadian snow sampler as used by HYD-4 to obtain a snow pack-integrated measure of SWE. This study was undertaken to predict spatial distributions of snow properties important to the hydrology, remote sensing signatures, and the transmissivity of gases through the snow. The data are available in tabular ASCII files. The snow measurement data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
"no snow - no skiing excursion - consequences of climatic change?"
NASA Astrophysics Data System (ADS)
Neunzig, Thilo
2014-05-01
Climatology and climate change have become central topics in Geography at our school. Because of that we set up a climatological station at our school. The data are an important basis to observe sudden changes in the weather. The present winter (2013/2014) shows the importance of climate change in Alzey / Germany. In winter many students think of the yearly skiing trip to Schwaz / Austria which is part of our school programme. Due to that the following questions arise: Will skiing still be possible if climate change accelerates? How are the skiing regions in the Alpes going to change? What will happen in about 20 years? How does artificial snow change the landscape and the skiing sport? Students have to be aware of the ecological damage of skiing trips. Each class has to come up with a concept how these trips can be as environmentally friendly as possible. - the trip is for a restricted number of students only (year 8 only) - a small skiing region is chosen which is not overcrowded - snow has to be guaranteed in the ski area to avoid the production of artificial snow (avoidance of high water consumption) - the bus arrives with a class and returns with the one that had been there before These are but a few ideas of students in order to make their trip as environmentally friendly as possible. What is missing is only what is going to happen in the future. What will be the effect of climate change for skiing regions in the secondary mountains? How is the average temperature for winter going to develop? Are there possibilities for summer tourism (e.g. hiking) instead of skiing in winter? The students are going to try to find answers to these questions which are going to be presented on a poster on the GIFT-Workshop in Vienna.
Snow depth evolution on sea ice from Snow Buoy measurement
NASA Astrophysics Data System (ADS)
Nicolaus, M.; Arndt, S.; Hendricks, S.; Hoppmann, M.; Katlein, C.; König-Langlo, G.; Nicolaus, A.; Rossmann, H. L.; Schiller, M.; Schwegmann, S.; Langevin, D.
2016-12-01
Snow cover is an Essential Climate Variable. On sea ice, snow dominates the energy and momentum exchanges across the atmosphere-ice-ocean interfaces, and actively contributes to sea ice mass balance. Yet, snow depth on sea ice is one of the least known and most difficult to observe parameters of the Arctic and Antarctic; mainly due to its exceptionally high spatial and temporal variability. In this study; we present a unique time series dataset of snow depth and air temperature evolution on Arctic and Antarctic sea ice recorded by autonomous instruments. Snow Buoys record snow depth with four independent ultrasonic sensors, increasing the reliability of the measurements and allowing for additional analyses. Auxiliary measurements include surface and air temperature, barometric pressure and GPS position. 39 deployments of such Snow Buoys were achieved over the last three years either on drifting pack ice, on landfast sea ice or on an ice shelf. Here we highlight results from two pairs of Snow Buoys installed on drifting pack ice in the Weddell Sea. The data reveals large regional differences in the annual cycle of snow depth. Almost no reduction in snow depth (snow melt) was observed in the inner and southern part of the Weddell Sea, allowing a net snow accumulation of 0.2 to 0.9 m per year. In contrast, summer snow melt close to the ice edge resulted in a decrease of about 0.5 m during the summer 2015/16. Another array of eight Snow Buoys was installed on central Arctic sea ice in September 2015. Their air temperature record revealed exceptionally high air temperatures in the subsequent winter, even exceeding the melting point but with almost no impact on snow depth at that time. Future applications of Snow Buoys on Arctic and Antarctic sea ice will allow additional inter-annual studies of snow depth and snow processes, e.g. to support the development of snow depth data products from airborne and satellite data or though assimilation in numerical models.
NASA Astrophysics Data System (ADS)
Raleigh, M. S.; Smyth, E.; Small, E. E.
2017-12-01
The spatial distribution of snow water equivalent (SWE) is not sufficiently monitored with either remotely sensed or ground-based observations for water resources management. Recent applications of airborne Lidar have yielded basin-wide mapping of SWE when combined with a snow density model. However, in the absence of snow density observations, the uncertainty in these SWE maps is dominated by uncertainty in modeled snow density rather than in Lidar measurement of snow depth. Available observations tend to have a bias in physiographic regime (e.g., flat open areas) and are often insufficient in number to support testing of models across a range of conditions. Thus, there is a need for targeted sampling strategies and controlled model experiments to understand where and why different snow density models diverge. This will enable identification of robust model structures that represent dominant processes controlling snow densification, in support of basin-scale estimation of SWE with remotely-sensed snow depth datasets. The NASA SnowEx mission is a unique opportunity to evaluate sampling strategies of snow density and to quantify and reduce uncertainty in modeled snow density. In this presentation, we present initial field data analyses and modeling results over the Colorado SnowEx domain in the 2016-2017 winter campaign. We detail a framework for spatially mapping the uncertainty in snowpack density, as represented across multiple models. Leveraging the modular SUMMA model, we construct a series of physically-based models to assess systematically the importance of specific process representations to snow density estimates. We will show how models and snow pit observations characterize snow density variations with forest cover in the SnowEx domains. Finally, we will use the spatial maps of density uncertainty to evaluate the selected locations of snow pits, thereby assessing the adequacy of the sampling strategy for targeting uncertainty in modeled snow density.
Comparison of MODIS and VIIRS Snow Cover Products for the 2016 Hydrological Year
NASA Astrophysics Data System (ADS)
Klein, A. G.; Thapa, S.
2017-12-01
The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP satellite aims to provide long-term continuity of several environmental data series including snow cover initiated with MODIS. While it is speculated that MODIS and VIIRS snow cover products may differ because of their differing spatial resolutions and spectral coverage quantitative comparisons between their snow products are currently limited. Therefore this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI Snow Cover product at a snow cover fraction of 30% generated binary snow maps most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. Agreement was highest during the winter but lower during late fall and spring. Comparability was lowest over forest. MODIS and VIIRS often mapped snow/no-snow transition zones as cloud. The assessment of total snow and cloud pixels and comparison snow maps of MODIS and VIIRS indicates that VIIRS is mapping more snow cover and less cloud cover compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67%, and cloud 65.02% and 59.91%, respectively. Visual comparisons depict good qualitative agreement between snow cover area visible in MODIS and VIIRS false color imagery and mapped in their respective snow cover products. While VIIRS and MODIS have similar capacity to map snow cover, VIIRS has the potential to more accurately map snow cover area for the successive development of climate data records.
Xu, Li-Ya; Yang, Wan-Qin; Li, Han; Ni, Xiang-Yin; He, Jie; Wu, Fu-Zhong
2014-11-01
Seasonal snow cover may change the characteristics of freezing, leaching and freeze-thaw cycles in the scenario of climate change, and then play important roles in the dynamics of water soluble and organic solvent soluble components during foliar litter decomposition in the alpine forest. Therefore, a field litterbag experiment was conducted in an alpine forest in western Sichuan, China. The foliar litterbags of typical tree species (birch, cypress, larch and fir) and shrub species (willow and azalea) were placed on the forest floor under different snow cover thickness (deep snow, medium snow, thin snow and no snow). The litterbags were sampled at snow formation stage, snow cover stage and snow melting stage in winter. The results showed that the content of water soluble components from six foliar litters decreased at snow formation stage and snow melting stage, but increased at snow cover stage as litter decomposition proceeded in the winter. Besides the content of organic solvent soluble components from azalea foliar litter increased at snow cover stage, the content of organic solvent soluble components from the other five foliar litters kept a continue decreasing tendency in the winter. Compared with the content of organic solvent soluble components, the content of water soluble components was affected more strongly by snow cover thickness, especially at snow formation stage and snow cover stage. Compared with the thicker snow covers, the thin snow cover promoted the decrease of water soluble component contents from willow and azalea foliar litter and restrain the decrease of water soluble component content from cypress foliar litter. Few changes in the content of water soluble components from birch, fir and larch foliar litter were observed under the different thicknesses of snow cover. The results suggested that the effects of snow cover on the contents of water soluble and organic solvent soluble components during litter decomposition would be controlled by litter quality.
Evaluation of a New SnowPaver at McMurdo Station, Antarctica
2014-09-01
Center (KRC) and the National Science Foundation (NSF) to assess the feasibility of using a new SnowPaver to build snow roads in Antarctica. KRC built...rutting. The SnowPaver was also used for reworking and compacting old and slushy snow during the height of the warm season. In November 2012, the power...6 SnowPaver configured for McMurdo snow-road use (2010) .................................................. 12 7 Map detail of SnowPaver test
Close packing effects on clean and dirty snow albedo and associated climatic implications
NASA Astrophysics Data System (ADS)
He, C.; Liou, K. N.; Takano, Y.
2017-12-01
Previous modeling of snow albedo, a key climate feedback parameter, follows the independent scattering approximation (ISA) such that snow grains are considered as a number of separate units with distances longer than wavelengths. Here we develop a new snow albedo model for widely observed close-packed snow grains internally mixed with black carbon (BC) and demonstrate that albedo simulations match closer to observations. Close packing results in a stronger light absorption for clean and BC-contaminated snow. Compared with ISA, close packing reduces pure snow albedos by up to 0.05, whereas it enhances BC-induced snow albedo reduction and associated surface radiative forcing by up to 15% (20%) for fresh (old) snow, with larger enhancements for stronger structure packing. Finally, our results suggest that BC-snow albedo forcing and snow albedo feedback (climate sensitivity) are underestimated in previous modeling studies, making snow close packing consideration a necessity in climate modeling and analysis.
Close packing effects on clean and dirty snow albedo and associated climatic implications
NASA Astrophysics Data System (ADS)
He, Cenlin; Takano, Yoshi; Liou, Kuo-Nan
2017-04-01
Previous modeling of snow albedo, a key climate feedback parameter, follows the independent scattering approximation (ISA) such that snow grains are considered as a number of separate units with distances longer than wavelengths. Here we develop a new snow albedo model for widely observed close-packed snow grains internally mixed with black carbon (BC) and demonstrate that albedo simulations match closer to observations. Close packing results in a stronger light absorption for clean and BC-contaminated snow. Compared with ISA, close packing reduces pure snow albedos by up to 0.05, whereas it enhances BC-induced snow albedo reduction and associated surface radiative forcing by up to 15% (20%) for fresh (old) snow, with larger enhancements for stronger structure packing. Finally, our results suggest that BC-snow albedo forcing and snow albedo feedback (climate sensitivity) are underestimated in previous modeling studies, making snow close packing consideration a necessity in climate modeling and analysis.
Improved Snow Mapping Accuracy with Revised MODIS Snow Algorithm
NASA Technical Reports Server (NTRS)
Riggs, George; Hall, Dorothy K.
2012-01-01
The MODIS snow cover products have been used in over 225 published studies. From those reports, and our ongoing analysis, we have learned about the accuracy and errors in the snow products. Revisions have been made in the algorithms to improve the accuracy of snow cover detection in Collection 6 (C6), the next processing/reprocessing of the MODIS data archive planned to start in September 2012. Our objective in the C6 revision of the MODIS snow-cover algorithms and products is to maximize the capability to detect snow cover while minimizing snow detection errors of commission and omission. While the basic snow detection algorithm will not change, new screens will be applied to alleviate snow detection commission and omission errors, and only the fractional snow cover (FSC) will be output (the binary snow cover area (SCA) map will no longer be included).
Blowing snow detection from ground-based ceilometers: application to East Antarctica
NASA Astrophysics Data System (ADS)
Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina V.; Lhermitte, Stef; Lenaerts, Jan T. M.; Schween, Jan H.; Mangold, Alexander; Laffineur, Quentin; van Lipzig, Nicole P. M.
2017-12-01
Blowing snow impacts Antarctic ice sheet surface mass balance by snow redistribution and sublimation. However, numerical models poorly represent blowing snow processes, while direct observations are limited in space and time. Satellite retrieval of blowing snow is hindered by clouds and only the strongest events are considered. Here, we develop a blowing snow detection (BSD) algorithm for ground-based remote-sensing ceilometers in polar regions and apply it to ceilometers at Neumayer III and Princess Elisabeth (PE) stations, East Antarctica. The algorithm is able to detect (heavy) blowing snow layers reaching 30 m height. Results show that 78 % of the detected events are in agreement with visual observations at Neumayer III station. The BSD algorithm detects heavy blowing snow 36 % of the time at Neumayer (2011-2015) and 13 % at PE station (2010-2016). Blowing snow occurrence peaks during the austral winter and shows around 5 % interannual variability. The BSD algorithm is capable of detecting blowing snow both lifted from the ground and occurring during precipitation, which is an added value since results indicate that 92 % of the blowing snow is during synoptic events, often combined with precipitation. Analysis of atmospheric meteorological variables shows that blowing snow occurrence strongly depends on fresh snow availability in addition to wind speed. This finding challenges the commonly used parametrizations, where the threshold for snow particles to be lifted is a function of wind speed only. Blowing snow occurs predominantly during storms and overcast conditions, shortly after precipitation events, and can reach up to 1300 m a. g. l. in the case of heavy mixed events (precipitation and blowing snow together). These results suggest that synoptic conditions play an important role in generating blowing snow events and that fresh snow availability should be considered in determining the blowing snow onset.
NASA Astrophysics Data System (ADS)
Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.
2018-02-01
Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process-based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio-temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle-induced forest mortality and climate warming across the north-central Colorado Rocky Mountains. EC-based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub-canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark-beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.
NASA Astrophysics Data System (ADS)
Zhong, Efang; Li, Qian; Sun, Shufen; Chen, Wen; Chen, Shangfeng; Nath, Debashis
2017-11-01
The presence of light-absorbing aerosols (LAA) in snow profoundly influence the surface energy balance and water budget. However, most snow-process schemes in land-surface and climate models currently do not take this into consideration. To better represent the snow process and to evaluate the impacts of LAA on snow, this study presents an improved snow albedo parameterization in the Snow-Atmosphere-Soil Transfer (SAST) model, which includes the impacts of LAA on snow. Specifically, the Snow, Ice and Aerosol Radiation (SNICAR) model is incorporated into the SAST model with an LAA mass stratigraphy scheme. The new coupled model is validated against in-situ measurements at the Swamp Angel Study Plot (SASP), Colorado, USA. Results show that the snow albedo and snow depth are better reproduced than those in the original SAST, particularly during the period of snow ablation. Furthermore, the impacts of LAA on snow are estimated in the coupled model through case comparisons of the snowpack, with or without LAA. The LAA particles directly absorb extra solar radiation, which accelerates the growth rate of the snow grain size. Meanwhile, these larger snow particles favor more radiative absorption. The average total radiative forcing of the LAA at the SASP is 47.5 W m-2. This extra radiative absorption enhances the snowmelt rate. As a result, the peak runoff time and "snow all gone" day have shifted 18 and 19.5 days earlier, respectively, which could further impose substantial impacts on the hydrologic cycle and atmospheric processes.
Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.
2018-01-01
Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process‐based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio‐temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle‐induced forest mortality and climate warming across the north‐central Colorado Rocky Mountains. EC‐based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub‐canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark‐beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.
Observed Differences between North American Snow Extent and Snow Depth Variability
NASA Astrophysics Data System (ADS)
Ge, Y.; Gong, G.
2006-12-01
Snow extent and snow depth are two related characteristics of a snowpack, but they need not be mutually consistent. Differences between these two variables at local scales are readily apparent. However at larger scales which interact with atmospheric circulation and climate, snow extent is typically the variable used, while snow depth is often assumed to be minor and/or mutually consistent compared to snow extent, though this is rarely verified. In this study, a new regional/continental-scale gridded dataset derived from field observations is utilized to quantitatively evaluate the relationship between snow extent and snow depth over North America. Various statistical methods are applied to assess the mutual consistency of monthly snow depth vs. snow extent, including correlations, composites and principal components. Results indicate that snow depth variations are significant in their own rights, and that depth and extent anomalies are largely unrelated, especially over broad high latitude regions north of the snowline. In the vicinity of the snowline, where precipitation and ablation can affect both snow extent and snow depth, the two variables vary concurrently, especially in autumn and spring. It is also found that deeper winter snow translates into larger snow-covered area in the subsequent spring/summer season, which suggests a possible influence of winter snow depth on summer climate. The observed lack of mutual consistency at continental/regional scales suggests that snowpack depth variations may be of sufficiently large magnitude, spatial scope and temporal duration to influence regional-hemispheric climate, in a manner unrelated to the more extensively studied snow extent variations.
NASA Astrophysics Data System (ADS)
Swenson, S. C.; Lawrence, D. M.
2011-11-01
One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn and greater heat gain during spring. The net effect is to reduce annual mean soil temperatures by up to 3°C in snow-affected regions.
NASA Astrophysics Data System (ADS)
Swenson, S. C.; Lawrence, D. M.
2012-11-01
One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn and greater heat gain during spring. The net effect is to reduce annual mean soil temperatures by up to 3°C in snow-affected regions.
Obtaining sub-daily new snow density from automated measurements in high mountain regions
NASA Astrophysics Data System (ADS)
Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Olefs, Marc
2018-05-01
The density of new snow is operationally monitored by meteorological or hydrological services at daily time intervals, or occasionally measured in local field studies. However, meteorological conditions and thus settling of the freshly deposited snow rapidly alter the new snow density until measurement. Physically based snow models and nowcasting applications make use of hourly weather data to determine the water equivalent of the snowfall and snow depth. In previous studies, a number of empirical parameterizations were developed to approximate the new snow density by meteorological parameters. These parameterizations are largely based on new snow measurements derived from local in situ measurements. In this study a data set of automated snow measurements at four stations located in the European Alps is analysed for several winter seasons. Hourly new snow densities are calculated from the height of new snow and the water equivalent of snowfall. Considering the settling of the new snow and the old snowpack, the average hourly new snow density is 68 kg m-3, with a standard deviation of 9 kg m-3. Seven existing parameterizations for estimating new snow densities were tested against these data, and most calculations overestimate the hourly automated measurements. Two of the tested parameterizations were capable of simulating low new snow densities observed at sheltered inner-alpine stations. The observed variability in new snow density from the automated measurements could not be described with satisfactory statistical significance by any of the investigated parameterizations. Applying simple linear regressions between new snow density and wet bulb temperature based on the measurements' data resulted in significant relationships (r2 > 0.5 and p ≤ 0.05) for single periods at individual stations only. Higher new snow density was calculated for the highest elevated and most wind-exposed station location. Whereas snow measurements using ultrasonic devices and snow pillows are appropriate for calculating station mean new snow densities, we recommend instruments with higher accuracy e.g. optical devices for more reliable investigations of the variability of new snow densities at sub-daily intervals.
Transport of intercepted snow from trees during snow storms
David H. Miller
1966-01-01
Five principal processes by which intercepted snow in trees is removed during snow storms are described and evaluated as far as data permit: vapor flux from melt water, vapor flux from bodies of snow, stem flow and dripping of melt water, sliding of bodies of intercepted snow from branches, and wind erosion and transport of intercepted snow. Further research is...
Indices for estimating fractional snow cover in the western Tibetan Plateau
NASA Astrophysics Data System (ADS)
Shreve, Cheney M.; Okin, Gregory S.; Painter, Thomas H.
Snow cover in the Tibetan Plateau is highly variable in space and time and plays a key role in ecological processes of this cold-desert ecosystem. Resolution of passive microwave data is too low for regional-scale estimates of snow cover on the Tibetan Plateau, requiring an alternate data source. Optically derived snow indices allow for more accurate quantification of snow cover using higher-resolution datasets subject to the constraint of cloud cover. This paper introduces a new optical snow index and assesses four optically derived MODIS snow indices using Landsat-based validation scenes: MODIS Snow-Covered Area and Grain Size (MODSCAG), Relative Multiple Endmember Spectral Mixture Analysis (RMESMA), Relative Spectral Mixture Analysis (RSMA) and the normalized-difference snow index (NDSI). Pearson correlation coefficients were positively correlated with the validation datasets for all four optical snow indices, suggesting each provides a good measure of total snow extent. At the 95% confidence level, linear least-squares regression showed that MODSCAG and RMESMA had accuracy comparable to validation scenes. Fusion of optical snow indices with passive microwave products, which provide snow depth and snow water equivalent, has the potential to contribute to hydrologic and energy-balance modeling in the Tibetan Plateau.
[Analysis of influencing factors of snow hyperspectral polarized reflections].
Sun, Zhong-Qiu; Zhao, Yun-Sheng; Yan, Guo-Qian; Ning, Yan-Ling; Zhong, Gui-Xin
2010-02-01
Due to the need of snow monitoring and the impact of the global change on the snow, on the basis of the traditional research on snow, starting from the perspective of multi-angle polarized reflectance, we analyzed the influencing factors of snow from the incidence zenith angles, the detection zenith angles, the detection azimuth angles, polarized angles, the density of snow, the degree of pollution, and the background of the undersurface. It was found that these factors affected the spectral reflectance values of the snow, and the effect of some factors on the polarization hyperspectral reflectance observation is more evident than in the vertical observation. Among these influencing factors, the pollution of snow leads to an obvious change in the snow reflectance spectrum curve, while other factors have little effect on the shape of the snow reflectance spectrum curve and mainly impact the reflection ratio of the snow. Snow reflectance polarization information has not only important theoretical significance, but also wide application prospect, and provides new ideas and methods for the quantitative research on snow using the remote sensing technology.
NASA Astrophysics Data System (ADS)
Bormann, K.; Painter, T. H.; Marks, D. G.; Kirchner, P. B.; Winstral, A. H.; Ramirez, P.; Goodale, C. E.; Richardson, M.; Berisford, D. F.
2014-12-01
In the western US, snowmelt from the mountains contribute the vast majority of fresh water supply, in an otherwise dry region. With much of California currently experiencing extreme drought, it is critical for water managers to have accurate basin-wide estimations of snow water content during the spring melt season. At the forefront of basin-scale snow monitoring is the Jet Propulsion Laboratory's Airborne Snow Observatory (ASO). With combined LiDAR /spectrometer instruments and weekly flights over key basins throughout California, the ASO suite is capable of retrieving high-resolution basin-wide snow depth and albedo observations. To make best use of these high-resolution snow depths, spatially distributed snow density data are required to leverage snow water equivalent (SWE) from the measured depths. Snow density is a spatially and temporally variable property and is difficult to estimate at basin scales. Currently, ASO uses a physically based snow model (iSnobal) to resolve distributed snow density dynamics across the basin. However, there are issues with the density algorithms in iSnobal, particularly with snow depths below 0.50 m. This shortcoming limited the use of snow density fields from iSnobal during the poor snowfall year of 2014 in the Sierra Nevada, where snow depths were generally low. A deeper understanding of iSnobal model performance and uncertainty for snow density estimation is required. In this study, the model is compared to an existing climate-based statistical method for basin-wide snow density estimation in the Tuolumne basin in the Sierra Nevada and sparse field density measurements. The objective of this study is to improve the water resource information provided to water managers during ASO operation in the future by reducing the uncertainty introduced during the snow depth to SWE conversion.
NASA Astrophysics Data System (ADS)
He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi; Yang, Ping; Qi, Ling; Chen, Fei
2018-01-01
We quantify the effects of grain shape and multiple black carbon (BC)-snow internal mixing on snow albedo by explicitly resolving shape and mixing structures. Nonspherical snow grains tend to have higher albedos than spheres with the same effective sizes, while the albedo difference due to shape effects increases with grain size, with up to 0.013 and 0.055 for effective radii of 1,000 μm at visible and near-infrared bands, respectively. BC-snow internal mixing reduces snow albedo at wavelengths < 1.5 μm, with negligible effects at longer wavelengths. Nonspherical snow grains show less BC-induced albedo reductions than spheres with the same effective sizes by up to 0.06 at ultraviolet and visible bands. Compared with external mixing, internal mixing enhances snow albedo reduction by a factor of 1.2-2.0 at visible wavelengths depending on BC concentration and snow shape. The opposite effects on albedo reductions due to snow grain nonsphericity and BC-snow internal mixing point toward a careful investigation of these two factors simultaneously in climate modeling. We further develop parameterizations for snow albedo and its reduction by accounting for grain shape and BC-snow internal/external mixing. Combining the parameterizations with BC-in-snow measurements in China, North America, and the Arctic, we estimate that nonspherical snow grains reduce BC-induced albedo radiative effects by up to 50% compared with spherical grains. Moreover, BC-snow internal mixing enhances the albedo effects by up to 30% (130%) for spherical (nonspherical) grains relative to external mixing. The overall uncertainty induced by snow shape and BC-snow mixing state is about 21-32%.
NASA Technical Reports Server (NTRS)
Markus, Thorsten; Maksym, Ted
2007-01-01
Passive microwave snow depth, ice concentration, and ice motion estimates are combined with snowfall from the European Centre for Medium Range Weather Forecasting (ECMWF) reanalysis (ERA-40) from 1979-200 1 to estimate the prevalence of snow-to-ice conversion (snow-ice formation) on level sea ice in the Antarctic for April-October. Snow ice is ubiquitous in all regions throughout the growth season. Calculated snow- ice thicknesses fall within the range of estimates from ice core analysis for most regions. However, uncertainties in both this analysis and in situ data limit the usefulness of snow depth and snow-ice production to evaluate the accuracy of ERA-40 snowfall. The East Antarctic is an exception, where calculated snow-ice production exceeds observed ice thickness over wide areas, suggesting that ERA-40 precipitation is too high there. Snow-ice thickness variability is strongly controlled not just by snow accumulation rates, but also by ice divergence. Surprisingly, snow-ice production is largely independent of snow depth, indicating that the latter may be a poor indicator of total snow accumulation. Using the presence of snow-ice formation as a proxy indicator for near-zero freeboard, we examine the possibility of estimating level ice thickness from satellite snow depths. A best estimate for the mean level ice thickness in September is 53 cm, comparing well with 51 cm from ship-based observations. The error is estimated to be 10-20 cm, which is similar to the observed interannual and regional variability. Nevertheless, this is comparable to expected errors for ice thickness determined by satellite altimeters. Improvement in satellite snow depth retrievals would benefit both of these methods.
NASA Astrophysics Data System (ADS)
Molotch, Noah P.; Barnard, David M.; Burns, Sean P.; Painter, Thomas H.
2016-09-01
The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5-15°C m-1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.
Validation of the Daily Passive Microwave Snow Depth Products Over Northern China
NASA Astrophysics Data System (ADS)
Qiao, D.; Li, Z.; Wang, N.; Zhou, J.; Zhang, P.; Gao, S.
2018-04-01
Passive microwave sensors have the capability to provide information on snow depth (SD), which is critically important for hydrological modeling and water resource management. However, the different algorithms used to produce SD products lead to discrepancies in the data. To determine which products might be most suitable for Northern China, this paper assesses the accuracy of the existing snow depth products in the period of 2002-2011. By comparing three daily snow depth products, including NSIDC, WESTDC and ESA Globsnow, with snow cover product and meteorological stations data, the accuracies of the different SD products are analyzed for different snow class and forest cover fraction. The results show that comparison between snow cover derived from snow depth of NSIDC, ESA GlobSnow and WESTDC with snow cover product shows that accuracy of WESTDC and ESA GlobSnow in snow cover detecting can reach 0.70. Compared to meteorological stations data below 20 cm, NSIDC consistently overestimate, WESTDC and ESA Globsnow underestimate, furthermore the product from WESTDC is superior to the others. The three products have the same tendency of significant undervaluation over 20 cm. The WESTDC is superior to the ESA Globsnow and NSIDC in non-forest regions, whereas the ESA GlobSnow estimate is superior to the WESTDC and NSIDC in forest regions. As for the prairie and alpine snow, WESTDC has smaller bias and RMSE, meanwhile Globsnow has advantages in the snow depth retrieval in tundra and taiga snow. Therefore, we should choose the more suitable snow depth products according to different needs.
Impacts of Synoptic Weather Patterns on Snow Albedo at Sites in New England
NASA Astrophysics Data System (ADS)
Adolph, A. C.; Albert, M. R.; Lazarcik, J.; Dibb, J. E.; Amante, J.; Price, A. N.
2015-12-01
Winter snow in the northeastern United States has changed over the last several decades, resulting in shallower snow packs, fewer days of snow cover and increasing precipitation falling as rain in the winter. In addition to these changes which cause reductions in surface albedo, increasing winter temperatures also lead to more rapid snow grain growth, resulting in decreased snow reflectivity. We present in-situ measurements and analyses to test the sensitivity of seasonal snow albedo to varying weather conditions at sites in New England. In particular, we investigate the impact of temperature on snow albedo through melt and grain growth, the impact of precipitation event frequency on albedo through snow "freshening," and the impact of storm path on snow structure and snow albedo. Over three winter seasons between 2013 and 2015, in-situ snow characterization measurements were made at three non-forested sites across New Hampshire. These near-daily measurements include spectrally resolved albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density and local meteorological parameters. Combining this information with storm tracks derived from HYSPLIT modeling, we quantify the current sensitivity of northeastern US snow albedo to temperature as well as precipitation type, frequency and path. Our analysis shows that southerly winter storms result in snow with a significantly lower albedo than storms which come from across the continental US or the Atlantic Ocean. Interannual variability in temperature and statewide spatial variability in snowfall rates at our sites show the relative importance of snowfall amount and temperatures in albedo evolution over the course of the winter.
Changes in the relation between snow station observations and basin scale snow water resources
NASA Astrophysics Data System (ADS)
Sexstone, G. A.; Penn, C. A.; Clow, D. W.; Moeser, D.; Liston, G. E.
2017-12-01
Snow monitoring stations that measure snow water equivalent or snow depth provide fundamental observations used for predicting water availability and flood risk in mountainous regions. In the western United States, snow station observations provided by the Natural Resources Conservation Service Snow Telemetry (SNOTEL) network are relied upon for forecasting spring and summer streamflow volume. Streamflow forecast accuracy has declined for many regions over the last several decades. Changes in snow accumulation and melt related to climate, land use, and forest cover are not accounted for in current forecasts, and are likely sources of error. Therefore, understanding and updating relations between snow station observations and basin scale snow water resources is crucial to improve accuracy of streamflow prediction. In this study, we investigated the representativeness of snow station observations when compared to simulated basin-wide snow water resources within the Rio Grande headwaters of Colorado. We used the combination of a process-based snow model (SnowModel), field-based measurements, and remote sensing observations to compare the spatiotemporal variability of simulated basin-wide snow accumulation and melt with that of SNOTEL station observations. Results indicated that observations are comparable to simulated basin-average winter precipitation but overestimate both the simulated basin-average snow water equivalent and snowmelt rate. Changes in the representation of snow station observations over time in the Rio Grande headwaters were also investigated and compared to observed streamflow and streamflow forecasting errors. Results from this study provide important insight in the context of non-stationarity for future water availability assessments and streamflow predictions.
Seasonal Snow Extent and Snow Volume in South America Using SSM/I Passive Microwave Data
NASA Technical Reports Server (NTRS)
Foster, James L.; Chang, A. T. C.; Hall, D. K.; Kelly, R.; Houser, Paul (Technical Monitor)
2001-01-01
Seasonal snow cover in South America was examined in this study using passive microwave satellite data from the Special Sensor Microwave Imagers (SSM/I) on board Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1992-1998, both snow cover extent and snow depth (snow mass) were investigated during the winter months (May-August) in the Patagonia region of Argentina. Since above normal temperatures in this region are typically above freezing, the coldest winter month was found to be not only the month having the most extensive snow cover but also the month having the deepest snows. For the seven-year period of this study, the average snow cover extent (May-August) was about 0.46 million sq km and the average monthly snow mass was about 1.18 x 10(exp 13) kg. July 1992 was the month having the greatest snow extent (nearly 0.8 million sq km) and snow mass (approximately 2.6 x 10(exp 13) kg).
Finland Validation of the New Blended Snow Product
NASA Technical Reports Server (NTRS)
Kim, E. J.; Casey, K. A.; Hallikainen, M. T.; Foster, J. L.; Hall, D. K.; Riggs, G. A.
2008-01-01
As part of an ongoing effort to validate satellite remote sensing snow products for the recentlydeveloped U.S. Air Force Weather Agency (AFWA) - NASA blended snow product, Satellite and in-situ data for snow extent and snow water equivalent (SWE) are evaluated in Finland for the 2006-2007 snow season Finnish Meteorological Institute (FMI) daily weather station data and Finnish Environment Institute (SYKE) bi-monthly snow course data are used as ground truth. Initial comparison results display positive agreement between the AFWA NASA Snow Algorithm (ANSA) snow extent and SWE maps and in situ data, with discrepancies in accordance with known AMSR-E and MODIS snow mapping limitations. Future ANSA product improvement plans include additional validation and inclusion of fractional snow cover in the ANSA data product. Furthermore, the AMSR-E 19 GHz (horizontal channel) with the difference between ascending and descending satellite passes (Diurnal Amplitude Variations, DAV) will be used to detect the onset of melt, and QuikSCAT scatterometer data (14 GHz) will be used to map areas of actively melting snow.
Towards a well-founded and reproducible snow load map for Austria
NASA Astrophysics Data System (ADS)
Winkler, Michael; Schellander, Harald
2017-04-01
"EN 1991-1-3 Eurocode 1: Part 1-3: Snow Loads" provides standard for the determination of the snow load to be used for the structural design of buildings etc. Since 2006 national specifications for Austria define a snow load map with four "load zones", allowing the calculation of the characteristic ground snow load sk for locations below 1500 m asl. A quadratic regression between altitude and sk is used, as suggested by EN 1991-1-3. The actual snow load map is based on best meteorological practice, but still it is somewhat subjective and non-reproducible. Underlying snow data series often end in the 1980s; in the best case data until about 2005 is used. Moreover, extreme value statistics only rely on the Gumbel distribution and the way in which snow depths are converted to snow loads is generally unknown. This might be enough reasons to rethink the snow load standard for Austria, all the more since today's situation is different to what it was some 15 years ago: Firstly, Austria is rich of multi-decadal, high quality snow depth measurements. These data are not well represented in the actual standard. Secondly, semi-empirical snow models allow sufficiently precise calculations of snow water equivalents and snow loads from snow depth measurements without the need of other parameters like temperature etc. which often are not available at the snow measurement sites. With the help of these tools, modelling of daily snow load series from daily snow depth measurements is possible. Finally, extreme value statistics nowadays offers convincing methods to calculate snow depths and loads with a return period of 50 years, which is the base of sk, and allows reproducible spatial extrapolation. The project introduced here will investigate these issues in order to update the Austrian snow load standard by providing a well-founded and reproducible snow load map for Austria. Not least, we seek for contact with standards bodies of neighboring countries to find intersections as well as to avoid inconsistencies and duplications of effort.
NASA Astrophysics Data System (ADS)
Dai, Liyun; Che, Tao; Ding, Yongjian; Hao, Xiaohua
2017-08-01
Snow cover on the Qinghai-Tibetan Plateau (QTP) plays a significant role in the global climate system and is an important water resource for rivers in the high-elevation region of Asia. At present, passive microwave (PMW) remote sensing data are the only efficient way to monitor temporal and spatial variations in snow depth at large scale. However, existing snow depth products show the largest uncertainties across the QTP. In this study, MODIS fractional snow cover product, point, line and intense sampling data are synthesized to evaluate the accuracy of snow cover and snow depth derived from PMW remote sensing data and to analyze the possible causes of uncertainties. The results show that the accuracy of snow cover extents varies spatially and depends on the fraction of snow cover. Based on the assumption that grids with MODIS snow cover fraction > 10 % are regarded as snow cover, the overall accuracy in snow cover is 66.7 %, overestimation error is 56.1 %, underestimation error is 21.1 %, commission error is 27.6 % and omission error is 47.4 %. The commission and overestimation errors of snow cover primarily occur in the northwest and southeast areas with low ground temperature. Omission error primarily occurs in cold desert areas with shallow snow, and underestimation error mainly occurs in glacier and lake areas. With the increase of snow cover fraction, the overestimation error decreases and the omission error increases. A comparison between snow depths measured in field experiments, measured at meteorological stations and estimated across the QTP shows that agreement between observation and retrieval improves with an increasing number of observation points in a PMW grid. The misclassification and errors between observed and retrieved snow depth are associated with the relatively coarse resolution of PMW remote sensing, ground temperature, snow characteristics and topography. To accurately understand the variation in snow depth across the QTP, new algorithms should be developed to retrieve snow depth with higher spatial resolution and should consider the variation in brightness temperatures at different frequencies emitted from ground with changing ground features.
Catchment-scale snow depth monitoring with balloon photogrammetry
NASA Astrophysics Data System (ADS)
Durand, M. T.; Li, D.; Wigmore, O.; Vanderjagt, B. J.; Molotch, N. P.; Bales, R. C.
2016-12-01
Field campaigns and permanent in-situ facilities provide extensive measurements of snowpack properties at catchment (or smaller) scales, and have consistently improved our understanding of snow processes and the estimation of snow water resources. However, snow depth, one of the most important snow states, has been measured almost entirely with discrete point-scale samplings in field measurements; spatiotemporally continuous snow depth measurements are nearly nonexistent, mainly due to the high cost of airborne flights and the ban of Unmanned Aerial Systems in many areas (e.g. in all the national parks). In this study, we estimate spatially continuous snow depth from photogrammetric reconstruction of aerial photos taken from a weather balloon. The study was conducted in a 0.2 km2 watershed in Wolverton, Sequoia National Park, California. We tied a point-and-shoot camera on a helium-inflated weather balloon to take aerial images; the camera was scripted to automatically capture images every 3 seconds and to record the camera position and orientation at the imaging times using a built-in GPS. With the 2D images of the snow-covered ground and the camera position and orientation data, the 3D coordinates of the snow surface were reconstructed at 10 cm resolution using photogrammetry software PhotoScan. Similar measurements were taken for the snow-free ground after snowmelt, and the snow depth was estimated from the difference between the snow-on and snow-off measurements. Comparing the photogrammetric-estimated snow depths with the 32 manually measured depths, taken at the same time as the snow-on balloon flight, we find the RMSE of the photogrammetric snow depth is 7 cm, which is 2% of the long-term peak snow depth in the study area. This study suggests that the balloon photogrammetry is a repeatable, economical, simple, and environmental-friendly method to continuously monitor snow at small-scales. Spatiotemporally continuous snow depth could be regularly measured in future field measurements to supplement traditional snow property observations. In addition, since the process of collecting and processing balloon photogrammetry data is straightforward, the photogrammetric snow depth could be shared with the public in real time using our cloud platform that is currently under development.
Red and near-infrared spectral reflectance of snow
NASA Technical Reports Server (NTRS)
Obrien, H. W.; Munis, R. H.
1975-01-01
The spectral reflectance of snow in the range of 0.60 to 2.50 microns wavelengths was studied in a cold laboratory using natural snow and simulated preparations of snow. A white barium sulfate powder was used as the standard for comparison. The high reflectance (usually nearly 100%) of fresh natural snow in visible wavelengths declines rapidly at wavelengths longer than the visible, as the spectral absorption coefficients of ice increase. Aging snow becomes only somewhat less reflective than fresh snow in the visible region and usually retains a reflectance greater than 80%. In the near infrared, aging snow tends to become considerably less reflective than fresh snow.
Progress in radar snow research. [Brookings, South Dakota
NASA Technical Reports Server (NTRS)
Stiles, W. H.; Ulaby, F. T.; Fung, A. K.; Aslam, A.
1981-01-01
Multifrequency measurements of the radar backscatter from snow-covered terrain were made at several sites in Brookings, South Dakota, during the month of March of 1979. The data are used to examine the response of the scattering coefficient to the following parameters: (1) snow surface roughness, (2) snow liquid water content, and (3) snow water equivalent. The results indicate that the scattering coefficient is insensitive to snow surface roughness if the snow is drv. For wet snow, however, surface roughness can have a strong influence on the magnitude of the scattering coefficient. These observations confirm the results predicted by a theoretical model that describes the snow as a volume of Rayleig scatterers, bounded by a Gaussian random surface. In addition, empirical models were developed to relate the scattering coefficient to snow liquid water content and the dependence of the scattering coefficient on water equivalent was evaluated for both wet and dry snow conditions.
The Impact Of Snow Melt On Surface Runoff Of Sava River In Slovenia
NASA Astrophysics Data System (ADS)
Horvat, A.; Brilly, M.; Vidmar, A.; Kobold, M.
2009-04-01
Snow is a type of precipitation in the form of crystalline water ice, consisting of a multitude of snowflakes that fall from clouds. Snow remains on the ground until it melts or sublimates. Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. In temperate zone like in Slovenia the snow melts in the spring and contributes certain amount of water to surface flow. This amount of water can be great and can cause serious floods in case of fast snow melt. For this reason we tried to determine the influence of snow melt on the largest river basin in Slovenia - Sava River basin, on surface runoff. We would like to find out if snow melt in Slovenian Alps can cause spring floods and how serious it can be. First of all we studied the caracteristics of Sava River basin - geology, hydrology, clima, relief and snow conditions in details for each subbasin. Furtermore we focused on snow and described the snow phenomenom in Slovenia, detailed on Sava River basin. We collected all available data on snow - snow water equivalent and snow depth. Snow water equivalent is a much more useful measurement to hydrologists than snow depth, as the density of cool freshly fallen snow widely varies. New snow commonly has a density of between 5% and 15% of water. But unfortunately there is not a lot of available data of SWE available for Slovenia. Later on we compared the data of snow depth and river runoff for some of the 40 winter seasons. Finally we analyzed the use of satellite images for Slovenia to determine the snow cover for hydrology reason. We concluded that snow melt in Slovenia does not have a greater influence on Sava River flow. The snow cover in Alps can melt fast due to higher temperatures but the water distributes and runs off slowly and does not cause floods. About use of satellite images we concluded that first of all, weather is unfavorable - lots of cloudiness in winter, and furthermore a grater part of land is covered by forest which prevents to see the snow cover on image clearly.
NASA Astrophysics Data System (ADS)
García, Cristina; Ruíz, Jesús; Gallinar, David; Sánchez de Posada, Covadonga
2014-05-01
Several climatic risks studies based on the analysis of data recorded in newspapers have been published to date. These studies deal with both general (Moltó, 2000; García y Martí, 2000; Hernández Varela et al., 2003; Olcina, 2005) and specific risks such as landslides (Domínguez et al., 1999; Devoli et al., 2007; Polemio y Petrucci, 2010) seastorms (Yanes y Marzol, 2009) and snowstorms (Olcina y Moltó, 2002) among others. The purpose of this paper is to report on the methodology and results of the study of an extreme historical event happened in the Asturian Massif (Northern Spain) in 1888. Special attention has been paid to methodological aspects and to the difficulties found in the goal of devising a method that would enable the reconstruction of this kind of phenomena on the basis of nivometheorogical conditions, geographical location and socio-economic impact. To a great deal we focused our efforts on designing a logical database structure and a set of tables that would allow us to store and cross the information for statistical analysis. This includes outlier detection in order to ensure the quality of the results. The information sources used in our study have been the issues of the daily newspaper 'El Carbayón' and the weekly newspaper 'El Oriente de Asturias' published in Oviedo and Llanes (Asturias) between the 20th of January and 30th of May 1888. A total of 92 issues have been collected via the hard copy microfilm housed in the Central Library of Asturias. We reviewed 70 reports relating to avalanche events happened in the aforementioned period of time. We grouped the consequences of the events into 3 main categories (personal injuries, material damages and absence of both) and 5 child categories (deaths, wounded, house and attached building damage, livestock injuries, damage to infrastructures and communications). We gathered data about the thickness of snow-cover, the number of consecutive snowstorms and, in order to facilitate a territorial analysis of this episode, we also gathered data about the event locations. The primary difficulties we found were lack of information about some details (dates, geographic locations and frequently inaccurate quantification of damage), fuzzy terms or sentences (such as 'heavy snow', 'we have never seen a snowfall like this', 'huge snowslide', etc.) difficult to turn into crisp data, and difficulties in defining categories and allocating every incident into one of the categories. Many of these problems are limitations inherent to work with an information source whose purpose is to describe events for general public and not to write about them for scientific purposes. Others are due to the nature of the climate phenomenon associated to these events. These difficulties are increased, on the other hand, by the lack of development existing at the time which often resulted in villages being isolated by the storms with the ensuing, delays in communication, transportation, etc. The results of our study show the importance of the 1888 avalanche events, caused by three linked and consecutive snowstorms that took place between the 14th of February 1888 and the 22th of March 1888, creating snow covers with a depth ranging between 5 and 7 meters. Sixty six avalanches were documented, 60 of them causing material damage. The number of dead and wounded reached 37 and 23 respectively. The consequences of the event were felt throughout the Asturian Massif; 14 high- and mid-elevation mountain municipalities, were affected by avalanches, some of which displaced 40.000 m3 of snow. In this research, historical media has turned out to be a particularly valuable source of information for the study of this kind of episodes, because it enables us to understand the scope of events that occurred in the distant past in remote locations whose socio-economic impact cannot be directly inferred from instrumental data. On the other hand, we consider studies like the present one as preliminary steps for avalanche episodes modelling. Indeed, the information gathered with this kind of methods has to be supplemented with that obtained from other techniques and field geomorphological evidence.
A Blended Global Snow Product using Visible, Passive Microwave and Scatterometer Satellite Data
NASA Technical Reports Server (NTRS)
Foster, James L.; Hall, Dorothy K.; Eylander, John B.; Riggs, George A.; Nghiem, Son V.; Tedesco, Marco; Kim, Edward; Montesano, Paul M.; Kelly, Richard E. J.; Casey, Kimberly A.;
2009-01-01
A joint U.S. Air Force/NASA blended, global snow product that utilizes Earth Observation System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and QuikSCAT (Quick Scatterometer) (QSCAT) data has been developed. Existing snow products derived from these sensors have been blended into a single, global, daily, user-friendly product by employing a newly-developed Air Force Weather Agency (AFWA)/National Aeronautics and Space Administration (NASA) Snow Algorithm (ANSA). This initial blended-snow product uses minimal modeling to expeditiously yield improved snow products, which include snow cover extent, fractional snow cover, snow water equivalent (SWE), onset of snowmelt, and identification of actively melting snow cover. The blended snow products are currently 25-km resolution. These products are validated with data from the lower Great Lakes region of the U.S., from Colorado during the Cold Lands Processes Experiment (CLPX), and from Finland. The AMSR-E product is especially useful in detecting snow through clouds; however, passive microwave data miss snow in those regions where the snow cover is thin, along the margins of the continental snowline, and on the lee side of the Rocky Mountains, for instance. In these regions, the MODIS product can map shallow snow cover under cloud-free conditions. The confidence for mapping snow cover extent is greater with the MODIS product than with the microwave product when cloud-free MODIS observations are available. Therefore, the MODIS product is used as the default for detecting snow cover. The passive microwave product is used as the default only in those areas where MODIS data are not applicable due to the presence of clouds and darkness. The AMSR-E snow product is used in association with the difference between ascending and descending satellite passes or Diurnal Amplitude Variations (DAV) to detect the onset of melt, and a QSCAT product will be used to map areas of snow that are actively melting.
Snow Water Equivalent Pressure Sensor Performance in a Deep Snow Cover
NASA Astrophysics Data System (ADS)
Johnson, J. B.; Gelvin, A. B.; Schaefer, G. L.
2006-12-01
Accurate measurements of snow water equivalent are important for a variety of water resource management operations. In the western US, real-time SWE measurements are made using snow pillows that can experience errors from snow-bridging, poor installation configuration, and enhanced solar radiation absorption. Snow pillow installations that place the pillow abnormally above or below the surrounding terrain can affect snow catchment. Snow pillows made from dark materials can preferentially absorb solar radiation penetrating the snow causing accelerated melt. To reduce these problems, the NRCS and CRREL developed an electronic SWE sensor to replace the snow pillow. During the winter of 2005-2006 the NRCS/CRREL electronic sensor was deployed at Hogg Pass, Oregon, with a total SWE accumulation of about 1000 mm. The NRCS/CRREL sensor consists of a center panel surrounded by eight outer panels whose purpose is to buffer snow bridging loads. By separately monitoring load cell outputs from the sensor, snow-bridging events are directly measured. A snow-bridging event associated with a 180 mm SWE accumulation in a 24-hour period exhibited a SWE over-measurement of 60% at the sensor edge while the center panel showed less than a 10% effect. Individual load cell outputs were used to determine the most representative SWE value, which was within 5% of the adjacent snow pillow value. During the spring melt the NRCS/CRREL sensor melt recession lagged that of the snow pillow by about a week. Physical examination of the Hogg Pass site indicated that the CRREL sensor results were consistent with snow-on-the-ground observations. The snow pillow experienced accelerated melt because it was installed on a mound above the surrounding terrain and absorbed solar radiation through the snow. SWE pressure sensor accuracy is significantly improved by using an active center panel surrounded by buffer panels, monitoring several individual load cell to detect and correct snow-bridging errors, and reducing the radiation and topographic profile of the sensor.
European In-Situ Snow Measurements: Practices and Purposes.
Pirazzini, Roberta; Leppänen, Leena; Picard, Ghislain; Lopez-Moreno, Juan Ignacio; Marty, Christoph; Macelloni, Giovanni; Kontu, Anna; von Lerber, Annakaisa; Tanis, Cemal Melih; Schneebeli, Martin; de Rosnay, Patricia; Arslan, Ali Nadir
2018-06-22
In-situ snow measurements conducted by European institutions for operational, research, and energy business applications were surveyed in the framework of the European Cooperation in Science and Technology (COST) Action ES1404, called "A European network for a harmonised monitoring of snow for the benefit of climate change scenarios, hydrology, and numerical weather prediction". Here we present the results of this survey, which was answered by 125 participants from 99 operational and research institutions, belonging to 38 European countries. The typologies of environments where the snow measurements are performed range from mountain to low elevated plains, including forests, bogs, tundra, urban areas, glaciers, lake ice, and sea ice. Of the respondents, 93% measure snow macrophysical parameters, such as snow presence, snow depth (HS), snow water equivalent (SWE), and snow density. These describe the bulk characteristics of the whole snowpack or of a snow layer, and they are the primary snow properties that are needed for most operational applications (such as hydrological monitoring, avalanche forecast, and weather forecast). In most cases, these measurements are done with manual methods, although for snow presence, HS, and SWE, automatized methods are also applied by some respondents. Parameters characterizing precipitating and suspended snow (such as the height of new snow, precipitation intensity, flux of drifting/blowing snow, and particle size distribution), some of which are crucial for the operational services, are measured by 74% of the respondents. Parameters characterizing the snow microstructural properties (such as the snow grain size and shape, and specific surface area), the snow electromagnetic properties (such as albedo, brightness temperature, and backscatter), and the snow composition (such as impurities and isotopes) are measured by 41%, 26%, and 13% of the respondents, respectively, mostly for research applications. The results of this survey are discussed from the perspective of the need of enhancing the efficiency and coverage of the in-situ observational network applying automatic and cheap measurement methods. Moreover, recommendations for the enhancement and harmonization of the observational network and measurement practices are provided.
Continuity of MODIS and VIIRS Snow-Cover Maps during Snowmelt in the Catskill Mountains in New York
NASA Astrophysics Data System (ADS)
Hall, D. K.; Riggs, G. A., Jr.; Roman, M. O.; DiGirolamo, N. E.
2015-12-01
We investigate the local and regional differences and possible biases between the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible-Infrared Imager Radiometer Suite (VIIRS) snow-cover maps in the winter of 2012 during snowmelt conditions in the Catskill Mountains in New York using a time series of cloud-gap filled daily snow-cover maps. The MODIS Terra instrument has been providing daily global snow-cover maps since February 2000 (Riggs and Hall, 2015). Using the VIIRS instrument, launched in 2011, NASA snow products are being developed based on the heritage MODIS snow-mapping algorithms, and will soon be available to the science community. Continuity of the standard NASA MODIS and VIIRS snow-cover maps is essential to enable environmental-data records (EDR) to be developed for analysis of snow-cover trends using a consistent data record. For this work, we compare daily MODIS and VIIRS snow-cover maps of the Catskill Mountains from 29 February through 14 March 2012. The entire region was snow covered on 29 February and by 14 March the snow had melted; we therefore have a daily time series available to compare normalized difference snow index (NDSI), as an indicator of snow-cover fraction. The MODIS and VIIRS snow-cover maps have different spatial resolutions (500 m for MODIS and 375 m for VIIRS) and different nominal overpass times (10:30 AM for MODIS Terra and 2:30 PM for VIIRS) as well as different cloud masks. The results of this work will provide a quantitative assessment of the continuity of the snow-cover data records for use in development of an EDR of snow cover.http://modis-snow-ice.gsfc.nasa.gov/Riggs, G.A. and D.K. Hall, 2015: MODIS Snow Products User Guide to Collection 6, http://modis-snow-ice.gsfc.nasa.gov/?c=userguides
The assessment of EUMETSAT HSAF Snow Products for mountainuos areas in the eastern part of Turkey
NASA Astrophysics Data System (ADS)
Akyurek, Z.; Surer, S.; Beser, O.; Bolat, K.; Erturk, A. G.
2012-04-01
Monitoring the snow parameters (e.g. snow cover area, snow water equivalent) is a challenging work. Because of its natural physical properties, snow highly affects the evolution of weather from daily basis to climate on a longer time scale. The derivation of snow products over mountainous regions has been considered very challenging. This can be done by periodic and precise mapping of the snow cover. However inaccessibility and scarcity of the ground observations limit the snow cover mapping in the mountainous areas. Today, it is carried out operationally by means of optical satellite imagery and microwave radiometry. In retrieving the snow cover area from satellite images bring the problem of topographical variations within the footprint of satellite sensors and spatial and temporal variation of snow characteristics in the mountainous areas. Most of the global and regional operational snow products use generic algorithms for flat and mountainous areas. However the non-uniformity of the snow characteristics can only be modeled with different algorithms for mountain and flat areas. In this study the early findings of Satellite Application Facilities on Hydrology (H-SAF) project, which is financially supported by EUMETSAT, will be presented. Turkey is a part of the H-SAF project, both in product generation (eg. snow recognition, fractional snow cover and snow water equivalent) for mountainous regions for whole Europe, cal/val of satellite-derived snow products with ground observations and cal/val studies with hydrological modeling in the mountainous terrain of Europe. All the snow products are operational on a daily basis. For the snow recognition product (H10) for mountainous areas, spectral thresholding methods were applied on sub pixel scale of MSG-SEVIRI images. The different spectral characteristics of cloud, snow and land determined the structure of the algorithm and these characteristics were obtained from subjective classification of known snow cover features in the MSG/SEVIRI images. The fractional snow cover area (H12) algorithm is based on a sub-pixel reflectance model applied on METOP-AVHRR data. Knowing the effects of topography on satellite-measured radiances for rough terrain, the sun zenith and azimuth angles, as well as direction of observation relative to these are taken into account in estimating the target reflectances from the satellite images. The values of SWE products (H13) were obtained using an assimilation process based on the Helsinki University of Technology model using Advanced Microwave Scanning Radiometer for EOS (AMSR-E) daily brightness-temperature values. The validation studies for three products have been performed for the water years 2010 and 2011. Average values of 70% of probability of detection for snow recognition product, 60% of overall accuracy for the fractional snow cover product and 45 mm RMSE for the snow water equivalent product have been obtained from the validation studies. Final versions of these three products will be presented and discussed. Key words: snow, satellite images, mountain, HSAF, snow cover, snow water equivalent
COSMO-SkyMed Image Investigation of Snow Features in Alpine Environment
Paloscia, Simonetta; Pettinato, Simone; Santi, Emanuele; Valt, Mauro
2017-01-01
In this work, X band images acquired by COSMO-SkyMed (CSK) on alpine environment have been analyzed for investigating snow characteristics and their effect on backscattering variations. Preliminary results confirmed the capability of simultaneous optical and Synthetic Aperture Radar (SAR) images (Landsat-8 and CSK) in separating snow/no-snow areas and in detecting wet snow. The sensitivity of backscattering to snow depth has not always been confirmed, depending on snow characteristics related to the season. A model based on Dense Media Radiative Transfer theory (DMRT-QMS) was applied for simulating the backscattering response on the X band from snow cover in different conditions of grain size, snow density and depth. By using DMRT-QMS and snow in-situ data collected on Cordevole basin in Italian Alps, the effect of grain size and snow density, beside snow depth and snow water equivalent, was pointed out, showing that the snow features affect the backscatter in different and sometimes opposite ways. Experimental values of backscattering were correctly simulated by using this model and selected intervals of ground parameters. The relationship between simulated and measured backscattering for the entire dataset shows slope >0.9, determination coefficient, R2 = 0.77, and root mean square error, RMSE = 1.1 dB, with p-value <0.05. PMID:28054962
Mesoscale variability of the Upper Colorado River snowpack
Ling, C.-H.; Josberger, E.G.; Thorndike, A.S.
1996-01-01
In the mountainous regions of the Upper Colorado River Basin, snow course observations give local measurements of snow water equivalent, which can be used to estimate regional averages of snow conditions. We develop a statistical technique to estimate the mesoscale average snow accumulation, using 8 years of snow course observations. For each of three major snow accumulation regions in the Upper Colorado River Basin - the Colorado Rocky Mountains, Colorado, the Uinta Mountains, Utah, and the Wind River Range, Wyoming - the snow course observations yield a correlation length scale of 38 km, 46 km, and 116 km respectively. This is the scale for which the snow course data at different sites are correlated with 70 per cent correlation. This correlation of snow accumulation over large distances allows for the estimation of the snow water equivalent on a mesoscale basis. With the snow course data binned into 1/4?? latitude by 1/4?? longitude pixels, an error analysis shows the following: for no snow course data in a given pixel, the uncertainty in the water equivalent estimate reaches 50 cm; that is, the climatological variability. However, as the number of snow courses in a pixel increases the uncertainty decreases, and approaches 5-10 cm when there are five snow courses in a pixel.
Enhancement of the MODIS Daily Snow Albedo Product
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Schaaf, Crystal B.; Wang, Zhuosen; Riggs, George A.
2009-01-01
The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we compare a daily version of MCD43B3 with the daily albedo from MOD10A1. and MCD43B3 with a 16-day average of MOD10A1, over Greenland. We also discuss some near-future planned enhancements to MOD10A1.
From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns
NASA Astrophysics Data System (ADS)
Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael
2017-04-01
Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation patterns show a snowfall gradient consistent with the prevailing wind direction. Deriving snow accumulation based on radar data is challenging as the close-ground precipitation patters cannot be resolved by the radar due to shielding and ground clutter in highly complex terrain. Nonetheless, radar measurements show distinct patterns of snowfall and accumulation, which may be the result of orographic enhancement. Station-based snow accumulation measurements are in reasonable agreement with the estimated large-scale radar snow accumulation. The ADS-based snow accumulation maps feature much smaller scale snow accumulation patterns likely due to close-ground wind effects and snow redistribution on top of an altitudinal gradient. To evaluate microphysical processes and patterns influenced by the topography we run a hydrometeor classification on the radar data. The relative importance of topographically induced effects on snow accumulation patterns is investigated based on vertical cross sections of hydrometeor data and corresponding snow accumulation.
Evaluation of the Snow Simulations from the Community Land Model, Version 4 (CLM4)
NASA Technical Reports Server (NTRS)
Toure, Ally M.; Rodell, Matthew; Yang, Zong-Liang; Beaudoing, Hiroko; Kim, Edward; Zhang, Yongfei; Kwon, Yonghwan
2015-01-01
This paper evaluates the simulation of snow by the Community Land Model, version 4 (CLM4), the land model component of the Community Earth System Model, version 1.0.4 (CESM1.0.4). CLM4 was run in an offline mode forced with the corrected land-only replay of the Modern-Era Retrospective Analysis for Research and Applications (MERRA-Land) and the output was evaluated for the period from January 2001 to January 2011 over the Northern Hemisphere poleward of 30 deg N. Simulated snow-cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Moderate Resolution Imaging Spectroradiometer (MODIS) SCF, the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover, the Canadian Meteorological Centre (CMC) daily snow analysis products, snow depth from the National Weather Service Cooperative Observer (COOP) program, and Snowpack Telemetry (SNOTEL) SWE observations. CLM4 SCF was converted into snow-cover extent (SCE) to compare with MODIS SCE. It showed good agreement, with a correlation coefficient of 0.91 and an average bias of -1.54 x 10(exp 2) sq km. Overall, CLM4 agreed well with IMS snow cover, with the percentage of correctly modeled snow-no snow being 94%. CLM4 snow depth and SWE agreed reasonably well with the CMC product, with the average bias (RMSE) of snow depth and SWE being 0.044m (0.19 m) and -0.010m (0.04 m), respectively. CLM4 underestimated SNOTEL SWE and COOP snow depth. This study demonstrates the need to improve the CLM4 snow estimates and constitutes a benchmark against which improvement of the model through data assimilation can be measured.
NASA Astrophysics Data System (ADS)
Xie, Zhipeng; Hu, Zeyong; Xie, Zhenghui; Jia, Binghao; Sun, Genhou; Du, Yizhen; Song, Haiqing
2018-02-01
This paper presents the impact of two snow cover schemes (NY07 and SL12) in the Community Land Model version 4.5 (CLM4.5) on the snow distribution and surface energy budget over the Tibetan Plateau. The simulated snow cover fraction (SCF), snow depth, and snow cover days were evaluated against in situ snow depth observations and a satellite-based snow cover product and snow depth dataset. The results show that the SL12 scheme, which considers snow accumulation and snowmelt processes separately, has a higher overall accuracy (81.8%) than the NY07 (75.8%). The newer scheme performs better in the prediction of overall accuracy compared with the NY07; however, SL12 yields a 15.1% underestimation rate while NY07 overestimated the SCF with a 15.2% overestimation rate. Both two schemes capture the distribution of the maximum snow depth well but show large positive biases in the average value through all periods (3.37, 3.15, and 1.48 cm for NY07; 3.91, 3.52, and 1.17 cm for SL12) and overestimate snow cover days compared with the satellite-based product and in situ observations. Higher altitudes show larger root-mean-square errors (RMSEs) in the simulations of snow depth and snow cover days during the snow-free period. Moreover, the surface energy flux estimations from the SL12 scheme are generally superior to the simulation from NY07 when evaluated against ground-based observations, in particular for net radiation and sensible heat flux. This study has great implications for further improvement of the subgrid-scale snow variations over the Tibetan Plateau.
Wet Snow Mapping in Southern Ontario with Sentinel-1A Observations
NASA Astrophysics Data System (ADS)
Chen, H.; Kelly, R. E. J.
2017-12-01
Wet snow is defined as snow with liquid water present in an ice-water mix. It is can be an indicator for the onset of the snowmelt period. Knowledge about the extent of wet snow area can be of great importance for the monitoring of seasonal snowmelt runoff with climate-induced changes in snowmelt duration having implications for operational hydrological and ecological applications. Spaceborne microwave remote sensing has been used to observe seasonal snow under all-weather conditions. Active microwave observations of snow at C-band are sensitive to wet snow due to the high dielectric contrast with non-wet snow surfaces and synthetic aperture radar (SAR) is now openly available to identify and map the wet snow areas globally at relatively fine spatial resolutions ( 100m). In this study, a semi-automated workflow is developed from the change detection method of Nagler et al. (2016) using multi-temporal Sentinel-1A (S1A) dual-polarization observations of Southern Ontario. Weather station data and visible-infrared satellite observations are used to refine the wet snow area estimates. Wet snow information from National Operational Hydrologic Remote Sensing Center (NOHRSC) is used to compare with the S1A estimates. A time series of wet snow maps shows the variations in backscatter from wet snow on a pixel basis. Different land cover types in Southern Ontario are assessed with respect to their impacts on wet snow estimates. While forests and complex land surfaces can impact the ability to map wet snow, the approach taken is robust and illustrates the strong sensitivity of the approach to wet snow backscattering characteristics. The results indicate the feasibility of the change detection method on non-mountainous large areas and address the usefulness of Sentinel-1A data for wet snow mapping.
NASA Astrophysics Data System (ADS)
Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Nishimura, Kouichi; Vionnet, Vincent; Guyomarc'h, Gilbert
2014-05-01
Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns, but has failed to quantitatively describe the snow redistribution, and correlations with measured snow heights were poor. The objective of our research was to a) identify the sources of poor correlations between predicted and measured snow re-distribution and b) improve the parameters ability to qualitatively and quantitatively describe snow redistribution in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its constant wind direction and the availability of data from a meteorological station. Our work focused on areas with terrain edges of approximately 10 m height, and we worked with 1-2 m resolution digital terrain and snow surface data. We first compared the results of the terrain-based parameter calculations to measured snow-depths, obtained by high-accuracy terrestrial laser scan measurements. The results were similar to previous studies: The parameter was able to reproduce observed patterns in snow distribution, but regression analyses showed poor correlations between terrain-based parameter and measured snow-depths. We demonstrate how the correlations between measured and calculated snow heights improve if the parameter is calculated based on a snow surface model instead of a digital terrain model. We show how changing the parameter's search distance and how raster re-sampling and raster smoothing improve the results. To improve the parameter's quantitative abilities, we modified the parameter, based on the comparisons with TLS data and the terrain and wind conditions specific to the research site. The modification is in a linear form f(x) = a * Sx, where a is a newly introduced parameter; f(x) yields the estimates for the snow height. We found that the parameter depends on the time period between the compared snow surfaces and the intensity of drifting snow events, which are linked to wind velocities. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter a. We could improve the parameters' correlations with measured snow heights and its ability to quantitatively describe snow distribution in the Col du Lac Blanc area. We believe that our work is also a prerequisite to further improve the parameter's ability to describe snow redistribution.
Calculation of new snow densities from sub-daily automated snow measurements
NASA Astrophysics Data System (ADS)
Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Lehning, Michael; Olefs, Marc
2017-04-01
In mountain regions there is an increasing demand for high-quality analysis, nowcasting and short-range forecasts of the spatial distribution of snowfall. Operational services, such as for avalanche warning, road maintenance and hydrology, as well as hydropower companies and ski resorts need reliable information on the depth of new snow (HN) and the corresponding water equivalent (HNW). However, the ratio of HNW to HN can vary from 1:3 to 1:30 because of the high variability of new snow density with respect to meteorological conditions. In the past, attempts were made to calculate new snow densities from meteorological parameters mainly using daily values of temperature and wind. Further complex statistical relationships have been used to calculate new snow densities on hourly to sub-hourly time intervals to drive multi-layer snow cover models. However, only a few long-term in-situ measurements of new snow density exist for sub-daily time intervals. Settling processes within the new snow due to loading and metamorphism need to be considered when computing new snow density. As the effect of these processes is more pronounced for long time intervals, a high temporal resolution of measurements is desirable. Within the pluSnow project data of several automatic weather stations with simultaneous measurements of precipitation (pluviometers), snow water equivalent (SWE) using snow pillows and snow depth (HS) measurements using ultrasonic rangers were analysed. New snow densities were calculated for a set of data filtered on the basis of meteorological thresholds. The calculated new snow densities were compared to results from existing new snow density parameterizations. To account for effects of settling of the snow cover, a case study based on a multi-year data set using the snow cover model SNOWPACK at Weissfluhjoch was performed. Measured median values of hourly new snow densities at the different stations range from 54 to 83 kgm-3. This is considerably lower than a 1:10 approximation (i.e. 100 kgm-3), which is mainly based on daily values in the Alps. Variations in new snow density could not be explained in a satisfactory manner using meteorological data measured at the same location. Likewise, some of the tested parametrizations of new snow density, which primarily use air temperature as a proxy, result in median new snow densities close to the ones from automated measurements, but show only a low correlation between calculated and measured new snow densities. The case study on the influence of snow settling on HN resulted on average in an underestimation of HN by 17%, which corresponds to 2-3% of the cumulated HN from the previous 24 hours. Therefore, the mean hourly new snow densities may be overestimated by 14%. The analysis in this study is especially limited with respect to the meteorological influence on the HS measurement using ultra-sonic rangers. Nevertheless, the reasonable mean values encourage calculating new snow densities from standard hydro-meteorological measurements using more precise observation devices such as optical snow depth sensors and more sensitive scales for SWE measurements also on sub-daily time-scales.
NASA's AVE 7 experiment: 25-mb sounding data
NASA Technical Reports Server (NTRS)
Davis, J. G.; Fuelberg, H. E.; Turner, R. E.
1978-01-01
The AVE 7 Experiment is described and tabulated rawinsonde data at 25 mb internals from the surface to 25 mb for the 24 stations participating in the experiment are presented. Soundings were taken between 0000GMT May 2 and 1200 GMT May 3, 1978. The methods of data processing and the accuracy are briefly discussed. Selected synoptic charts prepared from the data are presented as well as an example of contact data. A tabulation of adverse weather events that occured during the AVE 7 period, including freezing temperature, snow, tornadoes, damaging winds, and flooding, is presented.
Estimation of Snow Particle Model Suitable for a Complex and Forested Terrain: Lessons from SnowEx
NASA Astrophysics Data System (ADS)
Gatebe, C. K.; Li, W.; Stamnes, K. H.; Poudyal, R.; Fan, Y.; Chen, N.
2017-12-01
SnowEx 2017 obtained consistent and coordinated ground and airborne remote sensing measurements over Grand Mesa in Colorado, which feature sufficient forested stands to have a range of density and height (and other forest conditions); a range of snow depth/snow water equivalent (SWE) conditions; sufficiently flat snow-covered terrain of a size comparable to airborne instrument swath widths. The Cloud Absorption Radiometer (CAR) data from SnowEx are unique and can be used to assess the accuracy of Bidirectional Reflectance-Distribution Functions (BRDFs) calculated by different snow models. These measurements provide multiple angle and multiple wavelength data needed for accurate surface BRDF characterization. Such data cannot easily be obtained by current satellite remote sensors. Compared to ground-based snow field measurements, CAR measurements minimize the effect of self-shading, and are adaptable to a wide variety of field conditions. We plan to use the CAR measurements as the validation data source for our snow modeling effort. By comparing calculated BRDF results from different snow models to CAR measurements, we can determine which model best explains the snow BRDFs, and is therefore most suitable for application to satellite remote sensing of snow parameters and surface energy budget calculations.
Satellite Snow-Cover Mapping: A Brief Review
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.
1995-01-01
Satellite snow mapping has been accomplished since 1966, initially using data from the reflective part of the electromagnetic spectrum, and now also employing data from the microwave part of the spectrum. Visible and near-infrared sensors can provide excellent spatial resolution from space enabling detailed snow mapping. When digital elevation models are also used, snow mapping can provide realistic measurements of snow extent even in mountainous areas. Passive-microwave satellite data permit global snow cover to be mapped on a near-daily basis and estimates of snow depth to be made, but with relatively poor spatial resolution (approximately 25 km). Dense forest cover limits both techniques and optical remote sensing is limited further by cloudcover conditions. Satellite remote sensing of snow cover with imaging radars is still in the early stages of research, but shows promise at least for mapping wet or melting snow using C-band (5.3 GHz) synthetic aperture radar (SAR) data. Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) data beginning with the launch of the first EOS platform in 1998. Digital maps will be produced that will provide daily, and maximum weekly global snow, sea ice and lake ice cover at 1-km spatial resolution. Statistics will be generated on the extent and persistence of snow or ice cover in each pixel for each weekly map, cloudcover permitting. It will also be possible to generate snow- and ice-cover maps using MODIS data at 250- and 500-m resolution, and to study and map snow and ice characteristics such as albedo. been under development. Passive-microwave data offer the potential for determining not only snow cover, but snow water equivalent, depth and wetness under all sky conditions. A number of algorithms have been developed to utilize passive-microwave brightness temperatures to provide information on snow cover and water equivalent. The variability of vegetative Algorithms are being developed to map global snow and ice cover using Earth Algorithms to map global snow cover using passive-microwave data have also cover and of snow grain size, globally, limits the utility of a single algorithm to map global snow cover.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Janet Y. L.; Houser, Paul R. (Technical Monitor)
2001-01-01
Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500 m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5 km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Y. L.; Houser, Paul R. (Technical Monitor)
2001-01-01
Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500-m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5-km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.
Unexpected Patterns in Snow and Dirt
NASA Astrophysics Data System (ADS)
Ackerson, Bruce J.
2018-01-01
For more than 30 years, Albert A. Bartlett published "Thermal patterns in the snow" in this journal. These are patterns produced by heat sources underneath the snow. Bartlett's articles encouraged me to pay attention to patterns in snow and to understanding them. At winter's end the last snow becomes dirty and is heaped into piles. This snow comes from the final clearing of sidewalks and driveways. The patterns observed in these piles defied my intuition. This melting snow develops edges where dirt accumulates, in contrast to ice cubes, which lose sharp edges and become more spherical upon melting. Furthermore, dirt absorbs more radiation than snow and yet doesn't melt and round the sharp edges of snow, where dirt accumulates.
Recent research in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, Jeff
1987-01-01
Recent work on snow-pack energy exchange has involved detailed investigations on snow albedo and attempts to integrate energy-balance calculations over drainage basins. Along with a better understanding of the EM properties of snow, research in remote sensing has become more focused toward estimation of snow-pack properties. In snow metamorphism, analyses of the physical processes must now be coupled to better descriptions of the geometry of the snow microstructure. The dilution method now appears to be the best direct technique for measuring the liquid water content of snow; work on EM methods continues. Increasing attention to the chemistry of the snow pack has come with the general focus on acid precipitation in hydrology.
NASA Technical Reports Server (NTRS)
Stieglitz, Marc; Ducharne, Agnes; Koster, Randy; Suarez, Max; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
The three-layer snow model is coupled to the global catchment-based Land Surface Model (LSM) of the NASA Seasonal to Interannual Prediction Project (NSIPP) project, and the combined models are used to simulate the growth and ablation of snow cover over the North American continent for the period 1987-1988. The various snow processes included in the three-layer model, such as snow melting and re-freezing, dynamic changes in snow density, and snow insulating properties, are shown (through a comparison with the corresponding simulation using a much simpler snow model) to lead to an improved simulation of ground thermodynamics on the continental scale.
When Models and Observations Collide: Journeying towards an Integrated Snow Depth Product
NASA Astrophysics Data System (ADS)
Webster, M.; Petty, A.; Boisvert, L.; Markus, T.; Kurtz, N. T.; Kwok, R.; Perovich, D. K.
2017-12-01
Knowledge of snow depth is essential for assessing changes in sea ice mass balance due to snow's insulating and reflective properties. In remote sensing applications, the accuracy of sea ice thickness retrievals from altimetry crucially depends on snow depth. Despite the need for snow depth data, we currently lack continuous observations that capture the basin-scale snow depth distribution and its seasonal evolution. Recent in situ and remote sensing observations are sparse in space and time, and contain uncertainties, caveats, and/or biases that often require careful interpretation. Likewise, using model output for remote sensing applications is limited due to uncertainties in atmospheric forcing and different treatments of snow processes. Here, we summarize our efforts in bringing observational and model data together to develop an approach for an integrated snow depth product. We start with a snow budget model and incrementally incorporate snow processes to determine the effects on snow depth and to assess model sensitivity. We discuss lessons learned in model-observation integration and ideas for potential improvements to the treatment of snow in models.
NASA Astrophysics Data System (ADS)
Marks, D. G.; Kormos, P.; Johnson, M.; Bormann, K. J.; Hedrick, A. R.; Havens, S.; Robertson, M.; Painter, T. H.
2017-12-01
Lidar-derived snow depths when combined with modeled or estimated snow density can provide reliable estimates of the distribution of SWE over large mountain areas. Application of this approach is transforming western snow hydrology. We present a comprehensive approach toward modeling bulk snow density that is reliable over a vast range of weather and snow conditions. The method is applied and evaluated over mountainous regions of California, Idaho, Oregon and Colorado in the western US. Simulated and measured snow density are compared at fourteen validation sites across the western US where measurements of snow mass (SWE) and depth are co-located. Fitting statistics for ten sites from three mountain catchments (two in Idaho, one in California) show an average Nash-Sutcliff model efficiency coefficient of 0.83, and mean bias of 4 kg m-3. Results illustrate issues associated with monitoring snow depth and SWE and show the effectiveness of the model, with a small mean bias across a range of snow and climate conditions in the west.
NASA Technical Reports Server (NTRS)
Fassnacht, Steven R.; Sexstone, Graham A.; Kashipazha, Amir H.; Lopez-Moreno, Juan Ignacio; Jasinski, Michael F.; Kampf, Stephanie K.; Von Thaden, Benjamin C.
2015-01-01
During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow-covered area (SCA) once snow-free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate-resolution imaging spectro radiometer images to produce snow-cover depletion curves. The snow depletion curves were created for an 80,000 sq km domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow-cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A stations peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter-annual consistency.
NASA Technical Reports Server (NTRS)
Foster, J. L.; Hall, D. K.; Chiu, L.; Kelly, R. E.; Powell, H.; Chiu, L.
2007-01-01
Seasonal snow cover in South America was examined in this study using passive microwave satellite data from the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-satellite and the Special Sensor Microwave Imagers (SSM/I) on board Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1979-2003, both snow cover extent and snow depth (snow mass) were investigated during coldest months (May-September), primarily in the Patagonia area of Argentina and in Chile. Most of the seasonal snow in South America is in the Patagonia region of Argentina. Since winter temperatures in this region are often above freezing, the coldest winter month was found to be the month having the most extensive snow cover and also usually the month having the deepest snow cover as well. Sharp year-to-year differences were recorded using the passive microwave observations. The average snow cover extent for July, the month with the greatest average snow extent during the 25-year period of record, is 320,700 km(exp 2). In July of 1984, the average monthly snow cover was 701,250 km(exp 2) - the most extensive coverage observed between 1979 and 2003. However, in July of 1989, snow cover extent was only 120 km(exp 2). The 25-year period of record shows a sinusoidal like pattern, though there appears to be no obvious trend in either increasing or decreasing snow extent or snow mass between 1979 and 2003.
NASA Astrophysics Data System (ADS)
Jiang, L.; Wang, G.
2017-12-01
Snow cover is one of key elements in the investigations of weather, climatic change, water resource, and snow hazard. Satellites observations from on-board optical sensors provides the ability to snow cover mapping through the discrimination of snow from other surface features and cloud. MODIS provides maximum of snow cover data using 8-day composition data in order to reduce the cloud obscuration impacts. However, snow cover mapping is often required to obtain at the temporal scale of less than one day, especially in the case of disasters. Geostationary satellites provide much higher temporal resolution measurements (typically at 15 min or half or one hour), which has a great potential to reduce cloud cover problem and observe ground surface for identifying snow. The proposed method in this work is that how to take the advantages of polar-orbiting and geostationary optical sensors to accurately map snow cover without data gaps due to cloud. FY-2 geostationary satellites have high temporal resolution observations, however, they are lacking enough spectral bands essential for snow cover monitoring, such as the 1.6 μm band. Based on our recent work (Wang et al., 2017), we improved FY-2/VISSR fractional snow cover estimation with a linear spectral unmixing analysis method. The linear approach is applied then using the reflectance observed at the certain hourly image of FY-2 to calculate pixel-wise snow cover fraction. The composition of daily factional snow cover employs the sun zenith angle, where the snow fraction under lowest sun zenith angle is considered as the most confident result. FY-2/VISSR fractional snow cover map has less cloud due to the composition of multi-temporal snow maps in a single day. In order to get an accurate and cloud-reduced fractional snow cover map, both of MODIS and FY-2/VISSR daily snow fraction maps are blended together. With the combination of FY-2E/VISSR and MODIS, there are still some cloud existing in the daily snow fraction map. Then the combination snow fraction map is temporally reconstructed using MATLAB Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) function to derive a completely daily cloud-free snow cover map under all the sky conditions.
Snow observations in Mount Lebanon (2011-2016)
NASA Astrophysics Data System (ADS)
Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; Fanise, Pascal; Drapeau, Laurent; Somma, Janine; Fadel, Ali; Bitar, Ahmad Al; Escadafal, Richard
2017-08-01
We present a unique meteorological and snow observational dataset in Mount Lebanon, a mountainous region with a Mediterranean climate, where snowmelt is an essential water resource. The study region covers the recharge area of three karstic river basins (total area of 1092 km2 and an elevation up to 3088 m). The dataset consists of (1) continuous meteorological and snow height observations, (2) snowpack field measurements, and (3) medium-resolution satellite snow cover data. The continuous meteorological measurements at three automatic weather stations (MZA, 2296 m; LAQ, 1840 m; and CED, 2834 m a.s.l.) include surface air temperature and humidity, precipitation, wind speed and direction, incoming and reflected shortwave irradiance, and snow height, at 30 min intervals for the snow seasons (November-June) between 2011 and 2016 for MZA and between 2014 and 2016 for CED and LAQ. Precipitation data were filtered and corrected for Geonor undercatch. Observations of snow height (HS), snow water equivalent, and snow density were collected at 30 snow courses located at elevations between 1300 and 2900 m a.s.l. during the two snow seasons of 2014-2016 with an average revisit time of 11 days. Daily gap-free snow cover extent (SCA) and snow cover duration (SCD) maps derived from MODIS snow products are provided for the same period (2011-2016). We used the dataset to characterize mean snow height, snow water equivalent (SWE), and density for the first time in Mount Lebanon. Snow seasonal variability was characterized with high HS and SWE variance and a relatively high snow density mean equal to 467 kg m-3. We find that the relationship between snow depth and snow density is specific to the Mediterranean climate. The current model explained 34 % of the variability in the entire dataset (all regions between 1300 and 2900 m a.s.l.) and 62 % for high mountain regions (elevation 2200-2900 m a.s.l.). The dataset is suitable for the investigation of snow dynamics and for the forcing and validation of energy balance models. Therefore, this dataset bears the potential to greatly improve the quantification of snowmelt and mountain hydrometeorological processes in this data-scarce region of the eastern Mediterranean. The DOI for the data is https://doi.org/10.5281/zenodo.583733.
NASA Astrophysics Data System (ADS)
Mathevet, T.; Joel, G.; Gottardi, F.; Nemoz, B.
2017-12-01
The aim of this communication is to present analyses of climate variability and change on snow water equivalent (SWE) observations, reconstructions (1900-2016) and scenarii (2020-2100) of a hundred of snow courses dissiminated within the french Alps. This issue became particularly important since a decade, in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production. As a water resources manager in french mountainuous regions, EDF (french hydropower company) has developed and managed a hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurments of a hundred of snow courses within the french Alps. EDF have been operating an automatic SWE sensors network, complementary to the snow course network. Based on numerous SWE observations time-series and snow accumulation and melt model (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2016 period. These reconstructions have been extented to 1900 using 20 CR reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii. Considering various mountainous areas within the french Alps, this communication focuses on : (1) long term (1900-2016) analyses of variability and trend of total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length , (2) long term variability of hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii. Comparing historical period (1950-1984) to recent period (1984-2016), quantitative results within a region in the north Alps (Maurienne) shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season length by 15 days. These analyses will be extended from north to south of the Alps, on a region spanning 200 km. Caracterisation of the increase of snow line height and SWE reduction are particularly important at a local and watershed scale. This long term change of snow dynamics within moutainuous regions both impacts snow resorts and artificial snow production developments and multi-purposes dam reservoirs managments.
NASA Astrophysics Data System (ADS)
Yin, Zhicong; Wang, Huijun
2018-04-01
The haze pollution in December has become increasingly serious over recent decades and imposes damage on society, ecosystems, and human health. In addition to anthropogenic emissions, climate change and variability were conducive to haze in China. In this study, the relationship between the snow cover over eastern Europe and western Siberia (SCES) and the number of haze days in December in central North China was analyzed. This relationship significantly strengthened after the mid-1990s, which is attributed to the effective connections between the SCES and the Eurasian atmospheric circulations. During 1998-2016, the SCES significantly influenced the soil moisture and land surface radiation, and then the combined underlying drivers of enhanced soil moisture and radiative cooling moved the the East Asia jet stream northward and induced anomalous, anti-cyclonic circulation over central North China. Modulated by such atmospheric circulations, the local lower boundary layer, the decreased surface wind, and the more humid air were conducive to the worsening dispersion conditions and frequent haze occurrences. In contrast, from 1979 to 1997, the linkage between the SCES and soil moisture was negligible. Furthermore, the correlated radiative cooling was distributed narrowly and far from the key area of snow cover. The associated atmospheric circulations with the SCES were not significantly linked with the ventilation conditions over central North China. Consequently, the relationship between the SCES and the number of hazy days in central North China was insignificant before the mid-1990s but has strengthened and has become significant since then.
Neutral Poly-/perfluoroalkyl Substances in Air and Snow from the Arctic
Xie, Zhiyong; Wang, Zhen; Mi, Wenying; Möller, Axel; Wolschke, Hendrik; Ebinghaus, Ralf
2015-01-01
Levels of neutral poly-/perfluoroalkyl substances (nPFASs) in air and snow collected from Ny-Ålesund were measured and their air-snow exchange was determined to investigate whether they could re-volatilize into the atmosphere driven by means of air-snow exchange. The total concentration of 12 neutral PFASs ranged from 6.7 to 39 pg m−3 in air and from 330 to 690 pg L−1 in snow. A significant log-linear relationship was observed between the gas/particle partition coefficient and vapor pressure of the neutral PFASs. For fluorotelomer alcohol (FTOHs) and fluorotelomer acrylates (FTAs), the air-snow exchange fluxes were positive, indicating net evaporative from snow into air, while net deposition into snow was observed for perfluorooctane sulfonamidoethanols (Me/EtFOSEs) in winter and spring of 2012. The air-snow exchange was snow-phase controlled for FTOHs and FTAs, and controlled by the air-phase for FOSEs. Air-snow exchange may significantly interfere with atmospheric concentrations of neutral PFASs in the Arctic. PMID:25746440
Everywhere and nowhere: snow and its linkages
NASA Astrophysics Data System (ADS)
Hiemstra, C. A.
2017-12-01
Interest has grown in quantifying higher latitude precipitation change and snow-related ecosystem and economic impacts. There is a high demand for creating and using snow-related datasets, yet available datasets contain limitations, aren't scale appropriate, or lack thorough validation. Much of the uncertainty in snow estimates relates to ongoing snow measurement problems that are chronic and pervasive in windy, Arctic environments. This, coupled with diminishing support for long-term snow field observations, creates formidable hydrologic gaps in snow dominated landscapes. Snow touches most aspects of high latitude landscapes and spans albedo, ecosystems, soils, permafrost, and sea ice. In turn, snow can be impacted by disturbances, landscape change, ecosystem, structure, and later arrival of sea or lake ice. Snow, and its changes touch infrastructure, housing, and transportation. Advances in snow measurements, modeling, and data assimilation are under way, but more attention and a concerted effort is needed in a time of dwindling resources to make required advances during a time of rapid change.
Sillanpää, Nora; Koivusalo, Harri
2013-01-01
Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.
Guo, J.; Tsang, L.; Josberger, E.G.; Wood, A.W.; Hwang, J.-N.; Lettenmaier, D.P.
2003-01-01
This paper presents an algorithm that estimates the spatial distribution and temporal evolution of snow water equivalent and snow depth based on passive remote sensing measurements. It combines the inversion of passive microwave remote sensing measurements via dense media radiative transfer modeling results with snow accumulation and melt model predictions to yield improved estimates of snow depth and snow water equivalent, at a pixel resolution of 5 arc-min. In the inversion, snow grain size evolution is constrained based on pattern matching by using the local snow temperature history. This algorithm is applied to produce spatial snow maps of Upper Rio Grande River basin in Colorado. The simulation results are compared with that of the snow accumulation and melt model and a linear regression method. The quantitative comparison with the ground truth measurements from four Snowpack Telemetry (SNOTEL) sites in the basin shows that this algorithm is able to improve the estimation of snow parameters.
Rajiv Prasad; David G. Tarboton; Glen E. Liston; Charles H. Luce; Mark S. Seyfried
2001-01-01
In this paper a physically based snow transport model (SnowTran-3D) was used to simulate snow drifting over a 30 m grid and was compared to detailed snow water equivalence (SWE) surveys on three dates within a small 0.25 km2 subwatershed, Upper Sheep Creek. Two precipitation scenarios and two vegetation scenarios were used to carry out four snow transport model runs in...
Spatiotemporal Variability and in Snow Phenology over Eurasian Continent druing 1966-2012
NASA Astrophysics Data System (ADS)
Zhong, X.; Zhang, T.; Wang, K.; Zheng, L.; Wang, H.
2016-12-01
Snow cover is a key part of the cryosphere, which is a critical component of the global climate system. Snow cover phenology critically effects on the surface energy budget, the surface albedo and hydrological processes. In this study, the climatology and spatiotemporal variability of snow cover phenology were investigated using the long-term (1966-2012) ground-based measurements of daily snow depth from 1103 stations across the Eurasian Continent. The results showed that the distributions of the first date, last date, snow cover duration and number of snow cover days generally represented the latitudinal zonality over the Eurasian Continent, and there were significant elevation gradient patterns in the Tibetan Plateau. The first date of snow cover delayed by about 1.2 day decade-1, the last date of snow cover advanced with the rate of -1.2 day decade-1, snow cover duration and number of snow cover days shortened by about 2.7and 0.6 day decade-1, respectively, from 1966 through 2012. Compared with precipitation, the correlation between snow cover phenology and air temperature was more significant. The changes in snow cover duration were mainly controlled by the changes of air temperature in autumn and spring. The shortened number of snow cover days was affected by rising temperature during the cold season except for the air temperature in autumn and spring.
Takahashi, Koichi; Hirosawa, Tatsuru; Morishima, Ryohei
2012-01-01
Background and Aims Altitudinal timberlines are thought to move upward by global warming, a crucial topic in ecology. Tall tree species (the conifer Abies mariesii and the deciduous broad-leaved Betula ermanii) dominate the sub-alpine zone between 1600 and 2500 m a.s.l., the timberline, on Mount Norikura in central Japan. Dwarf pine Pinus pumila dominates above the timberline to near the summit (3026 m a.s.l.). This study evaluated how the timberline formed on Mount Norikura by examining altitudinal changes in stand structure and dynamics around the timberline. Methods One hundred and twenty-five plots of 10 m × 10 m were established around the timberline (2350–2600 m a.s.l.). Trunk diameter growth rate during 6 years was examined for A. mariesii, B. ermanii and P. pumila. Mortality during this period and mechanical damage scars on the trunks and branches due to strong wind and snow were examined for A. mariesii only. Key Results The density, maximum trunk height and diameter of A. mariesii in plots decreased with altitude. The maximum trunk height of B. ermanii decreased with altitude, but density and maximum trunk diameter did not decrease. In contrast, the density of P. pumila abruptly increased from around the timberline. A strong negative correlation was found between the densities of P. pumila and tall tree species, indicating their interspecific competition. Trunk diameter growth rates of A. mariesii and B. ermanii did not decrease with altitude, suggesting that these two tall tree species can grow at the timberline. The ratio of trees with mechanical damage scars increased with altitude for A. mariesii, a tendency more conspicuous for larger trees. The mortality of larger A. mariesii was also greater at higher altitude. Tall tree species may not increase their trunk height and survive around the timberline because of mechanical damage. Conclusions This study suggests that the altitudinal location of the timberline is mainly affected by mechanical damage due to strong wind and snow rather than by growth limitation due to low temperature. Therefore, the timberline would not move upward even under global warming if these growth and mortality characteristics do not change for a long time. PMID:22451598
Mesocell study area snow distributions for the Cold Land Processes Experiment (CLPX)
Glen E. Liston; Christopher A. Hiemstra; Kelly Elder; Donald W. Cline
2008-01-01
The Cold Land Processes Experiment (CLPX) had a goal of describing snow-related features over a wide range of spatial and temporal scales. This required linking disparate snow tools and datasets into one coherent, integrated package. Simulating realistic high-resolution snow distributions and features requires a snow-evolution modeling system (SnowModel) that can...
Application of LANDSAT imagery for snow mapping in Norway
NASA Technical Reports Server (NTRS)
Odegaard, H. (Principal Investigator); Ostrem, G.
1977-01-01
The author has identified the following significant results. It was shown that if the snow cover extent was determined from all four LANDSAT bands, there were significant differences in results. The MSS 4 gave the largest snow cover, but only slightly more than MSS 5, whereas MSS 6 and 7 gave the smallest snow area. A study was made to show that there was a relationship between the last date of snow fall and the area covered with snow, as determined from different bands. Imagery obtained shortly after a snow fall showed no significant difference in the snow-covered area when the four bans were compared, whereas, pronounced differences in the snow-covered area were found in images taken after a long period without precipitation.
Extracting fields snow coverage information with HJ-1A/B satellites data
NASA Astrophysics Data System (ADS)
Dong, Wenquan; Meng, Jihua
2015-10-01
The distribution and change of snow coverage are sensitive factors of climate change. In northeast part of China, farmlands are still covered with snow in spring. Since sowing activity can only be done when the snow melted, fields snow coverage monitoring provides reference for the determination of sowing date. Because of the restriction of the sensors and application requirements, current researches on remote sensing of snow focus more on the study of musicale and large scale, rather than the study of small scale, and especially research on snow melting period is rarely reported.HJ-1A/B satellites are parts of little satellite constellation, focusing on environment and disaster monitoring and meteorological forecast. Compared to other data sources, HJ-1A/B satellites both have comparatively higher temporal and spatial resolution and are more conducive to monitor the variations of melting snow coverage at small watershed. This paper was based on HJ-1A/1B data, taking Hongxing farm of Bei'an, Heilongjiang Province, China as the study area. In this paper, we exploited the methods for extraction of snow cover information on farmland in two cases, both HJ-1A/1B CCD with HJ-1B IRS data and just HJ-1A/1B CCD data. The reason we chose the two cases is that, the two optical satellites HJ-1A/B are capable of providing a whole territory coverage period in visible light spectrum in two days, infrared spectrum in four days. So sometimes we can only obtain CCD image. In this case, the method of normalized snow index cannot be used to extract snow coverage information. Using HJ-1A/1B CCD with HJ-1B IRS data, combined with the theory of snow remote sensing monitoring, this paper analyzed spectral response characteristics of HJ-1A/1B satellites data, then the widely used Normalized Difference Snow Index(NDSI) and S3 Index were quoted to the HJ-1A/1B satellites data. The NDSI uses reflectance values of Red and SWIR spectral bands of HJ-1B, and S3 index uses reflectance values of NIR, Red and SWIR spectral bands. With multi-temporal HJ satellite data, the optimal threshold of normalized snow index was determined to divide the farmland into snow covering area, melting snow area and non-snow area. The results are quite similar to each other and of high accuracy, and the melting snow coverage can be well extracted by two types of normalized snow index. When we can only obtain CCD image, we use supervised classification method to extract melting snow coverage. With this method, the accuracy of fields snow coverage extraction is slightly lower than that using normalized snow index methods mentioned above. And in mountain area, the snow coverage area is slightly larger than that is extracted by normalized snow index methods, because the shadows make the color of snow in the valley darker, the supervised classification method divides it into non-snow coverage area, while the normalized snow index method well weakened the effect of shadow. This study shows that extraction accuracy in both cases is assessed, and both of them can meet the needs of practical applications. HJ-1A/1B satellites are conducive to monitor the variations of melting snow coverage over farmland, and they can provide reference for the determination of sowing date.
NASA Astrophysics Data System (ADS)
Kirchner, P. B.; Bales, R. C.; Musselman, K. N.; Molotch, N. P.
2012-12-01
We investigated the influence of canopy on snow accumulation and melt in a mountain forest using paired snow on and snow off scanning LiDAR altimetry, synoptic measurement campaigns and in-situ time series data of snow depth, SWE, and radiation collected from the Kaweah River watershed, Sierra Nevada, California. Our analysis of forest cover classified by dominant species and 1 m2 grided mean under canopy snow accumulation calculated from airborne scanning LiDAR, demonstrate distinct relationships between forest class and under-canopy snow depth. The five forest types were selected from carefully prepared 1 m vegetation classifications and named for their dominant tree species, Giant Sequoia, Jeffrey Pine, White Fir, Red Fir, Sierra Lodgepole, Western White Pine, and Foxtail Pine. Sufficient LiDAR returns for calculating mean snow depth per m2 were available for 31 - 44% of the canopy covered area and demonstrate a reduction in snow depth of 12 - 24% from adjacent open areas. The coefficient of variation in snow depth under canopies ranged from 0.2 - 0.42 and generally decreased as elevation increased. Our analysis of snow density snows no statistical significance between snow under canopies and in the open at higher elevations with a weak significance for snow under canopies at lower elevations. Incident radiation measurements made at 15 minute intervals under forest canopies show an input of up to 150 w/m2 of thermal radiation from vegetation to the snow surface on forest plots. Snow accumulated on the mid to high elevation forested slopes of the Sierra Nevada represents the majority of winter snow storage. However snow estimates in forested environments demonstrate a high level of uncertainty due to the limited number of in-situ observations and the inability of most remote sensing platforms to retrieve reflectance under dense vegetation. Snow under forest canopies is strongly mediated by forest cover and decoupled from the processes that dictate accumulation and ablation of snow in open locations, where almost all precipitation and meteorlogic measurements concerning snow are made. Snow accumulation is intercepted by vegetation until it accumulates to a depth equal to or greater than the height of the vegetation, is reduced by the amount of sublimation or evaporation occurring while on the canopy and is redistributed beneath the canopy at a different density or as liquid water. Ablation processes are dictated by the energy environment surrounding vegetation where sensible heat is mediated by shading of short wave radiation.
Field observations of the electrostatic charges of blowing snow in Hokkaido, Japan
NASA Astrophysics Data System (ADS)
Omiya, S.; Sato, A.
2011-12-01
An electrostatic charge of blowing snow may be a contributing factor in the formation of a snow drift and a snow cornice, and changing of the trajectory of own motion. However, detailed electrification characteristics of blowing snow are not known as there are few reports of charge measurements. We carried out field observations of the electrostatic charges of blowing snow in Tobetsu, Hokkaido, Japan in the mid winter of 2011. An anemovane and a thermohygrometer were used for the meteorological observation. Charge-to-mass ratios of blowing snow were obtained by a Faraday-cage, an electrometer and an electric balance. In this observation period, the air temperature during the blowing snow event was -6.5 to -0.5 degree Celsius. The measured charges in this observation were consistent with the previous studies in sign, which is negative, but they were smaller than the previous one. In most cases, the measured values increased with the temperature decrease, which corresponds with previous studies. However, some results contradicted the tendency, and the maximum value was obtained on the day of the highest air temperature of -0.5 degree Celsius. This discrepancy may be explained from the difference of the snow surface condition on observation day. The day when the maximum value was obtained, the snow surface was covered with old snow, and hard. On the other hand, in many other cases, the snow surface was covered with the fresh snow, and soft. Blowing snow particles on the hard surface can travel longer distance than on the soft one. Therefore, it can be surmised that the hard surface makes the blowing snow particles accumulate a lot of negative charges due to a large number of collisions to the surface. This can be supported by the results of the wind tunnel experiments by Omiya and Sato (2011). By this field observation, it was newly suggested that the electrostatic charge of blowing snow are influenced greatly by the difference of the snow surface condition. REFERENCE: Omiya and Sato,(2010):An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface. AGU Abstract Database, 2010 Fall Meeting.
The layered evolution of fabric and microstructure of snow at Point Barnola, Central East Antarctica
NASA Astrophysics Data System (ADS)
Calonne, Neige; Montagnat, Maurine; Matzl, Margret; Schneebeli, Martin
2017-02-01
Snow fabric, defined as the distribution of the c-axis orientations of the ice crystals in snow, is poorly known. So far, only one study exits that measured snow fabric based on a statistically representative technique. This recent study has revealed the impact of temperature gradient metamorphism on the evolution of fabric in natural snow, based on cold laboratory experiments. On polar ice sheets, snow properties are currently investigated regarding their strong variability in time and space, notably because of their potential influence on firn processes and consequently on ice core analysis. Here, we present measurements of fabric and microstructure of snow from Point Barnola, East Antarctica (close to Dome C). We analyzed a snow profile from 0 to 3 m depth, where temperature gradients occur. The main contributions of the paper are (1) a detailed characterization of snow in the upper meters of the ice sheet, especially by providing data on snow fabric, and (2) the study of a fundamental snow process, never observed up to now in a natural snowpack, namely the role of temperature gradient metamorphism on the evolution of the snow fabric. Snow samples were scanned by micro-tomography to measure continuous profiles of microstructural properties (density, specific surface area and pore thickness). Fabric analysis was performed using an automatic ice texture analyzer on 77 representative thin sections cut out from the samples. Different types of snow fabric could be identified and persist at depth. Snow fabric is significantly correlated with snow microstructure, pointing to the simultaneous influence of temperature gradient metamorphism on both properties. We propose a mechanism based on preferential grain growth to explain the fabric evolution under temperature gradients. Our work opens the question of how such a layered profile of fabric and microstructure evolves at depth and further influences the physical and mechanical properties of snow and firn. More generally, it opens the way to further studies on the influence of the snow fabric in snow processes related to anisotropic properties of ice such as grain growth, mechanical response, electromagnetic behavior.
NASA Astrophysics Data System (ADS)
Hill, R.; Calvin, W. M.; Harpold, A. A.
2016-12-01
Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Previous retrieval of subpixel snow-covered area in alpine regions used multiple snow endmembers due to the sensitivity of snow spectral reflectance to grain size. We will present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction and approximate grain size or melt state. The root mean squared error will provide a spectrum-wide assessment of the mixture model's goodness-of-fit. Analysis will compare snow-covered area and snow-cover depletion in the 2016 year, and annual variation from the 2015 year. Field data were also acquired on three days concurrent with the 2016 flights in the Sagehen Experimental Forest and will support ground validation of the airborne data set.
Domain-averaged snow depth over complex terrain from flat field measurements
NASA Astrophysics Data System (ADS)
Helbig, Nora; van Herwijnen, Alec
2017-04-01
Snow depth is an important parameter for a variety of coarse-scale models and applications, such as hydrological forecasting. Since high-resolution snow cover models are computational expensive, simplified snow models are often used. Ground measured snow depth at single stations provide a chance for snow depth data assimilation to improve coarse-scale model forecasts. Snow depth is however commonly recorded at so-called flat fields, often in large measurement networks. While these ground measurement networks provide a wealth of information, various studies questioned the representativity of such flat field snow depth measurements for the surrounding topography. We developed two parameterizations to compute domain-averaged snow depth for coarse model grid cells over complex topography using easy to derive topographic parameters. To derive the two parameterizations we performed a scale dependent analysis for domain sizes ranging from 50m to 3km using highly-resolved snow depth maps at the peak of winter from two distinct climatic regions in Switzerland and in the Spanish Pyrenees. The first, simpler parameterization uses a commonly applied linear lapse rate. For the second parameterization, we first removed the obvious elevation gradient in mean snow depth, which revealed an additional correlation with the subgrid sky view factor. We evaluated domain-averaged snow depth derived with both parameterizations using flat field measurements nearby with the domain-averaged highly-resolved snow depth. This revealed an overall improved performance for the parameterization combining a power law elevation trend scaled with the subgrid parameterized sky view factor. We therefore suggest the parameterization could be used to assimilate flat field snow depth into coarse-scale snow model frameworks in order to improve coarse-scale snow depth estimates over complex topography.
The Spectral and Chemical Measurement of Pollutants on Snow Near South Pole, Antarctica
NASA Technical Reports Server (NTRS)
Casey, K. A.; Kaspari, S. D.; Skiles, S. M.; Kreutz, K.; Handley, M. J.
2017-01-01
Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350-2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014-2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from less than 1 W m(exp. -2) for clean snow to approximately 70 W m(exp. -2) for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models.
On the extraordinary snow on the sea ice off East Antarctica in late winter, 2012
NASA Astrophysics Data System (ADS)
Toyota, Takenobu; Massom, Robert; Lecomte, Olivier; Nomura, Daiki; Heil, Petra; Tamura, Takeshi; Fraser, Alexander D.
2016-09-01
In late winter-early spring 2012, the second Sea Ice Physics and Ecosystems Experiment (SIPEX II) was conducted off Wilkes Land, East Antarctica, onboard R/V Aurora Australis. The sea-ice conditions were characterized by significantly thick first-year ice and snow, trapping the ship for about 10 days in the near coastal region. The deep snow cover was particularly remarkable, in that its average value of 0.45 m was almost three times that observed between 1992 and 2007 in the region. To reveal factors responsible, we used in situ observations and ERA-Interim reanalysis (1990-2012) to examine the relative contribution of the different components of the local-regional snow mass balance equation i.e., snow accumulation on sea ice, precipitation minus evaporation (P-E), and loss by (i) snow-ice formation and (ii) entering into leads due to drifting snow. Results show no evidence for significantly high P-E in the winter of 2012. Ice core analysis has shown that although the snow-ice layer was relatively thin, indicating less transformation from snow to snow-ice in 2012 as compared to measurements from 2007, the difference was not enough to explain the extraordinarily deep snow. Based on these results, we deduce that lower loss of snow into leads was probably responsible for the extraordinary snow in 2012. Statistical analysis and satellite images suggest that the reduction in loss of snow into leads is attributed to rough ice surface associated with active deformation processes and larger floe size due to sea-ice expansion. This highlights the importance of snow-sea ice interaction in determining the mean snow depth on Antarctic sea ice.
The spectral and chemical measurement of pollutants on snow near South Pole, Antarctica
NASA Astrophysics Data System (ADS)
Casey, K. A.; Kaspari, S. D.; Skiles, S. M.; Kreutz, K.; Handley, M. J.
2017-06-01
Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350-2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014-2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from <1 W m-2 for clean snow to 70 W m-2 for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models.
Modeling and measuring snow for assessing climate change impacts in Glacier National Park, Montana
Fagre, Daniel B.; Selkowitz, David J.; Reardon, Blase; Holzer, Karen; Mckeon, Lisa L.
2002-01-01
A 12-year program of global change research at Glacier National Park by the U.S. Geological Survey and numerous collaborators has made progress in quantifying the role of snow as a driver of mountain ecosystem processes. Spatially extensive snow surveys during the annual accumulation/ablation cycle covered two mountain watersheds and approximately 1,000 km2 . Over 7,000 snow depth and snow water equivalent (SWE) measurements have been made through spring 2002. These augment two SNOTEL sites, 9 NRCS snow courses, and approximately 150 snow pit analyses. Snow data were used to establish spatially-explicit interannual variability in snowpack SWE. East of the Continental Divide, snowpack SWE was lower but also less variable than west of the Divide. Analysis of snowpacks suggest downward trends in SWE, a reduction in snow cover duration, and earlier melt-out dates during the past 52 years. Concurrently, high elevation forests and treelines have responded with increased growth. However, the 80 year record of snow from 3 NRCS snow courses reflects a strong influence from the Pacific Decadal Oscillation, resulting in 20-30 year phases of greater or lesser mean SWE. Coupled with the fine-resolution spatial snow data from the two watersheds, the ecological consequences of changes in snowpack can be empirically assessed at a habitat patch scale. This will be required because snow distribution models have had varied success in simulating snowpack accumulation/ablation dynamics in these mountain watersheds, ranging from R2=0.38 for individual south-facing forested snow survey routes to R2=0.95 when aggregated to the watershed scale. Key ecological responses to snowpack changes occur below the watershed scale, such as snow-mediated expansion of forest into subalpine meadows, making continued spatially-explicit snow surveys a necessity.
NASA Astrophysics Data System (ADS)
Adolph, A. C.; Albert, M. R.; Dibb, J. E.; Lazarcik, J.; Amante, J.
2016-12-01
As a highly reflective material, snow serves as an important control on surface energy balance. Given the current changes in climate and the sensitivity of snow cover to rising temperatures, it is critical that we understand the role of snow and its associated feedbacks in the climate system. Much of snow albedo research has focused on polar or high altitude snow packs, but rapid changes are also occurring in temperate regions; in the northeastern United States of America, changing climate has resulted in shallower snow packs and fewer days of snow cover. As these changes occur and we seek to understand the associated implications for snow albedo within climate dynamics, it is imperative that we are able to accurately represent snow in models. The SNow, ICe, and Aerosol Radiation model (SNICAR), developed by Flanner and Zender (2005) and used in the IPCC assessments, provides upward and downward radiative fluxes of one or many snow layers based on the following inputs: snow depth, density, grain size, and impurity content; solar zenith angle; lighting conditions; and albedo of the surface beneath the snowpack. To our knowledge, the SNICAR model has not been validated with data from a mid-latitude temperate region. Through a measurement campaign that occurred from winter 2013-2016, we have collected over 400 independent observations of a suite of snow characterization measurements and spectral snow albedo from three different sites in New Hampshire, USA. Comparison of our spectral albedo measurements to the SNICAR albedo derived from measured snow properties and illumination conditions will allow for validation of the model or recommendations for improvement based on the sensitivities found in the data.
NASA Technical Reports Server (NTRS)
Barnes, J. C. (Principal Investigator); Bowley, C. J.; Simmes, D. A.
1974-01-01
The author has identified the following significant results. In much of the western United States a large part of the utilized water comes from accumulated mountain snowpacks; thus, accurate measurements of snow distributions are required for input to streamflow prediction models. The application of ERTS-1 imagery for mapping snow has been evaluated for two geographic areas, the Salt-Verde watershed in central Arizona and the southern Sierra Nevada in California. Techniques have been developed to identify snow and to differentiate between snow and cloud. The snow extent for these two drainage areas has been mapped from the MSS-5 (0.6 - 0.7 microns) imagery and compared with aerial survey snow charts, aircraft photography, and ground-based snow measurements. The results indicate that ERTS imagery has substantial practical applications for snow mapping. Snow extent can be mapped from ERTS-1 imagery in more detail than is depicted on aerial survey snow charts. Moreover, in Arizona and southern California cloud obscuration does not appear to be a serious deterrent to the use of satellite data for snow survey. The costs involved in deriving snow maps from ERTS-1 imagery appear to be very reasonable in comparison with existing data collection methods.
NASA Astrophysics Data System (ADS)
Roy, A.; Royer, A.; Montpetit, B.; Bartlett, P. A.; Langlois, A.
2012-12-01
Snow grain size is a key parameter for modeling microwave snow emission properties and the surface energy balance because of its influence on the snow albedo, thermal conductivity and diffusivity. A model of the specific surface area (SSA) of snow was implemented in the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS) version 3.4. This offline multilayer model (CLASS-SSA) simulates the decrease of SSA based on snow age, snow temperature and the temperature gradient under dry snow conditions, whereas it considers the liquid water content for wet snow metamorphism. We compare the model with ground-based measurements from several sites (alpine, Arctic and sub-Arctic) with different types of snow. The model provides simulated SSA in good agreement with measurements with an overall point-to-point comparison RMSE of 8.1 m2 kg-1, and a RMSE of 4.9 m2 kg-1 for the snowpack average SSA. The model, however, is limited under wet conditions due to the single-layer nature of the CLASS model, leading to a single liquid water content value for the whole snowpack. The SSA simulations are of great interest for satellite passive microwave brightness temperature assimilations, snow mass balance retrievals and surface energy balance calculations with associated climate feedbacks.
NASA Astrophysics Data System (ADS)
Marty, Christoph; Meister, Roland
2012-12-01
Snow and weather observations at Weissfluhjoch were initiated in 1936, when a research team set a snow stake and started digging snow pits on a plateau located at 2,540 m asl above Davos, Switzerland. This was the beginning of what is now the longest series of daily snow depth, new snow height and bi-monthly snow water equivalent measurements from a high-altitude research station. Our investigations reveal that the snow depth at Weissfluhjoch with regard to the evolution and inter-annual variability represents a good proxy for the entire Swiss Alps. In order to set the snow and weather observations from Weissfluhjoch in a broader context, this paper also shows some comparisons with measurements from five other high-altitude observatories in the European Alps. The results show a surprisingly uniform warming of 0.8°C during the last three decades at the six investigated mountain stations. The long-term snow measurements reveal no change in mid-winter, but decreasing trends (especially since the 1980s) for the solid precipitation ratio, snow fall, snow water equivalent and snow depth during the melt season due to a strong temperature increase of 2.5°C in the spring and summer months of the last three decades.
Black carbon aerosol size in snow.
Schwarz, J P; Gao, R S; Perring, A E; Spackman, J R; Fahey, D W
2013-01-01
The effect of anthropogenic black carbon (BC) aerosol on snow is of enduring interest due to its consequences for climate forcing. Until now, too little attention has been focused on BC's size in snow, an important parameter affecting BC light absorption in snow. Here we present first observations of this parameter, revealing that BC can be shifted to larger sizes in snow than are typically seen in the atmosphere, in part due to the processes associated with BC removal from the atmosphere. Mie theory analysis indicates a corresponding reduction in BC absorption in snow of 40%, making BC size in snow the dominant source of uncertainty in BC's absorption properties for calculations of BC's snow albedo climate forcing. The shift reduces estimated BC global mean snow forcing by 30%, and has scientific implications for our understanding of snow albedo and the processing of atmospheric BC aerosol in snowfall.
NASA Astrophysics Data System (ADS)
Omiya, S.; Sato, A.
2010-12-01
Blowing snow particles are known to have an electrostatic charge. This charge may be a contributing factor in the formation of snow drifts and snow cornices and changing of the trajectory of blowing snow particles. These formations and phenomena can cause natural disaster such as an avalanche and a visibility deterioration, and obstruct transportation during winter season. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The primary factor of charge accumulation to the blowing snow particles is thought to be due to “saltation” of them. The “saltation” is one of movement forms of blowing snow: when the snow particles are transported by the wind, they repeat frictional collisions with the snow surface. In previous studies, charge-to-mass ratios measured in the field were approximately -50 to -10 μC/kg, and in the wind tunnel were approximately -0.8 to -0.1 μC/kg. While there were qualitatively consistent in sign, negative, there were huge gaps quantitatively between them. One reason of those gaps is speculated to be due to differences in fetch. In other words, the difference of the collision frequency of snow particles to the snow surface has caused the gaps. But it is merely a suggestion and that has not been confirmed. The purpose of this experiment is to measure the charge of blowing snow particles focusing on the collision frequency and clarify the relationship between them. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center (NIED, JAPAN). A Faraday cage and an electrometer were used to measure the charge of snow particles. These experiments were conducted over the hard snow surface condition to prevent the erosion of the snow surface and the generation of new snow particles from the surface. The collision frequency of particle was controlled by changing the wind velocity (4.5 to 7 m/s) under the fixed fetch (12m). The number of collisions of particle was converted from the wind velocity using an equation obtained by Kosugi et al. (2004). Blowing snow particles tend to accumulate negative charges gradually with increase of the number of collisions to the snow surface. As a result, it is demonstrated that the gaps between the field values and the wind tunnel ones were due to difference of the collision frequency of snow particles. Assuming a logarithmic relationship as first approximation between the measured charges and the number of collisions, the charge-to-mass ratios will reach roughly the same value which was obtained in the field with several hundreds collisions. For instance, fetch is needed roughly 200m for blowing snow particles to gain -30 μC/kg under the following conditions: air temperature -20 degrees Celsius, wind velocity 7m/s and hard snow surface. REFERENCE: Kosugi et al., (2004): Dependence of drifting snow saltation length on snow surface hardness. Cold Reg. Sci. Technol., 39, 133-139.
Advances in Airborne Altimetric Techniques for the Measurement of Snow on Arctic Sea Ice
NASA Astrophysics Data System (ADS)
Newman, T.; Farrell, S. L.; Richter-Menge, J.; Elder, B. C.; Ruth, J.; Connor, L. N.
2014-12-01
Current sea ice observations and models indicate a transition towards a more seasonal Arctic ice pack with a smaller, and geographically more variable, multiyear ice component. To gain a comprehensive understanding of the processes governing this transition it is important to include the impact of the snow cover, determining the mechanisms by which snow is both responding to and forcing changes to the sea ice pack. Data from NASA's Operation IceBridge (OIB) snow radar system, which has been making yearly surveys of the western Arctic since 2009, offers a key resource for investigating the snow cover. In this work, we characterize the OIB snow radar instrument response to ascertain the location of 'side-lobes', aiding the interpretation of snow radar data. We apply novel wavelet-based techniques to identify the primary reflecting interfaces within the snow pack from which snow depth estimates are derived. We apply these techniques to the range of available snow radar data collected over the last 6 years during the NASA OIB mission. Our results are validated through comparison with a range of in-situ data. We discuss the impact of sea ice surface morphology on snow radar returns (with respect to ice type) and the topographic conditions over which accurate snow-radar-derived snow depths may be obtained. Finally we present improvements to in situ survey design that will allow for both an improved sampling of the snow radar footprint and more accurate assessment of the uncertainties in radar-derived snow depths in the future.
NASA Astrophysics Data System (ADS)
Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Vionnet, Vincent; Guyomarc'h, Gilbert; Heiser, Micha; Nishimura, Kouichi
2015-04-01
Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns. It does not, however, provide a quantitative estimate of changes in snow depths. The objective of our research was to introduce a new parameter to quantify changes in snow depths in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its consistently bi-modal wind directions. Our work focused on two pronounced, approximately 10 m high terrain breaks, and we worked with 1 m resolution digital snow surface models (DSM). The DSM and measured changes in snow depths were obtained with high-accuracy terrestrial laser scan (TLS) measurements. First we calculated the terrain-based parameter Sx on a digital snow surface model and correlated Sx with measured changes in snow-depths (Δ SH). Results showed that Δ SH can be approximated by Δ SHestimated = α * Sx, where α is a newly introduced parameter. The parameter α has shown to be linked to the amount of snow deposited influenced by blowing snow flux. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter α . To simulate the development of the snow surface in dependency of Sx, SPC flux and time, we apply a simple cellular automata system. The system consists of raster cells that develop through discrete time steps according to a set of rules. The rules are based on the states of neighboring cells. Our model assumes snow transport in dependency of Sx gradients between neighboring cells. The cells evolve based on difference quotients between neighbouring cells. Our analyses and results are steps towards using the terrain-based parameter Sx, coupled with SPC data, to quantitatively estimate changes in snow depths, using high raster resolutions of 1 m.
The Effect of Climate Change on Snow Pack at Sleepers River, Vermont, USA
NASA Astrophysics Data System (ADS)
Shanley, J. B.; Chalmers, A.; Denner, J.; Clark, S.
2017-12-01
Sleepers River Research Watershed, a U.S. Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) site in northeastern Vermont, has a 58-year record (since 1959) of snow depth and snow water equivalence (SWE), one of the longest continuous records in eastern North America. Snow measurements occur weekly during the winter at the watershed using an Adirondack type snow tube sampler. Sleepers River averages about 1100 mm of precipitation annually of which 20 to 30 percent falls as snow. Snow cover typically persists from December to April. Length of snow cover and snow depth vary with elevation, aspect, and cover type. Sites include open field, and hardwood and conifer stand clearings from 225 to 630 meters elevation. We evaluated changes in snow depth, snow cover duration, and SWE relative to elevation, soil frost depth, air temperature, total precipitation, and the El Niño - Southern Oscillation (ENSO) cycle. Overall, warmer winter temperatures have resulted in more midwinter thaws, more rain during the winter, and more variable soil frost depth. Trends in snowpack amount and duration were compared to winter-spring streamflow center-of-mass to evaluate if shifts in the snow pack regime were leading to earlier snowmelt.
Simulating Snow in Canadian Boreal Environments with CLASS for ESM-SnowMIP
NASA Astrophysics Data System (ADS)
Wang, L.; Bartlett, P. A.; Derksen, C.; Ireson, A. M.; Essery, R.
2017-12-01
The ability of land surface schemes to provide realistic simulations of snow cover is necessary for accurate representation of energy and water balances in climate models. Historically, this has been particularly challenging in boreal forests, where poor treatment of both snow masking by forests and vegetation-snow interaction has resulted in biases in simulated albedo and snowpack properties, with subsequent effects on both regional temperatures and the snow albedo feedback in coupled simulations. The SnowMIP (Snow Model Intercomparison Project) series of experiments or `MIPs' was initiated in order to provide assessments of the performance of various snow- and land-surface-models at selected locations, in order to understand the primary factors affecting model performance. Here we present preliminary results of simulations conducted for the third such MIP, ESM-SnowMIP (Earth System Model - Snow Model Intercomparison Project), using the Canadian Land Surface Scheme (CLASS) at boreal forest sites in central Saskatchewan. We assess the ability of our latest model version (CLASS 3.6.2) to simulate observed snowpack properties (snow water equivalent, density and depth) and above-canopy albedo over 13 winters. We also examine the sensitivity of these simulations to climate forcing at local and regional scales.
White water: Fifty years of snow research in WRR and the outlook for the future
NASA Astrophysics Data System (ADS)
Sturm, Matthew
2015-07-01
Over the past 50 years, 239 papers related to snow have been published in Water Resources Research (WRR). Seminal papers on virtually every facet of snow physics and snow water resources have appeared in the journal. These include papers on drifting snow, the snow surface energy balance, the effect of grain size on albedo, chemical elution, water movement through snow, and canopy interception. In particular, papers in WRR have explored the distribution of snow across different landscapes, providing data, process knowledge, and the basis for virtually all of the distributed snow models in use today. In this paper, I review these key contributions and provide some personal thoughts on what is likely to be the focus and nature of papers published in the next few decades, a period that is likely to see an increasing ability to map snow cover in detail, which should serve as a basis for the further development and improvement of snow models. It will also be an uncertain future, with profound changes in snow climatology predicted. I expect WRR will continue to play a key role in documenting and understanding these important cryospheric changes.
Spring floods prediction with the use of optical satellite data in Québec
NASA Astrophysics Data System (ADS)
Roy, A.; Royer, A.; Turcotte, R.
2009-04-01
The Centre d'expertise hydrique du Québec (CEHQ) operates a distributed hydrological model, which integrates a snow model, for the management of dams in the south of Québec. It appears that the estimation of the water quantity of snowmelt in spring remains a variable with a large uncertainty and induces generally to an important error in stream flow simulation. Therefore, the National snow and ice center (NSIDC) produces, from MODIS (Moderate Resolution Imaging Spectroradiometer) data, continuous and homogeneous spatial snow cover (snow/swow-free) data on the whole territory, but with a cloud contamination. This research aims to improve the prediction of spring floods and the estimation of the rate of discharge by integrating snow cover data in the CEHQ's snow model. The study is done on two watersheds: du Nord river watershed (45,8°N) and Aux Écorces river watershed (47,9°N). The snow model used in the study (SPH-AV) is an implementation developed by the CEHQ of the snowmelt model of HYDROLTEL in is hydrological forecast system to simulate the melted water. The melted water estimated is then used as input in the empirical hydrological model MOHYSE to simulate stream flow. MODIS data are considered valid only when the cloud cover on each pixel of the watersheds is less then 30%. A pixel by pixel correction is applied to the snow pack when there is a difference between satellite snow cover and modeled snow cover. In the case of model shows to much snow, a factor is applied on temperatures by iterative process (starting from the last valid MODIS data) to melt the snow. In the opposite case, the snow quantity added to the last valid MODIS data is found by iterative process so that the pixel's snow water equivalent is equal to the nonzero neighbor minimum value. The study shows, through the simulations done on the two watersheds, the interest of the use of snow/snow-free product for the operational update of snow water equivalent with the objective to improve spring snowmelt stream flow simulations. The binary aspect (snow/snowfree) of the data is however a limit. Alternatives are discussed (passive microwave data). Keywords : satellite snow cover data, MODIS, satellite data integration, snow model, hydrological model, stream flow simulation, flood.
Snow mechanics and avalanche formation: field experiments on the dynamic response of the snow cover
NASA Astrophysics Data System (ADS)
Schweizer, Jürg; Schneebeli, Martin; Fierz, Charles; Föhn, Paul M. B.
1995-11-01
Knowledge about snow mechanics and snow avalanche formation forms the basis of any hazard mitigation measures. The crucial point is the snow stability. The most relevant mechanical properties - the compressive, tensile and shear strength of the individual snow layers within the snow cover - vary substantially in space and time. Among other things the strength of the snow layers depends strongly on the state of stress and the strain rate. The evaluation of the stability of the snow cover is hence a difficult task involving many extrapolations. To gain insight in the release mechanism of slab avalanches triggered by skiers, the skier's impact is measured with a load cell at different depths within the snow cover and for different snow conditions. The study focused on the effects of the dynamic loading and of the damping by snow compaction. In accordance with earlier finite-element (FE) calculations the results show the importance of the depth of the weak layer or interface and the snow conditions, especially the sublayering. In order to directly measure the impact force and to study the snow properties in more detail, a new instrument, called rammrutsch was developed. It combines the properties of the rutschblock with the defined impact properties of the rammsonde. The mechanical properties are determined using (i) the impact energy of the rammrutsch and (ii) the deformations of the snow cover measured with accelerometers and digital image processing of video sequences. The new method is well suited to detect and to measure the mechanical processes and properties of the fracturing layers. The duration of one test is around 10 minutes and the method seems appropriate for determining the spatial variability of the snow cover. A series of experiments in a forest opening showed a clear difference in the snow stability between sites below trees and ones in the free field of the opening.
NASA Astrophysics Data System (ADS)
Hill, R.; Calvin, W. M.; Harpold, A.
2017-12-01
Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Building on previous retrieval of subpixel snow-covered area algorithms that take into account varying grain size we present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction, and approximate grain size. In addition, varying simulated models of the data will compare and contrast the retrieval of current snow products such as MODIS Snow-Covered Area and Grain Size (MODSCAG) and the Airborne Space Observatory (ASO). Specifically, does lower spatial resolution (MODIS), broader resolution bandwidth (MODIS), and limited spectral resolution (ASO) affect snow-cover area and grain size approximations? The implications of our findings will help refine snow mapping products for planned hyperspectral satellite spectrometer systems such as EnMAP (slated to launch in 2019), HISUI (planned for inclusion on the International Space Station in 2018), and HyspIRI (currently under consideration).
Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography
NASA Astrophysics Data System (ADS)
Pimentel, Rafael; Herrero, Javier; José Polo, María
2017-02-01
Subgrid variability introduces non-negligible scale effects on the grid-based representation of snow. This heterogeneity is even more evident in semiarid regions, where the high variability of the climate produces various accumulation melting cycles throughout the year and a large spatial heterogeneity of the snow cover. This variability in a watershed can often be represented by snow accumulation-depletion curves (ADCs). In this study, terrestrial photography (TP) of a cell-sized area (30 × 30 m) was used to define local snow ADCs at a Mediterranean site. Snow-cover fraction (SCF) and snow-depth (h) values obtained with this technique constituted the two datasets used to define ADCs. A flexible sigmoid function was selected to parameterize snow behaviour on this subgrid scale. It was then fitted to meet five different snow patterns in the control area: one for the accumulation phase and four for the melting phase in a cycle within the snow season. Each pattern was successfully associated with the snow conditions and previous evolution. The resulting ADCs were associated to certain physical features of the snow, which were used to incorporate them in the point snow model formulated by Herrero et al. (2009) by means of a decision tree. The final performance of this model was tested against field observations recorded over four hydrological years (2009-2013). The calibration and validation of this ADC snow model was found to have a high level of accuracy, with global RMSE values of 105.8 mm for the average snow depth and 0.21 m2 m-2 for the snow-cover fraction in the control area. The use of ADCs on the cell scale proposed in this research provided a sound basis for the extension of point snow models to larger areas by means of a gridded distributed calculation.
Improving Snow Modeling by Assimilating Observational Data Collected by Citizen Scientists
NASA Astrophysics Data System (ADS)
Crumley, R. L.; Hill, D. F.; Arendt, A. A.; Wikstrom Jones, K.; Wolken, G. J.; Setiawan, L.
2017-12-01
Modeling seasonal snow pack in alpine environments includes a multiplicity of challenges caused by a lack of spatially extensive and temporally continuous observational datasets. This is partially due to the difficulty of collecting measurements in harsh, remote environments where extreme gradients in topography exist, accompanied by large model domains and inclement weather. Engaging snow enthusiasts, snow professionals, and community members to participate in the process of data collection may address some of these challenges. In this study, we use SnowModel to estimate seasonal snow water equivalence (SWE) in the Thompson Pass region of Alaska while incorporating snow depth measurements collected by citizen scientists. We develop a modeling approach to assimilate hundreds of snow depth measurements from participants in the Community Snow Observations (CSO) project (www.communitysnowobs.org). The CSO project includes a mobile application where participants record and submit geo-located snow depth measurements while working and recreating in the study area. These snow depth measurements are randomly located within the model grid at irregular time intervals over the span of four months in the 2017 water year. This snow depth observation dataset is converted into a SWE dataset by employing an empirically-based, bulk density and SWE estimation method. We then assimilate this data using SnowAssim, a sub-model within SnowModel, to constrain the SWE output by the observed data. Multiple model runs are designed to represent an array of output scenarios during the assimilation process. An effort to present model output uncertainties is included, as well as quantification of the pre- and post-assimilation divergence in modeled SWE. Early results reveal pre-assimilation SWE estimations are consistently greater than the post-assimilation estimations, and the magnitude of divergence increases throughout the snow pack evolution period. This research has implications beyond the Alaskan context because it increases our ability to constrain snow modeling outputs by making use of snow measurements collected by non-expert, citizen scientists.
NASA Astrophysics Data System (ADS)
Dumont, M.; Flin, F.; Malinka, A.; Brissaud, O.; Hagenmuller, P.; Dufour, A.; Lapalus, P.; Lesaffre, B.; Calonne, N.; Rolland du Roscoat, S.; Ando, E.
2017-12-01
Snow optical properties are unique among Earth surface and crucial for a wide range of applications. The bi-directional reflectance, hereafter BRDF, of snow is sensible to snow microstructure. However the complex interplays between different parameters of snow microstructure namely size parameters and shape parameters on reflectance are challenging to disentangle both theoretically and experimentally. An accurate understanding and modelling of snow BRDF is required to correctly process satellite data. BRDF measurements might also provide means of characterizing snow morphology. This study presents one of the very few dataset that combined bi-directional reflectance measurements over 500-2500 nm and X-ray tomography of the snow microstructure for three different snow samples and two snow types. The dataset is used to evaluate the approach from Malinka, 2014 that relates snow optical properties to the chord length distribution in the snow microstructure. For low and medium absorption, the model accurately reproduces the measurements but tends to slightly overestimate the anisotropy of the reflectance. The model indicates that the deviation of the ice chord length distribution from an exponential distribution, that can be understood as a characterization of snow types, does not impact the reflectance for such absorptions. The simulations are also impacted by the uncertainties in the ice refractive index values. At high absorption and high viewing/incident zenith angle, the simulations and the measurements disagree indicating that some of the assumptions made in the model are not met anymore. The study also indicates that crystal habits might play a significant role for the reflectance under such geometries and wavelengths. However quantitative relationship between crystal habits and reflectance alongside with potential optical methodologies to classify snow morphology would require an extended dataset over more snow types. This extended dataset can likely be obtained thanks to the use of ray tracing models on tomography images of the snow microstructure.
NASA Astrophysics Data System (ADS)
Suzuki, K.; Sasaki, A.
2013-12-01
In the Japanese Alps region, large amounts of precipitation in the form of snow constitute a more important water resource than rain. During the winter, precipitation that is deposited as snowfall accumulates in the river basins, and it forms natural dams known as 'white dams.' A quantitative understanding of snow depth distribution in these mountainous areas is important not only for evaluating water resource volume, but also for understanding the effects of snow in terms of its impact on landforms and its effect on the distribution of vegetation. However, it is not easy to perform a quantitative evaluation of snow depth distribution in mountainous areas. Several methods have been proposed for clarifying snow depth distribution. The most widely used of these is a method of inserting a sounding rod into the snow to measure its depth at each geographic position. Another method is to dig a trench in the snow and then perform an observational measurement of the side of the trench. These methods enable accurate measurement of the snow depth; however, when the snow is several meters deep, the methods may be limited by the measuring capacity of the equipment, or by the time restrictions of the survey. For these reasons, wide area measurement of the spatial distribution of snow is very difficult, and it is not suitable for investigating snow depth distribution in river basins. There is a method of using ultrasonics or radar to measure the depth of snow and to make observations of snow depth at certain positions. This method offers high measurement precision and high time resolution at the observation points. However, for observations in areas of very deep snow, it becomes technically difficult to install the equipment, and it is difficult to make a large number of installations to cover a wide area. There are also methods of indirectly measuring snow depth. One of these is to use aerial photographs taken when there is no snow cover and when there is snow cover, draw contour lines, and then use the difference between them to clarify the snow depth. This method allows researchers to grasp the snow depth over a wide area, but it needs to be made more precise if it is to incorporate high-precision information on equivalent elevation points on the snow surface. In recent years, a measurement technology has been developed that uses laser scanners mounted on aircraft. This method enables researchers to obtain ground surface coordinate data with high precision over a wide area from the air. Using such a scanner to measure the ground surface during snow coverage and during no snow coverage, and then finding the differences between the surface elevations, has made it possible to ascertain snow depth with high precision. Airborne laser measurement enables high-precision measurements over a wide area and in a short amount of time, and measurements can be made regardless of geographical factors such as sloping ground. As such, it enables measurement of snow depth distribution over a wide area without having to worry about the undulations of the land. In this study, airborne laser scanning was carried out on the snow surface in the upstream region of the Kamikochi-Azusa River in Japan on March 29, 2012, in order to clarify the snow depth distribution.
NASA Astrophysics Data System (ADS)
Barth, Thierry; Saulnier, Georges-Marie; Malet, Emmanuel
2010-05-01
The 22th August 2005, an important flash flood happened on the Vorz torrent (Belledonne Moutain, Alps region, France). The village of Saint-Agnès downstream this torrent was hit leading to 7 millions Euros of damages. Civil authorities launched then a research program to evaluate the expected changes of the frequency of such events considering climatic changes. Such upslope mountainous catchments are often the main source of drinkable water resources for these high-elevated villages (for example the Saint-Agnès village uses the water of the Freydanne glacier embedded within the Vorz catchment). Then, this project aims also to consider the entire hydrological cycle and not only hazardous events. This research program includes obviously modelling work packages. But relevant modelling cannot be reached without minimal amount of data, which are always very difficult to obtain in mountainous regions. This particular issue is addressed in this communication. Many sources and different kinds of data are needed to feed and corroborate hydrological and snow melting simulations models. However, the principal problem in mountain area is the energy consuming, the collecting and the saving of data. The second problem is the important spatial variability of the meteorological parameters and their sampling in extremes conditions. Finally, it is wished that the sensor network remains as much money-saving as possible. Within the Vorz catchment, meteorological forcing variables (temperatures, rainfall and snow stock) are measured as well as the hydrological closing budget with one discharge station at its outlet. All the sensors were spreaded within the catchment at various elevations ranging from 900 to 2500meters. The flow is estimated using an original sensor based on a continuous video monitoring of the torrent. The river height and the surface velocities are then automatically estimated every 5 minutes. Supplementary information regarding the topography of the cross section allow then a reasonably accurate discharge measurement with a captor that remains sheltered from the hazardous floods, as it is not immersed in the torrent. 50 temperature sensors were installed within the catchment: 22 installed 2-3 meter above the soil surface and 16 installed 5cm under the soil surface. Rainfalls are sampled using three rain gauges for liquid rainfall and three cumulative snow gauges (at 1250, 1950 and 2200 meters). Solar radiation is also sampled. The last important variable that is measured is the snow cover on the catchment. Generally this snow cover is present between November and June in the top of the catchment. The snow cover is calculated using terrestrial pictures taken by two cameras able to shot up to six pictures per day (from 8.00am to 8.00pm). It is then possible to build the snow cover cartography of the catchment at 1 meter spatial resolution in the sampling zone and to accurately observe the spatial distribution of the snow during the melting period. Instrumentation in mountain area is a very difficult task with many sources of uncertainties and technicals challenges. The strategy that will be discussed in this presentation wish to multiply the number of measure points at "low" costs. The dense network of different types of measures is expected to compensate the uncertainty in the rainfall measurements within mountainous regions.
In Situ Observations of Snow Metamorphosis Acceleration Induced by Dust and Black Carbon
NASA Astrophysics Data System (ADS)
Schneider, A. M.; Flanner, M.
2017-12-01
Previous studies demonstrate the dependence of shortwave infrared (SWIR) reflectance on snow specific surface area (SSA) and others examine the direct darkening effect dust and black carbon (BC) deposition has on snow and ice-covered surfaces. The extent to which these light absorbing aerosols (LAAs) accelerate snow metamorphosis, however, is challenging to assess in situ as measurement techniques easily disturb snowpack. Here, we use two Near-Infrared Emitting Reflectance Domes (NERDs) to measure 1300 and 1550nm bidirectional reflectance factors (BRFs) of natural snow and experimental plots with added dust and BC. We obtain NERD measurements and subsequently collect and transport snow samples to the nearby U.S. Army Corps of Engineers' Cold Regions Research and Engineering Lab for micro computed tomography (micro-CT) analysis. Snow 1300 (1550) nm BRFs evolve from 0.6 (0.15) in fresh snow to 0.2 (0.03) after metamorphosis. Hourly-scale time evolving snow surface BRFs and SSA estimates from micro-CT reveal more rapid SWIR darkening and snow metamorphosis in contaminated versus natural plots. Cloudiness and high wind speeds can completely obscure these results if LAAs mobilize before absorbing enough radiant energy. These findings verify experimentally that dust and BC deposition can accelerate snow metamorphosis and enhance snow albedo feedback in sunny, calm weather conditions. Although quantifying the enhancement of snow albedo feedback induced by LAAs requires further surface temperature, solar irradiance, and impurity concentration measurements, this study provides experimental verification of positive feedback occurring where dust and BC accelerate snow metamorphosis.
NASA Technical Reports Server (NTRS)
Foster, J. L.; Hall, D. K.; Kelly, R. E. J.; Chiu, L.
2008-01-01
Seasonal snow cover in South America was examined in this study using passive microwave satellite data from the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7 satellite and the Special Sensor Microwave Imagers (SSM/I) onboard Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1979-2006, both snow cover extent and snow water equivalent (snow mass) were investigated during the coldest months (May-September), primarily in the Patagonia area of Argentina and in the Andes of Chile, Argentina and Bolivia, where most of the seasonal snow is found. Since winter temperatures in this region are often above freezing, the coldest winter month was found to be the month having the most extensive snow cover and usually the month having the deepest snow cover as well. Sharp year-to-year differences were recorded using the passive microwave observations. The average snow cover extent for July, the month with the greatest average extent during the 28-year period of record, is 321,674 km(exp 2). In July of 1984, the average monthly snow cover extent was 701,250 km(exp 2) the most extensive coverage observed between 1979 and 2006. However, in July of 1989, snow cover extent was only 120,000 km(exp 2). The 28-year period of record shows a sinusoidal like pattern for both snow cover and snow mass, though neither trend is significant at the 95% level.
Snow Water Equivalent estimation based on satellite observation
NASA Astrophysics Data System (ADS)
Macchiavello, G.; Pesce, F.; Boni, G.; Gabellani, S.
2009-09-01
The availability of remotely sensed images and them analysis is a powerful tool for monitoring the extension and typology of snow cover over territory where the in situ measurements are often difficult. Information on snow are fundamental for monitoring and forecasting the available water above all in regions at mid latitudes as Mediterranean where snowmelt may cause floods. The hydrological model requirements and the daily acquisitions of MODIS (Moderate Resolution Imaging Spectroradiometer), drove, in previous research activities, to the development of a method to automatically map the snow cover from multi-spectral images. But, the major hydrological parameter related to the snow pack is the Snow Water Equivalent (SWE). This represents a direct measure of stored water in the basin. Because of it, the work was focused to the daily estimation of SWE from MODIS images. But, the complexity of this aim, based only on optical data, doesn’t find any information in literature. Since, from the spectral range of MODIS data it is not possible to extract a direct relation between spectral information and the SWE. Then a new method, respectful of the physic of the snow, was defined and developed. Reminding that the snow water equivalent is the product of the three factors as snow density, snow depth and the snow covered areas, the proposed approach works separately on each of these physical behaviors. Referring to the physical characteristic of snow, the snow density is function of the snow age, then it was studied a new method to evaluate this. Where, a module for snow age simulation from albedo information was developed. It activates an age counter updated by new snow information set to estimate snow age from zero accumulation status to the end of melting season. The height of the snow pack, can be retrieved by adopting relation between vegetation and snow depth distributions. This computes snow height distribution by the relation between snow cover fraction and the forest canopy density. Finally, the SWE has to be calculated for the snow covered areas, detected by means of a previously developed decision tree classifier able to classify snow cover by self selecting rules in a statistically optimum way. The advantages introduced from this work are many. Firstly, applying a suitable method with data features, it is possible to automatically obtain snow cover description with high frequency. Moreover, the advantages of the modularity in the proposed approach allows to improve the three factors estimation in an independent way. Limitations lie into clouds problem that affects results by obscuring the observed territory, that is bounded by fusing temporal and spatial information. Then the spatial resolution of data, satisfactory with the scale of hydrological models, mismatch with the available in situ point information, causing difficulties for a method validation or calibration. However this working flow results computationally cost-effectiveness, robust to the radiometric noise of the original data, provides spatially extended and frequent information.
The significance of vertical moisture diffusion on drifting snow sublimation near snow surface
NASA Astrophysics Data System (ADS)
Huang, Ning; Shi, Guanglei
2017-12-01
Sublimation of blowing snow is an important parameter not only for the study of polar ice sheets and glaciers, but also for maintaining the ecology of arid and semi-arid lands. However, sublimation of near-surface blowing snow has often been ignored in previous studies. To study sublimation of near-surface blowing snow, we established a sublimation of blowing snow model containing both a vertical moisture diffusion equation and a heat balance equation. The results showed that although sublimation of near-surface blowing snow was strongly reduced by a negative feedback effect, due to vertical moisture diffusion, the relative humidity near the surface does not reach 100 %. Therefore, the sublimation of near-surface blowing snow does not stop. In addition, the sublimation rate near the surface is 3-4 orders of magnitude higher than that at 10 m above the surface and the mass of snow sublimation near the surface accounts for more than half of the total snow sublimation when the friction wind velocity is less than about 0.55 m s-1. Therefore, the sublimation of near-surface blowing snow should not be neglected.
On charging of snow particles in blizzard
NASA Technical Reports Server (NTRS)
Shio, Hisashi
1991-01-01
The causes of the charge polarity on the blizzard, which consisted of fractured snow crystals and ice particles, were investigated. As a result, the charging phenomena showed that the characteristics of the blizzard are as follows: (1) In the case of the blizzard with snowfall, the fractured snow particles drifting near the surface of snow field (lower area: height 0.3 m) had positive charge, while those drifting at higher area (height 2 m) from the surface of snow field had negative charge. However, during the series of blizzards two kinds of particles positively and negatively charged were collected in equal amounts in a Faraday Cage. It may be considered that snow crystals with electrically neutral properties were separated into two kinds of snow flakes (charged positively and negatively) by destruction of the snow crystals. (2) In the case of the blizzard which consisted of irregularly formed ice drops (generated by peeling off the hardened snow field), the charge polarity of these ice drops salting over the snow field was particularly controlled by the crystallographic characteristics of the surface of the snow field hardened by the powerful wind pressure.
Some relationships among air, snow, and soil temperatures and soil frost
George Hart; Howard W. Lull
1963-01-01
Each winter gives examples of the insulating properties of snow cover. Seeds and soil fauna are protected from the cold by snow. Underground water pipes are less likely to freeze under snow cover. And, according to many observers, the occurrence, penetration, and thaw of soil frost are affected by snow cover. The depth of snow necessary to protect soil from freezing...
Factors Impacting Spatial Patterns of Snow Distribution in a Small Catchment near Nome, AK
NASA Astrophysics Data System (ADS)
Chen, M.; Wilson, C. J.; Charsley-Groffman, L.; Busey, R.; Bolton, W. R.
2017-12-01
Snow cover plays an important role in the climate, hydrology and ecological systems of the Arctic due to its influence on the water balance, thermal regimes, vegetation and carbon flux. Thus, snow depth and coverage have been key components in all the earth system models but are often poorly represented for arctic regions, where fine scale snow distribution data is sparse. The snow data currently used in the models is at coarse resolution, which in turn leads to high uncertainty in model predictions. Through the DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic, high resolution snow distribution data is being developed and applied in catchment scale models to ultimately improve representation of snow and its interactions with other model components in the earth system models . To improve these models, it is important to identify key factors that control snow distribution and quantify the impacts of those factors on snow distribution. In this study, two intensive snow depth surveys (1 to 10 meters scale) were conducted for a 2.3 km2 catchment on the Teller road, near Nome, AK in the winter of 2016 and 2017. We used a statistical model to quantify the impacts of vegetation types, macro-topography, micro-topography, and meteorological parameters on measured snow depth. The results show that snow spatial distribution was similar between 2016 and 2017, snow depth was spatially auto correlated over small distance (2-5 meters), but not spatially auto correlated over larger distance (more than 2-5 meters). The coefficients of variation of snow depth was above 0.3 for all the snow survey transects (500-800 meters long). Variation of snow depth is governed by vegetation height, aspect, slope, surface curvature, elevation and wind speed and direction. We expect that this empirical statistical model can be used to estimate end of winter snow depth for the whole watershed and will further develop the model using data from other arctic regions to estimate seasonally dynamic snow coverage and properties for use in catchment scale to pan-Arctic models.
NASA Astrophysics Data System (ADS)
Tomaszewska, M. A.; Henebry, G. M.
2017-12-01
The vertical transhumance practiced by herders in the highlands of Kyrgyzstan is vulnerable to environmental change. Herd movements and pasture conditions are both affected by spatial and temporal variations in snow cover and the timing of snowmelt. Early growing season soil moisture conditions affect the phenology and growth of vegetation, especially in the high elevation pastures used for summer forage. To evaluate snow seasonality, we examined three snow cover variables—the first day of snow (FDoS), the last day of snow (LDoS), and the duration of snow cover (DoSC) over 17 years based on 8-day snow product from MODIS Terra and Aqua (MOD/MYD10A2) across the Kyrgyz Republic (KYR). To track the "snow season" efficiently in the presence of snow-capped peaks, we start each snow season at day of year (DOY) 169, approximately the summer solstice, and extend to DOY 168 of the following year. To track the interannual variation of these variables, we applied two nonparametric statistics: the Mann-Kendall trend test and the Theil-Sen linear trend estimator. Our preliminary results focusing on four rayons in two oblasts indicate both large swaths of positive and negative significant trends over the different regions of the country. Positive trends in FDoS, meaning later snow arrival, were detected in parts of central KYR. Negative trends in FDoS meaning earlier arrival were detected at lower elevations in southwestern KYR. Earlier snowmelt (negative trend in LDoS) in eastern KYR resulted in a shorter snow season (negative trend in DoSC); in contrast, later snowmelt in southwestern KYR (positive trend in LDoS) resulted in a longer period of snow cover (positive trend of DoSC). We extend the analysis to the entire country and explore the influence of terrain attribites (elevation, slope, and aspect) and MODIS IGBP land cover type (MCD12Q1) on trends in snow cover seasonality. Additionally, we ran the trend tests for the Terra and Aqua snow products separately to evaluate the effect of overpass time on snow cover retrieval.
NASA Astrophysics Data System (ADS)
Bouffon, T.; Rice, R.; Bales, R.
2006-12-01
The spatial distributions of snow water equivalent (SWE) and snow depth within a 1, 4, and 16 km2 grid element around two automated snow pillows in a forested and open- forested region of the Upper Merced River Basin (2,800 km2) of Yosemite National Park were characterized using field observations and analyzed using binary regression trees. Snow surveys occurred at the forested site during the accumulation and ablation seasons, while at the open-forest site a survey was performed only during the accumulation season. An average of 130 snow depth and 7 snow density measurements were made on each survey, within the 4 km2 grid. Snow depth was distributed using binary regression trees and geostatistical methods using the physiographic parameters (e.g. elevation, slope, vegetation, aspect). Results in the forest region indicate that the snow pillow overestimated average SWE within the 1, 4, and 16 km2 areas by 34 percent during ablation, but during accumulation the snow pillow provides a good estimate of the modeled mean SWE grid value, however it is suspected that the snow pillow was underestimating SWE. However, at the open forest site, during accumulation, the snow pillow was 28 percent greater than the mean modeled grid element. In addition, the binary regression trees indicate that the independent variables of vegetation, slope, and aspect are the most influential parameters of snow depth distribution. The binary regression tree and multivariate linear regression models explain about 60 percent of the initial variance for snow depth and 80 percent for density, respectively. This short-term study provides motivation and direction for the installation of a distributed snow measurement network to fill the information gap in basin-wide SWE and snow depth measurements. Guided by these results, a distributed snow measurement network was installed in the Fall 2006 at Gin Flat in the Upper Merced River Basin with the specific objective of measuring accumulation and ablation across topographic variables with the aim of providing guidance for future larger scale observation network designs.
NASA Astrophysics Data System (ADS)
Maurer, T.; Avanzi, F.; Oroza, C.; Malek, S. A.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.
2017-12-01
We use data gathered from Wireless Sensor Networks (WSNs) between 2008 and 2017 to investigate the temporal/spatial patterns of rain-on-snow events in three river basins of California's Sierra Nevada. Rain-on-snow transitions occur across a broad elevation range (several hundred meters), both between storms and within a given storm, creating an opportunity to use spatially and temporally dense data to forecast and study them. WSNs collect snow depth; meteorological data; and soil moisture and temperature data across relatively dense sensor clusters. Ten to twelve measurement nodes per cluster are placed across 1-km2 areas in locations representative of snow patterns at larger scales. Combining precipitation and snow data from snow-pillow and climate stations with an estimation of dew-point temperature from WSNs, we determine the frequency, timing, and geographic extent of rain-on-snow events. We compare these results to WSN data to evaluate the impact of rain-on-snow events on snowpack energy balance, density, and depth as well as on soil moisture. Rain-on-snow events are compared to dry warm-weather days to identify the relative importance of rain and radiation as the primary energy input to the snowpack for snowmelt generation. An intercomparison of rain-on-snow events for the WSNs in the Feather, American, and Kings River basins captures the behavior across a 2° latitudinal range of the Sierra Nevada. Rain-on-snow events are potentially a more important streamflow generation mechanism in the lower-elevation Feather River basin. Snowmelt response to rain-on-snow events changes throughout the wet season, with later events resulting in more melt due to snow isothermal conditions, coarser grain size, and more-homogeneous snow stratigraphy. Regardless of snowmelt response, rain-on-snow events tend to result in decreasing snow depth and a corresponding increase in snow density. Our results demonstrate that strategically placed WSNs can provide the necessary data at high temporal resolution to investigate how hydrologic responses evolve in both space and time, data not available from operational networks.
Utilizing Multiple Datasets for Snow Cover Mapping
NASA Technical Reports Server (NTRS)
Tait, Andrew B.; Hall, Dorothy K.; Foster, James L.; Armstrong, Richard L.
1999-01-01
Snow-cover maps generated from surface data are based on direct measurements, however they are prone to interpolation errors where climate stations are sparsely distributed. Snow cover is clearly discernable using satellite-attained optical data because of the high albedo of snow, yet the surface is often obscured by cloud cover. Passive microwave (PM) data is unaffected by clouds, however, the snow-cover signature is significantly affected by melting snow and the microwaves may be transparent to thin snow (less than 3cm). Both optical and microwave sensors have problems discerning snow beneath forest canopies. This paper describes a method that combines ground and satellite data to produce a Multiple-Dataset Snow-Cover Product (MDSCP). Comparisons with current snow-cover products show that the MDSCP draws together the advantages of each of its component products while minimizing their potential errors. Improved estimates of the snow-covered area are derived through the addition of two snow-cover classes ("thin or patchy" and "high elevation" snow cover) and from the analysis of the climate station data within each class. The compatibility of this method for use with Moderate Resolution Imaging Spectroradiometer (MODIS) data, which will be available in 2000, is also discussed. With the assimilation of these data, the resolution of the MDSCP would be improved both spatially and temporally and the analysis would become completely automated.
Grey Tienshan Urumqi Glacier No.1 and light-absorbing impurities.
Ming, Jing; Xiao, Cunde; Wang, Feiteng; Li, Zhongqin; Li, Yamin
2016-05-01
The Tienshan Urumqi Glacier No.1 (TUG1) usually shows "grey" surfaces in summers. Besides known regional warming, what should be responsible for largely reducing its surface albedo and making it look "grey"? A field campaign was conducted on the TUG1 on a selected cloud-free day of 2013 after a snow fall at night. Fresh and aged snow samples were collected in the field, and snow densities, grain sizes, and spectral reflectances were measured. Light-absorbing impurities (LAIs) including black carbon (BC) and dust, and number concentrations and sizes of the insoluble particles (IPs) in the samples were measured in the laboratory. High temperatures in summer probably enhanced the snow ageing. During the snow ageing process, the snow density varied from 243 to 458 kg m(-3), associated with the snow grain size varying from 290 to 2500 μm. The concentrations of LAIs in aged snow were significantly higher than those in fresh snow. Dust and BC varied from 16 ppm and 25 ppb in fresh snow to 1507 ppm and 1738 ppb in aged snow, respectively. Large albedo difference between the fresh and aged snow suggests a consequent forcing of 180 W m(-2). Simulations under scenarios show that snow ageing, BC, and dust were responsible for 44, 25, and 7 % of the albedo reduction in the accumulation zone, respectively.
Frost resistance in alpine woody plants.
Neuner, Gilbert
2014-01-01
This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.
Frost resistance in alpine woody plants
Neuner, Gilbert
2014-01-01
This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone. PMID:25520725
Role of Tibetan Buddhist monasteries in snow leopard conservation.
Li, Juan; Wang, Dajun; Yin, Hang; Zhaxi, Duojie; Jiagong, Zhala; Schaller, George B; Mishra, Charudutt; McCarthy, Thomas M; Wang, Hao; Wu, Lan; Xiao, Lingyun; Basang, Lamao; Zhang, Yuguang; Zhou, Yunyun; Lu, Zhi
2014-02-01
The snow leopard (Panthera uncia) inhabits the rugged mountains in 12 countries of Central Asia, including the Tibetan Plateau. Due to poaching, decreased abundance of prey, and habitat degradation, it was listed as endangered by the International Union for Conservation of Nature in 1972. Current conservation strategies, including nature reserves and incentive programs, have limited capacities to protect snow leopards. We investigated the role of Tibetan Buddhist monasteries in snow leopard conservation in the Sanjiangyuan region in China's Qinghai Province on the Tibetan Plateau. From 2009 to 2011, we systematically surveyed snow leopards in the Sanjiangyuan region. We used the MaxEnt model to determine the relation of their presence to environmental variables (e.g., elevation, ruggedness) and to predict snow leopard distribution. Model results showed 89,602 km(2) of snow leopard habitat in the Sanjiangyuan region, of which 7674 km(2) lay within Sanjiangyuan Nature Reserve's core zones. We analyzed the spatial relation between snow leopard habitat and Buddhist monasteries and found that 46% of monasteries were located in snow leopard habitat and 90% were within 5 km of snow leopard habitat. The 336 monasteries in the Sanjiangyuan region could protect more snow leopard habitat (8342 km(2) ) through social norms and active patrols than the nature reserve's core zones. We conducted 144 household interviews to identify local herders' attitudes and behavior toward snow leopards and other wildlife. Most local herders claimed that they did not kill wildlife, and 42% said they did not kill wildlife because it was a sin in Buddhism. Our results indicate monasteries play an important role in snow leopard conservation. Monastery-based snow leopard conservation could be extended to other Tibetan Buddhist regions that in total would encompass about 80% of the global range of snow leopards. © 2013 Society for Conservation Biology.
Experimental measurement and modeling of snow accumulation and snowmelt in a mountain microcatchment
NASA Astrophysics Data System (ADS)
Danko, Michal; Krajčí, Pavel; Hlavčo, Jozef; Kostka, Zdeněk; Holko, Ladislav
2016-04-01
Fieldwork is a very useful source of data in all geosciences. This naturally applies also to the snow hydrology. Snow accumulation and snowmelt are spatially very heterogeneous especially in non-forested, mountain environments. Direct field measurements provide the most accurate information about it. Quantification and understanding of processes, that cause these spatial differences are crucial in prediction and modelling of runoff volumes in spring snowmelt period. This study presents possibilities of detailed measurement and modeling of snow cover characteristics in a mountain experimental microcatchment located in northern part of Slovakia in Western Tatra mountains. Catchment area is 0.059 km2 and mean altitude is 1500 m a.s.l. Measurement network consists of 27 snow poles, 3 small snow lysimeters, discharge measurement device and standard automatic weather station. Snow depth and snow water equivalent (SWE) were measured twice a month near the snow poles. These measurements were used to estimate spatial differences in accumulation of SWE. Snowmelt outflow was measured by small snow lysimeters. Measurements were performed in winter 2014/2015. Snow water equivalent variability was very high in such a small area. Differences between particular measuring points reached 600 mm in time of maximum SWE. The results indicated good performance of a snow lysimeter in case of snowmelt timing identification. Increase of snowmelt measured by the snow lysimeter had the same timing as increase in discharge at catchment's outlet and the same timing as the increase in air temperature above the freezing point. Measured data were afterwards used in distributed rainfall-runoff model MIKE-SHE. Several methods were used for spatial distribution of precipitation and snow water equivalent. The model was able to simulate snow water equivalent and snowmelt timing in daily step reasonably well. Simulated discharges were slightly overestimated in later spring.
Observation of Snow cover glide on Sub-Alpine Coniferous Forests in Mount Zao, Northeastern Japan
NASA Astrophysics Data System (ADS)
Sasaki, A.; Suzuki, K.
2017-12-01
This is the study to clarify the snow cover glide behavior in the sub-alpine coniferous forests on Mount Zao, Northeastern Japan, in the winter of 2014-2015. We installed the glide-meter which is sled type, and measured the glide motion on the slope of Abies mariesii forest and its surrounding slope. In addition, we observed the air temperature, snow depth, density of snow, and snow temperature to discuss relationship between weather conditions and glide occurrence. The snow cover of the 2014-15 winter started on November 13th and disappeared on April 21st. The maximum snow depth was 242 cm thick, it was recorded at February 1st. The snow cover glide in the surrounding slope was occurred first at February 10th, although maximum snow depth recorded on February 1st. The glide motion in the surrounding slope is continuing and its velocity was 0.4 cm per day. The glide in the surrounding slope stopped at March 16th. The cumulative amount of the glide was 21.1 cm. The snow cover glide in the A. mariesii forest was even later occurred first at February 21st. The glide motion of it was intermittent and extremely small. On sub-alpine zone of Mount Zao, snow cover glide intensity is estimated to be 289 kg/m2 on March when snow water equivalent is maximum. At same period, maximum snow cover glide intensity is estimated to be about 1000 kg/m2 at very steep slopes where the slope angle is about 35 degree. Although potential of snow cover glide is enough high, the snow cover glide is suppressed by stem of A. mariesii trees, in the sub-alpine coniferous forest.
New estimates of changes in snow cover over Russia in recent decades
NASA Astrophysics Data System (ADS)
Bulygina, O.; Korshunova, N.; Razuvaev, V.; Groisman, P. Y.
2017-12-01
Snow covers plays critical roles in the energy and water balance of the Earth through its unique physical properties (high reflectivity and low thermal conductivity) and water storage. The main objective of this research is to monitoring snow cover change in Russia. The estimates of changes of major snow characteristics (snow cover duration, maximum winter snow depth, snow water equivalent) are described. Apart from the description of long-term averages of snow characteristics, the estimates of their change that are averaged over quasi-homogeneous climatic regions are derived and regional differences in the change of snow characteristics are studied. We used in our study daily snow observations for 820 Russian meteorological station from 1966 to 2017. All of these meteorological stations are of unprotected type. The water equivalent is analyzed from snow course survey data at 958 meteorological stations from 1966 to 2017. The time series are prepared by RIHMI-WDC. Regional analysis of snow cover data was carried out using quasi-homogeneous climatic regions. The area-averaging technique using station values converted to anomalies with respect to a common reference period (in this study, 1981-2010). Anomalies were arithmetically averaged first within 1°N x 2°E grid cells and thereafter by a weighted average value derived over the quasi-homogeneous climatic regions. This approach provides a more uniform spatial field for averaging. By using a denser network of meteorological stations, bringing into consideration snow course data and, we managed to specify changes in all observed major snow characteristics and to obtain estimates generalized for quasi-homogeneous climatic regions. The detected changes in the dates of the establishment and disappearance of the snow cover.
Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation
NASA Technical Reports Server (NTRS)
Kwon, Yonghwan; Yang, Zong-Liang; Zhao, Long; Hoar, Timothy J.; Toure, Ally M.; Rodell, Matthew
2016-01-01
This paper addresses continental-scale snow estimates in North America using a recently developed snow radiance assimilation (RA) system. A series of RA experiments with the ensemble adjustment Kalman filter are conducted by assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature T(sub B) at 18.7- and 36.5-GHz vertical polarization channels. The overall RA performance in estimating snow depth for North America is improved by simultaneously updating the Community Land Model, version 4 (CLM4), snow/soil states and radiative transfer model (RTM) parameters involved in predicting T(sub B) based on their correlations with the prior T(sub B) (i.e., rule-based RA), although degradations are also observed. The RA system exhibits a more mixed performance for snow cover fraction estimates. Compared to the open-loop run (0.171m RMSE), the overall snow depth estimates are improved by 1.6% (0.168m RMSE) in the rule-based RA whereas the default RA (without a rule) results in a degradation of 3.6% (0.177mRMSE). Significant improvement of the snow depth estimates in the rule-based RA as observed for tundra snow class (11.5%, p < 0.05) and bare soil land-cover type (13.5%, p < 0.05). However, the overall improvement is not significant (p = 0.135) because snow estimates are degraded or marginally improved for other snow classes and land covers, especially the taiga snow class and forest land cover (7.1% and 7.3% degradations, respectively). The current RA system needs to be further refined to enhance snow estimates for various snow types and forested regions.
NASA Astrophysics Data System (ADS)
He, M.; Hogue, T. S.; Franz, K.; Margulis, S. A.; Vrugt, J. A.
2009-12-01
The National Weather Service (NWS), the agency responsible for short- and long-term streamflow predictions across the nation, primarily applies the SNOW17 model for operational forecasting of snow accumulation and melt. The SNOW17-forecasted snowmelt serves as an input to a rainfall-runoff model for streamflow forecasts in snow-dominated areas. The accuracy of streamflow predictions in these areas largely relies on the accuracy of snowmelt. However, no direct snowmelt measurements are available to validate the SNOW17 predictions. Instead, indirect measurements such as snow water equivalent (SWE) measurements or discharge are typically used to calibrate SNOW17 parameters. In addition, the forecast practice is inherently deterministic, lacking tools to systematically address forecasting uncertainties (e.g., uncertainties in parameters, forcing, SWE and discharge observations, etc.). The current research presents an Integrated Uncertainty analysis and Ensemble-based data Assimilation (IUEA) framework to improve predictions of snowmelt and discharge while simultaneously providing meaningful estimates of the associated uncertainty. The IUEA approach uses the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) to simultaneously estimate uncertainties in model parameters, forcing, and observations. The robustness and usefulness of the IUEA-SNOW17 framework is evaluated for snow-dominated watersheds in the northern Sierra Mountains, using the coupled IUEA-SNOW17 and an operational soil moisture accounting model (SAC-SMA). Preliminary results are promising and indicate successful performance of the coupled IUEA-SNOW17 framework. Implementation of the SNOW17 with the IUEA is straightforward and requires no major modification to the SNOW17 model structure. The IUEA-SNOW17 framework is intended to be modular and transferable and should assist the NWS in advancing the current forecasting system and reinforcing current operational forecasting skill.
NASA Astrophysics Data System (ADS)
Varade, D. M.; Dikshit, O.
2017-12-01
Modeling and forecasting of snowmelt runoff are significant for understanding the hydrological processes in the cryosphere which requires timely information regarding snow physical properties such as liquid water content and density of snow in the topmost layer of the snowpack. Both the seasonal runoffs and avalanche forecasting are vastly dependent on the inherent physical characteristics of the snowpack which are conventionally measured by field surveys in difficult terrains at larger impending costs and manpower. With advances in remote sensing technology and the increase in the availability of satellite data, the frequency and extent of these surveys could see a declining trend in future. In this study, we present a novel approach for estimating snow wetness and snow density using visible and infrared bands that are available with most multi-spectral sensors. We define a trapezoidal feature space based on the spectral reflectance in the near infrared band and the Normalized Differenced Snow Index (NDSI), referred to as NIR-NDSI space, where dry snow and wet snow are observed in the left diagonal upper and lower right corners, respectively. The corresponding pixels are extracted by approximating the dry and wet edges which are used to develop a linear physical model to estimate snow wetness. Snow density is then estimated using the modeled snow wetness. Although the proposed approach has used Sentinel-2 data, it can be extended to incorporate data from other multi-spectral sensors. The estimated values for snow wetness and snow density show a high correlation with respect to in-situ measurements. The proposed model opens a new avenue for remote sensing of snow physical properties using multi-spectral data, which were limited in the literature.
NASA Technical Reports Server (NTRS)
Picard, Ghislain; Brucker, Ludovic; Roy, Alexandre; DuPont, FLorent; Champollion, Nicolas; Morin, Samuel
2014-01-01
Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer).
NASA Astrophysics Data System (ADS)
Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf; Debernard, Jens B.
2017-12-01
Snow consists of non-spherical grains of various shapes and sizes. Still, in radiative transfer calculations, snow grains are often treated as spherical. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this study, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of three non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (0.77-0.78 in the visible region) than in the spherical case ( ≈ 0.89). Therefore, for the same effective snow grain size (or equivalently, the same specific projected area), the snow broadband albedo is higher when assuming non-spherical rather than spherical snow grains, typically by 0.02-0.03. Considering the spherical case as the baseline, this results in an instantaneous negative change in net shortwave radiation with a global-mean top-of-the-model value of ca. -0.22 W m-2. Although this global-mean radiative effect is rather modest, the impacts on the climate simulated by NorESM are substantial. The global annual-mean 2 m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further demonstrated that the effect of snow grain shape could be largely offset by adjusting the snow grain size. When assuming non-spherical snow grains with the parameterized grain size increased by ca. 70 %, the climatic differences to the SPH experiment become very small. Finally, the impact of assumed snow grain shape on the radiative effects of absorbing aerosols in snow is discussed.
Designing, developing and implementing a living snow fence program for New York state.
DOT National Transportation Integrated Search
2015-07-01
Living snow fences (LSF) are a form of passive snow control designed to mitigate blowing and drifting snow problems : on roadways. Blowing and drifting snow can increase the cost of highway maintenance and create hazardous driving : conditions when s...
Snow loads on roofs in areas of heavy snowfall
Robert D. Doty; Glenn H. Deitschman
1966-01-01
This study tested the feasibility of estimating snow loads on roofs from measurements of depth and water content of snow on nearby ground. The water content, and therefore the weight, of snow on the ground proved comparable to that of snow on roofs.
New nitrogen uptake strategy: specialized snow roots.
Onipchenko, Vladimir G; Makarov, Mikhail I; van Logtestijn, Richard S P; Ivanov, Viktor B; Akhmetzhanova, Assem A; Tekeev, Dzhamal K; Ermak, Anton A; Salpagarova, Fatima S; Kozhevnikova, Anna D; Cornelissen, Johannes H C
2009-08-01
The evolution of plants has yielded a wealth of adaptations for the acquisition of key mineral nutrients. These include the structure, physiology and positioning of root systems. We report the discovery of specialized snow roots as a plant strategy to cope with the very short season for nutrient uptake and growth in alpine snow-beds, i.e. patches in the landscape that remain snow-covered well into the summer. We provide anatomical, chemical and experimental (15)N isotope tracking evidence that the Caucasian snow-bed plant Corydalis conorhiza forms extensive networks of specialized above-ground roots, which grow against gravity to acquire nitrogen directly from within snow packs. Snow roots capture nitrogen that would otherwise partly run off down-slope over a frozen surface, thereby helping to nourish these alpine ecosystems. Climate warming is changing and will change mountain snow regimes, while large-scale anthropogenic N deposition has increased snow N contents. These global changes are likely to impact on the distribution, abundance and functional significance of snow roots.
[A snow depth inversion method for the HJ-1B satellite data].
Dong, Ting-Xu; Jiang, Hong-Bo; Chen, Chao; Qin, Qi-Ming
2011-10-01
The importance of the snow is self-evident, while the harms caused by the snow have also received more and more attention. At present, the retrieval of snow depth mainly focused on the use of microwave remote sensing data or a small amount of optical remote sensing data, such as the meteorological data or the MODIS data. The small satellites for environment and disaster monitoring of China are quite different form the meteorological data and MODIS data, both in the spectral resolution or spatial resolution. In this paper, aimed at the HJ-1B data, snow spectral of different underlying surfaces and depths were surveyed. The correlation between snow cover index and snow depth was also analyzed to establish the model for the snow depth retrieval using the HJ-1B data. The validation results showed that it can meet the requirements of real-time monitoring the snow depth on the condition of conventional snow depth.
NASA Astrophysics Data System (ADS)
He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi
2018-03-01
We develop a stochastic aerosol-snow albedo model that explicitly resolves size distribution of aerosols internally mixed with various snow grains. We use the model to quantify black carbon (BC) size effects on snow albedo and optical properties for BC-snow internal mixing. Results show that BC-induced snow single-scattering coalbedo enhancement and albedo reduction decrease by a factor of 2-3 with increasing BC effective radii from 0.05 to 0.25 μm, while polydisperse BC results in up to 40% smaller visible single-scattering coalbedo enhancement and albedo reduction compared to monodisperse BC with equivalent effective radii. We further develop parameterizations for BC size effects for application to climate models. Compared with a realistic polydisperse assumption and observed shifts to larger BC sizes in snow, respectively, assuming monodisperse BC and typical atmospheric BC effective radii could lead to overestimates of 24% and 40% in BC-snow albedo forcing averaged over different BC and snow conditions.
Effects of snow grain non-sphericity on climate simulations: Sensitivity tests with the NorESM model
NASA Astrophysics Data System (ADS)
Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf
2017-04-01
Snow grains are non-spherical and generally irregular in shape. Still, in radiative transfer calculations, they are often treated as spheres. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this work, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (≈ 0.78 in the visible region) than in the spherical case (≈ 0.89). Therefore, for a given snow grain size, the use of non-spherical snow grains yields a higher snow broadband albedo, typically by ≈0.03. Consequently, considering the spherical case as the baseline, the use of non-spherical snow grains results in a negative radiative forcing (RF), with a global-mean top-of-the-model value of ≈ -0.22 W m-2. Although this global-mean RF is modest, it has a rather substantial impact on the climate simulated by NoRESM. In particular, the global annual-mean 2-m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further found that the difference between NONSPH and SPH could be largely "tuned away" by adjusting the snow grain size in the NONSPH experiment by ≈ 70%. The impact of snow grain shape on the radiative effect (RE) of absorbing aerosols in snow (black carbon and mineral dust) is also discussed. For an optically thick snowpack with a given snow grain effective size, the absorbing aerosol RE is smaller for non-spherical than for spherical snow grains. The reason for this is that due to the lower asymmetry parameter of the non-spherical snow grains, solar radiation does not penetrate as deep in snow as in the case of spherical snow grains. However, in a climate model simulation, the RE is sensitive to patterns of aerosol deposition and simulated snow cover. In fact, the global land-area mean absorbing aerosol RE is larger in the NONSPH than SPH experiment (0.193 vs. 0.168 W m-2), owing to later snowmelt in spring.
Unusually Low Snow Cover in the U.S.
NASA Technical Reports Server (NTRS)
2002-01-01
New maps of snow cover produced by NASA's Terra satellite show that this year's snow line stayed farther north than normal. When combined with land surface temperature measurements, the observations confirm earlier National Oceanic and Atmospheric Administration reports that the United States was unusually warm and dry this past winter. The above map shows snow cover over the continental United States from February 2002 and is based on data acquired by the Moderate-Resolution Imaging Spectroradiometer (MODIS). The amount of land covered by snow during this period was much lower than usual. With the exception of the western mountain ranges and the Great Lakes region, the country was mostly snow free. The solid red line marks the average location of the monthly snow extent; white areas are snow-covered ground. Snow was mapped at approximately 5 kilometer pixel resolution on a daily basis and then combined, or composited, every eight days. If a pixel was at least 50 percent snow covered during all of the eight-day periods that month, it was mapped as snow covered for the whole month. For more information, images, and animations, read: Terra Satellite Data Confirm Unusually Warm, Dry U.S. Winter Image by Robert Simmon, based on data from the MODIS Snow/Ice Global Mapping Project
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; Scharfen, Greg R.
2000-01-01
Following the 1999 launch of the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), the capability exists to produce global snow-cover maps on a daily basis at 500-m resolution. Eight-day composite snow-cover maps will also be available. MODIS snow-cover products are produced at Goddard Space Flight Center and archived and distributed by the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. The products are available in both orbital and gridded formats. An online search and order tool and user-services staff will be available at NSIDC to assist users with the snow products. The snow maps are available at a spatial resolution of 500 m, and 1/4 degree x 1/4 degree spatial resolution, and provide information on sub-pixel (fractional) snow cover. Pre-launch validation work has shown that the MODIS snow-mapping algorithms perform best under conditions of continuous snow cover in low vegetation areas, but can also map snow cover in dense forests. Post-launch validation activities will be performed using field and aircraft measurements from a February 2000 validation mission, as well as from existing satellite-derived snow-cover maps from NOAA and Landsat-7 Enhanced Thematic Mapper Plus (ETM+).
How snowmelt changed due to climate change in an ungauged catchment on the Tibetan Plateau?
NASA Astrophysics Data System (ADS)
Wang, Rui; Yao, Zhijun
2017-04-01
Snow variability is an integrated indicator of climate change, and it has important impacts on runoff regimes and water availability in high altitude catchments. Remote sensing techniques can make it possible to quantitatively detect the snow cover changes and associated hydrological effects in those poorly gauged regions. In this study, the spatial-temporal variations of snow cover and snow melting time in the Tuotuo River basin, which is the headwater of the Yangtze River, were evaluated based on satellite information from MODIS snow cover product, and the snow melting equivalent and its contribution to the total runoff and baseflow were estimated by using degree-day model. The results showed that the snow cover percentage and the tendency of snow cover variability increased with rising altitude. From 2000 to 2012, warmer and wetter climate change resulted in an increase of the snow cover area. Since the 1960s, the start time for snow melt has become earlier by 0.9 3 d/10a and the end time of snow melt has become later by 0.6 2.3 d/10a. Under the control of snow cover and snow melting time, the equivalent of snow melting runoff in the Tuotuo River basin has been fluctuating. The average contributions of snowmelt to baseflow and total runoff were 19.6 % and 6.8 %, respectively. Findings from this study will serve as a reference for future research in areas where observational data are deficient and for planning of future water management strategies for the source region of the Yangtze River.
NASA Astrophysics Data System (ADS)
Leon, A.; Tanner, S.; Deems, J. S.
2017-12-01
The National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC), part of the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder, will archive and distribute all primary data sets collected during the NASA SnowEx campaigns. NSIDC DAAC's overarching goal for SnowEx data management is to steward the diverse SnowEx data sets to provide a reliable long-term archive, to enable effective data discovery, retrieval, and usage, and to support end user engagement. This goal will be achieved though coordination and collaboration with SnowEx project management and investigators. NSIDC DAAC's core functions for SnowEx data management include: Data Creation: Advise investigators on data formats and structure as well as metadata creation and content to enable preservation, usability, and discoverability. Data Documentation: Develop comprehensive data set documentation describing the instruments, data collection and derivation methods, and data file contents. Data Distribution: Provide discovery and access through NSIDC and NASA data portals to make SnowEx data available to a broad user community Data & User Support: Assist user communities with the selection and usage of SnowEx data products. In an effort to educate and broaden the SnowEx user community, we will present an overview of the SnowEx data products, tools, and services which will be available at the NSIDC DAAC. We hope to gain further insight into how the DAAC can enable the user community to seamlessly and effectively utilize SnowEx data in their research and applications.
NASA Astrophysics Data System (ADS)
Sproles, Eric A.; Roth, Travis R.; Nolin, Anne W.
2017-02-01
In the Pacific Northwest, USA, the extraordinarily low snowpacks of winters 2013-2014 and 2014-2015 stressed regional water resources and the social-environmental system. We introduce two new approaches to better understand how seasonal snow water storage during these two winters would compare to snow water storage under warmer climate conditions. The first approach calculates a spatial-probabilistic metric representing the likelihood that the snow water storage of 2013-2014 and 2014-2015 would occur under +2 °C perturbed climate conditions. We computed snow water storage (basin-wide and across elevations) and the ratio of snow water equivalent to cumulative precipitation (across elevations) for the McKenzie River basin (3041 km2), a major tributary to the Willamette River in Oregon, USA. We applied these computations to calculate the occurrence probability for similarly low snow water storage under climate warming. Results suggest that, relative to +2 °C conditions, basin-wide snow water storage during winter 2013-2014 would be above average, while that of winter 2014-2015 would be far below average. Snow water storage on 1 April corresponds to a 42 % (2013-2014) and 92 % (2014-2015) probability of being met or exceeded in any given year. The second approach introduces the concept of snow analogs to improve the anticipatory capacity of climate change impacts on snow-derived water resources. The use of a spatial-probabilistic approach and snow analogs provide new methods of assessing basin-wide snow water storage in a non-stationary climate and are readily applicable in other snow-dominated watersheds.
MODIS Collection 6 Data at the National Snow and Ice Data Center (NSIDC)
NASA Astrophysics Data System (ADS)
Fowler, D. K.; Steiker, A. E.; Johnston, T.; Haran, T. M.; Fowler, C.; Wyatt, P.
2015-12-01
For over 15 years, the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) has archived and distributed snow and sea ice products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Earth Observing System (EOS) Aqua and Terra satellites. Collection 6 represents the next revision to NSIDC's MODIS archive, mainly affecting the snow-cover products. Collection 6 specifically addresses the needs of the MODIS science community by targeting the scenarios that have historically confounded snow detection and introduced errors into the snow-cover and fractional snow-cover maps even though MODIS snow-cover maps are typically 90 percent accurate or better under good observing conditions, Collection 6 uses revised algorithms to discriminate between snow and clouds, resolve uncertainties along the edges of snow-covered regions, and detect summer snow cover in mountains. Furthermore, Collection 6 applies modified and additional snow detection screens and new Quality Assessment protocols that enhance the overall accuracy of the snow maps compared with Collection 5. Collection 6 also introduces several new MODIS snow products, including a daily Climate Modelling Grid (CMG) cloud gap-filled (CGF) snow-cover map which generates cloud-free maps by using the most recent clear observations.. The MODIS Collection 6 sea ice extent and ice surface temperature algorithms and products are much the same as Collection 5; however, Collection 6 updates to algorithm inputs—in particular, the L1B calibrated radiances, land and water mask, and cloud mask products—have improved the sea ice outputs. The MODIS sea ice products are currently available at NSIDC, and the snow cover products are soon to follow in 2016 NSIDC offers a variety of methods for obtaining these data. Users can download data directly from an online archive or use the NASA Reverb Search & Order Tool to perform spatial, temporal, and parameter subsetting, reformatting, and re-projection of the data.
Snow hydrology in a general circulation model
NASA Technical Reports Server (NTRS)
Marshall, Susan; Roads, John O.; Glatzmaier, Gary
1994-01-01
A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.
Snowscape Ecology: Linking Snow Properties to Wildlife Movements and Demography
NASA Astrophysics Data System (ADS)
Prugh, L.; Verbyla, D.; van de Kerk, M.; Mahoney, P.; Sivy, K. J.; Liston, G. E.; Nolin, A. W.
2017-12-01
Snow enshrouds up to one third of the global land mass annually and exerts a major influence on animals that reside in these "snowscapes," (landscapes covered in snow). Dynamic snowscapes may have especially strong effects in arctic and boreal regions where dry snow persists for much of the year. Changes in temperature and hydrology are transforming northern regions, with profound implications for wildlife that are not well understood. We report initial findings from a NASA ABoVE project examining effects of snow properties on Dall sheep (Ovis dalli dalli). We used the MODSCAG snow fraction product to map spring snowline elevations and snow-off dates from 2000-2015 throughout the global range of Dall sheep in Alaska and northwestern Canada. We found a negative effect of spring snow cover on Dall sheep recruitment that increased with latitude. Using meteorological data and a daily freeze/thaw status product derived from passive microwave remote sensing from 1983-2012, we found that sheep survival rates increased in years with higher temperatures, less winter precipitation, fewer spring freeze-thaw events, and more winter freeze-thaw events. To examine the effects of snow depth and density on sheep movements, we used location data from GPS-collared sheep and a snowpack evolution model (SnowModel). We found that sheep selected for shallow, fluffy snow at high elevations, but they selected for denser snow as depth increased. Our field measurements identified a critical snow density threshold of 329 (± 18 SE) kg/m3 to support the weight of Dall sheep. Thus, sheep may require areas of shallow, fluffy snow for foraging, while relying on hard-packed snow for winter travel. These findings highlight the importance of multiple snowscape properties on wildlife movements and demography. The integrated study of snow properties and ecological processes, which we call snowscape ecology, will greatly improve global change forecasting.
NASA Astrophysics Data System (ADS)
Sarangi, C.; Qian, Y.; Painter, T. H.; Liu, Y.; Lin, G.; Wang, H.
2017-12-01
Radiative forcing induced by light-absorbing particles (LAP) deposited on snow is an important surface forcing. It has been debated that an aerosol-induced increase in atmospheric and surface warming over Tibetan Plateau (TP) prior to the South Asian summer monsoon can have a significant effect on the regional thermodynamics and South Asian monsoon circulation. However, knowledge about the radiative effects due to deposition of LAP in snow over TP is limited. In this study we have used a high-resolution WRF-Chem (coupled with online chemistry and snow-LAP-radiation model) simulations during 2013-2014 to estimate the spatio-temporal variation in LAP deposition on snow, specifically black carbon (BC) and dust particles, in Himalayas. Simulated distributions in meteorology, aerosol concentrations, snow albedo, snow grain size and snow depth are evaluated against satellite and in-situ measurements. The spatio-temporal change in snow albedo and snow grain size with variation in LAP deposition is investigated and the resulting shortwave LAP radiative forcing at surface is calculated. The LAP-radiative forcing due to aerosol deposition, both BC and dust, is higher in magnitude over Himalayan slopes (terrain height below 4 km) compared to that over TP (terrain height above 4 km). We found that the shortwave aerosol radiative forcing efficiency at surface due to increase in deposited mass of BC particles in snow layer ( 25 (W/m2)/ (mg/m2)) is manifold higher than the efficiency of dust particles ( 0.1 (W/m2)/ (mg/m2)) over TP. However, the radiative forcing of dust deposited in snow is similar in magnitude (maximum 20-30 W/m2) to that of BC deposited in snow over TP. This is mainly because the amount of dust deposited in snow over TP can be about 100 times greater than the amount of BC deposited in snow during polluted conditions. The impact of LAP on surface energy balance, snow melting and atmospheric thermodynamics is also examined.
Snow micro-structure at Kongsvegen glacier, Svalbard
NASA Astrophysics Data System (ADS)
Bilgeri, F.; Karner, F.; Steinkogler, W.; Fromm, R.; Obleitner, F.; Kohler, J.
2012-04-01
Measurements of physical snow properties have been performed at several sites at Kongsvegen glacier, which is a key Arctic glacier in western Spitzbergen (79N, 13E). The data were collected at six locations along the flow line of the glacier at different elevations (161 to 741m asl.) and describe snow that was deposited during winter 2010/11. We basically consider the vertical profiles of snow temperature, density, hardness, grain size and crystal shapes derived from standard stratigraphic methods (snow pits)and measurements using advanced instruments like Snow Micropen® and NIR imagery. Some parameters were measured repeatedly and with different instruments which proves a high quality as well as long-term and spatial representativeness of the data. The general snow conditions at the end of winter are characterized by a linear increase of snow depth and water equivalent with elevation. Snow hardness also increases with elevation while density remains remarkably constant. At most sites the snow temperature, density, hardness and grain size increase from the surface towards the snow-ice interface. The surface and the bottom layers stand out by specific changes in snow signature (crystal types) and delineate the bulk of the snow pack which itself features a rather complex layering. Comparison of the high-resolution profiles measured at different elevations at the glacier suggests some principal correlations of the signatures of hardness, grain size and crystal type. Thus, some major features (e.g. particularly hard layers) can be traced along the glacier, but the high-resolution layering can not straightforwardly be related from one site to the other. This basically reflects a locally different history of the snow pack in terms of precipitation events and post-depositional snow metamorphism. The issue is investigated more quantitatively by enhanced statistical processing of the observed signatures and simulation of the history of individual layers. These studies are supported by meteorological measurements at the snow observation sites.
Snow cover in the Siberian forest-steppe
NASA Technical Reports Server (NTRS)
Zykov, I. V.
1985-01-01
A study is made of the snow cover on an experimental agricultural station in Mariinsk in the winter of 1945 to 1946. Conditions of snow cover formation, and types and indicators of snow cover are discussed. Snow cover structure and conditions and nature of thawing are described.
ERIC Educational Resources Information Center
Cone, Theresa Purcell; Cone, Stephen L.
2006-01-01
As children see the first snowflake fall from the sky, they are filled with anticipation of playing in the snow. The snowy environment presents a wonderful opportunity for presenting interdisciplinary activities that connect snow play, snow formation, and snow stories with manipulative activities, gymnastic balances, and dance sequences. In this…
NASA Astrophysics Data System (ADS)
Rikiishi, K.
2008-12-01
Recent rapid decline of cryosphere including mountain glaciers, sea ice, and seasonal snow cover tends to be associated with global warming. However, positive feedback is likely to operate between the cryosphere and air temperature, and then it may not be so simple to decide the cause-and-effect relation between them. The theory of heat budget for snow surface tells us that sensible heat transfer from the air to the snow by atmospheric warming by 1°C is about 10 W/m2, which is comparable with heat supply introduced by reduction of the snow surface albedo by only 0.02. Since snow impurities such as black carbon and soil- origin dusts have been accumulated every year on the snow surface in snow-melting season, it is very important to examine whether the snow-melting on the ice sheets, mountain glaciers, and sea ice is caused by global warming or by accumulated snow impurities originated from atmospheric pollutants. In this paper we analyze the dataset of snow-melt area in the Greenland ice sheet for the years 1979 - 2007 (available from the National Snow and Ice Data Center), which is reduced empirically from the satellite micro-wave observations by SMMR and SMM/I. It has been found that, seasonally, the snow-melt area extends most significantly from the second half of June to the first half of July when the sun is highest and sunshine duration is longest, while it doesn't extend any more from the second half of July to the first half of August when the air temperature is highest. This fact may imply that sensible heat required for snow-melting comes from the solar radiation rather than from the atmosphere. As for the interannual variation of snow-melt area, on the other hand, we have found that the growth rate of snow-melt area gradually increases from July, to August, and to the first half of September as the impurities come out to and accumulated at the snow surface. However, the growth rate is almost zero in June and the second half of September when fresh snow of high albedo covers the surface. This fact may imply that the combined operation of solar radiation and snow impurities is responsible for the recent global decline of cryosphere. Discussion about other research works will be given in the presentation in order to support the above idea.
NASA Astrophysics Data System (ADS)
Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Lee, Chang suk; Seong, Noh-hun; Han, Kyung-Soo
2016-10-01
Snow cover is biggest single component of cryosphere. The Snow is covering the ground in the Northern Hemisphere approximately 50% in winter season and is one of climate factors that affects Earth's energy budget because it has higher reflectance than other land types. Also, snow cover has an important role about hydrological modeling and water resource management. For this reason, accurate detection of snow cover acts as an essential element for regional water resource management. Snow cover detection using satellite-based data have some advantages such as obtaining wide spatial range data and time-series observations periodically. In the case of snow cover detection using satellite data, the discrimination of snow and cloud is very important. Typically, Misclassified cloud and snow pixel can lead directly to error factor for retrieval of satellite-based surface products. However, classification of snow and cloud is difficult because cloud and snow have similar optical characteristics and are composed of water or ice. But cloud and snow has different reflectance in 1.5 1.7 μm wavelength because cloud has lower grain size and moisture content than snow. So, cloud and snow shows difference reflectance patterns change according to wavelength. Therefore, in this study, we perform algorithm for classifying snow cover and cloud with satellite-based data using Dynamic Time Warping (DTW) method which is one of commonly used pattern analysis such as speech and fingerprint recognitions and reflectance spectral library of snow and cloud. Reflectance spectral library is constructed in advance using MOD21km (MODIS Level1 swath 1km) data that their reflectance is six channels including 3 (0.466μm), 4 (0.554μm), 1 (0.647μm), 2 (0.857μm), 26 (1.382μm) and 6 (1.629μm). We validate our result using MODIS RGB image and MOD10 L2 swath (MODIS swath snow cover product). And we use PA (Producer's Accuracy), UA (User's Accuracy) and CI (Comparison Index) as validation criteria. The result of our study detect as snow cover in the several regions which are did not detected as snow in MOD10 L2 and detected as snow cover in MODIS RGB image. The result of our study can improve accuracy of other surface product such as land surface reflectance and land surface emissivity. Also it can use input data of hydrological modeling.
NASA Astrophysics Data System (ADS)
Armstrong, Richard L.; Brodzik, Mary Jo
2003-04-01
Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. It is now possible to monitor the global fluctuation of snow cover over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a smiliar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible statellite data and the visible data typically show higher monthly variability. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as on into the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm is enhanced. Trends in annual averages are similar, decreasing at rates of approximately 2% per decade. The only region where the passive microwave data consistently indicate snow and the visible data do not is over the Tibetan Plateau and surrounding mountain areas. In the effort to determine the accuracy of the microwave algorithm over this region we are acquiring surface snow observations through a collaborative study with CAREERI/Lanzhou. In order to provide an optimal snow cover product in the future, we are developing a procedure that blends snow extent maps derived from MODIS data with snow water equivalent maps derived from both SSM/I and AMSR.
Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.
2014-01-01
Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37 days. Our results suggest that mixed snow-covered snow-free pixels are common at the spatial resolutions imaged by both the Landsat and MODIS sensors. This highlights the additional information available from fractional SCA products and suggests fractional SCA can provide a major advantage for hydrological and climatological monitoring and modeling, particularly when accurate representation of the spatial distribution of snow cover is critical.
Urbanization drives the evolution of parallel clines in plant populations
Renaudin, Marie; Johnson, Marc T. J.
2016-01-01
Urban ecosystems are an increasingly dominant feature of terrestrial landscapes. While evidence that species can adapt to urban environments is accumulating, the mechanisms through which urbanization imposes natural selection on populations are poorly understood. The identification of adaptive phenotypic changes (i.e. clines) along urbanization gradients would facilitate our understanding of the selective factors driving adaptation in cities. Here, we test for phenotypic clines in urban ecosystems by sampling the frequency of a Mendelian-inherited trait—cyanogenesis—in white clover (Trifolium repens L.) populations along urbanization gradients in four cities. Cyanogenesis protects plants from herbivores, but reduces tolerance to freezing temperatures. We found that the frequency of cyanogenic plants within populations decreased towards the urban centre in three of four cities. A field experiment indicated that spatial variation in herbivory is unlikely to explain these clines. Rather, colder minimum winter ground temperatures in urban areas compared with non-urban areas, caused by reduced snow cover in cities, may select against cyanogenesis. In the city with no cline, high snow cover might protect plants from freezing damage in the city centre. Our study suggests that populations are adapting to urbanization gradients, but regional climatic patterns may ultimately determine whether adaptation occurs. PMID:28003451
Urbanization drives the evolution of parallel clines in plant populations.
Thompson, Ken A; Renaudin, Marie; Johnson, Marc T J
2016-12-28
Urban ecosystems are an increasingly dominant feature of terrestrial landscapes. While evidence that species can adapt to urban environments is accumulating, the mechanisms through which urbanization imposes natural selection on populations are poorly understood. The identification of adaptive phenotypic changes (i.e. clines) along urbanization gradients would facilitate our understanding of the selective factors driving adaptation in cities. Here, we test for phenotypic clines in urban ecosystems by sampling the frequency of a Mendelian-inherited trait-cyanogenesis-in white clover (Trifolium repens L.) populations along urbanization gradients in four cities. Cyanogenesis protects plants from herbivores, but reduces tolerance to freezing temperatures. We found that the frequency of cyanogenic plants within populations decreased towards the urban centre in three of four cities. A field experiment indicated that spatial variation in herbivory is unlikely to explain these clines. Rather, colder minimum winter ground temperatures in urban areas compared with non-urban areas, caused by reduced snow cover in cities, may select against cyanogenesis. In the city with no cline, high snow cover might protect plants from freezing damage in the city centre. Our study suggests that populations are adapting to urbanization gradients, but regional climatic patterns may ultimately determine whether adaptation occurs. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Sturm, K.; Helmschrot, J.
2013-12-01
Snow and its spatial and temporal patterns are important for catchment hydrology in the semi-arid eastern Mediterranean. Since most of the annual rainfall is stored as snow during winter and released during drier conditions in spring and summer, downstream regions of the Taurus Mountains relying on snow water temporarily stored in reservoirs for agricultural use are heavily dependent on the timing of snowmelt discharge. Runoff is controlled by the amount of accumulated snow, its distribution, and the climatic conditions controlling spring snowmelt. Thus, knowledge about spatial and temporal snow cover dynamics is essential for sustainable water resources management. The lack of observations in high-altitude regions reinforces the application of different snow products for a better assessment of spatio-temporal snow cover patterns. To better assess the quality of such products, simulated daily snow cover and EO-based snow cover products were compared for the Egribuk subcatchment, in the Central Taurus Mountains, Turkey. Daily information on snow cover, depths, and snow water equivalent was derived from distributed hydrological modeling using the J2000 model. Furthermore, 8-day MODIS snow cover data from Terra (MOD10A2) and Aqua (MYD10A2) satellites at a spatial resolution of 500 m were synchronized to receive cloud-free images. From this effort, 253 images covering the period between 07/04/2002 and 12/27/2007 were used for further analyses. The products were analyzed individually to determine the number of snow-covered days in relation to freezing days, spring snowmelt onsets, and temporal patterns, reflecting the effect of altitude on the percentage snow-covered area (SCA) along a topographic gradient at various time-steps. Monthly and 8-day spatial patterns of a single snow season were also examined. When SCA peaks at all altitudes, in February and March, the results of both products show a good agreement regarding SCA extent. In contrast, the extent of SCA differs notably during snow accumulation and ablation periods, the highest deviations occurring in December, April, and May. The highest SCA inconsistencies are observed in the low and mid altitudes, whereas the higher elevations are snow-covered very early in the snow season as modeled by J2000. During these periods, J2000 simulates a significantly larger SCA than MODIS. The analysis of individual time steps suggests that the J2000 daily model does capture individual snow events, whereas the MODIS products fail to do so due to their temporal resolution. Furthermore, acquisition time and inner-daily melt and re-freezing effects may affect SCA estimates from MODIS data. In other cases, differences can clearly be associated to insufficient model input data, primarily due to limited spatial precipitation and temperature data. Our study indicates that individual products might provide inconsistent information on temporal and spatial snow cover. We recommend considering a combined analysis of different snow products in order to provide reliable information on snow cover dynamics, in particular in eastern Mediterranean high-altitude environments.
MODIS Snow and Sea Ice Products
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.
2004-01-01
In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.
NASA Technical Reports Server (NTRS)
Brucker, Ludovic; Picard, Ghislain; Roy, Alexandre; Dupont, Florent; Fily, Michel; Royer, Alain
2014-01-01
Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer), and is available at http:lgge.osug.frpicarddmrtml.
The Effects of Snow Depth Forcing on Southern Ocean Sea Ice Simulations
NASA Technical Reports Server (NTRS)
Powel, Dylan C.; Markus, Thorsten; Stoessel, Achim
2003-01-01
The spatial and temporal distribution of snow on sea ice is an important factor for sea ice and climate models. First, it acts as an efficient insulator between the ocean and the atmosphere, and second, snow is a source of fresh water for altering the already weak Southern Ocean stratification. For the Antarctic, where the ice thickness is relatively thin, snow can impact the ice thickness in two ways: a) As mentioned above snow on sea ice reduces the ocean-atmosphere heat flux and thus reduces freezing at the base of the ice flows; b) a heavy snow load can suppress the ice below sea level which causes flooding and, with subsequent freezing, a thickening of the sea ice (snow-to-ice conversion). In this paper, we compare different snow fall paramterizations (incl. the incorporation of satellite-derived snow depth) and study the effect on the sea ice using a sea ice model.
Bokhorst, Stef; Pedersen, Stine Højlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W; Brown, Ross D; Ehrich, Dorothee; Essery, Richard L H; Heilig, Achim; Ingvander, Susanne; Johansson, Cecilia; Johansson, Margareta; Jónsdóttir, Ingibjörg Svala; Inga, Niila; Luojus, Kari; Macelloni, Giovanni; Mariash, Heather; McLennan, Donald; Rosqvist, Gunhild Ninis; Sato, Atsushi; Savela, Hannele; Schneebeli, Martin; Sokolov, Aleksandr; Sokratov, Sergey A; Terzago, Silvia; Vikhamar-Schuler, Dagrun; Williamson, Scott; Qiu, Yubao; Callaghan, Terry V
2016-09-01
Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.
Decoupling of mass flux and turbulent wind fluctuations in drifting snow
NASA Astrophysics Data System (ADS)
Paterna, E.; Crivelli, P.; Lehning, M.
2016-05-01
The wind-driven redistribution of snow has a significant impact on the climate and mass balance of polar and mountainous regions. Locally, it shapes the snow surface, producing dunes and sastrugi. Sediment transport has been mainly represented as a function of the wind strength, and the two processes assumed to be stationary and in equilibrium. The wind flow in the atmospheric boundary layer is unsteady and turbulent, and drifting snow may never reach equilibrium. Our question is therefore: what role do turbulent eddies play in initiating and maintaining drifting snow? To investigate the interaction between drifting snow and turbulence experimentally, we conducted several wind tunnel measurements of drifting snow over naturally deposited snow covers. We observed a coupling between snow transport and turbulent flow only in a weak saltation regime. In stronger regimes it self-organizes developing its own length scales and efficiently decoupling from the wind forcing.
NASA Technical Reports Server (NTRS)
Bokhorst, Stef; Pedersen, Stine Hojlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W.; Brown, Ross D.; Ehrich, Dorothee; Essery, Richard L. H.; Heilig, Achim; Ingvander, Susanne;
2016-01-01
Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.
NASA Astrophysics Data System (ADS)
Bach, Heike; Appel, Florian; Rust, Felix; Mauser, Wolfram
2010-12-01
Information on snow cover and snow properties are important for hydrology and runoff modelling. Frequent updates of snow cover observation, especially for areas characterized by short-term snow dynamics, can help to improve water balance and discharge calculations. Within the GMES service element Polar View, VISTA offers a snow mapping service for Central Europe since several years [1, 2]. We outline the use of this near-real- time product for hydrological applications in Alpine environment. In particular we discuss the integration of the Polar View product into a physically based hydrological model (PROMET). This allows not only the provision of snow equivalent values, but also enhances river runoff modelling and its use in hydropower energy yield prediction. The GMES snow products of Polar View are thus used in a downstream service for water resources management, providing information services for renewable energy suppliers and energy traders.
NASA Astrophysics Data System (ADS)
Xiong, Chuan; Shi, Jiancheng
2014-01-01
To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing.
Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau
Wang, Kun; Zhang, Li; Qiu, Yubao; Ji, Lei; Tian, Feng; Wang, Cuizhen; Wang, Zhiyong
2013-01-01
Understanding the relationships between snow and vegetation is important for interpretation of the responses of alpine ecosystems to climate changes. The Qinghai-Tibetan Plateau is regarded as an ideal area due to its undisturbed features with low population and relatively high snow cover. We used 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) datasets during 2001–2010 to examine the snow–vegetation relationships, specifically, (1) the influence of snow melting date on vegetation green-up date and (2) the effects of snow cover duration on vegetation greenness. The results showed that the alpine vegetation responded strongly to snow phenology (i.e., snow melting date and snow cover duration) over large areas of the Qinghai-Tibetan Plateau. Snow melting date and vegetation green-up date were significantly correlated (p < 0.1) in 39.9% of meadow areas (accounting for 26.2% of vegetated areas) and 36.7% of steppe areas (28.1% of vegetated areas). Vegetation growth was influenced by different seasonal snow cover durations (SCDs) in different regions. Generally, the December–February and March–May SCDs played a significantly role in vegetation growth, both positively and negatively, depending on different water source regions. Snow's positive impact on vegetation was larger than the negative impact.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.; Salomonson, Vinvent V.; DiGirolamo, Nicolo; Bayr, Klaus J.; Houser, Paul (Technical Monitor)
2001-01-01
On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. These products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to the currently available operation products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set is generated for long-term climates studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the product. The snow product suite starts with a 500-m resolution swath snow-cover map which is gridded to the Integerized Sinusoidal Grid to produce daily and eight-day composite tile products. The sequence then proceeds to a climate-modeling grid product at 5-km spatial resolution, with both daily and eight-day composite products. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented. Near-term enhancements include daily snow albedo and fractional snow cover.
NASA Astrophysics Data System (ADS)
Shea, J. M.; Harder, P.; Pomeroy, J. W.; Kraaijenbrink, P. D. A.
2017-12-01
Mountain snowpacks represent a critical seasonal reservoir of water for downstream needs, and snowmelt is a significant component of mountain hydrological budgets. Ground-based point measurements are unable to describe the full spatial variability of snow accumulation and melt rates, and repeat Unmanned Air Vehicle (UAV) surveys provide an unparalleled opportunity to measure snow accumulation, redistribution and melt in alpine environments. This study presents results from a UAV-based observation campaign conducted at the Fortress Mountain Snow Laboratory in the Canadian Rockies in 2017. Seven survey flights were conducted between April (maximum snow accumulation) and mid-July (bare ground) to collect imagery with both an RGB camera and thermal infrared imager with the sensefly eBee RTK platform. UAV imagery are processed with structure from motion techniques, and orthoimages, digital elevation models, and surface temperature maps are validated against concurrent ground observations of snow depth, snow water equivalent, and snow surface temperature. We examine the seasonal evolution of snow depth and snow surface temperature, and explore the spatial covariances of these variables with respect to topographic factors and snow ablation rates. Our results have direct implications for scaling snow ablation calculations and model resolution and discretization.
Snow Depth Mapping at a Basin-Wide Scale in the Western Arctic Using UAS Technology
NASA Astrophysics Data System (ADS)
de Jong, T.; Marsh, P.; Mann, P.; Walker, B.
2015-12-01
Assessing snow depths across the Arctic has proven to be extremely difficult due to the variability of snow depths at scales from metres to 100's of metres. New Unmanned Aerial Systems (UAS) technology provides the possibility to obtain centimeter level resolution imagery (~3cm), and to create Digital Surface Models (DSM) based on the Structure from Motion method. However, there is an ongoing need to quantify the accuracy of this method over different terrain and vegetation types across the Arctic. In this study, we used a small UAS equipped with a high resolution RGB camera to create DSMs over a 1 km2 watershed in the western Canadian Arctic during snow (end of winter) and snow-free periods. To improve the image georeferencing, 15 Ground Control Points were marked across the watershed and incorporated into the DSM processing. The summer DSM was subtracted from the snowcovered DSM to deliver snow depth measurements across the entire watershed. These snow depth measurements were validated by over 2000 snow depth measurements. This technique has the potential to improve larger scale snow depth mapping across watersheds by providing snow depth measurements at a ~3 cm . The ability of mapping both shallow snow (less than 75cm) covering much of the basin and snow patches (up to 5 m in depth) that cover less than 10% of the basin, but contain a significant portion of total basin snowcover, is important for both water resource applications, as well as for testing snow models.
NASA Astrophysics Data System (ADS)
Saha, Subodh Kumar; Sujith, K.; Pokhrel, Samir; Chaudhari, Hemantkumar S.; Hazra, Anupam
2017-03-01
The Noah version 2.7.1 is a moderately complex land surface model (LSM), with a single layer snowpack, combined with vegetation and underlying soil layer. Many previous studies have pointed out biases in the simulation of snow, which may hinder the skill of a forecasting system coupled with the Noah. In order to improve the simulation of snow by the Noah, a multilayer snow scheme (up to a maximum of six layers) is introduced. As Noah is the land surface component of the Climate Forecast System version 2 (CFSv2) of the National Centers for Environmental Prediction (NCEP), the modified Noah is also coupled with the CFSv2. The offline LSM shows large improvements in the simulation of snow depth, snow water equivalent (SWE), and snow cover area during snow season (October to June). CFSv2 with the modified Noah reveals a dramatic improvements in the simulation of snow depth and 2 m air temperature and moderate improvements in SWE. As suggested in the previous diagnostic and sensitivity study, improvements in the simulation of snow by CFSv2 have lead to the reduction in dry bias over the Indian subcontinent (by a maximum of 2 mm d-1). The multilayer snow scheme shows promising results in the simulation of snow as well as Indian summer monsoon rainfall and hence this development may be the part of the future version of the CFS.
NASA Astrophysics Data System (ADS)
Kim, R. S.; Durand, M. T.; Li, D.; Baldo, E.; Margulis, S. A.; Dumont, M.; Morin, S.
2017-12-01
This paper presents a newly-proposed snow depth retrieval approach for mountainous deep snow using airborne multifrequency passive microwave (PM) radiance observation. In contrast to previous snow depth estimations using satellite PM radiance assimilation, the newly-proposed method utilized single flight observation and deployed the snow hydrologic models. This method is promising since the satellite-based retrieval methods have difficulties to estimate snow depth due to their coarse resolution and computational effort. Indeed, this approach consists of particle filter using combinations of multiple PM frequencies and multi-layer snow physical model (i.e., Crocus) to resolve melt-refreeze crusts. The method was performed over NASA Cold Land Processes Experiment (CLPX) area in Colorado during 2002 and 2003. Results showed that there was a significant improvement over the prior snow depth estimates and the capability to reduce the prior snow depth biases. When applying our snow depth retrieval algorithm using a combination of four PM frequencies (10.7,18.7, 37.0 and 89.0 GHz), the RMSE values were reduced by 48 % at the snow depth transects sites where forest density was less than 5% despite deep snow conditions. This method displayed a sensitivity to different combinations of frequencies, model stratigraphy (i.e. different number of layering scheme for snow physical model) and estimation methods (particle filter and Kalman filter). The prior RMSE values at the forest-covered areas were reduced by 37 - 42 % even in the presence of forest cover.
Dominance of grain size impacts on seasonal snow albedo at open sites in New Hampshire
NASA Astrophysics Data System (ADS)
Adolph, Alden C.; Albert, Mary R.; Lazarcik, James; Dibb, Jack E.; Amante, Jacqueline M.; Price, Andrea
2017-01-01
Snow cover serves as a major control on the surface energy budget in temperate regions due to its high reflectivity compared to underlying surfaces. Winter in the northeastern United States has changed over the last several decades, resulting in shallower snowpacks, fewer days of snow cover, and increasing precipitation falling as rain in the winter. As these climatic changes occur, it is imperative that we understand current controls on the evolution of seasonal snow albedo in the region. Over three winter seasons between 2013 and 2015, snow characterization measurements were made at three open sites across New Hampshire. These near-daily measurements include spectral albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density, black carbon content, local meteorological parameters, and analysis of storm trajectories using the Hybrid Single-Particle Lagrangian Integrated Trajectory model. Using analysis of variance, we determine that land-based winter storms result in marginally higher albedo than coastal storms or storms from the Atlantic Ocean. Through multiple regression analysis, we determine that snow grain size is significantly more important in albedo reduction than black carbon content or snow density. And finally, we present a parameterization of albedo based on days since snowfall and temperature that accounts for 52% of variance in albedo over all three sites and years. Our improved understanding of current controls on snow albedo in the region will allow for better assessment of potential response of seasonal snow albedo and snow cover to changing climate.
Influence of Western Tibetan Plateau Summer Snow Cover on East Asian Summer Rainfall
NASA Astrophysics Data System (ADS)
Wang, Zhibiao; Wu, Renguang; Chen, Shangfeng; Huang, Gang; Liu, Ge; Zhu, Lihua
2018-03-01
The influence of boreal winter-spring eastern Tibetan Plateau snow anomalies on the East Asian summer rainfall variability has been the focus of previous studies. The present study documents the impacts of boreal summer western and southern Tibetan Plateau snow cover anomalies on summer rainfall over East Asia. Analysis shows that more snow cover in the western and southern Tibetan Plateau induces anomalous cooling in the overlying atmospheric column. The induced atmospheric circulation changes are different corresponding to more snow cover in the western and southern Tibetan Plateau. The atmospheric circulation changes accompanying the western Plateau snow cover anomalies are more obvious over the midlatitude Asia, whereas those corresponding to the southern Plateau snow cover anomalies are more prominent over the tropics. As such, the western and southern Tibetan Plateau snow cover anomalies influence the East Asian summer circulation and precipitation through different pathways. Nevertheless, the East Asian summer circulation and precipitation anomalies induced by the western and southern Plateau snow cover anomalies tend to display similar distribution so that they are more pronounced when the western and southern Plateau snow cover anomalies work in coherence. Analysis indicates that the summer snow cover anomalies over the Tibetan Plateau may be related to late spring snow anomalies due to the persistence. The late spring snow anomalies are related to an obvious wave train originating from the western North Atlantic that may be partly associated with sea surface temperature anomalies in the North Atlantic Ocean.
Mobility of lightweight robots over snow
NASA Astrophysics Data System (ADS)
Lever, James H.; Shoop, Sally A.
2006-05-01
Snowfields are challenging terrain for lightweight (<50 kg) unmanned ground vehicles. Deep sinkage, high snowcompaction resistance, traction loss while turning and ingestion of snow into the drive train can cause immobility within a few meters of travel. However, for suitably designed vehicles, deep snow offers a smooth, uniform surface that can obliterate obstacles. Key requirements for good over-snow mobility are low ground pressure, large clearance relative to vehicle size and a drive system that tolerates cohesive snow. A small robot will invariably encounter deep snow relative to its ground clearance. Because a single snowstorm can easily deposit 30 cm of fresh snow, robots with ground clearance less than about 10 cm must travel over the snow rather than gain support from the underlying ground. This can be accomplished using low-pressure tracks (< 1.5 kPa). Even still, snow-compaction resistance can exceed 20% of vehicle weight. Also, despite relatively high traction coefficients for low track pressures, differential or skid steering is difficult because the outboard track can easily break traction as the vehicle attempts to turn against the snow. Short track lengths (relative to track separation) or coupled articulated robots offer steering solutions for deep snow. This paper presents preliminary guidance to design lightweight robots for good mobility over snow based on mobility theory and tests of PackBot, Talon and SnoBot, a custom-designed research robot. Because many other considerations constrain robot designs, this guidance can help with development of winterization kits to improve the over-snow performance of existing robots.
Remote Sensing of Snow Cover. Section; Snow Extent
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Frei, Allan; Drey, Stephen J.
2012-01-01
Snow was easily identified in the first image obtained from the Television Infrared Operational Satellite-1 (TIROS-1) weather satellite in 1960 because the high albedo of snow presents a good contrast with most other natural surfaces. Subsequently, the National Oceanic and Atmospheric Administration (NOAA) began to map snow using satellite-borne instruments in 1966. Snow plays an important role in the Earth s energy balance, causing more solar radiation to be reflected back into space as compared to most snow-free surfaces. Seasonal snow cover also provides a critical water resource through meltwater emanating from rivers that originate from high-mountain areas such as the Tibetan Plateau. Meltwater from mountain snow packs flows to some of the world s most densely-populated areas such as Southeast Asia, benefiting over 1 billion people (Immerzeel et al., 2010). In this section, we provide a brief overview of the remote sensing of snow cover using visible and near-infrared (VNIR) and passive-microwave (PM) data. Snow can be mapped using the microwave part of the electromagnetic spectrum, even in darkness and through cloud cover, but at a coarser spatial resolution than when using VNIR data. Fusing VNIR and PM algorithms to produce a blended product offers synergistic benefits. Snow-water equivalent (SWE), snow extent, and melt onset are important parameters for climate models and for the initialization of atmospheric forecasts at daily and seasonal time scales. Snowmelt data are also needed as input to hydrological models to improve flood control and irrigation management.
A Physical Based Formula for Calculating the Critical Stress of Snow Movement
NASA Astrophysics Data System (ADS)
He, S.; Ohara, N.
2016-12-01
In snow redistribution modeling, one of the most important parameters is the critical stress of snow movement, which is difficult to estimate from field data because it is influenced by various factors. In this study, a new formula for calculating critical stress of snow movement was derived based on the ice particle sintering process modeling and the moment balance of a snow particle. Through this formula, the influences of snow particle size, air temperature, and deposited time on the critical stress were explicitly taken into consideration. It was found that some of the model parameters were sensitive to the critical stress estimation through the sensitivity analysis using Sobol's method. The two sensitive parameters of the sintering process modeling were determined by a calibration-validation procedure using the observed snow flux data via FlowCapt. Based on the snow flux and metrological data observed at the ISAW stations (http://www.iav.ch), it was shown that the results of this formula were able to describe very well the evolution of the minimum friction wind speed required for the snow motion. This new formula suggested that when the snow just reaches the surface, the smaller snowflake can move easier than the larger particles. However, smaller snow particles require more force to move as the sintering between the snowflakes progresses. This implied that compact snow with small snow particles may be harder to erode by wind although smaller particles may have a higher chance to be suspended once they take off.
NASA Astrophysics Data System (ADS)
Pan, J.; Durand, M. T.; Vanderjagt, B. J.
2014-12-01
The Markov chain Monte Carlo (MCMC) method had been proved to be successful in snow water equivalent retrieval based on synthetic point-scale passive microwave brightness temperature (TB) observations. This method needs only general prior information about distribution of snow parameters, and could estimate layered snow properties, including the thickness, temperature, density and snow grain size (or exponential correlation length) of each layer. In this study, the multi-layer HUT (Helsinki University of Technology) model and the MEMLS (Microwave Emission Model of Layered Snowpacks) will be used as observation models to assimilate the observed TB into snow parameter prediction. Previous studies had shown that the multi-layer HUT model tends to underestimate TB at 37 GHz for deep snow, while the MEMLS does not show sensitivity of model bias to snow depth. Therefore, results using HUT model and MEMLS will be compared to see how the observation model will influence the retrieval of snow parameters. The radiometric measurements at 10.65, 18.7, 36.5 and 90 GHz at Sodankyla, Finland will be used as MCMC input, and the statistics of all snow property measurement will be used to calculate the prior information. 43 dry snowpits with complete measurements of all snow parameters will be used for validation. The entire dataset are from NorSREx (Nordic Snow Radar Experiment) experiments carried out by Juha Lemmetyinen, Anna Kontu and Jouni Pulliainen in FMI in 2009-2011 winters, and continued two more winters from 2011 to Spring of 2013. Besides the snow thickness and snow density that are directly related to snow water equivalent, other parameters will be compared with observations, too. For thin snow, the previous studies showed that influence of underlying soil is considerable, especially when the soil is half frozen with part of unfrozen liquid water and part of ice. Therefore, this study will also try to employ a simple frozen soil permittivity model to improve the performance of retrieval. The behavior of the Markov chain in soil parameters will be studied.
Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi
2013-02-01
Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange flux is remarkably negatively linearly correlated to air mercury concentration and positively linearly correlated to air temperature. Furthermore, there is a general positive linear correlation between mercury exchange flux and soil temperature on the surface of earth after snow melting.
NASA Technical Reports Server (NTRS)
Chung, Y. C.; England, A. W.; DeRoo, R. D.; Weininger, Etai
2006-01-01
The radiobrightness of a snowpack is strongly linked to the snow moisture content profile, to the point that the only operational inversion algorithms require dry snow. Forward dynamic models do not include the effects of freezing and thawing of the soil beneath the snowpack and the effect of vegetation within the snow or above the snow. To get a more realistic description of the evolution of the snowpack, we reported an addition to the Snow-Soil-Vegetation-Atmosphere- Transfer (SSVAT) model, wherein we coupled soil processes of the Land Surface Process (LSP) model with the snow model SNTHERM. In the near future we will be adding a radiobrightness prediction based on the modeled moisture, temperature and snow grain size profiles. The initial investigations with this SSVAT for a late winter and early spring snow pack indicate that soil processes warm the snowpack and the soil. Vapor diffusion needs to be considered whenever the ground is thawed. In the early spring, heat flow from the ground into a snow and a strong temperature gradient across the snow lead to thermal convection. The buried vegetation can be ignored for a late winter snow pack. The warmer surface snow temperature will affect radiobrightness since it is most sensitive to snow surface characteristics. Comparison to data shows that SSVAT provides a more realistic representation of the temperature and moisture profiles in the snowpack and its underlying soil than SNTHERM. The radiobrightness module will be optimized for the prediction of brightness when the snow is moist. The liquid water content of snow causes considerable absorption compared to dry snow, and so longer wavelengths are likely to be most revealing as to the state of a moist snowpack. For volumetric moisture contents below about 7% (the pendular regime), the water forms rings around the contact points between snow grains. Electrostatic modeling of these pendular rings shows that the absorption of these rings is significantly higher than a sphere of the same volume. The first implementation of the radiobrightness module will therefore be a simple radiative transfer model without scattering.
NASA Technical Reports Server (NTRS)
Yasunari, Teppei
2012-01-01
Recently the issue on glacier retreats comes up and many factors should be relevant to the issue. The absorbing aerosols such as dust and black carbon (BC) are considered to be one of the factors. After they deposited onto the snow surface, it will reduce snow albedo (called snow darkening effect) and probably contribute to further melting of glacier. The Goddard Earth Observing System version 5 (GEOS-5) has developed at NASA/GSFC. However, the original snowpack model used in the land surface model in the GEOS-5 did not consider the snow darkening effect. Here we developed the new snow albedo scheme which can consider the snow darkening effect. In addition, another scheme on calculating mass concentrations on the absorbing aerosols in snowpack was also developed, in which the direct aerosol depositions from the chemical transport model in the GEOS-5 were used. The scheme has been validated with the observed data obtained at backyard of the Institute of Low Temperature Science, Hokkaido University, by Dr. Teruo Aoki (Meteorological Research Institute) et aL including me. The observed data was obtained when I was Ph.D. candidate. The original GEOS-5during 2007-2009 over the Himalayas and Tibetan Plateau region showed more reductions of snow than that of the new GEOS-5 because the original one used lower albedo settings. On snow cover fraction, the new GEOS-5 simulated more realistic snow-covered area comparing to the MODIS snow cover fraction. The reductions on snow albedo, snow cover fraction, and snow water equivalent were seen with statistically significance if we consider the snow darkening effect comparing to the results without the snow darkening effect. In the real world, debris cover, inside refreezing process, surface flow of glacier, etc. affect glacier mass balance and the simulated results immediately do not affect whole glacier retreating. However, our results indicate that some surface melting over non debris covered parts of the glacier would be explained by the snow darkening effect. Further discussion and observations are necessary to assess the glacier issue.
Physical and Chemical Properties of Seasonal Snow and the Impacts on Albedo in New Hampshire, USA
NASA Astrophysics Data System (ADS)
Adolph, A. C.; Albert, M. R.; Amante, J.; Dibb, J. E.
2014-12-01
Snow albedo is critical to surface energy budgets and thus to the timing of mid-winter and vernal melt events in seasonal snow packs. Timing of these melt events is important in predicting flooding, understanding plant and animal phenology, and the availability of winter recreational activity. The state of New Hampshire experiences large spatial and temporal variability in snow albedo as a result of differences in meteorological conditions, physical snow structure, and chemical impurities in the snow, particularly highly absorptive black carbon (BC) and dust particles. This work focuses on the winters of 2012-2013 and 2013-2014, comparing three intensive study sites. Data collected at these sites include sub-hourly meteorological data, near daily measurements of snow depth, snow density, surface IR temperature, specific surface area (SSA) from contact spectroscopy, and spectrally resolved snow albedo using an ASD FieldSpec4 throughout the winter season. Additionally, snow samples were analyzed for black carbon content and other chemical impurities including Cl-, NO3-, NH4 , K , Na , Mg2+ , Ca2+ and SO42-. For each storm event at the three intensive sites, moisture sources and paths were determined using HYPLIT back trajectory modeling to determine potential sources of black carbon and other impurities in the snow. Storms with terrestrial-based paths across the US Midwest and Canada resulted in higher BC content than storms with ocean-based paths and sources. In addition to the variable storm path between sites and between years, the second year of study was on average 2.5°C colder than the first year, impacting duration of snow cover at each site and the SSA of surface snow which is sensitive to frequency of snow events and relies on cold temperatures to reduce grain metamorphism. Combining an understanding of storm frequency and path with physical and chemical attributes of the snow allows us to investigate snow albedo sensitivities with implications for understanding the impacts of future climate change on snow albedo in the Northeastern US.
Soil erosion by snow gliding - a first quantification attempt in a subalpine area in Switzerland
NASA Astrophysics Data System (ADS)
Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.
2014-09-01
Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959-2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha-1 yr-1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha-1 yr-1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.
NASA Astrophysics Data System (ADS)
Umino, T.; Takeuchi, N.
2012-12-01
Snow algae are autotrophic microbes and play an important role as primary producers in food chain of glaciers and snowfield. Although their reproduction requires nutrients, snow and ice is extreamly poor in nutrients. One of the possible sources of nutrients is mineral particles blown by wind and deposited on the snow. They may contain variable elements and provide nutrients for snow algae. However, we scarcely know about the relationship between mineral particles and snow algae. In this study, we described spatial and seasonal variations in mineral particle composition and also snow algae on the snow surface in the Tateyama Mountains, Japan. We discussed the possible effect of mineral particles on snow algae. Tateyama Mountains are located in middle-north part of Japan ranging from 2000 - 3000 m above sea level and have heavy snow fall in winter due to strong monsoon wind from Siberia. The snow starts to thaw in April and remains until late summer as perennial snow patches in some valleys. Kosa eolian dust is known to be blown from Chinese deserts and deposited on the snow every spring. Also, snow algal bloom is often observed as red-colored snow in summer. Samples were collected from the snow surface during summer in 2008 - 2011 at four different sites (A - D) in this area. We examined them by X-ray diffractometer (XRD) and microscope to obtain composition of mineral particles and structure of snow algae community. XRD analysis revealed mineral particles on the snow surface were mainly composed of quartz, plagioclase, hornblende, mica, chlorite, and amorphous. In April, mineral compositions of all sites were almost similar to that of Kosa eolian dust, indicating that these mineral particles were derived from Chinese arid regions. After May, the mineral compositions changed according to sites. The proportion of hornblende at the site C significantly increased whereas that of mica increased at the site D. Since the site C was located near geological features mainly composed of hornblende, the supply of mineral particles from local sources is likely to increase after May. These results indicate mineral particles on the snow surface were blown from distant Chinese deserts in April when snow covered entire ground surface, and they may change to be supplied from the local exposed ground surface after May. Microscopy revealed over 90 % of snow algal cells attached mineral particles on their surfaces, suggesting mineral particles may be beneficial for their growth. Furthermore, algal community structure was different among study sites. The difference may be due to different composition of mineral particles. This suggests composition of mineral particles may affect algal community structure. Hornblende, which was abundant at the site C, is usually rich in Fe or Mg, and it may affect algal growth in the site.
NASA Astrophysics Data System (ADS)
Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.
2005-12-01
NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products. The NOHRSC NSA products are used operationally by NOAA's National Weather Service field offices when issuing hydrologic forecasts and warnings including river and flood forecasts, water supply forecasts, and spring flood outlooks for the nation. Additionally, the NOHRSC NSA products are used by a wide variety of federal, state, local, municipal, private-sector, and general-public end-users with a requirement for real-time snowpack information. The paper discusses, in detail, the techniques and procedures used to create the NOHRSC NSA products and gives a number of examples of the real-time snow products generated and distributed over the NOHRSC web site (www.nohrsc.noaa.gov). Also discussed are major limitations of the approach, the most notable being deficiencies in observation of snow water equivalent. Snow observation networks generally lack the consistency and coverage needed to significantly improve confidence in snow model states through updating. Many regions of the world simply lack snow water equivalent observations altogether, a significant constraint on global application of the NSA approach.
NASA Astrophysics Data System (ADS)
Sato, A.; Omiya, S.
2011-12-01
It is known that the average atmospheric electric field is +100V/m in fair weather (positive electric field vector points downward). An increase of atmospheric electric field is reported when the blowing snow occurred. This phenomenon is mainly explained by the fact that the blowing snow particles have negative charge in average. It is suggested that an electrostatic force, given by the product of the electric field and the charge of the particle, may influence the particle trajectory and change those movements, saltation and suspension. The purpose of this experiment is to clarify the characteristics of the electric field during blowing snow event. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center, NIED. A non-contact voltmeter was used to measure the electric field. An artificial blowing snow was generated by a snow particle supply machine. The rolling brushes of the machine scratch the snow surface and supply snow particles into the airflow. This machine made it possible to supply the snow particles at an arbitrary rate. This experiment was conducted in the following experimental conditions; wind speed of 5 to 7 m/s (3 patterns), supply snow quantity of 8.7 to 34.9 g/m/s (4 patterns), air temperature of -10 degree Celsius, fetch of 10 m and hard snow surface. Measured electric field was all negative, which is opposite direction to the previous measurements. This means that the blowing snow particles had positive charges. The negative electric field tended to increase with increase of the wind speed and the mass flux. These results can be explained from the previous experiment by Omiya and Sato (2010). The snow particles gain positive charges by the friction with the rolling brush which is made from polypropylene, however the particles accumulate negative charges gradually with increase of the collisions to the snow surface. Probably, the positive charges might have remained on the snow particles that had passed over the measurement point. Moreover, it is thought that because the saltation length is longer when the wind speed is higher, fewer collision frequencies left the particles more positive charges. REFERENCE:Omiya and Sato(2010): Measurement of electrostatic charge of blowing snow particles in a wind tunnel focusing on collision frequency to the snow surface. Hokkaido University Collection of Scholarly and Academic Papers
NASA Astrophysics Data System (ADS)
Kostadinov, T. S.; Harpold, A.; Hill, R.; McGwire, K.
2017-12-01
Seasonal snow cover is a key component of the hydrologic regime in many regions of the world, especially those in temperate latitudes with mountainous terrain and dry summers. Such regions support large human populations which depend on the mountain snowpack for their water supplies. It is thus important to quantify snow cover accurately and continuously in these regions. Optical remote-sensing methods are able to detect snow and leverage space-borne spectroradiometers with global coverage such as MODIS to produce global snow cover maps. However, snow is harder to detect accurately in mountainous forested terrain, where topography influences retrieval algorithms, and importantly - forest canopies complicate radiative transfer and obfuscate the snow. Current satellite snow cover algorithms assume that fractional snow-covered area (fSCA) under the canopy is the same as the fSCA in the visible portion of the pixel. In-situ observations and first principles considerations indicate otherwise, therefore there is a need for improvement of the under-canopy correction of snow cover. Here, we leverage multiple LIDAR overflights and in-situ observations with a distributed fiber-optic temperature sensor (DTS) to quantify snow cover under canopy as opposed to gap areas at the Sagehen Experimental Forest in the Northern Sierra Nevada, California, USA. Snow-off LIDAR overflights from 2014 are used to create a baseline high-resolution digital elevation model and classify pixels at 1 m resolution as canopy-covered or gap. Low canopy pixels are excluded from the analysis. Snow-on LIDAR overflights conducted by the Airborne Snow Observatory in 2016 are then used to classify all pixels as snow-covered or not and quantify fSCA under canopies vs. in gap areas over the Sagehen watershed. DTS observations are classified as snow-covered or not based on diel temperature fluctuations and used as validation for the LIDAR observations. LIDAR- and DTS-derived fSCA is also compared with retrievals from hyperspectral imaging spectroradiometer (AVIRIS) data. Initial evidence suggest fSCA was generally lower under canopy and that overall snow cover estimates were overestimated as a result. Implications for a canopy correction applicable to coarser-resolution sensors like MODIS are discussed, as are topography and view angle effects.
NASA Astrophysics Data System (ADS)
Niwano, M.; Aoki, T.; Matoba, S.; Yamaguchi, S.; Tanikawa, T.; Kuchiki, K.; Motoyama, H.
2015-12-01
The snow and ice on the Greenland ice sheet (GrIS) experienced the extreme surface melt around 12 July, 2012. In order to understand the snow-atmosphere interaction during the period, we applied a physical snowpack model SMAP to the GrIS snowpack. In the SMAP model, the snow albedo is calculated by the PBSAM component explicitly considering effects of snow grain size and light-absorbing snow impurities such as black carbon and dust. Temporal evolution of snow grain size is calculated internally in the SMAP model, whereas mass concentrations of snow impurities are externally given from observations. In the PBSAM, the (shortwave) snow albedo is calculated from a weighted summation of visible albedo (primarily affected by snow impurities) and near-infrared albedo (mainly controlled by snow grain size). The weights for these albedos are the visible and near-infrared fractions of the downward shortwave radiant flux. The SMAP model forced by meteorological data obtained from an automated weather station at SIGMA-A site, northwest GrIS during 30 June to 14 July, 2012 (IOP) was evaluated in terms of surface (optically equivalent) snow grain size and snow albedo. Snow grain size simulated by the model was compared against that retrieved from in-situ spectral albedo measurements. Although the RMSE and ME were reasonable (0.21 mm and 0.17 mm, respectively), the small snow grain size associated with the surface hoar could not be simulated by the SMAP model. As for snow albedo, simulation results agreed well with observations throughout the IOP (RMSE was 0.022 and ME was 0.008). Under cloudy-sky conditions, the SMAP model reproduced observed rapid increase in the snow albedo. When cloud cover is present the near-infrared fraction of the downward shortwave radiant flux is decreased, while it is increased under clear-sky conditions. Therefore, the above mentioned performance of the SMAP model can be attributed to the PBSAM component driven by the observed near-infrared and visible fractions of the downward shortwave radiant flux. This result suggests that it is necessary for snowpack models to consider changes in the visible and near-infrared fractions of the downward shortwave radiant flux caused by the presence of cloud cover to reproduce realistic temporal changes in the snow albedo and consequently the surface energy balance.
NASA Astrophysics Data System (ADS)
Zatko, Maria; Erbland, Joseph; Savarino, Joel; Geng, Lei; Easley, Lauren; Schauer, Andrew; Bates, Timothy; Quinn, Patricia K.; Light, Bonnie; Morison, David; Osthoff, Hans D.; Lyman, Seth; Neff, William; Yuan, Bin; Alexander, Becky
2016-11-01
Reactive nitrogen (Nr = NO, NO2, HONO) and volatile organic carbon emissions from oil and gas extraction activities play a major role in wintertime ground-level ozone exceedance events of up to 140 ppb in the Uintah Basin in eastern Utah. Such events occur only when the ground is snow covered, due to the impacts of snow on the stability and depth of the boundary layer and ultraviolet actinic flux at the surface. Recycling of reactive nitrogen from the photolysis of snow nitrate has been observed in polar and mid-latitude snow, but snow-sourced reactive nitrogen fluxes in mid-latitude regions have not yet been quantified in the field. Here we present vertical profiles of snow nitrate concentration and nitrogen isotopes (δ15N) collected during the Uintah Basin Winter Ozone Study 2014 (UBWOS 2014), along with observations of insoluble light-absorbing impurities, radiation equivalent mean ice grain radii, and snow density that determine snow optical properties. We use the snow optical properties and nitrate concentrations to calculate ultraviolet actinic flux in snow and the production of Nr from the photolysis of snow nitrate. The observed δ15N(NO3-) is used to constrain modeled fractional loss of snow nitrate in a snow chemistry column model, and thus the source of Nr to the overlying boundary layer. Snow-surface δ15N(NO3-) measurements range from -5 to 10 ‰ and suggest that the local nitrate burden in the Uintah Basin is dominated by primary emissions from anthropogenic sources, except during fresh snowfall events, where remote NOx sources from beyond the basin are dominant. Modeled daily averaged snow-sourced Nr fluxes range from 5.6 to 71 × 107 molec cm-2 s-1 over the course of the field campaign, with a maximum noontime value of 3.1 × 109 molec cm-2 s-1. The top-down emission estimate of primary, anthropogenic NOx in Uintah and Duchesne counties is at least 300 times higher than the estimated snow NOx emissions presented in this study. Our results suggest that snow-sourced reactive nitrogen fluxes are minor contributors to the Nr boundary layer budget in the highly polluted Uintah Basin boundary layer during winter 2014.
A conceptual snow model with an analytic resolution of the heat and phase change equations
NASA Astrophysics Data System (ADS)
Riboust, Philippe; Le Moine, Nicolas; Thirel, Guillaume; Ribstein, Pierre
2017-04-01
Compared to degree-day snow models, physically-based snow models resolve more processes in an attempt to achieve a better representation of reality. Often these physically-based models resolve the heat transport equations in snow using a vertical discretization of the snowpack. The snowpack is decomposed into several layers in which the mechanical and thermal states of the snow are calculated. A higher number of layers in the snowpack allow for better accuracy but it also tends to increase the computational costs. In order to develop a snow model that estimates the temperature profile of snow with a lower computational cost, we used an analytical decomposition of the vertical profile using eigenfunctions (i.e. trigonometric functions adapted to the specific boundary conditions). The mass transfer of snow melt has also been estimated using an analytical conceptualization of runoff fingering and matrix flow. As external meteorological forcing, the model uses solar and atmospheric radiation, air temperature, atmospheric humidity and precipitations. It has been tested and calibrated at point scale at two different stations in the Alps: Col de Porte (France, 1325 m) and Weissfluhjoch (Switzerland, 2540 m). A sensitivity analysis of model parameters and model inputs will be presented together with a comparison with measured snow surface temperature, SWE, snow depth, temperature profile and snow melt data. The snow model is created in order to be ultimately coupled with hydrological models for rainfall-runoff modeling in mountainous areas. We hope to create a model faster than physically-based models but capable to estimate more physical processes than degree-day snow models. This should help to build a more reliable snow model capable of being easily calibrated by remote sensing and in situ observation or to assimilate these data for forecasting purposes.
Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model
NASA Astrophysics Data System (ADS)
Wang, Tao; Ottlé, Catherine; Boone, Aaron; Ciais, Philippe; Brun, Eric; Morin, Samuel; Krinner, Gerhard; Piao, Shilong; Peng, Shushi
2013-06-01
Snow plays an important role in land surface models (LSM) for climate and model applied over Fran studies, but its current treatment as a single layer of constant density and thermal conductivity in ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) induces significant deficiencies. The intermediate complexity snow scheme ISBA-ES (Interaction between Soil, Biosphere and Atmosphere-Explicit Snow) that includes key snow processes has been adapted and implemented into ORCHIDEE, referred to here as ORCHIDEE-ES. In this study, the adapted scheme is evaluated against the observations from the alpine site Col de Porte (CDP) with a continuous 18 year data set and from sites distributed in northern Eurasia. At CDP, the comparisons of snow depth, snow water equivalent, surface temperature, snow albedo, and snowmelt runoff reveal that the improved scheme in ORCHIDEE is capable of simulating the internal snow processes better than the original one. Preliminary sensitivity tests indicate that snow albedo parameterization is the main cause for the large difference in snow-related variables but not for soil temperature simulated by the two models. The ability of the ORCHIDEE-ES to better simulate snow thermal conductivity mainly results in differences in soil temperatures. These are confirmed by performing sensitivity analysis of ORCHIDEE-ES parameters using the Morris method. These features can enable us to more realistically investigate interactions between snow and soil thermal regimes (and related soil carbon decomposition). When the two models are compared over sites located in northern Eurasia from 1979 to 1993, snow-related variables and 20 cm soil temperature are better reproduced by ORCHIDEE-ES than ORCHIDEE, revealing a more accurate representation of spatio-temporal variability.
Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods
Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste; ...
2017-04-03
This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE=2.9cm), with a spatial sampling of 10cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE=6.0cm) andmore » a fine spatial sampling (4cm×4cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE=6.0cm), at 0.5m resolution and over the lidar domain (750m×700m).« less
NASA Astrophysics Data System (ADS)
Liou, K. N.; Takano, Y.; He, C.; Yang, P.; Leung, L. R.; Gu, Y.; Lee, W. L.
2014-06-01
A stochastic approach has been developed to model the positions of BC (black carbon)/dust internally mixed with two snow grain types: hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine BC/dust single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), the action of internal mixing absorbs substantially more light than external mixing. The snow grain shape effect on absorption is relatively small, but its effect on asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions of BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2-5 µm) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 µm, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo substantially more than external mixing and that the snow grain shape plays a critical role in snow albedo calculations through its forward scattering strength. Also, multiple inclusion of BC/dust significantly reduces snow albedo as compared to an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization involving contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountain/snow topography.
Snow cover distribution over elevation zones in a mountainous catchment
NASA Astrophysics Data System (ADS)
Panagoulia, D.; Panagopoulos, Y.
2009-04-01
A good understanding of the elevetional distribution of snow cover is necessary to predict the timing and volume of runoff. In a complex mountainous terrain the snow cover distribution within a watershed is highly variable in time and space and is dependent on elevation, slope, aspect, vegetation type, surface roughness, radiation load, and energy exchange at the snow-air interface. Decreases in snowpack due to climate change could disrupt the downstream urban and agricultural water supplies, while increases could lead to seasonal flooding. Solar and longwave radiation are dominant energy inputs driving the ablation process. Turbulent energy exchange at the snow cover surface is important during the snow season. The evaporation of blowing and drifting snow is strongly dependent upon wind speed. Much of the spatial heterogeneity of snow cover is the result of snow redistribution by wind. Elevation is important in determining temperature and precipitation gradients along hillslopes, while the temperature gradients determine where precipitation falls as rain and snow and contribute to variable melt rates within the hillslope. Under these premises, the snow accumulation and ablation (SAA) model of the US National Weather Service (US NWS) was applied to implement the snow cover extent over elevation zones of a mountainous catchment (the Mesochora catchment in Western-Central Greece), taking also into account the indirectly included processes of sublimation, interception, and snow redistribution. The catchment hydrology is controlled by snowfall and snowmelt and the simulated discharge was computed from the soil moisture accounting (SMA) model of the US NWS and compared to the measured discharge. The elevationally distributed snow cover extent presented different patterns with different time of maximization, extinction and return during the year, producing different timing of discharge that is a crucial factor for the control and management of water resources systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liou, K. N.; Takano, Y.; He, Cenlin
2014-06-27
A stochastic approach to model the positions of BC/dust internally mixed with two snow-grain types has been developed, including hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine their single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), internal mixing absorbs more light than external mixing. The snow-grain shape effect on absorption is relatively small, but its effect on the asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions ofmore » BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2 – 5 um) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 um, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo more than external mixing and that the snow-grain shape plays a critical role in snow albedo calculations through the asymmetry factor. Also, snow albedo reduces more in the case of multiple inclusion of BC/dust compared to that of an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization containing contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountains/snow topography.« less
Snow water equivalent mapping in Norway
NASA Astrophysics Data System (ADS)
Tveito, O. E.; Udnæs, H.-C.; Engeset, R.; Førland, E. J.; Isaksen, K.; Mengistu, Z.
2003-04-01
In high latitude area snow covers the ground large parts of the year. Information about the water volume as snow is of major importance in many respects. Flood forecasters at NVE need it in order to assess possible flood risks. Hydropower producers need it to plan the most efficient production of the water in their reservoirs, traders to estimate the potential energy available for the market. Meteorologists on their side use the information as boundary conditions in weather forecasting models. The Norwegian meteorological institute has provided snow accumulation maps for Norway for more than 50 years. These maps are now produced twice a month in the winter season. They show the accumulated precipitation in the winter season from the day the permanent snow cover is established. They do however not take melting into account, and do therefore not give a good description of the actual snow amounts during and after periods with snowmelt. Due to an increased need for a direct measure of water volumes as snow cover, met.no and NVE initialized a joint project in order to establish maps of the actual snow cover expressed in water equivalents. The project utilizes recent developments in the use of GIS in spatial modeling. Daily precipitation and temperature are distributed in space by using objective spatial interpolation methods. The interpolation considers topographical and other geographical parameters as well as weather type information. A degree-day model is used at each modeling point to calculate snow-accumulation and snowmelt. The maps represent a spatial scale of 1x1 km2. The modeled snow reservoir is validated by snow pillow values as well traditional snow depth observations. Preliminary results show that the new snow modeling approach reproduces the snow water equivalent well. The spatial approach also opens for a wide use in the terms of areal analysis.
Wind tunnel experiments: influence of erosion and deposition on wind-packing of new snow
NASA Astrophysics Data System (ADS)
Sommer, Christian G.; Lehning, Michael; Fierz, Charles
2018-01-01
Wind sometimes creates a hard, wind-packed layer at the surface of a snowpack. The formation of such wind crusts was observed during wind tunnel experiments with combined SnowMicroPen and Microsoft Kinect sensors. The former provides the hardness of new and wind-packed snow and the latter spatial snow depth data in the test section. Previous experiments showed that saltation is necessary but not sufficient for wind-packing. The combination of hardness and snow depth data now allows to study the case with saltation in more detail. The Kinect data requires complex processing but with the appropriate corrections, snow depth changes can be measured with an accuracy of about 1 mm. The Kinect is therefore well suited to quantify erosion and deposition. We found that no hardening occurred during erosion and that a wind crust may or may not form when snow is deposited. Deposition is more efficient at hardening snow in wind-exposed than in wind-sheltered areas. The snow hardness increased more on the windward side of artificial obstacles placed in the wind tunnel. Similarly, the snow was harder in positions with a low Sx parameter. Sx describes how wind-sheltered (high Sx) or wind-exposed (low Sx) a position is and was calculated based on the Kinect data. The correlation between Sx and snow hardness was -0.63. We also found a negative correlation of -0.4 between the snow hardness and the deposition rate. Slowly deposited snow is harder than a rapidly growing accumulation. Sx and the deposition rate together explain about half of the observed variability of snow hardness.
NASA Astrophysics Data System (ADS)
Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan
2016-04-01
The spatial and temporal variability of snow cover has a significant impact on climate and environment and is of great socio-economic importance for the European Alps. Satellite remote sensing data is widely used to study snow cover variability and can provide spatially comprehensive information on snow cover extent. However, cloud cover strongly impedes the surface view and hence limits the number of useful snow observations. Outdoor webcam images not only offer unique potential for complementing satellite-derived snow retrieval under cloudy conditions but could also serve as a reference for improved validation of satellite-based approaches. Thousands of webcams are currently connected to the Internet and deliver freely available images with high temporal and spatial resolutions. To exploit the untapped potential of these webcams, a semi-automatic procedure was developed to generate snow cover maps based on webcam images. We used daily webcam images of the Swiss alpine region to apply, improve, and extend existing approaches dealing with the positioning of photographs within a terrain model, appropriate georectification, and the automatic snow classification of such photographs. In this presentation, we provide an overview of the implemented procedure and demonstrate how our registration approach automatically resolves the orientation of a webcam by using a high-resolution digital elevation model and the webcam's position. This allows snow-classified pixels of webcam images to be related to their real-world coordinates. We present several examples of resulting snow cover maps, which have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or not visible from webcams' positions. The procedure is expected to work under almost any weather condition and demonstrates the feasibility of using webcams for the retrieval of high-resolution snow cover information.
Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste
This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE=2.9cm), with a spatial sampling of 10cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE=6.0cm) andmore » a fine spatial sampling (4cm×4cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE=6.0cm), at 0.5m resolution and over the lidar domain (750m×700m).« less
NASA Astrophysics Data System (ADS)
Sturm, M.; Nolan, M.; Larsen, C. F.
2014-12-01
A long-standing goal in snow hydrology has been to map snow cover in detail, either mapping snow depth or snow water equivalent (SWE) with sub-meter resolution. Airborne LiDAR and air photogrammetry have been used successfully for this purpose, but both require significant investments in equipment and substantial processing effort. Here we detail a relatively inexpensive and simple airborne photogrammetric technique that can be used to measure snow depth. The main airborne hardware consists of a consumer-grade digital camera attached to a survey-quality, dual-frequency GPS. Photogrammetric processing is done using commercially available Structure from Motion (SfM) software that does not require ground control points. Digital elevation models (DEMs) are made from snow-free acquisitions in the summer and snow-covered acquisitions in winter, and the maps are then differenced to arrive at snow thickness. We tested the accuracy and precision of snow depths measured using this system through 1) a comparison with airborne scanning LiDAR, 2) a comparison of results from two independent and slightly different photogrameteric systems, and 3) comparison to extensive on-the-ground measured snow depths. Vertical accuracy and precision are on the order of +/-30 cm and +/- 8 cm, respectively. The accuracy can be made to approach that of the precision if suitable snow-free ground control points exists and are used to co-register summer to winter DEM maps. Final snow depth accuracy from our series of tests was on the order of ±15 cm. This photogrammetric method substantially lowers the economic and expertise barriers to entry for mapping snow.
Transformations of snow chemistry in the boreal forest: Accumulation and volatilization
Pomeroy, J.W.; Davies, T.D.; Jones, H.G.; Marsh, P.; Peters, N.E.; Tranter, M.
1999-01-01
This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation and loss in boreal forest snow during the cold winter period at a northern and southern location in the boreal forest of western Canada. Field observations from Inuvik, Northwest Territories and Waskesiu, Saskatchewan, Canada were used to link chemical transformations and physical processes in boreal forest snow. Data on the disposition and overwinter transformation of snow water equivalent, NO3-, SO42- and other major ions were examined. No evidence of enhanced dry deposition of chemical species to intercepted snow was found at either site except where high atmospheric aerosol concentrations prevailed. At Inuvik, concentrations of SO42- and Cl- were five to six times higher in intercepted snow than in surface snow away from the trees. SO4-S and Cl loads at Inuvik were correspondingly enhanced three-fold within the nearest 0.5 m to individual tree stems. Measurements of snow affected by canopy interception without rapid sublimation provided no evidence of ion volatilization from intercepted snow. Where intercepted snow sublimation rates were significant, ion loads in sub-canopy snow suggested that NO3- volatized with an efficiency of about 62% per snow mass sublimated. Extrapolating this measurement from Waskesiu to sublimation losses observed in other southern boreal environments suggests that 19-25% of snow inputs of NO3- can be lost during intercepted snow sublimation. The amount of N lost during sublimation may be large in high-snowfall, high N load southern boreal forests (Quebec) where 0.42 kg NO3-N ha-1 is estimated as a possible seasonal NO3- volatilization. The sensitivity of the N fluxes to climate and forest canopy variation and implications of the winter N losses for N budgets in the boreal forest are discussed.This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation and loss in boreal forest snow during the cold winter period at a northern and southern location in the boreal forest of western Canada. Field observations from Inuvik. Northwest Territories and Waskesiu, Saskatchewan, Canada were used to link chemical transformations and physical processes in boreal forest snow. Data on the disposition and overwinter transformation of snow water equivalent, NO3-, SO42- and other major ions were examined. No evidence of enhanced dry deposition of chemical species to intercepted snow was found at either site except where high atmospheric aerosol concentrations prevailed. At Inuvik, concentrations of SO42- and Cl- were five to six times higher in intercepted snow than in surface snow away from the trees. SO4-S and Cl loads at Inuvik were correspondingly enhanced three-fold within the nearest 0.5 m to individual tree stems. Measurements of snow affected by canopy interception without rapid sublimation provided no evidence of ion volatilization from intercepted snow. Where intercepted snow sublimation rates were significant, ion loads in sub-canopy snow suggested that NO3- volatized with an efficiency of about 62% per snow mass sublimated. Extrapolating this measurement from Waskesiu to sublimation losses observed in other southern boreal environments suggests that 19-25% of snow inputs of NO3- can be lost during intercepted snow sublimation. The amount of N lost during sublimation may be large in high-snowfall, high N load southern boreal forests (Quebec) where 0.42 kg NO3-N ha-1 is estimated as a possible seasonal NO3- volatilization. The sensitivity of the N fluxes to climate and forest canopy variation and implications of the winter N losses for N budgets in the boreal forest are discussed.
NASA Astrophysics Data System (ADS)
Clare, R. M.; Desai, A. R.; Martin, J. E.; Notaro, M.; Vavrus, S. J.
2017-12-01
It has long been hypothesized that snow cover and snow extent have an influence on the development or steering of synoptic mid-latitude cyclones (MLCs). Rydzik and Desai (2014) showed a robust statistical relationship among snow cover extent, generation of low-level baroclinicity, and MLC tracks. Though snow cover extent is highly variable year to year, the changing global climate is expected to continue an already observed pattern of poleward retreat of mean snow cover in North America, particularly in late winter and spring. For this experiment, large ensemble simulations with the Weather Research and Forecasting model (WRF) were forced with output from the Community Earth System Model (CESM) to test the effect contributed solely by snow cover and the projected effects of a changing climate. Our experiment induces an adjustment to the extent of snow cover in North America according to CESM RCP 8.5 projections for each decade from 2020 to 2100 before and during several cases of MLCs moving east across the Great Plains near the snow line. To evaluate mechanisms of pre-existing and current snow influence on MLCs, model cases are started with snow line adjustment occurring from three days prior up to the storm's arrival over the Great Plains. We demonstrate that snow cover changes do alter MLC intensity and path via modification of low-level potential vorticity.
Research on snow cover monitoring of Northeast China using Fengyun Geostationary Satellite
NASA Astrophysics Data System (ADS)
Wu, Tong; Gu, Lingjia; Ren, Ruizhi; Zhou, TIngting
2017-09-01
Snow cover information has great significance for monitoring and preventing snowstorms. With the development of satellite technology, geostationary satellites are playing more important roles in snow monitoring. Currently, cloud interference is a serious problem for obtaining accurate snow cover information. Therefore, the cloud pixels located in the MODIS snow products are usually replaced by cloud-free pixels around the day, which ignores snow cover dynamics. FengYun-2(FY-2) is the first generation of geostationary satellite in our country which complements the polar orbit satellite. The snow cover monitoring of Northeast China using FY-2G data in January and February 2016 is introduced in this paper. First of all, geometric and radiometric corrections are carried out for visible and infrared channels. Secondly, snow cover information is extracted according to its characteristics in different channels. Multi-threshold judgment methods for the different land types and similarity separation techniques are combined to discriminate snow and cloud. Furthermore, multi-temporal data is used to eliminate cloud effect. Finally, the experimental results are compared with the MOD10A1 and MYD10A1 (MODIS daily snow cover) product. The MODIS product can provide higher resolution of the snow cover information in cloudless conditions. Multi-temporal FY-2G data can get more accurate snow cover information in cloudy conditions, which is beneficial for monitoring snowstorms and climate changes.
Experimental investigation of drifting snow in a wind tunnel
NASA Astrophysics Data System (ADS)
Crivelli, Philip; Paterna, Enrico; Horender, Stefan; Lehning, Michael
2015-11-01
Drifting snow has a significant impact on snow distribution in mountains, prairies as well as on glaciers and polar regions. In all these environments, the local mass balance is highly influenced by drifting snow. Despite most of the model approaches still rely on the assumption of steady-state and equilibrium saltation, recent advances have proven the mass-transport of drifting snow events to be highly intermittent. A clear understanding of such high intermittency has not yet been achieved. Therefore in our contribution we investigate mass- and momentum fluxes during drifting snow events, in order to better understand that the link between snow cover erosion and deposition. Experiments were conducted in a cold wind tunnel, employing sensors for the momentum flux measurements, the mass flux measurement and for the snow depth estimation over a certain area upstream of the other devices. Preliminary results show that the mass flux is highly intermittent at scales ranging from eddy turnover time to much larger scales. The former scales are those that contribute the most to the overall intermittency and we observe a link between the turbulent flow structures and the mass flux of drifting snow at those scales. The role of varying snow properties in inducing drifting snow intermittency goes beyond such link and is expected to occur at much larger scales, caused by the physical snow properties such as density and cohesiveness.
NASA Astrophysics Data System (ADS)
Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian
2017-10-01
Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.
NASA Astrophysics Data System (ADS)
Engel, Michael; Bertoldi, Giacomo; Notarnicola, Claudia; Comiti, Francesco
2017-04-01
To assess the performance of simulated snow cover of hydrological models, it is common practice to compare simulated data with observed ones derived from satellite images such as MODIS. However, technical and methodological limitations such as data availability of MODIS products, its spatial resolution or difficulties in finding appropriate parameterisations of the model need to be solved previously. Another important assumption usually made is the threshold of minimum simulated snow depth, generally set to 10 mm of snow depth, to respect the MODIS detection thresholds for snow cover. But is such a constant threshold appropriate for complex alpine terrain? How important is the impact of different snow depth thresholds on the spatial and temporal distribution of the pixel-based overall accuracy (OA)? To address this aspect, we compared the snow covered area (SCA) simulated by the GEOtop 2.0 snow model to the daily composite 250 m EURAC MODIS SCA in the upper Saldur basin (61 km2, Eastern Italian Alps) during the period October 2011 - October 2013. Initially, we calibrated the snow model against snow depths and snow water equivalents at point scale, taken from measurements at different meteorological stations. We applied different snow depth thresholds (0 mm, 10 mm, 50 mm, and 100 mm) to obtain the simulated snow cover and assessed the changes in OA both in time (during the entire evaluation period, accumulation and melting season) and space (entire catchment and specific areas of topographic characteristics such as elevation, slope, aspect, landcover, and roughness). Results show remarkable spatial and temporal differences in OA with respect to different snow depth thresholds. Inaccuracies of simulated and observed SCA during the accumulation season September to November 2012 were located in areas with north-west aspect, slopes of 30° or little elevation differences at sub-pixel scale (-0.25 to 0 m). We obtained best agreements with MODIS SCA for a snow depth threshold of 100 mm, leading to increased OA (> 0.8) in 13‰ of the catchment area. SCA agreement in January 2012 and 2013 was slightly limited by MODIS sensor detection due to shading effects and low illumination in areas exposed north-west to north. On the contrary, during the melting season in April 2013 and after the September 2013 snowfall event seemed to depend more on parameterisation than on snow depth thresholds. In contrast, inaccuracies during the melting season March to June 2013 could hardly be attributed to topographic characteristics and different snow depth thresholds but rather on model parameterisation. We identified specific conditions (p.e. specific snowfall events in autumn 2012 and spring 2013) when either MODIS data or the hydrological model was less accurate, thus justifying the need for improvements of precision in the snow cover detection algorithms or in the model's process description. In consequence, our study observations could support future snow cover evaluations in mountain areas, where spatially and temporally dynamic snow depth thresholds are transferred from the catchment scale to the regional scale. Keywords: snow cover, snow modelling, MODIS, snow depth sensitivity, alpine catchment
Enhanced hemispheric-scale snow mapping through the blending of optical and microwave satellite data
NASA Astrophysics Data System (ADS)
Armstrong, R. L.; Brodzik, M. J.; Savoie, M.; Knowles, K.
2003-04-01
Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. Global snow cover fluctuation can now be monitored over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere weekly snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Decadal trends and their significance are compared for the two data types. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as throughout the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm is enhanced. Because the current generation of microwave snow algorithms is unable to consistently detect shallow and intermittent snow, we combine visible satellite data with the microwave data in a single blended product to overcome this problem. For the period 1978 to 2002 we combine data from the NOAA weekly snow charts with passive microwave data from the SMMR and SSM/I brightness temperature record. For the current and future time period we blend MODIS and AMSR-E data sets, both of which have greatly enhanced spatial resolution compared to the earlier data sources. Because it is not possible to determine snow depth or snow water equivalent from visible data, the regions where only the NOAA or MODIS data indicate snow are defined as "shallow snow". However, because our current blended product is being developed in the 25 km EASE-Grid and the MODIS data being used are in the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) the blended product also includes percent snow cover over the larger grid cell. A prototype version of the blended MODIS/AMSR-E product will be available in near real-time from NSIDC during the 2002-2003 winter season.
Unexpected Patterns in Snow and Dirt
ERIC Educational Resources Information Center
Ackerson, Bruce J.
2018-01-01
For more than 30 years, Albert A. Bartlett published "Thermal patterns in the snow" in this journal. These are patterns produced by heat sources underneath the snow. Bartlett's articles encouraged me to pay attention to patterns in snow and to understanding them. At winter's end the last snow becomes dirty and is heaped into piles. This…
SNOWMIP2: An evaluation of forest snow process simulations
Richard Essery; Nick Rutter; John Pomeroy; Robert Baxter; Manfred Stahli; David Gustafsson; Alan Barr; Paul Bartlett; Kelly Elder
2009-01-01
Models of terrestrial snow cover, or snow modules within land surface models, are used in many meteorological, hydrological, and ecological applications. Such models were developed first, and have achieved their greatest sophistication, for snow in open areas; however, huge tracts of the Northern Hemisphere both have seasonal snow cover and are forested (Fig. 1)....
National Snow Analyses - NOHRSC - The ultimate source for snow information
Equivalent Thumbnail image of Modeled Snow Water Equivalent Animate: Season --- Two weeks --- One Day Snow Depth Thumbnail image of Modeled Snow Depth Animate: Season --- Two weeks --- One Day Average Snowpack Temp Thumbnail image of Modeled Average Snowpack Temp Animate: Season --- Two weeks --- One Day SWE
NASA Astrophysics Data System (ADS)
Jones, H. G.; Pomeroy, J. W.; Walker, D. A.; Hoham, R. W.
2001-01-01
In this volume, a multidisciplinary group of acknowledged experts fully intergrate the physical, chemical, and biological sciences to provide a complete understanding of the interrelationships between snow structure and life. This volume opens a new perspecitve on snow cover as a habitat for organisms under extreme environmental conditions and as a key factor in the ecology of much of the Earth's surface. The contributors describe the fundamental physical and small-scale chemical processes that characterize the evolution of snow and their influence on the life cycles of true snow organisms and the biota of cold regions with extended snow cover. The book further expands on the role of snow in the biosphere by the study of the relationship between snow and climate and the paleo-ecological evidence for the influence of past snow regimes on plant communities. Snow Ecology will form a main textbook on advanced courses in biology, ecology, geography, environmental science, and earth science where an important component is devoted to the study of the cryosphere. It will also be useful as a reference text for graduate students, researchers, and professionals at academic institutions and in government and nongovernmental agencies with environmental concerns.
Effect of snow cover on soil frost penetration
NASA Astrophysics Data System (ADS)
Rožnovský, Jaroslav; Brzezina, Jáchym
2017-12-01
Snow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important - increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.
Intercomparison of Satellite-Derived Snow-Cover Maps
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Tait, Andrew B.; Foster, James L.; Chang, Alfred T. C.; Allen, Milan
1999-01-01
In anticipation of the launch of the Earth Observing System (EOS) Terra, and the PM-1 spacecraft in 1999 and 2000, respectively, efforts are ongoing to determine errors of satellite-derived snow-cover maps. EOS Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer-E (AMSR-E) snow-cover products will be produced. For this study we compare snow maps covering the same study area acquired from different sensors using different snow- mapping algorithms. Four locations are studied: 1) southern Saskatchewan; 2) a part of New England (New Hampshire, Vermont and Massachusetts) and eastern New York; 3) central Idaho and western Montana; and 4) parts of North and South Dakota. Snow maps were produced using a prototype MODIS snow-mapping algorithm used on Landsat Thematic Mapper (TM) scenes of each study area at 30-m and when the TM data were degraded to 1 -km resolution. National Operational Hydrologic Remote Sensing Center (NOHRSC) 1 -km resolution snow maps were also used, as were snow maps derived from 1/2 deg. x 1/2 deg. resolution Special Sensor Microwave Imager (SSM/1) data. A land-cover map derived from the International Geosphere-Biosphere Program (IGBP) land-cover map of North America was also registered to the scenes. The TM, NOHRSC and SSM/I snow maps, and land-cover maps were compared digitally. In most cases, TM-derived maps show less snow cover than the NOHRSC and SSM/I maps because areas of incomplete snow cover in forests (e.g., tree canopies, branches and trunks) are seen in the TM data, but not in the coarser-resolution maps. The snow maps generally agree with respect to the spatial variability of the snow cover. The 30-m resolution TM data provide the most accurate snow maps, and are thus used as the baseline for comparison with the other maps. Comparisons show that the percent change in amount of snow cover relative to the 3 0-m resolution TM maps is lowest using the TM I -km resolution maps, ranging from 0 to 40%. The highest percent change (less than 100%) is found in the New England study area, probably due to the presence of patchy snow cover. A scene with patchy snow cover is more difficult to map accurately than is a scene with a well-defined snowline such as is found on the North and South Dakota scene where the percent change ranged from 0 to 40%. There are also some important differences in the amount of snow mapped using the two different SSM/I algorithms because they utilize different channels.
Endolithic microbial life in extreme cold climate: snow is required, but perhaps less is more.
Sun, Henry J
2013-04-03
Cyanobacteria and lichens living under sandstone surfaces in the McMurdo Dry Valleys require snow for moisture. Snow accumulated beyond a thin layer, however, is counterproductive, interfering with rock insolation, snow melting, and photosynthetic access to light. With this in mind, the facts that rock slope and direction control colonization, and that climate change results in regional extinctions, can be explained. Vertical cliffs, which lack snow cover and are perpetually dry, are devoid of organisms. Boulder tops and edges can trap snow, but gravity and wind prevent excessive buildup. There, the organisms flourish. In places where snow-thinning cannot occur and snow drifts collect, rocks may contain living or dead communities. In light of these observations, the possibility of finding extraterrestrial endolithic communities on Mars cannot be eliminated.
Spectral Profiler Probe for In Situ Snow Grain Size and Composition Stratigraphy
NASA Technical Reports Server (NTRS)
Berisford, Daniel F.; Molotch, Noah P.; Painter, Thomas
2012-01-01
An ultimate goal of the climate change, snow science, and hydrology communities is to measure snow water equivalent (SWE) from satellite measurements. Seasonal SWE is highly sensitive to climate change and provides fresh water for much of the world population. Snowmelt from mountainous regions represents the dominant water source for 60 million people in the United States and over one billion people globally. Determination of snow grain sizes comprising mountain snowpack is critical for predicting snow meltwater runoff, understanding physical properties and radiation balance, and providing necessary input for interpreting satellite measurements. Both microwave emission and radar backscatter from the snow are dominated by the snow grain size stratigraphy. As a result, retrieval algorithms for measuring snow water equivalents from orbiting satellites is largely hindered by inadequate knowledge of grain size.
NASA Astrophysics Data System (ADS)
Chevooruvalappil Chandran, B.; Pittana, M.; Haas, C.
2015-12-01
Snow on sea ice is a critical and complex factor influencing sea ice processes. Deep snow with a high albedo and low thermal conductivity inhibits ice growth in winter and minimizes ice loss in summer. Very shallow or absent snow promotes ice growth in winter and ice loss in summer. The timing of snow ablation critically impacts summer sea ice mass balance. Here we assess the accuracy of various snow on sea ice data products from reanalysis and modeling comparing them with in situ measurements. The latter are based on the Warren et al. (1999) monthly climatology derived from snow ruler measurements between 1954-1991, and on daily snow depth retrievals from few drifting ice mass balance buoys (IMB) with sufficiently long observations spanning the summer season. These were compared with snow depth data from the National Center for Environmental Prediction Department of Energy Reanalysis 2 (NCEP), the Community Climate System Model 4 (CCSM4), and the Canadian Earth System Model 2 (CanESM2). Results are quite variable in different years and regions. However, there is often good agreement between CanESM2 and IMB snow depth during the winter accumulation and spring melt periods. Regional analyses show that over the western Arctic covered primarily with multiyear ice NCEP snow depths are in good agreement with the Warren climatology while CCSM4 overestimates snow depth. However, in the Eastern Arctic which is dominated by first-year ice the opposite behavior is observed. Compared to the Warren climatology CanESM2 underestimates snow depth in all regions. Differences between different snow depth products are as large as 10 to 20 cm, with large consequences for the sea ice mass balance. However, it is also very difficult to evaluate the accuracy of reanalysis and model snow depths due to a lack of extensive, continuous in situ measurements.
NASA Astrophysics Data System (ADS)
Sengupta, D.; Gao, L.; Wilcox, E. M.; Beres, N. D.; Moosmüller, H.; Khlystov, A.
2017-12-01
Radiative forcing and climate change greatly depends on earth's surface albedo and its temporal and spatial variation. The surface albedo varies greatly depending on the surface characteristics ranging from 5-10% for calm ocean waters to 80% for some snow-covered areas. Clean and fresh snow surfaces have the highest albedo and are most sensitive to contamination with light absorbing impurities that can greatly reduce surface albedo and change overall radiative forcing estimates. Accurate estimation of snow albedo as well as understanding of feedbacks on climate from changes in snow-covered areas is important for radiative forcing, snow energy balance, predicting seasonal snowmelt, and run off rates. Such information is essential to inform timely decision making of stakeholders and policy makers. Light absorbing particles deposited onto the snow surface can greatly alter snow albedo and have been identified as a major contributor to regional climate forcing if seasonal snow cover is involved. However, uncertainty associated with quantification of albedo reduction by these light absorbing particles is high. Here, we use Mie theory (under the assumption of spherical snow grains) to reconstruct the single scattering parameters of snow (i.e., single scattering albedo ῶ and asymmetry parameter g) from observation-based size distribution information and retrieved refractive index values. The single scattering parameters of impurities are extracted with the same approach from datasets obtained during laboratory combustion of biomass samples. Instead of using plane-parallel approximation methods to account for multiple scattering, we have used the simple "Monte Carlo ray/photon tracing approach" to calculate the snow albedo. This simple approach considers multiple scattering to be the "collection" of single scattering events. Using this approach, we vary the effective snow grain size and impurity concentrations to explore the evolution of snow albedo over a wide wavelength range (300 nm - 2000 nm). Results will be compared with the SNICAR model to better understand the differences in snow albedo computation between plane-parallel methods and the statistical Monte Carlo methods.
NASA Astrophysics Data System (ADS)
Revuelto, Jesús; Azorin-Molina, Cesar; Alonso-González, Esteban; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Rico, Ibai; López-Moreno, Juan Ignacio
2017-12-01
This work describes the snow and meteorological data set available for the Izas Experimental Catchment in the Central Spanish Pyrenees, from the 2011 to 2017 snow seasons. The experimental site is located on the southern side of the Pyrenees between 2000 and 2300 m above sea level, covering an area of 55 ha. The site is a good example of a subalpine environment in which the evolution of snow accumulation and melt are of major importance in many mountain processes. The climatic data set consists of (i) continuous meteorological variables acquired from an automatic weather station (AWS), (ii) detailed information on snow depth distribution collected with a terrestrial laser scanner (TLS, lidar technology) for certain dates across the snow season (between three and six TLS surveys per snow season) and (iii) time-lapse images showing the evolution of the snow-covered area (SCA). The meteorological variables acquired at the AWS are precipitation, air temperature, incoming and reflected solar radiation, infrared surface temperature, relative humidity, wind speed and direction, atmospheric air pressure, surface temperature (snow or soil surface), and soil temperature; all were taken at 10 min intervals. Snow depth distribution was measured during 23 field campaigns using a TLS, and daily information on the SCA was also retrieved from time-lapse photography. The data set (https://doi.org/10.5281/zenodo.848277) is valuable since it provides high-spatial-resolution information on the snow depth and snow cover, which is particularly useful when combined with meteorological variables to simulate snow energy and mass balance. This information has already been analyzed in various scientific studies on snow pack dynamics and its interaction with the local climatology or topographical characteristics. However, the database generated has great potential for understanding other environmental processes from a hydrometeorological or ecological perspective in which snow dynamics play a determinant role.
Snow depth on Arctic and Antarctic sea ice derived from autonomous (Snow Buoy) measurements
NASA Astrophysics Data System (ADS)
Nicolaus, Marcel; Arndt, Stefanie; Hendricks, Stefan; Heygster, Georg; Huntemann, Marcus; Katlein, Christian; Langevin, Danielle; Rossmann, Leonard; Schwegmann, Sandra
2016-04-01
The snow cover on sea ice received more and more attention in recent sea ice studies and model simulations, because its physical properties dominate many sea ice and upper ocean processes. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of sea ice, as well as for the interaction with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for sea ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic sea ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic sea ice, no such climatology is available. With a few exceptions, snow depth on sea ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on sea ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic and Arctic sea ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on sea ice and will allow new insights into its seasonality. In addition, the instruments report air temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell Sea for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences. Finally, results from seven snow buoys co-deployed on Arctic sea ice throughout the winter season 2015/16 suggest the great importance of local effects, weather events, and potential influences of dynamic sea ice processes on snow accumulation.
Snow-atmosphere coupling and its impact on temperature variability and extremes over North America
NASA Astrophysics Data System (ADS)
Diro, G. T.; Sushama, L.; Huziy, O.
2018-04-01
The impact of snow-atmosphere coupling on climate variability and extremes over North America is investigated using modeling experiments with the fifth generation Canadian Regional Climate Model (CRCM5). To this end, two CRCM5 simulations driven by ERA-Interim reanalysis for the 1981-2010 period are performed, where snow cover and depth are prescribed (uncoupled) in one simulation while they evolve interactively (coupled) during model integration in the second one. Results indicate systematic influence of snow cover and snow depth variability on the inter-annual variability of soil and air temperatures during winter and spring seasons. Inter-annual variability of air temperature is larger in the coupled simulation, with snow cover and depth variability accounting for 40-60% of winter temperature variability over the Mid-west, Northern Great Plains and over the Canadian Prairies. The contribution of snow variability reaches even more than 70% during spring and the regions of high snow-temperature coupling extend north of the boreal forests. The dominant process contributing to the snow-atmosphere coupling is the albedo effect in winter, while the hydrological effect controls the coupling in spring. Snow cover/depth variability at different locations is also found to affect extremes. For instance, variability of cold-spell characteristics is sensitive to snow cover/depth variation over the Mid-west and Northern Great Plains, whereas, warm-spell variability is sensitive to snow variation primarily in regions with climatologically extensive snow cover such as northeast Canada and the Rockies. Furthermore, snow-atmosphere interactions appear to have contributed to enhancing the number of cold spell days during the 2002 spring, which is the coldest recorded during the study period, by over 50%, over western North America. Additional results also provide useful information on the importance of the interactions of snow with large-scale mode of variability in modulating temperature extreme characteristics.
NASA Astrophysics Data System (ADS)
Kelly, R. E. J.; Saberi, N.; Li, Q.
2017-12-01
With moderate to high spatial resolution (<1 km) regional to global snow water equivalent (SWE) observation approaches yet to be fully scoped and developed, the long-term satellite passive microwave record remains an important tool for cryosphere-climate diagnostics. A new satellite microwave remote sensing approach is described for estimating snow depth (SD) and snow water equivalent (SWE). The algorithm, called the Satellite-based Microwave Snow Algorithm (SMSA), uses Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations aboard the Global Change Observation Mission - Water mission launched by the Japan Aerospace Exploration Agency in 2012. The approach is unique since it leverages observed brightness temperatures (Tb) with static ancillary data to parameterize a physically-based retrieval without requiring parameter constraints from in situ snow depth observations or historical snow depth climatology. After screening snow from non-snow surface targets (water bodies [including freeze/thaw state], rainfall, high altitude plateau regions [e.g. Tibetan plateau]), moderate and shallow snow depths are estimated by minimizing the difference between Dense Media Radiative Transfer model estimates (Tsang et al., 2000; Picard et al., 2011) and AMSR2 Tb observations to retrieve SWE and SD. Parameterization of the model combines a parsimonious snow grain size and density approach originally developed by Kelly et al. (2003). Evaluation of the SMSA performance is achieved using in situ snow depth data from a variety of standard and experiment data sources. Results presented from winter seasons 2012-13 to 2016-17 illustrate the improved performance of the new approach in comparison with the baseline AMSR2 algorithm estimates and approach the performance of the model assimilation-based approach of GlobSnow. Given the variation in estimation power of SWE by different land surface/climate models and selected satellite-derived passive microwave approaches, SMSA provides SWE estimates that are independent of real or near real-time in situ and model data.
Influence of snow cover changes on surface radiation and heat balance based on the WRF model
NASA Astrophysics Data System (ADS)
Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen
2017-10-01
The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes, indicating the importance of snow cover changes in the surface-atmospheric feedback system.
Snowpack regimes of the Western United States
NASA Astrophysics Data System (ADS)
Trujillo, Ernesto; Molotch, Noah P.
2014-07-01
Snow accumulation and melt patterns play a significant role in the water, energy, carbon, and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at 766 snow pillow stations in the Western United States, focusing on several metrics of the yearly SWE curves and the relationships between the different metrics. The metrics are the initial snow accumulation and snow disappearance dates, the peak snow accumulation and date of peak, the length of the snow accumulation season, the length of the snowmelt season, and the snow accumulation and snowmelt slopes. Three snow regimes emerge from these results: a maritime, an intermountain, and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days. Conversely, the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intermountain regime lies in between. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intermountain regime includes the Eastern Cascades slopes and foothills, the Blue Mountains, Northern and Central basins and ranges, the Columbia Mountains/Northern Rockies, the Idaho Batholith, and the Canadian Rockies. Lastly, the continental regime includes the Middle and Southern Rockies, and the Wasatch and Uinta Mountains. The implications of snow regime classification are discussed in the context of possible changes in accumulation and melt patterns associated with regional warming.
First Moderate Resolution Imaging Spectroradiometer (MODIS) Snow and Ice Workshop
NASA Technical Reports Server (NTRS)
Hall, Dorothy K. (Editor)
1995-01-01
This document is a compilation of summaries of talks presented at a 2-day workshop on Moderate Resolution maging Spectroradiometer (MODIS) snow and ice products. The objectives of the workshop were to: inform the snow and ce community of potential MODIS products, seek advice from the participants regarding the utility of the products, and letermine the needs for future post-launch MODIS snow and ice products. Four working groups were formed to discuss at-launch snow products, at-launch ice products, post-launch snow and ice products and utility of MODIS snow and ice products, respectively. Each working group presented recommendations at the conclusion of the workshop.
Snow depth on Arctic sea ice from historical in situ data
NASA Astrophysics Data System (ADS)
Shalina, Elena V.; Sandven, Stein
2018-06-01
The snow data from the Soviet airborne expeditions Sever in the Arctic collected over several decades in March, April and May have been analyzed in this study. The Sever data included more measurements and covered a much wider area, particularly in the Eurasian marginal seas (Kara Sea, Laptev Sea, East Siberian Sea and Chukchi Sea), compared to the Soviet North Pole drifting stations. The latter collected data mainly in the central part of the Arctic Basin. The following snow parameters have been analyzed: average snow depth on the level ice (undisturbed snow) height and area of sastrugi, depth of snow dunes attached to ice ridges and depth of snow on hummocks. In the 1970s-1980s, in the central Arctic, the average depth of undisturbed snow was 21.2 cm, the depth of sastrugi (that occupied about 30 % of the ice surface) was 36.2 cm and the average depth of snow near hummocks and ridges was about 65 cm. For the marginal seas, the average depth of undisturbed snow on the level ice varied from 9.8 cm in the Laptev Sea to 15.3 cm in the East Siberian Sea, which had a larger fraction of multiyear ice. In the marginal seas the spatial variability of snow depth was characterized by standard deviation varying between 66 and 100 %. The average height of sastrugi varied from 23 cm to about 32 cm with standard deviation between 50 and 56 %. The average area covered by sastrugi in the marginal seas was estimated to be 36.5 % of the total ice area where sastrugi were observed. The main result of the study is a new snow depth climatology for the late winter using data from both the Sever expeditions and the North Pole drifting stations. The snow load on the ice observed by Sever expeditions has been described as a combination of the depth of undisturbed snow on the level ice and snow depth of sastrugi weighted in proportion to the sastrugi area. The height of snow accumulated near the ice ridges was not included in the calculations because there are no estimates of the area covered by those features from the Sever expeditions. The effect of not including that data can lead to some underestimation of the average snow depth. The new climatology refines the description of snow depth in the central Arctic compared to the results by Warren et al. (1999) and provides additional detailed data in the marginal seas. The snow depth climatology is based on 94 % Sever data and 6 % North Pole data. The new climatology shows lower snow depth in the central Arctic comparing to Warren climatology and more detailed data in the Eurasian seas.
Validation and application of MODIS-derived clean snow albedo and dust radiative forcing
NASA Astrophysics Data System (ADS)
Rittger, K. E.; Bryant, A. C.; Seidel, F. C.; Bair, E. H.; Skiles, M.; Goodale, C. E.; Ramirez, P.; Mattmann, C. A.; Dozier, J.; Painter, T.
2012-12-01
Snow albedo is an important control on snowmelt. Though albedo evolution of aging snow can be roughly modeled from grain growth, dust and other light absorbing impurities are extrinsic and therefore must be measured. Estimates of clean snow albedo and surface radiative forcing from impurities, which can be inferred from MODIS 500 m surface reflectance products, can provide this driving data for snowmelt models. Here we use MODSCAG (MODIS snow covered area and grain size) to estimate the clean snow albedo and MODDRFS (MODIS dust radiative forcing of snow) to estimate the additional absorbed solar radiation from dust and black carbon. With its finer spatial (20 m) and spectral (10 nm) resolutions, AVIRIS provides a way to estimate the accuracy of MODIS products and understand variability of snow albedo at a finer scale that we explore though a range of topography. The AVIRIS database includes images from late in the accumulation season through the melt season when we are most interested in changes in snow albedo. In addition to the spatial validation, we employ the best estimate of albedo from MODIS in an energy balance reconstruction model to estimate the maximum snow water equivalent. MODDRFS calculates radiative forcing only in pixels that are completely snow-covered, so we spatially interpolate the product to estimate the forcing in all pixels where MODSCAG has given us estimates of clean snow albedo. Comparisons with snow pillows and courses show better agreement when the radiative forcing from absorbing impurities is included in the energy balance reconstruction.
NASA Astrophysics Data System (ADS)
Webster, C.; Bühler, Y.; Schirmer, M.; Stoffel, A.; Giulia, M.; Jonas, T.
2017-12-01
Snow depth distribution in forests exhibits strong spatial heterogeneity compared to adjacent open sites. Measurement of snow depths in forests is currently limited to a) manual point measurements, which are sparse and time-intensive, b) ground-penetrating radar surveys, which have limited spatial coverage, or c) airborne LiDAR acquisition, which are expensive and may deteriorate in denser forests. We present the application of unmanned aerial vehicles in combination with structure-from-motion (SfM) methods to photogrammetrically map snow depth distribution in forested terrain. Two separate flights were carried out 10 days apart across a heterogeneous forested area of 900 x 500 m. Corresponding snow depth maps were derived using both, LiDAR-based and SfM-based DTM data, obtained during snow-off conditions. Manual measurements collected following each flight were used to validate the snow depth maps. Snow depths were resolved at 5cm resolution and forest snow depth distribution structures such as tree wells and other areas of preferential melt were represented well. Differential snow depth maps showed maximum ablation in the exposed south sides of trees and smaller differences in the centre of gaps and on the north side of trees. This new application of SfM to map snow depth distribution in forests demonstrates a straightforward method for obtaining information that was previously only available through manual spatially limited ground-based measurements. These methods could therefore be extended to more frequent observation of snow depths in forests as well as estimating snow accumulation and depletion rates.
Dust on Snow Processes and Impacts in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Skiles, M.; Painter, T. H.; Okin, G. S.
2015-12-01
In the Upper Colorado River Basin episodic deposition of mineral dust onto mountain snow cover frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau, and deposition rates have increased since the intensive settlement in the western USA in the mid 1880s. Dust deposition darkens the snow surface, and accelerates snowmelt through reduction of albedo and further indirect reduction of albedo by accelerating the growth of snow grain size. Observation and modeling of dust-on-snow processes began in 2005 at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, work which has shown that dust advances melt, shifts runoff timing and intensity, and reduces total water yield. The consistency of deposition and magnitude of impacts highlighted the need for more detailed understanding of the radiative impacts of dust-on-snow in this region. Here I will present results from a novel, high resolution, daily snow property dataset, collected at SBBSA over the 2013 ablation season, to facilitate physically based radiative transfer and snowmelt modeling. Measurements included snow albedo and vertical profiles of snow density, optical snow grain size, and dust/black carbon concentrations. This dataset was used to assess the relationship between episodic dust events, snow grain growth, and albedo over time, and observe the relation between deposited dust and melt water. Additionally, modeling results include the determination of the regionally specific dust-on-snow complex refractive index and radiative forcing partitioning between dust and black carbon, and dust and snow grain growth.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; DiGirolamo, Nicole E.; Bayr, Klaus J.; Houser, Paul R. (Technical Monitor)
2002-01-01
On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. MODIS snow and ice products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to or enhancement of the currently-available operational products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set may be generated for long-term climate studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the products. The MODIS snow product suite begins with a 500-m resolution, 2330-km swath snow-cover map which is then gridded to an integerized sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to a climate-modeling grid (CMG) product at about 5.6-km spatial resolution, with both daily and 8-day composite products. Each pixel of the CMG contains fraction of snow cover from 40 - 100%. Measured errors of commission in the CMG are low, for example, on the continent of Australia in the spring, they vary from 0.02 - 0.10%. Near-term enhancements include daily snow albedo and fractional snow cover. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented to show some early validation work.
Application of LANDSAT imagery for snow mapping in Norway
NASA Technical Reports Server (NTRS)
Odegaard, H.; Skorve, J. E. (Principal Investigator)
1977-01-01
The author has identified the following significant results. During the summer seasons of 1975 and 1976, the snow cover was successfully monitored and measured in the four basins. By using elevation distributions for these basins combined with the measured snow cover percentages, the equivalent snow line altitude was calculated. Equivalent snow line altitude was used in accordance with Mark Meier's definition. Cumulative runoff data were collected for the basins. Tables showing percentage snow cover versus cumulative runoff were worked out for 1975.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Foster, James L.; Riggs, George A.; Kelly, Richard E. J.; Chien, Janet Y. L.; Montesano, Paul M.
2009-01-01
The Air Force Weather Agency (AFWA) - NASA (ANSA) blended-snow product utilizes EOS standard snow products from the Moderate-Resolution Imaging Spectroradiometer (MODIS) and the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) to map daily snow cover and snow-water equivalent (SWE) globally. We have compared ANSA-derived SWE. with SWE values calculated from snow depths reported at approx.1500 National Climatic Data Center (NCDC) coop stations in the Lower Great Lakes basin. Our preliminary results show that conversion of snow depth to SWE is very sensitive to the choice of snow density (we used either 0.2 or 03 as conversion factors). We found overall better agreement between the ANSA-derived SWE and the co-op station data when we use a snow density of 0.3 to convert the snow depths to SWE. In addition, we show that the ANSA underestimates SWE in densely-forested areas, using January and February 2008 ANSA and co-op data. Furthermore, apparent large SWE changes from one day to the next may be caused by thaw-re-freeze events, and do not always represent a real change in SWE. In the near future we will continue the analysis in the 2006-07 and 2007-08 snow seasons.
CO2 flux over young and snow-covered Arctic pack ice in winter and spring
NASA Astrophysics Data System (ADS)
Nomura, Daiki; Granskog, Mats A.; Fransson, Agneta; Chierici, Melissa; Silyakova, Anna; Ohshima, Kay I.; Cohen, Lana; Delille, Bruno; Hudson, Stephen R.; Dieckmann, Gerhard S.
2018-06-01
Rare CO2 flux measurements from Arctic pack ice show that two types of ice contribute to the release of CO2 from the ice to the atmosphere during winter and spring: young, thin ice with a thin layer of snow and older (several weeks), thicker ice with thick snow cover. Young, thin sea ice is characterized by high salinity and high porosity, and snow-covered thick ice remains relatively warm ( > -7.5 °C) due to the insulating snow cover despite air temperatures as low as -40 °C. Therefore, brine volume fractions of these two ice types are high enough to provide favorable conditions for gas exchange between sea ice and the atmosphere even in mid-winter. Although the potential CO2 flux from sea ice decreased due to the presence of the snow, the snow surface is still a CO2 source to the atmosphere for low snow density and thin snow conditions. We found that young sea ice that is formed in leads without snow cover produces CO2 fluxes an order of magnitude higher than those in snow-covered older ice (+1.0 ± 0.6 mmol C m-2 day-1 for young ice and +0.2 ± 0.2 mmol C m-2 day-1 for older ice).
Snow cover correlation between Mt. Villarrica and Mt. Lliama in Chile
NASA Astrophysics Data System (ADS)
Kim, Jeong-Cheol; Park, Sung-Hwan; Jung, Hyung-Sup
2014-11-01
The Southern Volcanic Zone (SVZ) of Chile consists of many volcanoes, and all of the volcanoes are covered with snow at the top of mountain. Monitoring snow cover variations in these regions can give us a key parameter in order to understand the mechanisms of volcanic activity. In this study, we investigate on the volcanic activity and snow cover interaction from snow cover area mapping, snow-line extraction. The study areas cover Mt. Villarrica and Mt. Llaima, Chile. Both of them are most active volcanos in SVZ. Sixty Landsat TM and Landsat ETM+ images are used for observing snow cover variations of Mt. Villarrica and Mt. Llaima, spanning the 25 years from September 1986 to February 2011. Results show that snow cover area between volcanic activity and non-activity are largely changed from 42.84 km2 to 13.41 km2, temporarily decreased 79% at the Mt. Villarrica and from 28.98 km2 to 3.82 km2, temporarily decreased 87% at the Mt. Villarrica. The snow line elevation of snow cover retreated by approximately 260 m from 1,606m to 1,871 m at the Mt. Villarrica, approximately 266m from 1,741m to 2,007m at the Mt. Llaima. The results show that there are definitely correlations between snow cover and volcanic activity.
Remote sensing, hydrological modeling and in situ observations in snow cover research: A review
NASA Astrophysics Data System (ADS)
Dong, Chunyu
2018-06-01
Snow is an important component of the hydrological cycle. As a major part of the cryosphere, snow cover also represents a valuable terrestrial water resource. In the context of climate change, the dynamics of snow cover play a crucial role in rebalancing the global energy and water budgets. Remote sensing, hydrological modeling and in situ observations are three techniques frequently utilized for snow cover investigations. However, the uncertainties caused by systematic errors, scale gaps, and complicated snow physics, among other factors, limit the usability of these three approaches in snow studies. In this paper, an overview of the advantages, limitations and recent progress of the three methods is presented, and more effective ways to estimate snow cover properties are evaluated. The possibility of improving remotely sensed snow information using ground-based observations is discussed. As a rapidly growing source of volunteered geographic information (VGI), web-based geotagged photos have great potential to provide ground truth data for remotely sensed products and hydrological models and thus contribute to procedures for cloud removal, correction, validation, forcing and assimilation. Finally, this review proposes a synergistic framework for the future of snow cover research. This framework highlights the cross-scale integration of in situ and remotely sensed snow measurements and the assimilation of improved remote sensing data into hydrological models.
Retention and radiative forcing of black carbon in Eastern Sierra Nevada snow
NASA Astrophysics Data System (ADS)
Sterle, K. M.; McConnell, J. R.; Dozier, J.; Edwards, R.; Flanner, M. G.
2012-06-01
Snow and glacier melt water contribute water resources to a fifth of Earth's population. Snow melt processes are sensitive not only to temperature changes, but also changes in albedo caused by deposition of particles such as refractory black carbon (rBC) and continental dust. The concentrations, sources, and fate of rBC particles in seasonal snow and its surface layers are uncertain, and thus an understanding of rBC's effect on snow albedo, melt processes, and radiation balance is critical for water management in a changing climate. Measurements of rBC in a sequence of snow pits and surface snow samples in the Eastern Sierra Nevada of California during the snow accumulation and melt seasons of 2009 show that concentrations of rBC were enhanced seven fold in surface snow (~25 ng g-1) compared to bulk values in the snow pack (~3 ng g-1). Unlike major ions which are preferentially released during initial melt, rBC and continental dust are retained in the snow, enhancing concentrations late into spring, until a final flush well into the melt period. We estimate a combined rBC and continental dust surface radiative forcing of 20 to 40 W m-2 during April and May, with dust likely contributing a greater share of the forcing than rBC.
NASA Astrophysics Data System (ADS)
Segal, M.; Garratt, J. R.; Pielke, R. A.; Ye, Z.
1991-04-01
Consideration of the sensible heat flux characteristics over a snow surface suggests a significant diminution in the magnitude of the flux, compared to that over a snow-free surface under the same environmental conditions. Consequently, the existence of snow-covered mesoscale areas adjacent to snow-free areas produces horizontal thermal gradients in the lower atmosphere during the daytime, possibly resulting in a `snow breeze.' In addition, suppression of the daytime thermally induced upslope flow over snow-covered slopes is likely to occur. The present paper provides scaling and modeling evaluations of these situations, with quantification of the generated and modified circulations. These evaluations suggest that under ideal situations involved with uniform snow cover over large areas, particularly in late winter and early spring, a noticeable `snow breeze' is likely to develop. Additionally: suppression of the daytime thermally induced upslope flow is significant and may even result in a daytime drainage flow. The effects of bare ground patchiness in the snow cover on these circulations are also explored, both for flat terrain and slope-flow situations. A patchiness fraction greater than 0.5 is found to result in a noticeably reduced snow-breeze circulation, while a patchiness fraction of only 0.1 caused the simulated daytime drainage flow over slopes to he reversed.
NASA Astrophysics Data System (ADS)
Gu, Lingjia; Ren, Ruizhi; Zhao, Kai; Li, Xiaofeng
2014-01-01
The precision of snow parameter retrieval is unsatisfactory for current practical demands. The primary reason is because of the problem of mixed pixels that are caused by low spatial resolution of satellite passive microwave data. A snow passive microwave unmixing method is proposed in this paper, based on land cover type data and the antenna gain function of passive microwaves. The land cover type of Northeast China is partitioned into grass, farmland, bare soil, forest, and water body types. The component brightness temperatures (CBT), namely unmixed data, with 1 km data resolution are obtained using the proposed unmixing method. The snow depth determined by the CBT and three snow depth retrieval algorithms are validated through field measurements taken in forest and farmland areas of Northeast China in January 2012 and 2013. The results show that the overall of the retrieval precision of the snow depth is improved by 17% in farmland areas and 10% in forest areas when using the CBT in comparison with the mixed pixels. The snow cover results based on the CBT are compared with existing MODIS snow cover products. The results demonstrate that more snow cover information can be obtained with up to 86% accuracy.
Wunderlin, Tina; Ferrari, Belinda; Power, Michelle
2016-09-01
Seasonally, snow environments cover up to 50% of the land's surface, yet the microbial diversity and ecosystem functioning within snow, particularly from alpine regions are not well described. This study explores the bacterial diversity in snow using next-generation sequencing technology. Our data expand the global inventory of snow microbiomes by focusing on two understudied regions, the Swiss Alps and the Australian Alps. A total biomass similar to cell numbers in polar snow was detected, with 5.2 to 10.5 × 10(3) cells mL(-1) of snow. We found that microbial community structure of surface snow varied by country and site and along the altitudinal range (alpine and sub-alpine). The bacterial communities present were diverse, spanning 25 distinct phyla, but the six phyla Proteobacteria (Alpha- and Betaproteobacteria), Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and Firmicutes, accounted for 72%-98% of the total relative abundance. Taxa such as Acidobacteriaceae and Methylocystaceae, associated with cold soils, may be part of the atmospherically sourced snow community, while families like Sphingomonadaceae were detected in every snow sample and are likely part of the common snow biome. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Comparison of the effects of using local and central snow deposits: a case study in Luleå.
Reinosdotter, K; Viklander, M; Malmqvist, P A
2003-01-01
The aim of the study was to determine if an increased use of local land-based snow deposits would be more sustainable than the use of a central snow deposit. The study focused on transport related emissions, costs for transporting the snow, technical attendance, local effects, public acceptance, land use, effects on the recipient environmental control and potential for accidents. General information was obtained from an inventory regarding snow handling that was made in 14, geographically spread, Swedish municipalities during 2001. The comparison of costs for transporting snow and transport-related emissions was based on information gathered from the municipality of Luleå. The study showed that using local land-based snow deposits would decrease traffic-related emissions such as CO2, CO and NO(x) by 40% annually and would decrease the annual cost for transporting snow by nearly 80%. On the other hand local snow deposits may lead to an increased risk of accidents and to negative local effects such as delayed growing season, flooding and drainage problems. Available land for local snow deposits in the cities is hard to find, and is usually expensive. Therefore a combination of local and central snow deposits is likely to be the most realistic option.
Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout
NASA Astrophysics Data System (ADS)
Valero, Cesar Vera; Wever, Nander; Christen, Marc; Bartelt, Perry
2018-03-01
Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density) in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.
NASA Astrophysics Data System (ADS)
Bennett, K. E.; Cherry, J. E.; Hiemstra, C. A.; Bolton, W. R.
2013-12-01
Interior sub-Arctic Alaskan snow cover is rapidly changing and requires further study for correct parameterization in physically based models. This project undertook field studies during the 2013 snow melt season to capture snow depth, snow temperature profiles, and snow cover extent to compare with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor at four different sites underlain by discontinuous permafrost. The 2013 melt season, which turned out to be the latest snow melt period on record, was monitored using manual field measurements (SWE, snow depth data collection), iButtons to record temperature of the snow pack, GoPro cameras to capture time lapse of the snow melt, and low level orthoimagery collected at ~1500 m using a Navion L17a plane mounted with a Nikon D3s camera. Sites were selected across a range of landscape conditions, including a north facing black spruce hill slope, a south facing birch forest, an open tundra site, and a high alpine meadow. Initial results from the adjacent north and south facing sites indicate a highly sensitive system where snow cover melts over just a few days, illustrating the importance of high resolution temporal data capture at these locations. Field observations, iButtons and GoPro cameras show that the MODIS data captures the melt conditions at the south and the north site with accuracy (2.5% and 6.5% snow cover fraction present on date of melt, respectively), but MODIS data for the north site is less variable around the melt period, owing to open conditions and sparse tree cover. However, due to the rapid melt rate trajectory, shifting the melt date estimate by a day results in a doubling of the snow cover fraction estimate observed by MODIS. This information can assist in approximating uncertainty associated with remote sensing data that is being used to populate hydrologic and snow models (the Sacramento Soil Moisture Accounting model, coupled with SNOW-17, and the Variable Infiltration Capacity hydrologic model) and provide greater understanding of error and resultant model sensitivities associated with regional observations of snow cover across the sub-Arctic boreal landscape.
NASA Astrophysics Data System (ADS)
Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.
2017-12-01
Since version 1.0 of the National Water Model (NWM) has gone operational in Summer 2016, several upgrades to the model have occurred to improve hydrologic prediction for the continental United States. Version 1.1 of the NWM (Spring 2017) includes upgrades to parameter datasets impacting land surface hydrologic processes. These parameter datasets were upgraded using an automated calibration workflow that utilizes the Dynamic Data Search (DDS) algorithm to adjust parameter values using observed streamflow. As such, these upgrades to parameter values took advantage of various observations collected for snow analysis. In particular, in-situ SNOTEL observations in the Western US, volunteer in-situ observations across the entire US, gamma-derived snow water equivalent (SWE) observations courtesy of the NWS NOAA Corps program, gridded snow depth and SWE products from the Jet Propulsion Laboratory (JPL) Airborne Snow Observatory (ASO), gridded remotely sensed satellite-based snow products (MODIS,AMSR2,VIIRS,ATMS), and gridded SWE from the NWS Snow Data Assimilation System (SNODAS). This study explores the use of these observations to quantify NWM error and improvements from version 1.0 to version 1.1, along with subsequent work since then. In addition, this study explores the use of snow observations for use within the automated calibration workflow. Gridded parameter fields impacting the accumulation and ablation of snow states in the NWM were adjusted and calibrated using gridded remotely sensed snow states, SNODAS products, and in-situ snow observations. This calibration adjustment took place over various ecological regions in snow-dominated parts of the US for a retrospective period of time to capture a variety of climatological conditions. Specifically, the latest calibrated parameters impacting streamflow were held constant and only parameters impacting snow physics were tuned using snow observations and analysis. The adjusted parameter datasets were then used to force the model over an independent period for analysis against both snow and streamflow observations to see if improvements took place. The goal of this work is to further improve snow physics in the NWM, along with identifying areas where further work will take place in the future, such as data assimilation or further forcing improvements.
NASA Astrophysics Data System (ADS)
Kadlec, J.; Ames, D. P.
2014-12-01
The aim of the presented work is creating a freely accessible, dynamic and re-usable snow cover map of the world by combining snow extent and snow depth datasets from multiple sources. The examined data sources are: remote sensing datasets (MODIS, CryoLand), weather forecasting model outputs (OpenWeatherMap, forecast.io), ground observation networks (CUAHSI HIS, GSOD, GHCN, and selected national networks), and user-contributed snow reports on social networks (cross-country and backcountry skiing trip reports). For adding each type of dataset, an interface and an adapter is created. Each adapter supports queries by area, time range, or combination of area and time range. The combined dataset is published as an online snow cover mapping service. This web service lowers the learning curve that is required to view, access, and analyze snow depth maps and snow time-series. All data published by this service are licensed as open data; encouraging the re-use of the data in customized applications in climatology, hydrology, sports and other disciplines. The initial version of the interactive snow map is on the website snow.hydrodata.org. This website supports the view by time and view by site. In view by time, the spatial distribution of snow for a selected area and time period is shown. In view by site, the time-series charts of snow depth at a selected location is displayed. All snow extent and snow depth map layers and time series are accessible and discoverable through internationally approved protocols including WMS, WFS, WCS, WaterOneFlow and WaterML. Therefore they can also be easily added to GIS software or 3rd-party web map applications. The central hypothesis driving this research is that the integration of user contributed data and/or social-network derived snow data together with other open access data sources will result in more accurate and higher resolution - and hence more useful snow cover maps than satellite data or government agency produced data by itself.
NASA Technical Reports Server (NTRS)
Yasunari, Teppei
2012-01-01
Recently the issue on glacier retreats comes up and many factors should be relevant to the issue. The absorbing aerosols such as dust and black carbon (BC) are considered to be one of the factors. After they deposited onto the snow surface, it will reduce snow albedo (called snow darkening effect) and probably contribute to further melting of glacier. The Goddard Earth Observing System version 5 (GEOS-5) has developed at NASAlGSFC. However, the original snowpack model used in the land surface model in the GEOS-5 did not consider the snow darkening effect. Here we developed the new snow albedo scheme which can consider the snow darkening effect. In addition, another scheme on calculating mass concentrations on the absorbing aerosols in snowpack was also developed, in which the direct aerosol depositions from the chemical transport model in the GEOS-5 were used. The scheme has been validated with the observed data obtained at backyard of the Institute of Low Temperature Science, Hokkaido University, by Dr. Teruo Aoki (Meteorological Research Institute) et al. including me. The observed data was obtained when I was Ph.D. candidate. The original GEOS-5 during 2007-2009 over the Himalayas and Tibetan Plateau region showed more reductions of snow than that of the new GEOS-5 because the original one used lower albedo settings. On snow cover fraction, the new GEOS-5 simulated more realistic snow-covered area comparing to the MODIS snow cover fraction. The reductions on snow albedo, snow cover fraction, and snow water equivalent were seen with statistically significance if we consider the snow darkening effect comparing to the results without the snow darkening effect. In the real world, debris-cover, inside refreezing process, surface flow of lacier, etc. affect glacier mass balance and the simu.latedresults immediately do not affect whole glacier retreating. However, our results indicate that some surface melting over non debris-covered parts of the glacier would be explained by the snow darkening effect. Further discussion and observations are necessary to assess the glacier issue.
The Various Influences due to Aerosol Depositions
NASA Technical Reports Server (NTRS)
Yasunari, Teppei
2011-01-01
Recently the issue on glacier retreats comes up and many factors should be relevant to the issue. The absorbing aerosols such as dust and black carbon (BC) are considered to be one of the factors. After they deposited onto the snow surface, it will reduce snow albedo (called snow darkening effect) and probably contribute to further melting of glacier. The Goddard Earth Observing System version 5 (GEOS-5) has developed at NASA/GSFC. However, the original snowpack model used in the land surface model in the GEOS-5 did not consider the snow darkening effect. Here we developed the new snow albedo scheme which can consider the snow darkening effect. In addition, another scheme on calculating mass concentrations on the absorbing aerosols in snowpack was also developed, in which the direct aerosol depositions from the chemical transport model in the GEOS-5 were used. The scheme has been validated with the observed data obtained at backyard of the Institute of Low Temperature Science, Hokkaido University, by Dr. Teruo Aoki (Meteorological Research Institute) et al. including me. The observed data was obtained when I was Ph.D.caftdidate. The original GEOS-5 during 2007-2009 over the Himalayas and Tibetan Plateau region showed more reductions of snow than that of the new GEOS-5 because the original one used lower albedo settings. On snow cover fraction, the new GEOS-5 simulated more realistic snow-covered area comparing to the MODIS snow cover fraction. The reductions on snow albedo, snow cover fraction, and snow water equivalent were seen with statistically significance if we consider the snow darkening effect comparing to the results without the snow darkening effect. In the real world, debris cover, inside refreezing process, surface flow of glacier, etc. affect glacier mass balance and the simulated results immediately do not affect whole glacier retreating. However, our results indicate that some surface melting over non debris covered parts of the glacier would be explained by the snow darkening effect. Further discussion and observations are necessary to assess the glacier issue.
NASA Astrophysics Data System (ADS)
Galeczka, Iwona; Eiriksdottir, Eydis Salome; Pálsson, Finnur; Oelkers, Eric; Lutz, Stefanie; Benning, Liane G.; Stefánsson, Andri; Kjartansdóttir, Ríkey; Gunnarsson-Robin, Jóhann; Ono, Shuhei; Ólafsdóttir, Rósa; Jónasdóttir, Elín Björk; Gislason, Sigurdur R.
2017-11-01
The chemical composition of Icelandic rain and snow is dominated by marine aerosols, however human and volcanic activity can also affect these compositions. The six month long 2014-15 Bárðarbunga volcanic eruption was the largest in Iceland for more than 200 years and it released into the atmosphere an average of 60 kt/day SO2, 30 kt/day CO2, 500 t/day HCl and 280 t/day HF. To study the effect of this eruption on the winter precipitation, snow cores were collected from the Vatnajökull glacier and the highlands northeast of the glacier. In addition to 29 bulk snow cores from that precipitated from September 2014 until March 2015, two cores were sampled in 21 and 44 increments to quantify the spatial and time evolution of the chemical composition of the snow. The pH and chemical compositions of melted snow samples indicate that snow has been affected by the volcanic gases emitted during the Bárðarbunga eruption. The pH of the melted bulk snow cores ranged from 4.41 to 5.64 with an average value of 5.01. This is four times greater H+ activity than pure water saturated with the atmospheric CO2. The highest concentrations of volatiles in the snow cores were found close to the eruption site as predicted from CALPUFF SO2 gas dispersion quality model. The anion concentrations (SO4, Cl, and F) were higher and the pH was lower compared to equivalent snow samples collected during 1997-2006 from the unpolluted Icelandic Langjökull glacier. Higher SO4 and Cl concentrations in the snow compared with the unpolluted rainwater of marine origin confirm the addition of a non-seawater SO4 and Cl. The δ34S isotopic composition confirms that the sulphur addition is of volcanic aerosol origin. The chemical evolution of the snow with depth reflects changes in the lava effusion and gas emission rates. Those rates were the highest at the early stage of the eruption. Snow that fell during that time, represented by samples from the deepest part of the snow cores, had the lowest pH and highest concentrations of SO4, F, Cl and metals, compared with snow that fell later in the winter. Also the Al concentration, did exceed World Health Organisation drinking water standard of 3.7 μmol/kg in the lower part of the snow core closest to the eruption site. Collected snow represents the precipitation that fell during the eruption period. Nevertheless, only minor environmental impacts are evident in the snow due to its interaction with the volcanic aerosol gases. In addition, the microbial communities identified in the snow that fell during the eruption were similar to those found in snow from other parts of the Arctic, confirming an insignificant impact of this eruption on the snow microecology.
Interannual consistency in fractal snow depth patterns at two Colorado mountain sites
Jeffrey S. Deems; Steven R. Fassnacht; Kelly J. Elder
2008-01-01
Fractal dimensions derived from log-log variograms are useful for characterizing spatial structure and scaling behavior in snow depth distributions. This study examines the temporal consistency of snow depth scaling features at two sites using snow depth distributions derived from lidar datasets collected in 2003 and 2005. The temporal snow accumulation patterns in...
14 CFR 139.313 - Snow and ice control.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each... carry out a snow and ice control plan in a manner authorized by the Administrator. (b) The snow and ice...
14 CFR 139.313 - Snow and ice control.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each... carry out a snow and ice control plan in a manner authorized by the Administrator. (b) The snow and ice...
14 CFR 139.313 - Snow and ice control.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each... carry out a snow and ice control plan in a manner authorized by the Administrator. (b) The snow and ice...
14 CFR 139.313 - Snow and ice control.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each... carry out a snow and ice control plan in a manner authorized by the Administrator. (b) The snow and ice...
14 CFR 139.313 - Snow and ice control.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each... carry out a snow and ice control plan in a manner authorized by the Administrator. (b) The snow and ice...
Spatial Patterns of Snow Cover in North Carolina: Surface and Satellite Perspectives
NASA Technical Reports Server (NTRS)
Fuhrmann, Christopher M.; Hall, Dorothy K.; Perry, L. Baker; Riggs, George A.
2010-01-01
Snow mapping is a common practice in regions that receive large amounts of snowfall annually, have seasonally-continuous snow cover, and where snowmelt contributes significantly to the hydrologic cycle. Although higher elevations in the southern Appalachian Mountains average upwards of 100 inches of snow annually, much of the remainder of the Southeast U.S. receives comparatively little snowfall (< 10 inches). Recent snowy winters in the region have provided an opportunity to assess the fine-grained spatial distribution of snow cover and the physical processes that act to limit or improve its detection across the Southeast. In the present work, both in situ and remote sensing data are utilized to assess the spatial distribution of snow cover for a sample of recent snowfall events in North Carolina. Specifically, this work seeks to determine how well ground measurements characterize the fine-grained patterns of snow cover in relation to Moderate- Resolution Imaging Spectroradiometer (MODIS) snow cover products (in this case, the MODIS Fractional Snow Cover product).
A statistical estimation of Snow Water Equivalent coupling ground data and MODIS images
NASA Astrophysics Data System (ADS)
Bavera, D.; Bocchiola, D.; de Michele, C.
2007-12-01
The Snow Water Equivalent (SWE) is an important component of the hydrologic balance of mountain basins and snow fed areas in general. The total cumulated snow water equivalent at the end of the accumulation season represents the water availability at melt. Here, a statistical methodology to estimate the Snow Water Equivalent, at April 1st, is developed coupling ground data (snow depth and snow density measurements) and MODIS images. The methodology is applied to the Mallero river basin (about 320 km²) located in the Central Alps, northern Italy, where are available 11 snow gauges and a lot of sparse snow density measurements. The application covers 7 years from 2001 to 2007. The analysis has identified some problems in the MODIS information due to the cloud cover and misclassification for orographic shadow. The study is performed in the framework of AWARE (A tool for monitoring and forecasting Available WAter REsource in mountain environment) EU-project, a STREP Project in the VI F.P., GMES Initiative.
Overview of SnowEx Year 1 Activities
NASA Technical Reports Server (NTRS)
Kim, Edward; Gatebe, Charles; Hall, Dorothy; Newlin, Jerry; Misakonis, Amy; Elder, Kelly; Marshall, Hans Peter; Heimstra, Chris; Brucker, Ludovic; De Marco, Eugenia;
2017-01-01
SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earths terrestrial snow-covered regions? Year 1 (2016-17) focused on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site was Grand Mesa and the secondary site was the Senator Beck Basin, both in western, Colorado, USA. Nine sensors on five aircraft made observations using a broad range of sensing techniques, active and passive microwave, and active and passive optical infrared to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also included an extensive range of ground truth measurements in-situ manual samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some preliminary results will be presented.
Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery
NASA Astrophysics Data System (ADS)
Korzeniowska, Karolina; Bühler, Yves; Marty, Mauro; Korup, Oliver
2017-10-01
Snow avalanches are destructive mass movements in mountain regions that continue to claim lives and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres) necessary for validating avalanche forecasting and hazard mapping. In this study, we focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on 0.25 m near-infrared (NIR) ADS80-SH92 aerial imagery using an object-based image analysis (OBIA) approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI), the normalised difference water index (NDWI), and its standard deviation (SDNDWI) to distinguish avalanches from other land-surface elements. Using normalised parameters allows applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4 km-2 areas near Davos, Switzerland. We compared the results with manually mapped avalanche polygons and obtained a user's accuracy of > 0.9 and a Cohen's kappa of 0.79-0.85. Testing the method for a larger area of 226.3 km-2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by > 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method has potential for large-scale avalanche mapping, although further investigations into other regions are desirable to verify the robustness of our selected thresholds and the transferability of the method.
Early results from NASA's SnowEx campaign
NASA Astrophysics Data System (ADS)
Kim, Edward; Gatebe, Charles; Hall, Dorothy; Misakonis, Amy; Elder, Kelly; Marshall, Hans Peter; Hiemstra, Chris; Brucker, Ludovic; Crawford, Chris; Kang, Do Hyuk; De Marco, Eugenia; Beckley, Matt; Entin, Jared
2017-04-01
SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earth's terrestrial snow-covered regions? Year 1 (2016-17) focuses on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site is Grand Mesa and the secondary site is the Senator Beck Basin, both in western, Colorado, USA. Ten core sensors on four core aircraft will make observations using a broad suite of airborne sensors including active and passive microwave, and active and passive optical/infrared sensing techniques to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also includes an extensive range of ground truth measurements—in-situ samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some early results will be presented. Seasonal snow cover is the largest single component of the cryosphere in areal extent (covering an average of 46M km2 of Earth's surface (31 % of land areas) each year). This seasonal snow has major societal impacts in the areas of water resources, natural hazards (floods and droughts), water security, and weather and climate. The only practical way to estimate the quantity of snow on a consistent global basis is through satellites. Yet, current space-based techniques underestimate storage of snow water equivalent (SWE) by as much as 50%, and model-based estimates can differ greatly vs. estimates based on remotely-sensed observations. At peak coverage, as much as half of snow-covered terrestrial areas involve forested areas, so quantifying the challenge represented by forests is important to plan any future snow mission. Single-sensor approaches may work for certain snow types and certain conditions, but not for others. Snow simply varies too much. Thus, the snow community consensus is that a multi-sensor approach is needed to adequately address global snow, combined with modeling and data assimilation. What remains at issue, then, is how best to combine and use the various sensors in an optimal way. That requires field measurements. NASA's SnowEx airborne campaign is designed to do exactly that. A list of core sensors is as follows. All are from NASA unless otherwise noted. • Radar (volume scattering): European Space Agency's SnowSAR, operated by MetaSensing • Lidar & hyperspectral imager: Airborne Snow Observatory (ASO) • Passive microwave: Airborne Earth Science Microwave Imaging Radiometer (AESMIR) • Bi-directional Reflectance Function (BRDF): the Cloud Absorption Radiometer (CAR) • Thermal Infrared imager • Thermal infrared non-imager from U. Washington • Video camera The ASO suite flew on a King Air, and the other sensors flew on a Navy P-3. In addition, two NASA radars flew on G-III aircraft to test more experimental retrieval techniques: • InSAR altimetry: Glacier and Ice Surface Topography Interferometer (GLISTIN-A) • Radar phase delay: Uninhabited Aerial Vehicle Synthetic Aperture Radar, (UAVSAR)
Snow hydrology in Mediterranean mountain regions: A review
NASA Astrophysics Data System (ADS)
Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; López-Moreno, Juan Ignacio; Drapeau, Laurent; Page, Michel Le; Escadafal, Richard
2017-08-01
Water resources in Mediterranean regions are under increasing pressure due to climate change, economic development, and population growth. Many Mediterranean rivers have their headwaters in mountainous regions where hydrological processes are driven by snowpack dynamics and the specific variability of the Mediterranean climate. A good knowledge of the snow processes in the Mediterranean mountains is therefore a key element of water management strategies in such regions. The objective of this paper is to review the literature on snow hydrology in Mediterranean mountains to identify the existing knowledge, key research questions, and promising technologies. We collected 620 peer-reviewed papers, published between 1913 and 2016, that deal with the Mediterranean-like mountain regions in the western United States, the central Chilean Andes, and the Mediterranean basin. A large amount of studies in the western United States form a strong scientific basis for other Mediterranean mountain regions. We found that: (1) the persistence of snow cover is highly variable in space and time but mainly controlled by elevation and precipitation; (2) the snowmelt is driven by radiative fluxes, but the contribution of heat fluxes is stronger at the end of the snow season and during heat waves and rain-on-snow events; (3) the snow densification rates are higher in these regions when compared to other climate regions; and (4) the snow sublimation is an important component of snow ablation, especially in high-elevation regions. Among the pressing issues is the lack of continuous ground observation in high-elevation regions. However, a few years of snow depth (HS) and snow water equivalent (SWE) data can provide realistic information on snowpack variability. A better spatial characterization of snow cover can be achieved by combining ground observations with remotely sensed snow data. SWE reconstruction using satellite snow cover area and a melt model provides reasonable information that is suitable for hydrological applications. Further advances in our understanding of the snow processes in Mediterranean snow-dominated basins will be achieved by finer and more accurate representation of the climate forcing. While the theory on the snowpack energy and mass balance is now well established, the connections between the snow cover and the water resources involve complex interactions with the sub-surface processes, which demand future investigation.
NASA Astrophysics Data System (ADS)
Patterson, V. M.; Bormann, K.; Deems, J. S.; Painter, T. H.
2017-12-01
The NASA SnowEx campaign conducted in 2016 and 2017 provides a rich source of high-resolution Lidar data from JPL's Airborne Snow Observatory (ASO - http://aso.jpl.nasa.gov) combined with extensive in-situ measurements in two key areas in Colorado: Grand Mesa and Senator Beck. While the uncertainty in the 50m snow depth retrievals from NASA's ASO been estimated at 1-2cm in non-vegetated exposed areas (Painter et al., 2016), the impact of forest cover and point-cloud density on ASO snow lidar depth retrievals is relatively unknown. Dense forest canopies are known to reduce lidar penetration and ground strikes thus affecting the elevation surface retrieved from in the forest. Using high-resolution lidar point cloud data from the ASO SnowEx campaigns (26pt/m2) we applied a series of data decimations (up to 90% point reduction) to the point cloud data to quantify the relationship between vegetation, ground point density, resulting snow-off and snow-on surface elevations and finally snow depth. We observed non-linear reductions in lidar ground point density in forested areas that were strongly correlated to structural forest cover metrics. Previously, the impacts of these data decimations on a small study area in Grand Mesa showed a sharp increase in under-canopy surface elevation errors of -0.18m when ground point densities were reduced to 1.5pt/m2. In this study, we expanded the evaluation to the more topographically challenging Senator Beck basin, have conducted analysis along a vegetation gradient and are considering snow the impacts of snow depth rather than snow-off surface elevation. Preliminary analysis suggest that snow depth retrievals inferred from airborne lidar elevation differentials may systematically underestimate snow depth in forests where canopy density exceeds 1.75 and where tree heights exceed 5m. These results provide a basis from which to identify areas that may suffer from vegetation-induced biases in surface elevation models and snow depths derived from airborne lidar data, and help quantify expected spatial distributions of errors in the snow depth that can be used to improve the accuracy of ASO basin-scale depth and water equivalent products.
On the Impact of Snow Salinity on CryoSat-2 First-Year Sea Ice Thickness Retrievals
NASA Astrophysics Data System (ADS)
Nandan, V.; Yackel, J.; Geldsetzer, T.; Mahmud, M.
2017-12-01
European Space Agency's Ku-band altimeter CryoSat-2 (CS-2) has demonstrated its potential to provide extensive basin-scale spatial and temporal measurements of Arctic sea ice freeboard. It is assumed that CS-2 altimetric returns originate from the snow/sea ice interface (assumed to be the main scattering horizon). However, in newly formed thin ice ( 0.6 m) through to thick first-year sea ice (FYI) ( 2 m), upward wicking of brine into the snow cover from the underlying sea ice surface produces saline snow layers, especially in the bottom 6-8 cm of a snow cover. This in turn modifies the brine volume at/or near the snow/sea ice interface, altering the dielectric and scattering properties of the snow cover, leading to strong Ku-band microwave attenuation within the upper snow volume. Such significant reductions in Ku-band penetration may substantially affect CS-2 FYI freeboard retrievals. Therefore, the goal of this study is to evaluate a theoretical approach to estimate snow salinity induced uncertainty on CS-2 Arctic FYI freeboard measurements. Using the freeboard-to-thickness hydrostatic equilibrium equation, we quantify the error differences between the CS-2 FYI thickness, (assuming complete penetration of CS-2 radar signals to the snow/FYI interface), and the FYI thickness based on the modeled Ku-band main scattering horizon for different snow cover cases. We utilized naturally occurring saline and non-saline snow cover cases ranging between 6 cm to 32 cm from the Canadian Arctic, observed during late-winter from 1993 to 2017, on newly-formed ice ( 0.6 m), medium ( 1.5 m) and thick FYI ( 2 m). Our results suggest that irrespective of the thickness of the snow cover overlaying FYI, the thickness of brine-wetted snow layers and actual FYI freeboard strongly influence the amount with which CS-2 FYI freeboard estimates and thus thickness calculations are overestimated. This effect is accentuated for increasingly thicker saline snow covers overlaying newly-formed ice, which accounted to an overestimated FYI thickness by 250%, when compared to 80% overestimations on thinner saline snow covers, and the error reduces with increase in FYI thickness. Our study recommends the CS-2 sea ice community to add snow salinity as a potential error source, affecting CS-2 Arctic FYI freeboard and thickness retrievals.
Coupling of a Simple 3-Layer Snow Model to GISS GCM
NASA Astrophysics Data System (ADS)
Aleinov, I.
2001-12-01
Appropriate simulation of the snow cover dynamics is an important issue for the General Circulation Models (GCMs). The presence of snow has a significant impact on ground albedo and on heat and moisture balance. A 3-layer snow model similar to the one proposed by Lynch-Stieglitz was developed with the purpose of using it inside the GCM developed in the NASA Goddard Institute for Space Studies (GISS). The water transport between the layers is modeled explicitly while the heat balance is computed implicitly between the snow layers and semi-implicitly on the surface. The processes of melting and refreezing and compactification of layers under the gravitational force are modeled appropriately. It was noticed that implicit computation of the heat transport can cause a significant under- or over-estimation of the incoming heat flux when the temperature of the upper snow layer is equal to 0 C. This may lead in particular to delayed snow melting in spring. To remedy this problem a special flux-control algorithm was added to the model, which checks computed flux for possible errors and if such are detected the heat transport is recomputed again with the appropriate corrections. The model was tested off-line with Sleepers River forcing data and exhibited a good agreement between simulated and observed quantities for snow depth, snow density and snow temperature. The model was then incorporated into the GISS GCM. Inside the GCM the model is driven completely by the data simulated by other parts of the GCM. The screening effect of the vegetation is introduced by means of masking depth. For a thin snowpack a fractional cover is implemented so that the total thickness of the the snow is never less then 10 cm (rather, the areal fraction of the snow cover decreases when it melts). The model was tested with 6 year long GCM speed-up runs. It proved to be stable and produced reasonable results for the global snow cover. In comparison to the old GISS GCM snow model (which was incorporating the snow into the first soil layer) the new snow model has better insulating properties, thus preventing the ground from overcooling in winter. It also provides better simulation for water retention and release by the snow which results in more physical ground water runoff.
Research of microwave scattering properties of snow fields
NASA Technical Reports Server (NTRS)
Angelakos, D. J.
1978-01-01
The results obtained in the research program of microwave scattering properties of snow fields are presented. Experimental results are presented showing backscatter dependence on frequency (5.8-8.0 GHz), angle of incidence (0-60 degrees), snow wetness (time of day), and frequency modulation (0-500 MHz). Theoretical studies are being made of the inverse scattering problem yielding some preliminary results concerning the determination of the dielectric constant of the snow layer. The experimental results lead to the following conclusions: snow layering affects backscatter, layer response is significant up to 45 degrees of incidence, wetness modifies snow layer effects, frequency modulation masks the layer response, and for the proper choice of probing frequency and for nominal snow depths, it appears to be possible to measure the effective dielectric constant and the corresponding water content of a snow pack.
Measurements of thermal infrared spectral reflectance of frost, snow, and ice
NASA Technical Reports Server (NTRS)
Salisbury, John W.; D'Aria, Dana M.; Wald, Andrew
1994-01-01
Because much of Earth's surface is covered by frost, snow, and ice, the spectral emissivities of these materials are a significant input to radiation balance calculations in global atmospheric circulation and climate change models. Until now, however, spectral emissivities of frost and snow have been calculated from the optical constants of ice. We have measured directional hemispherical reflectance spectra of frost, snow, and ice from which emissivities can be predicted using Kirchhoff's law (e = 1-R). These measured spectra show that contrary to conclusions about the emissivity of snow drawn from previously calculated spectra, snow emissivity departs significantly from blackbody behavior in the 8-14 micrometer region of the spectrum; snow emissivity decreases with both increasing particle size and increasing density due to packing or grain welding; while snow emissivity increases due to the presence of meltwater.
Endolithic Microbial Life in Extreme Cold Climate: Snow Is Required, but Perhaps Less Is More
Sun, Henry J.
2013-01-01
Cyanobacteria and lichens living under sandstone surfaces in the McMurdo Dry Valleys require snow for moisture. Snow accumulated beyond a thin layer, however, is counterproductive, interfering with rock insolation, snow melting, and photosynthetic access to light. With this in mind, the facts that rock slope and direction control colonization, and that climate change results in regional extinctions, can be explained. Vertical cliffs, which lack snow cover and are perpetually dry, are devoid of organisms. Boulder tops and edges can trap snow, but gravity and wind prevent excessive buildup. There, the organisms flourish. In places where snow-thinning cannot occur and snow drifts collect, rocks may contain living or dead communities. In light of these observations, the possibility of finding extraterrestrial endolithic communities on Mars cannot be eliminated. PMID:24832803
Casal, Paulo; Zhang, Yifeng; Martin, Jonathan W; Pizarro, Mariana; Jiménez, Begoña; Dachs, Jordi
2017-08-01
Perfluoroalkyl substances (PFAS) are ubiquitous in the environment, including remote polar regions. To evaluate the role of snow deposition as an input of PFAS to Maritime Antarctica, fresh snow deposition, surface snow, streams from melted snow, coastal seawater, and plankton samples were collected over a three-month period (December 2014-February 2015) at Livingston Island. Local sources of PFASs were significant for perfluoroalkyl sulfonates (PFSAs) and C7-14 perfluoroalkyl carboxylates (PFCAs) in snow but limited to the transited areas of the research station. The concentrations of 14 ionizable PFAS (∑PFAS) in freshly deposited snow (760-3600 pg L -1 ) were 1 order of magnitude higher than those in background surface snow (82-430 pg L -1 ). ∑PFAS ranged from 94 to 420 pg L -1 in seawater and from 3.1 to 16 ng g dw -1 in plankton. Ratios of individual PFAS concentrations in freshly deposited snow relative to surface snow (C SD /C Snow ), snowmelt (C SD /C SM ), and seawater (C SD /C SW ) were close to 1 (from 0.44 to 1.4) for all perfluorooctanesulfonate (PFOS) isomers, suggesting that snowfall does not contribute significantly to PFOS in seawater. Conversely, these ratios for PFCAs ranged from 1 to 33 and were positively correlated with the number of carbons in the PFCA alkylated chain. These trends suggest that snow deposition, scavenging sea-salt aerosol bound PFAS, plays a role as a significant input of PFCAs to the Maritime Antarctica.
NASA Astrophysics Data System (ADS)
Strasser, Ulrich; Hanzer, Florian; Marke, Thomas; Rothleitner, Michael
2017-04-01
The production of technical snow today is a self-evident feature of modern alpine skiing resort management. Millions of Euros are invested every year for the technical infrastructure and its operation to produce a homogeneous and continuing snow cover on the skiing slopes for the winter season in almost every larger destination in the Alps. In Austria, skiing tourism is a significant factor of the national economic structure. We present the framing conditions of technical snow production in the mid-size skiing resort of Mayrhofen (Zillertal Alps/Austria, 136 km slopes, elevation range 630 - 2.500 m a.s.l.). Production conditions are defined by the availability of water, the planned date for the season opening, and the climatic conditions in the weeks before. By means of an adapted snow production strategy an attempt is made to ecologically and economically optimize the use of water and energy resources. Monitoring of the snow cover is supported by a network of low-cost sensors and mobile snow depth recordings. Finally, technical snow production is simulated with the spatially distributed, physically based hydroclimatological model AMUNDSEN. The model explicitly considers individual snow guns and distributes the produced snow along the slopes. The amount of simulated snow produced by each device is a function of its type, of actual wet-bulb temperature at the location, of ski area infrastructure (in terms of water supply and pumping capacity), and of snow demand.
Snow accumulation on Arctic sea ice: is it a matter of how much or when?
NASA Astrophysics Data System (ADS)
Webster, M.; Petty, A.; Boisvert, L.; Markus, T.
2017-12-01
Snow on sea ice plays an important, yet sometimes opposing role in sea ice mass balance depending on the season. In autumn and winter, snow reduces the heat exchange from the ocean to the atmosphere, reducing sea ice growth. In spring and summer, snow shields sea ice from solar radiation, delaying sea ice surface melt. Changes in snow depth and distribution in any season therefore directly affect the mass balance of Arctic sea ice. In the western Arctic, a decreasing trend in spring snow depth distribution has been observed and attributed to the combined effect of peak snowfall rates in autumn and the coincident delay in sea ice freeze-up. Here, we build on this work and present an in-depth analysis on the relationship between snow accumulation and the timing of sea ice freeze-up across all Arctic regions. A newly developed two-layer snow model is forced with eight reanalysis precipitation products to: (1) identify the seasonal distribution of snowfall accumulation for different regions, (2) highlight which regions are most sensitive to the timing of sea ice freeze-up with regard to snow accumulation, and (3) show, if precipitation were to increase, which regions would be most susceptible to thicker snow covers. We also utilize a comprehensive sensitivity study to better understand the factors most important in controlling winter/spring snow depths, and to explore what could happen to snow depth on sea ice in a warming Arctic climate.
Satellite and Surface Perspectives of Snow Extent in the Southern Appalachian Mountains
NASA Technical Reports Server (NTRS)
Sugg, Johnathan W.; Perry, Baker L.; Hall, Dorothy K.
2012-01-01
Assessing snow cover patterns in mountain regions remains a challenge for a variety of reasons. Topography (e.g., elevation, exposure, aspect, and slope) strongly influences snowfall accumulation and subsequent ablation processes, leading to pronounced spatial variability of snow cover. In-situ observations are typically limited to open areas at lower elevations (<1000 m). In this paper, we use several products from the Moderate Resolution Imaging Spectroradiometer (MODIS) to assess snow cover extent in the Southern Appalachian Mountains (SAM). MODIS daily snow cover maps and true color imagery are analyzed after selected snow events (e.g., Gulf/Atlantic Lows, Alberta Clippers, and Northwest Upslope Flow) from 2006 to 2012 to assess the spatial patterns of snowfall across the SAM. For each event, we calculate snow cover area across the SAM using MODIS data and compare with the Interactive Multi-sensor Snow and ice mapping system (IMS) and available in-situ observations. Results indicate that Gulf/Atlantic Lows are typically responsible for greater snow extent across the entire SAM region due to intensified cyclogenesis associated with these events. Northwest Upslope Flow events result in snow cover extent that is limited to higher elevations (>1000 m) across the SAM, but also more pronounced along NW aspects. Despite some limitations related to the presence of ephemeral snow or cloud cover immediately after each event, we conclude that MODIS products are useful for assessing the spatial variability of snow cover in heavily forested mountain regions such as the SAM.
Blowing Snow Sublimation at a High Altitude Alpine Site and Effects on the Surface Boundary Layer
NASA Astrophysics Data System (ADS)
Vionnet, V.; Guyomarc'h, G.; Sicart, J. E.; Deliot, Y.; Naaim-Bouvet, F.; Bellot, H.; Merzisen, H.
2017-12-01
In alpine terrain, wind-induced snow transport strongly influences the spatial and temporal variability of the snow cover. During their transport, blown snow particles undergo sublimation with an intensity depending on atmospheric conditions (air temperature and humidity). The mass loss due to blowing snow sublimation is a source of uncertainty for the mass balance of the alpine snowpack. Additionally, blowing snow sublimation modifies humidity and temperature in the surface boundary layer. To better quantify these effects in alpine terrain, a dedicated measurement setup has been deployed at the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps, Cryobs-Clim network) since winter 2015/2016. It consists in three vertical masts measuring the near-surface vertical profiles (0.2-5 m) of wind speed, air temperature and humidity and blowing snow fluxes and size distribution. Observations collected during blowing snow events without concurrent snowfall show only a slight increase in relative humidity (10-20%) and near-surface saturation is never observed. Estimation of blowing snow sublimation rates are then obtained from these measurements. They range between 0 and 5 mmSWE day-1 for blowing snow events without snowfall in agreement with previous studies in different environments (North American prairies, Antarctica). Finally, an estimation of the mass loss due to blowing snow sublimation at our experimental site is proposed for two consecutive winters. Future use of the database collected in this study includes the evaluation of blowing snow models in alpine terrain.
The Kühtai data set: 25 years of lysimetric, snow pillow, and meteorological measurements
Kirnbauer, R.; Parajka, J.; Schöber, J.; Blöschl, G.
2017-01-01
Abstract Snow measurements at the Kühtai station in Tirol, Austria, (1920 m.a.s.l.) are described. The data set includes snow water equivalent from a 10 m2 snow pillow, snow melt outflow from a 10 m2 snow lysimeter placed at the same location as the pillow, meteorological data (precipitation, incoming shortwave radiation, reflected shortwave radiation, air temperature, relative air humidity, and wind speed), and other data (snow depths, snow temperatures at seven heights) from the period October 1990 to May 2015. All data have been quality checked, and gaps in the meteorological data have been filled in. The data set is unique in that all data are available at a temporal resolution of 15 min over a period of 25 years with minimal changes in the experimental setup. The data set can therefore be used to analyze snow pack processes over a long‐time period, including their extremes and long‐term changes, in an Alpine climate. Analyses may benefit from the combined measurement of snow water equivalent, lysimeter outflow, and precipitation at a wind‐sheltered alpine site. An example use of data shows the temporal variability of daily and 1 April snow water equivalent observed at the Kühtai site. The results indicate that the snow water equivalent maximum varies between 200 and more than 500 mm w.e., but there is no statistically significant temporal trend in the period 1990–2015. PMID:28931957
Study of aerosol effect on accelerated snow melting over the Tibetan Plateau during boreal spring
NASA Astrophysics Data System (ADS)
Lee, Woo-Seop; Bhawar, Rohini L.; Kim, Maeng-Ki; Sang, Jeong
2013-08-01
In the present study, a coupled atmosphere-ocean global climate model (CSIRO-Mk3.6) is used to investigate the role of aerosol forcing agents as drivers of snow melting trends in the Tibetan Plateau (TP) region. Anthropogenic aerosol-induced snow cover changes in a warming climate are calculated from the difference between historical run (HIST) and all forcing except anthropogenic aerosol (NoAA). Absorbing aerosols can influence snow cover by warming the atmosphere, reducing snow reflectance after deposition. The warming the rate of snow melt, exposing darker surfaces below to short-wave radiation sooner, and allowing them to heat up even faster in the Himalayas and TP. The results show a strong spring snow cover decrease over TP when absorbing anthropogenic aerosol forcing is considered, whereas snow cover fraction (SCF) trends in NoAA are weakly negative (but insignificant) during 1951-2005. The enhanced spring snow cover trends in HIST are due to overall effects of different forcing agents: When aerosol forcing (AERO) is considered, a significant reduction of SCF than average can be found over the western TP and Himalayas. The large decreasing trends in SCF over the TP, with the maximum reduction of SCF around 12-15% over the western TP and Himalayas slope. Also accelerated snow melting during spring is due to effects of aerosol on snow albedo, where aerosol deposition cause decreases snow albedo. However, the SCF change in the “NoAA” simulations was observed to be less.
NASA Astrophysics Data System (ADS)
Calonne, Neige; Schneebeli, Martin; Montagnat, Maurine; Matzl, Margret
2016-04-01
Temperature gradient metamorphism affects the Antarctic snowpack up to 5 meters depth, which lead to a recrystallization of the ice grains by sublimation of ice and deposition of water vapor. By this way, it is well known that the snow microstructure evolves (geometrical changes). Also, a recent study shows an evolution of the snow fabric, based on a cold laboratory experiment. Both fabric and microstructure are required to better understand mechanical behavior and densification of snow, firn and ice, given polar climatology. The fabric of firn and ice has been extensively investigated, but the publications by Stephenson (1967, 1968) are to our knowledge the only ones describing the snow fabric in Antarctica. In this context, our work focuses on snow microstructure and fabric in the first meters depth of the Antarctic ice sheet, where temperature gradients driven recrystallization occurs. Accurate details of the snow microstructure are observed using micro-computed tomography. Snow fabrics were measured at various depths from thin sections of impregnated snow with an Automatic Ice Texture Analyzer (AITA). A definite relationship between microstructure and fabric is found and highlights the influence of metamorphism on both properties. Our results also show that the metamorphism enhances the differences between the snow layers properties. Our work stresses the significant and complex evolution of snow properties in the upper meters of the ice sheet and opens the question of how these layer properties will evolve at depth and may influence the densification.
Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge
NASA Astrophysics Data System (ADS)
Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.
2012-12-01
Over the last decade, multiple satellite-based laser and radar altimeters, optimized for polar observations, have been launched with one of the major objectives being the determination of global sea ice thickness and distribution [5, 6]. Estimation of sea-ice thickness from these altimeters relies on freeboard measurements and the presence of snow cover on sea ice affects this estimate. Current means of estimating the snow depth rely on daily precipitation products and/or data from passive microwave sensors [2, 7]. Even a small uncertainty in the snow depth leads to a large uncertainty in the sea-ice thickness estimate. To improve the accuracy of the sea-ice thickness estimates and provide validation for measurements from satellite-based sensors, the Center for Remote Sensing of Ice Sheets deploys the Snow Radar as a part of NASA Operation IceBridge. The Snow Radar is an ultra-wideband, frequency-modulated, continuous-wave radar capable of resolving snow depth on sea ice from 5 cm to more than 2 meters from long-range, airborne platforms [4]. This paper will discuss the algorithm used to directly extract snow depth estimates exclusively using the Snow Radar data set by tracking both the air-snow and snow-ice interfaces. Prior work in this regard used data from a laser altimeter for tracking the air-snow interface or worked under the assumption that the return from the snow-ice interface was greater than that from the air-snow interface due to a larger dielectric contrast, which is not true for thick or higher loss snow cover [1, 3]. This paper will also present snow depth estimates from Snow Radar data during the NASA Operation IceBridge 2010-2011 Antarctic campaigns. In 2010, three sea ice flights were flown, two in the Weddell Sea and one in the Amundsen and Bellingshausen Seas. All three flight lines were repeated in 2011, allowing an annual comparison of snow depth. In 2011, a repeat pass of an earlier flight in the Weddell Sea was flown, allowing for a comparison of snow depths with two weeks elapsed between passes. [1] Farrell, S.L., et al., "A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice," IEEE Tran. Geoscience and Remote Sensing, Vol. 50, No. 6, pp. 2098-2111, June 2012. [2] Kwok, R., and G. F. Cunningham, "ICESat over Arctic sea ice: Estimation of snow depth and ice thickness," J. Geophys. Res., 113, C08010, 2008. [3] Kwok, R., et al., "Airborne surveys of snow depth over Arctic sea ice," J. Geophys. Res., 116, C11018, 2011. [4] Panzer, B., et al., "An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn," Submitted to J. Glaciology, July 23, 2012. [5] Wingham, D.J., et al., "CryoSat: A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields," Advances in Space Research, Vol. 37, No. 4, pp. 841-871, 2006. [6] Zwally, H. J., et al., "ICESat's laser measurements of polar ice, atmosphere, ocean, and land," J. Geodynamics, Vol. 34, No. 3-4, pp. 405-445, Oct-Nov 2002. [7] Zwally, H. J., et al., "ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea," J. Geophys. Res., 113, C02S15, 2008.
Snow distribution and heat flow in the taiga
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturm, M.
1992-05-01
The trees of the taiga intercept falling snow and cause it to become distributed in an uneven fashion. Around aspen and birch, cone-shaped accumulations form. Beneath large spruce trees, the snow cover is depleted, forming a bowl-shaped depression called a tree well. Small spruce trees become covered with snow, creating cavities that funnel cold air to the snow/ground interface. The depletion of snow under large spruce trees results in greater heat loss from the ground. A finite difference model suggests that heat flow from tree wells can be more than twice that of undisturbed snow. In forested watersheds, this increasemore » can be a significant percentage of the total winter energy exchange.« less
The seasonal cycle of snow cover, sea ice and surface albedo
NASA Technical Reports Server (NTRS)
Robock, A.
1980-01-01
The paper examines satellite data used to construct mean snow cover caps for the Northern Hemisphere. The zonally averaged snow cover from these maps is used to calculate the seasonal cycle of zonally averaged surface albedo. The effects of meltwater on the surface, solar zenith angle, and cloudiness are parameterized and included in the calculations of snow and ice albedo. The data allows a calculation of surface albedo for any land or ocean 10 deg latitude band as a function of surface temperature ice and snow cover; the correct determination of the ice boundary is more important than the snow boundary for accurately simulating the ice and snow albedo feedback.
An improved snow scheme for the ECMWF land surface model: Description and offline validation
Emanuel Dutra; Gianpaolo Balsamo; Pedro Viterbo; Pedro M. A. Miranda; Anton Beljaars; Christoph Schar; Kelly Elder
2010-01-01
A new snow scheme for the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model has been tested and validated. The scheme includes a new parameterization of snow density, incorporating a liquid water reservoir, and revised formulations for the subgrid snow cover fraction and snow albedo. Offline validation (covering a wide range of spatial and...
Particulate carbonate matter in snow from selected sites in south-central Rocky Mountains
David W. Clow; George P. Ingersoll
1994-01-01
Trends in snow acidity reflect the balance between strong acid inputs and reactions with neutralizing materials. Carbonate dust can be an important contributor of buffering capacity to snow; however, its concentration in snow is difficult to quantify because it dissolves rapidly in snowmelt. In snow with neutral or acidic pH, most calcite would dissolve during sample...
Estimating snow load in California for three recurrence intervals
David L. Azuma
1985-01-01
A key to designing facilities in snowbound areas is knowing what the expected snow load levels are for given recurrence intervals. In California, information about snow load is available only for the Lake Tahoe Basin. About 280 snow courses in the State were analyzed, and snow load estimated and related to elevation on a river basin and statewide level. The tabulated...
USDA-ARS?s Scientific Manuscript database
Snow cover and its melt dominate regional climate and water resources in many of the world’s mountainous regions. Snowmelt timing and magnitude in mountains tend to be controlled by absorption of solar radiation and snow water equivalent, respectively, and yet both of these are very poorly known ev...
36 CFR 212.81 - Use by over-snow vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Use by over-snow vehicles. 212.81 Section 212.81 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE TRAVEL MANAGEMENT Use by Over-Snow Vehicles § 212.81 Use by over-snow vehicles. (a) General. Use by over-snow vehicles on National Forest System roads...
[Snow cover pollution monitoring in Ufa].
Daukaev, R A; Suleĭmanov, R A
2008-01-01
The paper presents the results of examining the snow cover polluted with heavy metals in the large industrial town of Ufa. The level of man-caused burden on the snow cover of the conventional parts of the town was estimated and compared upon exposure to a wide range of snow cover pollutants. The priority snow cover pollutants were identified among the test heavy metals.
View Angle Effects on MODIS Snow Mapping in Forests
NASA Technical Reports Server (NTRS)
Xin, Qinchuan; Woodcock, Curtis E.; Liu, Jicheng; Tan, Bin; Melloh, Rae A.; Davis, Robert E.
2012-01-01
Binary snow maps and fractional snow cover data are provided routinely from MODIS (Moderate Resolution Imaging Spectroradiometer). This paper investigates how the wide observation angles of MODIS influence the current snow mapping algorithm in forested areas. Theoretical modeling results indicate that large view zenith angles (VZA) can lead to underestimation of fractional snow cover (FSC) by reducing the amount of the ground surface that is viewable through forest canopies, and by increasing uncertainties during the gridding of MODIS data. At the end of the MODIS scan line, the total modeled error can be as much as 50% for FSC. Empirical analysis of MODIS/Terra snow products in four forest sites shows high fluctuation in FSC estimates on consecutive days. In addition, the normalized difference snow index (NDSI) values, which are the primary input to the MODIS snow mapping algorithms, decrease as VZA increases at the site level. At the pixel level, NDSI values have higher variances, and are correlated with the normalized difference vegetation index (NDVI) in snow covered forests. These findings are consistent with our modeled results, and imply that consideration of view angle effects could improve MODIS snow monitoring in forested areas.
Idiosyncratic Responses of High Arctic Plants to Changing Snow Regimes
Rumpf, Sabine B.; Semenchuk, Philipp R.; Dullinger, Stefan; Cooper, Elisabeth J.
2014-01-01
The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made. PMID:24523859
Idiosyncratic responses of high Arctic plants to changing snow regimes.
Rumpf, Sabine B; Semenchuk, Philipp R; Dullinger, Stefan; Cooper, Elisabeth J
2014-01-01
The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made.
Role of nitrite in the photochemical formation of radicals in the snow.
Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf
2014-01-01
Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.
No evidence of widespread decline of snow cover on the Tibetan Plateau over 2000-2015.
Wang, Xiaoyue; Wu, Chaoyang; Wang, Huanjiong; Gonsamo, Alemu; Liu, Zhengjia
2017-11-07
Understanding the changes in snow cover is essential for biological and hydrological processes in the Tibetan Plateau (TP) and its surrounding areas. However, the changes in snow cover phenology over the TP have not been well documented. Using Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow products and the Interactive Multi-sensor Snow and Ice Mapping System (IMS) data, we reported daily cloud-free snow cover product over the Tibetan Plateau (TP) for 2000-2015. Snow cover start (SCS), melt (SCM) and duration (SCD) dates were calculated for each hydrological year, and their spatial and temporal variations were analyzed with elevation variations. Our results show no widespread decline in snow cover over the past fifteen years and the trends of snow cover phenology over the TP has high spatial heterogeneity. Later SCS, earlier SCM, and thus decreased SCD mainly occurred in the areas with elevation below 3500 m a.s.l., while regions in central and southwestern edges of the TP showed advanced SCS, delayed SCM and consequently longer SCD. The roles of temperature and precipitation on snow cover penology varied in different elevation zones, and the impact of both temperature and precipitation strengthened as elevation increases.
NASA Astrophysics Data System (ADS)
Gleason, K. E.; Arienzo, M. M.; Chellman, N.; McConnell, J.
2017-12-01
Charred forests shed black carbon and burned debris, which accumulates and concentrates on winter snowpack, reducing snow surface albedo, and subsequently increasing snowmelt rates, and advancing the date of snow disappearance. Forest fires have occurred across vast areas of the seasonal snow zone in recent decades, however we do not understand the long-term implications of burned forests in montane headwaters to snow hydrology and downstream water resources. Across a chronosequence of nine burned forests in the Colorado River Headwaters, we sampled snow throughout the complete snowpack profile to conserve the composition, properties, and vertical stratigraphy of impurities in the snowpack during maximum snow accumulation. Using state-of-the-art geochemical analyses, we determined the magnitude, composition, and particle size distribution of black carbon, dust, and other impurities in the snowpack relative to years-since fire. Forest fires continue to darken snow for many years following fire, however the magnitude, composition, and particle size distribution of impurities change through time, altering the post-fire radiative forcing on snow as a burned forest ages.
NASA Astrophysics Data System (ADS)
Vasil'chuk, Yu. K.; Shevchenko, V. P.; Lisitzin, A. P.; Budantseva, N. A.; Vorobiov, S. N.; Kirpotin, S. N.; Krizkov, I. V.; Manasypov, R. M.; Pokrovsky, O. S.; Chizhova, Ju. N.
2016-12-01
The purpose of this work is to study the variability of the isotope composition (δ18O, δD, d exc) of the snow cover on a long transect of Western Siberia from the southern taiga to the tundra. The study of the snow cover is of paleogeographic, paleogeocryological, and paleohydrological value. The snow cover of western Siberia was sampled on a broadly NS transzonal profile from the environs of Tomsk (southern taiga zone) to the eastern coast of the Gulf of Ob (tundra zone) from February 19 to March 4, 2014. Snow samples were collected at 31 sites. Most of the samples represented by fresh snow, i.e., snow that had fallen a day before the moment of sampling were collected in two areas. In the area of Yamburg, the snow specimens collected from the surface are most probably settled snow of different ages. The values of δ18O in the snow from Tomsk to Yamburg varied from-21.89 to-32.82‰, and the values of δD, from-163.3 to-261.2‰. The value of deuterium excess was in the range of 4.06-19.53‰.
NASA Astrophysics Data System (ADS)
Hammond, John C.; Saavedra, Freddy A.; Kampf, Stephanie K.
2018-04-01
With climate warming, many regions are experiencing changes in snow accumulation and persistence. These changes are known to affect streamflow volume, but the magnitude of the effect varies between regions. This research evaluates whether variables derived from remotely sensed snow cover can be used to estimate annual streamflow at the small watershed scale across the western U.S., a region with a wide range of climate types. We compared snow cover variables derived from MODIS, snow persistence (SP), and snow season (SS), to more commonly utilized metrics, snow fraction (fraction of precipitation falling as snow, SF), and peak snow water equivalent (SWE). Each variable represents different information about snow, and this comparison assesses similarities and differences between the snow metrics. Next, we evaluated how two snow variables, SP and SWE, related to annual streamflow (Q) for 119 USGS reference watersheds and examined whether these relationships varied for wet/warm (precipitation surplus) and dry/cold (precipitation deficit) watersheds. Results showed high correlations between all snow variables, but the slopes of these relationships differed between climates, with wet/warm watersheds displaying lower SF and higher SWE for the same SP. In dry/cold watersheds, both SP and SNODAS SWE correlated with Q spatially across all watersheds and over time within individual watersheds. We conclude that SP can be used to map spatial patterns of annual streamflow generation in dry/cold parts of the region. Applying this approach to the Upper Colorado River Basin demonstrates that 50% of streamflow comes from areas >3,000 masl. If the relationship between SP and Q is similar in other dry/cold regions, this approach could be used to estimate annual streamflow in ungauged basins.
Loik, Michael E; Griffith, Alden B; Alpert, Holly; Concilio, Amy L; Wade, Catherine E; Martinson, Sharon J
2015-06-01
Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert.
NASA Astrophysics Data System (ADS)
Stillinger, T.; Dozier, J.; Phares, N.; Rittger, K.
2015-12-01
Discrimination between snow and clouds poses a serious but tractable challenge to the consistent delivery of high-quality information on mountain snow from remote sensing. Clouds obstruct the surface from the sensor's view, and the similar optical properties of clouds and snow make accurate discrimination difficult. We assess the performance of the current Landsat 8 operational snow and cloud mask products (LDCM CCA and CFmask), along with a new method, using over one million manually identified snow and clouds pixels in Landsat 8 scenes. The new method uses physically based scattering models to generate spectra in each Landsat 8 band, at that scene's solar illumination, for snow and cloud particle sizes that cover the plausible range for each. The modeled spectra are compared to pixels' spectra via several independent ways to identify snow and clouds. The results are synthesized to create a final snow/cloud mask, and the method can be applied to any multispectral imager with bands covering the visible, near-infrared, and shortwave-infrared regions. Each algorithm we tested misidentifies snow and clouds in both directions to varying degrees. We assess performance with measures of Precision, Recall, and the F statistic, which are based on counts of true and false positives and negatives. Tests for significance in differences between spectra in the measured and modeled values among incorrectly identified pixels help ascertain reasons for misidentification. A cloud mask specifically designed to separate snow from clouds is a valuable tool for those interested in remotely sensing snow cover. Given freely available remote sensing datasets and computational tools to feasibly process entire mission histories for an area of interest, enabling researchers to reliably identify and separate snow and clouds increases the usability of the data for hydrological and climatological studies.
NASA Astrophysics Data System (ADS)
Matt, Felix; Burkhart, John F.
2017-04-01
Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of short wave radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the magnitude of these effects as simulated in numerical models have large uncertainties, originating mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters and evaluate the simulated variables connected with the representation of LAISI. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI, a key variable in understanding snowpack energy-balance dynamics. In this study, we assess the effect of LAISI on snow melt and discharge generation and the involved uncertainties in a high mountain catchment located in the western Himalayas by using a distributed hydrological catchment model with focus on the representation of the seasonal snow pack. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of short wave radiation by LAISI into account. Meteorological forcing data is generated from an assimilation of observations and high resolution WRF simulations, and LAISI mixing ratios from deposition rates of Black Carbon simulated with the FLEXPART model. To asses the quality of our simulations and the related uncertainties, we compare the simulated additional energy absorbed by the snow due to the presence of LAISI to the MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithm satellite product.
NASA Astrophysics Data System (ADS)
Li, Xinghua; Fu, Wenxuan; Shen, Huanfeng; Huang, Chunlin; Zhang, Liangpei
2017-08-01
Monitoring the variability of snow cover is necessary and meaningful because snow cover is closely connected with climate and ecological change. In this work, 500 m resolution MODIS daily snow cover products from 2000 to 2014 were adopted to analyze the status in Hengduan Mountains. In order to solve the spatial discontinuity caused by clouds in the products, we propose an adaptive spatio-temporal weighted method (ASTWM), which is based on the initial result of a Terra and Aqua combination. This novel method simultaneously considers the temporal and spatial correlations of the snow cover. The simulated experiments indicate that ASTWM removes clouds completely, with a robust overall accuracy (OA) of above 93% under different cloud fractions. The spatio-temporal variability of snow cover in the Hengduan Mountains was investigated with two indices: snow cover days (SCD) and snow fraction. The results reveal that the annual SCD gradually increases and the coefficient of variation (CV) decreases with elevation. The pixel-wise trends of SCD first rise and then drop in most areas. Moreover, intense intra-annual variability of the snow fraction occurs from October to March, during which time there is abundant snow cover. The inter-annual variability, which mainly occurs in high elevation areas, shows an increasing trend before 2004/2005 and a decreasing trend after 2004/2005. In addition, the snow fraction responds to the two climate factors of air temperature and precipitation. For the intra-annual variability, when the air temperature and precipitation decrease, the snow cover increases. Besides, precipitation plays a more important role in the inter-annual variability of snow cover than temperature.
Contribution of Lake-Effect Snow to the Catskill Mountains Snowpack
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Digirolamo, Nicolo E.; Frei, Allan
2017-01-01
Meltwater from snow that falls in the Catskill Mountains in southern New York contributes to reservoirs that supply drinking water to approximately nine million people in New York City. Using the NOAA National Ice Centers Interactive Multisensor Snow and Ice Mapping System (IMS) 4km snow maps, we have identified at least 32 lake-effect (LE) storms emanating from Lake Erie andor Lake Ontario that deposited snow in the CatskillDelaware Watershed in the Catskill Mountains of southern New York State between 2004 and 2017. This represents a large underestimate of the contribution of LE snow to the Catskills snowpack because many of the LE snowstorms are not visible in the IMS snow maps when they travel over snow-covered terrain. Most of the LE snowstorms that we identified originate from Lake Ontario but quite a few originate from both Erie and Ontario, and a few from Lake Erie alone. Using satellite, meteorological and reanalysis data we identify conditions that contributed to LE snowfall in the Catskills. Clear skies following some of the storms permitted measurement of the extent of snow cover in the watershed using multiple satellite sensors. IMS maps tend to overestimate the extent of snow compared to MODerate resolution Imaging Spectroradiometer (MODIS) and Landsat-derived snow-cover extent maps. Using this combination of satellite and meteorological data, we can begin to quantify the important contribution of LE snow to the Catskills Mountain snowpack. Changes that are predicted in LE snowfall from the Great Lakes could impact the distribution of rain vs snow in the Catskills which may affect future reservoir operations in the NYC Water Supply System.
Miura, Kousei; Kadone, Hideki; Koda, Masao; Abe, Tetsuya; Endo, Hirooki; Murakami, Hideki; Doita, Minoru; Kumagai, Hiroshi; Nagashima, Katsuya; Fujii, Kengo; Noguchi, Hiroshi; Funayama, Toru; Kawamoto, Hiroaki; Sankai, Yoshiyuki; Yamazaki, Masashi
2018-03-01
An excessive lumbar load with snow-shoveling is a serious problem in snowfall areas. Various exoskeletal robots have been developed to reduce lumbar load in lifting work. However, few studies have reported the attempt of snow-shoveling work using exoskeletal robots. The purpose of the present study was to test the hypothesis that the HAL for Care Support robot would reduce lumbar load in repetitive snow-shoveling movements. Nine healthy male volunteers performed repetitive snow-shoveling movements outdoors in a snowfall area for as long as possible until they were fatigued. The snow-shoveling trial was performed under two conditions: with and without HAL for Care Support. Outcome measures were defined as the lumbar load assessed by the VAS of lumbar fatigue after the snow-shoveling trial and the snow-shoveling performance, including the number of scoops, and snow shoveling time and distance. The mean of VAS of lumbar fatigue, the number of scoops, and snow-shoveling time and distance without HAL for Care Support were 75.4 mm, 50.3, 145 s, and 9.6 m, while with HAL for Care Support were 39.8 mm, 144, 366 s, and 35.4 m. The reduction of lumbar fatigue and improvement of snow-shoveling performance using HAL for Care Support were statistically significant. There was no adverse event during snow-shoveling with HAL for Care Support. In conclusion, the HAL for Care Support can reduce lumbar load in repetitive snow-shoveling movements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Harder, Phillip; Schirmer, Michael; Pomeroy, John; Helgason, Warren
2016-11-01
Quantifying the spatial distribution of snow is crucial to predict and assess its water resource potential and understand land-atmosphere interactions. High-resolution remote sensing of snow depth has been limited to terrestrial and airborne laser scanning and more recently with application of structure from motion (SfM) techniques to airborne (manned and unmanned) imagery. In this study, photography from a small unmanned aerial vehicle (UAV) was used to generate digital surface models (DSMs) and orthomosaics for snow cover at a cultivated agricultural Canadian prairie and a sparsely vegetated Rocky Mountain alpine ridgetop site using SfM. The accuracy and repeatability of this method to quantify snow depth, changes in depth and its spatial variability was assessed for different terrain types over time. Root mean square errors in snow depth estimation from differencing snow-covered and non-snow-covered DSMs were 8.8 cm for a short prairie grain stubble surface, 13.7 cm for a tall prairie grain stubble surface and 8.5 cm for an alpine mountain surface. This technique provided useful information on maximum snow accumulation and snow-covered area depletion at all sites, while temporal changes in snow depth could also be quantified at the alpine site due to the deeper snowpack and consequent higher signal-to-noise ratio. The application of SfM to UAV photographs returns meaningful information in areas with mean snow depth > 30 cm, but the direct observation of snow depth depletion of shallow snowpacks with this method is not feasible. Accuracy varied with surface characteristics, sunlight and wind speed during the flight, with the most consistent performance found for wind speeds < 10 m s-1, clear skies, high sun angles and surfaces with negligible vegetation cover.
NASA Technical Reports Server (NTRS)
Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad
2013-01-01
Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.
Detection Thresholds of Falling Snow from Satellite-Borne Active and Passive Sensors
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, Gail; Johnson, Benjamin T.; Munchak, S. Joseph
2012-01-01
Precipitation, including rain and snow, is a critical part of the Earth's energy and hydrology cycles. Precipitation impacts latent heating profiles locally while global circulation patterns distribute precipitation and energy from the equator to the poles. For the hydrological cycle, falling snow is a primary contributor in northern latitudes during the winter seasons. Falling snow is the source of snow pack accumulations that provide fresh water resources for many communities in the world. Furthermore, falling snow impacts society by causing transportation disruptions during severe snow events. In order to collect information on the complete global precipitation cycle, both liquid and frozen precipitation must be collected. The challenges of estimating falling snow from space still exist though progress is being made. These challenges include weak falling snow signatures with respect to background (surface, water vapor) signatures for passive sensors over land surfaces, unknowns about the spherical and non-spherical shapes of the snowflakes, their particle size distributions (PSDs) and how the assumptions about the unknowns impact observed brightness temperatures or radar reflectivities, differences in near surface snowfall and total column snow amounts, and limited ground truth to validate against. While these challenges remain, knowledge of their impact on expected retrieval results is an important key for understanding falling snow retrieval estimations. Since falling snow from space is the next precipitation measurement challenge from space, information must be determined in order to guide retrieval algorithm development for these current and future missions. This information includes thresholds of detection for various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types. For example, can a lake effect snow system with low (approx 2.5 km) cloud tops having an ice water content (IWC) at the surface of 0.25 g / cubic m and dendrite snowflakes be detected? If this information is known, we can focus retrieval efforts on detectable storms and concentrate advances on achievable results. Here, the focus is to determine thresholds of detection for falling snow for various snow conditions over land and lake surfaces. The results rely on simulated Weather Research Forecasting (WRF) simulations of falling snow cases since simulations provide all the information to determine the measurements from space and the ground truth. Sensitivity analyses were performed to better ascertain the relationships between multifrequency microwave and millimeter-wave sensor observations and the falling snow/underlying field of view. In addition, thresholds of detection for various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types were studied. Results will be presented for active radar at Ku, Ka, and W-band and for passive radiometer channels from 10 to 183 GHz.
Improving alpine-region spectral unmixing with optimal-fit snow endmembers
NASA Technical Reports Server (NTRS)
Painter, Thomas H.; Roberts, Dar A.; Green, Robert O.; Dozier, Jeff
1995-01-01
Surface albedo and snow-covered-area (SCA) are crucial inputs to the hydrologic and climatologic modeling of alpine and seasonally snow-covered areas. Because the spectral albedo and thermal regime of pure snow depend on grain size, areal distribution of snow grain size is required. Remote sensing has been shown to be an effective (and necessary) means of deriving maps of grain size distribution and snow-covered-area. Developed here is a technique whereby maps of grain size distribution improve estimates of SCA from spectral mixture analysis with AVIRIS data.
Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.
2008-01-01
The Dense Media Radiative Transfer theory (DMRT) of Quasicrystalline Approximation of Mie scattering by sticky particles is used to study the multiple scattering effects in layered snow in microwave remote sensing. Results are illustrated for various snow profile characteristics. Polarization differences and frequency dependences of multilayer snow model are significantly different from that of the single-layer snow model. Comparisons are also made with CLPX data using snow parameters as given by the VIC model. ?? 2007 IEEE.
Large Capacity SMES for Voltage Dip Compensation
NASA Astrophysics Data System (ADS)
Iwatani, Yu; Saito, Fusao; Ito, Toshinobu; Shimada, Mamoru; Ishida, Satoshi; Shimanuki, Yoshio
Voltage dips of power grids due to thunderbolts, snow damage, and so on, cause serious damage to production lines of precision instruments, for example, semiconductors. In recent years, in order to solve this problem, uninterruptible power supply systems (UPS) are used. UPS, however, has small capacity, so a great number of UPS are needed in large factories. Therefore, we have manufactured the superconducting magnetic energy storage (SMES) system for voltage dip compensation able to protect loads with large capacity collectively. SMES has advantages such as space conservation, long lifetime and others. In field tests, cooperating with CHUBU Electric Power Co., Inc. we proved that SMES is valuable for compensating voltage dips. Since 2007, 10MVA SMES improved from field test machines has been running in a domestic liquid crystal display plant, and in 2008, it protected plant loads from a number of voltage dips. In this paper, we report the action principle and components of the improved SMES for voltage dip compensation, and examples of waveforms when 10MVA SMES compensated voltage dips.
NASA Technical Reports Server (NTRS)
Lin, Pay-Liam; Chen, D.; Tao, Wei-Kuo; Shi, Jainn J.; Chang, Mei-Yu
2010-01-01
In recent years, the heavy rainfall that was associated with severe weather events (e.g., typhoons, local heavy precipitation events) has caused significant damages in the economy and loss of human life throughout Taiwan. Especially, the extreme heavy rainfall (over 2500 mm over 24 hours) associated with Typhoon Morakot 2009 caused more than 600 human beings lost and more than $100 million US dollar damage. In this paper, we are using WRF to simulate the precipitation processes associated Typhoon Morakot 2009. The preliminary results indicated that the wrf model with using 2 km grid size and with utilizing the 310E scheme (cloud ice, snow and hail) can simulate more than 2500 mm rainfall over 24 hour integration. In this talk, we will evaluate the performance of the microphysical schemes for the Typhoon Morakot case. In addition, we will examine the impact of model resolution (in both horizontal and vertical) on the Typhoon Morakot case.
Summary of floods in the United States during 1960
Rostvedt, J.O.
1965-01-01
This report describes the most outstanding floods in the United States during 1960. No major floods occurred during the year, although two floods caused severe damage the first in March and April in eastern Nebraska and adjacent areas, and the second in September in Puerto Rico.Unseasonal rains in mid-March caused extensive flooding in north-central Florida. Several thousand persons were evacuated from their homes, and damage to homes, roads, and crops was extensive.The most widespread flooding ever known in Nebraska occurred late in March and early in April as a result of rapid melting of a heavy snow cover. Most of the flood damage, estimated at about $3 million, was to roads and bridges. The flood area extended into South Dakota, Iowa, Kansas, Missouri, and Wisconsin.Snowmelt in April supplemented by rains and later heavy rains in early May caused severe flooding in northern Wisconsin and in Michigan Upper Peninsula.The most destructive flood of the year was in eastern Puerto Rico as the result of hurricane Donna. More than one hundred persons died, and considerably more than one hundred persons were injured; property damage was f.bout $7 million. Hurricane Donna also caused severe flooding as it passed over Florida and along the Atlantic coastline.In addition to these floods mentioned, 31 others of lesser magnitude were significant enough to report in this annual summary.
NASA Astrophysics Data System (ADS)
Zhang, Yinsheng; Ma, Ning
2018-04-01
Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of the continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972-2006 and the Global Monthly EASE-Grid SWE data for 1979-2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972-2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as partial area of Central Asia and northwestern Russia, but varied little in other parts of Eurasia. "Snow-free breaks" (SFBs) with intermittent snow cover in the cold season were principally observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1-14 weeks during the study period and the maximum intermittence could even reach 25 weeks in certain years. At a seasonal scale, SWE usually peaked in February or March, but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979-2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China. The possible cross-platform inconsistencies between two passive microwave radiometers may cause uncertainties in the detected trends of SWE here, suggesting an urgent need of producing a long-term, more homogeneous SWE product in future.
Integration of snow management practices into a detailed snow pack model
NASA Astrophysics Data System (ADS)
Spandre, Pierre; Morin, Samuel; Lafaysse, Matthieu; Lejeune, Yves; François, Hugues; George-Marcelpoil, Emmanuelle
2016-04-01
The management of snow on ski slopes is a key socio-economic and environmental issue in mountain regions. Indeed the winter sports industry has become a very competitive global market although this economy remains particularly sensitive to weather and snow conditions. The understanding and implementation of snow management in detailed snowpack models is a major step towards a more realistic assessment of the evolution of snow conditions in ski resorts concerning past, present and future climate conditions. Here we describe in a detailed manner the integration of snow management processes (grooming, snowmaking) into the snowpack model Crocus (Spandre et al., Cold Reg. Sci. Technol., in press). The effect of the tiller is explicitly taken into account and its effects on snow properties (density, snow microstructure) are simulated in addition to the compaction induced by the weight of the grooming machine. The production of snow in Crocus is carried out with respect to specific rules and current meteorological conditions. Model configurations and results are described in detail through sensitivity tests of the model of all parameters related to snow management processes. In-situ observations were carried out in four resorts in the French Alps during the 2014-2015 winter season considering for each resort natural, groomed only and groomed plus snowmaking conditions. The model provides realistic simulations of the snowpack properties with respect to these observations. The main uncertainty pertains to the efficiency of the snowmaking process. The observed ratio between the mass of machine-made snow on ski slopes and the water mass used for production was found to be lower than was expected from the literature, in every resort. The model now referred to as "Crocus-Resort" has been proven to provide realistic simulations of snow conditions on ski slopes and may be used for further investigations. Spandre, P., S. Morin, M. Lafaysse, Y. Lejeune, H. François and E. George-Marcelpoil, Integration of snow management processes into a detailed snowpack model, Cold Reg. Sci. Technol., in press.
Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm
Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.
2004-01-01
One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.
Spatial analysis and statistical modelling of snow cover dynamics in the Central Himalayas, Nepal
NASA Astrophysics Data System (ADS)
Weidinger, Johannes; Gerlitz, Lars; Böhner, Jürgen
2017-04-01
General circulation models are able to predict large scale climate variations in global dimensions, however small scale dynamic characteristics, such as snow cover and its temporal variations in high mountain regions, are not represented sufficiently. Detailed knowledge about shifts in seasonal ablation times and spatial distribution of snow cover are crucial for various research interests. Since high mountain areas, for instance the Central Himalayas in Nepal, are generally remote, it is difficult to obtain data in high spatio-temporal resolutions. Regional climate models and downscaling techniques are implemented to compensate coarse resolution. Furthermore earth observation systems, such as MODIS, also permit bridging this gap to a certain extent. They offer snow (cover) data in daily temporal and medium spatial resolution of around 500 m, which can be applied as evaluation and training data for dynamical hydrological and statistical analyses. Within this approach two snow distribution models (binary snow cover and fractional snow cover) as well as one snow recession model were implemented for a research domain in the Rolwaling Himal in Nepal, employing the random forest technique, which represents a state of the art machine learning algorithm. Both bottom-up strategies provide inductive reasoning to derive rules for snow related processes out of climate (temperature, precipitation and irradiance) and climate-related topographic data sets (elevation, aspect and convergence index) obtained by meteorological network stations, remote sensing products (snow cover - MOD10-A1 and land surface temperatures - MOD11-A1) along with GIS. Snow distribution is predicted reliably on a daily basis in the research area, whereas further effort is necessary for predicting daily snow cover recession processes adequately. Swift changes induced by clear sky conditions with high insolation rates are well represented, whereas steady snow loss still needs continuing effort. All approaches underline the technical difficulties of snow cover modelling during the monsoon season, in accordance with previous studies. The developed methods in combination with continuous in situ measurements provide a basis for further downscaling approaches.
Monitoring Areal Snow Cover Using NASA Satellite Imagery
NASA Technical Reports Server (NTRS)
Harshburger, Brian J.; Blandford, Troy; Moore, Brandon
2011-01-01
The objective of this project is to develop products and tools to assist in the hydrologic modeling process, including tools to help prepare inputs for hydrologic models and improved methods for the visualization of streamflow forecasts. In addition, this project will facilitate the use of NASA satellite imagery (primarily snow cover imagery) by other federal and state agencies with operational streamflow forecasting responsibilities. A GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts is being developed. This toolkit will be packaged as multiple extensions for ArcGIS 9.x and an opensource GIS software package. The toolkit will provide users with a means for ingesting NASA EOS satellite imagery (snow cover analysis), preparing hydrologic model inputs, and visualizing streamflow forecasts. Primary products include a software tool for predicting the presence of snow under clouds in satellite images; a software tool for producing gridded temperature and precipitation forecasts; and a suite of tools for visualizing hydrologic model forecasting results. The toolkit will be an expert system designed for operational users that need to generate accurate streamflow forecasts in a timely manner. The Remote Sensing of Snow Cover Toolbar will ingest snow cover imagery from multiple sources, including the MODIS Operational Snowcover Data and convert them to gridded datasets that can be readily used. Statistical techniques will then be applied to the gridded snow cover data to predict the presence of snow under cloud cover. The toolbar has the ability to ingest both binary and fractional snow cover data. Binary mapping techniques use a set of thresholds to determine whether a pixel contains snow or no snow. Fractional mapping techniques provide information regarding the percentage of each pixel that is covered with snow. After the imagery has been ingested, physiographic data is attached to each cell in the snow cover image. This data can be obtained from a digital elevation model (DEM) for the area of interest.
NASA Astrophysics Data System (ADS)
Wu, C.; Liu, X.; Lin, Z.; Rahimi-Esfarjani, S. R.; Lu, Z.
2017-12-01
Deposition of light-absorbing aerosols (LAAs) including black carbon (BC) and dust onto snow surface has been suggested to reduce the snow albedo, and modulate the snowpack and consequent hydrologic cycle. In this study we use the variable-resolution Community Earth System Model (VR-CESM) to quantify the impacts of LAAs deposition onto snow in the Rocky Mountain region (RMR) during the period of 1981-2005. We first evaluate the model simulation of LAA concentrations both in the atmosphere and in snow, and then investigate the snowpack and runoff changes induced by LAAs-in-snow. The model simulates similar magnitudes of surface atmospheric dust concentrations as observations, but underestimates surface atmospheric BC concentrations by about a factor of two. Despite of this, the magnitude of BC-in-snow concentrations is overall comparable to observations. Regional mean surface radiative effect (SRE) due to LAAs-in-snow reaches up to 0.6-1.7 W m-2 in spring, and dust contributes to about 21-43% of total SRE. Maximum surface air temperature increase due to the LLA's SRE is around 0.9-1.1oC. Snow water equivalent and snow cover fraction reduce by around 2-50 mm and 0.05-0.2, respectively in the two regions around the mountains (Eastern Snake River Plain and Southwestern Wyoming) due to positive snow-albedo feedbacks. During the snow melting period, LAAs accelerate the hydrologic cycle with runoff increased by 7%-42% in April-May and reduced by 2-23% in June-July in the mountainous regions. Under the influence of LAAs-in-snow, Southern Rockies experience the most significant reduction of runoff by about 15% in the later stage of snow melt (i.e., June-July). Our results highlight the potentially important role of LAAs-in-snow in the historical and future changes of snowpack in the RMR.
Small scale variability of snow properties on Antarctic sea ice
NASA Astrophysics Data System (ADS)
Wever, Nander; Leonard, Katherine; Paul, Stephan; Jacobi, Hans-Werner; Proksch, Martin; Lehning, Michael
2016-04-01
Snow on sea ice plays an important role in air-ice-sea interactions, as snow accumulation may for example increase the albedo. Snow is also able to smooth the ice surface, thereby reducing the surface roughness, while at the same time it may generate new roughness elements by interactions with the wind. Snow density is a key property in many processes, for example by influencing the thermal conductivity of the snow layer, radiative transfer inside the snow as well as the effects of aerodynamic forcing on the snowpack. By comparing snow density and grain size from snow pits and snow micro penetrometer (SMP) measurements, highly resolved density and grain size profiles were acquired during two subsequent cruises of the RV Polarstern in the Weddell Sea, Antarctica, between June and October 2013. During the first cruise, SMP measurements were done along two approximately 40 m transects with a horizontal resolution of approximately 30 cm. During the second cruise, one transect was made with approximately 7.5 m resolution over a distance of 500 m. Average snow densities are about 300 kg/m3, but the analysis also reveals a high spatial variability in snow density on sea ice in both horizontal and vertical direction, ranging from roughly 180 to 360 kg/m3. This variability is expressed by coherent snow structures over several meters. On the first cruise, the measurements were accompanied by terrestrial laser scanning (TLS) on an area of 50x50 m2. The comparison with the TLS data indicates that the spatial variability is exhibiting similar spatial patterns as deviations in surface topology. This suggests a strong influence from surface processes, for example wind, on the temporal development of density or grain size profiles. The fundamental relationship between variations in snow properties, surface roughness and changes therein as investigated in this study is interpreted with respect to large-scale ice movement and the mass balance.
Changing snow seasonality in the highlands of Kyrgyzstan
NASA Astrophysics Data System (ADS)
Tomaszewska, Monika A.; Henebry, Geoffrey M.
2018-06-01
Few studies have examined changing snow seasonality in Central Asia. Here, we analyzed changes in the seasonality of snow cover across Kyrgyzstan (KGZ) over 14 years from 2002/03–2015/16 using the most recent version (v006) of MODIS Terra and Aqua 8 day snow cover composites (MOD10A2/MYD10A2). We focused on three metrics of snow seasonality—first date of snow, last date of snow, and duration of snow season—and used nonparametric trends tests to assess the significance and direction of trends. We evaluated trends at three administration scales and across elevation. We used two techniques to assure that our identification of significant trends was not resulting from random spatial variation. First, we report only significant trends (positive or negative) that are at least twice as prevalent as the converse trends. Second, we use a two-stage analysis at the national scale to identify asymmetric directional changes in snow seasonality. Results show that more territory has been experiencing earlier onset of snow than earlier snowmelt, and roughly equivalent areas have been experiencing longer and shorter duration of snow seasons in the past 14 years. The changes are not uniform across KGZ, with significant shifts toward earlier snow arrival in western and central KGZ and significant shifts toward earlier snowmelt in eastern KGZ. The duration of the snow season has significantly shortened in western and eastern KGZ and significantly lengthened in northern and southwestern KGZ. Duration is significantly longer where the snow onset was significantly earlier or the snowmelt significantly later. There is a general trend of significantly earlier snowmelt below 3400 m and the area of earlier snowmelt is 15 times greater in eastern than western districts. Significant trends in the Aqua product were less prevalent than in the Terra product, but the general trend toward earlier snowmelt was also evident in Aqua data.
How autumn Eurasian snow anomalies affect east asian winter monsoon: a numerical study
NASA Astrophysics Data System (ADS)
Luo, Xiao; Wang, Bin
2018-03-01
Previous studies have found that snow Eurasian anomalies in autumn can affect East Asian winter monsoon (EAWM), but the mechanisms remain controversial and not well understood. The possible mechanisms by which Eurasian autumn snow anomalies affect EAWM are investigated by numerical experiments with a coupled general circulation model and its atmospheric general circulation model component. The leading empirical orthogonal function mode of the October-November mean Eurasian snow cover is characterized by a uniform anomaly over a broad region of central Eurasia (40°N-65°N, 60°E-140°E). However, the results from a 150-ensemble mean simulation with snow depth anomaly specified in October and November reveal that the Mongolian Plateau and Vicinity (MPV, 40°-55°N, 80°-120°E) is the key region for autumn snow anomalies to affect EAWM. The excessive snow forcing can significantly enhance EAWM and the snowfall over the northwestern China and along the EAWM front zone stretching from the southeast China to Japan. The physical process involves a snow-monsoon feedback mechanism. The excessive autumn snow anomalies over the MPV region can persist into the following winter, and significantly enhance winter snow anomalies, which increase surface albedo, reduce incoming solar radiation and cool the boundary layer air, leading to an enhanced Mongolian High and a deepened East Asian trough. The latter, in turn, strengthen surface northwesterly winds, cooling East Asia and increasing snow accumulation over the MPV region and the southeastern China. The increased snow covers feedback to EAWM system through changing albedo, extending its influence southeastward. It is also found that the atmosphere-ocean coupling process can amplify the delayed influence of Eurasian snow mass anomaly on EAWM. The autumn surface albedo anomalies, however, do not have a lasting "memory" effect. Only if the albedo anomalies are artificially extended into December and January, will the EAWM be affected in a similar way as the impacts of autumn snow mass anomalies.
Distributed snow modeling suitable for use with operational data for the American River watershed.
NASA Astrophysics Data System (ADS)
Shamir, E.; Georgakakos, K. P.
2004-12-01
The mountainous terrain of the American River watershed (~4300 km2) at the Western slope of the Northern Sierra Nevada is subject to significant variability in the atmospheric forcing that controls the snow accumulation and ablations processes (i.e., precipitation, surface temperature, and radiation). For a hydrologic model that attempts to predict both short- and long-term streamflow discharges, a plausible description of the seasonal and intermittent winter snow pack accumulation and ablation is crucial. At present the NWS-CNRFC operational snow model is implemented in a semi distributed manner (modeling unit of about 100-1000 km2) and therefore lump distinct spatial variability of snow processes. In this study we attempt to account for the precipitation, temperature, and radiation spatial variability by constructing a distributed snow accumulation and melting model suitable for use with commonly available sparse data. An adaptation of the NWS-Snow17 energy and mass balance that is used operationally at the NWS River Forecast Centers is implemented at 1 km2 grid cells with distributed input and model parameters. The input to the model (i.e., precipitation and surface temperature) is interpolated from observed point data. The surface temperature was interpolated over the basin based on adiabatic lapse rates using topographic information whereas the precipitation was interpolated based on maps of climatic mean annual rainfall distribution acquired from PRISM. The model parameters that control the melting rate due to radiation were interpolated based on aspect. The study was conducted for the entire American basin for the snow seasons of 1999-2000. Validation of the Snow Water Equivalent (SWE) prediction is done by comparing to observation from 12 snow Sensors. The Snow Cover Area (SCA) prediction was evaluated by comparing to remotely sensed 500m daily snow cover derived from MODIS. The results that the distribution of snow over the area is well captured and the quantity compared to the snow gauges are well estimated in the high elevation.
NASA Astrophysics Data System (ADS)
Zhou, J.
2017-12-01
Snow and frozen soil are important components in the Tibetan Plateau, and influence the water cycle and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new cryosphere land surface model (LSM) with coupled snow and frozen soil parameterization was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.
Development of a land surface model with coupled snow and frozen soil physics
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhou, Jing; Qi, Jia; Sun, Litao; Yang, Kun; Tian, Lide; Lin, Yanluan; Liu, Wenbin; Shrestha, Maheswor; Xue, Yongkang; Koike, Toshio; Ma, Yaoming; Li, Xiuping; Chen, Yingying; Chen, Deliang; Piao, Shilong; Lu, Hui
2017-06-01
Snow and frozen soil are important factors that influence terrestrial water and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new land surface model (LSM) with coupled snow and frozen soil physics was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.
NASA Astrophysics Data System (ADS)
Loik, M. E.
2015-12-01
Snowfall is the dominant hydrologic input for many high-elevation ecosystems of the western United States. Many climate models envision changes in California's Sierra Nevada snow pack characteristics, which would severely impact the storage and release of water for one of the world's largest economies. Given the importance of snowfall for future carbon cycling in high elevation ecosystems, how will these changes affect seedling recruitment, plant mortality, and community composition? To address this question, experiments utilize snow fences to manipulate snow depth and melt timing at a desert-montane ecotone in eastern California, USA. Long-term April 1 snow pack depth averages 1344 mm (1928-2015) but is highly variable from year to year. Snow fences increased equilibrium drift snow depth by 100%. Long-term changes in snow depth and melt timing are associated with s shift from shurbs to graminoids where snow depth was increased for >50 years. Changes in snow have impacted growth for only three plant species. Moreover, annual growth ring increments of the conifers Pinus jeffreyi and Pi. contorta were not equally sensitive to snow depth. There were over 8000 seedlings of the shrubs Artemisia tridentata and Purshia tridentata found in 6300 m2 in summer 2009, following about 1400 mm of winter snow and spring rain. The frequency of seedlings of A. tridentata and P. tridentata were much lower on increased-depth plots compared to ambient-depth, and reduced-depth plots. Survival of the first year was lowest for A. tridentata. Survival of seedlings from the 2008 cohort was much higher for P. tridentata than A. tridentata during the 2011-2015 drought. Results indicate complex interactions between snow depth and plant community characteristics, and that responses of plants at this ecotone may not respond similarly to increases vs. decreases in snow depth. These changes portend altered carbon uptake in this region under future snowfall scenarios.
NASA Astrophysics Data System (ADS)
Hanzer, F.; Marke, T.; Steiger, R.; Strasser, U.
2012-04-01
Tourism and particularly winter tourism is a key factor for the Austrian economy. Judging from currently available climate simulations, the Austrian Alps show a particularly high vulnerability to climatic changes. To reduce the exposure of ski areas towards changes in natural snow conditions as well as to generally enhance snow conditions at skiing sites, technical snowmaking is widely utilized across Austrian ski areas. While such measures result in better snow conditions at the skiing sites and are important for the local skiing industry, its economic efficiency has also to be taken into account. The current work emerges from the project CC-Snow II, where improved future climate scenario simulations are used to determine future natural and artificial snow conditions and their effects on tourism and economy in the Austrian Alps. In a first step, a simple technical snowmaking approach is incorporated into the process based snow model AMUNDSEN, which operates at a spatial resolution of 10-50 m and a temporal resolution of 1-3 hours. Locations of skiing slopes within a ski area in Styria, Austria, were digitized and imported into the model environment. During a predefined time frame in the beginning of the ski season, the model produces a maximum possible amount of technical snow and distributes the associated snow on the slopes, whereas afterwards, until to the end of the ski season, the model tries to maintain a certain snow depth threshold value on the slopes. Due to only few required input parameters, this approach is easily transferable to other ski areas. In our poster contribution, we present first results of this snowmaking approach and give an overview of the data and methodology applied. In a further step in CC-Snow, this simple bulk approach will be extended to consider actual snow cannon locations and technical specifications, which will allow a more detailed description of technical snow production as well as cannon-based recordings of water and energy consumption.
A passive microwave snow depth algorithm with a proxy for snow metamorphism
Josberger, E.G.; Mognard, N.M.
2002-01-01
Passive microwave brightness temperatures of snowpacks depend not only on the snow depth, but also on the internal snowpack properties, particularly the grain size, which changes through the winter. Algorithms that assume a constant grain size can yield erroneous estimates of snow depth or water equivalent. For snowpacks that are subject to temperatures well below freezing, the bulk temperature gradient through the snowpack controls the metamorphosis of the snow grains. This study used National Weather Service (NWS) station measurements of snow depth and air temperature from the Northern US Great Plains to determine temporal and spatial variability of the snow depth and bulk snowpack temperature gradient. This region is well suited for this study because it consists primarily of open farmland or prairie, has little relief, is subject to very cold temperatures, and has more than 280 reporting stations. A geostatistical technique called Kriging was used to grid the randomly spaced snow depth measurements. The resulting snow depth maps were then compared with the passive microwave observations from the Special Sensor Microwave Imager (SSM/I). Two snow seasons were examined: 1988-89, a typical snow year, and 1996-97, a record year for snow that was responsible for extensive flooding in the Red River Basin. Inspection of the time series of snow depth and microwave spectral gradient (the difference between the 19 and 37 GHz bands) showed that while the snowpack was constant, the spectral gradient continued to increase. However, there was a strong correlation (0.6 < R2 < 0.9) between the spectral gradient and the cumulative bulk temperature gradient through the snowpack (TGI). Hence, TGI is an index of grain size metamorphism that has occurred within the snowpack. TGI time series from 21 representative sites across the region and the corresponding SSM/I observations were used to develop an algorithm for snow depth that requires daily air temperatures. Copyright ?? 2002 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kinnard, C.; Irarrazaval, I.; Campos, C.; Gascoin, S.; MacDonell, S.; Macdonell, S.; Herrero, J.
2016-12-01
Snow cover in the central-northern Andes of Chile is the main runoff source, providing water for the irrigation of cultures in the fertile valleys downstream. The prospect of adverse climate warming impacts on the hydrological cycle calls for a better understanding of the snow cover dynamics in response to climate, an aspect that has been little studied in the dry Andes. The heterogeneous and often thin snow cover, as well as the paucity of long-term hydrometeorological data makes snow modelling a challenging task in these regions. In this work we applied a physically-based, spatially-distributed snow model (Wimmed) to the La Laguna headwater catchment in the dry Andes (30°S, 70°W) during three hydrological years (2010-2013) when forcing data was available. Model testing at the point scale revealed a large sensitivity of simulated snow depths to the choice of snow roughness parameter (z0), which controls turbulent fluxes, while wind-induced snow erosion at the station in 2010 and 2011 complicated model validation. The inclusion of a mean wind speed map from a previous simulation with the WRF atmospheric model was found to improve the simulation results, while excluding the highest mountain ridge weather station had detrimental effects on the results. A snow roughness (z0) of 1 mm yielded the best comparison between the simulated and observed snow depth at the reference weather station, and between the simulated and MODIS-derived snow cover at the catchment scale. The simulation resulted in large sublimation losses (up to 4 mm day-1), corresponding to more than 80% of snow ablation in the catchment. While such high sublimation rates have been reported before in this region, remaining uncertainties in precipitation data and snow compaction processes call for more detailed studies and increased instrumentation in order to improve future modelling efforts.
Summer snowmelt patterns in the South Shetlands using TerraSAR-X imagery
NASA Astrophysics Data System (ADS)
Mora, C.; Jimenez, J. J.; Catalao Fernades, J.; Ferreira, A.; David, A.; Ramos, M.; Vieira, G.
2014-12-01
Snow plays an important role in controlling ground thermal regime and thus influencing permafrost distribution in the lower areas of the South Shetlands archipelago, where late lying snowpatches protect the soil from summer warming. However, summer snow distribution is complex in the mountainous environments of the Maritime Antarctica and it is very difficult to obtain accurate mapping products of snow cover extent and also to monitor snowmelt. Field observations of snow cover in the region are currently based on: i) thickness data from a very scarce network of meteorological stations, ii) temperature poles allowing to estimate snow thickness, iii) and time-lapse cameras allowing for assessing snow distribution over relatively small areas. The high cloudiness of the Maritime Antarctic environment limits good mapping results from the analysis of optical remote sensing imagery such as Landsat, QuickBird or GeoEye. Therefore, microwave sensors provide the best imagery, since they are not influenced by cloudiness and are sensitive to wet-snow, typical of the melting season. We have acquired TerraSAR-X scenes for Deception and Livingston Islands for January-March 2014 in spotlight (HH, VV and HH/VV) and stripmap modes (HH) and analyse the radar backscattering for determining the differences between wet-snow, dry-snow and bare soil aiming at developing snow melt pattern maps. For ground truthing, snowpits were dug in order to characterize snow stratigraphy, grain size, grain type and snow density and to evaluate its effects on radar backscattering. Time-lapse cameras allow to identify snow patch boundaries in the field and ground surface temperatures obtained with minloggers, together with air temperatures, allow to identify the presence of snow cover in the ground. The current research is conducted in the framework of the project PERMANTAR-3 (Permafrost monitoring and modelling in Antarctic Peninsula - PTDC/AAG-GLO/3908/2012 of the FCT and PROPOLAR).
NASA Technical Reports Server (NTRS)
Mocko, David M.; Sud, Y. C.; Einaudi, Franco (Technical Monitor)
2000-01-01
Present-day climate models produce large climate drifts that interfere with the climate signals simulated in modelling studies. The simplifying assumptions of the physical parameterization of snow and ice processes lead to large biases in the annual cycles of surface temperature, evapotranspiration, and the water budget, which in turn causes erroneous land-atmosphere interactions. Since land processes are vital for climate prediction, and snow and snowmelt processes have been shown to affect Indian monsoons and North American rainfall and hydrology, special attention is now being given to cold land processes and their influence on the simulated annual cycle in GCMs. The snow model of the SSiB land-surface model being used at Goddard has evolved from a unified single snow-soil layer interacting with a deep soil layer through a force-restore procedure to a two-layer snow model atop a ground layer separated by a snow-ground interface. When the snow cover is deep, force-restore occurs within the snow layers. However, several other simplifying assumptions such as homogeneous snow cover, an empirical depth related surface albedo, snowmelt and melt-freeze in the diurnal cycles, and neglect of latent heat of soil freezing and thawing still remain as nagging problems. Several important influences of these assumptions will be discussed with the goal of improving them to better simulate the snowmelt and meltwater hydrology. Nevertheless, the current snow model (Mocko and Sud, 2000, submitted) better simulates cold land processes as compared to the original SSiB. This was confirmed against observations of soil moisture, runoff, and snow cover in global GSWP (Sud and Mocko, 1999) and point-scale Valdai simulations over seasonal snow regions. New results from the current snow model SSiB from the 10-year PILPS 2e intercomparison in northern Scandinavia will be presented.
Terrestrial photography as a complementary measurement in weather stations for snow monitoring
NASA Astrophysics Data System (ADS)
Pimentel, Rafael; José Pérez-Palazón, María; Herrero, Javier; José Polo, María
2015-04-01
Snow monitoring constitutes a basic key to know snow behaviour and evolution, which have particular features in semiarid regions (i.e. highly strong spatiotemporal variability, and the occurrence of several accumulation-melting cycles throughout the year). On one hand, traditional snow observation, such as snow surveys and snow pillows have the inconvenience of a limited accessibility during snow season and the impossibility to cover a vast extension. On the other hand, satellite remote sensing techniques, largely employed in medium to large scale regional studies, has the disadvantage of a fixed spatial and temporal resolutions which in some cases are not able to reproduce snow processes at small scale. An economic alternative is the use of terrestrial photography which scales are adapted to the study problem. At the microscale resolution permits the continuous monitoring of snow, adapting the resolution of the observation to the scales of the processes. Besides its use as raw observation datasets to calibrate and validate models' results, terrestrial photography constitutes valuable information to complement weather stations observations. It allows the discriminating possible mistakes in meteorological observations (i.e. overestimation on rain measurements) and a better understanding of snow behaviour against certain weather agents (i.e. blowing snow). Thus, terrestrial photography is a feasible and convenient technique to be included in weather monitoring stations in mountainous areas in semiarid regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.
2010-01-12
Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain atmore » a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.« less
Snow snake performance monitoring.
DOT National Transportation Integrated Search
2008-12-01
A recent study, Three-Dimensional Roughness Elements for Snow Retention (FHWA-WY-06/04F) (Tabler 2006), demonstrated : positive evidence for the effectiveness of Snow Snakes, a new type of snow fence suitable for use within the highway right-of...
NASA Technical Reports Server (NTRS)
Rango, A.
1981-01-01
Both LANDSAT and NOAA satellite data were used in improving snowmelt runoff forecasts. When the satellite snow cover data were tested in both empirical seasonal runoff estimation and short term modeling approaches, a definite potential for reducing forecast error was evident. A cost benefit analysis run in conjunction with the snow mapping indicated a $36.5 million annual benefit accruing from a one percent improvement in forecast accuracy using the snow cover data for the western United States. The annual cost of employing the system would be $505,000. The snow mapping has proven that satellite snow cover data can be used to reduce snowmelt runoff forecast error in a cost effective manner once all operational satellite data are available within 72 hours after acquisition. Executive summaries of the individual snow mapping projects are presented.
Simulations of snow distribution and hydrology in a mountain basin
Hartman, Melannie D.; Baron, Jill S.; Lammers, Richard B.; Cline, Donald W.; Band, Larry E.; Liston, Glen E.; Tague, Christina L.
1999-01-01
We applied a version of the Regional Hydro-Ecologic Simulation System (RHESSys) that implements snow redistribution, elevation partitioning, and wind-driven sublimation to Loch Vale Watershed (LVWS), an alpine-subalpine Rocky Mountain catchment where snow accumulation and ablation dominate the hydrologic cycle. We compared simulated discharge to measured discharge and the simulated snow distribution to photogrammetrically rectified aerial (remotely sensed) images. Snow redistribution was governed by a topographic similarity index. We subdivided each hillslope into elevation bands that had homogeneous climate extrapolated from observed climate. We created a distributed wind speed field that was used in conjunction with daily measured wind speeds to estimate sublimation. Modeling snow redistribution was critical to estimating the timing and magnitude of discharge. Incorporating elevation partitioning improved estimated timing of discharge but did not improve patterns of snow cover since wind was the dominant controller of areal snow patterns. Simulating wind-driven sublimation was necessary to predict moisture losses.
Objective Characterization of Snow Microstructure for Microwave Emission Modeling
NASA Technical Reports Server (NTRS)
Durand, Michael; Kim, Edward J.; Molotch, Noah P.; Margulis, Steven A.; Courville, Zoe; Malzler, Christian
2012-01-01
Passive microwave (PM) measurements are sensitive to the presence and quantity of snow, a fact that has long been used to monitor snowcover from space. In order to estimate total snow water equivalent (SWE) within PM footprints (on the order of approx 100 sq km), it is prerequisite to understand snow microwave emission at the point scale and how microwave radiation integrates spatially; the former is the topic of this paper. Snow microstructure is one of the fundamental controls on the propagation of microwave radiation through snow. Our goal in this study is to evaluate the prospects for driving the Microwave Emission Model of Layered Snowpacks with objective measurements of snow specific surface area to reproduce measured brightness temperatures when forced with objective measurements of snow specific surface area (S). This eliminates the need to treat the grain size as a free-fit parameter.
[Measurement and estimation methods and research progress of snow evaporation in forests].
Li, Hui-Dong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Yuan, Feng-Hui; Wu, Jia-Bing
2013-12-01
Accurate measurement and estimation of snow evaporation (sublimation) in forests is one of the important issues to the understanding of snow surface energy and water balance, and it is also an essential part of regional hydrological and climate models. This paper summarized the measurement and estimation methods of snow evaporation in forests, and made a comprehensive applicability evaluation, including mass-balance methods (snow water equivalent method, comparative measurements of snowfall and through-snowfall, snow evaporation pan, lysimeter, weighing of cut tree, weighing interception on crown, and gamma-ray attenuation technique) and micrometeorological methods (Bowen-ratio energy-balance method, Penman combination equation, aerodynamics method, surface temperature technique and eddy covariance method). Also this paper reviewed the progress of snow evaporation in different forests and its influencal factors. At last, combining the deficiency of past research, an outlook for snow evaporation rearch in forests was presented, hoping to provide a reference for related research in the future.
High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry
NASA Astrophysics Data System (ADS)
Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.
2017-12-01
Dynamic in time and space, New Zealand's seasonal snow is largely confined to remote alpine areas, complicating ongoing in situ measurement and characterisation. Improved understanding and modeling of the seasonal snowpack requires fine scale resolution of snow distribution and spatial variability. The potential of remotely piloted aircraft system (RPAS) photogrammetry to resolve spatial and temporal variability of snow depth and water equivalent in a New Zealand alpine catchment is assessed in the Pisa Range, Central Otago. This approach yielded orthophotomosaics and digital surface models (DSM) at 0.05 and 0.15 m spatial resolution, respectively. An autumn reference DSM allowed mapping of winter (02/08/2016) and spring (10/09/2016) snow depth at 0.15 m spatial resolution, via DSM differencing. The consistency and accuracy of the RPAS-derived surface was assessed by comparison of snow-free regions of the spring and autumn DSMs, while accuracy of RPAS retrieved snow depth was assessed with 86 in situ snow probe measurements. Results show a mean vertical residual of 0.024 m between DSMs acquired in autumn and spring. This residual approximated a Laplace distribution, reflecting the influence of large outliers on the small overall bias. Propagation of errors associated with successive DSMs saw snow depth mapped with an accuracy of ± 0.09 m (95% c.l.). Comparing RPAS and in situ snow depth measurements revealed the influence of geo-location uncertainty and interactions between vegetation and the snowpack on snow depth uncertainty and bias. Semi-variogram analysis revealed that the RPAS outperformed systematic in situ measurements in resolving fine scale spatial variability. Despite limitations accompanying RPAS photogrammetry, this study demonstrates a repeatable means of accurately mapping snow depth for an entire, yet relatively small, hydrological basin ( 0.5 km2), at high resolution. Resolving snowpack features associated with re-distribution and preferential accumulation and ablation, snow depth maps provide geostatistically robust insights into seasonal snow processes, with unprecedented detail. Such data may enhance understanding of physical processes controlling spatial and temporal distribution of seasonal snow, and their relative importance at varying spatial and temporal scales.
Influence of tundra snow layer thickness on measured and modelled radar backscatter
NASA Astrophysics Data System (ADS)
Rutter, N.; Sandells, M. J.; Derksen, C.; King, J. M.; Toose, P.; Wake, L. M.; Watts, T.
2017-12-01
Microwave radar backscatter within a tundra snowpack is strongly influenced by spatial variability of the thickness of internal layering. Arctic tundra snowpacks often comprise layers consisting of two dominant snow microstructures; a basal depth hoar layer overlain by a layer of wind slab. Occasionally there is also a surface layer of decomposing fresh snow. The two main layers have strongly different microwave scattering properties. Depth hoar has a greater capacity for scattering electromagnetic energy than wind slab, however, wind slab usually has a larger snow water equivalent (SWE) than depth hoar per unit volume due to having a higher density. So, determining the relative proportions of depth hoar and wind slab from a snowpack of a known depth may help our future capacity to invert forward models of electromagnetic backscatter within a data assimilation scheme to improve modelled estimates of SWE. Extensive snow measurements were made within Trail Valley Creek, NWT, Canada in April 2013. Snow microstructure was measured at 18 pit and 9 trench locations throughout the catchment (trench extent ranged between 5 to 50 m). Ground microstructure measurements included traditional stratigraphy, near infrared stratigraphy, Specific Surface Area (SSA), and density. Coincident airborne Lidar measurements were made to estimate distributed snow depth across the catchment, in addition to airborne radar snow backscatter using a dual polarized (VV/VH) X- and Ku-band Synthetic Aperture Radar (SnowSAR). Ground measurements showed the mean proportion of depth hoar was just under 30% of total snow depth and was largely unresponsive to increasing snow depth. The mean proportion of wind slab is consistently greater than 50% and showed an increasing trend with increasing total snow depth. A decreasing trend in the mean proportion of surface snow (approximately 25% to 10%) with increasing total depth accounted for this increase in wind slab. This new knowledge of variability in stratigraphic thickness, relative to respective proportions of total snow depth, was used to investigate the representativeness of point measurements of density and microstructure for forward simulations of the SMRT microwave scattering model, using Lidar derived snow depths.
Light-absorption of dust and elemental carbon in snow in the Indian Himalayas and the Finnish Arctic
NASA Astrophysics Data System (ADS)
Svensson, Jonas; Ström, Johan; Kivekäs, Niku; Dkhar, Nathaniel B.; Tayal, Shresth; Sharma, Ved P.; Jutila, Arttu; Backman, John; Virkkula, Aki; Ruppel, Meri; Hyvärinen, Antti; Kontu, Anna; Hannula, Henna-Reetta; Leppäranta, Matti; Hooda, Rakesh K.; Korhola, Atte; Asmi, Eija; Lihavainen, Heikki
2018-03-01
Light-absorbing impurities (LAIs) deposited in snow have the potential to substantially affect the snow radiation budget, with subsequent implications for snow melt. To more accurately quantify the snow albedo, the contribution from different LAIs needs to be assessed. Here we estimate the main LAI components, elemental carbon (EC) (as a proxy for black carbon) and mineral dust in snow from the Indian Himalayas and paired the results with snow samples from Arctic Finland. The impurities are collected onto quartz filters and are analyzed thermal-optically for EC, as well as with an additional optical measurement to estimate the light-absorption of dust separately on the filters. Laboratory tests were conducted using substrates containing soot and mineral particles, especially prepared to test the experimental setup. Analyzed ambient snow samples show EC concentrations that are in the same range as presented by previous research, for each respective region. In terms of the mass absorption cross section (MAC) our ambient EC surprisingly had about half of the MAC value compared to our laboratory standard EC (chimney soot), suggesting a less light absorptive EC in the snow, which has consequences for the snow albedo reduction caused by EC. In the Himalayan samples, larger contributions by dust (in the range of 50 % or greater for the light absorption caused by the LAI) highlighted the importance of dust acting as a light absorber in the snow. Moreover, EC concentrations in the Indian samples, acquired from a 120 cm deep snow pit (possibly covering the last five years of snow fall), suggest an increase in both EC and dust deposition. This work emphasizes the complexity in determining the snow albedo, showing that LAI concentrations alone might not be sufficient, but additional transient effects on the light-absorbing properties of the EC need to be considered and studied in the snow. Equally as imperative is the confirmation of the spatial and temporal representativeness of these data by comparing data from several and deeper pits explored at the same time.
Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments
NASA Astrophysics Data System (ADS)
Griessinger, Nena; Seibert, Jan; Magnusson, Jan; Jonas, Tobias
2016-09-01
In Alpine catchments, snowmelt is often a major contribution to runoff. Therefore, modeling snow processes is important when concerned with flood or drought forecasting, reservoir operation and inland waterway management. In this study, we address the question of how sensitive hydrological models are to the representation of snow cover dynamics and whether the performance of a hydrological model can be enhanced by integrating data from a dedicated external snow monitoring system. As a framework for our tests we have used the hydrological model HBV (Hydrologiska Byråns Vattenbalansavdelning) in the version HBV-light, which has been applied in many hydrological studies and is also in use for operational purposes. While HBV originally follows a temperature-index approach with time-invariant calibrated degree-day factors to represent snowmelt, in this study the HBV model was modified to use snowmelt time series from an external and spatially distributed snow model as model input. The external snow model integrates three-dimensional sequential assimilation of snow monitoring data with a snowmelt model, which is also based on the temperature-index approach but uses a time-variant degree-day factor. The following three variations of this external snow model were applied: (a) the full model with assimilation of observational snow data from a dense monitoring network, (b) the same snow model but with data assimilation switched off and (c) a downgraded version of the same snow model representing snowmelt with a time-invariant degree-day factor. Model runs were conducted for 20 catchments at different elevations within Switzerland for 15 years. Our results show that at low and mid-elevations the performance of the runoff simulations did not vary considerably with the snow model version chosen. At higher elevations, however, best performance in terms of simulated runoff was obtained when using the snowmelt time series from the snow model, which utilized data assimilation. This was especially true for snow-rich years. These findings suggest that with increasing elevation and the correspondingly increased contribution of snowmelt to runoff, the accurate estimation of snow water equivalent (SWE) and snowmelt rates has gained importance.
A snow cover climatology for the Pyrenees from MODIS snow products
NASA Astrophysics Data System (ADS)
Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sánchez, R.
2014-11-01
The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (we) and 105 mm respectively, for both MOD10A1 and MYD10A1. Kappa coefficients are within 0.74 and 0.92 depending on the product and the variable. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both datasets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decreases over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gapfilling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band. We finally analyze the snow patterns for the atypical winter 2011-2012. Snow cover duration anomalies reveal a deficient snowpack on the Spanish side of the Pyrenees, which seems to have caused a drop in the national hydropower production.
NASA Astrophysics Data System (ADS)
Ishimoto, Hiroshi; Adachi, Satoru; Yamaguchi, Satoru; Tanikawa, Tomonori; Aoki, Teruo; Masuda, Kazuhiko
2018-04-01
Sizes and shapes of snow particles were determined from X-ray computed microtomography (micro-CT) images, and their single-scattering properties were calculated at visible and near-infrared wavelengths using a Geometrical Optics Method (GOM). We analyzed seven snow samples including fresh and aged artificial snow and natural snow obtained from field samples. Individual snow particles were numerically extracted, and the shape of each snow particle was defined by applying a rendering method. The size distribution and specific surface area distribution were estimated from the geometrical properties of the snow particles, and an effective particle radius was derived for each snow sample. The GOM calculations at wavelengths of 0.532 and 1.242 μm revealed that the realistic snow particles had similar scattering phase functions as those of previously modeled irregular shaped particles. Furthermore, distinct dendritic particles had a characteristic scattering phase function and asymmetry factor. The single-scattering properties of particles of effective radius reff were compared with the size-averaged single-scattering properties. We found that the particles of reff could be used as representative particles for calculating the average single-scattering properties of the snow. Furthermore, the single-scattering properties of the micro-CT particles were compared to those of particle shape models using our current snow retrieval algorithm. For the single-scattering phase function, the results of the micro-CT particles were consistent with those of a conceptual two-shape model. However, the particle size dependence differed for the single-scattering albedo and asymmetry factor.
NASA Astrophysics Data System (ADS)
Kwok, R.; Maksym, T.
2014-07-01
We examine the snow radar data from the Weddell and Bellingshausen Seas acquired by eight IceBridge (OIB) flightlines in October of 2010 and 2011. In snow depth retrieval, the sidelobes from the stronger scattering snow-ice (s-i) interfaces could be misidentified as returns from the weaker air-snow (a-s) interfaces. In this paper, we first introduce a retrieval procedure that accounts for the structure of the radar system impulse response followed by a survey of the snow depths in the Weddell and Bellingshausen Seas. Limitations and potential biases in our approach are discussed. Differences between snow depth estimates from a repeat survey of one Weddell Sea track separated by 12 days, without accounting for variability due to ice motion, is -0.7 ± 13.6 cm. Average snow depth is thicker in coastal northwestern Weddell and thins toward Cape Norvegia, a decrease of >30 cm. In the Bellingshausen, the thickest snow is found nearshore in both Octobers and is thickest next to the Abbot Ice Shelf. Snow depth is linearly related to freeboard when freeboards are low but diverge as the freeboard increases especially in the thicker/rougher ice of the western Weddell. We find correlations of 0.71-0.84 between snow depth and surface roughness suggesting preferential accumulation over deformed ice. Retrievals also seem to be related to radar backscatter through surface roughness. Snow depths reported here, generally higher than those from in situ records, suggest dissimilarities in sample populations. Implications of these differences on Antarctic sea ice thickness are discussed.
NASA Astrophysics Data System (ADS)
Tang, Zhiguang; Wang, Jian; Li, Hongyi; Yan, Lili
2013-01-01
Snow cover changes over the Tibetan plateau (TP) are examined using moderate resolution imaging spectroradiometer (MODIS) daily fractional snow cover (FSC) data from 2001 to 2011 as well as in situ temperature data. First, the accuracy of the MODIS FSC data under clear sky conditions is evaluated by comparing with Landsat 30-m observations. Then we describe a cloud-gap-filled (CGF) method using cubic spline interpolation algorithm to fill in data gaps caused by clouds. Finally, the spatial and temporal changes of snow cover are analyzed on the basis of the MODIS-derived snow-covered area and snow-covered days (SCD) data. Results show that the mean absolute error of MODIS FSC data under clear sky condition is about 0.098 over the TP. The CGF method is efficient in cloud reduction (overall mean absolute error of the retrieved FSC data is 0.092). There is a very high inter-annual and intra-seasonal variability of snow cover in the 11 years. The higher snow cover corresponds well with the huge mountains. The accumulation and melt periods of snow cover vary in different elevation zones. About 34.14% (5.56% with a significant decline) and 24.75% (3.9% with a significant increase) of the study area presents declining and increasing trend in SCD, respectively. The inter-annual fluctuation of snow cover can be explained by the high negative correlations observed between the snow cover and the in situ temperature, especially in some elevations of February, April, May, August, and September.
NASA Astrophysics Data System (ADS)
McGowan, L. E.; Paw U, K. T.; Dahlke, H. E.
2017-12-01
In the Western U.S., future water resources depend on the forested mountain snowpack. The variations in and estimates of forest mountain snow volume are vital to projecting annual water availability; yet, snow forest processes are not fully known. Most snow models calculate snow-canopy unloading based on time, temperature, Leaf Area Index (LAI), and/or wind speed. While models crudely consider the canopy shape via LAI, current models typically do not consider the vertical canopy structure or varied energetics within multiple canopy layers. Vertical canopy structure influences the spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability. Within the canopy both the snowpack and energetic exposures to the snowpack (wind, shortwave and longwave radiation, turbulent heat fluxes etc.) vary widely in the vertical. The water and energy balance in each layer is dependent on all other layers. For example, increased snow canopy content in the top of the canopy will reduce available shortwave radiation at the bottom and snow unloading in a mid-layer can cascade and remove snow from all the lower layers. We examined vertical interactions and structures of the forest canopy on the impact of unloading utilizing the Advanced Canopy-Atmosphere-Soil-Algorithm (ACASA), a multilayer soil-vegetation-atmosphere numerical model based on higher-order closure of turbulence equations. Our results demonstrate how a multilayer model can be used to elucidate the physical processes of snow unloading, and could help researchers better parameterize unloading in snow-hydrology models.
MODSNOW-Tool: an operational tool for daily snow cover monitoring using MODIS data
NASA Astrophysics Data System (ADS)
Gafurov, Abror; Lüdtke, Stefan; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Schöne, Tilo; Schmidt, Sebastian; Kalashnikova, Olga; Merz, Bruno
2017-04-01
Spatially distributed snow cover information in mountain areas is extremely important for water storage estimations, seasonal water availability forecasting, or the assessment of snow-related hazards (e.g. enhanced snow-melt following intensive rains, or avalanche events). Moreover, spatially distributed snow cover information can be used to calibrate and/or validate hydrological models. We present the MODSNOW-Tool - an operational monitoring tool offers a user-friendly application which can be used for catchment-based operational snow cover monitoring. The application automatically downloads and processes freely available daily Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data. The MODSNOW-Tool uses a step-wise approach for cloud removal and delivers cloud-free snow cover maps for the selected river basins including basin specific snow cover extent statistics. The accuracy of cloud-eliminated MODSNOW snow cover maps was validated for 84 almost cloud-free days in the Karadarya river basin in Central Asia, and an average accuracy of 94 % was achieved. The MODSNOW-Tool can be used in operational and non-operational mode. In the operational mode, the tool is set up as a scheduled task on a local computer allowing automatic execution without user interaction and delivers snow cover maps on a daily basis. In the non-operational mode, the tool can be used to process historical time series of snow cover maps. The MODSNOW-Tool is currently implemented and in use at the national hydrometeorological services of four Central Asian states - Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan and used for seasonal water availability forecast.
Changes in snow cover over Northern Eurasia in the last few decades
NASA Astrophysics Data System (ADS)
Bulygina, O. N.; Razuvaev, V. N.; Korshunova, N. N.
2009-10-01
Daily snow depth (SD) and snow cover extent around 820 stations are used to analyse variations in snow cover characteristics in Northern Eurasia, a region that encompasses the Russian Federation. These analyses employ nearly five times more stations than in the previous studies and temporally span forty years. A representative judgement on the changes of snow depth over most of Russia is presented here for the first time. The number of days with greater than 50% of the near-station territory covered with snow, and the number of days with the snow depth greater than 1.0 cm, are used to characterize the duration of snow cover (SCD) season. Linear trends of the number of days and snow depth are calculated for each station from 1966 to 2007. This investigation reveals regional features in the change of snow cover characteristics. A decrease in the duration of snow cover is demonstrated in the northern regions of European Russia and in the mountainous regions of southern Siberia. An increase in SCD is found in Yakutia and in the Far East. In the western half of the Russian Federation, the winter-averaged SD is shown to increase, with the maximum trends being observed in Northern West Siberia. In contrast, in the mountainous regions of southern Siberia, the maximum SD decreases as the SCD decreases. While both snow cover characteristics (SCD and SD) play an important role in the hydrological cycle, ecosystems dynamics and societal wellbeing are quite different roles and the differences in their systematic changes (up to differences in the signs of changes) deserve further attention.
NASA Astrophysics Data System (ADS)
Richard, G. A.; Hammond, J. C.; Kampf, S. K.; Moore, C. D.; Eurich, A.
2017-12-01
Snowpack trend analyses and modeling studies suggest that lower elevation snowpacks in mountain regions are most sensitive to drought and warming temperatures, however, in Colorado, most snow monitoring occurs in the high elevations where snow lasts throughout the winter and most streamflow monitoring occurs at lower elevations. The lack of combined snow and streamflow monitoring in watersheds along the transition from intermittent to persistent snow creates a gap in our understanding of snowmelt and runoff within the intermittent-persistent snow transition. Expanded hydrologic monitoring that spans the gradient of snow conditions in Colorado can help improve streamflow prediction and inform land and water managers. This study established hydrologic monitoring watersheds in intermittent, transitional, and persistent snow zones on the east slope and west slope of the Rocky Mountains in Colorado, and uses this monitoring network to improve understanding of how snow accumulation and melt affect soil moisture and streamflow generation under different snow conditions. We monitored six small watersheds (three west slope, three east slope) (0.8 to 3.9 km2) that drain intermittent, transitional, and persistent snow zones. At each site, we measured: streamflow, snow depth, soil moisture, precipitation, air temperature, and snow water equivalent (SWE). In our first season of monitoring, the west slope persistent and transitional sites had more mid-winter melt and infiltration, shorter snowpack duration, and lower peak SWE than the east slope sites. Snow cover remained at the east slope persistent site into June, whereas much of the snow at the persistent site on the west slope had already melted by early June. The difference in soil water input likely has consequences for streamflow response that we will continue to examine in future years. At the west slope intermittent site, the stream did not flow during the entire first year of monitoring, while at the east slope intermittent site, the streams flowed intermittently during winter and spring, likely a result of different subsurface geology. With our ongoing watershed monitoring across a broad range of snow conditions in Colorado, we continue to learn about the factors that increase or decrease streamflow in the headwater streams that supply the state's major rivers.
Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine
2015-01-01
Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of which is almost comparable to that due to CO2 (2.83 W m-2) increases since 1750. Our results thus highlight the necessity of realistic representation of snow albedo in the model and demonstrate the use of satellite-based snow albedo to improve model behaviors, which opens new avenues for constraining snow albedo feedback in earth system models.
NASA Astrophysics Data System (ADS)
Taniguchi, Y.; Nakatsugawa, M.; Kudo, K.
2017-12-01
It is predicted that the effects of global warming on everyday life will be clearly seen in cold, snowy regions such as Hokkaido. In relation to climate change, there is the concern that the warmer climate will affect not only water resources, but also local economies, in snowy areas, when air temperature increases and snowfall decreases become more marked in the future. Communities whose economies are greatly dependent on snow as a tourism resource, such as for winter sports and snow events, will lose large numbers of visitors because of the shortened winter season. This study was done as a basic study to provide basic ideas for planning adaptation strategies against climate change based on the local characteristics of a cold, snowy region. By taking dam catchment basins in Hokkaido as the subject areas and by using the climate change prediction data that correspond to IPCCAR5, the local-level influence of future climate change on snowfall and snow quality in relation to water resources and winter sports was quantitatively assessed. The water budget was examined for a dam catchment basin in Hokkaido under the present climate (September 1984 to August 2004) and under the future climate (September 2080 to August 2100) by using rainfall, snowfall and evapotranspiration estimated by the LoHAS heat and water balance analysis model.The examination found that, under the future climate, the net annual precipitation will decrease by up to 200 mm because of decreases in precipitation and in runoff height that will result from increased evapotranspiration. The predicted decrease in annual hydro potential of snowfall was considered to greatly affect the dam reservoir operation during the snowmelt season. The snow quality analysis by SNOWPACK revealed that the future snow would become granular earlier than it does at present. Most skiers' snow preferences, from best to worst, are light dry snow (i.e., fresh snow), lightly compacted snow, compacted snow and, finally, granular snow. If the late-season snow on the slope becomes granular earlier than it has in previous years, then the ski resort's snow conditions will deteriorate. Businesses that receive economic benefits from snow have developed in cold, snowy areas. This study demonstrates that the economic benefits of snow are expected to be greatly reduced by future climate change.
Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine
2015-01-01
Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of which is almost comparable to that due to CO2 (2.83 W m-2) increases since 1750. Our results thus highlight the necessity of realistic representation of snow albedo in the model and demonstrate the use of satellite-based snow albedo to improve model behaviors, which opens new avenues for constraining snow albedo feedback in earth system models. PMID:26366564
A research on snow distribution in mountainous area using airborne laser scanning
NASA Astrophysics Data System (ADS)
Nishihara, T.; Tanise, A.
2015-12-01
In snowy cold regions, the snowmelt water stored in dams in early spring meets the water demand for the summer season. Thus, snowmelt water serves as an important water resource. However, snowmelt water also can cause snowmelt floods. Therefore, it's necessary to estimate snow water equivalent in a dam basin as accurately as possible. For this reason, the dam operation offices in Hokkaido, Japan conduct snow surveys every March to estimate snow water equivalent in the dam basin. In estimating, we generally apply a relationship between elevation and snow water equivalent. But above the forest line, snow surveys are generally conducted along ridges due to the risk of avalanches or other hazards. As a result, snow water equivalent above the forest line is significantly underestimated. In this study, we conducted airborne laser scanning to measure snow depth in the high elevation area including above the forest line twice in the same target area (in 2012 and 2015) and analyzed the relationships of snow depth above the forest line and some indicators of terrain. Our target area was the Chubetsu dam basin. It's located in central Hokkaido, a high elevation area in a mountainous region. Hokkaido is a northernmost island of Japan. Therefore it's a cold and snowy region. The target range for airborne laser scanning was 10km2. About 60% of the target range was above the forest line. First, we analyzed the relationship between elevation and snow depth. Below the forest line, the snow depth increased linearly with elevation increase. On the other hand, above the forest line, the snow depth varied greatly. Second, we analyzed the relationship between overground-openness and snow depth above the forest line. Overground-openness is an indicator quantifying how far a target point is above or below the surrounding surface. As a result, a simple relationship was clarified. Snow depth decreased linearly as overground-openness increases. This means that areas with heavy snow cover are distributed in valleys and that of light cover are on ridges. Lastly we compared the result of 2012 and that of 2015. The same characteristic of snow depth, above mentioned, was found. However, regression coefficients of linear equations were different according to the weather conditions of each year.
NASA Technical Reports Server (NTRS)
Riggs, George A.; Hall, Dorothy K.; Roman, Miguel O.
2017-01-01
Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6) and VIIRS Collection 1 (C1) represent the state-of-the-art global snow cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map.The increased data content allows flexibility in using the datasets for specific regions and end-user applications.Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375m native resolution compared to MODIS 500 m), the snow detection algorithms and data products are designed to be as similar as possible so that the 16C year MODIS ESDR of global SCE can be extended into the future with the S-NPP VIIRS snow products and with products from future Joint Polar Satellite System (JPSS) platforms.These NASA datasets are archived and accessible through the NASA Distributed Active Archive Center at the National Snow and Ice Data Center in Boulder, Colorado.
Soil erosion by snow gliding - a first quantification attempt in a sub-alpine area, Switzerland
NASA Astrophysics Data System (ADS)
Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.
2014-03-01
Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide deposits, the fallout radionuclide 137Cs, and modelling with the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the soil erosion rate of RUSLE and the 137Cs method is related to snow gliding and sediment concentrations in the snow glide deposits. Cumulative snow glide distance was measured for the sites in the winter 2009/10 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance ranged from 2 to 189 cm, with lower values at the north facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed: the difference of RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2= 0.64; p < 0.005) and snow sediment yields (R2 = 0.39; p = 0.13). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.
NASA Astrophysics Data System (ADS)
Sohrabi, M.; Safeeq, M.; Conklin, M. H.
2017-12-01
Snowpack is a critical freshwater reservoir that sustains ecosystem, natural habitat, hydropower, agriculture, and urban water supply in many areas around the world. Accurate estimation of basin scale snow water equivalent (SWE), through both measurement and modeling, has been significantly recognized to improve regional water resource management. Recent advances in remote data acquisition techniques have improved snow measurements but our ability to model snowpack evolution is largely hampered by poor knowledge of inherently variable high-elevation precipitation patterns. For a variety of reasons, majority of the precipitation gages are located in low and mid-elevation range and function as drivers for basin scale hydrologic modeling. Here, we blend observed gage precipitation from low and mid-elevation with point observations of SWE from high-elevation snow pillow into a physically based snow evolution model (SnowModel) to better represent the basin-scale precipitation field and improve snow simulations. To do this, we constructed two scenarios that differed in only precipitation. In WTH scenario, we forced the SnowModel using spatially distributed gage precipitation data. In WTH+SP scenario, the model was forced with spatially distributed precipitation data derived from gage precipitation along with observed precipitation from snow pillows. Since snow pillows do not directly measure precipitation, we uses positive change in SWE as a proxy for precipitation. The SnowModel was implemented at daily time step and 100 m resolution for the Kings River Basin, USA over 2000-2014. Our results show an improvement in snow simulation under WTH+SP as compared to WTH scenario, which can be attributed to better representation in high-elevation precipitation patterns under WTH+SP. The average Nash Sutcliffe efficiency over all snow pillow and course sites was substantially higher for WTH+SP (0.77) than for WTH scenario (0.47). The maximum difference in observed and simulated peak SWE was 810 mm for WTH and 380 mm for WTH+SP, which led to underestimation of snow season length and melt rate by up to 30 days and 12 mm/day, respectively, in WTH scenario. These results indicate that point scale snow observations at higher elevation can be used to improve precipitation input to hydrologic modeling in mountainous basins.
NASA Technical Reports Server (NTRS)
Palm, Steve; Kayetha, Vinay; Yang, Yuekui; Pauly, Rebecca M.
2017-01-01
Blowing snow over Antarctica is a widespread and frequent event. Satellite remote sensing using lidar has shown that blowing snow occurs over 70% of the time over large areas of Antarctica in winter. The transport and sublimation of blowing snow are important terms in the ice sheet mass balance equation and the latter is also an important part of the hydrological cycle. Until now the only way to estimate the magnitude of these processes was through model parameterization. We present a technique that uses direct satellite observations of blowing snow and model (MERRA-2) temperature and humidity fields to compute both transport and sublimation of blowing snow over Antarctica for the period 2006 to 2016. The results show a larger annual continent-wide integrated sublimation than current published estimates and a significant transport of snow from continent to ocean. The talk will also include the lidar backscatter structure of blowing snow layers that often reach heights of 200 to 300 m as well as the first dropsonde measurements of temperature, moisture and wind through blowing snow layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Leilei; Robertson, G. Philip
Throughout most of the northern hemisphere, snow cover decreased in almost every winter month from 1967 to 2012. Because snow is an effective insulator, snow cover loss has likely enhanced soil freezing and the frequency of soil freeze–thaw cycles, which can disrupt soil nitrogen dynamics including the production of nitrous oxide (N 2O). Here, we used replicated automated gas flux chambers deployed in an annual cropping system in the upper Midwest US for three winters (December–March, 2011–2013) to examine the effects of snow removal and additions on N 2O fluxes. Diminished snow cover resulted in increased N2O emissions each year;more » over the entire experiment, cumulative emissions in plots with snow removed were 69% higher than in ambient snow control plots and 95% higher than in plots that received additional snow (P < 0.001). Higher emissions coincided with a greater number of freeze–thaw cycles that broke up soil macroaggregates (250–8000 µm) and significantly increased soil inorganic nitrogen pools. We conclude that winters with less snow cover can be expected to accelerate N 2O fluxes from agricultural soils subject to wintertime freezing.« less
Energy expenditure and clearing snow: a comparison of shovel and snow pusher.
Smolander, J; Louhevaara, V; Ahonen, E; Polari, J; Klen, T
1995-04-01
In order to assess the energy demands of manual clearing of snow, nine men did snow clearing work for 15 min with a shovel and a snow pusher. The depth of the snowcover was 400-600 mm representing a very heavy snowfall. Heart rate (HR), oxygen consumption (VO2), pulmonary ventilation (VE), respiratory exchange ratio (R), and rating of perceived exertion (RPE) were determined during the work tasks. HR, VE, R, and RPE were not significantly different between the shovel and snow pusher. HR averaged (+/- SD) 141 +/- 20 b min-1 with the shovel, and 142 +/- 19 beats.min-1 with the snow pusher. VO2 was 2.1 +/- 0.41.min-1 (63 +/- 12%VO2 max) in shovelling and 2.6 +/- 0.51.min-1 (75 +/- 14%VO2max) in snow pushing (p < 0.001). In conclusion manual clearing of snow in conditions representing heavy snowfalls was found to be strenuous physical work, not suitable for persons with cardiac risk factors, but which may serve as a mode of physical training in healthy adults.
Metagenomic and satellite analyses of red snow in the Russian Arctic.
Hisakawa, Nao; Quistad, Steven D; Hester, Eric R; Martynova, Daria; Maughan, Heather; Sala, Enric; Gavrilo, Maria V; Rohwer, Forest
2015-01-01
Cryophilic algae thrive in liquid water within snow and ice in alpine and polar regions worldwide. Blooms of these algae lower albedo (reflection of sunlight), thereby altering melting patterns (Kohshima, Seko & Yoshimura, 1993; Lutz et al., 2014; Thomas & Duval, 1995). Here metagenomic DNA analysis and satellite imaging were used to investigate red snow in Franz Josef Land in the Russian Arctic. Franz Josef Land red snow metagenomes confirmed that the communities are composed of the autotroph Chlamydomonas nivalis that is supporting a complex viral and heterotrophic bacterial community. Comparisons with white snow communities from other sites suggest that white snow and ice are initially colonized by fungal-dominated communities and then succeeded by the more complex C. nivalis-heterotroph red snow. Satellite image analysis showed that red snow covers up to 80% of the surface of snow and ice fields in Franz Josef Land and globally. Together these results show that C. nivalis supports a local food web that is on the rise as temperatures warm, with potential widespread impacts on alpine and polar environments worldwide.
Snow cover retrieval over Rhone and Po river basins from MODIS optical satellite data (2000-2009).
NASA Astrophysics Data System (ADS)
Dedieu, Jean-Pierre, ,, Dr.; Boos, Alain; Kiage, Wiliam; Pellegrini, Matteo
2010-05-01
Estimation of the Snow Covered Area (SCA) is an important issue for meteorological application and hydrological modeling of runoff. With spectral bands in the visible, near and middle infrared, the MODIS optical satellite sensor can be used to detect snow cover because of large differences between reflectance from snow covered and snow free surfaces. At the same time, it allows separation between snow and clouds. Moreover, the sensor provides a daily coverage of large areas (2,500 km range). However, as the pixel size is 500m x 500m, a MODIS pixel may be partially covered by snow, particularly in Alpine areas, where snow may not be present in valleys lying at lower altitudes. Also, variation of reflectance due to differential sunlit effects as a function of slope and aspect, as well as bidirectional effects may be present in images. Nevertheless, it is possible to estimate snow cover at the Sub-Pixel level with a relatively good accuracy and with very good results if the sub-pixel estimations are integrated for a few pixels relative to an entire watershed. Integrated into the EU-FP7 ACQWA Project (www.acqwa.ch), this approach was first applied over Alpine area of Rhone river basin upper Geneva Lake: Canton du Valais, Switzerland (5 375 km²). In a second step over Alps, rolling hills and plain areas in Po catchment for Val d'Aosta and Piemonte regions, Italy (37 190 km²). Watershed boundaries were provided respectively by GRID (Ch) and ARPA (It) partners. The complete satellite images database was extracted from the U.S. MODIS/NASA website (http://modis.gsfc.nasa.gov/) for MOD09_B1 Reflectance images, and from the MODIS/NSIDC website (http://nsidc.org/index.html) for MOD10_A2 snow cover images. Only the Terra platform was used because images are acquired in the morning and are therefore better correlated with dry snow surface, avoiding cloud coverage of the afternoon (Aqua Platform). The MOD9 Image reflectance and MOD10_A2 products were respectively analyzed to retrieve (i) Fractional Snow cover at sub-pixel scale, and (ii) maximum snow cover. All products were retrieved at 8-days over a complete time period of 10 years (2000-2009), giving 500 images for each river basin. Digital Model Elevation was given by NASA/SRTM database at 90-m resolution and used (i) for illumination versus topography correction on snow cover, (ii) geometric rectification of images. Geographic projection is WGS84, UTM 32. Fractional Snow cover mapping was derived from the NDSI linear regression method (Salomonson et al., 2004). Cloud mask was given by MODIS-NASA library (radiometric threshold) and completed by inverse slope regression to avoid lowlands fog confusing with thin snow cover (Po river basin). Maximum Snow Cover mapping was retrieved from the NSIDC database classification (Hall et al., 2001). Validation step was processed using comparison between MODIS Snow maps outputs and meteorological data provided by network of 87 meteorological stations: temperature, precipitation, snow depth measurement. A 0.92 correlation was observed for snow/non snow cover and can be considered as quite satisfactory, given the radiometric problems encountered in mountainous areas, particularly in snowmelt season. The 10-years time period results indicates a main difference between (i) regular snow accumulation and depletion in Rhone and (ii) the high temporal and spatial variability of snow cover for Po. Then, a high sensitivity to low variation of air temperature, often close to 1° C was observed. This is the case in particular for the beginning and the end of the winter season. The regional snow cover depletion is both influenced by thermal positives anomalies (e.g. 2000 and 2006), and the general trend of rising atmospheric temperatures since the late 1980s, particularly for Po river basin. Results will be combined with two hydrological models: Topkapi and Fest.
NASA Astrophysics Data System (ADS)
Cooper, Matthew J.; Martin, Randall V.; Lyapustin, Alexei I.; McLinden, Chris A.
2018-05-01
Accurate representation of surface reflectivity is essential to tropospheric trace gas retrievals from solar backscatter observations. Surface snow cover presents a significant challenge due to its variability and thus snow-covered scenes are often omitted from retrieval data sets; however, the high reflectance of snow is potentially advantageous for trace gas retrievals. We first examine the implications of surface snow on retrievals from the upcoming TEMPO geostationary instrument for North America. We use a radiative transfer model to examine how an increase in surface reflectivity due to snow cover changes the sensitivity of satellite retrievals to NO2 in the lower troposphere. We find that a substantial fraction (> 50 %) of the TEMPO field of regard can be snow covered in January and that the average sensitivity to the tropospheric NO2 column substantially increases (doubles) when the surface is snow covered.We then evaluate seven existing satellite-derived or reanalysis snow extent products against ground station observations over North America to assess their capability of informing surface conditions for TEMPO retrievals. The Interactive Multisensor Snow and Ice Mapping System (IMS) had the best agreement with ground observations (accuracy of 93 %, precision of 87 %, recall of 83 %). Multiangle Implementation of Atmospheric Correction (MAIAC) retrievals of MODIS-observed radiances had high precision (90 % for Aqua and Terra), but underestimated the presence of snow (recall of 74 % for Aqua, 75 % for Terra). MAIAC generally outperforms the standard MODIS products (precision of 51 %, recall of 43 % for Aqua; precision of 69 %, recall of 45 % for Terra). The Near-real-time Ice and Snow Extent (NISE) product had good precision (83 %) but missed a significant number of snow-covered pixels (recall of 45 %). The Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data set had strong performance metrics (accuracy of 91 %, precision of 79 %, recall of 82 %). We use the Fscore, which balances precision and recall, to determine overall product performance (F = 85 %, 82 (82) %, 81 %, 58 %, 46 (54) % for IMS, MAIAC Aqua (Terra), CMC, NISE, MODIS Aqua (Terra), respectively) for providing snow cover information for TEMPO retrievals from solar backscatter observations. We find that using IMS to identify snow cover and enable inclusion of snow-covered scenes in clear-sky conditions across North America in January can increase both the number of observations by a factor of 2.1 and the average sensitivity to the tropospheric NO2 column by a factor of 2.7.
A comparison study of two snow models using data from different Alpine sites
NASA Astrophysics Data System (ADS)
Piazzi, Gaia; Riboust, Philippe; Campo, Lorenzo; Cremonese, Edoardo; Gabellani, Simone; Le Moine, Nicolas; Morra di Cella, Umberto; Ribstein, Pierre; Thirel, Guillaume
2017-04-01
The hydrological balance of an Alpine catchment is strongly affected by snowpack dynamics. Melt-water supplies a significant component of the annual water budget, both in terms of soil moisture and runoff, which play a critical role in floods generation and impact water resource management in snow-dominated basins. Several snow models have been developed with variable degrees of complexity, mainly depending on their target application and the availability of computational resources and data. According to the level of detail, snow models range from statistical snowmelt-runoff and degree-day methods using composite snow-soil or explicit snow layer(s), to physically-based and energy balance snow models, consisting of detailed internal snow-process schemes. Intermediate-complexity approaches have been widely developed resulting in simplified versions of the physical parameterization schemes with a reduced snowpack layering. Nevertheless, an increasing model complexity does not necessarily entail improved model simulations. This study presents a comparison analysis between two snow models designed for hydrological purposes. The snow module developed at UPMC and IRSTEA is a mono-layer energy balance model analytically resolving heat and phase change equations into the snowpack. Vertical mass exchange into the snowpack is also analytically resolved. The model is intended to be used for hydrological studies but also to give a realistic estimation of the snowpack state at watershed scale (SWE and snow depth). The structure of the model allows it to be easily calibrated using snow observation. This model is further presented in EGU2017-7492. The snow module of SMASH (Snow Multidata Assimilation System for Hydrology) consists in a multi-layer snow dynamic scheme. It is physically based on mass and energy balances and it reproduces the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide an estimation of the snowpack state. In this study, no DA is used. For more details on the DA scheme, please see EGU2017-7777. Observed data supplied by meteorological stations located in three experimental Alpine sites are used: Col de Porte (1325 m, France); Torgnon (2160 m, Italy); Weissfluhjoch (2540 m, Switzerland). Performances of the two models are compared through evaluations of snow mass, snow depth, albedo and surface temperature simulations in order to better understand and pinpoint limits and potentialities of the analyzed schemes and the impact of different parameterizations on models simulations.
Investigate plow blade optimization.
DOT National Transportation Integrated Search
2015-08-01
The main technique for removing accumulated snow from roadways is through the use of snow plows and snow plow : blades (blades), or cutting edges. The blade is bolted to the snow plow, and it is the component of the plowing system that : makes contac...
Ruan, Leilei; Robertson, G. Philip
2016-11-21
Throughout most of the northern hemisphere, snow cover decreased in almost every winter month from 1967 to 2012. Because snow is an effective insulator, snow cover loss has likely enhanced soil freezing and the frequency of soil freeze–thaw cycles, which can disrupt soil nitrogen dynamics including the production of nitrous oxide (N 2O). Here, we used replicated automated gas flux chambers deployed in an annual cropping system in the upper Midwest US for three winters (December–March, 2011–2013) to examine the effects of snow removal and additions on N 2O fluxes. Diminished snow cover resulted in increased N2O emissions each year;more » over the entire experiment, cumulative emissions in plots with snow removed were 69% higher than in ambient snow control plots and 95% higher than in plots that received additional snow (P < 0.001). Higher emissions coincided with a greater number of freeze–thaw cycles that broke up soil macroaggregates (250–8000 µm) and significantly increased soil inorganic nitrogen pools. We conclude that winters with less snow cover can be expected to accelerate N 2O fluxes from agricultural soils subject to wintertime freezing.« less
Snow: A New Model Diagnostic and Seasonal Forecast Influences
NASA Astrophysics Data System (ADS)
Slater, A. G.; Lawrence, D. M.; Koven, C.
2015-12-01
Snow is the most variable of terrestrial surface condition on the planet with the seasonal extent of snow cover varying by about 48% of land area in the Northern Hemisphere. Physical properties of snow such as high albedo, high insulation along with its ability to store moisture make it an integral component of mid- and high-latitude climates and it is therefore important that models capture these properties and associated processes. In this work we explore two items associated with snow and their role in the climate system. Firstly, a diagnostic measure of snow insulation that is rooted in the physics of heat transfer is introduced. Insulation of the ground during cold Arctic winters heavily influences the rate and depth of ground freezing (or thawing), which can then influence hydrologic and biogeochemical fluxes. The ability of models to simulate snow insulation varies widely. Secondly, the role of snow upon seasonal forecasts is demonstrated within a currently operational modeling system. Due to model system biases, mass and longevity of snow can vary with forecasts. In turn, a longer lasting and greater moisture store can have impacts upon the surface temperature. These impacts can linger for over two months after all snow has melted. The cause of the biases is identified and a solution posed.
Terashima, Mia; Umezawa, Kazuhiro; Mori, Shoichi; Kojima, Hisaya; Fukui, Manabu
2017-01-01
Psychrophilic algae blooms can be observed coloring the snow during the melt season in alpine snowfields. These algae are important primary producers on the snow surface environment, supporting the microbial community that coexists with algae, which includes heterotrophic bacteria and fungi. In this study, we analyzed the microbial community of green and red-colored snow containing algae from Mount Asahi, Japan. We found that Chloromonas spp. are the dominant algae in all samples analyzed, and Chlamydomonas is the second-most abundant genus in the red snow. For the bacterial community profile, species belonging to the subphylum Betaproteobacteria were frequently detected in both green and red snow, while members of the phylum Bacteroidetes were also prominent in red snow. Furthermore, multiple independently obtained strains of Chloromonas sp. from inoculates of red snow resulted in the growth of Betaproteobacteria with the alga and the presence of bacteria appears to support growth of the xenic algal cultures under laboratory conditions. The dominance of Betaproteobacteria in algae-containing snow in combination with the detection of Chloromonas sp. with Betaproteobacteria strains suggest that these bacteria can utilize the available carbon source in algae-rich environments and may in turn promote algal growth.
Estimating the snow water equivalent on a glacierized high elevation site (Forni Glacier, Italy)
NASA Astrophysics Data System (ADS)
Senese, Antonella; Maugeri, Maurizio; Meraldi, Eraldo; Verza, Gian Pietro; Azzoni, Roberto Sergio; Compostella, Chiara; Diolaiuti, Guglielmina
2018-04-01
We present and compare 11 years of snow data (snow depth and snow water equivalent, SWE) measured by an automatic weather station (AWS) and corroborated by data from field campaigns on the Forni Glacier in Italy. The aim of the analysis is to estimate the SWE of new snowfall and the annual SWE peak based on the average density of the new snow at the site (corresponding to the snowfall during the standard observation period of 24 h) and automated snow depth measurements. The results indicate that the daily SR50 sonic ranger measurements and the available snow pit data can be used to estimate the mean new snow density value at the site, with an error of ±6 kg m-3. Once the new snow density is known, the sonic ranger makes it possible to derive SWE values with an RMSE of 45 mm water equivalent (if compared with snow pillow measurements), which turns out to be about 8 % of the total SWE yearly average. Therefore, the methodology we present is interesting for remote locations such as glaciers or high alpine regions, as it makes it possible to estimate the total SWE using a relatively inexpensive, low-power, low-maintenance, and reliable instrument such as the sonic ranger.
Yu, Ling-Xue; Zhang, Shu-Wen; Guan, Cong; Yan, Feng-Qin; Yang, Chao-Bin; Bu, Kun; Yang, Jiu-Chun; Chang, Li-Ping
2014-09-01
This paper extracted and verified the snow cover extent in Heilongjiang Basin from 2003 to 2012 based on MODIS Aqua and Terra data, and the seasonal and interannual variations of snow cover extent were analyzed. The result showed that the double-star composite data reduced the effects of clouds and the overall accuracy was more than 91%, which could meet the research requirements. There existed significant seasonal variation of snow cover extent. The snow cover area was almost zero in July and August while in January it expanded to the maximum, which accounted for more than 80% of the basin. According to the analysis on the interannual variability of snow cover, the maximum winter snow cover areas in 2003-2004 and 2009-2010 (>180 x 10(4) km2) were higher than that of 2011 (150 x 10(4) km2). Meanwhile, there were certain correlations between the interannual fluctuations of snow cover and the changes of average annual temperature and precipitation. The year with the low snow cover was corresponding to less annual rainfall and higher average temperature, and vice versa. The spring snow cover showed a decreasing trend from 2003 to 2012, which was closely linked with decreasing precipitation and increasing temperature.
Comparison of AMSR-E and SSM/I snow parameter retrievals over the Ob river basin
Mognard, N.M.; Grippa, M.; LeToan, T.; Kelly, R.E.J.; Chang, A.T.C.; Josberger, E.G.
2004-01-01
Passive microwave observations from the Advanced Microwave Scanning Radiometer - EOS (AMSR-E) and from the Special Sensor Microwave Imager (SSM/I) are used to analyse the evolution of the snow pack in the Ob river basin during the snow season of 2002-03. The Ob river is the biggest Russian river with respect to its watershed area (2 975 000 km2). The Ob originates in the Altai mountains and flows northward across the vast West Siberian lowland towards the Arctic Ocean. The majority of snow cover is contained in the lowlands rather than in mountainous regions and persists for six months or more. During the snow season, surface air temperatures are very cold. Therefore, the combination of cold dry snow and large areas of uniform topography is ideal for snowpack extent and water equivalent retrievals from passive microwave observations. The thermal gradient through the snow pack is estimated and used to model the growth of the snow grain size and to compute the evolution of the passive microwave derived snow depth over the region. A comparison between the AMSR-E and SSM/I estimates is performed and the differences between the snow parameters from the two satellite instruments are analysed.
NASA Astrophysics Data System (ADS)
Caduff, Rafael; Wiesmann, Andreas; Bühler, Yves
2016-04-01
Wet snow and full depth gliding avalanches commonly occur on slopes during springtime when air temperatures rise above 0°C for longer time. The increase in the liquid water content changes the mechanical properties of the snow pack. Until now, forecasts of wet snow avalanches are mainly done using weather data such as air and snow temperatures and incoming solar radiation. Even tough some wet snow avalanche events are indicated before the release by the formation of visible signs such as extension cracks or compressional bulges in the snow pack, a large number of wet snow avalanches are released without any previously visible signs. Continuous monitoring of critical slopes by terrestrial radar interferometry improves the scale of reception of differential movement into the range of millimetres per hour. Therefore, from a terrestrial and remote observation location, information on the mechanical state of the snow pack can be gathered on a slope wide scale. Recent campaigns in the Swiss Alps showed the potential of snow deformation measurements with a portable, interferometric real aperture radar operating at 17.2 GHz (1.76 cm wavelength). Common error sources for the radar interferometric measurement of snow pack displacements are decorrelation of the snow pack at different conditions, the influence of atmospheric disturbances on the interferometric phase and transition effects from cold/dry snow to warm/wet snow. Therefore, a critical assessment of those parameters has to be considered in order to reduce phase noise effects and retrieve accurate displacement measurements. The most recent campaign in spring 2015 took place in Davos Dorf/GR, Switzerland and its objective was to observe snow glide activity on the Dorfberg slope. A validation campaign using total station measurements showed good agreement to the radar interferometric line of sight displacement measurements in the range of 0.5 mm/h. The refinement of the method led to the detection of numerous gliding patches distributed over the entire slope. Typically, patches showing (full depth) snow gliding reach extensions from 5x10 metres up to 40x60 metres. Using a sampling interval of 1-3 minutes, the temporal displacement of such snow glide-hot spots can be tracked and thus revealing the individual signature of deformation. Nearly linear behaviour over several days, peaking in a final acceleration releasing an avalanche was observed as well characteristic acceleration and deceleration cycles during day and night could be captured. These cycles sometimes trigger an avalanche and sometimes reach a full stop of the differential snow glide movement. Findings of the different campaigns will be presented. We put them in the context for possible future campaigns that could be used to solve scientific questions regarding the mechanical properties of the snow pack. We evaluate the possibilities for the use of terrestrial radar interferometry for hazard management and avalanche forecast.
What color should glacier algae be? An ecological role for red carbon in the cryosphere.
Dial, Roman J; Ganey, Gerard Q; Skiles, S McKenzie
2018-03-01
Red-colored secondary pigments in glacier algae play an adaptive role in melting snow and ice. We advance this hypothesis using a model of color-based absorption of irradiance, an experiment with colored particles in snow, and the natural history of glacier algae. Carotenoids and phenols-astaxanthin in snow-algae and purpurogallin in ice-algae-shield photosynthetic apparatus by absorbing overabundant visible wavelengths, then dissipating the excess radiant energy as heat. This heat melts proximal ice crystals, providing liquid-water in a 0°C environment and freeing up nutrients bound in frozen water. We show that purple-colored particles transfer 87%-89% of solar energy absorbed by black particles. However, red-colored particles transfer nearly as much (85%-87%) by absorbing peak solar wavelengths and reflecting the visible wavelengths most absorbed by nearby ice and snow crystals; this latter process may reduce potential cellular overheating when snow insulates cells. Blue and green particles transfer only 80%-82% of black particle absorption. In the experiment, red-colored particles melted 87% as much snow as black particles, while blue particles melted 77%. Green-colored snow-algae naturally occupy saturated snow where water is non-limiting; red-colored snow-algae occupy drier, water-limited snow. In addition to increasing melt, we suggest that esterified astaxanthin in snow-alga cells increases hydrophobicity to remain surficial. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Improved Passive Microwave Algorithms for North America and Eurasia
NASA Technical Reports Server (NTRS)
Foster, James; Chang, Alfred; Hall, Dorothy
1997-01-01
Microwave algorithms simplify complex physical processes in order to estimate geophysical parameters such as snow cover and snow depth. The microwave radiances received at the satellite sensor and expressed as brightness temperatures are a composite of contributions from the Earth's surface, the Earth's atmosphere and from space. Owing to the coarse resolution inherent to passive microwave sensors, each pixel value represents a mixture of contributions from different surface types including deep snow, shallow snow, forests and open areas. Algorithms are generated in order to resolve these mixtures. The accuracy of the retrieved information is affected by uncertainties in the assumptions used in the radiative transfer equation (Steffen et al., 1992). One such uncertainty in the Chang et al., (1987) snow algorithm is that the snow grain radius is 0.3 mm for all layers of the snowpack and for all physiographic regions. However, this is not usually the case. The influence of larger grain sizes appears to be of more importance for deeper snowpacks in the interior of Eurasia. Based on this consideration and the effects of forests, a revised SMMR snow algorithm produces more realistic snow mass values. The purpose of this study is to present results of the revised algorithm (referred to for the remainder of this paper as the GSFC 94 snow algorithm) which incorporates differences in both fractional forest cover and snow grain size. Results from the GSFC 94 algorithm will be compared to the original Chang et al. (1987) algorithm and to climatological snow depth data as well.
Snow Cover Distribution and Variation using MODIS in the Himalayas of India
NASA Astrophysics Data System (ADS)
Mondal, A.; Lakshmi, V.; Jain, S. K.; Kansara, P. H.
2017-12-01
Snow cover variation plays a big role in river discharge, permafrost distribution and mass balance of glaciers in mountainous watersheds. Spatial distribution and temporal variation of snow cover varies with elevation and climate. We study the spatial distribution and temporal change of snow cover that has been observed using Terra Moderate Resolution Imaging Spectrometer (MODIS) product (MOD10A2 version 5) from 2001 to 2016. This MODIS product is based on normalized-difference snow index (NDSI) using band 4 (0.545-0.565 μm) and band 6 (1.628-1.652 μm). The spatial resolution of MOD10A2 is 500 m and composited over 8 days. The study area is the Indian Himalayas, major snow covered part of which is located in the states of Jammu and Kashmir, Himachal Pradesh, Uttarakhand, West Bengal, Sikkim, Assam and Arunachal Pradesh. Distribution and variation in snow cover is examined on monthly and annual time scales in this study. The temporal changes in snow cover has been compared with terrain attributes (elevation, slope and aspect). The snow cover depletion and accumulation have been observed during April-August and September-March. The snow cover is highest in the March and lowest in the August in the Himachal region. This study will be helpful to identify the amount of water stored in the glaciers of the Indian Himalaya and also important for water resources management of river basins, which are located in this area. Key words: Snow cover, MODIS, NDSI, terrain attribute
Lyngdoh, Salvador; Shrotriya, Shivam; Goyal, Surendra P; Clements, Hayley; Hayward, Matthew W; Habib, Bilal
2014-01-01
The endangered snow leopard is a large felid that is distributed over 1.83 million km(2) globally. Throughout its range it relies on a limited number of prey species in some of the most inhospitable landscapes on the planet where high rates of human persecution exist for both predator and prey. We reviewed 14 published and 11 unpublished studies pertaining to snow leopard diet throughout its range. We calculated prey consumption in terms of frequency of occurrence and biomass consumed based on 1696 analysed scats from throughout the snow leopard's range. Prey biomass consumed was calculated based on the Ackerman's linear correction factor. We identified four distinct physiographic and snow leopard prey type zones, using cluster analysis that had unique prey assemblages and had key prey characteristics which supported snow leopard occurrence there. Levin's index showed the snow leopard had a specialized dietary niche breadth. The main prey of the snow leopard were Siberian ibex (Capra sibrica), blue sheep (Pseudois nayaur), Himalayan tahr (Hemitragus jemlahicus), argali (Ovis ammon) and marmots (Marmota spp). The significantly preferred prey species of snow leopard weighed 55±5 kg, while the preferred prey weight range of snow leopard was 36-76 kg with a significant preference for Siberian ibex and blue sheep. Our meta-analysis identified critical dietary resources for snow leopards throughout their distribution and illustrates the importance of understanding regional variation in species ecology; particularly prey species that have global implications for conservation.
Lyngdoh, Salvador; Shrotriya, Shivam; Goyal, Surendra P.; Clements, Hayley; Hayward, Matthew W.; Habib, Bilal
2014-01-01
The endangered snow leopard is a large felid that is distributed over 1.83 million km2 globally. Throughout its range it relies on a limited number of prey species in some of the most inhospitable landscapes on the planet where high rates of human persecution exist for both predator and prey. We reviewed 14 published and 11 unpublished studies pertaining to snow leopard diet throughout its range. We calculated prey consumption in terms of frequency of occurrence and biomass consumed based on 1696 analysed scats from throughout the snow leopard's range. Prey biomass consumed was calculated based on the Ackerman's linear correction factor. We identified four distinct physiographic and snow leopard prey type zones, using cluster analysis that had unique prey assemblages and had key prey characteristics which supported snow leopard occurrence there. Levin's index showed the snow leopard had a specialized dietary niche breadth. The main prey of the snow leopard were Siberian ibex (Capra sibrica), blue sheep (Pseudois nayaur), Himalayan tahr (Hemitragus jemlahicus), argali (Ovis ammon) and marmots (Marmota spp). The significantly preferred prey species of snow leopard weighed 55±5 kg, while the preferred prey weight range of snow leopard was 36–76 kg with a significant preference for Siberian ibex and blue sheep. Our meta-analysis identified critical dietary resources for snow leopards throughout their distribution and illustrates the importance of understanding regional variation in species ecology; particularly prey species that have global implications for conservation. PMID:24533080
A New Operational Snow Retrieval Algorithm Applied to Historical AMSR-E Brightness Temperatures
NASA Technical Reports Server (NTRS)
Tedesco, Marco; Jeyaratnam, Jeyavinoth
2016-01-01
Snow is a key element of the water and energy cycles and the knowledge of spatio-temporal distribution of snow depth and snow water equivalent (SWE) is fundamental for hydrological and climatological applications. SWE and snow depth estimates can be obtained from spaceborne microwave brightness temperatures at global scale and high temporal resolution (daily). In this regard, the data recorded by the Advanced Microwave Scanning Radiometer-Earth Orbiting System (EOS) (AMSR-E) onboard the National Aeronautics and Space Administration's (NASA) AQUA spacecraft have been used to generate operational estimates of SWE and snow depth, complementing estimates generated with other microwave sensors flying on other platforms. In this study, we report the results concerning the development and assessment of a new operational algorithm applied to historical AMSR-E data. The new algorithm here proposed makes use of climatological data, electromagnetic modeling and artificial neural networks for estimating snow depth as well as a spatio-temporal dynamic density scheme to convert snow depth to SWE. The outputs of the new algorithm are compared with those of the current AMSR-E operational algorithm as well as in-situ measurements and other operational snow products, specifically the Canadian Meteorological Center (CMC) and GlobSnow datasets. Our results show that the AMSR-E algorithm here proposed generally performs better than the operational one and addresses some major issues identified in the spatial distribution of snow depth fields associated with the evolution of effective grain size.
Unusual radar echoes from the Greenland ice sheet
NASA Technical Reports Server (NTRS)
Rignot, E. J.; Vanzyl, J. J.; Ostro, S. J.; Jezek, K. C.
1993-01-01
In June 1991, the NASA/Jet Propulsion Laboratory airborne synthetic-aperture radar (AIRSAR) instrument collected the first calibrated data set of multifrequency, polarimetric, radar observations of the Greenland ice sheet. At the time of the AIRSAR overflight, ground teams recorded the snow and firn (old snow) stratigraphy, grain size, density, and temperature at ice camps in three of the four snow zones identified by glaciologists to characterize four different degrees of summer melting of the Greenland ice sheet. The four snow zones are: (1) the dry-snow zone, at high elevation, where melting rarely occurs; (2) the percolation zone, where summer melting generates water that percolates down through the cold, porous, dry snow and then refreezes in place to form massive layers and pipes of solid ice; (3) the soaked-snow zone where melting saturates the snow with liquid water and forms standing lakes; and (4) the ablation zone, at the lowest elevations, where melting is vigorous enough to remove the seasonal snow cover and ablate the glacier ice. There is interest in mapping the spatial extent and temporal variability of these different snow zones repeatedly by using remote sensing techniques. The objectives of the 1991 experiment were to study changes in radar scattering properties across the different melting zones of the Greenland ice sheet, and relate the radar properties of the ice sheet to the snow and firn physical properties via relevant scattering mechanisms. Here, we present an analysis of the unusual radar echoes measured from the percolation zone.
Estimate of temperature change due to ice and snow accretion in the boreal forest regions
NASA Astrophysics Data System (ADS)
Sugiura, K.; Nagai, S.; Suzuki, R.; Eicken, H.; Maximov, T. C.
2016-12-01
Previous research has demonstrated that there is a wide difference between the surface albedo in winter/spring in snow-covered forest regions in various global climate models. If the forest is covered with snow, the surface albedo would increase. In this study, we carried out field observations to monitor the frequency of ice and snow accretion in the boreal forest regions. The time-lapse digital camera was set up on each side of the observation towers at the site located to the north of Fairbanks (USA) and at the site located to the north of Yakutsk (Russia). It was confirmed that both forests were not necessarily covered with snow without a break from the start of continuous snow cover until the end. In addition, the boreal forest at the Yakutsk site is covered with snow in comparison with the boreal forest at the Fairbanks site for a long term such as for about five month. Using a one-dimensional mathematics model about the energy flow including atmospheric multiple scattering, we estimated temperature change due to ice and snow accretion in the boreal forest regions. The result show that the mean surface temperature rises approximately 0.5 [oC] when the boreal forest is not covered with snow. In this presentation, we discuss the snow albedo parameterization in the boreal forest regions and the one-dimensional mathematics model to provide a basis for a better understanding of the role of snow in the climate system.
Snow Depth Depicted on Mt. Lyell by NASA Airborne Snow Observatory
2013-05-02
A natural color image of Mt. Lyell, the highest point in the Tuolumne River Basin top image is compared with a three-dimensional color composite image of Mt. Lyell from NASA Airborne Snow Observatory depicting snow depth bottom image.
Automated Snow Extent Mapping Based on Orthophoto Images from Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Niedzielski, Tomasz; Spallek, Waldemar; Witek-Kasprzak, Matylda
2018-04-01
The paper presents the application of the k-means clustering in the process of automated snow extent mapping using orthophoto images generated using the Structure-from-Motion (SfM) algorithm from oblique aerial photographs taken by unmanned aerial vehicle (UAV). A simple classification approach has been implemented to discriminate between snow-free and snow-covered terrain. The procedure uses the k-means clustering and classifies orthophoto images based on the three-dimensional space of red-green-blue (RGB) or near-infrared-red-green (NIRRG) or near-infrared-green-blue (NIRGB) bands. To test the method, several field experiments have been carried out, both in situations when snow cover was continuous and when it was patchy. The experiments have been conducted using three fixed-wing UAVs (swinglet CAM by senseFly, eBee by senseFly, and Birdie by FlyTech UAV) on 10/04/2015, 23/03/2016, and 16/03/2017 within three test sites in the Izerskie Mountains in southwestern Poland. The resulting snow extent maps, produced automatically using the classification method, have been validated against real snow extents delineated through a visual analysis and interpretation offered by human analysts. For the simplest classification setup, which assumes two classes in the k-means clustering, the extent of snow patches was estimated accurately, with areal underestimation of 4.6% (RGB) and overestimation of 5.5% (NIRGB). For continuous snow cover with sparse discontinuities at places where trees or bushes protruded from snow, the agreement between automatically produced snow extent maps and observations was better, i.e. 1.5% (underestimation with RGB) and 0.7-0.9% (overestimation, either with RGB or with NIRRG). Shadows on snow were found to be mainly responsible for the misclassification.
NASA Astrophysics Data System (ADS)
Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo
2016-04-01
Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.
Towards Snowpack Characterization using C-band Synthetic Aperture Radar (SAR)
NASA Astrophysics Data System (ADS)
Park, J.; Forman, B. A.
2017-12-01
Sentinel 1A and 1B, operated by the European Space Agency (ESA), carries a C-band synthetic aperture radar (SAR) sensor that can be used to monitor terrestrial snow properties. This study explores the relationship between terrestrial snow-covered area, snow depth, and snow water equivalent with Sentinel 1 backscatter observations in order to better characterize snow mass. Ground-based observations collected by the National Oceanic and Atmospheric Administration - Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) in Caribou, Maine in the United States are also used in the comparative analysis. Sentinel 1 Ground Range Detected (GRD) imagery with Interferometric Wide swath (IW) were preprocessed through a series of steps accounting for thermal noise, sensor orbit, radiometric calibration, speckle filtering, and terrain correction using ESA's Sentinel Application Platform (SNAP) software package, which is an open-source module written in Python. Comparisons of dual-polarized backscatter coefficients (i.e., σVV and σVH) with in-situ measurements of snow depth and SWE suggest that cross-polarized backscatter observations exhibit a modest correlation between both snow depth and SWE. In the case of the snow-covered area, a multi-temporal change detection method was used. Results using Sentinel 1 yield similar spatial patterns as when using hyperspectral observations collected by the MODerate Resolution Imaging Spectroradiometer (MODIS). These preliminary results suggest the potential application of Sentinel 1A/1B backscatter coefficients towards improved discrimination of snow cover, snow depth, and SWE. One goal of this research is to eventually merge C-band SAR backscatter observations with other snow information (e.g., passive microwave brightness temperatures) as part of a multi-sensor snow assimilation framework.
Validating SWE reconstruction using Airborne Snow Observatory measurements in the Sierra Nevada
NASA Astrophysics Data System (ADS)
Bair, N.; Rittger, K.; Davis, R. E.; Dozier, J.
2015-12-01
The Airborne Snow Observatory (ASO) program offers high resolution estimates of snow water equivalent (SWE) in several small basins across California during the melt season. Primarily, water managers use this information to model snowmelt runoff into reservoirs. Another, and potentially more impactful, use of ASO SWE measurements is in validating and improving satellite-based SWE estimates which can be used in austere regions with no ground-based snow or water measurements, such as Afghanistan's Hindu Kush. Using the entire ASO dataset to date (2013-2015) which is mostly from the Upper Tuolumne basin, but also includes measurements from 2015 in the Kings, Rush Creek, Merced, and Mammoth Lakes basins, we compare ASO measurements to those from a SWE reconstruction method. Briefly, SWE reconstruction involves downscaling energy balance forcings to compute potential melt energy, then using satellite-derived estimates of fractional snow covered area (fSCA) to estimate snow melt from potential melt. The snowpack can then be built in reverse, given a remotely-sensed date of snow disappearance (fSCA=0). Our model has improvements over previous iterations in that it: uses the full energy balance (compared to a modified degree-day) approach, models bulk and surface snow temperatures, accounts for ephemeral snow, and uses a remotely-sensed snow albedo adjusted for impurities. To check that ASO provides accurate snow measurements, we compare fSCA derived from ASO snow depth at 3 m resolution with fSCA from a spectral unmixing algorithm for LandSAT at 30 m, and from binary SCA estimates from Geoeye at 0.5 m from supervised classification. To conclude, we document how our reconstruction model has evolved over the years and provide specific examples where improvements have been made using ASO and other verification sources.
NASA Astrophysics Data System (ADS)
Barrere, Mathieu; Domine, Florent; Decharme, Bertrand; Morin, Samuel; Vionnet, Vincent; Lafaysse, Matthieu
2017-09-01
Climate change projections still suffer from a limited representation of the permafrost-carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change.
NASA Astrophysics Data System (ADS)
Skaugen, Thomas; Weltzien, Ingunn H.
2016-09-01
Snow is an important and complicated element in hydrological modelling. The traditional catchment hydrological model with its many free calibration parameters, also in snow sub-models, is not a well-suited tool for predicting conditions for which it has not been calibrated. Such conditions include prediction in ungauged basins and assessing hydrological effects of climate change. In this study, a new model for the spatial distribution of snow water equivalent (SWE), parameterized solely from observed spatial variability of precipitation, is compared with the current snow distribution model used in the operational flood forecasting models in Norway. The former model uses a dynamic gamma distribution and is called Snow Distribution_Gamma, (SD_G), whereas the latter model has a fixed, calibrated coefficient of variation, which parameterizes a log-normal model for snow distribution and is called Snow Distribution_Log-Normal (SD_LN). The two models are implemented in the parameter parsimonious rainfall-runoff model Distance Distribution Dynamics (DDD), and their capability for predicting runoff, SWE and snow-covered area (SCA) is tested and compared for 71 Norwegian catchments. The calibration period is 1985-2000 and validation period is 2000-2014. Results show that SDG better simulates SCA when compared with MODIS satellite-derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" and giving spurious positive trends in SWE, typical for SD_LN, is prevented. The precision of runoff simulations using SDG is slightly inferior, with a reduction in Nash-Sutcliffe and Kling-Gupta efficiency criterion of 0.01, but it is shown that the high precision in runoff prediction using SD_LN is accompanied with erroneous simulations of SWE.
NASA Astrophysics Data System (ADS)
Gallet, Jean-Charles; Merkouriadi, Ioanna; Liston, Glen E.; Polashenski, Chris; Hudson, Stephen; Rösel, Anja; Gerland, Sebastian
2017-10-01
Snow is crucial over sea ice due to its conflicting role in reflecting the incoming solar energy and reducing the heat transfer so that its temporal and spatial variability are important to estimate. During the Norwegian Young Sea ICE (N-ICE2015) campaign, snow physical properties and variability were examined, and results from April until mid-June 2015 are presented here. Overall, the snow thickness was about 20 cm higher than the climatology for second-year ice, with an average of 55 ± 27 cm and 32 ± 20 cm on first-year ice. The average density was 350-400 kg m-3 in spring, with higher values in June due to melting. Due to flooding in March, larger variability in snow water equivalent was observed. However, the snow structure was quite homogeneous in spring due to warmer weather and lower amount of storms passing over the field camp. The snow was mostly consisted of wind slab, faceted, and depth hoar type crystals with occasional fresh snow. These observations highlight the more dynamic character of evolution of snow properties over sea ice compared to previous observations, due to more variable sea ice and weather conditions in this area. The snowpack was isothermal as early as 10 June with the first onset of melt clearly identified in early June. Based on our observations, we estimate than snow could be accurately represented by a three to four layers modeling approach, in order to better consider the high variability of snow thickness and density together with the rapid metamorphose of the snow in springtime.
Global land-atmosphere coupling associated with cold climate processes
NASA Astrophysics Data System (ADS)
Dutra, Emanuel
This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and tested in HTESSEL and EC-EARTH. The snow scheme is currently operational at the European Centre for Medium-Range Weather Forecasts integrated forecast system, and in the default configuration of EC-EARTH. The improved representation of the snowpack dynamics in HTESSEL resulted in improvements in the near surface temperature simulations of EC-EARTH. The new snow scheme development was complemented with the option of multi-layer version that showed its potential in modeling thick snowpacks. A key process was the snow thermal insulation that led to significant improvements of the surface water and energy balance components. Similar findings were observed when coupling the snow scheme to lake ice, where lake ice duration was significantly improved. An assessment on the snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing within HTESSEL highlighted the role of the atmospheric forcing accuracy and snowpack parameterizations in detriment of horizontal resolution over flat regions. A set of experiments with and without free snow evolution was carried out with EC-EARTH to assess the impact of the interannual variability of snow cover on near surface and soil temperatures. It was found that snow cover interannual variability explained up to 60% of the total interannual variability of near surface temperature over snow covered regions. Although these findings are model dependent, the results showed consistency with previously published work. Furthermore, the detailed validation of the snow dynamics simulations in HTESSEL and EC-EARTH guarantees consistency of the results.
Acoustic Wave Propagation in Snow Based on a Biot-Type Porous Model
NASA Astrophysics Data System (ADS)
Sidler, R.
2014-12-01
Despite the fact that acoustic methods are inexpensive, robust and simple, the application of seismic waves to snow has been sparse. This might be due to the strong attenuation inherent to snow that prevents large scale seismic applications or due to the somewhat counterintuitive acoustic behavior of snow as a porous material. Such materials support a second kind of compressional wave that can be measured in fresh snow and which has a decreasing wave velocity with increasing density of snow. To investigate wave propagation in snow we construct a Biot-type porous model of snow as a function of porosity based on the assumptions that the solid frame is build of ice, the pore space is filled with a mix of air, or air and water, and empirical relationships for the tortuosity, the permeability, the bulk, and the shear modulus.We use this reduced model to investigate compressional and shear wave velocities of snow as a function of porosity and to asses the consequences of liquid water in the snowpack on acoustic wave propagation by solving Biot's differential equations with plain wave solutions. We find that the fast compressional wave velocity increases significantly with increasing density, but also that the fast compressional wave velocity might be even lower than the slow compressional wave velocity for very light snow. By using compressional and shear strength criteria and solving Biot's differential equations with a pseudo-spectral approach we evaluate snow failure due to acoustic waves in a heterogeneous snowpack, which we think is an important mechanism in triggering avalanches by explosives as well as by skiers. Finally, we developed a low cost seismic acquisition device to assess the theoretically obtained wave velocities in the field and to explore the possibility of an inexpensive tool to remotely gather snow water equivalent.
What do We Know the Snow Darkening Effect Over Himalayan Glaciers?
NASA Technical Reports Server (NTRS)
Yasunari, T. J.; Lau, K.-U.; Koster, R. D.; Suarez, M.; Mahanama, S. P.; Gautam, R.; Kim, K. M.; Dasilva, A. M.; Colarco, P. R.
2011-01-01
The atmospheric absorbing aerosols such as dust, black carbon (BC), organic carbon (OC) are now well known warming factors in the atmosphere. However, when these aerosols deposit onto the snow surface, it causes darkening of snow and thereby absorbing more energy at the snow surface leading to the accelerated melting of snow. If this happens over Himalayan glacier surface, the glacier meltings are expected and may contribute the mass balance changes though the mass balance itself is more complicated issue. Glacier has mainly two parts: ablation and accumulation zones. Those are separated by the Equilibrium Line Altitude (ELA). Above and below ELA, snow accumulation and melting are dominant, respectively. The change of ELA will influence the glacier disappearance in future. In the Himalayan region, many glacier are debris covered glacier at the terminus (i.e., in the ablation zone). Debris is pieces of rock from local land and the debris covered parts are probably not affected by any deposition of the absorbing aerosols because the snow surface is already covered by debris (the debris covered parts have different mechanism of melting). Hence, the contribution of the snow darkening effect is considered to be most important "over non debris covered part" of the Himalayan glacier (i.e., over the snow or ice surface area). To discuss the whole glacier retreat, mass balance of each glacier is most important including the discussion on glacier flow, vertical compaction of glacier, melting amount, etc. The contribution of the snow darkening is mostly associated with "the snow/ice surface melting". Note that the surface melting itself is not always directly related to glacier retreats because sometimes melt water refreezes inside of the glacier. We should discuss glacier retreats in terms of not only the snow darkening but also other contributions to the mass balance.
Water-soluble elements in snow and ice on Mt. Yulong.
Niu, Hewen; Kang, Shichang; Shi, Xiaofei; He, Yuanqing; Lu, Xixi; Shi, Xiaoyi; Paudyal, Rukumesh; Du, Jiankuo; Wang, Shijin; Du, Jun; Chen, Jizu
2017-01-01
Melting of high-elevation glaciers can be accelerated by the deposition of light-absorbing aerosols (e.g., organic carbon, mineral dust), resulting in significant reductions of the surface albedo on glaciers. Organic carbon deposited in glaciers is of great significance to global carbon cycles, snow photochemistry, and air-snow exchange processes. In this work, various snow and ice samples were collected at high elevation sites (4300-4850masl) from Mt. Yulong on the southeastern Tibetan Plateau in 2015. These samples were analyzed for water-soluble organic carbon (DOC), total nitrogen (TN), and water-soluble inorganic ions (WSIs) to elucidate the chemical species and compositions of the glaciers in the Mt. Yulong region. Generally, glacial meltwater had the lowest DOC content (0.39mgL -1 ), while fresh snow had the highest (2.03mgL -1 ) among various types of snow and ice samples. There were obvious spatial and temporal trends of DOC and WSIs in glaciers. The DOC and TN concentrations decreased in the order of fresh snow, snow meltwater, snowpit, and surface snow, resulting from the photolysis of DOC and snow's quick-melt effects. The surface snow had low DOC and TN depletion ratios in the melt season; specifically, the ratios were -0.79 and -0.19mgL -1 d -1 , respectively. In the winter season, the ratios of DOC and TN were remarkably higher, with values of -0.20mgL -1 d -1 and -0.08mgL -1 d -1 , respectively. A reduction of the DOC and TN content in glaciers was due to snow's quick melt and sublimation. Deposition of these light-absorbing impurities (LAPs) in glaciers might accelerate snowmelt and even glacial retreat. Copyright © 2016 Elsevier B.V. All rights reserved.
Middleton, Beth A.
2016-01-01
Hurricane wind and surge may have different influences on the subsequent composition of forests. During Hurricane Sandy, while damaging winds were highest near landfall in New Jersey, inundation occurred along the entire eastern seaboard from Georgia to Maine. In this study, a comparison of damage from salinity intrusion vs. wind/surge was recorded in swamps of the Delmarva Peninsula along the Pocomoke (MD) and Nanticoke (DE) Rivers, south of the most intense wind damage. Hickory Point Cypress Swamp (Hickory) was closest to the Chesapeake Bay and may have been subjected to a salinity surge as evidenced by elevated salinity levels at a gage upstream of this swamp (storm salinity = 13.1 ppt at Nassawango Creek, Snow Hill, Maryland). After Hurricane Sandy, 8% of the standing trees died at Hickory including Acer rubrum, Amelanchier laevis, Ilex spp., and Taxodium distichum. In Plot 2 of Hickory, 25% of the standing trees were dead, and soil salinity levels were the highest recorded in the study. The most important variables related to structural tree damage were soil salinity and proximity to the Atlantic coast as based on Stepwise Regression and NMDS procedures. Wind damage was mostly restricted to broken branches although tipped−up trees were found at Hickory, Whiton and Porter (species: Liquidamabar styraciflua, Pinus taeda, Populus deltoides, Quercus pagoda and Ilex spp.). These trees fell mostly in an east or east−southeast direction (88o−107o) in keeping with the wind direction of Hurricane Sandy on the Delmarva Peninsula. Coastal restoration and management can be informed by the specific differences in hurricane damage to vegetation by salt versus wind.
NASA Astrophysics Data System (ADS)
Hofman-Kamińska, Emilia; Kowalczyk, Rafał
2012-10-01
European bison, the largest mammal in Europe, after being exterminated in the wild and then restored during the 20th century is still listed by the International Union for Conservation of Nature (IUCN Red List of Threatened Species) as a species vulnerable to extinction. However, the increasing number of European bison, through creation of new and expansion of existing populations strongly increases the risk of human-bison conflict in the near future. We analyzed the depredation of farm crops by bison and the factors influencing the level of damage in the vicinity of two forest areas inhabited by bison in northeastern Poland. Between 2000 and 2010, the total cost of compensation was € 196,200. The level of damage and amount of compensation was increasing from year to year in both forests and correlated with the number of bison. The majority of damage (57 % of cases) was recorded in winter (December-March). Snow depth and temperature did not influence the frequency of damage. The incidences of damage increased with decreasing distance from the woodland patches, therefore, 69 % of cases in Białowieża Forest, and 80 % in Knyszyn Forest were recorded closer than 0.5 km from nearest woodland patch. The majority of the crops damaged by bison were cereals (61 %) but also hay (20 %) and rape (13 %). When compared to the availability of crops, bison strongly selected rape and rye in both regions. This study is the first addressing the increasing problem of human-bison conflict in re-introduced populations and analyzing long-term data on crop depredation. Such situations probably occur in the majority of growing and expanding bison populations, however, it has not yet to be monitored and is rather neglected in post-Soviet countries.
A Citizen Science Campaign to Validate Snow Remote-Sensing Products
NASA Astrophysics Data System (ADS)
Wikstrom Jones, K.; Wolken, G. J.; Arendt, A. A.; Hill, D. F.; Crumley, R. L.; Setiawan, L.; Markle, B.
2017-12-01
The ability to quantify seasonal water retention and storage in mountain snow packs has implications for an array of important topics, including ecosystem function, water resources, hazard mitigation, validation of remote sensing products, climate modeling, and the economy. Runoff simulation models, which typically rely on gridded climate data and snow remote sensing products, would be greatly improved if uncertainties in estimates of snow depth distribution in high-elevation complex terrain could be reduced. This requires an increase in the spatial and temporal coverage of observational snow data in high-elevation data-poor regions. To this end, we launched Community Snow Observations (CSO). Participating citizen scientists use Mountain Hub, a multi-platform mobile and web-based crowdsourcing application that allows users to record, submit, and instantly share geo-located snow depth, snow water equivalence (SWE) measurements, measurement location photos, and snow grain information with project scientists and other citizen scientists. The snow observations are used to validate remote sensing products and modeled snow depth distribution. The project's prototype phase focused on Thompson Pass in south-central Alaska, an important infrastructure corridor that includes avalanche terrain and the Lowe River drainage and is essential to the City of Valdez and the fisheries of Prince William Sound. This year's efforts included website development, expansion of the Mountain Hub tool, and recruitment of citizen scientists through a combination of social media outreach, community presentations, and targeted recruitment of local avalanche professionals. We also conducted two intensive field data collection campaigns that coincided with an aerial photogrammetric survey. With more than 400 snow depth observations, we have generated a new snow remote-sensing product that better matches actual SWE quantities for Thompson Pass. In the next phase of the citizen science portion of this project we will focus on expanding our group of participants to a larger geographic area in Alaska, further develop our partnership with Mountain Hub, and build relationships in new communities as we conduct a photogrammetric survey in a different region next year.
Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey
2012-01-01
The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Somma, J.; Drapeau, L.; Abou Chakra, C.; El-Ali, T.
2014-12-01
Climate change is a subject of concern for the inhabitants of the semi-arid zones because water needs are greatly increasing with population growth. For the Middle East region, the karstic geology of Lebanon with its high and steep mountains makes it a real water tower and promotes an essential snow cover. Studies carried out on snow water equivalent reserve [1] remain still insufficient for the development of continuous monitoring. Modeling the lebanese high plateau made of sinkholes and undulations eases the computations of land capacity for snow retention. It is therefore an interesting testing ground for snow volumes calculations [2]. To improve previous attempts, a research project focuses on snow melting processes. It uses the cessation date of snow melt water infiltration which is crucial in the precocity or the delay of low water level [3]; and geomatics to determinate the major factor for the evaluation of storaged water (spatial or vertical extension of snow cover). The project studies the sensitivity of temporal snow melting variabilities to quantities of snow precipitations and climatic conditions. Field measurements were collected at very high topographic precision [4] in a specific sinkhole and were used to create volumes models for measuring indicators such as: snow water equivalent; melting speed in relation to climatic data; forecast of completed meting date; correlations with springs discharges. Other methodological procedures take into account snow depressions (sinkholes and ripples) capacity retention; daily webcam images to monitor the accumulation and melt rate and remotely sensed Pleiades stereoscopic images to create snow cover elevation model at the time of acquisition. [1]Corbane et al., 2004 ; 2005 ; Corbane, 2002 ; Bernier et al., 2001, 2003 ; Shaban et al., 2004; Aouad et al., 2004, Aouad-Rizk et al., 2005 ; Gédéon el al., 2004 [2] Somma et al ; 2014 [3] Drapeau et al ; 2013 [4] Drapeau et al, 2013; Somma et Drapeau, 2011 ; Somma et Luxey, 2006
Characterizing 2-D snow stratigraphy in forests based on high-resolution snow penetrometry
NASA Astrophysics Data System (ADS)
Teich, M.; Loewe, H.; Jenkins, M. J.; Schneebeli, M.
2016-12-01
Snow stratigraphy, the characteristic layering within a seasonal snowpack, has important implications for snow remote sensing, hydrology and avalanches. Forests modify snowpack properties through interception of falling snow by tree crowns, the reduction of near-surface wind speeds, and changes to the energy balance beneath and around trees leading to a highly variable stratigraphy in space and time. The lack of snowpack observations in forests limits our ability to understand the spatio-temporal evolution of snow stratigraphy as a function of forest structure and to observe snowpack response to changes in forest cover. We examined the snowpack in field campaigns using the SnowMicroPen (SMP) under tree canopies in an Engelmann spruce forest in the central Rocky Mountains in Utah, USA. Data were collected in plots beneath canopies of undisturbed, bark beetle-disturbed and salvage logged forest stands, and a non-forested meadow. In 2015 weekly-repeated SMP penetration measurements were taken along 10 m transects at 0.3 m intervals. In the winter of 2016 bi-weekly measurements were collected along 20 m transects every 0.5 m. Using a statistical model, we derived 2-D snow density profiles as a measure of stratigraphy. The small-scale patterns in snow density revealed a more heterogeneous stratigraphy in undisturbed dense stands and also beneath bark beetle-disturbed forest. In contrast, snow stratigraphy was more homogeneous in the harvested plot despite standing small diameter trees and woody debris with effective heights up to 95 cm. As expected, snow depth and layering in non-forested plots varied only slightly over the small spatial extent sampled. Observed patterns changed throughout the snow season dependent upon snow and meteorological conditions. The results contribute to the general understanding of forest-snowpack interactions at high spatial resolution, and can be used to validate snowpack and microwave models for avalanche formation processes and SWE retrieval in forests.
a Physical Parameterization of Snow Albedo for Use in Climate Models.
NASA Astrophysics Data System (ADS)
Marshall, Susan Elaine
The albedo of a natural snowcover is highly variable ranging from 90 percent for clean, new snow to 30 percent for old, dirty snow. This range in albedo represents a difference in surface energy absorption of 10 to 70 percent of incident solar radiation. Most general circulation models (GCMs) fail to calculate the surface snow albedo accurately, yet the results of these models are sensitive to the assumed value of the snow albedo. This study replaces the current simple empirical parameterizations of snow albedo with a physically-based parameterization which is accurate (within +/- 3% of theoretical estimates) yet efficient to compute. The parameterization is designed as a FORTRAN subroutine (called SNOALB) which can be easily implemented into model code. The subroutine requires less then 0.02 seconds of computer time (CRAY X-MP) per call and adds only one new parameter to the model calculations, the snow grain size. The snow grain size can be calculated according to one of the two methods offered in this thesis. All other input variables to the subroutine are available from a climate model. The subroutine calculates a visible, near-infrared and solar (0.2-5 μm) snow albedo and offers a choice of two wavelengths (0.7 and 0.9 mu m) at which the solar spectrum is separated into the visible and near-infrared components. The parameterization is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, version 1 (CCM1), and the results of a five -year, seasonal cycle, fixed hydrology experiment are compared to the current model snow albedo parameterization. The results show the SNOALB albedos to be comparable to the old CCM1 snow albedos for current climate conditions, with generally higher visible and lower near-infrared snow albedos using the new subroutine. However, this parameterization offers a greater predictability for climate change experiments outside the range of current snow conditions because it is physically-based and not tuned to current empirical results.
Blowing Snow Sublimation and Transport over Antarctica from 11 Years of CALIPSO Observations
NASA Technical Reports Server (NTRS)
Palm, Stephen P.; Kayetha, Vinay; Yang, Yuekui; Pauly, Rebecca
2017-01-01
Blowing snow processes commonly occur over the earth's ice sheets when the 10 mile wind speed exceeds a threshold value. These processes play a key role in the sublimation and redistribution of snow thereby influencing the surface mass balance. Prior field studies and modeling results have shown the importance of blowing snow sublimation and transport on the surface mass budget and hydrological cycle of high-latitude regions. For the first time, we present continent-wide estimates of blowing snow sublimation and transport over Antarctica for the period 2006-2016 based on direct observation of blowing snow events. We use an improved version of the blowing snow detection algorithm developed for previous work that uses atmospheric backscatter measurements obtained from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The blowing snow events identified by CALIPSO and meteorological fields from MERRA-2 are used to compute the blowing snow sublimation and transport rates. Our results show that maximum sublimation occurs along and slightly inland of the coastline. This is contrary to the observed maximum blowing snow frequency which occurs over the interior. The associated temperature and moisture reanalysis fields likely contribute to the spatial distribution of the maximum sublimation values. However, the spatial pattern of the sublimation rate over Antarctica is consistent with modeling studies and precipitation estimates. Overall, our results show that the 2006-2016 Antarctica average integrated blowing snow sublimation is about 393 +/- 196 Gt yr(exp -1), which is considerably larger than previous model-derived estimates. We find maximum blowing snow transport amount of 5 Mt km-1 yr(exp -1) over parts of East Antarctica and estimate that the average snow transport from continent to ocean is about 3.7 Gt yr(exp -1). These continent-wide estimates are the first of their kind and can be used to help model and constrain the surface mass budget over Antarctica.
NASA Astrophysics Data System (ADS)
Abou Chakra, Charbel; Somma, Janine; Elali, Taha; Drapeau, Laurent
2017-04-01
Climate change and its negative impact on water resource is well described. For countries like Lebanon, undergoing major population's rise and already decreasing precipitations issues, effective water resources management is crucial. Their continuous and systematic monitoring overs long period of time is therefore an important activity to investigate drought risk scenarios for the Lebanese territory. Snow cover on Lebanese mountains is the most important water resources reserve. Consequently, systematic observation of snow cover dynamic plays a major role in order to support hydrologic research with accurate data on snow cover volumes over the melting season. For the last 20 years few studies have been conducted for Lebanese snow cover. They were focusing on estimating the snow cover surface using remote sensing and terrestrial measurement without obtaining accurate maps for the sampled locations. Indeed, estimations of both snow cover area and volumes are difficult due to snow accumulation very high variability and Lebanese mountains chains slopes topographic heterogeneity. Therefore, the snow cover relief measurement in its three-dimensional aspect and its Digital Elevation Model computation is essential to estimate snow cover volume. Despite the need to cover the all lebanese territory, we favored experimental terrestrial topographic site approaches due to high resolution satellite imagery cost, its limited accessibility and its acquisition restrictions. It is also most challenging to modelise snow cover at national scale. We therefore, selected a representative witness sinkhole located at Ouyoun el Siman to undertake systematic and continuous observations based on topographic approach using a total station. After four years of continuous observations, we acknowledged the relation between snow melt rate, date of total melting and neighboring springs discharges. Consequently, we are able to forecast, early in the season, dates of total snowmelt and springs low water flows which are essentially feeded by snowmelt water. Simulations were ran, predicting the snow level between two sampled dates, they provided promising result for national scale extrapolation.
NASA Astrophysics Data System (ADS)
Armstrong, R. L.; Brodzik, M.; Savoie, M. H.
2007-12-01
Over the past several decades both visible and passive microwave satellite data have been utilized for snow mapping at the continental to global scale. Snow mapping using visible data has been based primarily on the magnitude of the surface reflectance, and in more recent cases on specific spectral signatures, while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. We describe the respective problems as well as the advantages and disadvantages of these two types of satellite data for snow cover mapping and demonstrate how a multi-sensor approach is optimal. For the period 1978 to present we combine data from the NOAA weekly snow charts with snow cover derived from the SMMR and SSM/I brightness temperature data. For the period since 2002 we blend NASA EOS MODIS and AMSR-E data sets. Our current product incorporates MODIS data from the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) with microwave-derived snow water equivalent (SWE) at 25 km, resulting in a blended product that includes percent snow cover in the larger grid cell whenever the microwave SWE signal is absent. Validation of AMSR-E at the brightness temperature level is provided through the comparison with data from the well-calibrated heritage SSM/I sensor over large homogeneous snow-covered surfaces (e.g. Dome C region, Antarctica). We also describe how the application of the higher frequency microwave channels (85 and 89 GHz)enhances accurate mapping of shallow and intermittent snow cover.