Sample records for snow distribution patterns

  1. Interannual consistency in fractal snow depth patterns at two Colorado mountain sites

    Treesearch

    Jeffrey S. Deems; Steven R. Fassnacht; Kelly J. Elder

    2008-01-01

    Fractal dimensions derived from log-log variograms are useful for characterizing spatial structure and scaling behavior in snow depth distributions. This study examines the temporal consistency of snow depth scaling features at two sites using snow depth distributions derived from lidar datasets collected in 2003 and 2005. The temporal snow accumulation patterns in...

  2. Simulations of snow distribution and hydrology in a mountain basin

    USGS Publications Warehouse

    Hartman, Melannie D.; Baron, Jill S.; Lammers, Richard B.; Cline, Donald W.; Band, Larry E.; Liston, Glen E.; Tague, Christina L.

    1999-01-01

    We applied a version of the Regional Hydro-Ecologic Simulation System (RHESSys) that implements snow redistribution, elevation partitioning, and wind-driven sublimation to Loch Vale Watershed (LVWS), an alpine-subalpine Rocky Mountain catchment where snow accumulation and ablation dominate the hydrologic cycle. We compared simulated discharge to measured discharge and the simulated snow distribution to photogrammetrically rectified aerial (remotely sensed) images. Snow redistribution was governed by a topographic similarity index. We subdivided each hillslope into elevation bands that had homogeneous climate extrapolated from observed climate. We created a distributed wind speed field that was used in conjunction with daily measured wind speeds to estimate sublimation. Modeling snow redistribution was critical to estimating the timing and magnitude of discharge. Incorporating elevation partitioning improved estimated timing of discharge but did not improve patterns of snow cover since wind was the dominant controller of areal snow patterns. Simulating wind-driven sublimation was necessary to predict moisture losses.

  3. Evidence of territoriality and species interactions from spatial point-pattern analyses of subarctic-nesting geese

    USGS Publications Warehouse

    Reiter, Matthew E.; Andersen, David E.

    2013-01-01

    Quantifying spatial patterns of bird nests and nest fate provides insights into processes influencing a species’ distribution. At Cape Churchill, Manitoba, Canada, recent declines in breeding Eastern Prairie Population Canada geese (Branta canadensis interior) has coincided with increasing populations of nesting lesser snow geese (Chen caerulescens caerulescens) and Ross’s geese (Chen rossii). We conducted a spatial analysis of point patterns using Canada goose nest locations and nest fate, and lesser snow goose nest locations at two study areas in northern Manitoba with different densities and temporal durations of sympatric nesting Canada and lesser snow geese. Specifically, we assessed (1) whether Canada geese exhibited territoriality and at what scale and nest density; and (2) whether spatial patterns of Canada goose nest fate were associated with the density of nesting lesser snow geese as predicted by the protective-association hypothesis. Between 2001 and 2007, our data suggest that Canada geese were territorial at the scale of nearest neighbors, but were aggregated when considering overall density of conspecifics at slightly broader spatial scales. The spatial distribution of nest fates indicated that lesser snow goose nest proximity and density likely influence Canada goose nest fate. Our analyses of spatial point patterns suggested that continued changes in the distribution and abundance of breeding lesser snow geese on the Hudson Bay Lowlands may have impacts on the reproductive performance of Canada geese, and subsequently the spatial distribution of Canada goose nests.

  4. Studies of Malagasy Eugenia - IV: Seventeen new endemic species, a new combination, and three lectotypifications; with comments on distribution, ecological and evolutionary patterns.

    PubMed

    Snow, Neil; Callmander, Martin; Phillipson, Peter B

    2015-01-01

    Seventeen new endemic species of the genus Eugenia L. (Myrtaceae) are proposed from Madagascar, including: Eugeniaandapae N. Snow, Eugeniabarriei N. Snow, Eugeniabemangidiensis N. Snow, Eugeniacalciscopulorum N. Snow, Eugeniadelicatissima N. Snow, Callm. & Phillipson, Eugeniaechinulata N. Snow, Eugeniagandhii N. Snow, Eugeniahazonjia N. Snow, Eugeniaiantarensis N. Snow, Eugeniamalcomberi N. Snow, Eugeniamanomboensis N. Snow, Eugeniaobovatifolia N. Snow, Eugeniaranomafana N. Snow & D. Turk, Eugeniaravelonarivoi N. Snow & Callm., Eugeniarazakamalalae N. Snow & Callm., Eugeniatiampoka N. Snow & Callm., and Eugeniawilsoniana N. Snow, and one new combination, Eugeniarichardii (Blume) N. Snow, Callm. & Phillipson is provided. Detailed descriptions, information on distribution and ecology, distribution maps, vernacular names (where known), digital images of types, comparisons to morphologically similar species. Preliminary assessment of IUCN risk of extinction and conservation recommendations are provided, including Vulnerable (4 species), Endangered (2 species), and Critically Endangered (4 species). Lectotpyes are designated for Eugeniahovarum H. Perrier, Eugenianompa H. Perrier, and Eugeniascottii H. Perrier respectively.

  5. Spatial Patterns of Snow Cover in North Carolina: Surface and Satellite Perspectives

    NASA Technical Reports Server (NTRS)

    Fuhrmann, Christopher M.; Hall, Dorothy K.; Perry, L. Baker; Riggs, George A.

    2010-01-01

    Snow mapping is a common practice in regions that receive large amounts of snowfall annually, have seasonally-continuous snow cover, and where snowmelt contributes significantly to the hydrologic cycle. Although higher elevations in the southern Appalachian Mountains average upwards of 100 inches of snow annually, much of the remainder of the Southeast U.S. receives comparatively little snowfall (< 10 inches). Recent snowy winters in the region have provided an opportunity to assess the fine-grained spatial distribution of snow cover and the physical processes that act to limit or improve its detection across the Southeast. In the present work, both in situ and remote sensing data are utilized to assess the spatial distribution of snow cover for a sample of recent snowfall events in North Carolina. Specifically, this work seeks to determine how well ground measurements characterize the fine-grained patterns of snow cover in relation to Moderate- Resolution Imaging Spectroradiometer (MODIS) snow cover products (in this case, the MODIS Fractional Snow Cover product).

  6. Studies of Malagasy Eugenia – IV: Seventeen new endemic species, a new combination, and three lectotypifications; with comments on distribution, ecological and evolutionary patterns

    PubMed Central

    Snow, Neil; Callmander, Martin; Phillipson, Peter B.

    2015-01-01

    Abstract Seventeen new endemic species of the genus Eugenia L. (Myrtaceae) are proposed from Madagascar, including: Eugenia andapae N. Snow, Eugenia barriei N. Snow, Eugenia bemangidiensis N. Snow, Eugenia calciscopulorum N. Snow, Eugenia delicatissima N. Snow, Callm. & Phillipson, Eugenia echinulata N. Snow, Eugenia gandhii N. Snow, Eugenia hazonjia N. Snow, Eugenia iantarensis N. Snow, Eugenia malcomberi N. Snow, Eugenia manomboensis N. Snow, Eugenia obovatifolia N. Snow, Eugenia ranomafana N. Snow & D. Turk, Eugenia ravelonarivoi N. Snow & Callm., Eugenia razakamalalae N. Snow & Callm., Eugenia tiampoka N. Snow & Callm., and Eugenia wilsoniana N. Snow, and one new combination, Eugenia richardii (Blume) N. Snow, Callm. & Phillipson is provided. Detailed descriptions, information on distribution and ecology, distribution maps, vernacular names (where known), digital images of types, comparisons to morphologically similar species. Preliminary assessment of IUCN risk of extinction and conservation recommendations are provided, including Vulnerable (4 species), Endangered (2 species), and Critically Endangered (4 species). Lectotpyes are designated for Eugenia hovarum H. Perrier, Eugenia nompa H. Perrier, and Eugenia scottii H. Perrier respectively. PMID:25987885

  7. Snow Pattern Delineation, Scaling, Fidelity, and Landscape Factors

    NASA Astrophysics Data System (ADS)

    Hiemstra, C. A.; Wagner, A. M.; Deeb, E. J.; Morriss, B. F.; Sturm, M.

    2014-12-01

    In many snow-covered landscapes, snow tends to be shallow or deep in the same locations year after year. As snowmelt progresses in spring, areas of shallow snow become snow-free earlier than areas with deep snow. This pattern (Sturm and Wagner 2010) could likely be used to inform or improve modeled snow depth estimates where ground measurements are not collected; however, we must be certain of their utility before ingesting them into model calculations. Do patterns, as we detect them, have a relationship with earlier measured snow distributions? Second, are certain areas on the landscape likely to yield patterns that are influenced too highly by melting to be useful? Our Imnavait Creek Study Area (11 by 19 km) is on Alaska's North Slope, where we have examined a vast library of spring satellite imagery (ranging from mostly snow-covered to mostly snow-free). Landsat TM Imagery has been collected from the early 1980s-present, and the temporal and spatial resolution is roughly two weeks and 30 m, respectively. High resolution satellite imagery (WorldView 1, WorldView 2, IKONOS) has been obtained from 2010-2013 for the same area with almost daily- to monthly-temporal and at 2.5 m spatial resolutions, respectively. We found that there is a striking similarity among patterns from year to year across the span of decades and resolutions. However, the relationship of pattern with observed snow depths was strong in some areas and less clear in others. Overall, we suspect spatial scaling, spatial mismatch, sampling errors, and melt patterns explain most of the areas of pattern and depth disparity.

  8. Preferential Deposition of Snow in Mountains Revisited

    NASA Astrophysics Data System (ADS)

    Lehning, M.; Comola, F.

    2017-12-01

    Inhomogeneous snow accumulation in mountainous terrain is caused by precipitation gradients, spatial deposition differences as well as snow transport. The effect of spatially varying deposition as a function of near-surface flow - particle interactions has had some attention in the last decade but different groups have found conflicting results on both the relative magnitude of the effect as well as the resulting snow distribution patterns. Since in the field and through measurements it is difficult to separate preferential deposition from the other two processes, the investigation needs to rely on modellig. We present a new and complete model of flow - particle dynamics, which combines large eddy flow field simulations (LES) with Lagrangian stochastic modelling (LSM) over topography of varying complexity. Using a non-dimensionalized formulation of flow - particle interactions, we present systematic investigations on how particle properties (inertia, shape), flow properties (wind speed) and topography (height, width) influence the magnitude and distribution pattern of snow deposition. It is shown that dependent on Froude and Stokes numbers, very different deposition patterns can result with maximum deposition either in the windward or lee of a ridge and that dendridic snow is behaving similar to inertialess tracers.

  9. From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns

    NASA Astrophysics Data System (ADS)

    Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael

    2017-04-01

    Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation patterns show a snowfall gradient consistent with the prevailing wind direction. Deriving snow accumulation based on radar data is challenging as the close-ground precipitation patters cannot be resolved by the radar due to shielding and ground clutter in highly complex terrain. Nonetheless, radar measurements show distinct patterns of snowfall and accumulation, which may be the result of orographic enhancement. Station-based snow accumulation measurements are in reasonable agreement with the estimated large-scale radar snow accumulation. The ADS-based snow accumulation maps feature much smaller scale snow accumulation patterns likely due to close-ground wind effects and snow redistribution on top of an altitudinal gradient. To evaluate microphysical processes and patterns influenced by the topography we run a hydrometeor classification on the radar data. The relative importance of topographically induced effects on snow accumulation patterns is investigated based on vertical cross sections of hydrometeor data and corresponding snow accumulation.

  10. A new spatial snow distribution in hydrological models parameterized from observed spatial variability of precipitation.

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Weltzien, Ingunn

    2016-04-01

    The traditional catchment hydrological model with its many free calibration parameters is not a well suited tool for prediction under conditions for which is has not been calibrated. Important tasks for hydrological modelling such as prediction in ungauged basins and assessing hydrological effects of climate change are hence not solved satisfactory. In order to reduce the number of calibration parameters in hydrological models we have introduced a new model which uses a dynamic gamma distribution as the spatial frequency distribution of snow water equivalent (SWE). The parameters are estimated from observed spatial variability of precipitation and the magnitude of accumulation and melting events and are hence not subject to calibration. The relationship between spatial mean and variance of precipitation is found to follow a pattern where decreasing temporal correlation with increasing accumulation or duration of the event leads to a levelling off or even a decrease of the spatial variance. The new model for snow distribution is implemented in the, already parameter parsimonious, DDD (Distance Distribution Dynamics) hydrological model and was tested for 71 Norwegian catchments. We compared the new snow distribution model with the current operational snow distribution model where a fixed, calibrated coefficient of variation parameterizes a log-normal model for snow distribution. Results show that the precision of runoff simulations is equal, but that the new snow distribution model better simulates snow covered area (SCA) when compared with MODIS satellite derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" is prevented and hence spurious trends in SWE.

  11. Early formation of preferential flow in a homogeneous snowpack observed by micro-CT

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; Petrucci, Giacomo; Matzl, Margret; Schneebeli, Martin; De Michele, Carlo

    2017-05-01

    We performed X-ray microtomographic observations of wet-snow metamorphism during controlled continuous melting and melt-freeze events in the laboratory. Three blocks of snow were sieved into boxes and subjected to cyclic, superficial heating or heating-cooling to reproduce vertical water infiltration patterns in snow similarly to natural conditions. Periodically, samples were taken at different heights and scanned. Results suggest that wet-snow metamorphism dynamics are highly heterogeneous even in an initially homogeneous snowpack. Consistent with previous work, we observed an increase with time in the thickness of the ice structure, which is a measure of grain size. However, this was coupled with large temporal scatter between consecutive measurements of the specific surface area and of the statistical moments of grain thickness distributions. Because of marked differences in the right tail, grain thickness distributions did not show shape invariance with time, contrary to previous analyses. In our experiments, wet-snow metamorphism showed two strikingly different patterns: homogeneous coarsening superimposed by faster heterogeneous coarsening in areas that were affected by preferential percolation of water. Liquid water movement in snow and fast structural evolution may be thus intrinsically coupled by early formation of preferential flow at local scale. These observations suggest that further experiments are highly needed to fully understand wet-snow metamorphism and infiltration patterns in a natural snowpack.

  12. Mapping the spatial distribution and time evolution of snow water equivalent with passive microwave measurements

    USGS Publications Warehouse

    Guo, J.; Tsang, L.; Josberger, E.G.; Wood, A.W.; Hwang, J.-N.; Lettenmaier, D.P.

    2003-01-01

    This paper presents an algorithm that estimates the spatial distribution and temporal evolution of snow water equivalent and snow depth based on passive remote sensing measurements. It combines the inversion of passive microwave remote sensing measurements via dense media radiative transfer modeling results with snow accumulation and melt model predictions to yield improved estimates of snow depth and snow water equivalent, at a pixel resolution of 5 arc-min. In the inversion, snow grain size evolution is constrained based on pattern matching by using the local snow temperature history. This algorithm is applied to produce spatial snow maps of Upper Rio Grande River basin in Colorado. The simulation results are compared with that of the snow accumulation and melt model and a linear regression method. The quantitative comparison with the ground truth measurements from four Snowpack Telemetry (SNOTEL) sites in the basin shows that this algorithm is able to improve the estimation of snow parameters.

  13. Summer snowmelt patterns in the South Shetlands using TerraSAR-X imagery

    NASA Astrophysics Data System (ADS)

    Mora, C.; Jimenez, J. J.; Catalao Fernades, J.; Ferreira, A.; David, A.; Ramos, M.; Vieira, G.

    2014-12-01

    Snow plays an important role in controlling ground thermal regime and thus influencing permafrost distribution in the lower areas of the South Shetlands archipelago, where late lying snowpatches protect the soil from summer warming. However, summer snow distribution is complex in the mountainous environments of the Maritime Antarctica and it is very difficult to obtain accurate mapping products of snow cover extent and also to monitor snowmelt. Field observations of snow cover in the region are currently based on: i) thickness data from a very scarce network of meteorological stations, ii) temperature poles allowing to estimate snow thickness, iii) and time-lapse cameras allowing for assessing snow distribution over relatively small areas. The high cloudiness of the Maritime Antarctic environment limits good mapping results from the analysis of optical remote sensing imagery such as Landsat, QuickBird or GeoEye. Therefore, microwave sensors provide the best imagery, since they are not influenced by cloudiness and are sensitive to wet-snow, typical of the melting season. We have acquired TerraSAR-X scenes for Deception and Livingston Islands for January-March 2014 in spotlight (HH, VV and HH/VV) and stripmap modes (HH) and analyse the radar backscattering for determining the differences between wet-snow, dry-snow and bare soil aiming at developing snow melt pattern maps. For ground truthing, snowpits were dug in order to characterize snow stratigraphy, grain size, grain type and snow density and to evaluate its effects on radar backscattering. Time-lapse cameras allow to identify snow patch boundaries in the field and ground surface temperatures obtained with minloggers, together with air temperatures, allow to identify the presence of snow cover in the ground. The current research is conducted in the framework of the project PERMANTAR-3 (Permafrost monitoring and modelling in Antarctic Peninsula - PTDC/AAG-GLO/3908/2012 of the FCT and PROPOLAR).

  14. Characterization and predictability of basin scale SWE distributions using ASO snow depth and SWE retrievals

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Hedrick, A. R.; Marks, D. G.; Painter, T. H.

    2017-12-01

    The spatial and temporal distribution of snow water resources (SWE) in the mountains has been examined extensively through the use of models, in-situ networks and remote sensing techniques. However, until the Airborne Snow Observatory (http://aso.jpl.nasa.gov), our understanding of SWE dynamics has been limited due to a lack of well-constrained spatial distributions of SWE in complex terrain, particularly at high elevations and at regional scales (100km+). ASO produces comprehensive snow depth measurements and well-constrained SWE products providing the opportunity to re-examine our current understanding of SWE distributions with a robust and rich data source. We collected spatially-distributed snow depth and SWE data from over 150 individual ASO acquisitions spanning seven basins in California during the five-year operational period of 2013 - 2017. For each of these acquisitions, we characterized the spatial distribution of snow depth and SWE and examined how these distributions changed with time during snowmelt. We compared these distribution patterns between each of the seven basins and finally, examined the predictability of the SWE distributions using statistical extrapolations through both space and time. We compare and contrast these observationally-based characteristics with those from a physically-based snow model to highlight the strengths and weaknesses of the implementation of our understanding of SWE processes in the model environment. In practice, these results may be used to support or challenge our current understanding of mountain SWE dynamics and provide techniques for enhanced evaluation of high-resolution snow models that go beyond in-situ point comparisons. In application, this work may provide guidance on the potential of ASO to guide backfilling of sparse spaceborne measurements of snow depth and snow water equivalent.

  15. Snow depth spatial structure from hillslope to basin scale

    NASA Astrophysics Data System (ADS)

    Deems, J. S.

    2017-12-01

    Knowledge of spatial patterns of snow accumulation is required for understanding the hydrology, climatology, and ecology of mountain regions. Spatial structure in snow accumulation patterns changes with the scale of observation, a feature that has been characterized using fractal dimensions calculated from lidar-derived snow depth maps: fractal scaling structure at short length scales, with a `scale break' transition to more stochastic patterns at longer separation distances. Previous work has shown that this fractal structure of snow depth distributions differs between sites with different vegetation and terrain characteristics. Forested areas showed a transition to a nearly random spatial distribution at a much shorter lag distance than do unforested sites, enabling a statistical characterization. Alpine areas, however, showed strong spatial structure for a much wider scale range, and were the source of the dominant spatial pattern observable over a wider area. These spatial structure characteristics suggest that the choice of measurement or model resolution (satellite sensor, DEM, field survey point spacing, etc.) will strongly affect the estimates of snow volume or mass, as well as the magnitude of spatial variability. These prior efforts used data sets that were high resolution ( 1 m laser point spacing) but of limited extent ( 1 km2), constraining detection of scale features such as fractal dimension or scale breaks to areas of relatively similar characteristics and to lag distances of under 500 m. New datasets available from the NASA JPL Airborne Snow Observatory (ASO) provide similar resolution but over large areas, enabling assessment of snow spatial structure across an entire watershed, or in similar vegetation or physiography but in different parts of the basin. Additionally, the multi-year ASO time series allows an investigation into the temporal stability of these scale characteristics, within a single snow season and between seasons of strongly varying accumulation totals and patterns. This presentation will explore initial results from this study, using data from the Tuolumne River Basin in California, USA. Fractal scaling characteristics derived from ASO lidar snow depth measurements are examined at the basin scale, as well as in varying topographic and forest cover environments.

  16. Understanding Snow Depth Variability with Respect to the Canopy in Multiple Climates Using Airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Currier, W. R.; Giulia, M.; Pflug, J. M.; Jonas, T.; Jessica, L.

    2017-12-01

    Snow depth within a typical hydrologic model grid cell (150 m or 1 km) can vary from 0.5 meters to 6 meters, or more. This variability is driven by the meteorological conditions throughout the winter as well as the forest architecture. To better understand this variability, we used airborne LiDAR from Olympic National Park, WA, Yosemite National Park, CA, Jemez Caldera, NM, and Niwot Ridge, CO to determine unique spatial patterns of snow depth in forested regions. Specifically, we compared snow depth distributions along north facing forest edges and south facing forest edges to those in the open or directly under the canopy. When categorizing the north facing and south facing edges based on distance from the canopy, distances relative to tree height, and distances relative to the fraction of the sky that is visible (sky view factor) we found unique snow depth patterns for each of these regions. In all regions besides Olympic National Park, WA, north facing edges contained more snow than open areas, forested areas, or along the south facing edges. These snow distributions were relatively consistent regardless of the metric used to define the forest edge and the size of the domain (150 m through 1 km). The absence of the forest edge effect in Olympic National Park was attributed to the meteorological data and climate conditions, which showed significantly less incoming shortwave radiation and more incoming longwave radiation. Furthermore, this study evaluated the effect that wind speed and direction have on the spatial distribution of snow depth.

  17. Comparing different snow products to assess spatio-temporal snow cover patterns in the Central Taurus Mountains, Turkey

    NASA Astrophysics Data System (ADS)

    Sturm, K.; Helmschrot, J.

    2013-12-01

    Snow and its spatial and temporal patterns are important for catchment hydrology in the semi-arid eastern Mediterranean. Since most of the annual rainfall is stored as snow during winter and released during drier conditions in spring and summer, downstream regions of the Taurus Mountains relying on snow water temporarily stored in reservoirs for agricultural use are heavily dependent on the timing of snowmelt discharge. Runoff is controlled by the amount of accumulated snow, its distribution, and the climatic conditions controlling spring snowmelt. Thus, knowledge about spatial and temporal snow cover dynamics is essential for sustainable water resources management. The lack of observations in high-altitude regions reinforces the application of different snow products for a better assessment of spatio-temporal snow cover patterns. To better assess the quality of such products, simulated daily snow cover and EO-based snow cover products were compared for the Egribuk subcatchment, in the Central Taurus Mountains, Turkey. Daily information on snow cover, depths, and snow water equivalent was derived from distributed hydrological modeling using the J2000 model. Furthermore, 8-day MODIS snow cover data from Terra (MOD10A2) and Aqua (MYD10A2) satellites at a spatial resolution of 500 m were synchronized to receive cloud-free images. From this effort, 253 images covering the period between 07/04/2002 and 12/27/2007 were used for further analyses. The products were analyzed individually to determine the number of snow-covered days in relation to freezing days, spring snowmelt onsets, and temporal patterns, reflecting the effect of altitude on the percentage snow-covered area (SCA) along a topographic gradient at various time-steps. Monthly and 8-day spatial patterns of a single snow season were also examined. When SCA peaks at all altitudes, in February and March, the results of both products show a good agreement regarding SCA extent. In contrast, the extent of SCA differs notably during snow accumulation and ablation periods, the highest deviations occurring in December, April, and May. The highest SCA inconsistencies are observed in the low and mid altitudes, whereas the higher elevations are snow-covered very early in the snow season as modeled by J2000. During these periods, J2000 simulates a significantly larger SCA than MODIS. The analysis of individual time steps suggests that the J2000 daily model does capture individual snow events, whereas the MODIS products fail to do so due to their temporal resolution. Furthermore, acquisition time and inner-daily melt and re-freezing effects may affect SCA estimates from MODIS data. In other cases, differences can clearly be associated to insufficient model input data, primarily due to limited spatial precipitation and temperature data. Our study indicates that individual products might provide inconsistent information on temporal and spatial snow cover. We recommend considering a combined analysis of different snow products in order to provide reliable information on snow cover dynamics, in particular in eastern Mediterranean high-altitude environments.

  18. Factors Impacting Spatial Patterns of Snow Distribution in a Small Catchment near Nome, AK

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wilson, C. J.; Charsley-Groffman, L.; Busey, R.; Bolton, W. R.

    2017-12-01

    Snow cover plays an important role in the climate, hydrology and ecological systems of the Arctic due to its influence on the water balance, thermal regimes, vegetation and carbon flux. Thus, snow depth and coverage have been key components in all the earth system models but are often poorly represented for arctic regions, where fine scale snow distribution data is sparse. The snow data currently used in the models is at coarse resolution, which in turn leads to high uncertainty in model predictions. Through the DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic, high resolution snow distribution data is being developed and applied in catchment scale models to ultimately improve representation of snow and its interactions with other model components in the earth system models . To improve these models, it is important to identify key factors that control snow distribution and quantify the impacts of those factors on snow distribution. In this study, two intensive snow depth surveys (1 to 10 meters scale) were conducted for a 2.3 km2 catchment on the Teller road, near Nome, AK in the winter of 2016 and 2017. We used a statistical model to quantify the impacts of vegetation types, macro-topography, micro-topography, and meteorological parameters on measured snow depth. The results show that snow spatial distribution was similar between 2016 and 2017, snow depth was spatially auto correlated over small distance (2-5 meters), but not spatially auto correlated over larger distance (more than 2-5 meters). The coefficients of variation of snow depth was above 0.3 for all the snow survey transects (500-800 meters long). Variation of snow depth is governed by vegetation height, aspect, slope, surface curvature, elevation and wind speed and direction. We expect that this empirical statistical model can be used to estimate end of winter snow depth for the whole watershed and will further develop the model using data from other arctic regions to estimate seasonally dynamic snow coverage and properties for use in catchment scale to pan-Arctic models.

  19. Numerical simulation of distributed snow processes in complex terrain utilizing triangulated irregular networks (TINs)

    NASA Astrophysics Data System (ADS)

    Rinehart, A. J.; Vivoni, E. R.

    2005-12-01

    Snow processes play a significant role in the hydrologic cycle of mountainous and high-latitude catchments in the western United States. Snowmelt runoff contributes to a large percentage of stream runoff while snow covered regions remain highly localized to small portions of the catchment area. The appropriate representation of snow dynamics at a given range of spatial and temporal scales is critical for adequately predicting runoff responses in snowmelt-dominated watersheds. In particular, the accurate depiction of snow cover patterns is important as a range of topographic, land-use and geographic parameters create zones of preferential snow accumulation or ablation that significantly affect the timing of a region's snow melt and the persistence of a snow pack. In this study, we present the development and testing of a distributed snow model designed for simulations over complex terrain. The snow model is developed within the context of the TIN-based Real-time Integrated Basin Simulator (tRIBS), a fully-distributed watershed model capable of continuous simulations of coupled hydrological processes, including unsaturated-saturated zone dynamics, land-atmosphere interactions and runoff generation via multiple mechanisms. The use of triangulated irregular networks as a domain discretization allows tRIBS to accurately represent topography with a reduced number of computational nodes, as compared to traditional grid-based models. This representation is developed using a Delauney optimization criterion that causes areas of topographic homogeneity to be represented at larger spatial scales than the original grid, while more heterogeneous areas are represented at higher resolutions. We utilize the TIN-based terrain representation to simulate microscale (10-m to 100-m) snow pack dynamics over a catchment. The model includes processes such as the snow pack energy balance, wind and bulk redistribution, and snow interception by vegetation. For this study, we present tests from a distributed one-layer energy balance model as applied to a northern New Mexico hillslope in a ponderosa pine forest using both synthetic and real meteorological forcing. We also provide tests of the model's capability to represent spatial patterns within a small watershed in the Jemez Mountain region. Finally, we discuss the interaction of the tested snow process module with existing components in the watershed model and additional applications and capabilities under development.

  20. Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography

    NASA Astrophysics Data System (ADS)

    Pimentel, Rafael; Herrero, Javier; José Polo, María

    2017-02-01

    Subgrid variability introduces non-negligible scale effects on the grid-based representation of snow. This heterogeneity is even more evident in semiarid regions, where the high variability of the climate produces various accumulation melting cycles throughout the year and a large spatial heterogeneity of the snow cover. This variability in a watershed can often be represented by snow accumulation-depletion curves (ADCs). In this study, terrestrial photography (TP) of a cell-sized area (30 × 30 m) was used to define local snow ADCs at a Mediterranean site. Snow-cover fraction (SCF) and snow-depth (h) values obtained with this technique constituted the two datasets used to define ADCs. A flexible sigmoid function was selected to parameterize snow behaviour on this subgrid scale. It was then fitted to meet five different snow patterns in the control area: one for the accumulation phase and four for the melting phase in a cycle within the snow season. Each pattern was successfully associated with the snow conditions and previous evolution. The resulting ADCs were associated to certain physical features of the snow, which were used to incorporate them in the point snow model formulated by Herrero et al. (2009) by means of a decision tree. The final performance of this model was tested against field observations recorded over four hydrological years (2009-2013). The calibration and validation of this ADC snow model was found to have a high level of accuracy, with global RMSE values of 105.8 mm for the average snow depth and 0.21 m2 m-2 for the snow-cover fraction in the control area. The use of ADCs on the cell scale proposed in this research provided a sound basis for the extension of point snow models to larger areas by means of a gridded distributed calculation.

  1. Snow cover distribution over elevation zones in a mountainous catchment

    NASA Astrophysics Data System (ADS)

    Panagoulia, D.; Panagopoulos, Y.

    2009-04-01

    A good understanding of the elevetional distribution of snow cover is necessary to predict the timing and volume of runoff. In a complex mountainous terrain the snow cover distribution within a watershed is highly variable in time and space and is dependent on elevation, slope, aspect, vegetation type, surface roughness, radiation load, and energy exchange at the snow-air interface. Decreases in snowpack due to climate change could disrupt the downstream urban and agricultural water supplies, while increases could lead to seasonal flooding. Solar and longwave radiation are dominant energy inputs driving the ablation process. Turbulent energy exchange at the snow cover surface is important during the snow season. The evaporation of blowing and drifting snow is strongly dependent upon wind speed. Much of the spatial heterogeneity of snow cover is the result of snow redistribution by wind. Elevation is important in determining temperature and precipitation gradients along hillslopes, while the temperature gradients determine where precipitation falls as rain and snow and contribute to variable melt rates within the hillslope. Under these premises, the snow accumulation and ablation (SAA) model of the US National Weather Service (US NWS) was applied to implement the snow cover extent over elevation zones of a mountainous catchment (the Mesochora catchment in Western-Central Greece), taking also into account the indirectly included processes of sublimation, interception, and snow redistribution. The catchment hydrology is controlled by snowfall and snowmelt and the simulated discharge was computed from the soil moisture accounting (SMA) model of the US NWS and compared to the measured discharge. The elevationally distributed snow cover extent presented different patterns with different time of maximization, extinction and return during the year, producing different timing of discharge that is a crucial factor for the control and management of water resources systems.

  2. Improving the Terrain-Based Parameter for the Assessment of Snow Redistribution in the Col du Lac Blanc Area and Comparisons with TLS Snow Depth Data

    NASA Astrophysics Data System (ADS)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Nishimura, Kouichi; Vionnet, Vincent; Guyomarc'h, Gilbert

    2014-05-01

    Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns, but has failed to quantitatively describe the snow redistribution, and correlations with measured snow heights were poor. The objective of our research was to a) identify the sources of poor correlations between predicted and measured snow re-distribution and b) improve the parameters ability to qualitatively and quantitatively describe snow redistribution in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its constant wind direction and the availability of data from a meteorological station. Our work focused on areas with terrain edges of approximately 10 m height, and we worked with 1-2 m resolution digital terrain and snow surface data. We first compared the results of the terrain-based parameter calculations to measured snow-depths, obtained by high-accuracy terrestrial laser scan measurements. The results were similar to previous studies: The parameter was able to reproduce observed patterns in snow distribution, but regression analyses showed poor correlations between terrain-based parameter and measured snow-depths. We demonstrate how the correlations between measured and calculated snow heights improve if the parameter is calculated based on a snow surface model instead of a digital terrain model. We show how changing the parameter's search distance and how raster re-sampling and raster smoothing improve the results. To improve the parameter's quantitative abilities, we modified the parameter, based on the comparisons with TLS data and the terrain and wind conditions specific to the research site. The modification is in a linear form f(x) = a * Sx, where a is a newly introduced parameter; f(x) yields the estimates for the snow height. We found that the parameter depends on the time period between the compared snow surfaces and the intensity of drifting snow events, which are linked to wind velocities. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter a. We could improve the parameters' correlations with measured snow heights and its ability to quantitatively describe snow distribution in the Col du Lac Blanc area. We believe that our work is also a prerequisite to further improve the parameter's ability to describe snow redistribution.

  3. Spatial distribution and potential sources of trace metals in insoluble particles of snow from Urumqi, China.

    PubMed

    Li, Xiaolan; Jiang, Fengqing; Wang, Shaoping; Turdi, Muyesser; Zhang, Zhaoyong

    2015-01-01

    The purpose of this work is to characterize trace elements in snow in urban-suburb gradient over Urumqi city, China. The spatial distribution patterns of 11 trace metals in insoluble particulate matters of snow were revealed by using 102 snow samples collected in and around urban areas of Urumqi, a city suffering from severe wintertime air pollution in China. Similar spatial distribution for Mn, Cu, Zn, Ni, and Pb was found and their two significant high-value areas located in the west and east, respectively, and a high-value area in the south, which were correlated with factory emissions, traffic activities, and construction fugitive dust. The high-value areas of Cr, Ni, and V occurred in the northeast corner and along main traffic paths, which were linked to oil refinery and vehicular emissions. High value of Be presented in the west of the city. The high-value area of Co in the northeast could be related to local soil. Cd and U displayed relatively even spatial patterns in the urban area. In view of distance from the urban center, e.g., from the first circular belt to the fourth circular belt, except Be, V, Cd, and U, the contents of other metals generally decreased from the first circular belt to the forth circular belt, implying the effect of human activity clearly. Additionally, prevailing northwesterly winds and occasionally southeasterly winds in winter were associated with decreased, generally, concentrations of trace metal in snow from the urban center to the southern suburb along a northwest and southeast transect. The information on concentrations and spatial distributions of these metals in insoluble particles of snow in winter will be valuable for further environmental protection and planning.

  4. Analysis of passive microwave signatures over snow-covered mountainous area

    NASA Astrophysics Data System (ADS)

    Kim, R. S.; Durand, M. T.

    2015-12-01

    Accurate knowledge of snow distribution over mountainous area is critical for climate studies and the passive microwave(PM) measurements have been widely used and invested in order to obtain information about snowpack properties. Understanding and analyzing the signatures for the explicit inversion of the remote sensing data from land surfaces is required for successful using of passive microwave sensors but this task is often ambiguous due to the large variability of physical conditions and object types. In this paper, we discuss the pattern of measured brightness temperatures and emissivities at vertical and horizontal polarization over the frequency range of 10.7 to 89 GHz of land surfaces under various snow and vegetation conditions. The Multiband polarimetric Scanning Radiometer(PSR) imagery is used over NASA Cold Land Processes Field Experiment(CLPX) study area with ground-based measurements of snow depth and snow properties. Classification of snow under various conditions in mountainous area is implemented based on different patterns of microwave signatures.

  5. Spatio-temporal variability of snow water equivalent in the extra-tropical Andes Cordillera from distributed energy balance modeling and remotely sensed snow cover

    NASA Astrophysics Data System (ADS)

    Cornwell, E.; Molotch, N. P.; McPhee, J.

    2016-01-01

    Seasonal snow cover is the primary water source for human use and ecosystems along the extratropical Andes Cordillera. Despite its importance, relatively little research has been devoted to understanding the properties, distribution and variability of this natural resource. This research provides high-resolution (500 m), daily distributed estimates of end-of-winter and spring snow water equivalent over a 152 000 km2 domain that includes the mountainous reaches of central Chile and Argentina. Remotely sensed fractional snow-covered area and other relevant forcings are combined with extrapolated data from meteorological stations and a simplified physically based energy balance model in order to obtain melt-season melt fluxes that are then aggregated to estimate the end-of-winter (or peak) snow water equivalent (SWE). Peak SWE estimates show an overall coefficient of determination R2 of 0.68 and RMSE of 274 mm compared to observations at 12 automatic snow water equivalent sensors distributed across the model domain, with R2 values between 0.32 and 0.88. Regional estimates of peak SWE accumulation show differential patterns strongly modulated by elevation, latitude and position relative to the continental divide. The spatial distribution of peak SWE shows that the 4000-5000 m a.s.l. elevation band is significant for snow accumulation, despite having a smaller surface area than the 3000-4000 m a.s.l. band. On average, maximum snow accumulation is observed in early September in the western Andes, and in early October on the eastern side of the continental divide. The results presented here have the potential of informing applications such as seasonal forecast model assessment and improvement, regional climate model validation, as well as evaluation of observational networks and water resource infrastructure development.

  6. The mortality rates and the space-time patterns of John Snow's cholera epidemic map.

    PubMed

    Shiode, Narushige; Shiode, Shino; Rod-Thatcher, Elodie; Rana, Sanjay; Vinten-Johansen, Peter

    2015-06-17

    Snow's work on the Broad Street map is widely known as a pioneering example of spatial epidemiology. It lacks, however, two significant attributes required in contemporary analyses of disease incidence: population at risk and the progression of the epidemic over time. Despite this has been repeatedly suggested in the literature, no systematic investigation of these two aspects was previously carried out. Using a series of historical documents, this study constructs own data to revisit Snow's study to examine the mortality rate at each street location and the space-time pattern of the cholera outbreak. This study brings together records from a series of historical documents, and prepares own data on the estimated number of residents at each house location as well as the space-time data of the victims, and these are processed in GIS to facilitate the spatial-temporal analysis. Mortality rates and the space-time pattern in the victims' records are explored using Kernel Density Estimation and network-based Scan Statistic, a recently developed method that detects significant concentrations of records such as the date and place of victims with respect to their distance from others along the street network. The results are visualised in a map form using a GIS platform. Data on mortality rates and space-time distribution of the victims were collected from various sources and were successfully merged and digitised, thus allowing the production of new map outputs and new interpretation of the 1854 cholera outbreak in London, covering more cases than Snow's original report and also adding new insights into their space-time distribution. They confirmed that areas in the immediate vicinity of the Broad Street pump indeed suffered from excessively high mortality rates, which has been suspected for the past 160 years but remained unconfirmed. No distinctive pattern was found in the space-time distribution of victims' locations. The high mortality rates identified around the Broad Street pump are consistent with Snow's theory about cholera being transmitted through contaminated water. The absence of a clear space-time pattern also indicates the water-bourne, rather than the then popular belief of air bourne, nature of cholera. The GIS data constructed in this study has an academic value and would cater for further research on Snow's map.

  7. Measuring spatiotemporal variation in snow optical grain size under a subalpine forest canopy using contact spectroscopy

    NASA Astrophysics Data System (ADS)

    Molotch, Noah P.; Barnard, David M.; Burns, Sean P.; Painter, Thomas H.

    2016-09-01

    The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5-15°C m-1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.

  8. Improving snow water equivalent simulations in an alpine basin using blended gage precipitation and snow pillow measurements

    NASA Astrophysics Data System (ADS)

    Sohrabi, M.; Safeeq, M.; Conklin, M. H.

    2017-12-01

    Snowpack is a critical freshwater reservoir that sustains ecosystem, natural habitat, hydropower, agriculture, and urban water supply in many areas around the world. Accurate estimation of basin scale snow water equivalent (SWE), through both measurement and modeling, has been significantly recognized to improve regional water resource management. Recent advances in remote data acquisition techniques have improved snow measurements but our ability to model snowpack evolution is largely hampered by poor knowledge of inherently variable high-elevation precipitation patterns. For a variety of reasons, majority of the precipitation gages are located in low and mid-elevation range and function as drivers for basin scale hydrologic modeling. Here, we blend observed gage precipitation from low and mid-elevation with point observations of SWE from high-elevation snow pillow into a physically based snow evolution model (SnowModel) to better represent the basin-scale precipitation field and improve snow simulations. To do this, we constructed two scenarios that differed in only precipitation. In WTH scenario, we forced the SnowModel using spatially distributed gage precipitation data. In WTH+SP scenario, the model was forced with spatially distributed precipitation data derived from gage precipitation along with observed precipitation from snow pillows. Since snow pillows do not directly measure precipitation, we uses positive change in SWE as a proxy for precipitation. The SnowModel was implemented at daily time step and 100 m resolution for the Kings River Basin, USA over 2000-2014. Our results show an improvement in snow simulation under WTH+SP as compared to WTH scenario, which can be attributed to better representation in high-elevation precipitation patterns under WTH+SP. The average Nash Sutcliffe efficiency over all snow pillow and course sites was substantially higher for WTH+SP (0.77) than for WTH scenario (0.47). The maximum difference in observed and simulated peak SWE was 810 mm for WTH and 380 mm for WTH+SP, which led to underestimation of snow season length and melt rate by up to 30 days and 12 mm/day, respectively, in WTH scenario. These results indicate that point scale snow observations at higher elevation can be used to improve precipitation input to hydrologic modeling in mountainous basins.

  9. Mapping of ice, snow and water using aircraft-mounted LiDAR

    NASA Astrophysics Data System (ADS)

    Church, Philip; Matheson, Justin; Owens, Brett

    2016-05-01

    Neptec Technologies Corp. has developed a family of obscurant-penetrating 3D laser scanners (OPAL 2.0) that are being adapted for airborne platforms for operations in Degraded Visual Environments (DVE). The OPAL uses a scanning mechanism based on the Risley prism pair. Data acquisition rates can go as high as 200kHz for ranges within 240m and 25kHz for ranges exceeding 240m. The scan patterns are created by rotating two prisms under independent motor control producing a conical Field-Of-View (FOV). An OPAL laser scanner with 90° FOV was installed on a Navajo aircraft, looking down through an aperture in the aircraft floor. The rotation speeds of the Risley prisms were selected to optimize a uniformity of the data samples distribution on the ground. Flight patterns simulating a landing approach over snow and ice in an unprepared Arctic environment were also performed to evaluate the capability of the OPAL LiDAR to map snow and ice elevation distribution in real-time and highlight potential obstacles. Data was also collected to evaluate the detection of wires when flying over water, snow and ice. Main results and conclusions obtained from the flight data analysis are presented.

  10. Optimizing placements of ground-based snow sensors for areal snow cover estimation using a machine-learning algorithm and melt-season snow-LiDAR data

    NASA Astrophysics Data System (ADS)

    Oroza, C.; Zheng, Z.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2016-12-01

    We present a structured, analytical approach to optimize ground-sensor placements based on time-series remotely sensed (LiDAR) data and machine-learning algorithms. We focused on catchments within the Merced and Tuolumne river basins, covered by the JPL Airborne Snow Observatory LiDAR program. First, we used a Gaussian mixture model to identify representative sensor locations in the space of independent variables for each catchment. Multiple independent variables that govern the distribution of snow depth were used, including elevation, slope, and aspect. Second, we used a Gaussian process to estimate the areal distribution of snow depth from the initial set of measurements. This is a covariance-based model that also estimates the areal distribution of model uncertainty based on the independent variable weights and autocorrelation. The uncertainty raster was used to strategically add sensors to minimize model uncertainty. We assessed the temporal accuracy of the method using LiDAR-derived snow-depth rasters collected in water-year 2014. In each area, optimal sensor placements were determined using the first available snow raster for the year. The accuracy in the remaining LiDAR surveys was compared to 100 configurations of sensors selected at random. We found the accuracy of the model from the proposed placements to be higher and more consistent in each remaining survey than the average random configuration. We found that a relatively small number of sensors can be used to accurately reproduce the spatial patterns of snow depth across the basins, when placed using spatial snow data. Our approach also simplifies sensor placement. At present, field surveys are required to identify representative locations for such networks, a process that is labor intensive and provides limited guarantees on the networks' representation of catchment independent variables.

  11. Unexpected Patterns in Snow and Dirt

    NASA Astrophysics Data System (ADS)

    Ackerson, Bruce J.

    2018-01-01

    For more than 30 years, Albert A. Bartlett published "Thermal patterns in the snow" in this journal. These are patterns produced by heat sources underneath the snow. Bartlett's articles encouraged me to pay attention to patterns in snow and to understanding them. At winter's end the last snow becomes dirty and is heaped into piles. This snow comes from the final clearing of sidewalks and driveways. The patterns observed in these piles defied my intuition. This melting snow develops edges where dirt accumulates, in contrast to ice cubes, which lose sharp edges and become more spherical upon melting. Furthermore, dirt absorbs more radiation than snow and yet doesn't melt and round the sharp edges of snow, where dirt accumulates.

  12. A Comparative Distributed Evaluation of the NWS-RDHM using Shape Matching and Traditional Measures with In Situ and Remotely Sensed Information

    NASA Astrophysics Data System (ADS)

    KIM, J.; Bastidas, L. A.

    2011-12-01

    We evaluate, calibrate and diagnose the performance of National Weather Service RDHM distributed model over the Durango River Basin in Colorado using simultaneously in situ and remotely sensed information from different discharge gaging stations (USGS), information about snow cover (SCV) and snow water equivalent (SWE) in situ from several SNOTEL sites and snow information distributed over the catchment from remotely sensed information (NOAA-NASA). In the process of evaluation we attempt to establish the optimal degree of parameter distribution over the catchment by calibration. A multi-criteria approach based on traditional measures (RMSE) and similarity based pattern comparisons using the Hausdorff and Earth Movers Distance approaches is used for the overall evaluation of the model performance. These pattern based approaches (shape matching) are found to be extremely relevant to account for the relatively large degree of inaccuracy in the remotely sensed SWE (judged inaccurate in terms of the value but reliable in terms of the distribution pattern) and the high reliability of the SCV (yes/no situation) while at the same time allow for an evaluation that quantifies the accuracy of the model over the entire catchment considering the different types of observations. The Hausdorff norm, due to its intrinsically multi-dimensional nature, allows for the incorporation of variables such as the terrain elevation as one of the variables for evaluation. The EMD, because of its extremely high computational overburden, requires the mapping of the set of evaluation variables into a two dimensional matrix for computation.

  13. Mapping snow depth return levels: smooth spatial modeling versus station interpolation

    NASA Astrophysics Data System (ADS)

    Blanchet, J.; Lehning, M.

    2010-12-01

    For adequate risk management in mountainous countries, hazard maps for extreme snow events are needed. This requires the computation of spatial estimates of return levels. In this article we use recent developments in extreme value theory and compare two main approaches for mapping snow depth return levels from in situ measurements. The first one is based on the spatial interpolation of pointwise extremal distributions (the so-called Generalized Extreme Value distribution, GEV henceforth) computed at station locations. The second one is new and based on the direct estimation of a spatially smooth GEV distribution with the joint use of all stations. We compare and validate the different approaches for modeling annual maximum snow depth measured at 100 sites in Switzerland during winters 1965-1966 to 2007-2008. The results show a better performance of the smooth GEV distribution fitting, in particular where the station network is sparser. Smooth return level maps can be computed from the fitted model without any further interpolation. Their regional variability can be revealed by removing the altitudinal dependent covariates in the model. We show how return levels and their regional variability are linked to the main climatological patterns of Switzerland.

  14. Unexpected Patterns in Snow and Dirt

    ERIC Educational Resources Information Center

    Ackerson, Bruce J.

    2018-01-01

    For more than 30 years, Albert A. Bartlett published "Thermal patterns in the snow" in this journal. These are patterns produced by heat sources underneath the snow. Bartlett's articles encouraged me to pay attention to patterns in snow and to understanding them. At winter's end the last snow becomes dirty and is heaped into piles. This…

  15. Snow hydrology in a general circulation model

    NASA Technical Reports Server (NTRS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  16. Ecosystem classifications based on summer and winter conditions.

    PubMed

    Andrew, Margaret E; Nelson, Trisalyn A; Wulder, Michael A; Hobart, George W; Coops, Nicholas C; Farmer, Carson J Q

    2013-04-01

    Ecosystem classifications map an area into relatively homogenous units for environmental research, monitoring, and management. However, their effectiveness is rarely tested. Here, three classifications are (1) defined and characterized for Canada along summertime productivity (moderate-resolution imaging spectrometer fraction of absorbed photosynthetically active radiation) and wintertime snow conditions (special sensor microwave/imager snow water equivalent), independently and in combination, and (2) comparatively evaluated to determine the ability of each classification to represent the spatial and environmental patterns of alternative schemes, including the Canadian ecozone framework. All classifications depicted similar patterns across Canada, but detailed class distributions differed. Class spatial characteristics varied with environmental conditions within classifications, but were comparable between classifications. There was moderate correspondence between classifications. The strongest association was between productivity classes and ecozones. The classification along both productivity and snow balanced these two sets of variables, yielding intermediate levels of association in all pairwise comparisons. Despite relatively low spatial agreement between classifications, they successfully captured patterns of the environmental conditions underlying alternate schemes (e.g., snow classes explained variation in productivity and vice versa). The performance of ecosystem classifications and the relevance of their input variables depend on the environmental patterns and processes used for applications and evaluation. Productivity or snow regimes, as constructed here, may be desirable when summarizing patterns controlled by summer- or wintertime conditions, respectively, or of climate change responses. General purpose ecosystem classifications should include both sets of drivers. Classifications should be carefully, quantitatively, and comparatively evaluated relative to a particular application prior to their implementation as monitoring and assessment frameworks.

  17. Assessing spatial and temporal snowpack evolution and melt with time-lapse photography

    NASA Astrophysics Data System (ADS)

    Bush, C. E.; Ewers, B. E.; Beverly, D.; Speckman, H. N.; Hyde, K.; Ohara, N.

    2015-12-01

    Snowpack supplies and stores water for many ecosystems of the greater Rocky Mountain region. In Wyoming the snowpack supplies water to 18 states east and west of the Continental Divide. The spatial variability in physical and biological processes creates a heterogeneous pattern of snow evolution. Understanding these processes within individual plots and throughout the entire watershed increases the predictive power of snow distribution, melt rates and contribution to streamflow. However, on site sampling of snow can be an expensive and arduous process. The objective of this experiment was to quantify spatial and temporal patterns of snowpack evolution and melt rates while minimizing perturbations to snowpack through the use of time-lapse photography via trail cameras. Field cameras were assessed as a method to quantify snow depths throughout the 120 ha No Name watershed at approximately 3000 m elevation in central Wyoming. RGB trail cameras were installed at three systematically chosen sites within the watershed to correlate physical and biological drivers of snow distribution. Five stakes were placed in each site in heterogeneous spots that remained in the frame of the camera. Stakes were divided into five centimeter increments, alternating black and white bars, with red bars denoting each half meter. Images were then taken at two-hour intervals over a period of three-months and analyzed with the ImageJ program. Snowpack distributions, as well as melt rates, were variable at both the plot and watershed scales. Meteorological and physical drivers, primarily topography and radiation, accounted for the greatest variability when comparing among plot across the watershed; however, LAI and soil and air temperature were the most significant drivers within plots. Snow-melt rate increased as soils and course woody debris became exposed increasing ground and soil temperature. These data will improve process model predictions of streamflow from the watershed.

  18. Wind Tunnel Experiments: Influence of Erosion and Deposition on Wind-Packing of New Snow

    NASA Astrophysics Data System (ADS)

    Sommer, C.; Fierz, C. G.; Lehning, M.

    2017-12-01

    We observed the formation of wind crusts in wind tunnel experiments. A SnowMicroPen was used to measure the hardness profile of the snow and a Microsoft Kinect provided distributed snow depth data. Earlier experiments showed that no crust forms without saltation and that the dynamics of erosion and deposition may be a key factor to explain wind-packing. The Kinect data could be used to quantify spatial erosion and deposition patterns and the combination with the SnowMicroPen data allowed to study the effect of erosion and deposition on wind-hardening. We found that erosion had no hardening effect on fresh snow and that deposition is a necessary but not sufficient condition for wind crust formation. Deposited snow was only hardened in wind-exposed areas. The Kinect data was used to calculate the wind-exposure parameter Sx. We observed no significant hardening for Sx>0.25. The variability of resulting wind crust hardnesses at Sx<0.25 was still large, however.

  19. Developing an A Priori Database for Passive Microwave Snow Water Retrievals Over Ocean

    NASA Astrophysics Data System (ADS)

    Yin, Mengtao; Liu, Guosheng

    2017-12-01

    A physically optimized a priori database is developed for Global Precipitation Measurement Microwave Imager (GMI) snow water retrievals over ocean. The initial snow water content profiles are derived from CloudSat Cloud Profiling Radar (CPR) measurements. A radiative transfer model in which the single-scattering properties of nonspherical snowflakes are based on the discrete dipole approximate results is employed to simulate brightness temperatures and their gradients. Snow water content profiles are then optimized through a one-dimensional variational (1D-Var) method. The standard deviations of the difference between observed and simulated brightness temperatures are in a similar magnitude to the observation errors defined for observation error covariance matrix after the 1D-Var optimization, indicating that this variational method is successful. This optimized database is applied in a Bayesian retrieval snow water algorithm. The retrieval results indicated that the 1D-Var approach has a positive impact on the GMI retrieved snow water content profiles by improving the physical consistency between snow water content profiles and observed brightness temperatures. Global distribution of snow water contents retrieved from the a priori database is compared with CloudSat CPR estimates. Results showed that the two estimates have a similar pattern of global distribution, and the difference of their global means is small. In addition, we investigate the impact of using physical parameters to subset the database on snow water retrievals. It is shown that using total precipitable water to subset the database with 1D-Var optimization is beneficial for snow water retrievals.

  20. Snow measurement system for airborne snow surveys (GPR system from helicopter) in high mountian areas.

    NASA Astrophysics Data System (ADS)

    Sorteberg, Hilleborg K.

    2010-05-01

    In the hydropower industry, it is important to have precise information about snow deposits at all times, to allow for effective planning and optimal use of the water. In Norway, it is common to measure snow density using a manual method, i.e. the depth and weight of the snow is measured. In recent years, radar measurements have been taken from snowmobiles; however, few energy supply companies use this method operatively - it has mostly been used in connection with research projects. Agder Energi is the first Norwegian power producer in using radar tecnology from helicopter in monitoring mountain snow levels. Measurement accuracy is crucial when obtaining input data for snow reservoir estimates. Radar screening by helicopter makes remote areas more easily accessible and provides larger quantities of data than traditional ground level measurement methods. In order to draw up a snow survey system, it is assumed as a basis that the snow distribution is influenced by vegetation, climate and topography. In order to take these factors into consideration, a snow survey system for fields in high mountain areas has been designed in which the data collection is carried out by following the lines of a grid system. The lines of this grid system is placed in order to effectively capture the distribution of elevation, x-coordinates, y-coordinates, aspect, slope and curvature in the field. Variation in climatic conditions are also captured better when using a grid, and dominant weather patterns will largely be captured in this measurement system.

  1. Spatiotemporal Variability and in Snow Phenology over Eurasian Continent druing 1966-2012

    NASA Astrophysics Data System (ADS)

    Zhong, X.; Zhang, T.; Wang, K.; Zheng, L.; Wang, H.

    2016-12-01

    Snow cover is a key part of the cryosphere, which is a critical component of the global climate system. Snow cover phenology critically effects on the surface energy budget, the surface albedo and hydrological processes. In this study, the climatology and spatiotemporal variability of snow cover phenology were investigated using the long-term (1966-2012) ground-based measurements of daily snow depth from 1103 stations across the Eurasian Continent. The results showed that the distributions of the first date, last date, snow cover duration and number of snow cover days generally represented the latitudinal zonality over the Eurasian Continent, and there were significant elevation gradient patterns in the Tibetan Plateau. The first date of snow cover delayed by about 1.2 day decade-1, the last date of snow cover advanced with the rate of -1.2 day decade-1, snow cover duration and number of snow cover days shortened by about 2.7and 0.6 day decade-1, respectively, from 1966 through 2012. Compared with precipitation, the correlation between snow cover phenology and air temperature was more significant. The changes in snow cover duration were mainly controlled by the changes of air temperature in autumn and spring. The shortened number of snow cover days was affected by rising temperature during the cold season except for the air temperature in autumn and spring.

  2. Spatially-resolved mean flow and turbulence help explain observed erosion and deposition patterns of snow over Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Trujillo, E.; Giometto, M. G.; Leonard, K. C.; Maksym, T. L.; Meneveau, C. V.; Parlange, M. B.; Lehning, M.

    2014-12-01

    Sea ice-atmosphere interactions are major drivers of patterns of sea ice drift and deformations in the Polar regions, and affect snow erosion and deposition at the surface. Here, we combine analyses of sea ice surface topography at very high-resolutions (1-10 cm), and Large Eddy Simulations (LES) to study surface drag and snow erosion and deposition patterns from process scales to floe scales (1 cm - 100 m). The snow/ice elevations were obtained using a Terrestrial Laser Scanner during the SIPEX II (Sea Ice Physics and Ecosystem eXperiment II) research voyage to East Antarctica (September-November 2012). LES are performed on a regular domain adopting a mixed pseudo-spectral/finite difference spatial discretization. A scale-dependent dynamic subgrid-scale model based on Lagrangian time averaging is adopted to determine the eddy-viscosity in the bulk of the flow. Effects of larger-scale features of the surface on wind flows (those features that can be resolved in the LES) are accounted for through an immersed boundary method. Conversely, drag forces caused by subgrid-scale features of the surface should be accounted for through a parameterization. However, the effective aerodynamic roughness parameter z0 for snow/ice is not known. Hence, a novel dynamic approach is utilized, in which z0 is determined using the constraint that the total momentum flux (drag) must be independent on grid-filter scale. We focus on three ice floe surfaces. The first of these surfaces (October 6, 2012) is used to test the performance of the model, validate the algorithm, and study the spatial distributed fields of resolved and modeled stress components. The following two surfaces, scanned at the same location before and after a snow storm event (October 20/23, 2012), are used to propose an application to study how spatially resolved mean flow and turbulence relates to observed patterns of snow erosion and deposition. We show how erosion and deposition patterns are correlated with the computed stresses, with modeled stresses having higher explanatory power. Deposition is mainly occurring in wake regions of specific ridges that strongly affect wind flow patterns. These larger ridges also lock in place elongated streaks of relatively high speeds with axes along the stream-wise direction, and which are largely responsible for the observed erosion.

  3. Modelling hazardous surface hoar layers in the mountain snowpack over space and time

    NASA Astrophysics Data System (ADS)

    Horton, Simon Earl

    Surface hoar layers are a common failure layer in hazardous snow slab avalanches. Surface hoar crystals (frost) initially form on the surface of the snow, and once buried can remain a persistent weak layer for weeks or months. Avalanche forecasters have difficulty tracking the spatial distribution and mechanical properties of these layers in mountainous terrain. This thesis presents numerical models and remote sensing methods to track the distribution and properties of surface hoar layers over space and time. The formation of surface hoar was modelled with meteorological data by calculating the downward flux of water vapour from the atmospheric boundary layer. The timing of surface hoar formation and the modelled crystal size was verified at snow study sites throughout western Canada. The major surface hoar layers over several winters were predicted with fair success. Surface hoar formation was modelled over various spatial scales using meteorological data from weather forecast models. The largest surface hoar crystals formed in regions and elevation bands with clear skies, warm and humid air, cold snow surfaces, and light winds. Field surveys measured similar regional-scale patterns in surface hoar distribution. Surface hoar formation patterns on different slope aspects were observed, but were not modelled reliably. Mechanical field tests on buried surface hoar layers found layers increased in shear strength over time, but had persistent high propensity for fracture propagation. Layers with large crystals and layers overlying hard melt-freeze crusts showed greater signs of instability. Buried surface hoar layers were simulated with the snow cover model SNOWPACK and verified with avalanche observations, finding most hazardous surface hoar layers were identified with a structural stability index. Finally, the optical properties of surface hoar crystals were measured in the field with spectral instruments. Large plate-shaped crystals were less reflective at shortwave infrared wavelengths than other common surface snow grains. The methods presented in this thesis were developed into operational products that model hazardous surface hoar layers in western Canada. Further research and refinements could improve avalanche forecasts in regions prone to hazardous surface hoar layers.

  4. A distributed snow-evolution modeling system (SnowModel)

    Treesearch

    Glen E. Liston; Kelly Elder

    2006-01-01

    SnowModel is a spatially distributed snow-evolution modeling system designed for application in landscapes, climates, and conditions where snow occurs. It is an aggregation of four submodels: MicroMet defines meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowPack simulates snow depth and water-equivalent evolution, and SnowTran-3D...

  5. Analyzing dynamics of snow distribution and melt runoff in a meso-scaled watershed using the AgroEcoSystem-Watershed (AgES-W) model

    NASA Astrophysics Data System (ADS)

    Kunz, A.; Helmschrot, J.; Green, T. R.

    2013-12-01

    The seasonal snow cover in the western mountain regions of the United States functions as the primary supply and storage of water. Water management in these areas is often based on empirical relationships between point measurements of snow water equivalent (SWE) at selected sites and associated stream discharge. With a climate shifting towards more rain and less snow, due to the global warming, the patterns of snow deposition, and consequently the timing of melt, soil water content and the flow in streams and rivers will most likely alter. As a consequence, the established relationships between measured SWE and runoff will become unstable and unreliable, and consequently impacting the water resource management in this area. To better assess and understand the spatial and temporal dimension of altered snow cover on runoff generation in the intermountain region of the western United States, we set up the distributed hydrological AgroEcoSystem-Watershed (AgES-W) model for the Reynolds Creek Experimental Watershed (239 km2) in the Owyhee Mountains of Idaho. The study area with elevations ranging from 1101 to 2241 m is dominated by granitic and volcanic rocks and lake sediments. Deep moist soils allowing for mountain big sagebrush aspen and subalpine fir are found at higher elevations, whereas shallow, arid soils supporting sagebrush-grassland communities are common at lower elevations. Precipitation in the region varies from 230 mm at the lower elevations in the north up to 1100 mm in the higher regions at the southern margin south. The mean annual streamflow at the outlet is 0.56 m3/s. Since the Reynolds Creek Experimental Watershed (RCEW) was selected as a test basin in 1959, a comprehensive hydro-climatological network provides long-term records of daily snow, precipitation, temperature and streamflow measurements. Thus, we used a 30-year data record to calibrate and validate the AgES-W model to three nested sub-basins within the test site. First results show declining discharge volumes for RCEW, while volumes remain fairly constant for the 0.4 km2 Reynolds Mountain East (RME) headwater basin. Comparing simulated snow cover with snow-depth records measured across RME, the model was initially tested regarding its reliability to estimate spatio-temporal snow cover. AgES-W was able to simulate snow-depth dynamics quite well (>0.7 Nash-Sutcliffe Efficiency) for single measurement points, which were cross-validated using additional measurement points as well as stream discharge. The obtained parameter set was then used to model snow distribution for the entire RME basin for a period of 12 years. Applying the calibrated model to all catchments, we analyzed temporal shifts of seasonal runoff within and between the three nested subwatersheds to identify possible changes in the spatio-temporal pattern of snow accumulation and snowmelt. The model results were further used to analyze and map simulated snow water equivalents along a topographic gradient to identify spatial shifts of the snowline during the last 30 years. First results for RME indicate a decline of snow-covered area based on the course of monthly averages, with the largest declines in January and February.

  6. Estimating Snow Water Equivalent over the American River in the Sierra Nevada Basin Using Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Welch, S. C.; Kerkez, B.; Glaser, S. D.; Bales, R. C.; Rice, R.

    2011-12-01

    We have designed a basin-scale (>2000 km2) instrument cluster, made up of 20 local-scale (1-km footprint) wireless sensor networks (WSNs), to measure patterns of snow depth and snow water equivalent (SWE) across the main snowmelt producing area within the American River basin. Each of the 20 WSNs has on the order of 25 wireless nodes, with over 10 nodes actively sensing snow depth, and thus snow accumulation and melt. When combined with existing snow density measurements and full-basin satellite snowcover data, these measurements are designed to provide dense ground-truth snow properties for research and real-time SWE for water management. The design of this large-scale network is based on rigorous testing of previous, smaller-scale studies, permitting for the development of methods to significantly, and efficiently scale up network operations. Recent advances in WSN technology have resulted in a modularized strategy that permits rapid future network deployment. To select network and sensor locations, various sensor placement approaches were compared, including random placement, placement of WSNs in locations that have captured the historical basin mean, as well as a placement algorithm leveraging the covariance structure of the SWE distribution. We show that that the optimal network locations do not exhibit a uniform grid, but rather follow strategic patterns based on physiographic terrain parameters. Uncertainty estimates are also provided to assess the confidence in the placement approach. To ensure near-optimal coverage of the full basin, we validated each placement approach with a multi-year record of SWE derived from reconstruction of historical satellite measurements.

  7. Snow cover and snow goose Anser caerulescens caerulescens distribution during spring migration

    USGS Publications Warehouse

    Hupp, Jerry W.; Zacheis, Amy B.; Anthony, R. Michael; Robertson, Donna G.; Erickson, Wallace P.; Palacios, Kelly C.

    2001-01-01

    Arctic geese often use spring migration stopover areas when feeding habitats are partially snow covered. Melting of snow during the stopover period causes spatial and temporal variability in distribution and abundance of feeding habitat. We recorded changes in snow cover and lesser snow goose Anser caerulescens caerulescens distribution on a spring migration stopover area in south-central Alaska during aerial surveys in 1993-1994. Our objectives were to determine whether geese selected among areas with different amounts of snow cover and to assess how temporal changes in snow cover affected goose distribution. We also measured temporal changes in chemical composition of forage species after snow melt. We divided an Arc/Info coverage of the approximately 210 km2 coastal stopover area into 2-km2 cells, and measured snow cover and snow goose use of cells. Cells that had 10-49.9% snow cover were selected by snow geese, whereas cells that lacked snow cover were avoided. In both years, snow cover diminished along the coast between mid-April and early May. Flock distribution changed as snow geese abandoned snow-free areas in favour of cells where snow patches were interspersed with bare ground. Snow-free areas may have been less attractive to geese because available forage had been quickly exploited as bare ground was exposed, and because soils became drier making extraction of underground forage more difficult. Fiber content of two forage species increased whereas non-structural carbohydrate concentrations of forage plants appeared to diminish after snow melt, but changes in nutrient concentrations likely occurred too slowly to account for abandonment of snow-free areas by snow geese.

  8. Uncertainty in Estimates of Net Seasonal Snow Accumulation on Glaciers from In Situ Measurements

    NASA Astrophysics Data System (ADS)

    Pulwicki, A.; Flowers, G. E.; Radic, V.

    2017-12-01

    Accurately estimating the net seasonal snow accumulation (or "winter balance") on glaciers is central to assessing glacier health and predicting glacier runoff. However, measuring and modeling snow distribution is inherently difficult in mountainous terrain, resulting in high uncertainties in estimates of winter balance. Our work focuses on uncertainty attribution within the process of converting direct measurements of snow depth and density to estimates of winter balance. We collected more than 9000 direct measurements of snow depth across three glaciers in the St. Elias Mountains, Yukon, Canada in May 2016. Linear regression (LR) and simple kriging (SK), combined with cross correlation and Bayesian model averaging, are used to interpolate estimates of snow water equivalent (SWE) from snow depth and density measurements. Snow distribution patterns are found to differ considerably between glaciers, highlighting strong inter- and intra-basin variability. Elevation is found to be the dominant control of the spatial distribution of SWE, but the relationship varies considerably between glaciers. A simple parameterization of wind redistribution is also a small but statistically significant predictor of SWE. The SWE estimated for one study glacier has a short range parameter (90 m) and both LR and SK estimate a winter balance of 0.6 m w.e. but are poor predictors of SWE at measurement locations. The other two glaciers have longer SWE range parameters ( 450 m) and due to differences in extrapolation, SK estimates are more than 0.1 m w.e. (up to 40%) lower than LR estimates. By using a Monte Carlo method to quantify the effects of various sources of uncertainty, we find that the interpolation of estimated values of SWE is a larger source of uncertainty than the assignment of snow density or than the representation of the SWE value within a terrain model grid cell. For our study glaciers, the total winter balance uncertainty ranges from 0.03 (8%) to 0.15 (54%) m w.e. depending primarily on the interpolation method. Despite the challenges associated with accurately and precisely estimating winter balance, our results are consistent with the previously reported regional accumulation gradient.

  9. Monitoring of snowpack dynamics in mountainous terrain by cosmic-ray neutron sensing compared to Terrestrial Laser Scanning observations

    NASA Astrophysics Data System (ADS)

    Schattan, P.; Baroni, G.; Schrön, M.; Köhli, M.; Oswald, S. E.; Huttenlau, M.; Achleitner, S.

    2017-12-01

    Monitoring a mountain snowpack in a representative domain of several hectares is challenging due to its high heterogeneity in time and space. Recent studies have suggested cosmic-ray neutron sensing (CRNS) as a promising method for monitoring snow representatively at these scales. Little is known however about the depth of sensitivity, the effects of fractional snow coverage in complex terrain or the influence of snow density profiles. Therefore, a field campaign in the Austrian Alps was conducted from March 2014 to June 2016. The main scope was to evaluate the characteristics of CRNS for monitoring a snowpack in a relatively wet and mountainous environment. During the experiment, the study site experienced a peak snow accumulation in terms of snow water equivalent (SWE) of up to 600 mm in the 2014/2015 winter season. Snow depth (SD) and SWE measurements from an automatic weather station were compared to CRNS neutron counts. Several spatially distributed Terrestrial Laser Scanning (TLS)-based SD and SWE maps were additionally used to cope with the spatial heterogeneity of the site. Furthermore, an URANOS neutron transport model was set up to provide additional insights into the response of CRNS to the presence of a complex snowpack. Therein, spatially distributed SWE scenarios and different snow density assumptions are used for hypothesis testing. The field measurements revealed an unexpectedly high potential of CRNS for monitoring heterogeneous snowpack dynamics beyond shallow snowpacks. A clear, nonlinear relation was found for both SD and SWE with neutron counts. In contrast to previous studies suggesting signal saturation at around 100 mm of SWE, complete signal saturation was observed only for SWE values beyond 500 to 600 mm. In addition, first modelling results highlight the effects of snow density profiles, small-scale changes in SWE, and the complex patterns of fractional snow cover on neutron counts. Understanding the interactions between neutrons and snow cover in complex terrain potentially improves the transferability of the results to other locations.

  10. Spatio-temporal patterns of ptarmigan occupancy relative to shrub cover in the Arctic

    USGS Publications Warehouse

    Schmutz, Joel A.

    2014-01-01

    Rock and willow ptarmigan are abundant herbivores that require shrub habitats in arctic and alpine areas. Shrub expansion is likely to increase winter habitat availability for ptarmigan, which in turn influence shrub architecture and growth through browsing. Despite their ecological role in the Arctic, the distribution and movement patterns of ptarmigan are not well known, particularly in northern Alaska where shrub expansion is occurring. We used multi-season occupancy models to test whether ptarmigan occupancy varied within and among years, and the degree to which colonization and extinction probabilities were related to shrub cover and latitude. Aerial surveys were conducted from March to May in 2011 and April to May 2012 in a 21,230 km2 area in northeastern Alaska. In areas with at least 30 % shrub cover, the probability of colonization by ptarmigan was >0.90, indicating that moderate to extensive patches of shrubs (typically associated with riparian areas) had a high probability of becoming occupied by ptarmigan. Occupancy increased throughout the spring in both years, providing evidence that ptarmigan migrated from southern wintering areas to breeding areas north of the Brooks Range. Occupancy was higher in the moderate snow year than the high snow year, and this was likely due to higher shrub cover in the moderate snow year. Ptarmigan distribution and migration in the Arctic are linked to expanding shrub communities on a wide geographic scale, and these relationships may be shaping ptarmigan population dynamics, as well as rates and patterns of shrub expansion.

  11. A comparison between modeled and measured permafrost temperatures at Ritigraben borehole, Switzerland

    NASA Astrophysics Data System (ADS)

    Mitterer-Hoinkes, Susanna; Lehning, Michael; Phillips, Marcia; Sailer, Rudolf

    2013-04-01

    The area-wide distribution of permafrost is sparsely known in mountainous terrain (e.g. Alps). Permafrost monitoring can only be based on point or small scale measurements such as boreholes, active rock glaciers, BTS measurements or geophysical measurements. To get a better understanding of permafrost distribution, it is necessary to focus on modeling permafrost temperatures and permafrost distribution patterns. A lot of effort on these topics has been already expended using different kinds of models. In this study, the evolution of subsurface temperatures over successive years has been modeled at the location Ritigraben borehole (Mattertal, Switzerland) by using the one-dimensional snow cover model SNOWPACK. The model needs meteorological input and in our case information on subsurface properties. We used meteorological input variables of the automatic weather station Ritigraben (2630 m) in combination with the automatic weather station Saas Seetal (2480 m). Meteorological data between 2006 and 2011 on an hourly basis were used to drive the model. As former studies showed, the snow amount and the snow cover duration have a great influence on the thermal regime. Low snow heights allow for deeper penetration of low winter temperatures into the ground, strong winters with a high amount of snow attenuate this effect. In addition, variations in subsurface conditions highly influence the temperature regime. Therefore, we conducted sensitivity runs by defining a series of different subsurface properties. The modeled subsurface temperature profiles of Ritigraben were then compared to the measured temperatures in the Ritigraben borehole. This allows a validation of the influence of subsurface properties on the temperature regime. As expected, the influence of the snow cover is stronger than the influence of sub-surface material properties, which are significant, however. The validation presented here serves to prepare a larger spatial simulation with the complex hydro-meteorological 3-dimensional model Alpine 3D, which is based on a distributed application of SNOWPACK.

  12. Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Arctic Sea Ice and Tundra

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Tsay, Si-Chee; King, Michael D.; Li, Jason Y.; Soulen, Peter F.

    1999-01-01

    Angular distributions of spectral reflectance for four common arctic surfaces: snow-covered sea ice, melt-season sea ice, snow-covered tundra, and tundra shortly after snowmelt were measured using an aircraft based, high angular resolution (1-degree) multispectral radiometer. Results indicate bidirectional reflectance is higher for snow-covered sea ice than melt-season sea ice at all wavelengths between 0.47 and 2.3 pm, with the difference increasing with wavelength. Bidirectional reflectance of snow-covered tundra is higher than for snow-free tundra for measurements less than 1.64 pm, with the difference decreasing with wavelength. Bidirectional reflectance patterns of all measured surfaces show maximum reflectance in the forward scattering direction of the principal plane, with identifiable specular reflection for the melt-season sea ice and snow-free tundra cases. The snow-free tundra had the most significant backscatter, and the melt-season sea ice the least. For sea ice, bidirectional reflectance changes due to snowmelt were more significant than differences among the different types of melt-season sea ice. Also the spectral-hemispherical (plane) albedo of each measured arctic surface was computed. Comparing measured nadir reflectance to albedo for sea ice and snow-covered tundra shows albedo underestimated 5-40%, with the largest bias at wavelengths beyond 1 pm. For snow-free tundra, nadir reflectance underestimates plane albedo by about 30-50%.

  13. The value of snow cover

    NASA Astrophysics Data System (ADS)

    Sokratov, S. A.

    2009-04-01

    Snow is the natural resource, like soil and water. It has specific properties which allow its use not just for skiing but also for houses cooling in summer (Swedish experience), for air fields construction (Arctic and Antarctic), for dams (north of Russia), for buildings (not only snow-houses of some Polar peoples but artistic hotel attracting tourists in Sweden), and as art material (Sapporo snow festival, Finnish events), etc. "Adjustment" of snow distribution and amount is not only rather common practice (avalanche-protection constructions keeping snow on slopes) but also the practice with long history. So-called "snow irrigation" was used in Russia since XIX century to protect winter crop. What is now named "artificial snow production", is part of much larger pattern. What makes it special—it is unavoidable in present climate and economy situation. 5% of national income in Austria is winter tourism. 50% of the economy in Savoy relay on winter tourism. In terms of money this can be less, but in terms of jobs and income involved this would be even more considerable in Switzerland. As an example—the population of Davos is 14000 in Summer and 50000 in Winter. Skiing is growing business. In present time you can find ski slopes in Turkey and Lebanon. To keep a cite suitable for attracting tourists you need certain amount of sunny days and certain amount of snow. The snow cannons are often the only way to keep a place running. On the other hand, more artificial snow does not necessary attract more tourists, while heavy natural snowfall does attract them. Artificial snow making is costly and requires infrastructure (ponds and electric lines) with very narrow range of weather conditions. Related companies are searching for alternatives and one of them can be "weather regulation" by distribution of some chemical components in clouds. It did not happen yet, but can happen soon. The consequences of such interference in Nature is hardly known. The ski tourism is not the only and not even the main outcome from snow cover use. The value of snow cover for agriculture, water resources, industry and transportation is so naturally inside the activities that is not often quantified. However, any considerations of adaptation strategies for climate change with changing snow conditions need such quantification.

  14. Properties of the surface snow in Princess Elizabeth Land, East Antarctica - climate and non-climate dependent variability of the surface mass balance and stable water isotopic composition

    NASA Astrophysics Data System (ADS)

    Vladimirova, D.; Ekaykin, A.; Lipenkov, V.; Popov, S. V.; Petit, J. R.; Masson-Delmotte, V.

    2017-12-01

    Glaciological and meteorological observations conducted during the past four decades in Princess Elizabeth Land, East Antarctica, are compiled. The database is used to investigate spatial patterns of surface snow isotopic composition and surface mass balance, including detailed information near subglacial lake Vostok. We show diverse relationships between snow isotopic composition and surface temperature. In the most inland part (elevation 3200-3400 m a.s.l.), surface snow isotopic composition varies independently from surface temperature, and is closely related to the distance to the open water source (with a slope of 0.98±0.17 ‰ per 100 km). Surface mass balance values are higher along the ice sheet slope, and relatively evenly distributed inland. The minimum values of snow isotopic composition and surface mass balance are identified in an area XX km southwestward from Vostok station. The spatial distribution of deuterium excess delineates regions influenced by the Indian Ocean and Pacific Ocean air masses, with Vostok area being situated close to their boundary. Anomalously high deuterium excess values are observed near Dome A, suggesting high kinetic fractionation for its moisture source, or specifically high post-deposition artifacts. The dataset is available for further studies such as the assessment of skills of general circulation or regional atmospheric models, and the search for the oldest ice.

  15. A model for the spatial distribution of snow water equivalent parameterized from the spatial variability of precipitation

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Weltzien, Ingunn H.

    2016-09-01

    Snow is an important and complicated element in hydrological modelling. The traditional catchment hydrological model with its many free calibration parameters, also in snow sub-models, is not a well-suited tool for predicting conditions for which it has not been calibrated. Such conditions include prediction in ungauged basins and assessing hydrological effects of climate change. In this study, a new model for the spatial distribution of snow water equivalent (SWE), parameterized solely from observed spatial variability of precipitation, is compared with the current snow distribution model used in the operational flood forecasting models in Norway. The former model uses a dynamic gamma distribution and is called Snow Distribution_Gamma, (SD_G), whereas the latter model has a fixed, calibrated coefficient of variation, which parameterizes a log-normal model for snow distribution and is called Snow Distribution_Log-Normal (SD_LN). The two models are implemented in the parameter parsimonious rainfall-runoff model Distance Distribution Dynamics (DDD), and their capability for predicting runoff, SWE and snow-covered area (SCA) is tested and compared for 71 Norwegian catchments. The calibration period is 1985-2000 and validation period is 2000-2014. Results show that SDG better simulates SCA when compared with MODIS satellite-derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" and giving spurious positive trends in SWE, typical for SD_LN, is prevented. The precision of runoff simulations using SDG is slightly inferior, with a reduction in Nash-Sutcliffe and Kling-Gupta efficiency criterion of 0.01, but it is shown that the high precision in runoff prediction using SD_LN is accompanied with erroneous simulations of SWE.

  16. Influence of snowpack and melt energy heterogeneity on snow cover depletion and snowmelt runoff simulation in a cold mountain environment

    NASA Astrophysics Data System (ADS)

    DeBeer, Chris M.; Pomeroy, John W.

    2017-10-01

    The spatial heterogeneity of mountain snow cover and ablation is important in controlling patterns of snow cover depletion (SCD), meltwater production, and runoff, yet is not well-represented in most large-scale hydrological models and land surface schemes. Analyses were conducted in this study to examine the influence of various representations of snow cover and melt energy heterogeneity on both simulated SCD and stream discharge from a small alpine basin in the Canadian Rocky Mountains. Simulations were performed using the Cold Regions Hydrological Model (CRHM), where point-scale snowmelt computations were made using a snowpack energy balance formulation and applied to spatial frequency distributions of snow water equivalent (SWE) on individual slope-, aspect-, and landcover-based hydrological response units (HRUs) in the basin. Hydrological routines were added to represent the vertical and lateral transfers of water through the basin and channel system. From previous studies it is understood that the heterogeneity of late winter SWE is a primary control on patterns of SCD. The analyses here showed that spatial variation in applied melt energy, mainly due to differences in net radiation, has an important influence on SCD at multiple scales and basin discharge, and cannot be neglected without serious error in the prediction of these variables. A single basin SWE distribution using the basin-wide mean SWE (SWE ‾) and coefficient of variation (CV; standard deviation/mean) was found to represent the fine-scale spatial heterogeneity of SWE sufficiently well. Simulations that accounted for differences in (SWE ‾) among HRUs but neglected the sub-HRU heterogeneity of SWE were found to yield similar discharge results as simulations that included this heterogeneity, while SCD was poorly represented, even at the basin level. Finally, applying point-scale snowmelt computations based on a single SWE depth for each HRU (thereby neglecting spatial differences in internal snowpack energetics over the distributions) was found to yield similar SCD and discharge results as simulations that resolved internal energy differences. Spatial/internal snowpack melt energy effects are more pronounced at times earlier in spring before the main period of snowmelt and SCD, as shown in previously published work. The paper discusses the importance of these findings as they apply to the warranted complexity of snowmelt process simulation in cold mountain environments, and shows how the end-of-winter SWE distribution represents an effective means of resolving snow cover heterogeneity at multiple scales for modelling, even in steep and complex terrain.

  17. Mesocell study area snow distributions for the Cold Land Processes Experiment (CLPX)

    Treesearch

    Glen E. Liston; Christopher A. Hiemstra; Kelly Elder; Donald W. Cline

    2008-01-01

    The Cold Land Processes Experiment (CLPX) had a goal of describing snow-related features over a wide range of spatial and temporal scales. This required linking disparate snow tools and datasets into one coherent, integrated package. Simulating realistic high-resolution snow distributions and features requires a snow-evolution modeling system (SnowModel) that can...

  18. Soil properties in the sorted patterned ground of Piata Lazin, NW Italy

    NASA Astrophysics Data System (ADS)

    Freppaz, M.; Letey, S.; Francesconi, R.; Cat Berro, D.; Mercalli, L.; Zanini, E.

    2009-04-01

    Most of the patterned ground phenomena occur in permafrost areas, whose distribution in alpine environments at middle latitudes, is strongly controlled by local climatic conditions, and specifically by snow cover. There are problems in determining the amount of precipitation at a given site in mountain permafrost areas, because snow can be redistributed by wind or avalanches. Surface soil conditions also affect permafrost distribution. Dry blocky surfaces, peaty soils and soils with a thick organic horizon tend to favour permafrost development. The dimensions of patterned ground show significant spatial variability, depending on microclimate and soil conditions. The field study was undertaken in the Gran Paradiso National Park, at an elevation of 3028 m ASL, on a gentle slope plateau, exposed to wind. The dimension and distribution of stone circles was determined through field survey (October 2008). The soil temperature (10 cm depth) during the winter season 2007-2008 was measured by data loggers UTL-1. Nivo-meteorological data were recorded by an automatic weather station located 3 km away (2400 m ASL). Topsoil samples were taken across a section in two stone circles, considering the border of stones and the finer materials in the centre. The number of stone circles was estimated equal to 233/ha, with diameters ranging from 0.5 to 5 m. The diameter of stones on the borders ranged between 5 and 25 cm. Miniature sorted circles (d=10 cm) were recognized in the finer materials in the centre. The mean soil temperature from October 2007 to April 2008 was equal to -4°C, with a minimum of -11.5°C recorded the 17th December 2007, under a thin snow cover accumulated late in the fall season. The soil skeleton content decreased from the borders to the centre, ranging respectively from 42-70% to 33-39%. The area is affected by intense soil frost action especially during winter, presumably due to the lack of snow cover caused by the wind action. The frequency of freeze/thaw cycles may cause the segregation of stones and the concentration of fines into separate domains, which appears to be still an active process in the area.

  19. Altered precipitation patterns with a shift from snow to rain in the Sierra Nevada Mountains of California

    NASA Astrophysics Data System (ADS)

    Pavelsky, T. M.; Sobolowski, S.; Kapnick, S. B.; Barnes, J. B.

    2011-12-01

    Precipitation patterns in mountain environments affect global water resources and major hazards such as floods and landslides. In mid-latitude mountain ranges such as the Sierra Nevada Mountains of California, much of the precipitation falls as snow, which accumulates and acts as a natural reservoir. As in many snowfall-dependent regions, California water infrastructure has been designed to capture warm season snowmelt runoff and transport it to otherwise dry areas where it is needed. Recent studies suggest that anthropogenic climate change is likely to result in a substantial shift from snow to rain in the Sierra Nevada during the 21st century. One mechanism for changing spatial patterns in precipitation that has not received substantial attention arises directly from a phase change associated with winter temperatures rising above freezing with greater frequency. Because the fall speed of rain is greater than snow, it is not advected as far as snow by the prevailing winds. We hypothesize that an extreme change from snow to rain will result in a substantial westward shift in annual precipitation under a warming climate. To test this hypothesis, we conducted two climate simulations over the central Sierra Nevada using the WRF regional climate model version 3.1.1 for the period October 2001 to September 2002. Both simulations used nested domains with grid spacings of 27 km, 9 km, and 3 km. The first simulation is a control run, while the second run is an idealized simulation in which fall speeds for snow and graupel are set to be identical to those of raindrops. Comparison of the two runs suggests that a change from snow to rain would yield substantial changes in the spatial patterns of precipitation. However, these patterns are fully realized only in the 3 km domain. In the 9 km and especially the 27 km domain these patterns are substantially attenuated, likely due to less detailed orographic forcing. In the 3 km domain, precipitation increases substantially on windward slopes west of the principal drainage divide, in some areas by more than 1400 mm (115%). Conversely, the eastern slope of the Sierra Nevada becomes substantially drier, with decreases of as much as 886 mm (67%) in some areas. Overall, in a rain-only environment precipitation increases by an average of 135 mm (12%) on the west side of the divide and decreases by 174 mm (45%) on the east side compared to present-day conditions. While these results represent an idealized, extreme case in which all snow falls at the speed of rain from the same hydrometeor formation locations, they suggest that changes in spatial precipitation patterns associated with altered precipitation phase may have substantial effects on water resources, particularly the distribution of total precipitation across water basins, partition of water supply across collocated aqueducts, ecology, natural hazards such as floods and landslides, and other components of natural and human systems in the Sierra Nevada and the state of California more generally.

  20. Wind-driven snow conditions control the occurrence of contemporary marginal mountain permafrost in the Chic-Choc Mountains, south-eastern Canada: a case study from Mont Jacques-Cartier

    NASA Astrophysics Data System (ADS)

    Davesne, Gautier; Fortier, Daniel; Domine, Florent; Gray, James T.

    2017-06-01

    We present data on the distribution and thermophysical properties of snow collected sporadically over 4 decades along with recent data of ground surface temperature from Mont Jacques-Cartier (1268 m a.s.l.), the highest summit in the Appalachians of south-eastern Canada. We demonstrate that the occurrence of contemporary permafrost is necessarily associated with a very thin and wind-packed winter snow cover which brings local azonal topo-climatic conditions on the dome-shaped summit. The aims of this study were (i) to understand the snow distribution pattern and snow thermophysical properties on the Mont Jacques-Cartier summit and (ii) to investigate the impact of snow on the spatial distribution of the ground surface temperature (GST) using temperature sensors deployed over the summit. Results showed that above the local treeline, the summit is characterized by a snow cover typically less than 30 cm thick which is explained by the strong westerly winds interacting with the local surface roughness created by the physiography and surficial geomorphology of the site. The snowpack structure is fairly similar to that observed on windy Arctic tundra with a top dense wind slab (300 to 450 kg m-3) of high thermal conductivity, which facilitates heat transfer between the ground surface and the atmosphere. The mean annual ground surface temperature (MAGST) below this thin and wind-packed snow cover was about -1 °C in 2013 and 2014, for the higher, exposed, blockfield-covered sector of the summit characterized by a sporadic herbaceous cover. In contrast, for the gentle slopes covered with stunted spruce (krummholz), and for the steep leeward slope to the south-east of the summit, the MAGST was around 3 °C in 2013 and 2014. The study concludes that the permafrost on Mont Jacques-Cartier, most widely in the Chic-Choc Mountains and by extension in the southern highest summits of the Appalachians, is therefore likely limited to the barren wind-exposed surface of the summit where the low air temperature, the thin snowpack and the wind action bring local cold surface conditions favourable to permafrost development.

  1. Intercomparison of different uncertainty sources in hydrological climate change projections for an alpine catchment (upper Clutha River, New Zealand)

    NASA Astrophysics Data System (ADS)

    Jobst, Andreas M.; Kingston, Daniel G.; Cullen, Nicolas J.; Schmid, Josef

    2018-06-01

    As climate change is projected to alter both temperature and precipitation, snow-controlled mid-latitude catchments are expected to experience substantial shifts in their seasonal regime, which will have direct implications for water management. In order to provide authoritative projections of climate change impacts, the uncertainty inherent to all components of the modelling chain needs to be accounted for. This study assesses the uncertainty in potential impacts of climate change on the hydro-climate of a headwater sub-catchment of New Zealand's largest catchment (the Clutha River) using a fully distributed hydrological model (WaSiM) and unique ensemble encompassing different uncertainty sources: general circulation model (GCM), emission scenario, bias correction and snow model. The inclusion of snow models is particularly important, given that (1) they are a rarely considered aspect of uncertainty in hydrological modelling studies, and (2) snow has a considerable influence on seasonal patterns of river flow in alpine catchments such as the Clutha. Projected changes in river flow for the 2050s and 2090s encompass substantial increases in streamflow from May to October, and a decline between December and March. The dominant drivers are changes in the seasonal distribution of precipitation (for the 2090s +29 to +84 % in winter) and substantial decreases in the seasonal snow storage due to temperature increase. A quantitative comparison of uncertainty identified GCM structure as the dominant contributor in the seasonal streamflow signal (44-57 %) followed by emission scenario (16-49 %), bias correction (4-22 %) and snow model (3-10 %). While these findings suggest that the role of the snow model is comparatively small, its contribution to the overall uncertainty was still found to be noticeable for winter and summer.

  2. Using geostatistical methods to estimate snow water equivalence distribution in a mountain watershed

    USGS Publications Warehouse

    Balk, B.; Elder, K.; Baron, Jill S.

    1998-01-01

    Knowledge of the spatial distribution of snow water equivalence (SWE) is necessary to adequately forecast the volume and timing of snowmelt runoff.  In April 1997, peak accumulation snow depth and density measurements were independently taken in the Loch Vale watershed (6.6 km2), Rocky Mountain National Park, Colorado.  Geostatistics and classical statistics were used to estimate SWE distribution across the watershed.  Snow depths were spatially distributed across the watershed through kriging interpolation methods which provide unbiased estimates that have minimum variances.  Snow densities were spatially modeled through regression analysis.  Combining the modeled depth and density with snow-covered area (SCA produced an estimate of the spatial distribution of SWE.  The kriged estimates of snow depth explained 37-68% of the observed variance in the measured depths.  Steep slopes, variably strong winds, and complex energy balance in the watershed contribute to a large degree of heterogeneity in snow depth.

  3. Improving alpine-region spectral unmixing with optimal-fit snow endmembers

    NASA Technical Reports Server (NTRS)

    Painter, Thomas H.; Roberts, Dar A.; Green, Robert O.; Dozier, Jeff

    1995-01-01

    Surface albedo and snow-covered-area (SCA) are crucial inputs to the hydrologic and climatologic modeling of alpine and seasonally snow-covered areas. Because the spectral albedo and thermal regime of pure snow depend on grain size, areal distribution of snow grain size is required. Remote sensing has been shown to be an effective (and necessary) means of deriving maps of grain size distribution and snow-covered-area. Developed here is a technique whereby maps of grain size distribution improve estimates of SCA from spectral mixture analysis with AVIRIS data.

  4. Measurement of snow depth distribution in the Kamikochi-Azusa river basin using an airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Sasaki, A.

    2013-12-01

    In the Japanese Alps region, large amounts of precipitation in the form of snow constitute a more important water resource than rain. During the winter, precipitation that is deposited as snowfall accumulates in the river basins, and it forms natural dams known as 'white dams.' A quantitative understanding of snow depth distribution in these mountainous areas is important not only for evaluating water resource volume, but also for understanding the effects of snow in terms of its impact on landforms and its effect on the distribution of vegetation. However, it is not easy to perform a quantitative evaluation of snow depth distribution in mountainous areas. Several methods have been proposed for clarifying snow depth distribution. The most widely used of these is a method of inserting a sounding rod into the snow to measure its depth at each geographic position. Another method is to dig a trench in the snow and then perform an observational measurement of the side of the trench. These methods enable accurate measurement of the snow depth; however, when the snow is several meters deep, the methods may be limited by the measuring capacity of the equipment, or by the time restrictions of the survey. For these reasons, wide area measurement of the spatial distribution of snow is very difficult, and it is not suitable for investigating snow depth distribution in river basins. There is a method of using ultrasonics or radar to measure the depth of snow and to make observations of snow depth at certain positions. This method offers high measurement precision and high time resolution at the observation points. However, for observations in areas of very deep snow, it becomes technically difficult to install the equipment, and it is difficult to make a large number of installations to cover a wide area. There are also methods of indirectly measuring snow depth. One of these is to use aerial photographs taken when there is no snow cover and when there is snow cover, draw contour lines, and then use the difference between them to clarify the snow depth. This method allows researchers to grasp the snow depth over a wide area, but it needs to be made more precise if it is to incorporate high-precision information on equivalent elevation points on the snow surface. In recent years, a measurement technology has been developed that uses laser scanners mounted on aircraft. This method enables researchers to obtain ground surface coordinate data with high precision over a wide area from the air. Using such a scanner to measure the ground surface during snow coverage and during no snow coverage, and then finding the differences between the surface elevations, has made it possible to ascertain snow depth with high precision. Airborne laser measurement enables high-precision measurements over a wide area and in a short amount of time, and measurements can be made regardless of geographical factors such as sloping ground. As such, it enables measurement of snow depth distribution over a wide area without having to worry about the undulations of the land. In this study, airborne laser scanning was carried out on the snow surface in the upstream region of the Kamikochi-Azusa River in Japan on March 29, 2012, in order to clarify the snow depth distribution.

  5. On the role of snow cover ablation variability and synoptic-scale atmospheric forcings at the sub-basin scale within the Great Lakes watershed

    NASA Astrophysics Data System (ADS)

    Suriano, Zachary J.

    2018-02-01

    Synoptic-scale atmospheric conditions play a critical role in determining the frequency and intensity of snow cover ablation in the mid-latitudes. Using a synoptic classification technique, distinct regional circulation patterns influencing the Great Lakes basin of North America are identified and examined in conjunction with daily snow ablation events from 1960 to 2009. This approach allows for the influence of each synoptic weather type on ablation to be examined independently and for the monthly and inter-annual frequencies of the weather types to be tracked over time. Because of the spatial heterogeneity of snow cover and the relatively large geographic extent of the Great Lakes basin, snow cover ablation events and the synoptic-scale patterns that cause them are examined for each of the Great Lakes watershed's five primary sub-basins to understand the regional complexities of snow cover ablation variability. Results indicate that while many synoptic weather patterns lead to ablation across the basins, they can be generally grouped into one of only a few primary patterns: southerly flow, high-pressure overhead, and rain-on-snow patterns. As expected, the patterns leading to ablation are not necessarily consistent between the five sub-basins due to the seasonality of snow cover and the spatial variability of temperature, moisture, wind, and incoming solar radiation associated with the particular synoptic weather types. Significant trends in the inter-annual frequency of ablation-inducing synoptic types do exist for some sub-basins, indicating a potential change in the hydrologic impact of these patterns over time.

  6. Spatial properties of snow cover in the Upper Merced River Basin: implications for a distributed snow measurement network

    NASA Astrophysics Data System (ADS)

    Bouffon, T.; Rice, R.; Bales, R.

    2006-12-01

    The spatial distributions of snow water equivalent (SWE) and snow depth within a 1, 4, and 16 km2 grid element around two automated snow pillows in a forested and open- forested region of the Upper Merced River Basin (2,800 km2) of Yosemite National Park were characterized using field observations and analyzed using binary regression trees. Snow surveys occurred at the forested site during the accumulation and ablation seasons, while at the open-forest site a survey was performed only during the accumulation season. An average of 130 snow depth and 7 snow density measurements were made on each survey, within the 4 km2 grid. Snow depth was distributed using binary regression trees and geostatistical methods using the physiographic parameters (e.g. elevation, slope, vegetation, aspect). Results in the forest region indicate that the snow pillow overestimated average SWE within the 1, 4, and 16 km2 areas by 34 percent during ablation, but during accumulation the snow pillow provides a good estimate of the modeled mean SWE grid value, however it is suspected that the snow pillow was underestimating SWE. However, at the open forest site, during accumulation, the snow pillow was 28 percent greater than the mean modeled grid element. In addition, the binary regression trees indicate that the independent variables of vegetation, slope, and aspect are the most influential parameters of snow depth distribution. The binary regression tree and multivariate linear regression models explain about 60 percent of the initial variance for snow depth and 80 percent for density, respectively. This short-term study provides motivation and direction for the installation of a distributed snow measurement network to fill the information gap in basin-wide SWE and snow depth measurements. Guided by these results, a distributed snow measurement network was installed in the Fall 2006 at Gin Flat in the Upper Merced River Basin with the specific objective of measuring accumulation and ablation across topographic variables with the aim of providing guidance for future larger scale observation network designs.

  7. Detection Thresholds of Falling Snow from Satellite-Borne Active and Passive Sensors

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Johnson, Benjamin T.; Munchak, S. Joseph

    2012-01-01

    Precipitation, including rain and snow, is a critical part of the Earth's energy and hydrology cycles. Precipitation impacts latent heating profiles locally while global circulation patterns distribute precipitation and energy from the equator to the poles. For the hydrological cycle, falling snow is a primary contributor in northern latitudes during the winter seasons. Falling snow is the source of snow pack accumulations that provide fresh water resources for many communities in the world. Furthermore, falling snow impacts society by causing transportation disruptions during severe snow events. In order to collect information on the complete global precipitation cycle, both liquid and frozen precipitation must be collected. The challenges of estimating falling snow from space still exist though progress is being made. These challenges include weak falling snow signatures with respect to background (surface, water vapor) signatures for passive sensors over land surfaces, unknowns about the spherical and non-spherical shapes of the snowflakes, their particle size distributions (PSDs) and how the assumptions about the unknowns impact observed brightness temperatures or radar reflectivities, differences in near surface snowfall and total column snow amounts, and limited ground truth to validate against. While these challenges remain, knowledge of their impact on expected retrieval results is an important key for understanding falling snow retrieval estimations. Since falling snow from space is the next precipitation measurement challenge from space, information must be determined in order to guide retrieval algorithm development for these current and future missions. This information includes thresholds of detection for various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types. For example, can a lake effect snow system with low (approx 2.5 km) cloud tops having an ice water content (IWC) at the surface of 0.25 g / cubic m and dendrite snowflakes be detected? If this information is known, we can focus retrieval efforts on detectable storms and concentrate advances on achievable results. Here, the focus is to determine thresholds of detection for falling snow for various snow conditions over land and lake surfaces. The results rely on simulated Weather Research Forecasting (WRF) simulations of falling snow cases since simulations provide all the information to determine the measurements from space and the ground truth. Sensitivity analyses were performed to better ascertain the relationships between multifrequency microwave and millimeter-wave sensor observations and the falling snow/underlying field of view. In addition, thresholds of detection for various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types were studied. Results will be presented for active radar at Ku, Ka, and W-band and for passive radiometer channels from 10 to 183 GHz.

  8. The subtle role of climate change on population genetic structure in Canada lynx.

    PubMed

    Row, Jeffrey R; Wilson, Paul J; Gomez, Celine; Koen, Erin L; Bowman, Jeff; Thornton, Daniel; Murray, Dennis L

    2014-07-01

    Anthropogenically driven climatic change is expected to reshape global patterns of species distribution and abundance. Given recent links between genetic variation and environmental patterns, climate change may similarly impact genetic population structure, but we lack information on the spatial and mechanistic underpinnings of genetic-climate associations. Here, we show that current genetic variability of Canada lynx (Lynx canadensis) is strongly correlated with a winter climate gradient (i.e. increasing snow depth and winter precipitation from west-to-east) across the Pacific-North American (PNO) to North Atlantic Oscillation (NAO) climatic systems. This relationship was stronger than isolation by distance and not explained by landscape variables or changes in abundance. Thus, these patterns suggest that individuals restricted dispersal across the climate boundary, likely in the absence of changes in habitat quality. We propose habitat imprinting on snow conditions as one possible explanation for this unusual phenomenon. Coupling historical climate data with future projections, we also found increasingly diverging snow conditions between the two climate systems. Based on genetic simulations using projected climate data (2041-2070), we predicted that this divergence could lead to a threefold increase in genetic differentiation, potentially leading to isolated east-west populations of lynx in North America. Our results imply that subtle genetic structure can be governed by current climate and that substantive genetic differentiation and related ecological divergence may arise from changing climate patterns. © 2014 John Wiley & Sons Ltd.

  9. The Impacts of Pine Tree Die-Off on Snow Accumulation and Distribution at Plot to Catchment Scales

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Harpold, A. A.; Gutmann, E. D.; Reed, D. E.; Gochis, D. J.; Brooks, P. D.

    2011-12-01

    Seasonal snow cover is a primary water source throughout much of Western North America, where insect-induced tree die-off is changing the montane landscape. Widespread mortality from insects or drought differs from well-studied cases of fire and logging in that tree mortality is not accompanied by other immediate biophysical changes. Much of the impacted landscape is a mosaic of stands of varying species, structure, management history and health overlain on complex terrain. To address the challenge of predicting the effects of forest die-off on snow water input, we quantified snow accumulation and ablation at scales ranging from individual trees, through forest stands, to nested small catchments. Our study sites in Northern Colorado and Southern Wyoming are dominated by lodgepole pine, but they include forest stands that are naturally developed, managed and clear-cut with varying mortality from Mountain Pine Beetle (MPB). Our record for winters 2010 and 2011 includes continuous meteorological data and snow depth in plots with varying MPB impact as well as stand- to catchment-scale snow surveys mid-winter and near maximal accumulation. At the plot scale, snow depth sensors in healthy stands recorded greater inputs during storms (21-42% of depth) and greater seasonal accumulation (15-40%) in canopy gaps than under trees, whereas no spatial effects of canopy geometry were observed in stands with heavy mortality. Similar patterns were observed in snow surveys near peak accumulation. At both impacted and thinned sites, spatial variability in snow depth was more closely associated with larger scale topography and changes in stand structure than with canopy cover. The role of aspect in ablation was observed to increase in impacted stands as both shading and wind attenuation decreased. Evidence of wind-controlled snow distribution was found 80-100 meters from exposed stand edges in impacted forest as compared to 10-15 meters in healthy forest. Integrating from the scale of stands to small catchments, maximal snow water equivalent (SWE) as a fraction of winter precipitation (P) ranged from 62 to 74%. Despite an expectation of decreased interception and increased snow accumulation with advanced mortality, surveys at stand and catchment scales found no significant increases in net snow water input between healthy and impacted forests. These observations suggest that the spatial scale of processes affecting net snow accumulation and ablation increase following die-off. Using data from our sites and other studies, this presentation will develop a predictive model of how interception, shading, and wind redistribution interact to control net snow water input following large-scale forest mortality.

  10. Snowpack regimes of the Western United States

    NASA Astrophysics Data System (ADS)

    Trujillo, Ernesto; Molotch, Noah P.

    2014-07-01

    Snow accumulation and melt patterns play a significant role in the water, energy, carbon, and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at 766 snow pillow stations in the Western United States, focusing on several metrics of the yearly SWE curves and the relationships between the different metrics. The metrics are the initial snow accumulation and snow disappearance dates, the peak snow accumulation and date of peak, the length of the snow accumulation season, the length of the snowmelt season, and the snow accumulation and snowmelt slopes. Three snow regimes emerge from these results: a maritime, an intermountain, and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days. Conversely, the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intermountain regime lies in between. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intermountain regime includes the Eastern Cascades slopes and foothills, the Blue Mountains, Northern and Central basins and ranges, the Columbia Mountains/Northern Rockies, the Idaho Batholith, and the Canadian Rockies. Lastly, the continental regime includes the Middle and Southern Rockies, and the Wasatch and Uinta Mountains. The implications of snow regime classification are discussed in the context of possible changes in accumulation and melt patterns associated with regional warming.

  11. Temporal trend of the snow-related variables in Sierra Nevada in the last years: An analysis combining Earth Observation and hydrological modelling

    NASA Astrophysics Data System (ADS)

    Pérez-Luque, Antonio J.; Herrero, Javier; Bonet, Francisco J.; Pérez-Pérez, Ramón

    2016-04-01

    Climate change is causing declines in snow-cover extent and duration in European mountain ranges. This is especially important in Mediterranean mountain ranges where the observed trends towards precipitation and higher temperatures can provoke problems of water scarcity. In this work, we analyzed temporal trends (2000 to 2014) of snow-related variables obtained from satellite and modelling data in Sierra Nevada, a Mediterranean high-mountain range located in Southern Spain, at 37°N. Snow cover indicators (snow-cover duration, snow-cover onset dates and snow-cover melting dates) were obtained by processing images of MOD10A2 MODIS product using an automated workflow. Precipitation data were obtained using WiMMed, a complete and fully distributed hydrological model that is used to map the annual rainfall and snowfall with a resolution of 30x30 m over the whole study area. It uses expert algorithms to interpolate precipitation and temperature at an hourly scale, and simulates partition of precipitation into snowfall with several methods. For each snow-related indicator (snow-covers and snowfall), a trend analysis was applied at the MODIS pixel scale during the study period (2000-2014). We applied Mann-Kendall test and Theil-Sen slope estimation in each of the pixels comprising Sierra Nevada. The trend analysis assesses the intensity, magnitude and degree of statistical significance during the period analysed. The spatial pattern of these trends was explored according to elevation ranges. Finally, we explored the relationship between trends of snow-cover related indicators and precipitation trends. Our results show that snow-cover has undergone significant changes in the last 14 years. 80 % of the pixels covering Sierra Nevada showed a negative trend in the duration of snow-cover. We also observed a delay in the snow-cover onset date (68.03 % pixels showing a positive trend in the snow-cover onset date) and an advance in the melt date (80.72 % of pixels followed a negative trend for the snow-cover melting date). Precipitation does not show a significant trend for these years, even though its inter-annual variability has been outstanding. The maximum mean annual precipitation of 906 mm/year doubles the mean precipitation, which somehow compensates for the occurrence of a sequence of dry years with a minimum of 250 mm/year. The assessment of the spatial pattern of snow cover duration shows that both the trend and the slope of the trend becomes more pronounced with elevation. At higher elevations the snow-cover duration decreased an average of 3 days from 2000-2014. This research has been funded by ECOPOTENTIAL (Improving future ecosystem benefits through Earth Observations) Horizon 2020 EU project, and Sierra Nevada Global Change Observatory (LTER-site)

  12. Mapping snow depth distribution in forested terrain using unmanned aerial vehicles and structure-from-motion

    NASA Astrophysics Data System (ADS)

    Webster, C.; Bühler, Y.; Schirmer, M.; Stoffel, A.; Giulia, M.; Jonas, T.

    2017-12-01

    Snow depth distribution in forests exhibits strong spatial heterogeneity compared to adjacent open sites. Measurement of snow depths in forests is currently limited to a) manual point measurements, which are sparse and time-intensive, b) ground-penetrating radar surveys, which have limited spatial coverage, or c) airborne LiDAR acquisition, which are expensive and may deteriorate in denser forests. We present the application of unmanned aerial vehicles in combination with structure-from-motion (SfM) methods to photogrammetrically map snow depth distribution in forested terrain. Two separate flights were carried out 10 days apart across a heterogeneous forested area of 900 x 500 m. Corresponding snow depth maps were derived using both, LiDAR-based and SfM-based DTM data, obtained during snow-off conditions. Manual measurements collected following each flight were used to validate the snow depth maps. Snow depths were resolved at 5cm resolution and forest snow depth distribution structures such as tree wells and other areas of preferential melt were represented well. Differential snow depth maps showed maximum ablation in the exposed south sides of trees and smaller differences in the centre of gaps and on the north side of trees. This new application of SfM to map snow depth distribution in forests demonstrates a straightforward method for obtaining information that was previously only available through manual spatially limited ground-based measurements. These methods could therefore be extended to more frequent observation of snow depths in forests as well as estimating snow accumulation and depletion rates.

  13. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China.

    PubMed

    Wang, Siyuan; Wang, Xiaoyue; Chen, Guangsheng; Yang, Qichun; Wang, Bin; Ma, Yuanxu; Shen, Ming

    2017-09-01

    Snow cover dynamics are considered to play a key role on spring phenological shifts in the high-latitude, so investigating responses of spring phenology to snow cover dynamics is becoming an increasingly important way to identify and predict global ecosystem dynamics. In this study, we quantified the temporal trends and spatial variations of spring phenology and snow cover across the Tibetan Plateau by calibrating and analyzing time series of the NOAA AVHRR-derived normalized difference vegetation index (NDVI) during 1983-2012. We also examined how snow cover dynamics affect the spatio-temporal pattern of spring alpine vegetation phenology over the plateau. Our results indicated that 52.21% of the plateau experienced a significant advancing trend in the beginning of vegetation growing season (BGS) and 34.30% exhibited a delaying trend. Accordingly, the snow cover duration days (SCD) and snow cover melt date (SCM) showed similar patterns with a decreasing trend in the west and an increasing trend in the southeast, but the start date of snow cover (SCS) showed an opposite pattern. Meanwhile, the spatial patterns of the BGS, SCD, SCS and SCM varied in accordance with the gradients of temperature, precipitation and topography across the plateau. The response relationship of spring phenology to snow cover dynamics varied within different climate, terrain and alpine plant community zones, and the spatio-temporal response patterns were primarily controlled by the long-term local heat-water conditions and topographic conditions. Moreover, temperature and precipitation played a profound impact on diverse responses of spring phenology to snow cover dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Distributed snow modeling suitable for use with operational data for the American River watershed.

    NASA Astrophysics Data System (ADS)

    Shamir, E.; Georgakakos, K. P.

    2004-12-01

    The mountainous terrain of the American River watershed (~4300 km2) at the Western slope of the Northern Sierra Nevada is subject to significant variability in the atmospheric forcing that controls the snow accumulation and ablations processes (i.e., precipitation, surface temperature, and radiation). For a hydrologic model that attempts to predict both short- and long-term streamflow discharges, a plausible description of the seasonal and intermittent winter snow pack accumulation and ablation is crucial. At present the NWS-CNRFC operational snow model is implemented in a semi distributed manner (modeling unit of about 100-1000 km2) and therefore lump distinct spatial variability of snow processes. In this study we attempt to account for the precipitation, temperature, and radiation spatial variability by constructing a distributed snow accumulation and melting model suitable for use with commonly available sparse data. An adaptation of the NWS-Snow17 energy and mass balance that is used operationally at the NWS River Forecast Centers is implemented at 1 km2 grid cells with distributed input and model parameters. The input to the model (i.e., precipitation and surface temperature) is interpolated from observed point data. The surface temperature was interpolated over the basin based on adiabatic lapse rates using topographic information whereas the precipitation was interpolated based on maps of climatic mean annual rainfall distribution acquired from PRISM. The model parameters that control the melting rate due to radiation were interpolated based on aspect. The study was conducted for the entire American basin for the snow seasons of 1999-2000. Validation of the Snow Water Equivalent (SWE) prediction is done by comparing to observation from 12 snow Sensors. The Snow Cover Area (SCA) prediction was evaluated by comparing to remotely sensed 500m daily snow cover derived from MODIS. The results that the distribution of snow over the area is well captured and the quantity compared to the snow gauges are well estimated in the high elevation.

  15. A Distributed Snow Evolution Modeling System (SnowModel)

    NASA Astrophysics Data System (ADS)

    Liston, G. E.; Elder, K.

    2004-12-01

    A spatially distributed snow-evolution modeling system (SnowModel) has been specifically designed to be applicable over a wide range of snow landscapes, climates, and conditions. To reach this goal, SnowModel is composed of four sub-models: MicroMet defines the meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowMass simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. While other distributed snow models exist, SnowModel is unique in that it includes a well-tested blowing-snow sub-model (SnowTran-3D) for application in windy arctic, alpine, and prairie environments where snowdrifts are common. These environments comprise 68% of the seasonally snow-covered Northern Hemisphere land surface. SnowModel also accounts for snow processes occurring in forested environments (e.g., canopy interception related processes). SnowModel is designed to simulate snow-related physical processes occurring at spatial scales of 5-m and greater, and temporal scales of 1-hour and greater. These include: accumulation from precipitation; wind redistribution and sublimation; loading, unloading, and sublimation within forest canopies; snow-density evolution; and snowpack ripening and melt. To enhance its wide applicability, SnowModel includes the physical calculations required to simulate snow evolution within each of the global snow classes defined by Sturm et al. (1995), e.g., tundra, taiga, alpine, prairie, maritime, and ephemeral snow covers. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) are used as SnowModel simulation examples to highlight model strengths, weaknesses, and features in forested, semi-forested, alpine, and shrubland environments.

  16. Space-time analysis of snow cover change in the Romanian Carpathians (2001-2016)

    NASA Astrophysics Data System (ADS)

    Micu, Dana; Cosmin Sandric, Ionut

    2017-04-01

    Snow cover is recognized as an essential climate variable, highly sensitive to the ongoing climate warming, which plays an important role in regulating mountain ecosystems. Evidence from the existing weather stations located above 800 m over the last 50 years points out that the climate of the Romanian Carpathians is visibly changing, showing an ongoing and consistent warming process. Quantifying and attributing the changes in snow cover on various spatial and temporal scales have a great environmental and socio-economic importance for this mountain region. The study is revealing the inter-seasonal changes in the timing and distribution of snow cover across the Romanian Carpathians, by combining gridded snow data (CARPATCLIM dataset, 1961-2010) and remote sensing data (2001-2016) in specific space-time assessment at regional scale. The geostatistical approach applied in this study, based on a GIS hotspot analysis, takes advantage of all the dimensions in the datasets, in order to understand the space-time trends in this climate variable at monthly time-scale. The MODIS AQUA and TERRA images available from 2001 to 2016 have been processed using ArcGIS for Desktop and Python programming language. All the images were masked out with the Carpathians boundary. Only the pixels with snow have been retained for analysis. The regional trends in snow cover distribution and timing have been analysed using Space-Time cube with ArcGIS for Desktop, according with Esri documentation using the Mann-Kendall trend test on every location with data as an independent bin time-series test. The study aimed also to assess the location of emerging hotspots of snow cover change in Carpathians. These hotspots have been calculated using Getis-Ord Gi* statistic for each bin using Hot Spot Analysis implemented in ArcGIS for Desktop. On regional scale, snow cover appear highly sensitive to the decreasing trends in air temperatures and land surface temperatures, combined with the decrease in seasonal precipitation, especially at lower elevations in all the three divisions of the Romanian Carpathians (generally below 1,700-1,800 m). The space-time patterns of snow cover change are dominated by a significant decreasing trend of snow days and earlier spring snow melt. The key findings of this study provides robust indication of a decreasing snow trends across the Carpathian Mountain region and could provide valuable spatial and temporal snow information for other related research fields as well as for an effective environmental monitoring in the mountain ecosystems of the Carpathian region

  17. Snow Cover Distribution and Variation using MODIS in the Himalayas of India

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Lakshmi, V.; Jain, S. K.; Kansara, P. H.

    2017-12-01

    Snow cover variation plays a big role in river discharge, permafrost distribution and mass balance of glaciers in mountainous watersheds. Spatial distribution and temporal variation of snow cover varies with elevation and climate. We study the spatial distribution and temporal change of snow cover that has been observed using Terra Moderate Resolution Imaging Spectrometer (MODIS) product (MOD10A2 version 5) from 2001 to 2016. This MODIS product is based on normalized-difference snow index (NDSI) using band 4 (0.545-0.565 μm) and band 6 (1.628-1.652 μm). The spatial resolution of MOD10A2 is 500 m and composited over 8 days. The study area is the Indian Himalayas, major snow covered part of which is located in the states of Jammu and Kashmir, Himachal Pradesh, Uttarakhand, West Bengal, Sikkim, Assam and Arunachal Pradesh. Distribution and variation in snow cover is examined on monthly and annual time scales in this study. The temporal changes in snow cover has been compared with terrain attributes (elevation, slope and aspect). The snow cover depletion and accumulation have been observed during April-August and September-March. The snow cover is highest in the March and lowest in the August in the Himachal region. This study will be helpful to identify the amount of water stored in the glaciers of the Indian Himalaya and also important for water resources management of river basins, which are located in this area. Key words: Snow cover, MODIS, NDSI, terrain attribute

  18. Laws of distribution of the snow cover on the greater Caucasus (Soviet Union)

    NASA Technical Reports Server (NTRS)

    Gurtovaya, Y. Y.; Sulakvelidze, G. K.; Yashina, A. V.

    1985-01-01

    The laws of the distribution of the snow cover on the mountains of the greater Caucasus are discussed. It is shown that an extremely unequal distribution of the snow cover is caused by the complex orography of this territory, the diversity of climatic conditions and by the difference in altitude. Regions of constant, variable and unstable snow cover are distinguished because of the clearly marked division into altitude layers, each of which is characterized by climatic differences in the nature of the snow accumulation.

  19. Precipitation Modeling over the Greenland and Antarctic Ice Sheets and the Relationship to the Surface Mass Balance and Climate

    NASA Technical Reports Server (NTRS)

    Bromwich, David H.; Chen, Qui-Shi

    2005-01-01

    Atmospheric numerical simulation and dynamic retrieval method with atmospheric numerical analyses are used to assess the spatial and temporal variability of Antarctic precipitation for the last two decades. First, the Polar MM5 has been run over Antarctica to study the Antarctic precipitation. With a horizontal resolution of 60km, the Polar MM5 has been run for the period of July 1996 through June 1999 in a series of short-term forecasts from initial and boundary conditions provided by the ECMWF operational analyses. In comparison with climatological maps, the major features of the spatial distribution of Antarctic precipitation are well captured by the Polar MM5. Drift snow effects on redistribution of surface accumulation over Antarctica are also assessed with surface wind fields from Polar MM5 in this study. There are complex divergence and convergence patterns of drift snow transport over Antarctica, especially along the coast. It is found that areas with large drift snow transport convergence and divergence are located around escarpment areas where there is large katabatic wind acceleration. In addition, areas with large snow transport divergence are generally accompanied by areas with large snow transport convergence nearby, indicating that drift snow transport is of local importance for the redistribution of the snowfall

  20. Severe snow loads on mountain afforestation in Japan

    Treesearch

    Ryuzo Nitta; Yoshio Ozeki; Shoichi Niwano

    1991-01-01

    A simple device for estimating snow settling force on tree branches was used to determine the distribution of snow settling force at various heights in a snowy mountainous region in Japan. A trapezoidal distribution of snow settling force was found to exist at all sites tested. It is thought that a zoning scheme based on the damaging potential of snow on young man-made...

  1. Evaluation of distributed hydrologic impacts of temperature-index and energy-based snow models

    USDA-ARS?s Scientific Manuscript database

    Proper characterizations of snow melt and accumulation processes in the snow-dominated mountain environment are needed to understand and predict spatiotemporal distribution of water cycle components. Two commonly used strategies in modeling of snow accumulation and melt are the full energy based and...

  2. High resolution climate scenarios for snowmelt modelling in small alpine catchments

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Peleg, N.; Burlando, P.; Jonas, T.

    2017-12-01

    Snow in the Alps is affected by climate change with regard to duration, timing and amount. This has implications with respect to important societal issues as drinking water supply or hydropower generation. In Switzerland, the latter received a lot of attention following the political decision to phase out of nuclear electricity production. An increasing number of authorization requests for small hydropower plants located in small alpine catchments was observed in the recent years. This situation generates ecological conflicts, while the expected climate change poses a threat to water availability thus putting at risk investments in such hydropower plants. Reliable high-resolution climate scenarios are thus required, which account for small-scale processes to achieve realistic predictions of snowmelt runoff and its variability in small alpine catchments. We therefore used a novel model chain by coupling a stochastic 2-dimensional weather generator (AWE-GEN-2d) with a state-of-the-art energy balance snow cover model (FSM). AWE-GEN-2d was applied to generate ensembles of climate variables at very fine temporal and spatial resolution, thus providing all climatic input variables required for the energy balance modelling. The land-surface model FSM was used to describe spatially variable snow cover accumulation and melt processes. The FSM was refined to allow applications at very high spatial resolution by specifically accounting for small-scale processes, such as a subgrid-parametrization of snow covered area or an improved representation of forest-snow processes. For the present study, the model chain was tested for current climate conditions using extensive observational dataset of different spatial and temporal coverage. Small-scale spatial processes such as elevation gradients or aspect differences in the snow distribution were evaluated using airborne LiDAR data. 40-year of monitoring data for snow water equivalent, snowmelt and snow-covered area for entire Switzerland was used to verify snow distribution patterns at coarser spatial and temporal scale. The ability of the model chain to reproduce current climate conditions in small alpine catchments makes this model combination an outstanding candidate to produce high resolution climate scenarios of snowmelt in small alpine catchments.

  3. Blowing Snow Sublimation and Transport over Antarctica from 11 Years of CALIPSO Observations

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Kayetha, Vinay; Yang, Yuekui; Pauly, Rebecca

    2017-01-01

    Blowing snow processes commonly occur over the earth's ice sheets when the 10 mile wind speed exceeds a threshold value. These processes play a key role in the sublimation and redistribution of snow thereby influencing the surface mass balance. Prior field studies and modeling results have shown the importance of blowing snow sublimation and transport on the surface mass budget and hydrological cycle of high-latitude regions. For the first time, we present continent-wide estimates of blowing snow sublimation and transport over Antarctica for the period 2006-2016 based on direct observation of blowing snow events. We use an improved version of the blowing snow detection algorithm developed for previous work that uses atmospheric backscatter measurements obtained from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The blowing snow events identified by CALIPSO and meteorological fields from MERRA-2 are used to compute the blowing snow sublimation and transport rates. Our results show that maximum sublimation occurs along and slightly inland of the coastline. This is contrary to the observed maximum blowing snow frequency which occurs over the interior. The associated temperature and moisture reanalysis fields likely contribute to the spatial distribution of the maximum sublimation values. However, the spatial pattern of the sublimation rate over Antarctica is consistent with modeling studies and precipitation estimates. Overall, our results show that the 2006-2016 Antarctica average integrated blowing snow sublimation is about 393 +/- 196 Gt yr(exp -1), which is considerably larger than previous model-derived estimates. We find maximum blowing snow transport amount of 5 Mt km-1 yr(exp -1) over parts of East Antarctica and estimate that the average snow transport from continent to ocean is about 3.7 Gt yr(exp -1). These continent-wide estimates are the first of their kind and can be used to help model and constrain the surface mass budget over Antarctica.

  4. Reproducing snow making strategies with deterministic modeling and image-based validation

    NASA Astrophysics Data System (ADS)

    Allamano, P.; Claps, P.; Poggi, D.

    2012-04-01

    Almost all winter resorts rely on artificial snow production as a surrogate for natural snow when the natural snow cover is missing or inadequate. The sustainability of snowmaking practices represents a debated issue, with two contrasting views: on the one hand the need for enhancing the value of mountain regions in terms of touristic appeal; on the other hand, the question whether the production of artificial snow is sustainable from an environmental point of view. We present here the outcomes of a pilot study aimed at assessing the impact of snowmaking practices on water resources management in the Gressoney valley. The study area is located in the Aosta Valley (North-Western Italy). The total area covered by ski runs is of about 95 ha, with an elevation range of 2000 m and an average snow production over the last 5 seasons of 200.000 m3 of water per year. Daily records of water volume used for artificial snow making were made available by the ski runs administrators for the last 5 seasons along with webcam images taken for the last 2 years. Daily meteorological records (of temperature and precipitation) were retrieved in 5 meteo stations within the district area since 1928 (83 years). The snowpack evolution in the skiable domain is modeled by means of a distributed water balance model which adopts a radiation-temperature index representation to describe snowmelt, and accounts for the topographic complexity of the area by modeling radiation over a very fine terrain grid (10 by 10 m cells). The model requires distributed daily temperature and precipitation as inputs. The snowmelt module is calibrated locally at the five stations. The snow-making module, aimed at synthesizing the production strategies at the district scale, is calibrated by keeping the required average snow cover depths on the ski runs as a free parameter. After calibrating the model parameters, also with the aid of visual comparison of modeled and real snow patterns registered by the webcams, we were able to reconstruct the seasonal evolution of natural and artificial snow cover over the whole district since 1928. A 83 years-long synthetic record of seasonal volumes potentially allocated for artificial snow production was obtained and a preliminary evaluation of the probability to have insufficient resource to face both domestic and snow production needs was performed. The system was found to have a 10% probability of deficiency, with deficit volumes ranging from 10.000 to 100.000 m3.

  5. Spatial Relationships Between Snow Contaminant Content, Grain Size, and Surface Temperature in Multi-spectral Remote Sensing Data of Mt. Rainier, WA

    NASA Astrophysics Data System (ADS)

    Kay, J. E.; Hansen, G.; Gillespie, A.; Pettit, E.

    2002-12-01

    Relating cryosphere change to climate change requires estimation of radiative fluxes on snow-covered surfaces. The distribution of, and relationship between, snow-pack properties that affect radiative balance can be estimated with high-resolution remote-sensing data. MODIS/ASTER airborne simulator (MASTER) data were collected at Mt. Rainier to reveal spatial patterns of, and correlations between, snow contaminant content, grain size, and temperature. The visible and near-infrared (VNIR: 11 bands, 0.4-1.0 μm) and the short-wave infrared (SWIR: 14 bands, 1.6-2.4 μm) data are processed to bi-directional reflectance (BDR) and albedo, by removing atmospheric effects and by normalizing to Solar irradiance and incidence angle. VNIR BDR and albedo are used as a proxy for snow contaminant content. Physical and optical grain size are estimated by comparing SWIR BDR and albedo to modeled and measured spectra, and ground-truth measurements. The thermal infrared data (TIR: 10 bands, 8-13 μm) are processed to temperature by removing emissivity and atmospheric effects. In combination, the VNIR, SWIR, and TIR data reveal a distinct pattern of contaminants, grain size, and temperature related to a recent snowfall and the end-of-the-summer melting season. At lower elevations, the surface accumulation of dirty lag deposits resulted in snow with very low visible albedo (20-30 %), large physical and optical grain radii (500-1500 μm, 200 μm), and temperatures near the melting point. At higher elevations, the recent snowfall left snow with low contaminant content, and a higher visible albedo (60-90 %). However, a region near the summit with smaller physical and optical grain radii (400 μm, 100 μm), and temperatures below the melting point, is distinguished from a middle elevation region with grain sizes and temperatures similar to the lower region. Contaminants reduce VNIR albedo and significantly enhance absorption of incoming solar radiation. The spatial correlation between temperature and grain size supports the idea that rapid, destructive metamorphism occurs when snow temperatures are at the melting point.

  6. Plant Adaptation to Cold. 1: Chlorophyll. 2: Minerals. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rosen, P.

    1972-01-01

    A number of montane herbs in northern Utah typically form flower buds beneath the snow cover and flower either through it or immediately after its recession. Two of these species, one naturally occurring, Claytonia lanceolata, and one cultivated bulb, Galanthus nivalis, were investigated for their response to this stress environment. Snow depth patterns, chlorophyll content of tissues, and plants grown in light-tight boxes, suggest that light passing through the snow to reach plants growing underneath is not critically involved in the timing of their developmental cycles or in their ability to endure this low temperature environment. Ability to endure stress seems to be closely related in a number of ways to activity at the plant membranes. Plants were protected from low temperature damage by application of cytokinin or calcium, both of which probably acted at the membrane. Potassium calcium antagonisms were reflected in the internal distribution of the ions under natural stress conditions; and plants that differentiated at the meristem while growing through the snow accumulated calcium at the tip during this growth.

  7. High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry

    NASA Astrophysics Data System (ADS)

    Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.

    2017-12-01

    Dynamic in time and space, New Zealand's seasonal snow is largely confined to remote alpine areas, complicating ongoing in situ measurement and characterisation. Improved understanding and modeling of the seasonal snowpack requires fine scale resolution of snow distribution and spatial variability. The potential of remotely piloted aircraft system (RPAS) photogrammetry to resolve spatial and temporal variability of snow depth and water equivalent in a New Zealand alpine catchment is assessed in the Pisa Range, Central Otago. This approach yielded orthophotomosaics and digital surface models (DSM) at 0.05 and 0.15 m spatial resolution, respectively. An autumn reference DSM allowed mapping of winter (02/08/2016) and spring (10/09/2016) snow depth at 0.15 m spatial resolution, via DSM differencing. The consistency and accuracy of the RPAS-derived surface was assessed by comparison of snow-free regions of the spring and autumn DSMs, while accuracy of RPAS retrieved snow depth was assessed with 86 in situ snow probe measurements. Results show a mean vertical residual of 0.024 m between DSMs acquired in autumn and spring. This residual approximated a Laplace distribution, reflecting the influence of large outliers on the small overall bias. Propagation of errors associated with successive DSMs saw snow depth mapped with an accuracy of ± 0.09 m (95% c.l.). Comparing RPAS and in situ snow depth measurements revealed the influence of geo-location uncertainty and interactions between vegetation and the snowpack on snow depth uncertainty and bias. Semi-variogram analysis revealed that the RPAS outperformed systematic in situ measurements in resolving fine scale spatial variability. Despite limitations accompanying RPAS photogrammetry, this study demonstrates a repeatable means of accurately mapping snow depth for an entire, yet relatively small, hydrological basin ( 0.5 km2), at high resolution. Resolving snowpack features associated with re-distribution and preferential accumulation and ablation, snow depth maps provide geostatistically robust insights into seasonal snow processes, with unprecedented detail. Such data may enhance understanding of physical processes controlling spatial and temporal distribution of seasonal snow, and their relative importance at varying spatial and temporal scales.

  8. Antarctic surface temperature and sea ice biases in coupled climate models linked with cloud and land surface properties

    NASA Astrophysics Data System (ADS)

    Skiles, M.; Painter, T. H.; Marks, D. G.; Hedrick, A. R.

    2014-12-01

    Since 2013 the Airborne Snow Observatory (ASO) has been measuring spatial and temporal distribution of both snow water equivalent and snow albedo, the two most critical properties for understanding snowmelt runoff and timing, across key basins in the Western US. It is generally understood that net solar radiation (as controlled by variations in snow albedo and irradiance) provides the energy available for melt in almost all snow-covered environments. Until now, sparse measurements have restricted the ability to utilize measured net solar radiation in energy balance models, and current process simulations and model prediction of albedo evolution rely on oversimplifications of the processes. Data from ASO offers the unprecedented opportunity to utilize weekly measurements of spatially extensive spectral snow albedo to constrain and update snow albedo in a distributed snowmelt model for the first time. Here, we first investigate the sensitivity of the snow energy balance model SNOBAL to prescribed changes in snow albedo at two instrumented alpine catchments: at the point scale across 10 years at Senator Beck Basin Study Area in the San Juan Mountains, southwestern Colorado, and at the distributed scale across 25 years at Reynolds Creek Experimental Watershed, Idaho. We then compare distributed energy balance and snowmelt results across the ASO measurement record in the Tuolumne Basin in the Sierra Nevada Mountains, California, for model runs with and without integrated snow albedo from ASO.

  9. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya.

    PubMed

    Aryal, Achyut; Shrestha, Uttam Babu; Ji, Weihong; Ale, Som B; Shrestha, Sujata; Ingty, Tenzing; Maraseni, Tek; Cockfield, Geoff; Raubenheimer, David

    2016-06-01

    Future climate change is likely to affect distributions of species, disrupt biotic interactions, and cause spatial incongruity of predator-prey habitats. Understanding the impacts of future climate change on species distribution will help in the formulation of conservation policies to reduce the risks of future biodiversity losses. Using a species distribution modeling approach by MaxEnt, we modeled current and future distributions of snow leopard (Panthera uncia) and its common prey, blue sheep (Pseudois nayaur), and observed the changes in niche overlap in the Nepal Himalaya. Annual mean temperature is the major climatic factor responsible for the snow leopard and blue sheep distributions in the energy-deficient environments of high altitudes. Currently, about 15.32% and 15.93% area of the Nepal Himalaya are suitable for snow leopard and blue sheep habitats, respectively. The bioclimatic models show that the current suitable habitats of both snow leopard and blue sheep will be reduced under future climate change. The predicted suitable habitat of the snow leopard is decreased when blue sheep habitats is incorporated in the model. Our climate-only model shows that only 11.64% (17,190 km(2)) area of Nepal is suitable for the snow leopard under current climate and the suitable habitat reduces to 5,435 km(2) (reduced by 24.02%) after incorporating the predicted distribution of blue sheep. The predicted distribution of snow leopard reduces by 14.57% in 2030 and by 21.57% in 2050 when the predicted distribution of blue sheep is included as compared to 1.98% reduction in 2030 and 3.80% reduction in 2050 based on the climate-only model. It is predicted that future climate may alter the predator-prey spatial interaction inducing a lower degree of overlap and a higher degree of mismatch between snow leopard and blue sheep niches. This suggests increased energetic costs of finding preferred prey for snow leopards - a species already facing energetic constraints due to the limited dietary resources in its alpine habitat. Our findings provide valuable information for extension of protected areas in future.

  10. Point pattern analysis applied to flood and landslide damage events in Switzerland (1972-2009)

    NASA Astrophysics Data System (ADS)

    Barbería, Laura; Schulte, Lothar; Carvalho, Filipe; Peña, Juan Carlos

    2017-04-01

    Damage caused by meteorological and hydrological extreme events depends on many factors, not only on hazard, but also on exposure and vulnerability. In order to reach a better understanding of the relation of these complex factors, their spatial pattern and underlying processes, the spatial dependency between values of damage recorded at sites of different distances can be investigated by point pattern analysis. For the Swiss flood and landslide damage database (1972-2009) first steps of point pattern analysis have been carried out. The most severe events have been selected (severe, very severe and catastrophic, according to GEES classification, a total number of 784 damage points) and Ripley's K-test and L-test have been performed, amongst others. For this purpose, R's library spatstat has been used. The results confirm that the damage points present a statistically significant clustered pattern, which could be connected to prevalence of damages near watercourses and also to rainfall distribution of each event, together with other factors. On the other hand, bivariate analysis shows there is no segregated pattern depending on process type: flood/debris flow vs landslide. This close relation points to a coupling between slope and fluvial processes, connectivity between small-size and middle-size catchments and the influence of spatial distribution of precipitation, temperature (snow melt and snow line) and other predisposing factors such as soil moisture, land-cover and environmental conditions. Therefore, further studies will investigate the relationship between the spatial pattern and one or more covariates, such as elevation, distance from watercourse or land use. The final goal will be to perform a regression model to the data, so that the adjusted model predicts the intensity of the point process as a function of the above mentioned covariates.

  11. Impact of the snow cover scheme on snow distribution and energy budget modeling over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xie, Zhipeng; Hu, Zeyong; Xie, Zhenghui; Jia, Binghao; Sun, Genhou; Du, Yizhen; Song, Haiqing

    2018-02-01

    This paper presents the impact of two snow cover schemes (NY07 and SL12) in the Community Land Model version 4.5 (CLM4.5) on the snow distribution and surface energy budget over the Tibetan Plateau. The simulated snow cover fraction (SCF), snow depth, and snow cover days were evaluated against in situ snow depth observations and a satellite-based snow cover product and snow depth dataset. The results show that the SL12 scheme, which considers snow accumulation and snowmelt processes separately, has a higher overall accuracy (81.8%) than the NY07 (75.8%). The newer scheme performs better in the prediction of overall accuracy compared with the NY07; however, SL12 yields a 15.1% underestimation rate while NY07 overestimated the SCF with a 15.2% overestimation rate. Both two schemes capture the distribution of the maximum snow depth well but show large positive biases in the average value through all periods (3.37, 3.15, and 1.48 cm for NY07; 3.91, 3.52, and 1.17 cm for SL12) and overestimate snow cover days compared with the satellite-based product and in situ observations. Higher altitudes show larger root-mean-square errors (RMSEs) in the simulations of snow depth and snow cover days during the snow-free period. Moreover, the surface energy flux estimations from the SL12 scheme are generally superior to the simulation from NY07 when evaluated against ground-based observations, in particular for net radiation and sensible heat flux. This study has great implications for further improvement of the subgrid-scale snow variations over the Tibetan Plateau.

  12. Snow distribution and heat flow in the taiga

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, M.

    1992-05-01

    The trees of the taiga intercept falling snow and cause it to become distributed in an uneven fashion. Around aspen and birch, cone-shaped accumulations form. Beneath large spruce trees, the snow cover is depleted, forming a bowl-shaped depression called a tree well. Small spruce trees become covered with snow, creating cavities that funnel cold air to the snow/ground interface. The depletion of snow under large spruce trees results in greater heat loss from the ground. A finite difference model suggests that heat flow from tree wells can be more than twice that of undisturbed snow. In forested watersheds, this increasemore » can be a significant percentage of the total winter energy exchange.« less

  13. Snowpack and variation in reproductive ecology of a montane ground-nesting passerine, Junco hyemalis

    USGS Publications Warehouse

    Smith, Kimberly G.; Andersen, Douglas C.

    1985-01-01

    Effects of snow depth and rate of snowmelt on reproduction of a montane ground-nesting passerine were examined in a 5-year study of Dark-eyed Juncos Junco hyemalis in northern Utah, USA. Distribution of clucth sizes differed significantly among years. Although most clutches contained four eggs, 3-egg clutches, due primarily to second nestings, were more common during a year of early snowmelt and 5-egg clutches were most common during two years of late snowmelt. Average clutch size was lowest in an early snowmelt year and average clutch size and date at which meadows became snow-free were significantly positively correlated. Average hatching date of 4-egg clutches was also significantly positively correlated with date at which meadows became snow-free demonstrating that most birds tracked the pattern of snowmelt. Early snowmelt may allow more pairs to attempt second nesting, but late-lying snow causes breeding to be delayed, allowing time for only one nesting attempt. During this delay, female juncos continue to feed and some may gain enough reserves to produce larger clutches, accounting for the increase in average clutch size in years of late snowmelt. Three female juncos examined in June 1982, a period of late snowmelt, had significantly more lipid reserves than did six males collected at the same time, suggesting that females are not physiologically stressed while awaiting snowmelt. By tracking snowmelt patterns, juncos synchronize production of young with peak summer insect abundance and potentially decrease risk of predation. Snow depth and rate of snowmelt are thus proximate environmental factors that may influence the reproductive ecology of ground-nesting passerines.

  14. BOREAS HYD-3 Snow Measurements

    NASA Technical Reports Server (NTRS)

    Hardy, Janet P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Davis, Robert E.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-3 team collected several data sets related to the hydrology of forested areas. This data set contains measurements of snow depth, snow density in three cm intervals, an integrated snow pack density and snow water equivalent (SWE), and snow pack physical properties from snow pit evaluation taken in 1994 and 1996. The data were collected from several sites in both the southern study area (SSA) and the northern study area (NSA). A variety of standard tools were used to measure the snow pack properties, including a meter stick (snow depth), a 100 cc snow density cutter, a dial stem thermometer, and the Canadian snow sampler as used by HYD-4 to obtain a snow pack-integrated measure of SWE. This study was undertaken to predict spatial distributions of snow properties important to the hydrology, remote sensing signatures, and the transmissivity of gases through the snow. The data are available in tabular ASCII files. The snow measurement data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  15. Supporting Snow Research: SnowEx Data and Services at the NASA National Snow and Ice Data Center DAAC

    NASA Astrophysics Data System (ADS)

    Leon, A.; Tanner, S.; Deems, J. S.

    2017-12-01

    The National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC), part of the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder, will archive and distribute all primary data sets collected during the NASA SnowEx campaigns. NSIDC DAAC's overarching goal for SnowEx data management is to steward the diverse SnowEx data sets to provide a reliable long-term archive, to enable effective data discovery, retrieval, and usage, and to support end user engagement. This goal will be achieved though coordination and collaboration with SnowEx project management and investigators. NSIDC DAAC's core functions for SnowEx data management include: Data Creation: Advise investigators on data formats and structure as well as metadata creation and content to enable preservation, usability, and discoverability. Data Documentation: Develop comprehensive data set documentation describing the instruments, data collection and derivation methods, and data file contents. Data Distribution: Provide discovery and access through NSIDC and NASA data portals to make SnowEx data available to a broad user community Data & User Support: Assist user communities with the selection and usage of SnowEx data products. In an effort to educate and broaden the SnowEx user community, we will present an overview of the SnowEx data products, tools, and services which will be available at the NSIDC DAAC. We hope to gain further insight into how the DAAC can enable the user community to seamlessly and effectively utilize SnowEx data in their research and applications.

  16. Impacts of Recent Climatic Wetting on Distributed Snow and Streamflow Responses in a Terminal Lake Basin.

    NASA Astrophysics Data System (ADS)

    Van Hoy, D.; Mahmood, T. H.; Jeannotte, T.; Todhunter, P. E.

    2017-12-01

    The recent shift in hydroclimatic conditions in the Northern Great Plains (NGP) has led to an increase in precipitation, rainfall rate, and wetland connectivity over the last few decades. These changes yield an integrated response resulting in high mean annual streamflow and subsequent flooding in many NGP basins such as the terminal Devils Lake Basin (DLB). In this study, we investigate the impacts of recent climatic wetting on distributed hydrologic responses such as snow processes and streamflow using a field-tested and physically-based cold region hydrologic model (CRHM). CHRM is designed for cold prairie regions and has modules to simulate major processes such as blowing snow transport, sublimation, interception, frozen soil infiltration, snowmelt and subsequent streamflow generation. Our modeling focuses on a tributary basin of the DLB known as the Mauvais Coulee Basin (MCB). Since there were no snow observations in the MCB, we conducted a detailed snow survey at distributed locations estimating snow depth, density, and snow water equivalent (SWE) using a prairie snow tube four times during winter of 2016-17. The MCB model was evaluated against distributed snow observations and streamflow measured at the basin outlet (USGS) for the year 2016-2017. Preliminary results indicate that the simulated SWEs at distributed locations and streamflow (NSE ≈ 0.70) are in good agreement with observations. The simulated SWE maps exhibit large spatiotemporal variation during 2016-17 winter due to spatial variability in precipitation, snow redistribution from stubble field to wooded areas, and snow accumulations in small depressions across the subbasins. The main source of snow appears to be the hills and ridges of the eastern and western edges of the basin, while the main sink is the large flat central valleys. The model will be used to examine the effect of recent changes to precipitation and temperature on snow processes and subsequent streamflow for 2004-2017 season. We will also investigate the hydrologic sensitivity to precipitation and temperature changes by altering input temperature and precipitation. Finally, our findings will point toward future process-based studies and simulated hydrologic responses that can be used to prepare flood hazard maps for cities around Devils Lake.

  17. SUBGRID PARAMETERIZATION OF SNOW DISTRIBUTION FOR AN ENERGY AND MASS BALANCE SNOW COVER MODEL. (R824784)

    EPA Science Inventory

    Representation of sub-element scale variability in snow accumulation and ablation is increasingly recognized as important in distributed hydrologic modelling. Representing sub-grid scale variability may be accomplished through numerical integration of a nested grid or through a l...

  18. Enhancing our Understanding of Snowfall Modes with Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; Kulie, M.; Petersen, W. A.; Bliven, L. F.; Wood, N.

    2016-12-01

    Snowfall can be broadly categorized into deep and shallow events based on the vertical distribution of the precipitating ice. Remotely sensed data refine these precipitation categories and aid in discerning the underlying macro- and microphysical mechanisms. The unique patterns in the remotely sensed instruments observations can potentially connect distinct modes of snowfall to specific processes. Though satellites can observe and recognize these patterns in snowfall, these measurements are limited - particularly in cases of shallow and light precipitation, as the snow may be too close to the surface or below the detection limits of the instrumentation. By enhancing satellite measurements with ground-based instrumentation, whether with limited-term field campaigns or long-term strategic sites, we can further our understanding and assumptions about different snowfall modes and how they are measured from spaceborne instruments. Presented are three years of data from a ground-based instrument suite consisting of a MicroRain Radar (MRR; optimized for snow events) and a Precipitation Imaging Package (PIP). These instruments are located at the Marquette, Michigan National Weather Service Weather Forecast Office to: a) use coincident meteorological measurements and observations to enhance our understanding of the thermodynamic drivers and b) showcase these instruments in an operational setting to enhance forecasts of shallow snow events. Three winters of MRR and PIP measurements are partitioned, based on meteorological surface observations, into two-dimensional histograms of reflectivity and particle size distribution data. These statistics improve our interpretation of deep versus shallow precipitation. Additionally, these statistical techniques are applied to similar datasets from Global Precipitation Measurement field campaigns for further insight into cloud and precipitation macro- and microphysical processes.

  19. Snow accumulation on Arctic sea ice: is it a matter of how much or when?

    NASA Astrophysics Data System (ADS)

    Webster, M.; Petty, A.; Boisvert, L.; Markus, T.

    2017-12-01

    Snow on sea ice plays an important, yet sometimes opposing role in sea ice mass balance depending on the season. In autumn and winter, snow reduces the heat exchange from the ocean to the atmosphere, reducing sea ice growth. In spring and summer, snow shields sea ice from solar radiation, delaying sea ice surface melt. Changes in snow depth and distribution in any season therefore directly affect the mass balance of Arctic sea ice. In the western Arctic, a decreasing trend in spring snow depth distribution has been observed and attributed to the combined effect of peak snowfall rates in autumn and the coincident delay in sea ice freeze-up. Here, we build on this work and present an in-depth analysis on the relationship between snow accumulation and the timing of sea ice freeze-up across all Arctic regions. A newly developed two-layer snow model is forced with eight reanalysis precipitation products to: (1) identify the seasonal distribution of snowfall accumulation for different regions, (2) highlight which regions are most sensitive to the timing of sea ice freeze-up with regard to snow accumulation, and (3) show, if precipitation were to increase, which regions would be most susceptible to thicker snow covers. We also utilize a comprehensive sensitivity study to better understand the factors most important in controlling winter/spring snow depths, and to explore what could happen to snow depth on sea ice in a warming Arctic climate.

  20. Resolving Size Distribution of Black Carbon Internally Mixed With Snow: Impact on Snow Optical Properties and Albedo

    NASA Astrophysics Data System (ADS)

    He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi

    2018-03-01

    We develop a stochastic aerosol-snow albedo model that explicitly resolves size distribution of aerosols internally mixed with various snow grains. We use the model to quantify black carbon (BC) size effects on snow albedo and optical properties for BC-snow internal mixing. Results show that BC-induced snow single-scattering coalbedo enhancement and albedo reduction decrease by a factor of 2-3 with increasing BC effective radii from 0.05 to 0.25 μm, while polydisperse BC results in up to 40% smaller visible single-scattering coalbedo enhancement and albedo reduction compared to monodisperse BC with equivalent effective radii. We further develop parameterizations for BC size effects for application to climate models. Compared with a realistic polydisperse assumption and observed shifts to larger BC sizes in snow, respectively, assuming monodisperse BC and typical atmospheric BC effective radii could lead to overestimates of 24% and 40% in BC-snow albedo forcing averaged over different BC and snow conditions.

  1. Combining point and distributed snowpack data with landscape-based discretization for hydrologic modeling of the snow-dominated Maipo River basin, in the semi-arid Andes of Central Chile.

    NASA Astrophysics Data System (ADS)

    McPhee, James; Videla, Yohann

    2014-05-01

    The 5000-km2 upper Maipo River Basin, in central Chile's Andes, has an adequate streamgage network but almost no meteorological or snow accumulation data. Therefore, hydrologic model parameterization is strongly subject to model errors stemming from input and model-state uncertainty. In this research, we apply the Cold Regions Hydrologic Model (CRHM) to the basin, force it with reanalysis data downscaled to an appropriate resolution, and inform a parsimonious basin discretization, based on the hydrologic response unit concept, with distributed data on snowpack properties obtained through snow surveys for two seasons. With minimal calibration the model is able to reproduce the seasonal accumulation and melt cycle as recorded in the one snow pillow available for the basin, and although a bias in maximum accumulation persists, snowpack persistence in time is appropriately simulated based on snow water equivalent and snow covered area observations. Blowing snow events were simulated by the model whenever daily wind speed surpassed 8 m/s, although the use of daily instead of hourly data to force the model suggests that this phenomenon could be underestimated. We investigate the representation of snow redistribution by the model, and compare it with small-scale observations of wintertime snow accumulation on glaciers, in a first step towards characterizing ice distribution within a HRU spatial discretization. Although built at a different spatial scale, we present a comparison of simulated results with distributed snow depth data obtained within a 40 km2 sub-basin of the main Maipo watershed in two snow surveys carried out at the end of winter seasons 2011 and 2012, and compare basin-wide SWE estimates with a regression tree extrapolation of the observed data.

  2. Snowmelt in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, F.

    2016-12-01

    Snow accumulation and melting are important hydrological processes in the Tibetan Plateau (TP). Qualification of snow dynamics is helpful for water resources management. In this study, a case study of snow and runoff modeling in a glaciated catchment in south Tibet was firstly conducted and showed that MODIS snow cover data can be successfully used for snow model calibration. Following the method, snow accumulation and melting in the TP was simulated using a distributed degree-day model through zonal calibration. The simulation results showed that the spatial pattern of snowmelt is basically in accordance with that of precipitation with discrepancy mainly introduced by elevation and temperature lapse. During 1979-2010, average annual precipitation and snowmelt in the TP was 394 and 80 mm/yr, respectively, indicating that about 1/5 of the precipitation in the TP supplied the rivers, lakes, and groundwater etc in the form of snowmelt. Seasonal snowmelt accounted for 35%, 37%, 26%, and 2% of the annual gross in spring, summer, fall, and winter, respectively, with net accumulation of snow in fall and winter added to the snowmelt in the following spring and summer. The overall changing trends of annual precipitation and snowmelt in the TP were 4.1 and 0.4 mm/yr, respectively, with the most intensive snowmelt increase of about 3.0 mm/yr in the upstream of Tarim river basin (UTA) but decrease of about -1.4 mm/yr in the upstream of Mekong river basin (UME) due to the interacting impacts of temperature and precipitation. Significant increasing trend of snowmelt in spring shown in the UTA may benefit the local water use for irrigation etc.

  3. Experimental and model based investigation of the links between snow bidirectional reflectance and snow microstructure

    NASA Astrophysics Data System (ADS)

    Dumont, M.; Flin, F.; Malinka, A.; Brissaud, O.; Hagenmuller, P.; Dufour, A.; Lapalus, P.; Lesaffre, B.; Calonne, N.; Rolland du Roscoat, S.; Ando, E.

    2017-12-01

    Snow optical properties are unique among Earth surface and crucial for a wide range of applications. The bi-directional reflectance, hereafter BRDF, of snow is sensible to snow microstructure. However the complex interplays between different parameters of snow microstructure namely size parameters and shape parameters on reflectance are challenging to disentangle both theoretically and experimentally. An accurate understanding and modelling of snow BRDF is required to correctly process satellite data. BRDF measurements might also provide means of characterizing snow morphology. This study presents one of the very few dataset that combined bi-directional reflectance measurements over 500-2500 nm and X-ray tomography of the snow microstructure for three different snow samples and two snow types. The dataset is used to evaluate the approach from Malinka, 2014 that relates snow optical properties to the chord length distribution in the snow microstructure. For low and medium absorption, the model accurately reproduces the measurements but tends to slightly overestimate the anisotropy of the reflectance. The model indicates that the deviation of the ice chord length distribution from an exponential distribution, that can be understood as a characterization of snow types, does not impact the reflectance for such absorptions. The simulations are also impacted by the uncertainties in the ice refractive index values. At high absorption and high viewing/incident zenith angle, the simulations and the measurements disagree indicating that some of the assumptions made in the model are not met anymore. The study also indicates that crystal habits might play a significant role for the reflectance under such geometries and wavelengths. However quantitative relationship between crystal habits and reflectance alongside with potential optical methodologies to classify snow morphology would require an extended dataset over more snow types. This extended dataset can likely be obtained thanks to the use of ray tracing models on tomography images of the snow microstructure.

  4. Decadal trend of precipitation and temperature patterns and impacts on snow-related variables in a semiarid region, Sierra Nevada, Spain.

    NASA Astrophysics Data System (ADS)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2016-04-01

    In the current context of global change, mountainous areas constitute singular locations in which these changes can be traced. Early detection of significant shifts of snow state variables in semiarid regions can help assess climate variability impacts and future snow dynamics in northern latitudes. The Sierra Nevada mountain range, in southern Spain, is a representative example of snow areas in Mediterranean-climate regions and both monitoring and modelling efforts have been performed to assess this variability and its significant scales. This work presents a decadal trend analysis throughout the 50-yr period 1960-2010 performed on some snow-related variables over Sierra Nevada, in Spain, which is included in the global climate change observatories network around the world. The study area comprises 4583 km2 distributed throughout the five head basins influenced by these mountains, with altitude values ranging from 140 to 3479 m.a.s.l., just 40 km from the Mediterranean coastline. Meteorological variables obtained from 44 weather stations from the National Meteorological Agency were studied and further used as input to the distributed hydrological model WiMMed (Polo et al., 2010), operational at the study area, to obtain selected snow variables. Decadal trends were obtained, together with their statistical significance, over the following variables, averaged over the whole study area: (1) annual precipitation; (2) annual snowfall; annual (3) mean, (4) maximum and (5) minimum daily temperature; annual (6) mean and (7) maximum daily fraction of snow covered areas; (8) annual number of days with snow cover; (9) mean and (10) maximum daily snow water equivalent; (11) annual number of extreme precipitation events; and (12) mean intensity of the annual extreme precipitation events. These variables were also studied over each of the five regions associated to each basin in the range. Globally decreasing decadal trends were obtained for all the meteorological variables, with the exception of the average annual mean and maximum daily temperature. In the case of the snow-related variables, no significant trends are observed at this time scale; nonetheless, a global decreasing rate is predominant in most of the variables. The torrential events are more frequent in the last decades of the study period, with an apparently increasing associated dispersion. This study constitutes a first sound analysis of the long-term observed trends of the snow regime in this area under the context of increasing temperature and decreasing precipitation regimes. The results highlight the complexity of non-linearity in environmental processes in Mediterranean regions, and point out to a significant shift in the precipitation and temperature regime, and thus on the snow-affected hydrological variables in the study area.

  5. Snow distribution throughout small subalpine catchment post-insect infestation of spruce and pine beetle.

    NASA Astrophysics Data System (ADS)

    Beverly, D.; Ewers, B. E.; Hyde, K.; Ohara, N.; Speckman, H. N.

    2015-12-01

    High elevation watersheds of the Rocky Mountains region contribute over 70% of the streamflow needed for infrastructure, agriculture, and ecological processes. Snow-water yields are heterogeneous in space and time and are driven by a multitude of snow distribution processes, including snowpack evolution driven by physical and biological factors. Quantifying heterogeneity of snowpack is further complicated by vegetation perturbations; much of the Rocky Mountains have experienced significant tree mortality due to bark beetle outbreaks. Reduction of living crown area decreases canopy interception while increasing radiation to snow surfaces, which alters snowpack distribution throughout the catchment. We hypothesize that, in a complex watershed, topographic variation (i.e., slope and aspect) will have a greater effect on snowpack evolution and distribution than densities of canopy mortality due to beetle infestation. The 120 ha No Name watershed, located in southern Wyoming at 3000 m elevation was divided into twenty-one 175 m2 parcels, in which plots were randomly assigned within each parcel. Peak snow was measured in April; in the 50 m2 plots, depths were measured every 2 m along north-south and east-west transects. Twenty-one snow pits were excavated to quantify snow densities in 10 cm increments throughout the pit profile. Forest inventories occurred the following summer. Peak snowpack levels occurred in April with mean depth of 92.3 ­­± 2.4 cm and peak SWE of 34.0 ± 0.84 cm. Binary decision trees accounted for 63% of the variability after including topographic indices, beetle condition of the trees, LAI, and basal area. Snow depth showed a slight positive relationship with increased in beetle mortality on slopes less than 11 degrees. Overall, topographic indices are greater drivers for snow distributions compared to effects of tree mortality.

  6. Predicting the distribution and ecological niche of unexploited snow crab (Chionoecetes opilio) populations in Alaskan waters: a first open-access ensemble model.

    PubMed

    Hardy, Sarah M; Lindgren, Michael; Konakanchi, Hanumantharao; Huettmann, Falk

    2011-10-01

    Populations of the snow crab (Chionoecetes opilio) are widely distributed on high-latitude continental shelves of the North Pacific and North Atlantic, and represent a valuable resource in both the United States and Canada. In US waters, snow crabs are found throughout the Arctic and sub-Arctic seas surrounding Alaska, north of the Aleutian Islands, yet commercial harvest currently focuses on the more southerly population in the Bering Sea. Population dynamics are well-monitored in exploited areas, but few data exist for populations further north where climate trends in the Arctic appear to be affecting species' distributions and community structure on multiple trophic levels. Moreover, increased shipping traffic, as well as fisheries and petroleum resource development, may add additional pressures in northern portions of the range as seasonal ice cover continues to decline. In the face of these pressures, we examined the ecological niche and population distribution of snow crabs in Alaskan waters using a GIS-based spatial modeling approach. We present the first quantitative open-access model predictions of snow-crab distribution, abundance, and biomass in the Chukchi and Beaufort Seas. Multi-variate analysis of environmental drivers of species' distribution and community structure commonly rely on multiple linear regression methods. The spatial modeling approach employed here improves upon linear regression methods in allowing for exploration of nonlinear relationships and interactions between variables. Three machine-learning algorithms were used to evaluate relationships between snow-crab distribution and environmental parameters, including TreeNet, Random Forests, and MARS. An ensemble model was then generated by combining output from these three models to generate consensus predictions for presence-absence, abundance, and biomass of snow crabs. Each algorithm identified a suite of variables most important in predicting snow-crab distribution, including nutrient and chlorophyll-a concentrations in overlying waters, temperature, salinity, and annual sea-ice cover; this information may be used to develop and test hypotheses regarding the ecology of this species. This is the first such quantitative model for snow crabs, and all GIS-data layers compiled for this project are freely available from the authors, upon request, for public use and improvement.

  7. Energy balance-based distributed modeling of snow and glacier melt runoff for the Hunza river basin in the Pakistan Karakoram Himalayan region

    NASA Astrophysics Data System (ADS)

    Shrestha, M.; Wang, L.; Koike, T.; Xue, Y.; Hirabayashi, Y.; Ahmad, S.

    2012-12-01

    A spatially distributed biosphere hydrological model with energy balance-based multilayer snow physics and multilayer glacier model, including debris free and debris covered surface (enhanced WEB-DHM-S) has been developed and applied to the Hunza river basin in the Pakistan Karakoram Himalayan region, where about 34% of the basin area is covered by glaciers. The spatial distribution of seasonal snow and glacier cover, snow and glacier melt runoff along with rainfall-contributed runoff, and glacier mass balances are simulated. The simulations are carried out at hourly time steps and at 1-km spatial resolution for the two hydrological years (2002-2003) with the use of APHRODITE precipitation dataset, observed temperature, and other atmospheric forcing variables from the Global Land Data Assimilation System (GLDAS). The pixel-to-pixel comparisons for the snow-free and snow-covered grids over the region reveal that the simulation agrees well with the Moderate Resolution Imaging Spectroradiometer (MODIS) eight-day maximum snow-cover extent data (MOD10A2) with an accuracy of 83% and a positive bias of 2.8 %. The quantitative evaluation also shows that the model is able to reproduce the river discharge satisfactorily with Nash efficiency of 0.92. It is found that the contribution of rainfall to total streamflow is small (about 10-12%) while the contribution of snow and glacier is considerably large (35-40% for snowmelt and 50-53% for glaciermelt, respectively). The model simulates the state of snow and glaciers at each model grid prognostically and thus can estimate the net annual mass balance. The net mass balance varies from -2 m to +2 m water equivalent. Additionally, the hypsography analysis for the equilibrium line altitude (ELA) suggests that the average ELA in this region is about 5700 m with substantial variation from glacier to glacier and region to region. This study is the first to adopt a distributed biosphere hydrological model with the energy balance- based multilayer snow and glacier module to estimate the spatial distribution of snow/glacier cover and snow and glacier melt runoff for a river basin in the Karakoram Himalayan region.

  8. Merging a Terrain-Based Parameter and Snow Particle Counter Data for the Assessment of Snow Redistribution in the Col du Lac Blanc Area

    NASA Astrophysics Data System (ADS)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Vionnet, Vincent; Guyomarc'h, Gilbert; Heiser, Micha; Nishimura, Kouichi

    2015-04-01

    Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns. It does not, however, provide a quantitative estimate of changes in snow depths. The objective of our research was to introduce a new parameter to quantify changes in snow depths in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its consistently bi-modal wind directions. Our work focused on two pronounced, approximately 10 m high terrain breaks, and we worked with 1 m resolution digital snow surface models (DSM). The DSM and measured changes in snow depths were obtained with high-accuracy terrestrial laser scan (TLS) measurements. First we calculated the terrain-based parameter Sx on a digital snow surface model and correlated Sx with measured changes in snow-depths (Δ SH). Results showed that Δ SH can be approximated by Δ SHestimated = α * Sx, where α is a newly introduced parameter. The parameter α has shown to be linked to the amount of snow deposited influenced by blowing snow flux. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter α . To simulate the development of the snow surface in dependency of Sx, SPC flux and time, we apply a simple cellular automata system. The system consists of raster cells that develop through discrete time steps according to a set of rules. The rules are based on the states of neighboring cells. Our model assumes snow transport in dependency of Sx gradients between neighboring cells. The cells evolve based on difference quotients between neighbouring cells. Our analyses and results are steps towards using the terrain-based parameter Sx, coupled with SPC data, to quantitatively estimate changes in snow depths, using high raster resolutions of 1 m.

  9. A new parameterization of the post-fire snow albedo effect

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Nolin, A. W.

    2013-12-01

    Mountain snowpack serves as an important natural reservoir of water: recharging aquifers, sustaining streams, and providing important ecosystem services. Reduced snowpacks and earlier snowmelt have been shown to affect fire size, frequency, and severity in the western United States. In turn, wildfire disturbance affects patterns of snow accumulation and ablation by reducing canopy interception, increasing turbulent fluxes, and modifying the surface radiation balance. Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of pyrogenic carbon particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. Although the post-fire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. The objective of this study was to parameterize the post-fire snow albedo effect due to BWD deposition on snow to better represent forest fire disturbance in modeling of snow-dominated hydrologic regimes. Based on empirical results from winter experiments, in-situ snow monitoring, and remote sensing data from a recent forest fire in the Oregon High Cascades, we characterized the post-fire snow albedo effect, and developed a simple parameterization of snowpack albedo decay in the post-fire forest environment. We modified the recession coefficient in the algorithm: α = α0 + K exp (-nr) where α = snowpack albedo, α0 = minimum snowpack albedo (≈0.4), K = constant (≈ 0.44), -n = number of days since last major snowfall, r = recession coefficient [Rohrer and Braun, 1994]. Our parameterization quantified BWD deposition and snow albedo decay rates and related these forest disturbance effects to radiative heating and snow melt rates. We validated our parameterization of the post-fire snow albedo effect at the plot scale using a physically-based, spatially-distributed snow accumulation and melt model, and in-situ eddy covariance and snow monitoring data. This research quantified wildfire impacts to snow dynamics in the Oregon High Cascades, and provided a new parameterization of post-fire drivers to changes in high elevation winter water storage.

  10. Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed

    USGS Publications Warehouse

    Balk, Benjamin; Elder, Kelly

    2000-01-01

    We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.

  11. Methane fluxes during the cold season: distribution and mass transfer in the snow cover of bogs

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Shnyrev, N. A.

    2015-08-01

    Fluxes and profile distribution of methane in the snow cover and different landscape elements of an oligotrophic West-Siberian bog (Mukhrino Research Station, Khanty-Mansiisk autonomous district) have been studied during a cold season. Simple models have been proposed for the description of methane distribution in the inert snow layer, which combine the transport of the gas and a source of constant intensity on the soil surface. The formation rates of stationary methane profiles in the snow cover have been estimated (characteristic time of 24 h). Theoretical equations have been derived for the calculation of small emission fluxes from bogs to the atmosphere on the basis of the stationary profile distribution parameters, the snow porosity, and the effective methane diffusion coefficient in the snow layer. The calculated values of methane emission significantly (by 2-3 to several tens of times) have exceeded the values measured under field conditions by the closed chamber method (0.008-0.25 mg C/(m2 h)), which indicates the possibility of underestimating the contribution of the cold period to the annual emission cycle of bog methane.

  12. Synchronous flowering despite differences in snowmelt timing among habitats of Empetrum hermaphroditum

    NASA Astrophysics Data System (ADS)

    Bienau, Miriam J.; Kröncke, Michael; Eiserhardt, Wolf L.; Otte, Annette; Graae, Bente J.; Hagen, Dagmar; Milbau, Ann; Durka, Walter; Eckstein, R. Lutz

    2015-11-01

    The topography within arctic-alpine landscapes is very heterogeneous, resulting in diverse snow distribution patterns, with different snowmelt timing in spring. This may influence the phenological development of arctic and alpine plant species and asynchronous flowering may promote adaptation of plants to their local environments. We studied how flowering phenology of the dominant dwarf shrub Empetrum hermaphroditum varied among three habitats (exposed ridges, sheltered depressions and birch forest) differing in winter snow depth and thus snowmelt timing in spring, and whether the observed patterns were consistent across three different study areas. Despite significant differences in snowmelt timing between habitats, full flowering of E. hermaphroditum was nearly synchronous between the habitats, and implies a high flowering overlap. Our data show that exposed ridges, which had a long lag phase between snowmelt and flowering, experienced different temperature and light conditions than the two late melting habitats between snowmelt and flowering. Our study demonstrates that small scale variation seems matter less to flowering of Empetrum than interannual differences in snowmelt timing.

  13. Annual accumulation over the Greenland ice sheet interpolated from historical and newly compiled observation data

    USGS Publications Warehouse

    Shen, Dayong; Liu, Yuling; Huang, Shengli

    2012-01-01

    The estimation of ice/snow accumulation is of great significance in quantifying the mass balance of ice sheets and variation in water resources. Improving the accuracy and reducing uncertainty has been a challenge for the estimation of annual accumulation over the Greenland ice sheet. In this study, we kriged and analyzed the spatial pattern of accumulation based on an observation data series including 315 points used in a recent research, plus 101 ice cores and snow pits and newly compiled 23 coastal weather station data. The estimated annual accumulation over the Greenland ice sheet is 31.2 g cm−2 yr−1, with a standard error of 0.9 g cm−2 yr−1. The main differences between the improved map developed in this study and the recently published accumulation maps are in the coastal areas, especially southeast and southwest regions. The analysis of accumulations versus elevation reveals the distribution patterns of accumulation over the Greenland ice sheet.

  14. White water: Fifty years of snow research in WRR and the outlook for the future

    NASA Astrophysics Data System (ADS)

    Sturm, Matthew

    2015-07-01

    Over the past 50 years, 239 papers related to snow have been published in Water Resources Research (WRR). Seminal papers on virtually every facet of snow physics and snow water resources have appeared in the journal. These include papers on drifting snow, the snow surface energy balance, the effect of grain size on albedo, chemical elution, water movement through snow, and canopy interception. In particular, papers in WRR have explored the distribution of snow across different landscapes, providing data, process knowledge, and the basis for virtually all of the distributed snow models in use today. In this paper, I review these key contributions and provide some personal thoughts on what is likely to be the focus and nature of papers published in the next few decades, a period that is likely to see an increasing ability to map snow cover in detail, which should serve as a basis for the further development and improvement of snow models. It will also be an uncertain future, with profound changes in snow climatology predicted. I expect WRR will continue to play a key role in documenting and understanding these important cryospheric changes.

  15. Snow grain size and shape distributions in northern Canada

    NASA Astrophysics Data System (ADS)

    Langlois, A.; Royer, A.; Montpetit, B.; Roy, A.

    2016-12-01

    Pioneer snow work in the 1970s and 1980s proposed new approaches to retrieve snow depth and water equivalent from space using passive microwave brightness temperatures. Numerous research work have led to the realization that microwave approaches depend strongly on snow grain morphology (size and shape), which was poorly parameterized since recently, leading to strong biases in the retrieval calculations. Related uncertainties from space retrievals and the development of complex thermodynamic multilayer snow and emission models motivated several research works on the development of new approaches to quantify snow grain metrics given the lack of field measurements arising from the sampling constraints of such variable. This presentation focuses on the unknown size distribution of snow grain sizes. Our group developed a new approach to the `traditional' measurements of snow grain metrics where micro-photographs of snow grains are taken under angular directional LED lighting. The projected shadows are digitized so that a 3D reconstruction of the snow grains is possible. This device has been used in several field campaigns and over the years a very large dataset was collected and is presented in this paper. A total of 588 snow photographs from 107 snowpits collected during the European Space Agency (ESA) Cold Regions Hydrology high-resolution Observatory (CoReH2O) mission concept field campaign, in Churchill, Manitoba Canada (January - April 2010). Each of the 588 photographs was classified as: depth hoar, rounded, facets and precipitation particles. A total of 162,516 snow grains were digitized across the 588 photographs, averaging 263 grains/photo. Results include distribution histograms for 5 `size' metrics (projected area, perimeter, equivalent optical diameter, minimum axis and maximum axis), and 2 `shape' metrics (eccentricity, major/minor axis ratio). Different cumulative histograms are found between the grain types, and proposed fits are presented with the Kernel distribution function. Finally, a comparison with the Specific Surface Area (SSA) derived from reflectance values using the Infrared Integrating Sphere (IRIS) highlight different power statistical fits for the 5 `size' metrics.

  16. Distributed snow data as a tool to inform water management decisions: Using Airborne Snow Observatory (ASO) at the Hetch Hetchy Reservoir in Yosemite National Park, City and County of San Francisco.

    NASA Astrophysics Data System (ADS)

    Graham, C. B.

    2016-12-01

    The timing and magnitude of spring snowmelt and runoff is critical in managing reservoirs in the Western United States. The Hetch Hetchy Reservoir in Yosemite National Park provides drinking water for 2.6 million customers in over 30 communities in the San Francisco Bay Area. Power generation from Hetch Hetchy meets the municipal load of the City and County of San Francisco. Water from the Hetch Hetchy Reservoir is also released in the Tuolumne River, supporting critical ecosystems in Yosemite National Park and the Stanislaus National Forest. Better predictions of long (seasonal) and short (weekly) term streamflow allow for more secure water resource planning, earlier power generation and ecologically beneficial releases from the Reservoir. Hetch Hetchy Reservoir is fed by snow dominated watersheds in the Sierra Mountains. Better knowledge of snowpack conditions allow for better predictions of inflows, both at the seasonal and at the weekly time scales. The ASO project has provided the managers of Hetch Hetchy Reservoir with high resolution estimates of total snowpack and snowpack distribution in the 460 mi2 Hetch Hetchy. We show that there is a tight correlation between snowpack estimates and future streamflow, allowing earlier, more confident operational decisions. We also show how distributed SWE estimates were used to develop and test a hydrologic model of the system (PRMS). This model, calibrated directly to snowpack conditions, is shown to correctly simulate snowpack volume and distribution, as well as streamflow patterns.

  17. The Sensitivity of Soil Moisture in Western U.S. Mountains to Changes in Snowmelt

    NASA Astrophysics Data System (ADS)

    Harpold, A. A.

    2014-12-01

    Snowmelt is the primary water source for human needs and ecosystems services in much of the Western U.S. Regional warming is expected to hasten snow disappearance and reduce snowpacks. The soil water budget strongly mediates the effects of changing snowmelt patterns by storing water and altering is partitioning to evaporation, transpiration, and runoff. This study therefore asked the research question, "Under what conditions was soil water availability coupled to snowmelt magnitudes and timing across Western U.S. mountains?" We posed three potential hypotheses to explain decoupling between soil water availability and snowmelt: 1. Contributions from post-snowmelt rainfall, 2. Longer growing season length and/or greater water demand, and/or 3. Insufficient soil water storage. Using 259 Snow Telemetry (SNOTEL) stations, we showed that the timing of Peak Soil Moisture (PSM) was strongly explained by snow disappearance (Pearson r-value of 0.62). However, differences in the coupling of PSM with DSD were dependent on soil and bedrock type, with well-drained areas having earlier PSM relative to DSD. A second analysis focused on 48 SNOTEL and Soil Climate Analysis Network (SCAN) stations in the Northwest and Intermountain Western U.S. where detailed soil hydraulic properties existed. We found the timing of snow disappearance was a strong influence (p<0.01) on the number of days per year that soil moisture was below wilting point at individual stations, whereas summer precipitation was a weaker predictor. We develop a framework to classify stations into three classes: 1. stations that were not subject to water stress from changing snowmelt patterns over the historical records, 2. stations subject to water stress during poor snowmelt years, and 3. stations that relied on rainfall to avoid water stress across historical records. Our combined results demonstrate that snow disappearance timing is a first-order control on soil water availability across many Western U.S. mountain ecosystems. However, soils properties could make areas more/less sensitive to changing snowpacks depending on seasonal precipitation patterns. This type of simple framework could be used to identify areas at risk of changing snowpacks and help constrain vegetation distributions as a consequence of climate change.

  18. Climate change predicted to shift wolverine distributions, connectivity, and dispersal corridors

    Treesearch

    Kevin S. McKelvey; Jeffrey P. Copeland; Michael K. Schwartz; Jeremy S. Littell; Keith B. Aubry; John R. Squires; Sean A. Parks; Marketa M. Elsner; Guillaume S. Mauger

    2011-01-01

    Boreal species sensitive to the timing and duration of snow cover are particularly vulnerable to global climate change. Recent work has shown a link between wolverine (Gulo gulo) habitat and persistent spring snow cover through 15 May, the approximate end of the wolverine's reproductive denning period. We modeled the distribution of snow cover within the Columbia...

  19. Meteorological and snow distribution data in the Izas Experimental Catchment (Spanish Pyrenees) from 2011 to 2017

    NASA Astrophysics Data System (ADS)

    Revuelto, Jesús; Azorin-Molina, Cesar; Alonso-González, Esteban; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Rico, Ibai; López-Moreno, Juan Ignacio

    2017-12-01

    This work describes the snow and meteorological data set available for the Izas Experimental Catchment in the Central Spanish Pyrenees, from the 2011 to 2017 snow seasons. The experimental site is located on the southern side of the Pyrenees between 2000 and 2300 m above sea level, covering an area of 55 ha. The site is a good example of a subalpine environment in which the evolution of snow accumulation and melt are of major importance in many mountain processes. The climatic data set consists of (i) continuous meteorological variables acquired from an automatic weather station (AWS), (ii) detailed information on snow depth distribution collected with a terrestrial laser scanner (TLS, lidar technology) for certain dates across the snow season (between three and six TLS surveys per snow season) and (iii) time-lapse images showing the evolution of the snow-covered area (SCA). The meteorological variables acquired at the AWS are precipitation, air temperature, incoming and reflected solar radiation, infrared surface temperature, relative humidity, wind speed and direction, atmospheric air pressure, surface temperature (snow or soil surface), and soil temperature; all were taken at 10 min intervals. Snow depth distribution was measured during 23 field campaigns using a TLS, and daily information on the SCA was also retrieved from time-lapse photography. The data set (https://doi.org/10.5281/zenodo.848277) is valuable since it provides high-spatial-resolution information on the snow depth and snow cover, which is particularly useful when combined with meteorological variables to simulate snow energy and mass balance. This information has already been analyzed in various scientific studies on snow pack dynamics and its interaction with the local climatology or topographical characteristics. However, the database generated has great potential for understanding other environmental processes from a hydrometeorological or ecological perspective in which snow dynamics play a determinant role.

  20. Satellite and Surface Perspectives of Snow Extent in the Southern Appalachian Mountains

    NASA Technical Reports Server (NTRS)

    Sugg, Johnathan W.; Perry, Baker L.; Hall, Dorothy K.

    2012-01-01

    Assessing snow cover patterns in mountain regions remains a challenge for a variety of reasons. Topography (e.g., elevation, exposure, aspect, and slope) strongly influences snowfall accumulation and subsequent ablation processes, leading to pronounced spatial variability of snow cover. In-situ observations are typically limited to open areas at lower elevations (<1000 m). In this paper, we use several products from the Moderate Resolution Imaging Spectroradiometer (MODIS) to assess snow cover extent in the Southern Appalachian Mountains (SAM). MODIS daily snow cover maps and true color imagery are analyzed after selected snow events (e.g., Gulf/Atlantic Lows, Alberta Clippers, and Northwest Upslope Flow) from 2006 to 2012 to assess the spatial patterns of snowfall across the SAM. For each event, we calculate snow cover area across the SAM using MODIS data and compare with the Interactive Multi-sensor Snow and ice mapping system (IMS) and available in-situ observations. Results indicate that Gulf/Atlantic Lows are typically responsible for greater snow extent across the entire SAM region due to intensified cyclogenesis associated with these events. Northwest Upslope Flow events result in snow cover extent that is limited to higher elevations (>1000 m) across the SAM, but also more pronounced along NW aspects. Despite some limitations related to the presence of ephemeral snow or cloud cover immediately after each event, we conclude that MODIS products are useful for assessing the spatial variability of snow cover in heavily forested mountain regions such as the SAM.

  1. Testing a blowing snow model against distributed snow measurements at Upper Sheep Creek, Idaho, United States of America

    Treesearch

    Rajiv Prasad; David G. Tarboton; Glen E. Liston; Charles H. Luce; Mark S. Seyfried

    2001-01-01

    In this paper a physically based snow transport model (SnowTran-3D) was used to simulate snow drifting over a 30 m grid and was compared to detailed snow water equivalence (SWE) surveys on three dates within a small 0.25 km2 subwatershed, Upper Sheep Creek. Two precipitation scenarios and two vegetation scenarios were used to carry out four snow transport model runs in...

  2. Snowpack Regimes of the Western United States

    NASA Astrophysics Data System (ADS)

    Trujillo, E.; Molotch, N. P.

    2011-12-01

    Snow accumulation and melt patterns play a significant role in the water, energy, carbon and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments, and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here, we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at over seven hundred snow pillow stations in the Western U.S., focusing on several metrics of the yearly SWE curves and the cross relationships between the different metrics. The metrics include the initial snow accumulation and meltout dates, the peak accumulation and date of peak, the time from initial accumulation to peak, the time from peak to meltout, the accumulation and melt slopes, and the daily rates of accumulation and melt. Three distinct regimes emerge from these results: a maritime, an intermediate (intercontinental), and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days, while on the other hand; the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intercontinental regime lies in between. Several other differences are identified between the metrics of the SWE curve in these regimes. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intercontinental regime includes the Northern and Central basins and ranges, the Idaho Batholith, the Northern Rockies and the Blue Mountains. Lastly, the Continental regime includes the Middle and Southern Rockies, and the Wasatch and Uinta Mountains. The consequences of the differences between these snow regimes are discussed in the framework of the implications of possible changes in accumulation and melt patterns as a consequence of changes in climate.

  3. Using mid-altitude regions as observatories of change in snow areas: the Natural Park of Cazorla, Segura y las Villas (South Spain) as study case for early snow regression.

    NASA Astrophysics Data System (ADS)

    Montilla, Soledad; Pimentel, Rafael; José Pérez-Palazón, María; Aguillar, Cristina; José Polo, María

    2017-04-01

    Snow plays a key role at the hydrological cycle in semiarid mountainous areas, modifying the energy and water balances that govern the regime of stored water in the snowpack, a key resource for the spring and summer river flow. The Natural and National Park of Sierra Nevada (SNNP), a coastal mountain range up to 3450 m a.s.l. in southern Spain, is a representative example of snow areas in Mediterranean-climate regions; its high altitudinal gradient results in a wide variety of eco-climatic environments, and it is part of the global monitoring network to study climate change. Both monitoring and modelling efforts have been performed to assess this variability and its significant scales; whereas increasing temperature trends have been found, no significant trends are observed so far regarding the precipitation regime both on a seasonal and annual basis, with a highly variable impact on the snow regime in this area, especially in the mid-altitude range. In this context, the study of the snow cover in the neighbouring Natural Park of Cazorla, Segura and Las Villas (CSLVNP), with similar climatic conditions but lower altitudes (up to 2107 m a.s.l.) is proposed as a parallel monitoring site for early warning of impacts of climate change on the snow regime. The CSLVNP is the most extensive protected area in Spain and it is located to the north of SNPN, with less influence of the Mediterranean Sea. This study carried out a first quantification of the snow importance in this area, which exhibits a large transitional zone with a dominant alpine environment, and its relationship with the observed local precipitation-temperature trends. For this, the snow cover fraction on a 30x30 m gridded resolution has been studied during a 5-yr period combining on-site meteorological observations and remote-sensing data analysis, and snow modelling by the distributed and physically based approach for Mediterranean regions proposed by Herrero et al. (2009; 2010). The analysis of the available series of satellite images Landsat 8 OLI/TIRS, Landsat 7 ETM+ and Landsat 4-5 TM were used to obtain snow cover fraction maps with 30x30 m resolution. The study period 2010-2015 was simulated with the distributed snow model and the results were compared against these snow map series. Additionally, the annual and seasonal trends of precipitation, mean daily temperature and global radiation were obtained from the available local data sets. Globally, the simulated results overestimate the snow presence in the study area, very likely due to the estimation of snowfall. However, on a local scale, the model performance improves in the region between 1750 and 2250 m altitude. On the other hand, those zones at lower altitudes, which are a transition of the clearly alpine environment above, present a high variability of results related to the spatial patterns of precipitation, temperature and radiation. Regarding the precipitation-temperature regime, an increasing 0.05 °/yr over the last 30 years (1970-2010) was found, but no significant conclusion can be achieved on precipitation trends. This is also observed in the SNNP, which confirms the potential representativeness of PNCSV as an early warning site. Further work is being carried out to improve the snow modelling at this site and generate longer snow cover fraction maps series and other characteristic variables of the snow in this area.

  4. Performance of complex snow cover descriptions in a distributed hydrological model system: A case study for the high Alpine terrain of the Berchtesgaden Alps.

    PubMed

    Warscher, M; Strasser, U; Kraller, G; Marke, T; Franz, H; Kunstmann, H

    2013-05-01

    [1] Runoff generation in Alpine regions is typically affected by snow processes. Snow accumulation, storage, redistribution, and ablation control the availability of water. In this study, several robust parameterizations describing snow processes in Alpine environments were implemented in a fully distributed, physically based hydrological model. Snow cover development is simulated using different methods from a simple temperature index approach, followed by an energy balance scheme, to additionally accounting for gravitational and wind-driven lateral snow redistribution. Test site for the study is the Berchtesgaden National Park (Bavarian Alps, Germany) which is characterized by extreme topography and climate conditions. The performance of the model system in reproducing snow cover dynamics and resulting discharge generation is analyzed and validated via measurements of snow water equivalent and snow depth, satellite-based remote sensing data, and runoff gauge data. Model efficiency (the Nash-Sutcliffe coefficient) for simulated runoff increases from 0.57 to 0.68 in a high Alpine headwater catchment and from 0.62 to 0.64 in total with increasing snow model complexity. In particular, the results show that the introduction of the energy balance scheme reproduces daily fluctuations in the snowmelt rates that trace down to the channel stream. These daily cycles measured in snowmelt and resulting runoff rates could not be reproduced by using the temperature index approach. In addition, accounting for lateral snow transport changes the seasonal distribution of modeled snowmelt amounts, which leads to a higher accuracy in modeling runoff characteristics.

  5. Deposition patterns and transport mechanisms for the endocrine disruptor 4-nonylphenol across the Sierra Nevada Mountains, California.

    PubMed

    Lyons, Rebecca; Van de Bittner, Kyle; Morgan-Jones, Sean

    2014-12-01

    Dust and particulate distribution patterns are shifting as global climate change brings about longer drought periods. Particulates act as vehicles for long range transport of organic pollutants, depositing at locations far from their source. Nonylphenol, a biodegradation product of nonylphenol polyethoxylate, is a known endocrine disruptor. Nonylphenol polyethoxylate enters the environment as an inert ingredient in pesticide sprays, potentially traveling great distances from its application site. This is of concern when a highly agricultural region, California's Central Valley, lies adjacent to sensitive areas like the Eastern Sierra Nevada Mountains. The distribution and transport mechanisms for 4-nonylphenol were investigated in Eastern Sierra Nevada canyons. Regions close to canyon headwalls showed trace amounts of 4-nonylphenol in surface water, snow, and atmospheric deposition. Exposed areas had yearly average concentrations as high as 9 μg/L. Distribution patterns are consistent with particulate-bound transport. This suggests with increasing drought periods, higher levels of persistent organic pollutants are likely. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. n-Aldehydes (C6-C10) in snow samples collected at the high alpine research station Jungfraujoch during CLACE 5

    NASA Astrophysics Data System (ADS)

    Sieg, K.; Starokozhev, E.; Fries, E.; Sala, S.; Püttmann, W.

    2009-04-01

    C6-C10 n-aldehydes were analyzed in samples of freshly fallen snow collected at the high alpine research station Jungfraujoch, Switzerland, during the Cloud and Aerosol Characterization Experiments (CLACE) 5 in February and March 2006. Sampling was carried out on the Sphinx platform. Headspace - solid phase dynamic extraction (HS-SPDE) combined with gas chromatography/mass spectrometry (GC/MS) was used to quantify n-aldehydes in melted snow samples. n-Hexanal was identified as the most abundant n-aldehyde (median concentration 1.324 µg L-1) followed by n-nonanal, n-decanal, n-octanal and n-heptanal (median concentrations 1.239, 0.863, 0.460 and 0.304 µg L-1, respectively). A wide range of concentrations of n-aldehydes was found in snow samples from Jungfraujoch, even for samples collected at the same time during the same snowfall event. According to their physical and chemical characteristics, n-aldehydes are expected to be primarily linked to aerosol particles in the atmosphere suggesting the uptake of n-aldehydes into snow via the particle phase. Particle scavenging can occur during snow formation in clouds. The high concentration variations of the n-aldehydes among the snow samples can be explained assuming that aerosol particles, which are loaded with n-aldehydes, are heterogeneously distributed throughout the snow samples. Higher median concentrations of all n-aldehydes were observed when air masses reached Jungfraujoch from the north-northwest in comparison to air masses arriving from the southeast-southwest. The sources of atmospheric n-aldehydes present at Jungfraujoch are most likely to be related to direct and indirect biogenic emissions. The presence of n-aldehydes as semivolatile constituents of direct biogenic emissions from vegetation has been reported previously in studies of Ciccioli et al. [1], Yokouchi et al. [2] and Kesselmeier and Staudt [3]. The distribution pattern of the n-aldehydes in emissions from vegetation largely matches with the n-aldehyde pattern found in snow collected at Jungfraujoch. One exception is the significantly higher proportion of n-hexanal in the Jungfraujoch samples compared to vegetation emission. Additionally, indirect biogenic emissions can contribute to the atmospheric concentrations of n-aldehydes through oxidation of precursor compounds of biogenic origin. In this context, Moise and Rudich [4] and Thornberry and Abbatt [5] proposed the preferential formation of n-nonanal and n-hexanal from the cleavage by ozonolysis of double bonds in unsaturated fatty acids (namely oleic acid and linoleic acids). The predominance of n-hexanal and n-nonanal among the C6-C10 n-aldehydes in the snow samples collected at Jungfraujoch during CLACE 5 is therefore an argument for the formation of the aldehydes through oxidation of unsaturated fatty acids in the atmosphere. Anthropogenic emissions of n-aldehydes i.e. from fossil fuel burning are thought to be negligible in the air masses reaching Jungfraujoch. References: [1] P. Ciccioli, E. Brancaleoni, M. Frattoni, A. Cecinato, A. Brachetti, Atmos. Environ., Part A 27 (1993) 1891. [2] Y. Yokouchi, H. Mukai, K. Nakajima, Y. Ambe, Atmos. Environ., Part A 24 (1990) 439. [3] J. Kesselmeier, M. Staudt, J. Atmos. Chem. 33 (1999) 23. [4] T. Moise, Y. Rudich, J. Phys. Chem. 106 (2002) 6469. [5] T. Thornberry, J.P.D. Abbatt, Phys. Chem. Chem. Phys. 6 (2004) 84.

  7. THE INFLUENCE OF THE SPATIAL DISTRIBUTION OF SNOW ON BASIN-AVERAGED SNOWMELT. (R824784)

    EPA Science Inventory

    Spatial variability in snow accumulation and melt owing to topographic effects on solar radiation, snow drifting, air temperature and precipitation is important in determining the timing of snowmelt releases. Precipitation and temperature effects related to topography affect snow...

  8. Nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (Dome A) in East Antarctica

    NASA Astrophysics Data System (ADS)

    Shi, Guitao; Hastings, Meredith G.; Yu, Jinhai; Ma, Tianming; Hu, Zhengyi; An, Chunlei; Li, Chuanjin; Ma, Hongmei; Jiang, Su; Li, Yuansheng

    2018-04-01

    Antarctic ice core nitrate (NO3-) can provide a unique record of the atmospheric reactive nitrogen cycle. However, the factors influencing the deposition and preservation of NO3- at the ice sheet surface must first be understood. Therefore, an intensive program of snow and atmospheric sampling was made on a traverse from the coast to the ice sheet summit, Dome A, East Antarctica. Snow samples in this observation include 120 surface snow samples (top ˜ 3 cm), 20 snow pits with depths of 150 to 300 cm, and 6 crystal ice samples (the topmost needle-like layer on Dome A plateau). The main purpose of this investigation is to characterize the distribution pattern and preservation of NO3- concentrations in the snow in different environments. Results show that an increasing trend of NO3- concentrations with distance inland is present in surface snow, and NO3- is extremely enriched in the topmost crystal ice (with a maximum of 16.1 µeq L-1). NO3- concentration profiles for snow pits vary between coastal and inland sites. On the coast, the deposited NO3- was largely preserved, and the archived NO3- fluxes are dominated by snow accumulation. The relationship between the archived NO3- and snow accumulation rate can be depicted well by a linear model, suggesting a homogeneity of atmospheric NO3- levels. It is estimated that dry deposition contributes 27-44 % of the archived NO3- fluxes, and the dry deposition velocity and scavenging ratio for NO3- were relatively constant near the coast. Compared to the coast, the inland snow shows a relatively weak correlation between archived NO3- and snow accumulation, and the archived NO3- fluxes were more dependent on concentration. The relationship between NO3- and coexisting ions (nssSO42-, Na+ and Cl-) was also investigated, and the results show a correlation between nssSO42- (fine aerosol particles) and NO3- in surface snow, while the correlation between NO3- and Na+ (mainly associated with coarse aerosol particles) is not significant. In inland snow, there were no significant relationships found between NO3- and the coexisting ions, suggesting a dominant role of NO3- recycling in determining the concentrations.

  9. Spatial analysis and statistical modelling of snow cover dynamics in the Central Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Weidinger, Johannes; Gerlitz, Lars; Böhner, Jürgen

    2017-04-01

    General circulation models are able to predict large scale climate variations in global dimensions, however small scale dynamic characteristics, such as snow cover and its temporal variations in high mountain regions, are not represented sufficiently. Detailed knowledge about shifts in seasonal ablation times and spatial distribution of snow cover are crucial for various research interests. Since high mountain areas, for instance the Central Himalayas in Nepal, are generally remote, it is difficult to obtain data in high spatio-temporal resolutions. Regional climate models and downscaling techniques are implemented to compensate coarse resolution. Furthermore earth observation systems, such as MODIS, also permit bridging this gap to a certain extent. They offer snow (cover) data in daily temporal and medium spatial resolution of around 500 m, which can be applied as evaluation and training data for dynamical hydrological and statistical analyses. Within this approach two snow distribution models (binary snow cover and fractional snow cover) as well as one snow recession model were implemented for a research domain in the Rolwaling Himal in Nepal, employing the random forest technique, which represents a state of the art machine learning algorithm. Both bottom-up strategies provide inductive reasoning to derive rules for snow related processes out of climate (temperature, precipitation and irradiance) and climate-related topographic data sets (elevation, aspect and convergence index) obtained by meteorological network stations, remote sensing products (snow cover - MOD10-A1 and land surface temperatures - MOD11-A1) along with GIS. Snow distribution is predicted reliably on a daily basis in the research area, whereas further effort is necessary for predicting daily snow cover recession processes adequately. Swift changes induced by clear sky conditions with high insolation rates are well represented, whereas steady snow loss still needs continuing effort. All approaches underline the technical difficulties of snow cover modelling during the monsoon season, in accordance with previous studies. The developed methods in combination with continuous in situ measurements provide a basis for further downscaling approaches.

  10. Forest Fires Darken Snow for Years following Disturbance: Magnitude, Duration, and Composition of Light Absorbing Impurities in Seasonal Snow across a Chronosequence of Burned Forests in the Colorado River Headwaters

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Arienzo, M. M.; Chellman, N.; McConnell, J.

    2017-12-01

    Charred forests shed black carbon and burned debris, which accumulates and concentrates on winter snowpack, reducing snow surface albedo, and subsequently increasing snowmelt rates, and advancing the date of snow disappearance. Forest fires have occurred across vast areas of the seasonal snow zone in recent decades, however we do not understand the long-term implications of burned forests in montane headwaters to snow hydrology and downstream water resources. Across a chronosequence of nine burned forests in the Colorado River Headwaters, we sampled snow throughout the complete snowpack profile to conserve the composition, properties, and vertical stratigraphy of impurities in the snowpack during maximum snow accumulation. Using state-of-the-art geochemical analyses, we determined the magnitude, composition, and particle size distribution of black carbon, dust, and other impurities in the snowpack relative to years-since fire. Forest fires continue to darken snow for many years following fire, however the magnitude, composition, and particle size distribution of impurities change through time, altering the post-fire radiative forcing on snow as a burned forest ages.

  11. Assimilation of ground and satellite snow observations in a distributed hydrologic model to improve water supply forecasts in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Micheletty, P. D.; Day, G. N.; Quebbeman, J.; Carney, S.; Park, G. H.

    2016-12-01

    The Upper Colorado River Basin above Lake Powell is a major source of water supply for 25 million people and provides irrigation water for 3.5 million acres. Approximately 85% of the annual runoff is produced from snowmelt. Water supply forecasts of the April-July runoff produced by the National Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC), are critical to basin water management. This project leverages advanced distributed models, datasets, and snow data assimilation techniques to improve operational water supply forecasts made by CBRFC in the Upper Colorado River Basin. The current work will specifically focus on improving water supply forecasts through the implementation of a snow data assimilation process coupled with the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM). Three types of observations will be used in the snow data assimilation system: satellite Snow Covered Area (MODSCAG), satellite Dust Radiative Forcing in Snow (MODDRFS), and SNOTEL Snow Water Equivalent (SWE). SNOTEL SWE provides the main source of high elevation snowpack information during the snow season, however, these point measurement sites are carefully selected to provide consistent indices of snowpack, and may not be representative of the surrounding watershed. We address this problem by transforming the SWE observations to standardized deviates and interpolating the standardized deviates using a spatial regression model. The interpolation process will also take advantage of the MODIS Snow Covered Area and Grainsize (MODSCAG) product to inform the model on the spatial distribution of snow. The interpolated standardized deviates are back-transformed and used in an Ensemble Kalman Filter (EnKF) to update the model simulated SWE. The MODIS Dust Radiative Forcing in Snow (MODDRFS) product will be used more directly through temporary adjustments to model snowmelt parameters, which should improve melt estimates in areas affected by dust on snow. In order to assess the value of different data sources, reforecasts will be produced for a historical period and performance measures will be computed to assess forecast skill. The existing CBRFC Ensemble Streamflow Prediction (ESP) reforecasts will provide a baseline for comparison to determine the added-value of the data assimilation process.

  12. How Much Water is in That Snowpack? Improving Basin-wide Snow Water Equivalent Estimates from the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Painter, T. H.; Marks, D. G.; Kirchner, P. B.; Winstral, A. H.; Ramirez, P.; Goodale, C. E.; Richardson, M.; Berisford, D. F.

    2014-12-01

    In the western US, snowmelt from the mountains contribute the vast majority of fresh water supply, in an otherwise dry region. With much of California currently experiencing extreme drought, it is critical for water managers to have accurate basin-wide estimations of snow water content during the spring melt season. At the forefront of basin-scale snow monitoring is the Jet Propulsion Laboratory's Airborne Snow Observatory (ASO). With combined LiDAR /spectrometer instruments and weekly flights over key basins throughout California, the ASO suite is capable of retrieving high-resolution basin-wide snow depth and albedo observations. To make best use of these high-resolution snow depths, spatially distributed snow density data are required to leverage snow water equivalent (SWE) from the measured depths. Snow density is a spatially and temporally variable property and is difficult to estimate at basin scales. Currently, ASO uses a physically based snow model (iSnobal) to resolve distributed snow density dynamics across the basin. However, there are issues with the density algorithms in iSnobal, particularly with snow depths below 0.50 m. This shortcoming limited the use of snow density fields from iSnobal during the poor snowfall year of 2014 in the Sierra Nevada, where snow depths were generally low. A deeper understanding of iSnobal model performance and uncertainty for snow density estimation is required. In this study, the model is compared to an existing climate-based statistical method for basin-wide snow density estimation in the Tuolumne basin in the Sierra Nevada and sparse field density measurements. The objective of this study is to improve the water resource information provided to water managers during ASO operation in the future by reducing the uncertainty introduced during the snow depth to SWE conversion.

  13. Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields

    Treesearch

    Ernesto Trujillo; Jorge A. Ramirez; Kelly J. Elder

    2007-01-01

    In this study, LIDAR snow depths, bare ground elevations (topography), and elevations filtered to the top of vegetation (topography + vegetation) in five 1-km2 areas are used to determine whether the spatial distribution of snow depth exhibits scale invariance, and the control that vegetation, topography, and winds exert on such behavior. The one-dimensional and mean...

  14. Multi-species patterns of avian cholera mortality in Nebraska's rainwater basin

    USGS Publications Warehouse

    Blanchong, Julie A.; Samuel, M.D.; Mack, G.

    2006-01-01

    Nebraska's Rainwater Basin (RWB) is a key spring migration area for millions of waterfowl and other avian species. Avian cholera has been endemic in the RWB since the 1970s and in some years tens of thousands of waterfowl have died from the disease. We evaluated patterns of avian cholera mortality in waterfowl species using the RWB during the last quarter of the 20th century. Mortality patterns changed between the years before (1976 - 1988) and coincident with (1989 - 1999) the dramatic increases in lesser snow goose abundance and mortality. Lesser snow geese (Chen caerulescens caerulescens) have commonly been associated with mortality events in the RWB and are known to carry virulent strains of Pasteurella multocida, the agent causing avian cholera. Lesser snow geese appeared to be the species most affected by avian cholera during 1989 - 1999; however, mortality in several other waterfowl species was positively correlated with lesser snow goose mortality. Coincident with increased lesser snow goose mortality, spring avian cholera outbreaks were detected earlier and ended earlier compared to 1976 - 1988. Dense concentrations of lesser snow geese may facilitate intraspecific disease transmission through bird-to-bird contact and wetland contamination. Rates of interspecific avian cholera transmission within the waterfowl community, however, are difficult to determine.

  15. Investigating the Relationships between Canopy Characteristics and Snow Depth Distribution at Fine Scales: Preliminary Results from the SnowEX TLS Campaign

    NASA Astrophysics Data System (ADS)

    Glenn, N. F.; Uhlmann, Z.; Spaete, L.; Tennant, C.; Hiemstra, C. A.; McNamara, J.

    2017-12-01

    Predicting changes in forested seasonal snowpacks under altered climate scenarios is one of the most pressing hydrologic challenges facing today's society. Airborne- and satellite-based remote sensing methods hold the potential to transform measurements of terrestrial water stores in snowpack, improve process representations of snowpack accumulation and ablation, and to generate high quality predictions that inform potential strategies to better manage water resources. While the effects of forest on snowpack are well documented, many of the fine-scale processes influenced by the forest-canopy are not directly accounted for because most snow models don't explicitly represent canopy structure and canopy heterogeneity. This study investigates the influence of forest canopy on snowpack distribution at fine scales and quantifies the influence of canopy heterogeneity on snowpack accumulation and ablation processes. We use terrestrial laser scanning (TLS) data collected during the SnowEX campaign to discover how the relationships between canopy and snow distributions change across scales. Our sample scales range from individual trees to patches of trees across the Grand Mesa, CO, SnowEx site.

  16. Predicting Clear-Sky Reflectance Over Snow/Ice in Polar Regions

    NASA Technical Reports Server (NTRS)

    Chen, Yan; Sun-Mack, Sunny; Arduini, Robert F.; Hong, Gang; Minnis, Patrick

    2015-01-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the nearinfrared (NIR; 1.24, 1.6 or 2.13 micrometers), visible (VIS; 0.63 micrometers) and vegetation (VEG; 0.86 micrometers) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) to help identify clouds and retrieve their properties in both snow-free and snow-covered conditions. Thus, it is critical to have reliable distributions of clear-sky albedo for all of these channels. In CERES Edition 4 (Ed4), the 1.24-micrometer channel is used to retrieve cloud optical depth over snow/ice-covered surfaces. Thus, it is especially critical to accurately predict the 1.24-micrometer clear-sky albedo alpha and reflectance rho for a given location and time. Snow albedo and reflectance patterns are very complex due to surface texture, particle shapes and sizes, melt water, and vegetation protrusions from the snow surface. To minimize those effects, this study focuses on the permanent snow cover of Antarctica where vegetation is absent and melt water is minimal. Clear-sky albedos are determined as a function of solar zenith angle (SZA) from observations over all scenes determined to be cloud-free to produce a normalized directional albedo model (DRM). The DRM is used to develop alpha(SZA=0 degrees) on 10 foot grid for each season. These values provide the basis for predicting r at any location and set of viewing & illumination conditions. This paper examines the accuracy of this approach for two theoretical snow surface reflectance models.

  17. Extreme flood estimation by the SCHADEX method in a snow-driven catchment: application to Atnasjø (Norway)

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel; Lawrence, Deborah

    2013-04-01

    The SCHADEX method for extreme flood estimation was developed by Paquet et al. (2006, 2013), and since 2008, it is the reference method used by Electricité de France (EDF) for dam spillway design. SCHADEX is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard usingrainfall-runoff modelling. The MORDOR hydrological model (Garçon, 1999) has thus far been used for the rainfall-runoff modelling. MORDOR is a conceptual, lumped, reservoir model with daily areal rainfall and air temperature as the driving input data. The principal hydrological processes represented are evapotranspiration, direct and indirect runoff, ground water, snow accumulation and melt, and routing. The model has been intensively used at EDF for more than 15 years, in particular for inflow forecasts for French mountainous catchments. SCHADEX has now also been applied to the Atnasjø catchment (463 km²), a well-documented inland catchment in south-central Norway, dominated by snowmelt flooding during spring/early summer. To support this application, a weather pattern classification based on extreme rainfall was first established for Norway (Fleig, 2012). This classification scheme was then used to build a Multi-Exponential Weather Pattern distribution (MEWP), as introduced by Garavaglia et al. (2010) for extreme rainfall estimation. The MORDOR model was then calibrated relative to daily discharge data for Atnasjø. Finally, a SCHADEX simulation was run to build a daily discharge distribution with a sufficient number of simulations for assessing the extreme quantiles. Detailed results are used to illustrate how SCHADEX handles the complex and interacting hydrological processes driving flood generation in this snow driven catchment. Seasonal and monthly distributions, as well as statistics for several thousand simulated events reaching a 1000 years return level value and assessment of snowmelt role in extreme floods are presented. This study illustrates the complexity of the extreme flood estimation in snow driven catchments, and the need for a good representation of snow accumulation and melting processes in simulations for design flood estimations. In particular, the SCHADEX method is able to represent a range of possible catchment conditions (representing both soil moisture and snowmelt) in which extreme flood events can occur. This study is part of a collaboration between NVE and EDF, initiated within the FloodFreq COST Action (http://www.cost-floodfreq.eu/). References: Fleig, A., Scientific Report of the Short Term Scientific Mission Anne Fleig visiting Électricité de France, FloodFreq COST action - STSM report, 2012 Garavaglia, F., Gailhard, J., Paquet, E., Lang, M., Garçon, R., and Bernardara, P., Introducing a rainfall compound distribution model based on weather patterns sub-sampling, Hydrol. Earth Syst. Sci., 14, 951-964, doi:10.5194/hess-14-951-2010, 2010 Garçon, R. Modèle global pluie-débit pour la prévision et la prédétermination des crues, La Houille Blanche, 7-8, 88-95. doi: 10.1051/lhb/1999088 Paquet, E., Gailhard, J. and Garçon, R. (2006), Evolution of the GRADEX method: improvement by atmospheric circulation classification and hydrological modeling, La Houille Blanche, 5, 80-90. doi: 10.1051/lhb/2006091 Paquet, E., Garavaglia, F., Garçon, R. and Gailhard, J. (2012), The SCHADEX method: a semi-continuous rainfall-runoff simulation for extreme food estimation, Journal of Hydrology, under revision

  18. Effects of climate warming and prolonged snow cover on phenology of the early life history stages of four alpine herbs on the southeastern Tibetan Plateau.

    PubMed

    Wang, Guoyan; Baskin, Carol C; Baskin, Jerry M; Yang, Xuejun; Liu, Guofang; Ye, Xuehua; Zhang, Xinshi; Huang, Zhenying

    2018-06-21

    Much research has focused on plant responses to ongoing climate change, but there is relatively little information about how climate change will affect the early plant life history stages. Understanding how global warming and changes in winter snow pattern will affect seed germination and seedling establishment is crucial for predicting future alpine population and vegetation dynamics. In a 2-year study, we tested how warming and alteration in the snowmelt regime, both in isolation and combination, influence seedling emergence phenology, first-year growth, biomass allocation, and survival of four native alpine perennial herbs on the southeastern Tibetan Plateau. Warming promoted seedling emergence phenology of all four species and biomass per plant of two species but reduced seedling survival of three species. Prolonged snow cover partly mediated the affects of warming on Primula alpicola (survival and biomass), Pedicularis fletcheri (phenology, biomass, and root:shoot ratio) and Meconopsis integrifolia (survival). For the narrowly distributed species M. racemosa, seedling growth was additively decreased by warming and prolonged snow cover. Both warming and alteration of the snow cover regime can influence plant recruitment by affecting seedling phenology, growth, and survival, and the effects are largely species-specific. Thus, climate change is likely to affect population dynamics and community structure of the alpine ecosystem. This is the first experimental demonstration of the phenological advancement of seedling emergence in the field by simulated climate warming. © 2018 Botanical Society of America.

  19. Using wireless sensor networks to improve understanding of rain-on-snow events across the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Maurer, T.; Avanzi, F.; Oroza, C.; Malek, S. A.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2017-12-01

    We use data gathered from Wireless Sensor Networks (WSNs) between 2008 and 2017 to investigate the temporal/spatial patterns of rain-on-snow events in three river basins of California's Sierra Nevada. Rain-on-snow transitions occur across a broad elevation range (several hundred meters), both between storms and within a given storm, creating an opportunity to use spatially and temporally dense data to forecast and study them. WSNs collect snow depth; meteorological data; and soil moisture and temperature data across relatively dense sensor clusters. Ten to twelve measurement nodes per cluster are placed across 1-km2 areas in locations representative of snow patterns at larger scales. Combining precipitation and snow data from snow-pillow and climate stations with an estimation of dew-point temperature from WSNs, we determine the frequency, timing, and geographic extent of rain-on-snow events. We compare these results to WSN data to evaluate the impact of rain-on-snow events on snowpack energy balance, density, and depth as well as on soil moisture. Rain-on-snow events are compared to dry warm-weather days to identify the relative importance of rain and radiation as the primary energy input to the snowpack for snowmelt generation. An intercomparison of rain-on-snow events for the WSNs in the Feather, American, and Kings River basins captures the behavior across a 2° latitudinal range of the Sierra Nevada. Rain-on-snow events are potentially a more important streamflow generation mechanism in the lower-elevation Feather River basin. Snowmelt response to rain-on-snow events changes throughout the wet season, with later events resulting in more melt due to snow isothermal conditions, coarser grain size, and more-homogeneous snow stratigraphy. Regardless of snowmelt response, rain-on-snow events tend to result in decreasing snow depth and a corresponding increase in snow density. Our results demonstrate that strategically placed WSNs can provide the necessary data at high temporal resolution to investigate how hydrologic responses evolve in both space and time, data not available from operational networks.

  20. MODIS Snow and Ice Products from the NSIDC DAAC

    NASA Technical Reports Server (NTRS)

    Scharfen, Greg R.; Hall, Dorothy K.; Riggs, George A.

    1997-01-01

    The National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) provides data and information on snow and ice processes, especially pertaining to interactions among snow, ice, atmosphere and ocean, in support of research on global change detection and model validation, and provides general data and information services to cryospheric and polar processes research community. The NSIDC DAAC is an integral part of the multi-agency-funded support for snow and ice data management services at NSIDC. The Moderate Resolution Imaging Spectroradiometer (MODIS) will be flown on the first Earth Observation System (EOS) platform (AM-1) in 1998. The MODIS Instrument Science Team is developing geophysical products from data collected by the MODIS instrument, including snow and ice products which will be archived and distributed by NSIDC DAAC. The MODIS snow and ice mapping algorithms will generate global snow, lake ice, and sea ice cover products on a daily basis. These products will augment the existing record of satellite-derived snow cover and sea ice products that began about 30 years ago. The characteristics of these products, their utility, and comparisons to other data set are discussed. Current developments and issues are summarized.

  1. Application of LANDSAT imagery for snow mapping in Norway

    NASA Technical Reports Server (NTRS)

    Odegaard, H.; Skorve, J. E. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. During the summer seasons of 1975 and 1976, the snow cover was successfully monitored and measured in the four basins. By using elevation distributions for these basins combined with the measured snow cover percentages, the equivalent snow line altitude was calculated. Equivalent snow line altitude was used in accordance with Mark Meier's definition. Cumulative runoff data were collected for the basins. Tables showing percentage snow cover versus cumulative runoff were worked out for 1975.

  2. Evaluation of Model Microphysics within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Yu, Ruyi; Molthan, Andrew L.; Nesbitt, Steven

    2013-01-01

    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is approx 0.25 m/s too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were approx 0.25 m/s too slow, while the SBU-YLIN was 0.25 to 0.5 m/s too fast. Overall, the BMPs simulate a size distribution close to the observed for D < 4 mm in the dendritic, plates, and mixed habit periods. The model BMPs underestimate the size distribution when large aggregates were observed. For D > 6 mm in the dendrites, side planes, and mixed habit periods, the BMPs are likely not simulating enough aggregation to create a larger size distribution, although the MORR (double moment) scheme seemed to perform best. These SBNY results will be compared with some results from GCPEx for a warm frontal snow band observed at 18 February 2012.

  3. Evaluation of Model Microphysics Within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Molthan, Andrew; Yu, Ruyi; Stark, David; Yuter, Sandra; Nesbitt, Steven

    2013-01-01

    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is 0.25 meters per second too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were 0.25 meters per second too slow, while the SBU-YLIN was 0.25 to 0.5 meters per second too fast. Overall, the BMPs simulate a size distribution close to the observed for D < 4 mm in the dendritic, plates, and mixed habit periods. The model BMPs underestimate the size distribution when large aggregates were observed. For D > 6 mm in the dendrites, side planes, and mixed habit periods, the BMPs are likely not simulating enough aggregation to create a larger size distribution, although the MORR (double moment) scheme seemed to perform best. These SBNY results will be compared with some results from GCPEx for a warm frontal snow band observed at 18 February 2012.

  4. A long-term Northern Hemisphere snow cover extent product (JASMES) deriving from satellite-borne optical sensors using consistent objective criteria

    NASA Astrophysics Data System (ADS)

    Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Niwano, M.; Enomoto, H.

    2017-12-01

    A long-term Northern Hemisphere (NH) snow cover extent (SCE) product (JASMES SCE) was developed from the application of a consistent objective snow cover mapping algorithm to satellite-borne optical sensors (NOAA/AVHRR and NASA's optical sensor MODIS) from 1982 to the present. We estimated NH SCE from weekly composited snow cover maps and evaluated the accuracies of snow cover detection using in-situ snow data. As benchmark SCE product, we also evaluated the accuracy of SCE maps from the National Oceanic and Atmospheric Administration Climate Data Record (NOAA-CDR) product. The evaluation showed that JASMES SCE has more temporally stable accuracies. Seasonally averaged SCE derived from JASMES exhibited negative slopes in all seasons which is opposite to those of NOAA-CDR SCE in the fall and winter seasons. The spatial pattern of annual snow cover duration (SCD) trends exhibited noticeable asymmetric pattern between continents with the largest negative trends seen over western Eurasia. The NH SCE product will be connected to the data of the Japanese Earth Observing satellite named "Global Change Observation Mission for Climate (GCOM-C)" to be launched in late 2017.

  5. Snow depth manipulation experiments in a dry and a moist tundra

    NASA Astrophysics Data System (ADS)

    Kwon, M. J.; Czimczik, C. I.; Jung, J. Y.; Kim, M.; Lee, Y. K.; Nam, S.; Wagner, I.

    2017-12-01

    As a result of global warming, precipitation in the Arctic is expected to increase by 25-50% by the end of this century, mostly in the form of snow. However, precipitation patterns vary considerable in space and time, and future precipitation patterns are highly uncertain at local and regional scales. The amount of snowfall (or snow depth) influences a number of ecosystem properties in Arctic ecosystems, such as soil temperature over winter and soil moisture in the following growing season. These modifications then affect rates of carbon-related soil processes and photosynthesis, thus CO2 exchange rates between terrestrial ecosystems and the atmosphere. In this study, we investigate the effects of snow depth on the magnitude, sources and temporal dynamics of CO2 fluxes. We installed snow fences in a dry dwarf-shrub (Cambridge Bay, Canada; 69° N, 105° W) and a moist low-shrub (Council, Alaska, USA; 64° N, 165° W) tundra in summer 2017, and established control, and increased and reduced snow depth plots at each snow fence. Summertime CO2 flux rates (net ecosystem exchange, ecosystem respiration, gross primary production) and the fractions of autotrophic and heterotrophic respiration to ecosystem respiration were measured using manual chambers and radiocarbon signatures. Wintertime CO2 flux rates will be measured using soda lime adsorption technique and forced diffusion chambers. Soil temperature and moisture at multiple depths, as well as changes in soil properties and microbial communities will be also observed, to research whether these changes affect CO2 flux rates or patterns. Our study will elucidate how future snow depth and its impact on soil physical and biogeochemical properties influence the magnitude and sources of tundra-atmosphere CO2 exchange in the rapidly warming Arctic.

  6. Linking laser scanning to snowpack modeling: Data processing and visualization

    NASA Astrophysics Data System (ADS)

    Teufelsbauer, H.

    2009-07-01

    SnowSim is a newly developed physical snowpack model that can use three-dimensional terrestrial laser scanning data to generate model domains. This greatly simplifies the input and numerical simulation of snow covers in complex terrains. The program can model two-dimensional cross sections of general slopes, with complicated snow distributions. The model predicts temperature distributions and snow settlements in this cross section. Thus, the model can be used for a wide range of problems in snow science and engineering, including numerical investigations of avalanche formation. The governing partial differential equations are solved by means of the finite element method, using triangular elements. All essential data for defining the boundary conditions and evaluating the simulation results are gathered by automatic weather and snow measurement sites. This work focuses on the treatment of these measurements and the simulation results, and presents a pre- and post-processing graphical user interface (GUI) programmed in Matlab.

  7. Snow Dunes: A Controlling Factor of Melt Pond Distribution on Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Petrich, Chris; Eicken, Hajo; Polashenski, Christopher M.; Sturm, Matthew; Harbeck, Jeremy P.; Perovich, Donald K.; Finnegan, David C.

    2012-01-01

    The location of snow dunes over the course of the ice-growth season 2007/08 was mapped on level landfast first-year sea ice near Barrow, Alaska. Landfast ice formed in mid-December and exhibited essentially homogeneous snow depths of 4-6 cm in mid-January; by early February distinct snow dunes were observed. Despite additional snowfall and wind redistribution throughout the season, the location of the dunes was fixed by March, and these locations were highly correlated with the distribution of meltwater ponds at the beginning of June. Our observations, including ground-based light detection and ranging system (lidar) measurements, show that melt ponds initially form in the interstices between snow dunes, and that the outline of the melt ponds is controlled by snow depth contours. The resulting preferential surface ablation of ponded ice creates the surface topography that later determines the melt pond evolution.

  8. Snow-Cover Variability in North America in the 2000-2001 Winter as Determined from MODIS Snow Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Janet Y. L.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500 m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5 km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.

  9. Snow-Cover Variability in North America in the 2000-2001 Winter as Determined from MODIS Snow Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Y. L.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500-m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5-km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.

  10. Snow on Sea Ice Workshop - An Icy Meeting of the Minds: Modelers and Measurers

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Snow on Sea Ice Workshop - An Icy Meeting of the Minds...workshop was to promote more seamless and better integration between measurements and modeling of snow on sea ice , thereby improving our predictive...capabilities for sea ice . OBJECTIVES The key objective was to improve the ability of modelers and measurers work together closely. To that end, we

  11. Mountain Hydrology of the Semi-Arid Western U.S.: Research Needs, Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Bales, R.; Dozier, J.; Molotch, N.; Painter, T.; Rice, R.

    2004-12-01

    In the semi-arid Western U.S., water resources are being stressed by the combination of climate warming, changing land use, and population growth. Multiple consensus planning documents point to this region as perhaps the highest priority for new hydrologic understanding. Three main hydrologic issues illustrate research needs in the snow-driven hydrology of the region. First, despite the hydrologic importance of mountainous regions, the processes controlling their energy, water and biogeochemical fluxes are not well understood. Second, there exists a need to realize, at various spatial and temporal scales, the feedback systems between hydrological fluxes and biogeochemical and ecological processes. Third, the paucity of adequate observation networks in mountainous regions hampers improvements in understanding these processes. For example, we lack an adequate description of factors controlling the partitioning of snowmelt into runoff versus infiltration and evapotranspiration, and need strategies to accurately measure the variability of precipitation, snow cover and soil moisture. The amount of mountain-block and mountain-front recharge and how recharge patterns respond to climate variability are poorly known across the mountainous West. Moreover, hydrologic modelers and those measuring important hydrologic variables from remote sensing and distributed in situ sites have failed to bridge rifts between modeling needs and available measurements. Research and operational communities will benefit from data fusion/integration, improved measurement arrays, and rapid data access. For example, the hydrologic modeling community would advance if given new access to single rather than disparate sources of bundles of cutting-edge remote sensing retrievals of snow covered area and albedo, in situ measurements of snow water equivalent and precipitation, and spatio-temporal fields of variables that drive models. In addition, opportunities exist for the deployment of new technologies, taking advantage of research in spatially distributed sensor networks that can enhance data recovery and analysis.

  12. Experimental measurement and modeling of snow accumulation and snowmelt in a mountain microcatchment

    NASA Astrophysics Data System (ADS)

    Danko, Michal; Krajčí, Pavel; Hlavčo, Jozef; Kostka, Zdeněk; Holko, Ladislav

    2016-04-01

    Fieldwork is a very useful source of data in all geosciences. This naturally applies also to the snow hydrology. Snow accumulation and snowmelt are spatially very heterogeneous especially in non-forested, mountain environments. Direct field measurements provide the most accurate information about it. Quantification and understanding of processes, that cause these spatial differences are crucial in prediction and modelling of runoff volumes in spring snowmelt period. This study presents possibilities of detailed measurement and modeling of snow cover characteristics in a mountain experimental microcatchment located in northern part of Slovakia in Western Tatra mountains. Catchment area is 0.059 km2 and mean altitude is 1500 m a.s.l. Measurement network consists of 27 snow poles, 3 small snow lysimeters, discharge measurement device and standard automatic weather station. Snow depth and snow water equivalent (SWE) were measured twice a month near the snow poles. These measurements were used to estimate spatial differences in accumulation of SWE. Snowmelt outflow was measured by small snow lysimeters. Measurements were performed in winter 2014/2015. Snow water equivalent variability was very high in such a small area. Differences between particular measuring points reached 600 mm in time of maximum SWE. The results indicated good performance of a snow lysimeter in case of snowmelt timing identification. Increase of snowmelt measured by the snow lysimeter had the same timing as increase in discharge at catchment's outlet and the same timing as the increase in air temperature above the freezing point. Measured data were afterwards used in distributed rainfall-runoff model MIKE-SHE. Several methods were used for spatial distribution of precipitation and snow water equivalent. The model was able to simulate snow water equivalent and snowmelt timing in daily step reasonably well. Simulated discharges were slightly overestimated in later spring.

  13. Application of Snowfall and Wind Statistics to Snow Transport Modeling for Snowdrift Control in Minnesota.

    NASA Astrophysics Data System (ADS)

    Shulski, Martha D.; Seeley, Mark W.

    2004-11-01

    Models were utilized to determine the snow accumulation season (SAS) and to quantify windblown snow for the purpose of snowdrift control for locations in Minnesota. The models require mean monthly temperature, snowfall, density of snow, and wind frequency distribution statistics. Temperature and precipitation data were obtained from local cooperative observing sites, and wind data came from Automated Surface Observing System (ASOS)/Automated Weather Observing System (AWOS) sites in the region. The temperature-based algorithm used to define the SAS reveals a geographic variability in the starting and ending dates of the season, which is determined by latitude and elevation. Mean seasonal snowfall shows a geographic distribution that is affected by topography and proximity to Lake Superior. Mean snowfall density also exhibits variability, with lower-density snow events displaced to higher-latitude positions. Seasonal wind frequencies show a strong bimodal distribution with peaks from the northwest and southeast vector direction, with an exception for locations in close proximity to the Lake Superior shoreline. In addition, for western and south-central Minnesota there is a considerably higher frequency of wind speeds above the mean snow transport threshold of 7 m s-1. As such, this area is more conducive to higher potential snow transport totals. Snow relocation coefficients in this area are in the range of 0.4 0.9, and, according to the empirical models used in this analysis, this range implies that actual snow transport is 40% 90% of the total potential in south-central and western areas of the state.


  14. Technical snow production in skiing areas: conditions, practice, monitoring and modelling. A case study in Mayrhofen/Austria

    NASA Astrophysics Data System (ADS)

    Strasser, Ulrich; Hanzer, Florian; Marke, Thomas; Rothleitner, Michael

    2017-04-01

    The production of technical snow today is a self-evident feature of modern alpine skiing resort management. Millions of Euros are invested every year for the technical infrastructure and its operation to produce a homogeneous and continuing snow cover on the skiing slopes for the winter season in almost every larger destination in the Alps. In Austria, skiing tourism is a significant factor of the national economic structure. We present the framing conditions of technical snow production in the mid-size skiing resort of Mayrhofen (Zillertal Alps/Austria, 136 km slopes, elevation range 630 - 2.500 m a.s.l.). Production conditions are defined by the availability of water, the planned date for the season opening, and the climatic conditions in the weeks before. By means of an adapted snow production strategy an attempt is made to ecologically and economically optimize the use of water and energy resources. Monitoring of the snow cover is supported by a network of low-cost sensors and mobile snow depth recordings. Finally, technical snow production is simulated with the spatially distributed, physically based hydroclimatological model AMUNDSEN. The model explicitly considers individual snow guns and distributes the produced snow along the slopes. The amount of simulated snow produced by each device is a function of its type, of actual wet-bulb temperature at the location, of ski area infrastructure (in terms of water supply and pumping capacity), and of snow demand.

  15. Horizontal distribution and levels of heavy metals in the biggest snowstorm in a century in Shenyang, China.

    PubMed

    An, Jing; Zhou, Qixing; Liu, Weitao; Ren, Liping

    2008-01-01

    The horizontal distribution and levels of heavy metals in the biggest snowstorm in Shenyang since 1904 were investigated by analyzing 4 metals (As, Cd, Pb, and Cu) in a series of ultraclean samples collected from 17 sites distributed in different regions of the Shenyang area, China. The results showed that the concentrations of all the 4 heavy metals in snow from the industrial regions were high, up to 7.3 (As), 2.2 (Cd), 850.0 (Pb), and 0.197-20.2 (Cu) microg/kg, respectively. In the suburb, in contrast, their concentrations were not detected, except for As. Because of the long-term application of arsenical pesticides and herbicides, As was detected in the snow samples which collected on the farm. As, Cd, and Pb were also detected in the snow samples collected from the parks, the residential areas, and the commercial districts mainly by reason of human activities. In a sense, long-term industrial activities, traffic activities, coal combustion, and agricultural activities affected the horizontal distribution and levels of these heavy metals in snow differently. The data relating to the horizontal distribution and concentrations of heavy metals in the snow under extreme climatic conditions can provide with a unique snapshot of environmental pollution situation and behaviors in urban areas.

  16. Distributed energy-balance modeling of snow-cover evolution and melt in rugged terrain: Tobacco Root Mountains, Montana, USA

    USGS Publications Warehouse

    Letsinger, S.L.; Olyphant, G.A.

    2007-01-01

    A distributed energy-balance model was developed for simulating snowpack evolution and melt in rugged terrain. The model, which was applied to a 43-km2 watershed in the Tobacco Root Mountains, Montana, USA, used measured ambient data from nearby weather stations to drive energy-balance calculations and to constrain the model of Liston and Sturm [Liston, G.E., Sturm, M., 1998. A snow-transport model for complex terrain. Journal of Glaciology 44 (148), 498-516] for calculating the initial snowpack thickness. Simulated initial snow-water equivalent ranged between 1 cm and 385 cm w.e. (water equivalent) with high values concentrated on east-facing slopes below tall summits. An interpreted satellite image of the snowcover distribution on May 6, 1998, closely matched the simulated distribution with the greatest discrepancy occurring in the floor of the main trunk valley. Model simulations indicated that snowmelt commenced early in the melt season, but rapid meltout of snow cover did not occur until after the average energy balance of the entire watershed became positive about 45 days into the melt season. Meltout was fastest in the lower part of the watershed where warmer temperatures and tree cover enhanced the energy income of the underlying snow. An interpreted satellite image of the snowcover distribution on July 9, 1998 compared favorably with the simulated distribution, and melt curves for modeled canopy-covered cells mimicked the trends measured at nearby snow pillow stations. By the end of the simulation period (August 3), 28% of the watershed remained snow covered, most of which was concentrated in the highest parts of the watershed where initially thick accumulations had been shaded by surrounding summits. The results of this study provide further demonstration of the critical role that topography plays in the timing and magnitude of snowmelt from high mountain watersheds. ?? 2006 Elsevier B.V. All rights reserved.

  17. Analyzing the importance of wind-blown snow accumulations on Mount

    NASA Astrophysics Data System (ADS)

    Nestler, Alexander; Huss, Matthias; Ambartsumian, Rouben; Hambarian, Artak; Mohr, Sandra; Santi, Flavio

    2013-04-01

    Armenia's climate has a predominantly continental character with high amounts of precipitation and low temperatures during wintertime and a lack of precipitation together with high temperatures during summer. On the volcano Mount Aragatz, snow is relocated by strong winds into massive accumulations between 2500 and 4100 m a.s.l. during the winter season. These snow accumulations appear every winter in regular patterns as cornices on the lee side of sharp edges, such as those of ridges and canyons, which are arranged in a radial manner around the central crater. The biggest cornices almost outlast the hot period and provide considerable amounts of melt water until they disappear completely by the end of August. Snow melt water is known to have a high economic importance for agriculture on the slopes of Mount Aragatz and in the surroundings of Armenia's captial Yerewan. The aim of this study is to estimate the quantity of water naturally stored as snow on Mount Aragatz, and to what degree the use of geotextiles can prolong the lives of these snow accumulations. The characteristics and the spatial distribution of snow cornices on Mount Aragatz were determined using classical glaciological methods in June/July 2011 and 2012, involving snow depth soundings, water equivalent measurements and snow melt monitoring using ablation stakes, together with GPS mappings and classifications obtained from satellite images of the snow cornices. The combination of these data with ASTER DEMs and local weather data allows the modelling of the formation of wind-driven snow accumulations. Statistical relationships between the measured extent and volume of the snow cornices and surface parameters such as slope, aspect and curvature are established. In order to analyze the meltdown of the snow accumulations and the consequent impacts on runoff generation and the hydrological regime, a glacio-hydrological model integrating topographic parameters and meteorological data is applied. The combination of in-situ field data and satellite information allows an estimation of the water volume that is stored in the form of snow on Mount Aragatz. Using numerical modelling, we extend these results to other years, and calculate past and future water yields from snow melt from Mount Aragatz. This study is performed in the frame of the Armenian-Swiss project "Freezwater" that aims at an artificial managing of snow melting to better time the release of melt water at low cost. In the past few years, an artificial glacier was built up successfully, and geotextiles were used to reduce the melt rates of snow cornices. In order to estimate the efficiency of geotextiles in delaying the melt-down, ablation rates of protected snow surfaces were compared to those of uncovered areas. This study will contribute to the understanding of aeolian processes within the cryosphere as well as it will help to gain engineering knowledge concerning a new and efficient water storage technique.

  18. Putting the Capital 'A' in CoCoRAHS: A Pilot Program to Measure Albedo using the Community Collaborative Rain, Hail, and Snow (CoCoRaHS) Network

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Stampone, M. D.; Wake, C. P.; Dibb, J. E.

    2012-12-01

    The Community Collaborative Rain, Hail, and Snow (CoCoRaHS) Network, started in 1998 as a community-based network of volunteer weather observer in Colorado, is the single largest provider of daily precipitation observations in the United States. We embrace the CoCoRaHS mission to use low-cost measurement tools, provide training and education, and utilize an interactive website to collect high quality albedo data for research and education applications. We trained a select sub-set of CoCoRaHS's eighteen most enthusiastic, self-proclaimed 'weather nuts' in the state of New Hampshire to collect surface albedo, snow depth, and snow density measurements between 23-Nov-2011 and 15-Mar-2012. At less than 700 per observer, the low-cost albedo data falls within ±0.05 of albedo values collected from a First Class Kipp and Zonen Albedometer (CMA6) at local solar noon. CoCoRaHS albedo values range from 0.99 for fresh snow to 0.34 for shallow, aged snow. Snow-free albedo ranges from 0.09 to 0.39, depending on ground cover. Albedo is found to increase logarithmically with snow depth and decrease linearly with snow density. The latter relationship with snow density is inferred to be a proxy for increasing snow grain size as snowpack ages and compacts, supported by spectral albedo measurements collected with an ASD FieldSpec4 spectrometer. The newly established albedo network also serves as a development test bed for interactive online mapping and graphing applications for CoCoRaHS observers to investigate spatial and temporal patterns in albedo, snow depth, and snow density (www.cocorahs-albedo.org). The 2012-2013 field season will include low-cost infrared temperature guns (<40 each) to investigate the relationship between surface albedo and skin temperature. We have also recruited middle- and high-schools as volunteer observers and are working with the teachers to develop curriculum and lesson plans that utilize the low-cost measurement tools provided by CoCoRAHS. CoCoRAHS data will provide critical spatially distributed measurements of surface data that will be used to validate and improve land surface modeling of New Hampshire climate under different land cover scenarios. Building on the success of the first season, the newly established albedo network shows promise to put the capital 'A' in CoCoRAHS.Figure 1. (a) Map of Community Collaborative Rain, Hail, and Snow (CoCoRAHS) volunteers participating in the pilot albedo project, and (b) CoCoRAHS snow measurement kit.

  19. Effects of snow on fisher and marten distributions in Idaho

    Treesearch

    Nathan Albrecht; C. Heusser; M. Schwartz; J. Sauder; R. Vinkey

    2013-01-01

    Studies have suggested that deep snow may limit fisher (Martes pennanti) distribution, and that fisher populations may in turn limit marten (Martes americana) distribution. We tested these hypotheses in the Northern Rocky Mountains of Idaho, a region which differs from previous study areas in its climate and relative fisher and marten abundance, but in which very...

  20. 76 FR 7238 - Pipeline Safety: Dangers of Abnormal Snow and Ice Build-Up on Gas Distribution Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... been related to either the stress of snow and ice or the malfunction of pressure control equipment due... to have been related to either the stress of snow and ice or malfunction of pressure control... from the stresses imposed by the additional loading of the snow or ice. Damage to facilities may also...

  1. Characterizing 2-D snow stratigraphy in forests based on high-resolution snow penetrometry

    NASA Astrophysics Data System (ADS)

    Teich, M.; Loewe, H.; Jenkins, M. J.; Schneebeli, M.

    2016-12-01

    Snow stratigraphy, the characteristic layering within a seasonal snowpack, has important implications for snow remote sensing, hydrology and avalanches. Forests modify snowpack properties through interception of falling snow by tree crowns, the reduction of near-surface wind speeds, and changes to the energy balance beneath and around trees leading to a highly variable stratigraphy in space and time. The lack of snowpack observations in forests limits our ability to understand the spatio-temporal evolution of snow stratigraphy as a function of forest structure and to observe snowpack response to changes in forest cover. We examined the snowpack in field campaigns using the SnowMicroPen (SMP) under tree canopies in an Engelmann spruce forest in the central Rocky Mountains in Utah, USA. Data were collected in plots beneath canopies of undisturbed, bark beetle-disturbed and salvage logged forest stands, and a non-forested meadow. In 2015 weekly-repeated SMP penetration measurements were taken along 10 m transects at 0.3 m intervals. In the winter of 2016 bi-weekly measurements were collected along 20 m transects every 0.5 m. Using a statistical model, we derived 2-D snow density profiles as a measure of stratigraphy. The small-scale patterns in snow density revealed a more heterogeneous stratigraphy in undisturbed dense stands and also beneath bark beetle-disturbed forest. In contrast, snow stratigraphy was more homogeneous in the harvested plot despite standing small diameter trees and woody debris with effective heights up to 95 cm. As expected, snow depth and layering in non-forested plots varied only slightly over the small spatial extent sampled. Observed patterns changed throughout the snow season dependent upon snow and meteorological conditions. The results contribute to the general understanding of forest-snowpack interactions at high spatial resolution, and can be used to validate snowpack and microwave models for avalanche formation processes and SWE retrieval in forests.

  2. Prey preferences of the snow leopard (Panthera uncia): regional diet specificity holds global significance for conservation.

    PubMed

    Lyngdoh, Salvador; Shrotriya, Shivam; Goyal, Surendra P; Clements, Hayley; Hayward, Matthew W; Habib, Bilal

    2014-01-01

    The endangered snow leopard is a large felid that is distributed over 1.83 million km(2) globally. Throughout its range it relies on a limited number of prey species in some of the most inhospitable landscapes on the planet where high rates of human persecution exist for both predator and prey. We reviewed 14 published and 11 unpublished studies pertaining to snow leopard diet throughout its range. We calculated prey consumption in terms of frequency of occurrence and biomass consumed based on 1696 analysed scats from throughout the snow leopard's range. Prey biomass consumed was calculated based on the Ackerman's linear correction factor. We identified four distinct physiographic and snow leopard prey type zones, using cluster analysis that had unique prey assemblages and had key prey characteristics which supported snow leopard occurrence there. Levin's index showed the snow leopard had a specialized dietary niche breadth. The main prey of the snow leopard were Siberian ibex (Capra sibrica), blue sheep (Pseudois nayaur), Himalayan tahr (Hemitragus jemlahicus), argali (Ovis ammon) and marmots (Marmota spp). The significantly preferred prey species of snow leopard weighed 55±5 kg, while the preferred prey weight range of snow leopard was 36-76 kg with a significant preference for Siberian ibex and blue sheep. Our meta-analysis identified critical dietary resources for snow leopards throughout their distribution and illustrates the importance of understanding regional variation in species ecology; particularly prey species that have global implications for conservation.

  3. Prey Preferences of the Snow Leopard (Panthera uncia): Regional Diet Specificity Holds Global Significance for Conservation

    PubMed Central

    Lyngdoh, Salvador; Shrotriya, Shivam; Goyal, Surendra P.; Clements, Hayley; Hayward, Matthew W.; Habib, Bilal

    2014-01-01

    The endangered snow leopard is a large felid that is distributed over 1.83 million km2 globally. Throughout its range it relies on a limited number of prey species in some of the most inhospitable landscapes on the planet where high rates of human persecution exist for both predator and prey. We reviewed 14 published and 11 unpublished studies pertaining to snow leopard diet throughout its range. We calculated prey consumption in terms of frequency of occurrence and biomass consumed based on 1696 analysed scats from throughout the snow leopard's range. Prey biomass consumed was calculated based on the Ackerman's linear correction factor. We identified four distinct physiographic and snow leopard prey type zones, using cluster analysis that had unique prey assemblages and had key prey characteristics which supported snow leopard occurrence there. Levin's index showed the snow leopard had a specialized dietary niche breadth. The main prey of the snow leopard were Siberian ibex (Capra sibrica), blue sheep (Pseudois nayaur), Himalayan tahr (Hemitragus jemlahicus), argali (Ovis ammon) and marmots (Marmota spp). The significantly preferred prey species of snow leopard weighed 55±5 kg, while the preferred prey weight range of snow leopard was 36–76 kg with a significant preference for Siberian ibex and blue sheep. Our meta-analysis identified critical dietary resources for snow leopards throughout their distribution and illustrates the importance of understanding regional variation in species ecology; particularly prey species that have global implications for conservation. PMID:24533080

  4. A New Operational Snow Retrieval Algorithm Applied to Historical AMSR-E Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Jeyaratnam, Jeyavinoth

    2016-01-01

    Snow is a key element of the water and energy cycles and the knowledge of spatio-temporal distribution of snow depth and snow water equivalent (SWE) is fundamental for hydrological and climatological applications. SWE and snow depth estimates can be obtained from spaceborne microwave brightness temperatures at global scale and high temporal resolution (daily). In this regard, the data recorded by the Advanced Microwave Scanning Radiometer-Earth Orbiting System (EOS) (AMSR-E) onboard the National Aeronautics and Space Administration's (NASA) AQUA spacecraft have been used to generate operational estimates of SWE and snow depth, complementing estimates generated with other microwave sensors flying on other platforms. In this study, we report the results concerning the development and assessment of a new operational algorithm applied to historical AMSR-E data. The new algorithm here proposed makes use of climatological data, electromagnetic modeling and artificial neural networks for estimating snow depth as well as a spatio-temporal dynamic density scheme to convert snow depth to SWE. The outputs of the new algorithm are compared with those of the current AMSR-E operational algorithm as well as in-situ measurements and other operational snow products, specifically the Canadian Meteorological Center (CMC) and GlobSnow datasets. Our results show that the AMSR-E algorithm here proposed generally performs better than the operational one and addresses some major issues identified in the spatial distribution of snow depth fields associated with the evolution of effective grain size.

  5. Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events

    NASA Astrophysics Data System (ADS)

    Hall, Joanne; Loboda, Tatiana

    2018-05-01

    The deposition of short-lived aerosols and pollutants on snow above the Arctic Circle transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon has received a great deal of attention due to its absorptive efficiency and its fairly complex influence on the climate. Cropland burning in Russia is a large contributor to the black carbon emissions deposited directly onto the snow in the Arctic region during the spring when the impact on the snow/ice albedo is at its highest. In this study, our focus is on identifying a possible atmospheric pattern that may enhance the transport of black carbon emissions from cropland burning in Russia to the snow-covered Arctic. Specifically, atmospheric blocking events are large-scale patterns in the atmospheric pressure field that are nearly stationary and act to block migratory cyclones. The persistent low-level wind patterns associated with these mid-latitude weather patterns are likely to accelerate potential transport and increase the success of transport of black carbon emissions to the snow-covered Arctic during the spring. Our results revealed that overall, in March, the transport time of hypothetical black carbon emissions from Russian cropland burning to the Arctic snow is shorter (in some areas over 50 hours less at higher injection heights) and the success rate is also much higher (in some areas up to 100% more successful) during atmospheric blocking conditions as compared to conditions without an atmospheric blocking event. The enhanced transport of black carbon has important implications for the efficacy of deposited black carbon. Therefore, understanding these relationships could lead to possible mitigation strategies for reducing the impact of deposition of black carbon from crop residue burning in the Arctic.

  6. Epidemic of fractures during a period of snow and ice: has anything changed 33 years on?

    PubMed Central

    Al-Azzani, Waheeb; Adam Maliq Mak, Danial; Hodgson, Paul; Williams, Rhodri

    2016-01-01

    Objectives We reproduced a frequently cited study that was published in the British Medical Journal (BMJ) in 1981 assessing the extent of ‘snow-and-ice’ fractures during the winter period. Setting This study aims to provide an insight into how things have changed within the same emergency department (ED) by comparing the findings of the BMJ paper published 33 years ago with the present date. Participants As per the original study, all patients presenting to the ED with a radiological evidence of fracture during three different 4-day periods were included. The three 4-day periods included 4 days of snow-and-ice conditions and two control 4-day periods when snow and ice was not present; the first was 4 days within the same year, with a similar amount of sunshine hours, and the second was 4 days 1 calendar year later. Primary and secondary outcome measures To identify the frequency, distribution and pattern of fractures sustained in snow-and-ice conditions compared to control conditions as well as comparisons with the index study 33 years ago. Results A total of 293 patients with fractures were identified. Overall, there was a 2.20 (CI 1.7 to 3.0, p <0.01) increase in risk of fracture during snow-and-ice periods compared to control conditions. There was an increase (p <0.01) of fractures of the arm, forearm and wrist (RR 3.2 (CI 1.4 to 7.6) and 2.9 (CI 1.5 to 5.4) respectively). Conclusions While the relative risk was not of the magnitude 33 years ago, the overall number of patients presenting with a fracture during snow-and-ice conditions remains more than double compared to control conditions. This highlights the need for improved understanding of the impact of increased fracture burden on hospitals and more effective preventative measures. PMID:27630066

  7. Electric field measurements during the blowing snow in a cryogenic wind tunnel by a non-contact voltmeter

    NASA Astrophysics Data System (ADS)

    Sato, A.; Omiya, S.

    2011-12-01

    It is known that the average atmospheric electric field is +100V/m in fair weather (positive electric field vector points downward). An increase of atmospheric electric field is reported when the blowing snow occurred. This phenomenon is mainly explained by the fact that the blowing snow particles have negative charge in average. It is suggested that an electrostatic force, given by the product of the electric field and the charge of the particle, may influence the particle trajectory and change those movements, saltation and suspension. The purpose of this experiment is to clarify the characteristics of the electric field during blowing snow event. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center, NIED. A non-contact voltmeter was used to measure the electric field. An artificial blowing snow was generated by a snow particle supply machine. The rolling brushes of the machine scratch the snow surface and supply snow particles into the airflow. This machine made it possible to supply the snow particles at an arbitrary rate. This experiment was conducted in the following experimental conditions; wind speed of 5 to 7 m/s (3 patterns), supply snow quantity of 8.7 to 34.9 g/m/s (4 patterns), air temperature of -10 degree Celsius, fetch of 10 m and hard snow surface. Measured electric field was all negative, which is opposite direction to the previous measurements. This means that the blowing snow particles had positive charges. The negative electric field tended to increase with increase of the wind speed and the mass flux. These results can be explained from the previous experiment by Omiya and Sato (2010). The snow particles gain positive charges by the friction with the rolling brush which is made from polypropylene, however the particles accumulate negative charges gradually with increase of the collisions to the snow surface. Probably, the positive charges might have remained on the snow particles that had passed over the measurement point. Moreover, it is thought that because the saltation length is longer when the wind speed is higher, fewer collision frequencies left the particles more positive charges. REFERENCE:Omiya and Sato(2010): Measurement of electrostatic charge of blowing snow particles in a wind tunnel focusing on collision frequency to the snow surface. Hokkaido University Collection of Scholarly and Academic Papers

  8. Spatial scales of light transmission through Antarctic pack ice: Surface flooding vs. floe-size distribution

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.

    2016-12-01

    Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.

  9. Snow particles extracted from X-ray computed microtomography imagery and their single-scattering properties

    NASA Astrophysics Data System (ADS)

    Ishimoto, Hiroshi; Adachi, Satoru; Yamaguchi, Satoru; Tanikawa, Tomonori; Aoki, Teruo; Masuda, Kazuhiko

    2018-04-01

    Sizes and shapes of snow particles were determined from X-ray computed microtomography (micro-CT) images, and their single-scattering properties were calculated at visible and near-infrared wavelengths using a Geometrical Optics Method (GOM). We analyzed seven snow samples including fresh and aged artificial snow and natural snow obtained from field samples. Individual snow particles were numerically extracted, and the shape of each snow particle was defined by applying a rendering method. The size distribution and specific surface area distribution were estimated from the geometrical properties of the snow particles, and an effective particle radius was derived for each snow sample. The GOM calculations at wavelengths of 0.532 and 1.242 μm revealed that the realistic snow particles had similar scattering phase functions as those of previously modeled irregular shaped particles. Furthermore, distinct dendritic particles had a characteristic scattering phase function and asymmetry factor. The single-scattering properties of particles of effective radius reff were compared with the size-averaged single-scattering properties. We found that the particles of reff could be used as representative particles for calculating the average single-scattering properties of the snow. Furthermore, the single-scattering properties of the micro-CT particles were compared to those of particle shape models using our current snow retrieval algorithm. For the single-scattering phase function, the results of the micro-CT particles were consistent with those of a conceptual two-shape model. However, the particle size dependence differed for the single-scattering albedo and asymmetry factor.

  10. MODSNOW-Tool: an operational tool for daily snow cover monitoring using MODIS data

    NASA Astrophysics Data System (ADS)

    Gafurov, Abror; Lüdtke, Stefan; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Schöne, Tilo; Schmidt, Sebastian; Kalashnikova, Olga; Merz, Bruno

    2017-04-01

    Spatially distributed snow cover information in mountain areas is extremely important for water storage estimations, seasonal water availability forecasting, or the assessment of snow-related hazards (e.g. enhanced snow-melt following intensive rains, or avalanche events). Moreover, spatially distributed snow cover information can be used to calibrate and/or validate hydrological models. We present the MODSNOW-Tool - an operational monitoring tool offers a user-friendly application which can be used for catchment-based operational snow cover monitoring. The application automatically downloads and processes freely available daily Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data. The MODSNOW-Tool uses a step-wise approach for cloud removal and delivers cloud-free snow cover maps for the selected river basins including basin specific snow cover extent statistics. The accuracy of cloud-eliminated MODSNOW snow cover maps was validated for 84 almost cloud-free days in the Karadarya river basin in Central Asia, and an average accuracy of 94 % was achieved. The MODSNOW-Tool can be used in operational and non-operational mode. In the operational mode, the tool is set up as a scheduled task on a local computer allowing automatic execution without user interaction and delivers snow cover maps on a daily basis. In the non-operational mode, the tool can be used to process historical time series of snow cover maps. The MODSNOW-Tool is currently implemented and in use at the national hydrometeorological services of four Central Asian states - Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan and used for seasonal water availability forecast.

  11. MODIS Collection 6 Data at the National Snow and Ice Data Center (NSIDC)

    NASA Astrophysics Data System (ADS)

    Fowler, D. K.; Steiker, A. E.; Johnston, T.; Haran, T. M.; Fowler, C.; Wyatt, P.

    2015-12-01

    For over 15 years, the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) has archived and distributed snow and sea ice products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Earth Observing System (EOS) Aqua and Terra satellites. Collection 6 represents the next revision to NSIDC's MODIS archive, mainly affecting the snow-cover products. Collection 6 specifically addresses the needs of the MODIS science community by targeting the scenarios that have historically confounded snow detection and introduced errors into the snow-cover and fractional snow-cover maps even though MODIS snow-cover maps are typically 90 percent accurate or better under good observing conditions, Collection 6 uses revised algorithms to discriminate between snow and clouds, resolve uncertainties along the edges of snow-covered regions, and detect summer snow cover in mountains. Furthermore, Collection 6 applies modified and additional snow detection screens and new Quality Assessment protocols that enhance the overall accuracy of the snow maps compared with Collection 5. Collection 6 also introduces several new MODIS snow products, including a daily Climate Modelling Grid (CMG) cloud gap-filled (CGF) snow-cover map which generates cloud-free maps by using the most recent clear observations.. The MODIS Collection 6 sea ice extent and ice surface temperature algorithms and products are much the same as Collection 5; however, Collection 6 updates to algorithm inputs—in particular, the L1B calibrated radiances, land and water mask, and cloud mask products—have improved the sea ice outputs. The MODIS sea ice products are currently available at NSIDC, and the snow cover products are soon to follow in 2016 NSIDC offers a variety of methods for obtaining these data. Users can download data directly from an online archive or use the NASA Reverb Search & Order Tool to perform spatial, temporal, and parameter subsetting, reformatting, and re-projection of the data.

  12. Snow deposition, melt, runoff, and chemistry in a small alpine watershed, Emerald Lake Basin, Sequoia National Park. Final report, 1 July 1984-31 March 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dozier, J.; Melack, J.M.; Marks, D.

    1987-03-01

    The report describes the first two years of an investigation of the snow chemistry and hydrology of the Emerald Lake Watershed in Sequoia National Park. The investigation examined the impact of acid deposition on high-elevation ecosystems of the Sierra Nevada. The following aspects of snow deposition and melt were studied: energy inputs; pattern of snow deposition and ablation; snowpack, meltwater and runoff chemistry; stream hydrology during the melt period.

  13. Snow model analysis.

    DOT National Transportation Integrated Search

    2014-01-01

    This study developed a new snow model and a database which warehouses geometric, weather and traffic : data on New Jersey highways. The complexity of the model development lies in considering variable road : width, different spreading/plowing pattern...

  14. A field study of the hemispherical directional reflectance factor and spectral albedo of dry snow

    NASA Astrophysics Data System (ADS)

    Bourgeois, C. S.; Calanca, P.; Ohmura, A.

    2006-10-01

    Hemispherical directional reflectance factors (HDRF) were collected under solar zenith angles from 49° to 85°. The experimental site was the Greenland Summit Environmental Observatory (72°35'N, 34°30'W, 3203 m above sea level) where both the snow and the atmosphere are very clean. The observations were carried out for two prevailing snow surface types: a smooth surface with wind-broken small snow grains and a surface covered with rime causing a higher surface roughness. A specially designed Gonio-Spectrometer (wavelength range 350-1050 nm), was developed at the Institute for Atmospheric and Climate Science and used to collect spectral HDRFs over the hemisphere. The angular step size was 15° in zenith and azimuth. The HDRFs showed strong variations ranging from 0.6 to 13, depending on the solar zenith angle. The HDRF distribution was nearly isotropic at noon. It varied with increasing solar zenith angle, resulting in a strong forward scattering peak. Smooth surfaces exhibited stronger forward scattering than surfaces covered with rime. At a solar zenith of 85°, an HDRF of ˜13 was observed in the forward scattering direction for λ=900 nm. Spectral albedos were calculated by interpolating the HDRF data sets on a 2° grid and integrating individual wavelengths. Spectral albedos showed variations depending on the solar illumination geometry and the snow surface properties. Broadband albedos were calculated by integration of the spectral albedos over all wavelengths. The broadband albedos derived from directional measurements reproduced the diurnal pattern measured with two back-to-back broadband pyranometers.

  15. Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Glaser, S.; Bales, R.; Conklin, M.; Rice, R.; Marks, D.

    2017-08-01

    A spatially distributed wireless-sensor network, installed across the 2154 km2 portion of the 5311 km2 American River basin above 1500 m elevation, provided spatial measurements of temperature, relative humidity, and snow depth in the Sierra Nevada, California. The network consisted of 10 sensor clusters, each with 10 measurement nodes, distributed to capture the variability in topography and vegetation cover. The sensor network captured significant spatial heterogeneity in rain versus snow precipitation for water-year 2014, variability that was not apparent in the more limited operational data. Using daily dew-point temperature to track temporal elevational changes in the rain-snow transition, the amount of snow accumulation at each node was used to estimate the fraction of rain versus snow. This resulted in an underestimate of total precipitation below the 0°C dew-point elevation, which averaged 1730 m across 10 precipitation events, indicating that measuring snow does not capture total precipitation. We suggest blending lower elevation rain gauge data with higher-elevation sensor-node data for each event to estimate total precipitation. Blended estimates were on average 15-30% higher than using either set of measurements alone. Using data from the current operational snow-pillow sites gives even lower estimates of basin-wide precipitation. Given the increasing importance of liquid precipitation in a warming climate, a strategy that blends distributed measurements of both liquid and solid precipitation will provide more accurate basin-wide precipitation estimates, plus spatial and temporal patters of snow accumulation and melt in a basin.

  16. Distributed Assimilation of Satellite-based Snow Extent for Improving Simulated Streamflow in Mountainous, Dense Forests: An Example Over the DMIP2 Western Basins

    NASA Technical Reports Server (NTRS)

    Yatheendradas, Soni; Peters-Lidard, Christa D.; Koren, Victor; Cosgrove, Brian A.; DeGoncalves, Luis G. D.; Smith, Michael; Geiger, James; Cui, Zhengtao; Borak, Jordan; Kumar, Sujay V.; hide

    2012-01-01

    Snow cover area affects snowmelt, soil moisture, evapotranspiration, and ultimately streamflow. For the Distributed Model Intercomparison Project - Phase 2 Western basins, we assimilate satellite-based fractional snow cover area (fSCA) from the Moderate Resolution Imaging Spectroradiometer, or MODIS, into the National Weather Service (NWS) SNOW-17 model. This model is coupled with the NWS Sacramento Heat Transfer (SAC-HT) model inside the National Aeronautics and Space Administration's (NASA) Land Information System. SNOW-17 computes fSCA from snow water equivalent (SWE) values using an areal depletion curve. Using a direct insertion, we assimilate fSCAs in two fully distributed ways: 1) we update the curve by attempting SWE preservation, and 2) we reconstruct SWEs using the curve. The preceding are refinements of an existing simple, conceptually-guided NWS algorithm. Satellite fSCA over dense forests inadequately accounts for below-canopy snow, degrading simulated streamflow upon assimilation during snowmelt. Accordingly, we implement a below-canopy allowance during assimilation. This simplistic allowance and direct insertion are found to be inadequate for improving calibrated results, still degrading them as mentioned above. However, for streamflow volume for the uncalibrated runs, we obtain: (1) substantial to major improvements (64-81 %) as a percentage of the control run residuals (or distance from observations), and (2) minor improvements (16-22 %) as a percentage of observed values. We highlight the need for detailed representations of canopy-snow optical radiative transfer processes in mountainous, dense forest regions if assimilation-based improvements are to be seen in calibrated runs over these areas.

  17. Snow cover detection algorithm using dynamic time warping method and reflectances of MODIS solar spectrum channels

    NASA Astrophysics Data System (ADS)

    Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Lee, Chang suk; Seong, Noh-hun; Han, Kyung-Soo

    2016-10-01

    Snow cover is biggest single component of cryosphere. The Snow is covering the ground in the Northern Hemisphere approximately 50% in winter season and is one of climate factors that affects Earth's energy budget because it has higher reflectance than other land types. Also, snow cover has an important role about hydrological modeling and water resource management. For this reason, accurate detection of snow cover acts as an essential element for regional water resource management. Snow cover detection using satellite-based data have some advantages such as obtaining wide spatial range data and time-series observations periodically. In the case of snow cover detection using satellite data, the discrimination of snow and cloud is very important. Typically, Misclassified cloud and snow pixel can lead directly to error factor for retrieval of satellite-based surface products. However, classification of snow and cloud is difficult because cloud and snow have similar optical characteristics and are composed of water or ice. But cloud and snow has different reflectance in 1.5 1.7 μm wavelength because cloud has lower grain size and moisture content than snow. So, cloud and snow shows difference reflectance patterns change according to wavelength. Therefore, in this study, we perform algorithm for classifying snow cover and cloud with satellite-based data using Dynamic Time Warping (DTW) method which is one of commonly used pattern analysis such as speech and fingerprint recognitions and reflectance spectral library of snow and cloud. Reflectance spectral library is constructed in advance using MOD21km (MODIS Level1 swath 1km) data that their reflectance is six channels including 3 (0.466μm), 4 (0.554μm), 1 (0.647μm), 2 (0.857μm), 26 (1.382μm) and 6 (1.629μm). We validate our result using MODIS RGB image and MOD10 L2 swath (MODIS swath snow cover product). And we use PA (Producer's Accuracy), UA (User's Accuracy) and CI (Comparison Index) as validation criteria. The result of our study detect as snow cover in the several regions which are did not detected as snow in MOD10 L2 and detected as snow cover in MODIS RGB image. The result of our study can improve accuracy of other surface product such as land surface reflectance and land surface emissivity. Also it can use input data of hydrological modeling.

  18. MODIS Snow and Sea Ice Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.

    2004-01-01

    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  19. Soil Temperature Variability in Complex Terrain measured using Distributed a Fiber-Optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Seyfried, M. S.; Link, T. E.

    2013-12-01

    Soil temperature (Ts) exerts critical environmental controls on hydrologic and biogeochemical processes. Rates of carbon cycling, mineral weathering, infiltration and snow melt are all influenced by Ts. Although broadly reflective of the climate, Ts is sensitive to local variations in cover (vegetative, litter, snow), topography (slope, aspect, position), and soil properties (texture, water content), resulting in a spatially and temporally complex distribution of Ts across the landscape. Understanding and quantifying the processes controlled by Ts requires an understanding of that distribution. Relatively few spatially distributed field Ts data exist, partly because traditional Ts data are point measurements. A relatively new technology, fiber optic distributed temperature system (FO-DTS), has the potential to provide such data but has not been rigorously evaluated in the context of remote, long term field research. We installed FO-DTS in a small experimental watershed in the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains of SW Idaho. The watershed is characterized by complex terrain and a seasonal snow cover. Our objectives are to: (i) evaluate the applicability of fiber optic DTS to remote field environments and (ii) to describe the spatial and temporal variability of soil temperature in complex terrain influenced by a variable snow cover. We installed fiber optic cable at a depth of 10 cm in contrasting snow accumulation and topographic environments and monitored temperature along 750 m with DTS. We found that the DTS can provide accurate Ts data (+/- .4°C) that resolves Ts changes of about 0.03°C at a spatial scale of 1 m with occasional calibration under conditions with an ambient temperature range of 50°C. We note that there are site-specific limitations related cable installation and destruction by local fauna. The FO-DTS provide unique insight into the spatial and temporal variability of Ts in a landscape. We found strong seasonal trends in Ts variability controlled by snow cover and solar radiation as modified by topography. During periods of spatially continuous snow cover Ts was practically homogeneous throughout. In the absence of snow cover, Ts is highly variable, with most of the variability attributable to different topographic units defined by slope and aspect. During transition periods when snow melts out, Ts is highly variable within the watershed and within topographic units. The importance of accounting for these relatively small scale effects is underscored by the fact that the overall range of Ts in study area 600 m long is similar to that of the much large RCEW with 900 m elevation gradient.

  20. Evaluation of Mixed-Phase Microphysics Within Winter Storms Using Field Data and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Molthan, Andrew; Yu, Ruyi; Nesbitt, Steven

    2014-01-01

    Snow prediction within models is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Cold-season Precipitation Experiment (GCPEx) experiment over southern Ontario, as well as a few years (12 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. The GCPex presentation will focus on verification using aircraft spirals through warm frontal snow band event on 18 February 2012. All the BMPs realistically simulated the structure of the band and the vertical distribution of snow/ice aloft, except the SBU-YLIN overpredicted slightly and Thompson (THOM) underpredicted somewhat. The Morrison (MORR) scheme produced the best slope size distribution for snow, while the Stony Brook (SBU) underpredicted and the THOM slightly overpredicted. Those schemes that have the slope intercept a function of temperature (SBU and WSM6) tended to perform better for that parameter than others, especially the fixed intercept in Goddard. Overall, the spread among BMPs was smaller than in other studies, likely because there was limited riming with the band. For the 15 cases at SBNY, which include moderate and heavy riming events, the non-spherical snow assumption (THOM and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM is approx. 0.25 m/s too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM, and MORR schemes were approx. 0.25 m/s too slow, while the SBU was 0.25 to 0.5 m/s too fast because of some excessive cloud water issues.

  1. Size-frequency distribution, growth, and mortality of snow crab (Chionoecetes opilio) and arctic lyre crab (Hyas coarctatus) in the chukchi sea from 2009 to 2013

    NASA Astrophysics Data System (ADS)

    Groß, Jasmin; Konar, Brenda; Brey, Thomas; Grebmeier, Jacqueline M.

    2017-10-01

    The snow crab Chionoecetes opilio and Arctic lyre crab Hyas coarctatus are prominent members of the Chukchi Sea epifaunal community. A better understanding of their life history will aid in determining their role in this ecosystem in light of the changing climate and resource development. In this study, the size frequency distribution, growth, and mortality of these two crab species was examined in 2009, 2010, 2012, and 2013 to determine temporal and spatial patterns within the eastern Chukchi Sea, and to identify potential environmental drivers of the observed patterns. Temporally, the mean size of both sexes of C. opilio and H. coarctatus decreased significantly from 2009 to 2013, with the number of rare maximum sized organisms decreasing significantly to near absence in the latter two study years. Spatially, the mean size of male and female crabs of both species showed a latitudinal trend, decreasing from south to north in the investigation area. Growth of both sexes of C. opilio and H. coarctatus was linear over the sampled size range, and mortality was highest in the latter two study years. Life history features of both species related to different environmental parameters in different years, ranging from temperature, the sediment carbon to nitrogen ratio of the organic content, and sediment grain size distribution. Likely explanations for the observed temporal and spatial variability are ontogenetic migrations of mature crabs to warmer areas possibly due to cooler water temperatures in the latter two study years, or interannual fluctuations, which have been reported for C. opilio populations in other areas where successful waves of recruitment were estimated to occur in eight year intervals. Further research is suggested to determine if the spatial and temporal patterns found in this study are part of the natural variability in this system or if they are an indication of long-term trends.

  2. Mapping Snow Depth with Automated Terrestrial Laser Scanning - Investigating Potential Applications

    NASA Astrophysics Data System (ADS)

    Adams, M. S.; Gigele, T.; Fromm, R.

    2017-11-01

    This contribution presents an automated terrestrial laser scanning (ATLS) setup, which was used during the winter 2016/17 to monitor the snow depth distribution on a NW-facing slope at a high-alpine study site. We collected data at high temporal [(sub-)daily] and spatial resolution (decimetre-range) over 0.8 km² with a Riegl LPM-321, set in a weather-proof glass fibre enclosure. Two potential ATLS-applications are investigated here: monitoring medium-sized snow avalanche events, and tracking snow depth change caused by snow drift. The results show the ATLS data's high explanatory power and versatility for different snow research questions.

  3. Seasonal Progression of the Deposition of Black Carbon by Snowfall at Ny-Ålesund, Spitsbergen

    NASA Astrophysics Data System (ADS)

    Sinha, P. R.; Kondo, Y.; Goto-Azuma, K.; Tsukagawa, Y.; Fukuda, K.; Koike, M.; Ohata, S.; Moteki, N.; Mori, T.; Oshima, N.; Førland, E. J.; Irwin, M.; Gallet, J.-C.; Pedersen, C. A.

    2018-01-01

    Deposition of black carbon (BC) aerosol in the Arctic lowers snow albedo, thus contributing to warming in the region. However, the processes and impacts associated with BC deposition are poorly understood because of the scarcity and uncertainties of measurements of BC in snow with adequate spatiotemporal resolution. We sampled snowpack at two sites (11 m and 300 m above sea level) at Ny-Ålesund, Spitsbergen, in April 2013. We also collected falling snow near the surface with a windsock from September 2012 to April 2013. The size distribution of BC in snowpack and falling snow was measured using a single-particle soot photometer combined with a characterized nebulizer. The BC size distributions did not show significant variations with depth in the snowpack, suggesting stable size distributions in falling snow. The BC number and mass concentrations (CNBC and CMBC) at the two sites agreed to within 19% and 10%, respectively, despite the sites' different snow water equivalent (SWE) loadings. This indicates the small influence of the amount of SWE (or precipitation) on these quantities. Average CNBC and CMBC in snowpack and falling snow at nearly the same locations agreed to within 5% and 16%, after small corrections for artifacts associated with the sampling of the falling snow. This comparison shows that the dry deposition was a small contributor to the total BC deposition. CMBC were highest (2.4 ± 3.0 μg L-1) in December-February and lowest (1.2 ± 1.2 μg L-1) in September-November.

  4. Conceptualisation of Snowpack Isotope Dynamics in Spatially Distributed Tracer-Aided Runoff Models in Snow Influenced Northern Cathments

    NASA Astrophysics Data System (ADS)

    Ala-aho, P. O. A.; Tetzlaff, D.; Laudon, H.; McNamara, J. P.; Soulsby, C.

    2016-12-01

    We use the Spatially distributed Tracer-Aided Rainfall-Runoff (STARR) modelling framework to explore non-stationary flow and isotope response in three northern headwater catchments. The model simulates dynamic, spatially variable tracer concentration in different water stores and fluxes within a catchment, which can constrain internal catchment mixing processes, flow paths and associated water ages. To date, a major limitation in using such models in snow-dominated catchments has been the difficulties in paramaterising the isotopic transformations in snowpack accumulation and melt. We use high quality long term datasets for hydrometrics and stable water isotopes collected in three northern study catchments for model calibration and testing. The three catchments exhibit different hydroclimatic conditions, soil and vegetation types, and topographic relief, which brings about variable degree of snow dominance across the catchments. To account for the snow influence we develop novel formulations to estimate the isotope evolution in the snowpack and melt. Algorithms for the isotopic evolution parameterize an isotopic offset between snow evaporation and melt fluxes and the remaining snow storage. The model for each catchment is calibrated to match both streamflow and tracer concentration at the stream outlet to ensure internal consistency of the system behaviour. The model is able to reproduce the streamflow along with the spatio-temporal differences in tracer concentrations across the three studies catchments reasonably well. Incorporating the spatially distributed snowmelt processes and associated isotope transformations proved essential in capturing the stream tracer reponse for strongly snow-influenced cathments. This provides a transferrable tool which can be used to understand spatio-temporal variability of mixing and water ages for different storages and flow paths in other snow influenced, environments.

  5. The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part II: Initial Testing Using Radar, Radiometer and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Tian, Lin; Grecu, Mircea; Kuo, Kwo-Sen; Johnson, Benjamin; Heymsfield, Andrew J.; Bansemer, Aaron; Heymsfield, Gerald M.; Wang, James R.; Meneghini, Robert

    2016-01-01

    In this study, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar-radiometer precipitation estimation algorithms. In the first model, snow particles are assumed to be homogeneous ice-air spheres with single-scattering properties derived from Mie theory. In the second model, snow particles are created by simulating the self-collection of pristine ice crystals into aggregate particles of different sizes, using different numbers and habits of the collected component crystals. Single-scattering properties of the resulting nonspherical snow particles are determined using the discrete dipole approximation. The size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14- and 34-GHz observations of stratiform precipitation from the ER-2 aircraft-borne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. The retrieved ice precipitation profiles are then input to a forward radiative transfer calculation in an attempt to simulate coincident radiance observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR). Much greater consistency between the simulated and observed CoSMIR radiances is obtained using estimated profiles that are based upon the nonspherical crystal/aggregate snow particle model. Despite this greater consistency, there remain some discrepancies between the higher moments of the HIWRAP-retrieved precipitation size distributions and in situ distributions derived from microphysics probe observations obtained from Citation aircraft underflights of the ER-2. These discrepancies can only be eliminated if a subset of lower-density crystal/aggregate snow particles is assumed in the radar algorithm and in the interpretation of the in situ data.

  6. Interannual changes in snow cover and its impact on ground surface temperatures in Livingston Island (Antarctica)

    NASA Astrophysics Data System (ADS)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2015-04-01

    In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover, which prevents cooling. Reina Sofia shows a very different behavior from the other sites, with a frequent stabilization of ground temperatures during all the winters, and last until late-fall. This situation could be related to the structure, and physical and thermal properties of snow cover. The analysis of the Freezing Degree Days (FDDs) and freezing n-factor reveals significant interannual variations. Ohridski shows the highest FDDs values followed by Reina Sofia. Nuevo Incinerador showed the lowest FDDs values. The freezing n-factor shows highest values at Ohridski, followed by Collado Ramos and Reina Sofia with very similar values. Nuevo Incinerador shows the lowest n-factor values. Snow cover doesn't insulate the ground from freezing, but depending on its thickness, density and the amount of heat in the ground, it decreases ground temperatures amplitudes and increases delays relative to air temperature changes. Even where snow cover remains several centimeters thick for several months, slow decrease of bottom temperature is possible, reaching a minimum value at the end of the winter. The results demonstrate that Reina Sofia and Ohridski sites, because of the seasonal behavior, FDDs and freezing n-factor, demonstrate higher winter ground cooling. This research was funded by PERMANTAR-3 (PTDC/AAG-GLO/3908/2012) project (Fundação para a Ciência e a Tecnologia of Portugal)

  7. Formation, distribution and variability in snow cover on the Asian territory of the USSR

    NASA Technical Reports Server (NTRS)

    Pupkov, V. N.

    1985-01-01

    A description is given of maps compiled for annual and average multiple-year water reserves. The annual and average multiple-year maximum snow cover height for winter, extreme values of maximum snow reserves, and the average height and snow reserves at the end of each decade are shown. These maps were made for the entire Asian territory of the USSR, excluding Central Asia, Kamchatka Peninsula, and the Sakhalin Islands.

  8. Impact of spatial variation in snow water equivalent and snow ablation on spring snowcover depletion over an alpine ridge

    NASA Astrophysics Data System (ADS)

    Schirmer, Michael; Harder, Phillip; Pomeroy, John

    2016-04-01

    The spatial and temporal dynamics of mountain snowmelt are controlled by the spatial distribution of snow accumulation and redistribution and the pattern of melt energy applied to this snowcover. In order to better quantify the spatial variations of accumulation and ablation, Structure-from-Motion techniques were applied to sequential aerial photographs of an alpine ridge in the Canadian Rocky Mountains taken from an Unmanned Aerial Vehicle (UAV). Seven spatial maps of snow depth and changes to depth during late melt (May-July) were generated at very high resolutions covering an area of 800 x 600 m. The accuracy was assessed with over 100 GPS measurements and RMSE were found to be less than 10 cm. Low resolution manual measurements of density permitted calculation of snow water equivalent (SWE) and change in SWE (ablation rate). The results indicate a highly variable initial SWE distribution, which was five times more variable than the spatial variation in ablation rate. Spatial variation in ablation rate was still substantial, with a factor of two difference between north and south aspects and small scale variations due to local dust deposition. However, the impact of spatial variations in ablation rate on the snowcover depletion curve could not be discerned. The reason for this is that only a weak spatial correlation developed between SWE and ablation rate. These findings suggest that despite substantial variations in ablation rate, snowcover depletion curve calculations should emphasize the spatial variation of initial SWE rather than the variation in ablation rate. While there is scientific evidence from other field studies that support this, there are also studies that suggest that spatial variations in ablation rate can influence snowcover depletion curves in complex terrain, particularly in early melt. The development of UAV photogrammetry has provided an opportunity for further detailed measurement of ablation rates, SWE and snowcover depletion over complex terrain and UAV field studies are recommended to clarify the relative importance of SWE and melt variability on snowcover depletion in various environmental conditions.

  9. A lee-side eddy and its influence on snow accumulation

    NASA Astrophysics Data System (ADS)

    Gerber, Franziska; Mott, Rebecca; Hoch, Sebastian W.; Lehning, Michael

    2016-04-01

    Knowledge of changes in seasonal mountain snow water resources is essential for e.g. hydropower companies. To successfully predict these changes a fundamental understanding of precipitation patterns and their changes in mountainous terrain is needed. Both, snow accumulation and ablation need to be investigated to make precise predictions of the amount of water stored in seasonal snow cover. Only if the processes governing snow accumulation and ablation are understood with sufficient quantitative accuracy, the evolution of snow water resources under a changing climate can be addressed. Additionally, knowledge of detailed snow accumulation patterns is essential to assess avalanche danger. In alpine terrain, snow accumulation is strongly dependent on the local wind field. Based on the concept of preferential deposition, reduced snow accumulation is expected on the upper windward slope of a mountain due to updrafts, while enhanced snow accumulation should occur through blocking at the windward foot or due to flow separation on the leeward side. However, the understanding of these processes is mainly based on numerical simulations, as they are hard to measure. A LiDAR (Light Detection And Ranging) campaign was conducted in October 2015 in the Dischma valley (Davos, CH) to investigate the local flow field in the lee of the Sattelhorn during a one-day snowfall event. The flow field was monitored using a plane position indicator (PPI) scan at 25/28° and a range height indicator (RHI) scan across the Sattelhorn. Additionally, snow height change measurements on the leeward side of the Sattelhorn were performed by terrestrial laser scanning (TLS). Analyses of the flow field in the framework of preferential deposition are in agreement with the concept of flow separation and preferred snow deposition on leeward slopes. A very persistent eddy that formed over the leeward slope of the Sattelhorn detached from the main flow became evident from the retrievals of the RHI scans. An additional flow component around the eastern edge of Sattelhorn introduces a cross-loading component along the Sattelhorn ridge. Snow depth data is, however, only available for the slope and thus covers only the upper part of the eddy. Thus, this winter we will collect more complete snow depth data to reveal the overall influence of the eddy on snow accumulation.

  10. Snow control on active layer and permafrost in steep alpine rock walls (Aiguille du Midi, 3842 m a.s.l, Mont Blanc massif)

    NASA Astrophysics Data System (ADS)

    Magnin, Florence; Westermann, Sebastian; Pogliotti, Paolo; Ravanel, Ludovic; Deline, Philip

    2016-04-01

    Permafrost degradation through the thickening of the active layer and the rising temperature at depth is a crucial process of rock wall stability. The ongoing increase in rock falls observed during hot periods in mid-latitude mountain ranges is regarded as a result of permafrost degradation. However, the short-term thermal dynamics of alpine rock walls are misunderstood since they result of complex processes related to the interaction of local climate variables, heterogeneous snow cover and heat transfers. As a consequence steady-state and long-term changes that can be approached with simpler process mainly related to air temperature, solar radiations and heat conduction were the most common dynamics to be studied so far. The effect of snow on the bedrock surface temperature is increasingly investigated and has already been demonstrated to be an essential factor of permafrost distribution. Nevertheless, its effect on the year-to-year changes of the active layer thickness and of the permafrost temperature in steep alpine bedrock has not been investigated yet, partly due to the lack of appropriate data. We explore the role of snow accumulations on the active layer and permafrost thermal regime of steep rock walls of a high-elevated site, the Aiguille du Midi (AdM, 3842 m a.s.l, Mont Blanc massif, Western European Alps) by mean of a multi-methods approach. We first analyse six years of temperature records in three 10-m-deep boreholes. Then we describe the snow accumulation patterns on two rock faces by means of automatically processed camera records. Finally, sensitivity analyses of the active layer thickness and permafrost temperature towards timing and magnitude of snow accumulations are performed using the numerical permafrost model CryoGrid 3. The energy balance module is forced with local meteorological measurements on the AdM S face and validated with surface temperature measurements at the weather station location. The heat conduction scheme is calibrated with the temperature measurements in the S-exposed borehole. Results show that the snow may be responsible for permafrost presence while it is absent in the surrounding snow free bedrock. The long lasting of the snow at high elevation, where it can remain until the mid-summer has a delaying effect on the seasonal thaw, which contributes to the lowering of the active layer thickness.

  11. The Effects of Snow Depth Forcing on Southern Ocean Sea Ice Simulations

    NASA Technical Reports Server (NTRS)

    Powel, Dylan C.; Markus, Thorsten; Stoessel, Achim

    2003-01-01

    The spatial and temporal distribution of snow on sea ice is an important factor for sea ice and climate models. First, it acts as an efficient insulator between the ocean and the atmosphere, and second, snow is a source of fresh water for altering the already weak Southern Ocean stratification. For the Antarctic, where the ice thickness is relatively thin, snow can impact the ice thickness in two ways: a) As mentioned above snow on sea ice reduces the ocean-atmosphere heat flux and thus reduces freezing at the base of the ice flows; b) a heavy snow load can suppress the ice below sea level which causes flooding and, with subsequent freezing, a thickening of the sea ice (snow-to-ice conversion). In this paper, we compare different snow fall paramterizations (incl. the incorporation of satellite-derived snow depth) and study the effect on the sea ice using a sea ice model.

  12. Species associations and habitat influence the range-wide distribution of breeding Canada Geese (Branta canadensis interior) on Western Hudson Bay

    USGS Publications Warehouse

    Reiter, Matthew E.; Andersen, David E.; Raedeke, Andrew H.; Humburg, Dale D.

    2017-01-01

    Inter- and intra-specific interactions are potentially important factors influencing the distribution of populations. Aerial survey data, collected during range-wide breeding population surveys for Eastern Prairie Population (EPP) Canada Geese (Branta canadensis interior), 1987–2008, were evaluated to assess factors influencing their nesting distribution. Specifically, associations between nesting Lesser Snow Geese (Chen caerulescens caerulescens) and EPP Canada Geese were quantified; and changes in the spatial distribution of EPP Canada Geese were identified. Mixed-effects Poisson regression models of EPP Canada Goose nest counts were evaluated within a cross-validation framework. The total count of EPP Canada Goose nests varied moderately among years between 1987 and 2008 with no long-term trend; however, the total count of nesting Lesser Snow Geese generally increased. Three models containing factors related to previous EPP Canada Goose nest density (representing recruitment), distance to Hudson Bay (representing brood-habitat), nesting habitat type, and Lesser Snow Goose nest density (inter-specific associations) were the most accurate, improving prediction accuracy by 45% when compared to intercept-only models. EPP Canada Goose nest density varied by habitat type, was negatively associated with distance to coastal brood-rearing areas, and suggested density-dependent intra-specific effects on recruitment. However, a non-linear relationship between Lesser Snow and EPP Canada Goose nest density suggests that as nesting Lesser Snow Geese increase, EPP Canada Geese locally decline and subsequently the spatial distribution of EPP Canada Geese on western Hudson Bay has changed.

  13. Combining model and satellite data to investigate the effect of light absorbing impurities on snow melt and discharge generation

    NASA Astrophysics Data System (ADS)

    Matt, F.; Burkhart, J. F.

    2017-12-01

    Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of solar radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the effects as simulated in numerical models have large uncertainties. These uncertainties originate mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI (the so called radiative forcing of LAISI), a key variable in understanding snowpack energy-balance dynamics. In this study, we present an approach combining distributed model simulations on the catchment scale and remotely sensed radiative forcing from LAISI in order to evaluate and improve model predictions. In a case study, we assess the effect of LAISI on snow melt and discharge generation in a high mountain catchment located in the western Himalaya using the distributed hydrologic model, Shyft. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of solar radiation by LAISI into account. LAISI mixing ratios in snow are determined from atmospheric aerosol deposition rates. To asses the quality of our simulations, we model the instantaneous clear sky radiative forcing at MODIS overpass times, and compare it to the MODIS Dust Radiative Forcing in Snow (MODDRFS) satellite product. By scaling the deposition input to the model, we can optimize the simulated radiative forcing towards the satellite observations.

  14. PBSM3D: A finite volume, scalar-transport blowing snow model for use with variable resolution meshes

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Wayand, N. E.; Pomeroy, J. W.; Wheater, H. S.; Spiteri, R. J.

    2017-12-01

    Blowing snow redistribution results in heterogeneous snowcovers that are ubiquitous in cold, windswept environments. Capturing this spatial and temporal variability is important for melt and runoff simulations. Point scale blowing snow transport models are difficult to apply in fully distributed hydrological models due to landscape heterogeneity and complex wind fields. Many existing distributed snow transport models have empirical wind flow and/or simplified wind direction algorithms that perform poorly in calculating snow redistribution where there are divergent wind flows, sharp topography, and over large spatial extents. Herein, a steady-state scalar transport model is discretized using the finite volume method (FVM), using parameterizations from the Prairie Blowing Snow Model (PBSM). PBSM has been applied in hydrological response units and grids to prairie, arctic, glacier, and alpine terrain and shows a good capability to represent snow redistribution over complex terrain. The FVM discretization takes advantage of the variable resolution mesh in the Canadian Hydrological Model (CHM) to ensure efficient calculations over small and large spatial extents. Variable resolution unstructured meshes preserve surface heterogeneity but result in fewer computational elements versus high-resolution structured (raster) grids. Snowpack, soil moisture, and streamflow observations were used to evaluate CHM-modelled outputs in a sub-arctic and an alpine basin. Newly developed remotely sensed snowcover indices allowed for validation over large basins. CHM simulations of snow hydrology were improved by inclusion of the blowing snow model. The results demonstrate the key role of snow transport processes in creating pre-melt snowcover heterogeneity and therefore governing post-melt soil moisture and runoff generation dynamics.

  15. Regional pattern of snow characteristics around Antarctic Lake Vostok

    NASA Astrophysics Data System (ADS)

    Vladimirova, Diana; Ekaykin, Alexey; Popov, Sergey; Shibaev, Yuriy; Kozachek, Anna; Lipenkov, Vladimir

    2015-04-01

    Since 1998 Russian Antarctic Expedition has organized several scientific traverses in the region of subglacial Lake Vostok mainly devoted to the radar echo and seismic sounding of the glacier and water (the results have been published elsewhere). Along with the geophysical studies, a number of glaciological investigations have been carried out: snow pit digging, installation of accumulation stakes, snow sampling to study the stable water isotope content. Here we for the first time present a synthesis of these works and demonstrate a series of maps that characterize the snow density, isotope content and accumulation rate the studied region. A general tendency of the snow accumulation rate and isotope content is a significant increase from south (south-west) to north (north-east) from 35 to 23 mm w.e. per year and from -53,3 ‰ to -57,3 ‰ for delta oxygen-18 respectively, which likely reflects the continental-scale pattern, i.e., increase from inland to the coast. Deuterium excess varies from 11,7 ‰ to 16,3 ‰ is negatively correlated with the isotope content, which is typical for central Antarctica. The snow density demonstrate different pattern: higher values offshore the lake (up to 0,356 g/cm^3), and lower values within the lake's shoreline (lower limit is 0,328 g/cm^3). We suggest that this is related to the katabatic wind activity: very flat nearly horizontal surface of the glacier above the lake is not favorable for the strong winds, which leads to lower surface snow density. Superimposed on the main trend is the regional pattern, namely, curved contour lines in the middle part of the lake. We suggest that it may be related to the local anomalies of the snow drift by wind. Indeed, on the satellite images of the lake one can easily see a snowdrift stretching from the lake's western shore downwind in the middle part of the lake. The isolines of delta oxygen-18 and deuterium excess become perpendicular to each other in the north part of the lake which also could be related to wind activity and different time of exposition snow on the surface which potentially leads to changing in d-excess and water isotopes ratio relation. Another interesting feature is the minimum values of snow accumulation rate and isotope content to the south-east from Vostok station. Before present, the Vostok's close vicinity was the record-holder, but now it is obvious that the pole of the lowest values of these parameters is somewhere else. This finding may be important in terms of the search of the oldest ice in frames of the IPICS "1.5Ma" project.

  16. A spotlight on snow leopard conservation in China.

    PubMed

    Alexander, Justine S; Zhang, Chengcheng; Shi, Kun; Riordan, Philip

    2016-07-01

    China holds the greatest proportion of the snow leopard's (Panthera uncia) global range and is central to their conservation. The country is also undergoing unprecedented economic growth, which increases both the threats to the snow leopard and the opportunities for its conservation. In this paper we aim to review published literature (from 1950 to 2014) in English and Mandarin on snow leopard ecology and conservation in China in order to identify thematic and geographic research gaps and propose research priorities. We first retrieved all published items that considered snow leopards in China (n = 106). We extracted from these papers 274 reports of snow leopard presence in China. We then reviewed a subset of papers (n = 33) of this literature, which specifically focused on snow leopard ecology and conservation within China. We introduced a thematic framework that allows a structured and comprehensive assessment of findings. This framework recognizes 4 critical and interrelated topics underpinning snow leopard ecology and conservation: habitat (distribution and protected area coverage); prey (distribution and abundance, predator-prey relationships); human interactions (hunting and trade, livestock interactions and conflicts); and the underlying policy context. Significant gains in knowledge as well as research gaps and priorities are discussed with reference to our framework. The modest quantity and limited scope of published research on the snow leopard in China calls for a continued and intensified effort to inform and support national conservation policies. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  17. A Citizen Science Campaign to Validate Snow Remote-Sensing Products

    NASA Astrophysics Data System (ADS)

    Wikstrom Jones, K.; Wolken, G. J.; Arendt, A. A.; Hill, D. F.; Crumley, R. L.; Setiawan, L.; Markle, B.

    2017-12-01

    The ability to quantify seasonal water retention and storage in mountain snow packs has implications for an array of important topics, including ecosystem function, water resources, hazard mitigation, validation of remote sensing products, climate modeling, and the economy. Runoff simulation models, which typically rely on gridded climate data and snow remote sensing products, would be greatly improved if uncertainties in estimates of snow depth distribution in high-elevation complex terrain could be reduced. This requires an increase in the spatial and temporal coverage of observational snow data in high-elevation data-poor regions. To this end, we launched Community Snow Observations (CSO). Participating citizen scientists use Mountain Hub, a multi-platform mobile and web-based crowdsourcing application that allows users to record, submit, and instantly share geo-located snow depth, snow water equivalence (SWE) measurements, measurement location photos, and snow grain information with project scientists and other citizen scientists. The snow observations are used to validate remote sensing products and modeled snow depth distribution. The project's prototype phase focused on Thompson Pass in south-central Alaska, an important infrastructure corridor that includes avalanche terrain and the Lowe River drainage and is essential to the City of Valdez and the fisheries of Prince William Sound. This year's efforts included website development, expansion of the Mountain Hub tool, and recruitment of citizen scientists through a combination of social media outreach, community presentations, and targeted recruitment of local avalanche professionals. We also conducted two intensive field data collection campaigns that coincided with an aerial photogrammetric survey. With more than 400 snow depth observations, we have generated a new snow remote-sensing product that better matches actual SWE quantities for Thompson Pass. In the next phase of the citizen science portion of this project we will focus on expanding our group of participants to a larger geographic area in Alaska, further develop our partnership with Mountain Hub, and build relationships in new communities as we conduct a photogrammetric survey in a different region next year.

  18. When Models and Observations Collide: Journeying towards an Integrated Snow Depth Product

    NASA Astrophysics Data System (ADS)

    Webster, M.; Petty, A.; Boisvert, L.; Markus, T.; Kurtz, N. T.; Kwok, R.; Perovich, D. K.

    2017-12-01

    Knowledge of snow depth is essential for assessing changes in sea ice mass balance due to snow's insulating and reflective properties. In remote sensing applications, the accuracy of sea ice thickness retrievals from altimetry crucially depends on snow depth. Despite the need for snow depth data, we currently lack continuous observations that capture the basin-scale snow depth distribution and its seasonal evolution. Recent in situ and remote sensing observations are sparse in space and time, and contain uncertainties, caveats, and/or biases that often require careful interpretation. Likewise, using model output for remote sensing applications is limited due to uncertainties in atmospheric forcing and different treatments of snow processes. Here, we summarize our efforts in bringing observational and model data together to develop an approach for an integrated snow depth product. We start with a snow budget model and incrementally incorporate snow processes to determine the effects on snow depth and to assess model sensitivity. We discuss lessons learned in model-observation integration and ideas for potential improvements to the treatment of snow in models.

  19. A Comprehensive Snow Density Model for Integrating Lidar-Derived Snow Depth Data into Spatial Snow Modeling

    NASA Astrophysics Data System (ADS)

    Marks, D. G.; Kormos, P.; Johnson, M.; Bormann, K. J.; Hedrick, A. R.; Havens, S.; Robertson, M.; Painter, T. H.

    2017-12-01

    Lidar-derived snow depths when combined with modeled or estimated snow density can provide reliable estimates of the distribution of SWE over large mountain areas. Application of this approach is transforming western snow hydrology. We present a comprehensive approach toward modeling bulk snow density that is reliable over a vast range of weather and snow conditions. The method is applied and evaluated over mountainous regions of California, Idaho, Oregon and Colorado in the western US. Simulated and measured snow density are compared at fourteen validation sites across the western US where measurements of snow mass (SWE) and depth are co-located. Fitting statistics for ten sites from three mountain catchments (two in Idaho, one in California) show an average Nash-Sutcliff model efficiency coefficient of 0.83, and mean bias of 4 kg m-3. Results illustrate issues associated with monitoring snow depth and SWE and show the effectiveness of the model, with a small mean bias across a range of snow and climate conditions in the west.

  20. Developing Snow Model Forcing Data From WRF Model Output to Aid in Water Resource Forecasting

    NASA Astrophysics Data System (ADS)

    Havens, S.; Marks, D. G.; Watson, K. A.; Masarik, M.; Flores, A. N.; Kormos, P.; Hedrick, A. R.

    2015-12-01

    Traditional operational modeling tools used by water managers in the west are challenged by more frequently occurring uncharacteristic stream flow patterns caused by climate change. Water managers are now turning to new models based on the physical processes within a watershed to combat the increasing number of events that do not follow the historical patterns. The USDA-ARS has provided near real time snow water equivalent (SWE) maps using iSnobal since WY2012 for the Boise River Basin in southwest Idaho and since WY2013 for the Tuolumne Basin in California that feeds the Hetch Hetchy reservoir. The goal of these projects is to not only provide current snowpack estimates but to use the Weather Research and Forecasting (WRF) model to drive iSnobal in order to produce a forecasted stream flow when coupled to a hydrology model. The first step is to develop methods on how to create snow model forcing data from WRF outputs. Using a reanalysis 1km WRF dataset from WY2009 over the Boise River Basin, WRF model results like surface air temperature, relative humidity, wind, precipitation, cloud cover, and incoming long wave radiation must be downscaled for use in iSnobal. iSnobal results forced with WRF output are validated at point locations throughout the basin, as well as compared with iSnobal results forced with traditional weather station data. The presentation will explore the differences in forcing data derived from WRF outputs and weather stations and how this affects the snowpack distribution.

  1. Facilitating the exploitation of ERTS imagery using snow enhancement techniques

    NASA Technical Reports Server (NTRS)

    Wobber, F. J. (Principal Investigator); Martin, K. R.; Amato, R. V.

    1973-01-01

    The author has identified the following significant results. New fracture detail within New England test area has been interpreted from ERTS-1 images. Comparative analysis of snow-free imagery (1096-15065 and 1096-15072) has demonstrated that MSS bands 5 and 7 supply the greatest amount of geological fracture detail. Interpretation of the first snow-covered ERTS-1 images (1132-15074 and 1168-15065) in correlation with ground snow depth data indicates that a heavy blanket of snow (less than 9 inches) accentuates major structural features while a light dusting (greater than 1 inch) accentuates more subtle topographic expressions. Snow cover was found to accentuate drainage patterns which are indicative of lithological and/or structural variations. Snow cover provided added enhancement for viewing and detecting topographically expressed fractures and faults. A recent field investigation was conducted within the New England test area to field check lineaments observed from analysis of ERTS-1 imagery, collect snow depth readings, and obtain structural joint readings at key locations in the test area.

  2. Periglacial Geomorphology.

    ERIC Educational Resources Information Center

    Potter, Noel, Jr.

    1984-01-01

    Describes preglacial processes, focusing on weathering, rate and timing of movement of material, snow and snow avalanches, rock glaciers, gelifluction, pingos, patterned ground, and the thaw of permafrost. This information is provided for individuals teaching introductory geology/geomorphology and whose specialty is not cold-climate phenomena. (JN)

  3. New nitrogen uptake strategy: specialized snow roots.

    PubMed

    Onipchenko, Vladimir G; Makarov, Mikhail I; van Logtestijn, Richard S P; Ivanov, Viktor B; Akhmetzhanova, Assem A; Tekeev, Dzhamal K; Ermak, Anton A; Salpagarova, Fatima S; Kozhevnikova, Anna D; Cornelissen, Johannes H C

    2009-08-01

    The evolution of plants has yielded a wealth of adaptations for the acquisition of key mineral nutrients. These include the structure, physiology and positioning of root systems. We report the discovery of specialized snow roots as a plant strategy to cope with the very short season for nutrient uptake and growth in alpine snow-beds, i.e. patches in the landscape that remain snow-covered well into the summer. We provide anatomical, chemical and experimental (15)N isotope tracking evidence that the Caucasian snow-bed plant Corydalis conorhiza forms extensive networks of specialized above-ground roots, which grow against gravity to acquire nitrogen directly from within snow packs. Snow roots capture nitrogen that would otherwise partly run off down-slope over a frozen surface, thereby helping to nourish these alpine ecosystems. Climate warming is changing and will change mountain snow regimes, while large-scale anthropogenic N deposition has increased snow N contents. These global changes are likely to impact on the distribution, abundance and functional significance of snow roots.

  4. Metagenomic and satellite analyses of red snow in the Russian Arctic.

    PubMed

    Hisakawa, Nao; Quistad, Steven D; Hester, Eric R; Martynova, Daria; Maughan, Heather; Sala, Enric; Gavrilo, Maria V; Rohwer, Forest

    2015-01-01

    Cryophilic algae thrive in liquid water within snow and ice in alpine and polar regions worldwide. Blooms of these algae lower albedo (reflection of sunlight), thereby altering melting patterns (Kohshima, Seko & Yoshimura, 1993; Lutz et al., 2014; Thomas & Duval, 1995). Here metagenomic DNA analysis and satellite imaging were used to investigate red snow in Franz Josef Land in the Russian Arctic. Franz Josef Land red snow metagenomes confirmed that the communities are composed of the autotroph Chlamydomonas nivalis that is supporting a complex viral and heterotrophic bacterial community. Comparisons with white snow communities from other sites suggest that white snow and ice are initially colonized by fungal-dominated communities and then succeeded by the more complex C. nivalis-heterotroph red snow. Satellite image analysis showed that red snow covers up to 80% of the surface of snow and ice fields in Franz Josef Land and globally. Together these results show that C. nivalis supports a local food web that is on the rise as temperatures warm, with potential widespread impacts on alpine and polar environments worldwide.

  5. The application of depletion curves for parameterization of subgrid variability of snow

    Treesearch

    C. H. Luce; D. G. Tarboton

    2004-01-01

    Parameterization of subgrid-scale variability in snow accumulation and melt is important for improvements in distributed snowmelt modelling. We have taken the approach of using depletion curves that relate fractional snowcovered area to element-average snow water equivalent to parameterize the effect of snowpack heterogeneity within a physically based mass and energy...

  6. Estimation of Snow Particle Model Suitable for a Complex and Forested Terrain: Lessons from SnowEx

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Li, W.; Stamnes, K. H.; Poudyal, R.; Fan, Y.; Chen, N.

    2017-12-01

    SnowEx 2017 obtained consistent and coordinated ground and airborne remote sensing measurements over Grand Mesa in Colorado, which feature sufficient forested stands to have a range of density and height (and other forest conditions); a range of snow depth/snow water equivalent (SWE) conditions; sufficiently flat snow-covered terrain of a size comparable to airborne instrument swath widths. The Cloud Absorption Radiometer (CAR) data from SnowEx are unique and can be used to assess the accuracy of Bidirectional Reflectance-Distribution Functions (BRDFs) calculated by different snow models. These measurements provide multiple angle and multiple wavelength data needed for accurate surface BRDF characterization. Such data cannot easily be obtained by current satellite remote sensors. Compared to ground-based snow field measurements, CAR measurements minimize the effect of self-shading, and are adaptable to a wide variety of field conditions. We plan to use the CAR measurements as the validation data source for our snow modeling effort. By comparing calculated BRDF results from different snow models to CAR measurements, we can determine which model best explains the snow BRDFs, and is therefore most suitable for application to satellite remote sensing of snow parameters and surface energy budget calculations.

  7. Seasonal and inter-annual snowmelt patterns in the southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Molotch, N. P.; Margulis, S. A.

    2012-12-01

    In the Sierra Nevada, seasonal snow represents a critical component of California's water resource infrastructure in that it affords reliable water during otherwise arid summers. Complex spatial, seasonal and inter-annual snowmelt patterns determine when and where that meltwater is available. Our knowledge of snowmelt dynamics is typically limited to what we can infer from sparse, point-scale snow measurement stations. Limitations such as these motivate the use of numerical snowmelt models. We evaluate the ability of the Alpine3D model system to represent three years of snow dynamics over an 1800 km2 area of Sequoia National Park. The domain spans a 3600 m elevation gradient and ecosystems ranging from semi-arid grasslands to massive sequoia stands to alpine tundra. The model results were evaluated against data from a multi-scale measurement campaign that included airborne LiDAR, clusters of snow depth sensors, repeated manual snow surveys, and automated SWE stations. Compared to these measurements, Alpine3D consistently performed well in middle elevation conifer forests; compared to LiDAR data, the mean snow depth error in forested regions was < 2%. The model also simulated the snow disappearance date within two days of that measured by regional automated sensors. At upper elevations, however, the model tended to overestimate SWE by 50% to as much as 100% in some areas and the errors were linearly correlated (R2 > 0.80, p<0.01) with the distance of the SWE measurements from the nearest precipitation gauge used to derive the model forcing. The results suggest that Alpine3D is highly accurate during the melt season and that precipitation uncertainty may be a critical limitation on snow model accuracy. Finally, an analysis of seasonal and inter-annual snowmelt patterns highlighted distinct melt differences between lower, middle, and upper elevations. Snowmelt was generally most frequent (70% - 95% of the snow-covered season) at the lower elevations where snow cover was episodic and seasonal mean melt rates computed on days when melt was simulated were generally low (< 3 mm day-1). At upper elevations, melt occurred during less than 65% of the snow-covered period, occurred later in the season and mean melt rates were the highest of the region (> 6 mm day-1). Middle elevations remained continuously snow covered throughout the winter and early spring, were prone to frequent but intermittent melt, and provided the most sustained period of seasonal mean snowmelt (~ 5 mm day-1). The melt dynamics (e.g. timing and melt rate) unique to these middle elevations may be critical to the local forest ecosystem. Furthermore, the three years evaluated in this study indicate a marked sensitivity of this elevation range to seasonal meteorology, suggesting that it could be highly sensitive to future changes in climate.

  8. Seasonal Snow Extent and Snow Mass in South America Using SMMR and SSM/I Passive Microwave Data (1979-2003)

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Hall, D. K.; Chiu, L.; Kelly, R. E.; Powell, H.; Chiu, L.

    2007-01-01

    Seasonal snow cover in South America was examined in this study using passive microwave satellite data from the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-satellite and the Special Sensor Microwave Imagers (SSM/I) on board Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1979-2003, both snow cover extent and snow depth (snow mass) were investigated during coldest months (May-September), primarily in the Patagonia area of Argentina and in Chile. Most of the seasonal snow in South America is in the Patagonia region of Argentina. Since winter temperatures in this region are often above freezing, the coldest winter month was found to be the month having the most extensive snow cover and also usually the month having the deepest snow cover as well. Sharp year-to-year differences were recorded using the passive microwave observations. The average snow cover extent for July, the month with the greatest average snow extent during the 25-year period of record, is 320,700 km(exp 2). In July of 1984, the average monthly snow cover was 701,250 km(exp 2) - the most extensive coverage observed between 1979 and 2003. However, in July of 1989, snow cover extent was only 120 km(exp 2). The 25-year period of record shows a sinusoidal like pattern, though there appears to be no obvious trend in either increasing or decreasing snow extent or snow mass between 1979 and 2003.

  9. Impacts of Synoptic Weather Patterns on Snow Albedo at Sites in New England

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.; Lazarcik, J.; Dibb, J. E.; Amante, J.; Price, A. N.

    2015-12-01

    Winter snow in the northeastern United States has changed over the last several decades, resulting in shallower snow packs, fewer days of snow cover and increasing precipitation falling as rain in the winter. In addition to these changes which cause reductions in surface albedo, increasing winter temperatures also lead to more rapid snow grain growth, resulting in decreased snow reflectivity. We present in-situ measurements and analyses to test the sensitivity of seasonal snow albedo to varying weather conditions at sites in New England. In particular, we investigate the impact of temperature on snow albedo through melt and grain growth, the impact of precipitation event frequency on albedo through snow "freshening," and the impact of storm path on snow structure and snow albedo. Over three winter seasons between 2013 and 2015, in-situ snow characterization measurements were made at three non-forested sites across New Hampshire. These near-daily measurements include spectrally resolved albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density and local meteorological parameters. Combining this information with storm tracks derived from HYSPLIT modeling, we quantify the current sensitivity of northeastern US snow albedo to temperature as well as precipitation type, frequency and path. Our analysis shows that southerly winter storms result in snow with a significantly lower albedo than storms which come from across the continental US or the Atlantic Ocean. Interannual variability in temperature and statewide spatial variability in snowfall rates at our sites show the relative importance of snowfall amount and temperatures in albedo evolution over the course of the winter.

  10. Idiosyncratic Responses of High Arctic Plants to Changing Snow Regimes

    PubMed Central

    Rumpf, Sabine B.; Semenchuk, Philipp R.; Dullinger, Stefan; Cooper, Elisabeth J.

    2014-01-01

    The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made. PMID:24523859

  11. Idiosyncratic responses of high Arctic plants to changing snow regimes.

    PubMed

    Rumpf, Sabine B; Semenchuk, Philipp R; Dullinger, Stefan; Cooper, Elisabeth J

    2014-01-01

    The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made.

  12. The Airborne Snow Observatory: fusion of imaging spectrometer and scanning lidar for studies of mountain snow cover (Invited)

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Andreadis, K.; Berisford, D. F.; Goodale, C. E.; Hart, A. F.; Heneghan, C.; Deems, J. S.; Gehrke, F.; Marks, D. G.; Mattmann, C. A.; McGurk, B. J.; Ramirez, P.; Seidel, F. C.; Skiles, M.; Trangsrud, A.; Winstral, A. H.; Kirchner, P.; Zimdars, P. A.; Yaghoobi, R.; Boustani, M.; Khudikyan, S.; Richardson, M.; Atwater, R.; Horn, J.; Goods, D.; Verma, R.; Boardman, J. W.

    2013-12-01

    Snow cover and its melt dominate regional climate and water resources in many of the world's mountainous regions. However, we face significant water resource challenges due to the intersection of increasing demand from population growth and changes in runoff total and timing due to climate change. Moreover, increasing temperatures in desert systems will increase dust loading to mountain snow cover, thus reducing the snow cover albedo and accelerating snowmelt runoff. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still poorly quantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. Recognizing this need, JPL developed the Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. Critical in the design of the ASO system is the availability of snow water equivalent and albedo products within 24 hours of acquisition for timely constraint of snowmelt runoff forecast models. In spring 2013, ASO was deployed for its first year of a multi-year Demonstration Mission of weekly acquisitions in the Tuolumne River Basin (Sierra Nevada) and monthly acquisitions in the Uncompahgre River Basin (Colorado). The ASO data were used to constrain spatially distributed models of varying complexities and integrated into the operations of the O'Shaughnessy Dam on the Hetch Hetchy reservoir on the Tuolumne River. Here we present the first results from the ASO Demonstration Mission 1 along with modeling results with and without the constraint by the ASO's high spatial resolution and spatially complete acquisitions. ASO ultimately provides a potential foundation for coming spaceborne missions.

  13. Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites

    NASA Astrophysics Data System (ADS)

    Aalstad, Kristoffer; Westermann, Sebastian; Vikhamar Schuler, Thomas; Boike, Julia; Bertino, Laurent

    2018-01-01

    With its high albedo, low thermal conductivity and large water storing capacity, snow strongly modulates the surface energy and water balance, which makes it a critical factor in mid- to high-latitude and mountain environments. However, estimating the snow water equivalent (SWE) is challenging in remote-sensing applications already at medium spatial resolutions of 1 km. We present an ensemble-based data assimilation framework that estimates the peak subgrid SWE distribution (SSD) at the 1 km scale by assimilating fractional snow-covered area (fSCA) satellite retrievals in a simple snow model forced by downscaled reanalysis data. The basic idea is to relate the timing of the snow cover depletion (accessible from satellite products) to the peak SSD. Peak subgrid SWE is assumed to be lognormally distributed, which can be translated to a modeled time series of fSCA through the snow model. Assimilation of satellite-derived fSCA facilitates the estimation of the peak SSD, while taking into account uncertainties in both the model and the assimilated data sets. As an extension to previous studies, our method makes use of the novel (to snow data assimilation) ensemble smoother with multiple data assimilation (ES-MDA) scheme combined with analytical Gaussian anamorphosis to assimilate time series of Moderate Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2 fSCA retrievals. The scheme is applied to Arctic sites near Ny-Ålesund (79° N, Svalbard, Norway) where field measurements of fSCA and SWE distributions are available. The method is able to successfully recover accurate estimates of peak SSD on most of the occasions considered. Through the ES-MDA assimilation, the root-mean-square error (RMSE) for the fSCA, peak mean SWE and peak subgrid coefficient of variation is improved by around 75, 60 and 20 %, respectively, when compared to the prior, yielding RMSEs of 0.01, 0.09 m water equivalent (w.e.) and 0.13, respectively. The ES-MDA either outperforms or at least nearly matches the performance of other ensemble-based batch smoother schemes with regards to various evaluation metrics. Given the modularity of the method, it could prove valuable for a range of satellite-era hydrometeorological reanalyses.

  14. Projecting the Dependence of Sage-steppe Vegetation on Redistributed Snow in a Warming Climate.

    NASA Astrophysics Data System (ADS)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.

    2015-12-01

    In mountainous regions, the redistribution of snow by wind can increase the effective precipitation available to vegetation. Moisture subsidies caused by drifting snow may be critical to plant productivity in semi-arid ecosystems. However, with increasing temperatures, the distribution of precipitation is becoming more uniform as rain replaces drifting snow. Understanding the ecohydrological interactions between sagebrush steppe vegetation communities and the heterogeneous distribution of soil moisture is essential for predicting and mitigating future losses in ecosystem diversity and productivity in regions characterized by snow dominated precipitation regimes. To address the dependence of vegetation productivity on redistributed snow, we simulated the net primary production (NPP) of aspen, sagebrush, and C3 grass plant functional types spanning a precipitation phase (rain:snow) gradient in the Reynolds Creek Experimental Watershed and Critical Zone Observatory (RCEW-CZO). The biogeochemical process model Biome-BGC was used to simulate NPP at three sites located directly below snowdrifts that provide melt water late into the spring. To assess climate change impacts on future plant productivity, mid-century (2046-2065) NPP was simulated using the average temperature increase from the Multivariate Adaptive Constructed Analogs (MACA) data set under the RCP 8.5 emission scenario. At the driest site, mid-century projections of decreased snow cover and increased growing season evaporative demand resulted in limiting soil moisture up to 30 and 40 days earlier for aspen and sage respectively. While spring green up for aspen occurred an average of 13 days earlier under climate change scenarios, NPP remained negative up to 40 days longer during the growing season. These results indicate that the loss of the soil moisture subsidy stemming from prolonged redistributed snow water resources can directly influence ecosystem productivity in the rain:snow transition zone.

  15. Satellite-observed snow cover variations over the Tibetan Plateau for the period 2001-2014

    NASA Astrophysics Data System (ADS)

    Long, D.; Chen, X.

    2016-12-01

    Snow is an integral component of the global climate system. Owing to its high albedo and thermal and water storage properties, snow has important linkages and feedbacks through its influence on surface energy and moisture fluxes, clouds, precipitation, hydrology, and atmospheric circulation. As the "Roof of the World" and the "Third Pole" with the highest mountains in middle latitudes, the Tibetan Plateau (TP) is one of the most hot spots in climate change and hydrological studies, in which seasonal snow cover is a critical aspect. Unlike large-scale snow cover and regional-scale glaciers over other cryospheric regions, changes in snow cover over the TP has been largely unknown due mostly to the quality of observations. Based on improved MODIS daily snow cover products, this study aims to quantify the distribution and changes in snow cover over the TP for the period 2001 to 2014. Results show that the spatial distribution of changes in snow cover fraction (SCF) over the 14-year study period exhibited a general negative trend over the TP driven primarily by increasing land surface temperature (LST), except some areas of the upper Golden-Sanded River and upper Brahmaputra River basins. However, decreased LST and increased precipitation in the accumulation season (September to the following February) resulted in increased SCF in the accumulation season, coinciding with large-scale cold snaps and heavy snowfall events at middle latitudes. Detailed analyses of the intra-annual variability of SCF in the TP regions show an increase in SCF in the accumulation season but a decrease in SCF in the melting season (March to August), indicating that the intra-annual amplitude of SCF increased during the study period and more snow cover was released as snowmelt in the spring season.

  16. Photovoltaic cell electrical heating system for removing snow on panel including verification.

    PubMed

    Weiss, Agnes; Weiss, Helmut

    2017-11-16

    Small photovoltaic plants in private ownership are typically rated at 5 kW (peak). The panels are mounted on roofs at a decline angle of 20° to 45°. In winter time, a dense layer of snow at a width of e.g., 10 cm keeps off solar radiation from the photovoltaic cells for weeks under continental climate conditions. Practically, no energy is produced over the time of snow coverage. Only until outside air temperature has risen high enough for a rather long-time interval to allow partial melting of snow; the snow layer rushes down in an avalanche. Following this proposal, snow removal can be arranged electrically at an extremely positive energy balance in a fast way. A photovoltaic cell is a large junction area diode inside with a threshold voltage of about 0.6 to 0.7 V (depending on temperature). This forward voltage drop created by an externally driven current through the modules can be efficiently used to provide well-distributed heat dissipation at the cell and further on at the glass surface of the whole panel. The adhesion of snow on glass is widely reduced through this heating in case a thin water film can be produced by this external short time heating. Laboratory experiments provided a temperature increase through rated panel current of more than 10 °C within about 10 min. This heating can initiate the avalanche for snow removal on intention as described before provided the clamping effect on snow at the edge of the panel frame is overcome by an additional heating foil. Basics of internal cell heat production, heating thermal effects in time course, thermographic measurements on temperature distribution, power circuit opportunities including battery storage elements and snow-removal under practical conditions are described.

  17. Expanded science and management utllity of SWE and albedo data from the NASA/JPL Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Deems, J. S.; Marks, D. G.; Hedrick, A. R.; Bormann, K.; Skiles, S. M.; Boardman, J. W.; Graham, C. B.; McGurk, B. J.; Gehrke, F.; Berisford, D. F.; Ferraz, A.; Saatchi, S.; Schimel, D.

    2016-12-01

    The NASA Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. This talk presents results from the fourth year of the ASO program, 2016, and the now four years of data record in the Western United States. Following on the heels of the most intense, sustained drought in California history, 2016 held promise of a large snowfall year due to an intense El Nino anomaly. Ultimately, the year had approximately 85% of average peak SWE. In the Sierra Nevada, ASO measured 10x greater SWE than near peak in the dramatic 2015 drought year, and twice that of the more moderate drought year of 2013. Water managers in the Sierra were using these data regularly and extending the dynamic range of newly established relationships between accumulated runoff (circa April through July runoff) and ASO total basin SWE acquisitions. ASO also participated in the NASA OLYMPEX project by flying the entire snow-covered reghions of the Olympic Peninsula for distributed SWE. These data are now being used to validate snowfall estimates from modeling and accumulation patterns as inferred from the NASA Global Precipitation Measurement mission (GPM). The ASO snow program expanded to acquire data in the McKenzie and Deschutes Rivers of Oregon in participation with university and state/federal agencies; Sagehen and Lee Vining basins in the Sierra Nevada, California; the Reynolds Creek Experimental Watershed in Idaho; and the East River, in the Colorado River Basin. These regions extend the existing program flying the Tuolumne, Merced, Lakes, Rush Creek, and Middle+South Forks of Kings River Basins in the California Sierra Nevada and the Upper Rio Grande, Conejos, and Uncompahgre Basins in the Colorado Rocky Mountains.The ASO SWE and albedo data are now being used to constrain various hydrologic models for water cycle science of varying complexity and expanding empirical and physically-based water management models.

  18. Epidemic of fractures during a period of snow and ice: has anything changed 33 years on?

    PubMed

    Al-Azzani, Waheeb; Adam Maliq Mak, Danial; Hodgson, Paul; Williams, Rhodri

    2016-09-14

    We reproduced a frequently cited study that was published in the British Medical Journal (BMJ) in 1981 assessing the extent of 'snow-and-ice' fractures during the winter period. This study aims to provide an insight into how things have changed within the same emergency department (ED) by comparing the findings of the BMJ paper published 33 years ago with the present date. As per the original study, all patients presenting to the ED with a radiological evidence of fracture during three different 4-day periods were included. The three 4-day periods included 4 days of snow-and-ice conditions and two control 4-day periods when snow and ice was not present; the first was 4 days within the same year, with a similar amount of sunshine hours, and the second was 4 days 1 calendar year later. To identify the frequency, distribution and pattern of fractures sustained in snow-and-ice conditions compared to control conditions as well as comparisons with the index study 33 years ago. A total of 293 patients with fractures were identified. Overall, there was a 2.20 (CI 1.7 to 3.0, p <0.01) increase in risk of fracture during snow-and-ice periods compared to control conditions. There was an increase (p <0.01) of fractures of the arm, forearm and wrist (RR 3.2 (CI 1.4 to 7.6) and 2.9 (CI 1.5 to 5.4) respectively). While the relative risk was not of the magnitude 33 years ago, the overall number of patients presenting with a fracture during snow-and-ice conditions remains more than double compared to control conditions. This highlights the need for improved understanding of the impact of increased fracture burden on hospitals and more effective preventative measures. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Demonstrating the Uneven Importance of Fine-Scale Forest Structure on Snow Distributions using High Resolution Modeling

    NASA Astrophysics Data System (ADS)

    Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.

    2016-12-01

    Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications for improving land surface models that do not currently resolve or parameterize fine-scale canopy structure. In addition, these findings have implications for understanding the potential of different forest management strategies (i.e. thinning) based on local topography and climate to maximize the amount and retention of snow.

  20. Routine Mapping of the Snow Depth Distribution on Sea Ice

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.; Newman, T.; Richter-Menge, J.; Dattler, M.; Paden, J. D.; Yan, S.; Li, J.; Leuschen, C.

    2016-12-01

    The annual growth and retreat of the polar sea ice cover is influenced by the seasonal accumulation, redistribution and melt of snow on sea ice. Due to its high albedo and low thermal conductivity, snow is also a controlling parameter in the mass and energy budgets of the polar climate system. Under a changing climate scenario it is critical to obtain reliable and routine measurements of snow depth, across basin scales, and long time periods, so as to understand regional, seasonal and inter-annual variability, and the subsequent impacts on the sea ice cover itself. Moreover the snow depth distribution remains a significant source of uncertainty in the derivation of sea ice thickness from remote sensing measurements, as well as in numerical model predictions of future climate state. Radar altimeter systems flown onboard NASA's Operation IceBridge (OIB) mission now provide annual measurements of snow across both the Arctic and Southern Ocean ice packs. We describe recent advances in the processing techniques used to interpret airborne radar waveforms and produce accurate and robust snow depth results. As a consequence of instrument effects and data quality issues associated with the initial release of the OIB airborne radar data, the entire data set was reprocessed to remove coherent noise and sidelobes in the radar echograms. These reprocessed data were released to the community in early 2016, and are available for improved derivation of snow depth. Here, using the reprocessed data, we present the results of seven years of radar measurements collected over Arctic sea ice at the end of winter, just prior to melt. Our analysis provides the snow depth distribution on both seasonal and multi-year sea ice. We present the inter-annual variability in snow depth for both the Central Arctic and the Beaufort/Chukchi Seas. We validate our results via comparison with temporally and spatially coincident in situ measurements gathered during many of the OIB surveys. The results will influence future sensor suite development for sea ice studies, and they provide a new metric for comparison with other sea ice observations. Integrating these novel snow depth observations with modeling studies will help inform model development, and advance our predictive capabilities to help better understand how sea ice is responding to a changing climate.

  1. Overview of SnowEx Year 1 Activities

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Gatebe, Charles; Hall, Dorothy; Newlin, Jerry; Misakonis, Amy; Elder, Kelly; Marshall, Hans Peter; Heimstra, Chris; Brucker, Ludovic; De Marco, Eugenia; hide

    2017-01-01

    SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earths terrestrial snow-covered regions? Year 1 (2016-17) focused on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site was Grand Mesa and the secondary site was the Senator Beck Basin, both in western, Colorado, USA. Nine sensors on five aircraft made observations using a broad range of sensing techniques, active and passive microwave, and active and passive optical infrared to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also included an extensive range of ground truth measurements in-situ manual samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some preliminary results will be presented.

  2. A research on snow distribution in mountainous area using airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Nishihara, T.; Tanise, A.

    2015-12-01

    In snowy cold regions, the snowmelt water stored in dams in early spring meets the water demand for the summer season. Thus, snowmelt water serves as an important water resource. However, snowmelt water also can cause snowmelt floods. Therefore, it's necessary to estimate snow water equivalent in a dam basin as accurately as possible. For this reason, the dam operation offices in Hokkaido, Japan conduct snow surveys every March to estimate snow water equivalent in the dam basin. In estimating, we generally apply a relationship between elevation and snow water equivalent. But above the forest line, snow surveys are generally conducted along ridges due to the risk of avalanches or other hazards. As a result, snow water equivalent above the forest line is significantly underestimated. In this study, we conducted airborne laser scanning to measure snow depth in the high elevation area including above the forest line twice in the same target area (in 2012 and 2015) and analyzed the relationships of snow depth above the forest line and some indicators of terrain. Our target area was the Chubetsu dam basin. It's located in central Hokkaido, a high elevation area in a mountainous region. Hokkaido is a northernmost island of Japan. Therefore it's a cold and snowy region. The target range for airborne laser scanning was 10km2. About 60% of the target range was above the forest line. First, we analyzed the relationship between elevation and snow depth. Below the forest line, the snow depth increased linearly with elevation increase. On the other hand, above the forest line, the snow depth varied greatly. Second, we analyzed the relationship between overground-openness and snow depth above the forest line. Overground-openness is an indicator quantifying how far a target point is above or below the surrounding surface. As a result, a simple relationship was clarified. Snow depth decreased linearly as overground-openness increases. This means that areas with heavy snow cover are distributed in valleys and that of light cover are on ridges. Lastly we compared the result of 2012 and that of 2015. The same characteristic of snow depth, above mentioned, was found. However, regression coefficients of linear equations were different according to the weather conditions of each year.

  3. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Roman, Miguel O.

    2017-01-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6) and VIIRS Collection 1 (C1) represent the state-of-the-art global snow cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map.The increased data content allows flexibility in using the datasets for specific regions and end-user applications.Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375m native resolution compared to MODIS 500 m), the snow detection algorithms and data products are designed to be as similar as possible so that the 16C year MODIS ESDR of global SCE can be extended into the future with the S-NPP VIIRS snow products and with products from future Joint Polar Satellite System (JPSS) platforms.These NASA datasets are archived and accessible through the NASA Distributed Active Archive Center at the National Snow and Ice Data Center in Boulder, Colorado.

  4. Granulation of snow: From tumbler experiments to discrete element simulations

    NASA Astrophysics Data System (ADS)

    Steinkogler, Walter; Gaume, Johan; Löwe, Henning; Sovilla, Betty; Lehning, Michael

    2015-06-01

    It is well known that snow avalanches exhibit granulation phenomena, i.e., the formation of large and apparently stable snow granules during the flow. The size distribution of the granules has an influence on flow behavior which, in turn, affects runout distances and avalanche velocities. The underlying mechanisms of granule formation are notoriously difficult to investigate within large-scale field experiments, due to limitations in the scope for measuring temperatures, velocities, and size distributions. To address this issue we present experiments with a concrete tumbler, which provide an appropriate means to investigate granule formation of snow. In a set of experiments at constant rotation velocity with varying temperatures and water content, we demonstrate that temperature has a major impact on the formation of granules. The experiments showed that granules only formed when the snow temperature exceeded -1∘C. No evolution in the granule size was observed at colder temperatures. Depending on the conditions, different granulation regimes are obtained, which are qualitatively classified according to their persistence and size distribution. The potential of granulation of snow in a tumbler is further demonstrated by showing that generic features of the experiments can be reproduced by cohesive discrete element simulations. The proposed discrete element model mimics the competition between cohesive forces, which promote aggregation, and impact forces, which induce fragmentation, and supports the interpretation of the granule regime classification obtained from the tumbler experiments. Generalizations, implications for flow dynamics, and experimental and model limitations as well as suggestions for future work are discussed.

  5. Seasonal Snow Extent and Snow Mass in South America using SMMR and SSM/I Passive Microwave Data (1979-2006)

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Hall, D. K.; Kelly, R. E. J.; Chiu, L.

    2008-01-01

    Seasonal snow cover in South America was examined in this study using passive microwave satellite data from the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7 satellite and the Special Sensor Microwave Imagers (SSM/I) onboard Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1979-2006, both snow cover extent and snow water equivalent (snow mass) were investigated during the coldest months (May-September), primarily in the Patagonia area of Argentina and in the Andes of Chile, Argentina and Bolivia, where most of the seasonal snow is found. Since winter temperatures in this region are often above freezing, the coldest winter month was found to be the month having the most extensive snow cover and usually the month having the deepest snow cover as well. Sharp year-to-year differences were recorded using the passive microwave observations. The average snow cover extent for July, the month with the greatest average extent during the 28-year period of record, is 321,674 km(exp 2). In July of 1984, the average monthly snow cover extent was 701,250 km(exp 2) the most extensive coverage observed between 1979 and 2006. However, in July of 1989, snow cover extent was only 120,000 km(exp 2). The 28-year period of record shows a sinusoidal like pattern for both snow cover and snow mass, though neither trend is significant at the 95% level.

  6. Complexity in Climatic Controls on Plant Species Distribution: Satellite Data Reveal Unique Climate for Giant Sequoia in the California Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Waller, Eric Kindseth

    A better understanding of the environmental controls on current plant species distribution is essential if the impacts of such diverse challenges as invasive species, changing fire regimes, and global climate change are to be predicted and important diversity conserved. Climate, soil, hydrology, various biotic factors fire, history, and chance can all play a role, but disentangling these factors is a daunting task. Increasingly sophisticated statistical models relying on existing distributions and mapped climatic variables, among others, have been developed to try to answer these questions. Any failure to explain pattern with existing mapped climatic variables is often taken as a referendum on climate as a whole, rather than on the limitations of the particular maps or models. Every location has a unique and constantly changing climate so that any distribution could be explained by some aspect of climate. Chapter 1 of this dissertation reviews some of the major flaws in species distribution modeling and addresses concerns that climate may therefore not be predictive of, or even relevant to, species distributions. Despite problems with climate-based models, climate and climate-derived variables still have substantial merit for explaining species distribution patterns. Additional generation of relevant climate variables and improvements in other climate and climate-derived variables are still needed to demonstrate this more effectively. Satellite data have a long history of being used for vegetation mapping and even species distribution mapping. They have great potential for being used for additional climatic information, and for improved mapping of other climate and climate-derived variables. Improving the characterization of cloud cover frequency with satellite data is one way in which the mapping of important climate and climate-derived variables can be improved. An important input to water balance models, solar radiation maps could be vastly improved with a better mapping of spatial and temporal patterns in cloud cover. Chapter 2 of this dissertation describes the generation of custom daily cloud cover maps from Advanced Very High Resolution Radiometer (AVHRR) satellite data from 1981-1999 at ~5 km resolution and Moderate Resolution Imagine Spectroradiomter (MODIS) satellite reflectance data at ~500 meter resolution for much of the western U.S., from 2000 to 2012. Intensive comparisons of reflectance spectra from a variety of cloud and snow-covered scenes from the southwestern United States allowed the generation of new rules for the classification of clouds and snow in both the AVHRR and MODIS data. The resulting products avoid many of the problems that plague other cloud mapping efforts, such as the tendency for snow cover and bright desert soils to be mapped as cloud. This consistency in classification across cover types is critically important for any distribution modeling of a plant species that might be dependent on cloud cover. In Chapter 3, monthly cloud frequencies derived from the daily classifications were used directly in species distribution models for giant sequoia and were found to be the strongest predictors of giant sequoia distribution. A high frequency of cloud cover, especially in the spring, differentiated the climate of the west slope of the southern Sierra Nevada, where giant sequoia are prolific, from central and northern parts of the range, where the tree is rare and generally absent. Other mapped cloud products, contaminated by confusion with high elevation snow, would likely not have found this important result. The result illustrates the importance of accuracy in mapping as well as the importance of previously overlooked aspects of climate for species distribution modeling. But it also raises new questions about why the clouds form where they do and whether they might be associated with other aspects of climate important to giant sequoia distribution. What are the exact climatic mechanisms governing the distribution? Detailed aspects of the local climate warranted more investigation. Chapter 4 investigates the climate associated with the frequent cloud formation over the western slopes of the southern Sierra Nevada: the "sequoia belt". This region is climatically distinct in a number of ways, all of which could be factors in influencing the distribution of giant sequoia and other species. Satellite and micrometeorological flux tower data reveal characteristics of the sequoia belt that were not evident with surface climate measurements and maps derived from them. Results have implications for species distributions everywhere, but especially in rugged mountains, where climates are complex and poorly mapped. Chapter 5 summarizes some of the main conclusions from the work and suggests directions for related future research. (Abstract shortened by UMI.).

  7. Thaw depth spatial and temporal variability at the Limnopolar Lake CALM-S site, Byers Peninsula, Livingston Island, Antarctica.

    PubMed

    de Pablo, M A; Ramos, M; Molina, A; Prieto, M

    2018-02-15

    A new Circumpolar Active Layer Monitoring (CALM) site was established in 2009 at the Limnopolar Lake watershed in Byers Peninsula, Livingston Island, Antarctica, to provide a node in the western Antarctic Peninsula, one of the regions that recorded the highest air temperature increase in the planet during the last decades. The first detailed analysis of the temporal and spatial evolution of the thaw depth at the Limnopolar Lake CALM-S site is presented here, after eight years of monitoring. The average values range between 48 and 29cm, decreasing at a ratio of 16cm/decade. The annual thaw depth observations in the 100×100 m CALM grid are variable (Variability Index of 34 to 51%), although both the Variance Coefficient and the Climate Matrix Analysis Residual point to the internal consistency of the data. Those differences could be explained then by the terrain complexity and node-specific variability due to the ground properties. The interannual variability was about 60% during 2009-2012, increasing to 124% due to the presence of snow in 2013, 2015 and 2016. The snow has been proposed here as one of the most important factors controlling the spatial variability of ground thaw depth, since its values correlate with the snow thickness but also with the ground surface temperature and unconfined compression resistance, as measured in 2010. The topography explains the thaw depth spatial distribution pattern, being related to snowmelt water and its accumulation in low-elevation areas (downslope-flow). Patterned grounds and other surface features correlate well with high thaw depth patterns as well. The edaphic factor (E=0.05842m 2 /°C·day; R 2 =0.63) is in agreement with other permafrost environments, since frozen index (F>0.67) and MAAT (<-2°C) denote a continuous permafrost existence in the area. All these characteristics provided the basis for further comparative analyses between others nearby CALM sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. High-Elevation Evapotranspiration Estimates During Drought: Using Streamflow and NASA Airborne Snow Observatory SWE Observations to Close the Upper Tuolumne River Basin Water Balance

    NASA Astrophysics Data System (ADS)

    Henn, Brian; Painter, Thomas H.; Bormann, Kat J.; McGurk, Bruce; Flint, Alan L.; Flint, Lorraine E.; White, Vince; Lundquist, Jessica D.

    2018-02-01

    Hydrologic variables such as evapotranspiration (ET) and soil water storage are difficult to observe across spatial scales in complex terrain. Streamflow and lidar-derived snow observations provide information about distributed hydrologic processes such as snowmelt, infiltration, and storage. We use a distributed streamflow data set across eight basins in the upper Tuolumne River region of Yosemite National Park in the Sierra Nevada mountain range, and the NASA Airborne Snow Observatory (ASO) lidar-derived snow data set over 3 years (2013-2015) during a prolonged drought in California, to estimate basin-scale water balance components. We compare snowmelt and cumulative precipitation over periods from the ASO flight to the end of the water year against cumulative streamflow observations. The basin water balance residual term (snow melt plus precipitation minus streamflow) is calculated for each basin and year. Using soil moisture observations and hydrologic model simulations, we show that the residual term represents short-term changes in basin water storage over the snowmelt season, but that over the period from peak snow water equivalent (SWE) to the end of summer, it represents cumulative basin-mean ET. Warm-season ET estimated from this approach is 168 (85-252 at 95% confidence), 162 (0-326) and 191 (48-334) mm averaged across the basins in 2013, 2014, and 2015, respectively. These values are lower than previous full-year and point ET estimates in the Sierra Nevada, potentially reflecting reduced ET during drought, the effects of spatial variability, and the part-year time period. Using streamflow and ASO snow observations, we quantify spatially-distributed hydrologic processes otherwise difficult to observe.

  9. A Comparison of Sea Ice Type, Sea Ice Temperature, and Snow Thickness Distributions in the Arctic Seasonal Ice Zones with the DMSP SSM/I

    NASA Technical Reports Server (NTRS)

    St.Germain, Karen; Cavalieri, Donald J.; Markus, Thorsten

    1997-01-01

    Global climate studies have shown that sea ice is a critical component in the global climate system through its effect on the ocean and atmosphere, and on the earth's radiation balance. Polar energy studies have further shown that the distribution of thin ice and open water largely controls the distribution of surface heat exchange between the ocean and atmosphere within the winter Arctic ice pack. The thickness of the ice, the depth of snow on the ice, and the temperature profile of the snow/ice composite are all important parameters in calculating surface heat fluxes. In recent years, researchers have used various combinations of DMSP SSMI channels to independently estimate the thin ice type (which is related to ice thickness), the thin ice temperature, and the depth of snow on the ice. In each case validation efforts provided encouraging results, but taken individually each algorithm gives only one piece of the information necessary to compute the energy fluxes through the ice and snow. In this paper we present a comparison of the results from each of these algorithms to provide a more comprehensive picture of the seasonal ice zone using passive microwave observations.

  10. Dependence of Snowmelt Simulations on Scaling of the Forcing Processes (Invited)

    NASA Astrophysics Data System (ADS)

    Winstral, A. H.; Marks, D. G.; Gurney, R. J.

    2009-12-01

    The spatial organization and scaling relationships of snow distribution in mountain environs is ultimately dependent on the controlling processes. These processes include interactions between weather, topography, vegetation, snow state, and seasonally-dependent radiation inputs. In large scale snow modeling it is vital to know these dependencies to obtain accurate predictions while reducing computational costs. This study examined the scaling characteristics of the forcing processes and the dependency of distributed snowmelt simulations to their scaling. A base model simulation characterized these processes with 10m resolution over a 14.0 km2 basin with an elevation range of 1474 - 2244 masl. Each of the major processes affecting snow accumulation and melt - precipitation, wind speed, solar radiation, thermal radiation, temperature, and vapor pressure - were independently degraded to 1 km resolution. Seasonal and event-specific results were analyzed. Results indicated that scale effects on melt vary by process and weather conditions. The dependence of melt simulations on the scaling of solar radiation fluxes also had a seasonal component. These process-based scaling characteristics should remain static through time as they are based on physical considerations. As such, these results not only provide guidance for current modeling efforts, but are also well suited to predicting how potential climate changes will affect the heterogeneity of mountain snow distributions.

  11. Snow drought in western U.S. mountains: proximate causes, regional differences, and implications for streamflow and forests

    NASA Astrophysics Data System (ADS)

    Harpold, A. A.; Dettinger, M. D.; Rajagopal, S.

    2017-12-01

    Although drought is a recurring problem, recent extreme snow droughts have refocused attention on the interaction of meteorological extremes and snow accumulation in mountains. Only recently have two distinct types of snow drought been defined that help to differentiate a variety of water management implications. Dry snow drought is caused by deficits of winter precipitation and resulting low snow accumulation. Warm snow drought is characterized by temperature extremes causing faster and earlier snowmelt and/or shifts from snow to rain. Here we use 462 Snow Telemetry (SNOTEL) sites in the western U.S. to quantify snow drought as 75% of the long-term average snow water equivalent (SWE). We further subdivide dry snow droughts using SWE to winter precipitation (SWE/P) ratios that were near normal from warm snow droughts where SWE/P ratios were below normal and experienced SWE losses (warm-melt) or received unusual amounts of winter rain (warm-rain snow drought). Using this method we show clear regional patterns in the type and frequency of snow drought. Warm snow droughts on April 1st were most common in all but the highest elevations of the Rocky Mountains. The middle Rocky Mountains sites also experienced less frequent snow drought than the maritime and southern mountains. Warm-melt snow droughts were the primary cause in the Cascade Mountains and the southwestern sites, with only the Sierra Nevada and Wasatch mountains showing consistent warm-rain snow drought. These regional differences limited the predictability of snow drought with simple models of temperature and precipitation. We will discuss the effects of snow drought type and magnitude on streamflow forecasting skill using empirical relationships developed by water management agencies. We expect these types of snow drought to differentially affect streamflow regime and its predictability, as well as forest growth and mortality during and following drought.

  12. Snow Water Equivalent estimation based on satellite observation

    NASA Astrophysics Data System (ADS)

    Macchiavello, G.; Pesce, F.; Boni, G.; Gabellani, S.

    2009-09-01

    The availability of remotely sensed images and them analysis is a powerful tool for monitoring the extension and typology of snow cover over territory where the in situ measurements are often difficult. Information on snow are fundamental for monitoring and forecasting the available water above all in regions at mid latitudes as Mediterranean where snowmelt may cause floods. The hydrological model requirements and the daily acquisitions of MODIS (Moderate Resolution Imaging Spectroradiometer), drove, in previous research activities, to the development of a method to automatically map the snow cover from multi-spectral images. But, the major hydrological parameter related to the snow pack is the Snow Water Equivalent (SWE). This represents a direct measure of stored water in the basin. Because of it, the work was focused to the daily estimation of SWE from MODIS images. But, the complexity of this aim, based only on optical data, doesn’t find any information in literature. Since, from the spectral range of MODIS data it is not possible to extract a direct relation between spectral information and the SWE. Then a new method, respectful of the physic of the snow, was defined and developed. Reminding that the snow water equivalent is the product of the three factors as snow density, snow depth and the snow covered areas, the proposed approach works separately on each of these physical behaviors. Referring to the physical characteristic of snow, the snow density is function of the snow age, then it was studied a new method to evaluate this. Where, a module for snow age simulation from albedo information was developed. It activates an age counter updated by new snow information set to estimate snow age from zero accumulation status to the end of melting season. The height of the snow pack, can be retrieved by adopting relation between vegetation and snow depth distributions. This computes snow height distribution by the relation between snow cover fraction and the forest canopy density. Finally, the SWE has to be calculated for the snow covered areas, detected by means of a previously developed decision tree classifier able to classify snow cover by self selecting rules in a statistically optimum way. The advantages introduced from this work are many. Firstly, applying a suitable method with data features, it is possible to automatically obtain snow cover description with high frequency. Moreover, the advantages of the modularity in the proposed approach allows to improve the three factors estimation in an independent way. Limitations lie into clouds problem that affects results by obscuring the observed territory, that is bounded by fusing temporal and spatial information. Then the spatial resolution of data, satisfactory with the scale of hydrological models, mismatch with the available in situ point information, causing difficulties for a method validation or calibration. However this working flow results computationally cost-effectiveness, robust to the radiometric noise of the original data, provides spatially extended and frequent information.

  13. Influence of Projected Changes in North American Snow Cover Extent on Mid-Latitude Cyclone Progression

    NASA Astrophysics Data System (ADS)

    Clare, R. M.; Desai, A. R.; Martin, J. E.; Notaro, M.; Vavrus, S. J.

    2017-12-01

    It has long been hypothesized that snow cover and snow extent have an influence on the development or steering of synoptic mid-latitude cyclones (MLCs). Rydzik and Desai (2014) showed a robust statistical relationship among snow cover extent, generation of low-level baroclinicity, and MLC tracks. Though snow cover extent is highly variable year to year, the changing global climate is expected to continue an already observed pattern of poleward retreat of mean snow cover in North America, particularly in late winter and spring. For this experiment, large ensemble simulations with the Weather Research and Forecasting model (WRF) were forced with output from the Community Earth System Model (CESM) to test the effect contributed solely by snow cover and the projected effects of a changing climate. Our experiment induces an adjustment to the extent of snow cover in North America according to CESM RCP 8.5 projections for each decade from 2020 to 2100 before and during several cases of MLCs moving east across the Great Plains near the snow line. To evaluate mechanisms of pre-existing and current snow influence on MLCs, model cases are started with snow line adjustment occurring from three days prior up to the storm's arrival over the Great Plains. We demonstrate that snow cover changes do alter MLC intensity and path via modification of low-level potential vorticity.

  14. Measuring and modelling the impact of the bark beetle forest disturbance on snow accumulation and ablation at a plot scale

    NASA Astrophysics Data System (ADS)

    Jenicek, Michal; Matejka, Ondrej; Hotovy, Ondrej

    2017-04-01

    The knowledge of water volume stored in the snowpack and its spatial distribution is important to predict the snowmelt runoff. The objective of this study was to quantify the role of different forest structures on the snowpack distribution at a plot scale during snow accumulation and snow ablation periods. Special interest was put in the role of the forest affected by the bark beetle (Ips typographus). We performed repeated detailed manual field survey at selected mountain plots with different canopy structure located at the same elevation and without influence of topography and wind on the snow distribution. The forest canopy structure was described using parameters calculated from hemispherical photographs, such as canopy closure, leaf area index (LAI) and potential irradiance. Additionally, we used shortwave radiation measured using CNR4 Net radiometers placed in plots with different canopy structure. Two snow accumulation and ablation models were set-up to simulate the snow water equivalent (SWE) in plots with different vegetation cover. First model was physically-based using the energy balance approach, second model was conceptual and it was based on the degree-day approach. Both models accounted for snow interception in different forest types using LAI as a parameter. The measured SWE in the plot with healthy forest was on average by 41% lower than in open area during snow accumulation period. The disturbed forest caused the SWE reduction by 22% compared to open area indicating increasing snow storage after forest defoliation. The snow ablation in healthy forest was by 32% slower compared to open area. On the contrary, the snow ablation in disturbed forest (due to the bark beetle) was on average only by 7% slower than in open area. The relative decrease in incoming solar radiation in the forest compared to open area was much bigger compared to the relative decrease in snowmelt rates. This indicated that the decrease in snowmelt rates cannot be explained only by the decrease in incoming solar radiation. Both models simulated sufficiently compared to observations with slightly accurate simulations in open area compared to healthy forest. This was expected, since both models were forced to fit with observations. However, the energy balance approach simulated snowmelt in the forest environment accurately since it accounts also for longwave radiation which might largely influence snowmelt in the forested plots. Both models showed faster snowmelt after forest defoliation which also resulted in earlier snow melt-out in the disturbed forest compared to the healthy coniferous forest.

  15. The application of ERTS imagery to mapping snow cover in the western United States. [Salt Verde in Arizona and Sierra Nevada California

    NASA Technical Reports Server (NTRS)

    Barnes, J. C. (Principal Investigator); Bowley, C. J.; Simmes, D. A.

    1974-01-01

    The author has identified the following significant results. In much of the western United States a large part of the utilized water comes from accumulated mountain snowpacks; thus, accurate measurements of snow distributions are required for input to streamflow prediction models. The application of ERTS-1 imagery for mapping snow has been evaluated for two geographic areas, the Salt-Verde watershed in central Arizona and the southern Sierra Nevada in California. Techniques have been developed to identify snow and to differentiate between snow and cloud. The snow extent for these two drainage areas has been mapped from the MSS-5 (0.6 - 0.7 microns) imagery and compared with aerial survey snow charts, aircraft photography, and ground-based snow measurements. The results indicate that ERTS imagery has substantial practical applications for snow mapping. Snow extent can be mapped from ERTS-1 imagery in more detail than is depicted on aerial survey snow charts. Moreover, in Arizona and southern California cloud obscuration does not appear to be a serious deterrent to the use of satellite data for snow survey. The costs involved in deriving snow maps from ERTS-1 imagery appear to be very reasonable in comparison with existing data collection methods.

  16. Yosemite Hydroclimate Network: Distributed stream and atmospheric data for the Tuolumne River watershed and surroundings

    NASA Astrophysics Data System (ADS)

    Lundquist, Jessica D.; Roche, James W.; Forrester, Harrison; Moore, Courtney; Keenan, Eric; Perry, Gwyneth; Cristea, Nicoleta; Henn, Brian; Lapo, Karl; McGurk, Bruce; Cayan, Daniel R.; Dettinger, Michael D.

    2016-09-01

    Regions of complex topography and remote wilderness terrain have spatially varying patterns of temperature and streamflow, but due to inherent difficulties of access, are often very poorly sampled. Here we present a data set of distributed stream stage, streamflow, stream temperature, barometric pressure, and air temperature from the Tuolumne River Watershed in Yosemite National Park, Sierra Nevada, California, USA, for water years 2002-2015, as well as a quality-controlled hourly meteorological forcing time series for use in hydrologic modeling. We also provide snow data and daily inflow to the Hetch Hetchy Reservoir for 1970-2015. This paper describes data collected using low-visibility and low-impact installations for wilderness locations and can be used alone or as a critical supplement to ancillary data sets collected by cooperating agencies, referenced herein. This data set provides a unique opportunity to understand spatial patterns and scaling of hydroclimatic processes in complex terrain and can be used to evaluate downscaling techniques or distributed modeling. The paper also provides an example methodology and lessons learned in conducting hydroclimatic monitoring in remote wilderness.

  17. Yosemite Hydroclimate Network: Distributed stream and atmospheric data for the Tuolumne River watershed and surroundings

    USGS Publications Warehouse

    Lundquist, Jessica D.; Roche, James W.; Forrester, Harrison; Moore, Courtney; Keenan, Eric; Perry, Gwyneth; Cristea, Nicoleta; Henn, Brian; Lapo, Karl; McGurk, Bruce; Cayan, Daniel R.; Dettinger, Michael D.

    2016-01-01

    Regions of complex topography and remote wilderness terrain have spatially varying patterns of temperature and streamflow, but due to inherent difficulties of access, are often very poorly sampled. Here we present a data set of distributed stream stage, streamflow, stream temperature, barometric pressure, and air temperature from the Tuolumne River Watershed in Yosemite National Park, Sierra Nevada, California, USA, for water years 2002–2015, as well as a quality-controlled hourly meteorological forcing time series for use in hydrologic modeling. We also provide snow data and daily inflow to the Hetch Hetchy Reservoir for 1970–2015. This paper describes data collected using low-visibility and low-impact installations for wilderness locations and can be used alone or as a critical supplement to ancillary data sets collected by cooperating agencies, referenced herein. This data set provides a unique opportunity to understand spatial patterns and scaling of hydroclimatic processes in complex terrain and can be used to evaluate downscaling techniques or distributed modeling. The paper also provides an example methodology and lessons learned in conducting hydroclimatic monitoring in remote wilderness.

  18. Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models

    NASA Astrophysics Data System (ADS)

    Terzago, Silvia; von Hardenberg, Jost; Palazzi, Elisa; Provenzale, Antonello

    2017-07-01

    The estimate of the current and future conditions of snow resources in mountain areas would require reliable, kilometre-resolution, regional-observation-based gridded data sets and climate models capable of properly representing snow processes and snow-climate interactions. At the moment, the development of such tools is hampered by the sparseness of station-based reference observations. In past decades passive microwave remote sensing and reanalysis products have mainly been used to infer information on the snow water equivalent distribution. However, the investigation has usually been limited to flat terrains as the reliability of these products in mountain areas is poorly characterized.This work considers the available snow water equivalent data sets from remote sensing and from reanalyses for the greater Alpine region (GAR), and explores their ability to provide a coherent view of the snow water equivalent distribution and climatology in this area. Further we analyse the simulations from the latest-generation regional and global climate models (RCMs, GCMs), participating in the Coordinated Regional Climate Downscaling Experiment over the European domain (EURO-CORDEX) and in the Fifth Coupled Model Intercomparison Project (CMIP5) respectively. We evaluate their reliability in reproducing the main drivers of snow processes - near-surface air temperature and precipitation - against the observational data set EOBS, and compare the snow water equivalent climatology with the remote sensing and reanalysis data sets previously considered. We critically discuss the model limitations in the historical period and we explore their potential in providing reliable future projections.The results of the analysis show that the time-averaged spatial distribution of snow water equivalent and the amplitude of its annual cycle are reproduced quite differently by the different remote sensing and reanalysis data sets, which in fact exhibit a large spread around the ensemble mean. We find that GCMs at spatial resolutions equal to or finer than 1.25° longitude are in closer agreement with the ensemble mean of satellite and reanalysis products in terms of root mean square error and standard deviation than lower-resolution GCMs. The set of regional climate models from the EURO-CORDEX ensemble provides estimates of snow water equivalent at 0.11° resolution that are locally much larger than those indicated by the gridded data sets, and only in a few cases are these differences smoothed out when snow water equivalent is spatially averaged over the entire Alpine domain. ERA-Interim-driven RCM simulations show an annual snow cycle that is comparable in amplitude to those provided by the reference data sets, while GCM-driven RCMs present a large positive bias. RCMs and higher-resolution GCM simulations are used to provide an estimate of the snow reduction expected by the mid-21st century (RCP 8.5 scenario) compared to the historical climatology, with the main purpose of highlighting the limits of our current knowledge and the need for developing more reliable snow simulations.

  19. An Evaluation of Arctic Ocean Precipitation from Reanalyses for use in Snow Accumulation and Melt Models over Sea Ice

    NASA Astrophysics Data System (ADS)

    Barrett, A. P.; Stroeve, J.; Liston, G. E.; Tschudi, M. A.; Stewart, S.

    2017-12-01

    Retrievals of sea ice thickness from satellite- and air-borne sensors require knowledge of snow depth and density. Early retrievals used climatologies of snow depth and density - "The Warren Climatology" - based on observations from 31 Soviet drifting stations between 1957 and 1991. This climatology was the best available Arctic-wide data set at the time. However, it does not account for year-to-year variations in spatial and temporal patterns of snow depth, nor does it account for changes in snow depth over longer time periods. Recent efforts to retrieve ice thickness have used output from global and regional atmospheric reanalyses directly or as input to snow accumulation, density evolution, and melt models to estimate snow depth. While such efforts represent the state-of-the-art in terms of Arctic-wide snow depth fields, there can be large differences between precipitation (and other variables) from reanalyses. Knowledge about these differences and about biases in precipitation magnitude are important for getting the best-possible retrievals of ice thickness. Here, we evaluate fields of total precipitation and snow fall from the NASA MERRA and MERRA2, NOAA CFSR and CFSR version 2, ECMWF ERA-Interim, and Arctic System (ASR) reanalyses with a view to understanding differences in the magnitude, and temporal and spatial patterns of precipitation. Where possible we use observations to understand biases in the reanalysis output. Time series of annual total precipitation for the central Arctic correlate well with all reanalyses showing similar year-to-year variability. Time series for MERRA, MERRA2 and CFSR show no evidence of long-term trends. By contrast ERA-Interim appears to be wetter in the most recent decade. The ASR records only spans 2000 to 2012 but is similar to ERA-Interim. CFSR and MERRA2 are wetter than the other five reanalyses, especially over the eastern Arctic and North Atlantic.

  20. Simulating polarized light scattering in terrestrial snow based on bicontinuous random medium and Monte Carlo ray tracing

    NASA Astrophysics Data System (ADS)

    Xiong, Chuan; Shi, Jiancheng

    2014-01-01

    To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing.

  1. MODIS Snow-Cover Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vinvent V.; DiGirolamo, Nicolo; Bayr, Klaus J.; Houser, Paul (Technical Monitor)

    2001-01-01

    On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. These products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to the currently available operation products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set is generated for long-term climates studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the product. The snow product suite starts with a 500-m resolution swath snow-cover map which is gridded to the Integerized Sinusoidal Grid to produce daily and eight-day composite tile products. The sequence then proceeds to a climate-modeling grid product at 5-km spatial resolution, with both daily and eight-day composite products. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented. Near-term enhancements include daily snow albedo and fractional snow cover.

  2. 49 CFR 1242.28 - Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... snow removal (accounts XX-19-36 to XX-19-38, inclusive). 1242.28 Section 1242.28 Transportation Other... tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38, inclusive). Separate common expenses according to distribution of common expenses listed in § 1242.10, Administration—Track (account XX...

  3. Snow Roads at McMurdo Station, Antarctica

    DTIC Science & Technology

    2010-05-01

    is minimized distribution of low strength areas (also called “ holidays ”). Holidays are actually areas of pulverized snow that are missed or inade...quately processed. Though holidays usually occur sporadically, any single flaw may extend through the entire thickness of an unelevated road. The...Pegasus Road and the LDB pad. A few additional sites were chosen for comparison (Williams Field, virgin snow, etc.). Williams Field Road densities

  4. Developing the snow component of a distributed hydrological model: a step-wise approach based on multi-objective analysis

    NASA Astrophysics Data System (ADS)

    Dunn, S. M.; Colohan, R. J. E.

    1999-09-01

    A snow component has been developed for the distributed hydrological model, DIY, using an approach that sequentially evaluates the behaviour of different functions as they are implemented in the model. The evaluation is performed using multi-objective functions to ensure that the internal structure of the model is correct. The development of the model, using a sub-catchment in the Cairngorm Mountains in Scotland, demonstrated that the degree-day model can be enhanced for hydroclimatic conditions typical of those found in Scotland, without increasing meteorological data requirements. An important element of the snow model is a function to account for wind re-distribution. This causes large accumulations of snow in small pockets, which are shown to be important in sustaining baseflows in the rivers during the late spring and early summer, long after the snowpack has melted from the bulk of the catchment. The importance of the wind function would not have been identified using a single objective function of total streamflow to evaluate the model behaviour.

  5. The fate of Mercury in Arctic regions: New understanding of atmospheric chemical processes and mercury stability in snow.

    NASA Astrophysics Data System (ADS)

    Steffen, A.; Ferrari, C.; Dommergue, A.; Scherz, T.; Lawson, G.; Leiatch, R.

    2006-12-01

    Mercury is a known toxic pollutant in the Arctic environment. Atmospheric mercury depletion events (AMDEs) have been studied in the Arctic since 1995. While advances in understanding this newly discovered cycling of mercury in the atmosphere have been made, much of the chemistry and the impact of this annually reoccurring event to the Arctic ecosystem are not well understood. Four years of continuous measurements at Alert, Canada of so-called reactive gaseous mercury (RGM) and mercury associated to particles (PHg) coupled with ongoing snow sampling have produced new information on the atmospheric chemistry and deposition of these mercury species to the Arctic. A distinct pattern during the springtime period in the distribution of these atmospheric mercury species has emerged. This pattern is characterized by the predominance of PHg concentration at the onset of the AMDEs. During the latter part of the AMDE season, there is an obvious swicth in the speciation of mercury to RGM as the main component during AMDEs. This swicth from PHg to RGM is clearly linked to a significant increase of mercury in the snow. In addition, concentrations of PHg are clearly linked with particles in the air that are primarily associated with Arctic haze. Recently, similar results have also been observed in Ny-Alesund (Svalbard). Further observations indicate that once deposited, the deposited mercury appears to evolve chemically in the snow. This change in mercury may impact the transfer of mercury to the environment during snow melt. These first time observed links between atmospheric conditions and subsequent deposition of mercury may help to ascertain the conditions throughout the Arctic as to when significant deposition of mercury will occur. It is proposed that should the concentration of atmospheric particles increase in the Arctic due to long range transport from emission sources, an increase in the deposition of mercury to this environment will increase during the springtime period. Additionally, information from these data demonstrates that the primary product of the oxidation of gaseous elemental mercury (GEM) is RGM which will associate to the particles and exist as PHg when these particles are available in the atmosphere. The oxidation of GEM is, therefore, a result of homogeneous chemistry. Results from this ongoing study and the impacts of this pollutant to the Arctic environment will be presented.

  6. Rocky Mountain Snowpack Chemistry at Selected Sites, 2002

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Nanus, Leora; Manthorne, David J.; Clow, David W.; Handran, Heather M.; Winterringer, Jesse A.; Campbell, Donald H.

    2004-01-01

    During spring 2002, the chemical composition of annual snowpacks in the Rocky Mountain region of the Western United States was analyzed. Snow samples were collected at 75 geographically distributed sites extending from New Mexico to Montana. Near the end of the 2002 snowfall season, the snow-water equivalent (SWE) in annual snowpacks sampled generally was below average in most of the region. Regional patterns in the concentrations of major ions (including ammonium, nitrate, and sulfate), mercury, and stable sulfur isotope ratios are presented. The 2002 snowpack chemistry in the region differed from the previous year. Snowpack ammonium concentrations were higher at 66 percent of sites in Montana compared to concentrations in the 2001 snowpack but were lower at 74 percent of sites in Wyoming, Colorado, and New Mexico. Nitrate was lower at all Montana sites and lower at all but one Wyoming site; nitrate was higher at all but two Colorado sites and higher at all New Mexico sites. Sulfate was lower across the region at 77 percent of sites. The range of mercury concentrations for the region was similar to those of 2001 but showed more variability than ammonium, nitrate, and sulfate concentrations. Concentrations of stable sulfur isotope ratios exhibited a strong regional pattern with values increasing northward from southern Colorado to northern Colorado and Wyoming.

  7. SSSNOW Project: Helping Make Science Cool for Students

    ERIC Educational Resources Information Center

    Huff, Kenneth; Lange, Catherine

    2010-01-01

    In the atmosphere or on the ground, snow provides students with unique opportunities to discover winter weather patterns. Traditionally, when students study weather, it is limited to the collection of data one would see on a weather report. However, the interdisciplinary Students Synthesizing Snow data in Natural Objective Ways (SSSNOW) project…

  8. Snowmelt Pattern and Lake Ice Phenology around Tibetan Plateau Estimated from Enhanced Resolution Passive Microwave Data

    NASA Astrophysics Data System (ADS)

    Xiong, C.; Shi, J.; Wang, T.

    2017-12-01

    Snow and ice is very sensitive to the climate change. Rising air temperature will cause the snowmelt time change. In contrast, the change in snow state will have feedback on climate through snow albedo. The snow melt timing is also correlated with the associated runoff. Ice phenology describes the seasonal cycle of lake ice cover and includes freeze-up and breakup periods and ice cover duration, which is an important weather and climate indicator. It is also important for lake-atmosphere interactions and hydrological and ecological processes. The enhanced resolution (up to 3.125 km) passive microwave data is used to estimate the snowmelt pattern and lake ice phenology on and around Tibetan Plateau. The enhanced resolution makes the estimation of snowmelt and lake ice phenology in more spatial detail compared to previous 25 km gridded passive microwave data. New algorithm based on smooth filters and change point detection was developed to estimate the snowmelt and lake ice freeze-up and break-up timing. Spatial and temporal pattern of snowmelt and lake ice phonology are estimated. This study provides an objective evidence of climate change impact on the cryospheric system on Tibetan Plateau. The results show significant earlier snowmelt and lake ice break-up in some regions.

  9. Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel

    2016-08-01

    An improved understanding of the temporal variability and the spatial distribution of snowmelt on Antarctic sea ice is crucial to better quantify atmosphere-ice-ocean interactions, in particular sea-ice mass and energy budgets. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study, we combine diurnal brightness temperature differences (dTB(37 GHz)) and ratios (TB(19 GHz)/TB(37 GHz)) to detect and classify snowmelt processes. We distinguish temporary snowmelt from continuous snowmelt to characterize dominant melt patterns for different Antarctic sea-ice regions from 1988/1989 to 2014/2015. Our results indicate four characteristic melt types. On average, 38.9 ± 6.0% of all detected melt events are diurnal freeze-thaw cycles in the surface snow layer, characteristic of temporary melt (Type A). Less than 2% reveal immediate continuous snowmelt throughout the snowpack, i.e., strong melt over a period of several days (Type B). In 11.7 ± 4.0%, Type A and B take place consecutively (Type C), and for 47.8 ± 6.8% no surface melt is observed at all (Type D). Continuous snowmelt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 17 days after the onset of temporary melt. Comparisons with Snow Buoy data suggest that also the onset of continuous snowmelt does not translate into changes in snow depth for a longer period but might rather affect the internal stratigraphy and density structure of the snowpack. Considering the entire data set, the timing of snowmelt processes does not show significant temporal trends.

  10. Impacts of 1, 1.5, and 2 Degree Warming on Arctic Terrestrial Snow and Sea Ice

    NASA Astrophysics Data System (ADS)

    Derksen, C.; Mudryk, L.; Howell, S.; Flato, G. M.; Fyfe, J. C.; Gillett, N. P.; Sigmond, M.; Kushner, P. J.; Dawson, J.; Zwiers, F. W.; Lemmen, D.; Duguay, C. R.; Zhang, X.; Fletcher, C. G.; Dery, S. J.

    2017-12-01

    The 2015 Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC) established the global temperature goal of "holding the increase in the global average temperature to below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels." In this study, we utilize multiple gridded snow and sea ice products (satellite retrievals; assimilation systems; physical models driven by reanalyses) and ensembles of climate model simulations to determine the impacts of observed warming, and project the relative impacts of the UNFCC future warming targets on Arctic seasonal terrestrial snow and sea ice cover. Observed changes during the satellite era represent the response to approximately 1°C of global warming. Consistent with other studies, analysis of the observational record (1970's to present) identifies changes including a shorter snow cover duration (due to later snow onset and earlier snow melt), significant reductions in spring snow cover and summer sea ice extent, and the loss of a large proportion of multi-year sea ice. The spatial patterns of observed snow and sea ice loss are coherent across adjacent terrestrial/marine regions. There are strong pattern correlations between snow and temperature trends, with weaker association between sea ice and temperature due to the additional influence of dynamical effects such wind-driven redistribution of sea ice. Climate model simulations from the Coupled Model Inter-comparison Project Phase 5(CMIP-5) multi-model ensemble, large initial condition ensembles of the Community Earth System Model (CESM) and Canadian Earth System Model (CanESM2) , and warming stabilization simulations from CESM were used to identify changes in snow and ice under further increases to 1.5°C and 2°C warming. The model projections indicate these levels of warming will be reached over the coming 2-4 decades. Warming to 1.5°C results in an increase in the number of melting days over snow and sea ice (and resultant increases in snow-free and ice-free duration), which are similar in magnitude to the change from pre-industrial conditions to present day. Continued warming to 2°C further intensifies the cryospheric response consistent with amplified Arctic warming relative to the global average trend.

  11. Estimation of Coastal Freshwater Discharge into Prince William Sound using a High-Resolution Hydrological Model

    NASA Astrophysics Data System (ADS)

    Beamer, J. P.; Hill, D. F.; Liston, G. E.; Arendt, A. A.; Hood, E. W.

    2013-12-01

    In Prince William Sound (PWS), Alaska, there is a pressing need for accurate estimates of the spatial and temporal variations in coastal freshwater discharge (FWD). FWD into PWS originates from streamflow due to rainfall, annual snowmelt, and changes in stored glacier mass and is important because it helps establish spatial and temporal patterns in ocean salinity and temperature, and is a time-varying boundary condition for oceanographic circulation models. Previous efforts to model FWD into PWS have been heavily empirical, with many physical processes absorbed into calibration coefficients that, in many cases, were calibrated to streams and rivers not hydrologically similar to those discharging into PWS. In this work we adapted and validated a suite of high-resolution (in space and time), physically-based, distributed weather, snowmelt, and runoff-routing models designed specifically for snow melt- and glacier melt-dominated watersheds like PWS in order to: 1) provide high-resolution, real-time simulations of snowpack and FWD, and 2) provide a record of historical variations of FWD. SnowModel, driven with gridded topography, land cover, and 32 years (1979-2011) of 3-hourly North American Regional Reanalysis (NARR) atmospheric forcing data, was used to simulate snowpack accumulation and melt across a PWS model domain. SnowModel outputs of daily snow water equivalent (SWE) depth and grid-cell runoff volumes were then coupled with HydroFlow, a runoff-routing model which routed snowmelt, glacier-melt, and rainfall to each watershed outlet (PWS coastline) in the simulation domain. The end product was a continuous 32-year simulation of daily FWD into PWS. In order to validate the models, SWE and snow depths from SnowModel were compared with observed SWE and snow depths from SnoTel and snow survey data, and discharge from HydroFlow was compared with observed streamflow measurements. As a second phase of this research effort, the coupled models will be set-up to run in real-time, where daily measurements from weather stations in the PWS will be used to drive simulations of snow cover and streamflow. In addition, we will deploy a strategic array of instrumentation aimed at validating the simulated weather estimates and the calculations of freshwater discharge. Upon successful implementation and validation of the modeling system, it will join established and ongoing computational and observational efforts that have a common goal of establishing a comprehensive understanding of the physical behavior of PWS.

  12. NOAA's National Snow Analyses

    NASA Astrophysics Data System (ADS)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products. The NOHRSC NSA products are used operationally by NOAA's National Weather Service field offices when issuing hydrologic forecasts and warnings including river and flood forecasts, water supply forecasts, and spring flood outlooks for the nation. Additionally, the NOHRSC NSA products are used by a wide variety of federal, state, local, municipal, private-sector, and general-public end-users with a requirement for real-time snowpack information. The paper discusses, in detail, the techniques and procedures used to create the NOHRSC NSA products and gives a number of examples of the real-time snow products generated and distributed over the NOHRSC web site (www.nohrsc.noaa.gov). Also discussed are major limitations of the approach, the most notable being deficiencies in observation of snow water equivalent. Snow observation networks generally lack the consistency and coverage needed to significantly improve confidence in snow model states through updating. Many regions of the world simply lack snow water equivalent observations altogether, a significant constraint on global application of the NSA approach.

  13. Modelization of the Current and Future Habitat Suitability of Rhododendron ferrugineum Using Potential Snow Accumulation

    PubMed Central

    Komac, Benjamin; Esteban, Pere; Trapero, Laura; Caritg, Roger

    2016-01-01

    Mountain areas are particularly sensitive to climate change. Species distribution models predict important extinctions in these areas whose magnitude will depend on a number of different factors. Here we examine the possible impact of climate change on the Rhododendron ferrugineum (alpenrose) niche in Andorra (Pyrenees). This species currently occupies 14.6 km2 of this country and relies on the protection afforded by snow cover in winter. We used high-resolution climatic data, potential snow accumulation and a combined forecasting method to obtain the realized niche model of this species. Subsequently, we used data from the high-resolution Scampei project climate change projection for the A2, A1B and B1 scenarios to model its future realized niche model. The modelization performed well when predicting the species’s distribution, which improved when we considered the potential snow accumulation, the most important variable influencing its distribution. We thus obtained a potential extent of about 70.7 km2 or 15.1% of the country. We observed an elevation lag distribution between the current and potential distribution of the species, probably due to its slow colonization rate and the small-scale survey of seedlings. Under the three climatic scenarios, the realized niche model of the species will be reduced by 37.9–70.1 km2 by the end of the century and it will become confined to what are today screes and rocky hillside habitats. The particular effects of climate change on seedling establishment, as well as on the species’ plasticity and sensitivity in the event of a reduction of the snow cover, could worsen these predictions. PMID:26824847

  14. Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) Global Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; Scharfen, Greg R.

    2000-01-01

    Following the 1999 launch of the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), the capability exists to produce global snow-cover maps on a daily basis at 500-m resolution. Eight-day composite snow-cover maps will also be available. MODIS snow-cover products are produced at Goddard Space Flight Center and archived and distributed by the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. The products are available in both orbital and gridded formats. An online search and order tool and user-services staff will be available at NSIDC to assist users with the snow products. The snow maps are available at a spatial resolution of 500 m, and 1/4 degree x 1/4 degree spatial resolution, and provide information on sub-pixel (fractional) snow cover. Pre-launch validation work has shown that the MODIS snow-mapping algorithms perform best under conditions of continuous snow cover in low vegetation areas, but can also map snow cover in dense forests. Post-launch validation activities will be performed using field and aircraft measurements from a February 2000 validation mission, as well as from existing satellite-derived snow-cover maps from NOAA and Landsat-7 Enhanced Thematic Mapper Plus (ETM+).

  15. [Multi-Scale Convergence of Cold-Land Process Representation in Land-Surface Models, Microwave Remote Sensing, and Field Observations

    NASA Technical Reports Server (NTRS)

    Shi, Jiancheng

    2005-01-01

    The cryosphere is a major component of the hydrosphere and interacts significantly with the global climate system, the geosphere, and the biosphere. Measurement of the amount of water stored in the snow pack and forecasting the rate of melt are thus essential for managing water supply and flood control systems. Snow hydrologists are confronted with the dual problems of estimating both the quantity of water held by seasonal snow packs and time of snow melt. Monitoring these snow parameters is essential for one of the objectives of the Earth Science Enterprise-understanding of the global hydrologic cycle. Measuring spatially distributed snow properties, such as snow water equivalence (SWE) and wetness, from space is a key component for improvement of our understanding of coupled atmosphere-surface processes. Through the GWEC project, we have significantly advanced our understandings and improved modeling capabilities of the microwave signatures in response to snow and underground properties.

  16. A spatially distributed energy balance snowmelt model for application in mountain basins

    USGS Publications Warehouse

    Marks, D.; Domingo, J.; Susong, D.; Link, T.; Garen, D.

    1999-01-01

    Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.

  17. A simplified rainfall-runoff stochastic simulation method for an application of the SCHADEX method to ungauged catchments.

    NASA Astrophysics Data System (ADS)

    Penot, David; Paquet, Emmanuel; Lang, Michel

    2014-05-01

    SCHADEX is a probabilistic method for extreme flood estimation, developed and applied since 2006 at Electricité de France (EDF) for dam spillway design [Paquet et al., 2013]. SCHADEX is based on a semi-continuous rainfall-runoff simulation process. The method has been built around two models: a Multi-Exponential Weather Pattern (MEWP) distribution for rainfall probability estimation [Garavaglia et al., 2010] and the MORDOR hydrological model. To use SCHADEX in ungauged context, rainfall distribution and hydrological model must be regionalized. The regionalization of the MEWP rainfall distribution can be managed with SPAZM, a daily rainfall interpolator [Gottardi et al., 2012] which provides reasonable estimates of point and areal rainfall up to hight quantiles. The main issue remains to regionalize MORDOR which is heavily parametrized. A much more simple model has been considered: the SCS model. It is a well known model for event simulation [USDA SCS, 1985; Beven, 2003] and it relies on only one parameter. Then, the idea is to use the SCS model instead of MORDOR within a simplified stochastic simulation scheme to produce a distribution of flood volume from an exhaustive crossing between rainy events and catchment saturation hazards. The presentation details this process and its capacity to generate a runoff distribution based on catchment areal rainfall distribution. The simulation method depends on a unique parameter Smax, the maximum initial loss of the catchment. Then an initial loss S (between zero and Smax) can be drawn to account for the variability of catchment state (between dry and saturated). The distribution of initial loss (or conversely, of catchment saturation, as modeled by MORDOR) seems closely linked to the catchment's regime, therefore easily to regionalize. The simulation takes into account a snow contribution for snow driven catchments, and an antecedent runoff. The presentation shows the results of this stochastic procedure applied on 80 French catchments and its capacity to represent the asymptotic behaviour of the runoff distribution. References: K. J. Beven. Rainfall-Runoff modelling The Primer, British Library, 2003. F. Garavaglia, J. Gailhard, E. Paquet, M. Lang, R. Garçon, and P. Bernardara. Introducing a rainfall compound distribution model based on weather patterns sub-sampling. Hydrology and Earth System Sciences, 14(6):951-964, 2010. F. Gottardi, C. Obled, J. Gailhard, and E. Paquet. Statistical reanalysis of precipitation fields based on ground network data and weather patterns : Application over french mountains. Journal of Hydrology, 432-433:154-167, 2012. ISSN 0022-1694. E. Paquet, F. Garavaglia, R Garçon, and J. Gailhard. The schadex method : a semi-continuous rainfall-runoff simulation for extreme flood estimation. Journal of Hydrology, 2013. USDA SCS, National Engineering Handbook, Supplement A, Section 4, Chapter 10. Whashington DC, 1985.

  18. Role of snow and cold environment in the fate and effects of nanoparticles and select organic pollutants from gasoline engine exhaust.

    PubMed

    Nazarenko, Yevgen; Kurien, Uday; Nepotchatykh, Oleg; Rangel-Alvarado, Rodrigo B; Ariya, Parisa A

    2016-02-01

    Exposure to vehicle exhaust can drive up to 70 % of excess lifetime cancer incidences due to air pollution in urban environments. Little is known about how exhaust-derived particles and organic pollutants, implicated in adverse health effects, are affected by freezing ambient temperatures and the presence of snow. Airborne particles and (semi)volatile organic constituents in dilute exhaust were studied in a novel low-temperature environmental chamber system containing natural urban snow under controlled cold environmental conditions. The presence of snow altered the aerosol size distributions of dilute exhaust in the 10 nm to 10 μm range and decreased the number density of the nanoparticulate (<100 nm) fraction of exhaust aerosols, yet increased the 100-150 nm fraction. Upon 1 hour exhaust exposure, the total organic carbon increased in the natural snow from 0.218 ± 0.014 to 0.539 ± 0.009 mg L(-1), and over 40 additional (semi)volatile organic compounds and a large number of exhaust-derived carbonaceous and likely organic particles were identified. The concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) increased from near the detection limit to 52.48, 379.5, 242.7, and 238.1 μg kg(-1) (± 10 %), respectively, indicating the absorption of exhaust-derived toxic organic compounds by snow. The alteration of exhaust aerosol size distributions at freezing temperatures and in the presence of snow, accompanied by changes of the organic pollutant content in snow, has potential to alter health effects of human exposure to vehicle exhaust.

  19. An Innovative Network to Improve Sea Ice Prediction in a Changing Arctic

    DTIC Science & Technology

    2014-09-30

    sea ice volume. The EXP ensemble is initialized with 1/5 of CNTL snow depths, thus resulting in a reduced snow cover and lower summer albedo ... Sea Ice - Albedo Feedback in Sea Ice Predictions is also about understanding sea ice predictability. REFERENCES Blanchard-Wrigglesworth, E., K...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. An Innovative Network to Improve Sea Ice Prediction

  20. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    NASA Astrophysics Data System (ADS)

    Riggs, George A.; Hall, Dorothy K.; Román, Miguel O.

    2017-10-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6; https://nsidc.org/data/modis/data_summaries) and VIIRS Collection 1 (C1; https://doi.org/10.5067/VIIRS/VNP10.001) represent the state-of-the-art global snow-cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow-cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map. The increased data content allows flexibility in using the datasets for specific regions and end-user applications. Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375 m native resolution compared to MODIS 500 m), the snow detection algorithms and data products are designed to be as similar as possible so that the 16+ year MODIS ESDR of global SCE can be extended into the future with the S-NPP VIIRS snow products and with products from future Joint Polar Satellite System (JPSS) platforms. These NASA datasets are archived and accessible through the NASA Distributed Active Archive Center at the National Snow and Ice Data Center in Boulder, Colorado.

  1. Utilizing Multiple Datasets for Snow Cover Mapping

    NASA Technical Reports Server (NTRS)

    Tait, Andrew B.; Hall, Dorothy K.; Foster, James L.; Armstrong, Richard L.

    1999-01-01

    Snow-cover maps generated from surface data are based on direct measurements, however they are prone to interpolation errors where climate stations are sparsely distributed. Snow cover is clearly discernable using satellite-attained optical data because of the high albedo of snow, yet the surface is often obscured by cloud cover. Passive microwave (PM) data is unaffected by clouds, however, the snow-cover signature is significantly affected by melting snow and the microwaves may be transparent to thin snow (less than 3cm). Both optical and microwave sensors have problems discerning snow beneath forest canopies. This paper describes a method that combines ground and satellite data to produce a Multiple-Dataset Snow-Cover Product (MDSCP). Comparisons with current snow-cover products show that the MDSCP draws together the advantages of each of its component products while minimizing their potential errors. Improved estimates of the snow-covered area are derived through the addition of two snow-cover classes ("thin or patchy" and "high elevation" snow cover) and from the analysis of the climate station data within each class. The compatibility of this method for use with Moderate Resolution Imaging Spectroradiometer (MODIS) data, which will be available in 2000, is also discussed. With the assimilation of these data, the resolution of the MDSCP would be improved both spatially and temporally and the analysis would become completely automated.

  2. Technical report: The design and evaluation of a basin-scale wireless sensor network for mountain hydrology

    NASA Astrophysics Data System (ADS)

    Zhang, Ziran; Glaser, Steven D.; Bales, Roger C.; Conklin, Martha; Rice, Robert; Marks, Danny G.

    2017-05-01

    A network of sensors for spatially representative water-balance measurements was developed and deployed across the 2000 km2 snow-dominated portion of the upper American River basin, primarily to measure changes in snowpack and soil-water storage, air temperature, and humidity. This wireless sensor network (WSN) consists of 14 sensor clusters, each with 10 measurement nodes that were strategically placed within a 1 km2 area, across different elevations, aspects, slopes, and canopy covers. Compared to existing operational sensor installations, the WSN reduces hydrologic uncertainty in at least three ways. First, redundant measurements improved estimation of lapse rates for air and dew-point temperature. Second, distributed measurements captured local variability and constrained uncertainty in air and dew-point temperature, snow accumulation, and derived hydrologic attributes important for modeling and prediction. Third, the distributed relative-humidity measurements offer a unique capability to monitor upper-basin patterns in dew-point temperature and characterize elevation gradient of water vapor-pressure deficit across steep, variable topography. Network statistics during the first year of operation demonstrated that the WSN was robust for cold, wet, and windy conditions in the basin. The electronic technology used in the WSN-reduced adverse effects, such as high current consumption, multipath signal fading, and clock drift, seen in previous remote WSNs.

  3. Influence of Slope-Scale Snowmelt on Catchment Response Simulated With the Alpine3D Model

    NASA Astrophysics Data System (ADS)

    Brauchli, Tristan; Trujillo, Ernesto; Huwald, Hendrik; Lehning, Michael

    2017-12-01

    Snow and hydrological modeling in alpine environments remains challenging because of the complexity of the processes affecting the mass and energy balance. This study examines the influence of snowmelt on the hydrological response of a high-alpine catchment of 43.2 km2 in the Swiss Alps during the water year 2014-2015. Based on recent advances in Alpine3D, we examine how snow distributions and liquid water transport within the snowpack influence runoff dynamics. By combining these results with multiscale observations (snow lysimeter, distributed snow depths, and streamflow), we demonstrate the added value of a more realistic snow distribution at the onset of melt season. At the site scale, snowpack runoff is well simulated when the mass balance errors are corrected (R2 = 0.95 versus R2 = 0.61). At the subbasin scale, a more heterogeneous snowpack leads to a more rapid runoff pulse originating in the shallower areas while an extended melting period (by a month) is caused by snowmelt from deeper areas. This is a marked improvement over results obtained using a traditional precipitation interpolation method. Hydrological response is also improved by the more realistic snowpack (NSE of 0.85 versus 0.74), even though calibration processes smoothen out the differences. The added value of a more complex liquid water transport scheme is obvious at the site scale but decreases at larger scales. Our results highlight not only the importance but also the difficulty of getting a realistic snowpack distribution even in a well-instrumented area and present a model validation from multiscale experimental data sets.

  4. Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach.

    PubMed

    Ala-Aho, Pertti; Tetzlaff, Doerthe; McNamara, James P; Laudon, Hjalmar; Kormos, Patrick; Soulsby, Chris

    2017-07-01

    Use of stable water isotopes has become increasingly popular in quantifying water flow paths and travel times in hydrological systems using tracer-aided modeling. In snow-influenced catchments, snowmelt produces a traceable isotopic signal, which differs from original snowfall isotopic composition because of isotopic fractionation in the snowpack. These fractionation processes in snow are relatively well understood, but representing their spatiotemporal variability in tracer-aided studies remains a challenge. We present a novel, parsimonious modeling method to account for the snowpack isotope fractionation and estimate isotope ratios in snowmelt water in a fully spatially distributed manner. Our model introduces two calibration parameters that alone account for the isotopic fractionation caused by sublimation from interception and ground snow storage, and snowmelt fractionation progressively enriching the snowmelt runoff. The isotope routines are linked to a generic process-based snow interception-accumulation-melt model facilitating simulation of spatially distributed snowmelt runoff. We use a synthetic modeling experiment to demonstrate the functionality of the model algorithms in different landscape locations and under different canopy characteristics. We also provide a proof-of-concept model test and successfully reproduce isotopic ratios in snowmelt runoff sampled with snowmelt lysimeters in two long-term experimental catchment with contrasting winter conditions. To our knowledge, the method is the first such tool to allow estimation of the spatially distributed nature of isotopic fractionation in snowpacks and the resulting isotope ratios in snowmelt runoff. The method can thus provide a useful tool for tracer-aided modeling to better understand the integrated nature of flow, mixing, and transport processes in snow-influenced catchments.

  5. A full year of snow on sea ice observations and simulations - Plans for MOSAiC 2019/20

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Geland, S.; Perovich, D. K.

    2017-12-01

    The snow cover on sea on sea ice dominates many exchange processes and properties of the ice covered polar oceans. It is a major interface between the atmosphere and the sea ice with the ocean underneath. Snow on sea ice is known for its extraordinarily large spatial and temporal variability from micro scales and minutes to basin wide scales and decades. At the same time, snow cover properties and even snow depth distributions are among the least known and most difficult to observe climate variables. Starting in October 2019 and ending in October 2020, the international MOSAiC drift experiment will allow to observe the evolution of a snow pack on Arctic sea ice over a full annual cycle. During the drift with one ice floe along the transpolar drift, we will study snow processes and interactions as one of the main topics of the MOSAiC research program. Thus we will, for the first time, be able to perform such studies on seasonal sea ice and relate it to previous expeditions and parallel observations at different locations. Here we will present the current status of our planning of the MOSAiC snow program. We will summarize the latest implementation ideas to combine the field observations with numerical simulations. The field program will include regular manual observations and sampling on the main floe of the central observatory, autonomous recordings in the distributed network, airborne observations in the surrounding of the central observatory, and retrievals of satellite remote sensing products. Along with the field program, numerical simulations of the MOSAiC snow cover will be performed on different scales, including large-scale interaction with the atmosphere and the sea ice. The snow studies will also bridge between the different disciplines, including physical, chemical, biological, and geochemical measurements, samples, and fluxes. The main challenge of all measurements will be to accomplish the description of the full annual cycle.

  6. ERTS-1 views the Great Lakes

    NASA Technical Reports Server (NTRS)

    Lyons, W. A.; Pease, S. R.

    1973-01-01

    The meteorological content of ERTS images, particularly mesoscale effects of the Great Lakes and air pollution dispersion is summarized. Summertime lake breeze frontal clouds and various winter lake-effect convection patterns and snow squalls are revealed in great detail. A clear-cut spiral vortex over southern Lake Michigan is related to a record early snow storm in the Chicago area. Marked cloud changes induced by orographic and frictional effects on Lake Michigan's lee shore snow squalls are seen. The most important finding, however, is a clear-cut example of alterations in cumulus convection by anthropogenic condensation and/or ice nuclei from northern Indiana steel mills during a snow squall situation. Jet aircraft condensation trails are also found with surprising frequency.

  7. Trace elements and common ions in southeastern Idaho snow: Regional air pollutant tracers for source area emissions

    USGS Publications Warehouse

    Abbott, M.; Einerson, J.; Schuster, P.; Susong, D.; Taylor, Howard E.; ,

    2004-01-01

    Snow sampling and analysis methods which produce accurate and ultra-low measurements of trace elements and common ion concentration in southeastern Idaho snow, were developed. Snow samples were collected over two winters to assess trace elements and common ion concentrations in air pollutant fallout across the southeastern Idaho. The area apportionment of apportionment of fallout concentrations measured at downwind location were investigated using pattern recognition and multivariate statistical technical techniques. Results show a high level of contribution from phosphates processing facilities located outside Pocatello in the southern portion of the Eastern Snake River Plain, and no obvious source area profiles other than at Pocatello.

  8. Snow cover variability in a forest ecotone of the Oregon Cascades via MODIS Terra products

    Treesearch

    Tihomir Sabinov Kostadinov; Todd R. Lookingbill

    2015-01-01

    Snowcover pattern and persistence have important implications for planetary energy balance, climate sensitivity to forcings, and vegetation structure, function, and composition. Variability in snow cover within mountainous regions of the Pacific Northwest, USA is attributable to a combination of anthropogenic climate change and climate oscillations. However,...

  9. Applications systems verification and transfer project. Volume 2: Operational applications of satellite snow-cover observations and data-collection systems in the Arizona test site

    NASA Technical Reports Server (NTRS)

    Schumann, H. H.

    1981-01-01

    Ground surveys and aerial observations were used to monitor rapidly changing moisture conditions in the Salt-Verde watershed. Repetitive satellite snow cover observations greatly reduce the necessity for routine aerial snow reconnaissance flights over the mountains. High resolution, multispectral imagery provided by LANDSAT satellite series enabled rapid and accurate mapping of snow-cover distributions for small- to medium-sized subwatersheds; however, the imagery provided only one observation every 9 days of about a third of the watershed. Low resolution imagery acquired by the ITOSa dn SMS/GOES meteorological satellite series provides the daily synoptic observation necessary to monitor the rapid changes in snow-covered area in the entire watershed. Short term runoff volumes can be predicted from daily sequential snow cover observations.

  10. Estimating snow leopard population abundance using photography and capture-recapture techniques

    USGS Publications Warehouse

    Jackson, R.M.; Roe, J.D.; Wangchuk, R.; Hunter, D.O.

    2006-01-01

    Conservation and management of snow leopards (Uncia uncia) has largely relied on anecdotal evidence and presence-absence data due to their cryptic nature and the difficult terrain they inhabit. These methods generally lack the scientific rigor necessary to accurately estimate population size and monitor trends. We evaluated the use of photography in capture-mark-recapture (CMR) techniques for estimating snow leopard population abundance and density within Hemis National Park, Ladakh, India. We placed infrared camera traps along actively used travel paths, scent-sprayed rocks, and scrape sites within 16- to 30-km2 sampling grids in successive winters during January and March 2003-2004. We used head-on, oblique, and side-view camera configurations to obtain snow leopard photographs at varying body orientations. We calculated snow leopard abundance estimates using the program CAPTURE. We obtained a total of 66 and 49 snow leopard captures resulting in 8.91 and 5.63 individuals per 100 trap-nights during 2003 and 2004, respectively. We identified snow leopards based on the distinct pelage patterns located primarily on the forelimbs, flanks, and dorsal surface of the tail. Capture probabilities ranged from 0.33 to 0.67. Density estimates ranged from 8.49 (SE = 0.22; individuals per 100 km2 in 2003 to 4.45 (SE = 0.16) in 2004. We believe the density disparity between years is attributable to different trap density and placement rather than to an actual decline in population size. Our results suggest that photographic capture-mark-recapture sampling may be a useful tool for monitoring demographic patterns. However, we believe a larger sample size would be necessary for generating a statistically robust estimate of population density and abundance based on CMR models.

  11. Decorrelation distance of snow in the Colorado River Basin

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Chiu, L. S.

    1989-01-01

    The problem of estimating areal averages from point measurement has been extensively studied by mining engineers and hydrologists. Its application to satellite measurements has recently been introduced. The semivariaogram has been used in many geostatistical applications to estimate spatial structures of observed properties, such as mineral distributions. An examination is made of snow variations in Colorado from daily snow data collected in 11 SNOTEL stations. The associated semivariogram is estimated. The objective is to estimate the spatial structure of the snow field so that the point data can be used for comparison with, and validation for, satellite measurements.

  12. Scales of snow depth variability in high elevation rangeland sagebrush

    NASA Astrophysics Data System (ADS)

    Tedesche, Molly E.; Fassnacht, Steven R.; Meiman, Paul J.

    2017-09-01

    In high elevation semi-arid rangelands, sagebrush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush ( Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth, sagebrush microtopography, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Variograms were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.

  13. Improving snow density estimation for mapping SWE with Lidar snow depth: assessment of uncertainty in modeled density and field sampling strategies in NASA SnowEx

    NASA Astrophysics Data System (ADS)

    Raleigh, M. S.; Smyth, E.; Small, E. E.

    2017-12-01

    The spatial distribution of snow water equivalent (SWE) is not sufficiently monitored with either remotely sensed or ground-based observations for water resources management. Recent applications of airborne Lidar have yielded basin-wide mapping of SWE when combined with a snow density model. However, in the absence of snow density observations, the uncertainty in these SWE maps is dominated by uncertainty in modeled snow density rather than in Lidar measurement of snow depth. Available observations tend to have a bias in physiographic regime (e.g., flat open areas) and are often insufficient in number to support testing of models across a range of conditions. Thus, there is a need for targeted sampling strategies and controlled model experiments to understand where and why different snow density models diverge. This will enable identification of robust model structures that represent dominant processes controlling snow densification, in support of basin-scale estimation of SWE with remotely-sensed snow depth datasets. The NASA SnowEx mission is a unique opportunity to evaluate sampling strategies of snow density and to quantify and reduce uncertainty in modeled snow density. In this presentation, we present initial field data analyses and modeling results over the Colorado SnowEx domain in the 2016-2017 winter campaign. We detail a framework for spatially mapping the uncertainty in snowpack density, as represented across multiple models. Leveraging the modular SUMMA model, we construct a series of physically-based models to assess systematically the importance of specific process representations to snow density estimates. We will show how models and snow pit observations characterize snow density variations with forest cover in the SnowEx domains. Finally, we will use the spatial maps of density uncertainty to evaluate the selected locations of snow pits, thereby assessing the adequacy of the sampling strategy for targeting uncertainty in modeled snow density.

  14. A long-term assessment of the variability in winter use of dense conifer cover by female white-tailed deer.

    PubMed

    Delgiudice, Glenn D; Fieberg, John R; Sampson, Barry A

    2013-01-01

    Long-term studies allow capture of a wide breadth of environmental variability and a broader context within which to maximize our understanding of relationships to specific aspects of wildlife behavior. The goal of our study was to improve our understanding of the biological value of dense conifer cover to deer on winter range relative to snow depth and ambient temperature. We examined variation among deer in their use of dense conifer cover during a 12-year study period as potentially influenced by winter severity and cover availability. Female deer were fitted with a mixture of very high frequency (VHF, n = 267) and Global Positioning System (GPS, n = 24) collars for monitoring use of specific cover types at the population and individual levels, respectively. We developed habitat composites for four study sites. We fit multinomial response models to VHF (daytime) data to describe population-level use patterns as a function of snow depth, ambient temperature, and cover availability. To develop alternative hypotheses regarding expected spatio-temporal patterns in the use of dense conifer cover, we considered two sets of competing sub-hypotheses. The first set addressed whether or not dense conifer cover was limiting on the four study sites. The second set considered four alternative sub-hypotheses regarding the potential influence of snow depth and ambient temperature on space use patterns. Deer use of dense conifer cover increased the most with increasing snow depth and most abruptly on the two sites where it was most available, suggestive of an energy conservation strategy. Deer use of dense cover decreased the most with decreasing temperatures on the sites where it was most available. At all four sites deer made greater daytime use (55 to >80% probability of use) of open vegetation types at the lowest daily minimum temperatures indicating the importance of thermal benefits afforded from increased exposure to solar radiation. Date-time plots of GPS data (24 hr) allowed us to explore individual diurnal and seasonal patterns of habitat use relative to changes in snow depth. There was significant among-animal variability in their propensity to be found in three density classes of conifer cover and other open types, but little difference between diurnal and nocturnal patterns of habitat use. Consistent with our findings reported elsewhere that snow depth has a greater impact on deer survival than ambient temperature, herein our population-level results highlight the importance of dense conifer cover as snow shelter rather than thermal cover. Collectively, our findings suggest that maximizing availability of dense conifer cover in an energetically beneficial arrangement with quality feeding sites should be a prominent component of habitat management for deer.

  15. A Long-Term Assessment of the Variability in Winter Use of Dense Conifer Cover by Female White-Tailed Deer

    PubMed Central

    DelGiudice, Glenn D.; Fieberg, John R.; Sampson, Barry A.

    2013-01-01

    Backgound Long-term studies allow capture of a wide breadth of environmental variability and a broader context within which to maximize our understanding of relationships to specific aspects of wildlife behavior. The goal of our study was to improve our understanding of the biological value of dense conifer cover to deer on winter range relative to snow depth and ambient temperature. Methodology/Principal Findings We examined variation among deer in their use of dense conifer cover during a 12-year study period as potentially influenced by winter severity and cover availability. Female deer were fitted with a mixture of very high frequency (VHF, n = 267) and Global Positioning System (GPS, n = 24) collars for monitoring use of specific cover types at the population and individual levels, respectively. We developed habitat composites for four study sites. We fit multinomial response models to VHF (daytime) data to describe population-level use patterns as a function of snow depth, ambient temperature, and cover availability. To develop alternative hypotheses regarding expected spatio-temporal patterns in the use of dense conifer cover, we considered two sets of competing sub-hypotheses. The first set addressed whether or not dense conifer cover was limiting on the four study sites. The second set considered four alternative sub-hypotheses regarding the potential influence of snow depth and ambient temperature on space use patterns. Deer use of dense conifer cover increased the most with increasing snow depth and most abruptly on the two sites where it was most available, suggestive of an energy conservation strategy. Deer use of dense cover decreased the most with decreasing temperatures on the sites where it was most available. At all four sites deer made greater daytime use (55 to >80% probability of use) of open vegetation types at the lowest daily minimum temperatures indicating the importance of thermal benefits afforded from increased exposure to solar radiation. Date-time plots of GPS data (24 hr) allowed us to explore individual diurnal and seasonal patterns of habitat use relative to changes in snow depth. There was significant among-animal variability in their propensity to be found in three density classes of conifer cover and other open types, but little difference between diurnal and nocturnal patterns of habitat use. Conclusions/Significance Consistent with our findings reported elsewhere that snow depth has a greater impact on deer survival than ambient temperature, herein our population-level results highlight the importance of dense conifer cover as snow shelter rather than thermal cover. Collectively, our findings suggest that maximizing availability of dense conifer cover in an energetically beneficial arrangement with quality feeding sites should be a prominent component of habitat management for deer. PMID:23785421

  16. Experimental investigation of drifting snow in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Crivelli, Philip; Paterna, Enrico; Horender, Stefan; Lehning, Michael

    2015-11-01

    Drifting snow has a significant impact on snow distribution in mountains, prairies as well as on glaciers and polar regions. In all these environments, the local mass balance is highly influenced by drifting snow. Despite most of the model approaches still rely on the assumption of steady-state and equilibrium saltation, recent advances have proven the mass-transport of drifting snow events to be highly intermittent. A clear understanding of such high intermittency has not yet been achieved. Therefore in our contribution we investigate mass- and momentum fluxes during drifting snow events, in order to better understand that the link between snow cover erosion and deposition. Experiments were conducted in a cold wind tunnel, employing sensors for the momentum flux measurements, the mass flux measurement and for the snow depth estimation over a certain area upstream of the other devices. Preliminary results show that the mass flux is highly intermittent at scales ranging from eddy turnover time to much larger scales. The former scales are those that contribute the most to the overall intermittency and we observe a link between the turbulent flow structures and the mass flux of drifting snow at those scales. The role of varying snow properties in inducing drifting snow intermittency goes beyond such link and is expected to occur at much larger scales, caused by the physical snow properties such as density and cohesiveness.

  17. First Gridded Spatial Field Reconstructions of Snow from Tree Rings

    NASA Astrophysics Data System (ADS)

    Coulthard, B. L.; Anchukaitis, K. J.; Pederson, G. T.; Alder, J. R.; Hostetler, S. W.; Gray, S. T.

    2017-12-01

    Western North America's mountain snowpacks provide critical water resources for human populations and ecosystems. Warmer temperatures and changing precipitation patterns will increasingly alter the quantity, extent, and persistence of snow in coming decades. A comprehensive understanding of the causes and range of long-term variability in this system is required for forecasting future anomalies, but snowpack observations are limited and sparse. While individual tree ring-based annual snowpack reconstructions have been developed for specific regions and mountain ranges, we present here the first collection of spatially-explicit gridded field reconstructions of seasonal snowpack within the American Rocky Mountains. Capitalizing on a new western North American snow-sensitive network of over 700 tree-ring chronologies, as well as recent advances in PRISM-based snow modeling, our gridded reconstructions offer a full space-time characterization of snow and associated water resource fluctuations over several centuries. The quality of reconstructions is evaluated against existing observations, proxy-records, and an independently-developed first-order monthly snow model.

  18. Spatially explicit modeling of conflict zones between wildlife and snow sports: prioritizing areas for winter refuges.

    PubMed

    Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël

    2011-04-01

    Outdoor winter recreation exerts an increasing pressure upon mountain ecosystems, with unpredictable, free-ranging activities (e.g., ski mountaineering, snowboarding, and snowshoeing) representing a major source of stress for wildlife. Mitigating anthropogenic disturbance requires the spatially explicit prediction of the interference between the activities of humans and wildlife. We applied spatial modeling to localize conflict zones between wintering Black Grouse (Tetrao tetrix), a declining species of Alpine timberline ecosystems, and two free-ranging winter sports (off-piste skiing [including snow-boarding] and snowshoeing). Track data (snow-sports and birds' traces) obtained from aerial photographs taken over a 585-km transect running along the timberline, implemented within a maximum entropy model, were used to predict the occurrence of snow sports and Black Grouse as a function of landscape characteristics. By modeling Black Grouse presence in the theoretical absence of free-ranging activities and ski infrastructure, we first estimated the amount of habitat reduction caused by these two factors. The models were then extrapolated to the altitudinal range occupied by Black Grouse, while the spatial extent and intensity of potential conflict were assessed by calculating the probability of human-wildlife co-occurrence. The two snow-sports showed different distribution patterns. Skiers' occurrence was mainly determined by ski-lift presence and a smooth terrain, while snowshoers' occurrence was linked to hiking or skiing routes and moderate slopes. Wintering Black Grouse avoided ski lifts and areas frequented by free-ranging snow sports. According to the models, Black Grouse have faced a substantial reduction of suitable wintering habitat along the timberline transect: 12% due to ski infrastructure and another 16% when adding free-ranging activities. Extrapolating the models over the whole study area results in an overall habitat loss due to ski infrastructure of 10%, while there was a > 10% probability of human-wildlife encounters on 67% of the remaining area of suitable wintering habitat. Only 23% of the wintering habitat was thus free of anthropogenic disturbance. By identifying zones of potential conflict, while rating its relative intensity, our model provides a powerful tool to delineate and prioritize areas where wildlife winter refuges and visitor steering measures should be implemented.

  19. Influence of Western Tibetan Plateau Summer Snow Cover on East Asian Summer Rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Zhibiao; Wu, Renguang; Chen, Shangfeng; Huang, Gang; Liu, Ge; Zhu, Lihua

    2018-03-01

    The influence of boreal winter-spring eastern Tibetan Plateau snow anomalies on the East Asian summer rainfall variability has been the focus of previous studies. The present study documents the impacts of boreal summer western and southern Tibetan Plateau snow cover anomalies on summer rainfall over East Asia. Analysis shows that more snow cover in the western and southern Tibetan Plateau induces anomalous cooling in the overlying atmospheric column. The induced atmospheric circulation changes are different corresponding to more snow cover in the western and southern Tibetan Plateau. The atmospheric circulation changes accompanying the western Plateau snow cover anomalies are more obvious over the midlatitude Asia, whereas those corresponding to the southern Plateau snow cover anomalies are more prominent over the tropics. As such, the western and southern Tibetan Plateau snow cover anomalies influence the East Asian summer circulation and precipitation through different pathways. Nevertheless, the East Asian summer circulation and precipitation anomalies induced by the western and southern Plateau snow cover anomalies tend to display similar distribution so that they are more pronounced when the western and southern Plateau snow cover anomalies work in coherence. Analysis indicates that the summer snow cover anomalies over the Tibetan Plateau may be related to late spring snow anomalies due to the persistence. The late spring snow anomalies are related to an obvious wave train originating from the western North Atlantic that may be partly associated with sea surface temperature anomalies in the North Atlantic Ocean.

  20. Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework

    NASA Astrophysics Data System (ADS)

    Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.

    2015-07-01

    Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.

  1. Ensemble Mean Density and its Connection to Other Microphysical Properties of Falling Snow as Observed in Southern Finland

    NASA Technical Reports Server (NTRS)

    Tiira, Jussi; Moisseev, Dmitri N.; Lerber, Annakaisa von; Ori, Davide; Tokay, Ali; Bliven, Larry F.; Petersen, Walter

    2016-01-01

    In this study measurements collected during winters 2013/2014 and 2014/2015 at the University of Helsinki measurement station in Hyytiala are used to investigate connections between ensemble mean snow density, particle fall velocity and parameters of the particle size distribution (PSD). The density of snow is derived from measurements of particle fall velocity and PSD, provided by a particle video imager, and weighing gauge measurements of precipitation rate. Validity of the retrieved density values is checked against snow depth measurements. A relation retrieved for the ensemble mean snow density and median volume diameter is in general agreement with previous studies, but it is observed to vary significantly from one winter to the other. From these observations, characteristic mass- dimensional relations of snow are retrieved. For snow rates more than 0.2mm/h, a correlation between the intercept parameter of normalized gamma PSD and median volume diameter was observed.

  2. Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology

    PubMed Central

    Su, Xin; Ye, Qing; Fu, Jianfeng

    2018-01-01

    A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting. PMID:29551957

  3. Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology.

    PubMed

    Chen, Fengchen; Su, Xin; Ye, Qing; Fu, Jianfeng

    2018-01-01

    A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting.

  4. Cloud removing method for daily snow mapping over Central Asia and Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoqi; Qiu, Yubao; Guo, Huadong; Chen, Lijuan

    2017-02-01

    Central Asia and Xinjiang, China are conjunct areas, located in the hinterland of the Eurasian continent, where the snowfall is an important water resource supplement form. The induced seasonal snow cover is vita factors to the regional energy and water balance, remote sensing plays a key role in the snow mapping filed, while the daily remote sensing products are normally contaminated by the occurrence of cloud, that obviously obstacles the utility of snow cover parameters. In this paper, based on the daily snow product from Moderate Resolution Imaging Spectroradiometer (MODIS A1), a cloud removing method was developed by considering the regional snow distribution characteristics with latitude and altitude dependence respectively. In the end, the daily cloud free products was compared with the same period of eight days MODIS standard product, revealing that the cloud free snow products are reasonable, while could provide higher temporal resolution, and more details over Center Asia and Xinjiang Province.

  5. Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiira, Jussi; Moisseev, Dmitri N.; von Lerber, Annakaisa

    In this study measurements collected during winters 2013/2014 and 2014/2015 at the University of Helsinki measurement station in Hyytiala are used to investigate connections between ensemble mean snow density, particle fall velocity and parameters of the particle size distribution (PSD). The density of snow is derived from measurements of particle fall velocity and PSD, provided by a particle video imager, and weighing gauge measurements of precipitation rate. Validity of the retrieved density values is checked against snow depth measurements. Here, a relation retrieved for the ensemble mean snow density and median volume diameter is in general agreement with previous studies,more » but it is observed to vary significantly from one winter to the other. From these observations, characteristic mass–dimensional relations of snow are retrieved. For snow rates more than 0.2 mm h -1, a correlation between the intercept parameter of normalized gamma PSD and median volume diameter was observed.« less

  6. Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland

    DOE PAGES

    Tiira, Jussi; Moisseev, Dmitri N.; von Lerber, Annakaisa; ...

    2016-09-28

    In this study measurements collected during winters 2013/2014 and 2014/2015 at the University of Helsinki measurement station in Hyytiala are used to investigate connections between ensemble mean snow density, particle fall velocity and parameters of the particle size distribution (PSD). The density of snow is derived from measurements of particle fall velocity and PSD, provided by a particle video imager, and weighing gauge measurements of precipitation rate. Validity of the retrieved density values is checked against snow depth measurements. Here, a relation retrieved for the ensemble mean snow density and median volume diameter is in general agreement with previous studies,more » but it is observed to vary significantly from one winter to the other. From these observations, characteristic mass–dimensional relations of snow are retrieved. For snow rates more than 0.2 mm h -1, a correlation between the intercept parameter of normalized gamma PSD and median volume diameter was observed.« less

  7. Subpixel Snow-covered Area Including Differentiated Grain Size from AVIRIS Data Over the Sierra Nevada Mountain Range

    NASA Astrophysics Data System (ADS)

    Hill, R.; Calvin, W. M.; Harpold, A. A.

    2016-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Previous retrieval of subpixel snow-covered area in alpine regions used multiple snow endmembers due to the sensitivity of snow spectral reflectance to grain size. We will present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction and approximate grain size or melt state. The root mean squared error will provide a spectrum-wide assessment of the mixture model's goodness-of-fit. Analysis will compare snow-covered area and snow-cover depletion in the 2016 year, and annual variation from the 2015 year. Field data were also acquired on three days concurrent with the 2016 flights in the Sagehen Experimental Forest and will support ground validation of the airborne data set.

  8. Modeling and measuring snow for assessing climate change impacts in Glacier National Park, Montana

    USGS Publications Warehouse

    Fagre, Daniel B.; Selkowitz, David J.; Reardon, Blase; Holzer, Karen; Mckeon, Lisa L.

    2002-01-01

    A 12-year program of global change research at Glacier National Park by the U.S. Geological Survey and numerous collaborators has made progress in quantifying the role of snow as a driver of mountain ecosystem processes. Spatially extensive snow surveys during the annual accumulation/ablation cycle covered two mountain watersheds and approximately 1,000 km2 . Over 7,000 snow depth and snow water equivalent (SWE) measurements have been made through spring 2002. These augment two SNOTEL sites, 9 NRCS snow courses, and approximately 150 snow pit analyses. Snow data were used to establish spatially-explicit interannual variability in snowpack SWE. East of the Continental Divide, snowpack SWE was lower but also less variable than west of the Divide. Analysis of snowpacks suggest downward trends in SWE, a reduction in snow cover duration, and earlier melt-out dates during the past 52 years. Concurrently, high elevation forests and treelines have responded with increased growth. However, the 80 year record of snow from 3 NRCS snow courses reflects a strong influence from the Pacific Decadal Oscillation, resulting in 20-30 year phases of greater or lesser mean SWE. Coupled with the fine-resolution spatial snow data from the two watersheds, the ecological consequences of changes in snowpack can be empirically assessed at a habitat patch scale. This will be required because snow distribution models have had varied success in simulating snowpack accumulation/ablation dynamics in these mountain watersheds, ranging from R2=0.38 for individual south-facing forested snow survey routes to R2=0.95 when aggregated to the watershed scale. Key ecological responses to snowpack changes occur below the watershed scale, such as snow-mediated expansion of forest into subalpine meadows, making continued spatially-explicit snow surveys a necessity. 

  9. What are the controls on mountain snowmelt and runoff around the globe?

    NASA Astrophysics Data System (ADS)

    Painter, T. H.

    2017-12-01

    The Anthropocene has seen a marked expulsion of mass from mountain glaciers to oceans and earlier snowmelt that evacuates the mountains earlier in the year. The loss of ice mass and snow cover is often attributed to increasing temperatures. However, process studies across the last two decades indicate that acceleration of melt by dust/black carbon (BC) may dominate in some regions. Process studies with detailed energy balance measurements around the globe are relatively sparse but strongly suggestive of the impact of dust and BC. Mesoscale and global scale modeling have recently taken on radiative transfer modeling of snow albedo that accounts for changes in grain size and dust/BC concentrations and optical properties. However, our understanding of metamorphism and changes in grain growth still has considerable range of uncertainty that, when passed through radiative transfer modeling, far exceeds in magnitude the at-surface greenhouse gas forcing of 3 W m-2. Likewise, it is a rare study that provides the quantitative knowledge of seasonal variation of dust and BC concentrations, let alone the range of optical properties. Therefore, the energy balance of snow in mountains around the globe is poorly understood and our capacity to model past, present, and future hydrologic responses is relatively weak. Atop the energy balance uncertainties, we also still do not know the spatio-temporal distributions of snow water equivalent in mountain basins around the globe. With the advent of the NASA Airborne Snow Observatory in 2013, we entered a new era of understanding mountain basin SWE. ASO uses scanning lidar, imaging spectrometer, and physical modeling to map distributions across basins in California, Colorado, and the Swiss Alps. The program is expanding in these and other regions for water management. However, in the science realm, in addition to providing the capacity to understand distributed SWE and its change, ASO is also pathfinding through the NASA Snow Experiment (SnowEx) for a spaceborne snow depth and SWE mission that can provide the global perspective we need. The next few decades hold enormous potential to quantify mountain snow pack and to constrain physically-based climate models to allow us to answer the title question here and where the cryosphere-water cycles are heading.

  10. Validation of snow depth reconstruction from lapse-rate webcam images against terrestrial laser scanner measurements in centrel Pyrenees

    NASA Astrophysics Data System (ADS)

    Revuelto, Jesús; Jonas, Tobias; López-Moreno, Juan Ignacio

    2015-04-01

    Snow distribution in mountain areas plays a key role in many processes as runoff dynamics, ecological cycles or erosion rates. Nevertheless, the acquisition of high resolution snow depth data (SD) in space-time is a complex task that needs the application of remote sensing techniques as Terrestrial Laser Scanning (TLS). Such kind of techniques requires intense field work for obtaining high quality snowpack evolution during a specific time period. Combining TLS data with other remote sensing techniques (satellite images, photogrammetry…) and in-situ measurements could represent an improvement of the available information of a variable with rapid topographic changes. The aim of this study is to reconstruct daily SD distribution from lapse-rate images from a webcam and data from two to three TLS acquisitions during the snow melting periods of 2012, 2013 and 2014. This information is obtained at Izas Experimental catchment in Central Spanish Pyrenees; a catchment of 33ha, with an elevation ranging from 2050 to 2350m a.s.l. The lapse-rate images provide the Snow Covered Area (SCA) evolution at the study site, while TLS allows obtaining high resolution information of SD distribution. With ground control points, lapse-rate images are georrectified and their information is rasterized into a 1-meter resolution Digital Elevation Model. Subsequently, for each snow season, the Melt-Out Date (MOD) of each pixel is obtained. The reconstruction increases the estimated SD lose for each time step (day) in a distributed manner; starting the reconstruction for each grid cell at the MOD (note the reverse time evolution). To do so, the reconstruction has been previously adjusted in time and space as follows. Firstly, the degree day factor (SD lose/positive average temperatures) is calculated from the information measured at an automatic weather station (AWS) located in the catchment. Afterwards, comparing the SD lose at the AWS during a specific time period (i.e. between two TLS acquisitions) to that melted on each grid cell, a coefficient is obtained for spatially distributing the SD loses. For 2012 and 2013, three TLS acquisition campaigns were available during each melting period. This way the first acquisitions of both melting periods were reserved for validation while the other two were considered for adjusting the reconstruction. Validation has revealed a very good performance of the reconstructed SD distribution when compared with the TLS data (r2 values between 0.74 and 0.8 respectively). When no calibration with TLS data was applied for distributing melt rates; this is, using the distribution coefficients for reconstructing SD of precedent years, rather similar accuracy was reached. With the spatial calibration of 2012 and 2013, the reconstructions for the two TLS acquisition dates in 2014, obtained r2 values that ranged between 0.73 and 0.76. This shows the usefulness of lapse-rate images to estimate not only SCA but also the spatial distribution of the SD when combined with TLS acquisition and punctual information on temperature and SD. In such a way it is shown the effectiveness of combining two remote sensing techniques for obtaining distributed information on snow depth.

  11. Estimation of Snow Parameters Based on Passive Microwave Remote Sensing and Meteorological Information

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Hwang, Jenq-Neng

    1996-01-01

    A method to incorporate passive microwave remote sensing measurements within a spatially distributed snow hydrology model to provide estimates of the spatial distribution of Snow Water Equivalent (SWE) as a function of time is implemented. The passive microwave remote sensing measurements are at 25 km resolution. However, in mountain regions the spatial variability of SWE over a 25 km footprint is large due to topographic influences. On the other hand, the snow hydrology model has built-in topographic information and the capability to estimate SWE at a 1 km resolution. In our work, the snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave remote sensing measurements. The method is applied to the Upper Rio Grande River Basin in the mountains of Colorado. The change in prediction of SWE from hydrology modeling with and without updating is compared with measurements from two SNOTEL sites in and near the basin. The results indicate that the method incorporating the remote sensing measurements into the hydrology model is able to more closely estimate the temporal evolution of the measured values of SWE as a function of time.

  12. Wind and ecosystem response at the GLEES

    Treesearch

    Robert C. Musselman; Gene L. Wooldridge; William J. Massman; Richard A. Sommerfeld

    1995-01-01

    Research was conducted to determine wind patterns and snow deposition at a high elevation alpine/subalpine ecotone site using deformation response of trees to prevailing winds. The research has provided detailed maps of wind speed, wind direction, and snow depth as determined from tree deformation. The effects of prevailing wind on tree blowdown at the site have also...

  13. How Does Snow Persistence Relate to Annual Streamflow in Mountain Watersheds of the Western U.S. With Wet Maritime and Dry Continental Climates?

    NASA Astrophysics Data System (ADS)

    Hammond, John C.; Saavedra, Freddy A.; Kampf, Stephanie K.

    2018-04-01

    With climate warming, many regions are experiencing changes in snow accumulation and persistence. These changes are known to affect streamflow volume, but the magnitude of the effect varies between regions. This research evaluates whether variables derived from remotely sensed snow cover can be used to estimate annual streamflow at the small watershed scale across the western U.S., a region with a wide range of climate types. We compared snow cover variables derived from MODIS, snow persistence (SP), and snow season (SS), to more commonly utilized metrics, snow fraction (fraction of precipitation falling as snow, SF), and peak snow water equivalent (SWE). Each variable represents different information about snow, and this comparison assesses similarities and differences between the snow metrics. Next, we evaluated how two snow variables, SP and SWE, related to annual streamflow (Q) for 119 USGS reference watersheds and examined whether these relationships varied for wet/warm (precipitation surplus) and dry/cold (precipitation deficit) watersheds. Results showed high correlations between all snow variables, but the slopes of these relationships differed between climates, with wet/warm watersheds displaying lower SF and higher SWE for the same SP. In dry/cold watersheds, both SP and SNODAS SWE correlated with Q spatially across all watersheds and over time within individual watersheds. We conclude that SP can be used to map spatial patterns of annual streamflow generation in dry/cold parts of the region. Applying this approach to the Upper Colorado River Basin demonstrates that 50% of streamflow comes from areas >3,000 masl. If the relationship between SP and Q is similar in other dry/cold regions, this approach could be used to estimate annual streamflow in ungauged basins.

  14. Climate Sensitivity to Realistic Solar Heating of Snow and Ice

    NASA Astrophysics Data System (ADS)

    Flanner, M.; Zender, C. S.

    2004-12-01

    Snow and ice-covered surfaces are highly reflective and play an integral role in the planetary radiation budget. However, GCMs typically prescribe snow reflection and absorption based on minimal knowledge of snow physical characteristics. We performed climate sensitivity simulations with the NCAR CCSM including a new physically-based multi-layer snow radiative transfer model. The model predicts the effects of vertically resolved heating, absorbing aerosol, and snowpack transparency on snowpack evolution and climate. These processes significantly reduce the model's near-infrared albedo bias over deep snowpacks. While the current CCSM implementation prescribes all solar radiative absorption to occur in the top 2 cm of snow, we estimate that about 65% occurs beneath this level. Accounting for the vertical distribution of snowpack heating and more realistic reflectance significantly alters snowpack depth, surface albedo, and surface air temperature over Northern Hemisphere regions. Implications for the strength of the ice-albedo feedback will be discussed.

  15. The Fate of Aspen in a World with Diminishing Snowpacks

    NASA Astrophysics Data System (ADS)

    Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Kemp, K. B.

    2010-12-01

    Aspen (Populus tremuloides) productivity is tightly coupled with soil moisture. In the mountainous regions of the western USA, annual replenishment of soil moisture commonly occurs during snowmelt. Therefore, snow pack depth and duration can play an important role in sustaining aspen productivity. The presence of almost 50 years of detailed climate data across an elevational transect in the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho offers a novel opportunity to better understand the role of shifting precipitation patterns on aspen productivity. Over the past 50 years, the proportion of the precipitation falling in the form of snow decreased by almost a factor of 2 at mid to low elevations in the RCEW, coupled with a roughly four week advance of snow ablation, and decline of large snow drifts that release moisture into the early summer. Results from growth ring increment, stable isotope analysis, sapflux and a process model (Biome BGC), will be used to determine the impact of shifting precipitation patterns on tree productivity along this transect over the past 50 years. Aspen trees located on moist microsites continue to transpire water and maintain high stomatal conductance 21 days later in the growing season relative to individuals on drier microsites. Predictions of net primary productivity (NPP) in aspen are very sensitive to precipitation patterns. NPP becomes negative as early as day 183 (90 days post budbreak) for years with little winter and spring precipitation whereas, in years with ample winter and spring precipitation, NPP remains positive until day 260 when leaf fall occurs. These results give unique insight into the conditions that deciduous tree species will encounter in a warming climate where snow water equivalent continues to diminish and soil moisture declines soon after budbreak occurs.

  16. Interannual variability of March snow mass over Northern Eurasia and its relation to the concurrent and preceding surface air temperature, precipitation and atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Ye, Kunhui

    2018-06-01

    The interannual variability of March snow water equivalent (SWE) in Northern Eurasia and its influencing factors are studied. The surface air temperature (SAT) and precipitation are the dominant factors for the snow accumulation in northern Europe and the remaining region, respectively. The strongest contribution of SAT to snow accumulation is mainly found in those months with moderate mean SAT. The strongest contribution of precipitation is not collocated with the climatological maxima in precipitation. The leading mode of March SWE variability is obtained and characterized by a spatial dipole. Anomalies in atmospheric water vapor divergence, storm activity and the associated atmospheric circulation can explain many of the associated precipitation and SAT features. Anomalies in autumn Arctic sea ice concentration (SIC) over the Barents Sea and Kara Sea (B/K Sea) and a dipole pattern of November snow cover (SC) in Eurasia are also observed. The atmospheric circulation anomalies that resemble a negative phase of North Atlantic Oscillation (NAO)/Arctic Oscillation (AO) are strongly projected onto the wintertime atmospheric circulation. Both observations and model experiment support that the autumn B/K Sea SIC has some impacts on the autumn and AO/NAO-like wintertime atmospheric circulation patterns. The dipole pattern of November Eurasian SC seems to be strongly forced by the autumn B/K Sea SIC and its feedback to the atmospheric circulation is important. Therefore, the impacts of autumn B/K Sea SIC on the autumn/wintertime atmospheric circulation and thus the March SWE variability may be modulated by both constructive and destructive interference of autumn Eurasian SC.

  17. Ecosystem water availability in juniper versus sagebrush snow-dominated rangelands

    USDA-ARS?s Scientific Manuscript database

    Western Juniper (J. occidentalis Hook.) now dominates over 3.6 million ha of rangeland in the Intermountain Western US. Critical ecological relationships among snow distribution, water budgets, plant community transitions, and habitat requirements for wildlife, such as sage grouse, remain poorly und...

  18. Microbes and Microstructure: Dust's Role in the Snowpack Evolution

    NASA Astrophysics Data System (ADS)

    Lieblappen, R.; Courville, Z.; Fegyveresi, J. M.; Barbato, R.; Thurston, A.

    2017-12-01

    Dust is a primary vehicle for transporting microbial communities to polar and alpine snowpacks both through wind distribution (dry deposition) and snowfall events (wet deposition). The resulting microbial community diversity in the snowpack may then resemble the source material properties rather than its new habitat. Dust also has a strong influence on the microstructural properties of snow, resulting in changes to radiative and mechanical properties. As local reductions in snowpack albedo lead to enhanced melting and a heterogeneous snow surface, the microbial communities are also impacted. Here we study the impact of the changing microstructure in the snowpack, its influence on microbial function, and the fate of dust particles within the snow matrix. We seek to quantify the changes in respiration and water availability with the onset of melt. Polar samples were collected from the McMurdo Ice Shelf, Antarctica in February, 2017, while alpine samples were collected from Silverton, CO from October to May, 2017 as part of the Colorado Dust on Snow (CDOS) network. At each site, coincident meteorological data provides temperature, wind, and radiative measurements. Samples were collected immediately following dust deposition events and after subsequent snowpack evolution. We used x-ray micro-computed tomography to quantify the microstructural evolution of the snow, while also imaging the microstructural distribution of the dust within the snow. The dust was then collected and analyzed for chemical and microbial activity.

  19. European In-Situ Snow Measurements: Practices and Purposes.

    PubMed

    Pirazzini, Roberta; Leppänen, Leena; Picard, Ghislain; Lopez-Moreno, Juan Ignacio; Marty, Christoph; Macelloni, Giovanni; Kontu, Anna; von Lerber, Annakaisa; Tanis, Cemal Melih; Schneebeli, Martin; de Rosnay, Patricia; Arslan, Ali Nadir

    2018-06-22

    In-situ snow measurements conducted by European institutions for operational, research, and energy business applications were surveyed in the framework of the European Cooperation in Science and Technology (COST) Action ES1404, called "A European network for a harmonised monitoring of snow for the benefit of climate change scenarios, hydrology, and numerical weather prediction". Here we present the results of this survey, which was answered by 125 participants from 99 operational and research institutions, belonging to 38 European countries. The typologies of environments where the snow measurements are performed range from mountain to low elevated plains, including forests, bogs, tundra, urban areas, glaciers, lake ice, and sea ice. Of the respondents, 93% measure snow macrophysical parameters, such as snow presence, snow depth (HS), snow water equivalent (SWE), and snow density. These describe the bulk characteristics of the whole snowpack or of a snow layer, and they are the primary snow properties that are needed for most operational applications (such as hydrological monitoring, avalanche forecast, and weather forecast). In most cases, these measurements are done with manual methods, although for snow presence, HS, and SWE, automatized methods are also applied by some respondents. Parameters characterizing precipitating and suspended snow (such as the height of new snow, precipitation intensity, flux of drifting/blowing snow, and particle size distribution), some of which are crucial for the operational services, are measured by 74% of the respondents. Parameters characterizing the snow microstructural properties (such as the snow grain size and shape, and specific surface area), the snow electromagnetic properties (such as albedo, brightness temperature, and backscatter), and the snow composition (such as impurities and isotopes) are measured by 41%, 26%, and 13% of the respondents, respectively, mostly for research applications. The results of this survey are discussed from the perspective of the need of enhancing the efficiency and coverage of the in-situ observational network applying automatic and cheap measurement methods. Moreover, recommendations for the enhancement and harmonization of the observational network and measurement practices are provided.

  20. Observations of Precipitation Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow

    NASA Technical Reports Server (NTRS)

    Yuter, Sandra E.; Kingsmill, David E.; Nance, Louisa B.; Loeffler-Mang, Martin

    2006-01-01

    Ground-based measurements of particle size and fall speed distributions using a Particle Size and Velocity (PARSIVEL) disdrometer are compa red among samples obtained in mixed precipitation (rain and wet snow) and rain in the Oregon Cascade Mountains and in dry snow in the Rock y Mountains of Colorado. Coexisting rain and snow particles are distinguished using a classification method based on their size and fall sp eed properties. The bimodal distribution of the particles' joint fall speed-size characteristics at air temperatures from 0.5 to 0 C suggests that wet-snow particles quickly make a transition to rain once mel ting has progressed sufficiently. As air temperatures increase to 1.5 C, the reduction in the number of very large aggregates with a diame ter > 10 mm coincides with the appearance of rain particles larger than 6 mm. In this setting. very large raindrops appear to be the result of aggregates melting with minimal breakup rather than formation by c oalescence. In contrast to dry snow and rain, the fall speed for wet snow has a much weaker correlation between increasing size and increasing fall speed. Wet snow has a larger standard deviation of fall spee d (120%-230% relative to dry snow) for a given particle size. The ave rage fall speed for observed wet-snow particles with a diameter great er than or equal to 2.4 mm is 2 m/s with a standard deviation of 0.8 m/s. The large standard deviation is likely related to the coexistence of particles of similar physical size with different percentages of melting. These results suggest that different particle sizes are not required for aggregation since wet-snow particles of the same size can have different fall speeds. Given the large standard deviation of fa ll speeds in wet snow, the collision efficiency for wet snow is likely larger than that of dry snow. For particle sizes between 1 and 10 mm in diameter within mixed precipitation, rain constituted I % of the particles by volume within the isothermal layer at 0 C and 4% of the particles by volume for the region just below the isothermal layer where air temperatures rise from 0" to 0.5"C. As air temperatures increa sed above 0.5 C, the relative proportions of rain versus snow particl es shift dramatically and raindrops become dominant. The value of 0.5 C for the sharp transition in volume fraction from snow to rain is sl ightly lower than the range from 1 .l to 1.7 C often used in hydrolog ical models.

  1. The Spatial and Temporal Variability of Meltwater Flow Paths: Insights From a Grid of Over 100 Snow Lysimeters

    NASA Astrophysics Data System (ADS)

    Webb, R. W.; Williams, M. W.; Erickson, T. A.

    2018-02-01

    Snowmelt is an important part of the hydrologic cycle and ecosystem dynamics for headwater systems. However, the physical process of water flow through snow is a poorly understood aspect of snow hydrology as meltwater flow paths tend to be highly complex. Meltwater flow paths diverge and converge as percolating meltwater reaches stratigraphic layer interfaces creating high spatial variability. Additionally, a snowpack is temporally heterogeneous due to rapid localized metamorphism that occurs during melt. This study uses a snowmelt lysimeter array at tree line in the Niwot Ridge study area of northern Colorado. The array is designed to address the issue of spatial and temporal variability of basal discharge at 105 locations over an area of 1,300 m2. Observed coefficients of variation ranged from 0 to almost 10 indicating more variability than previously observed, though this variability decreased throughout each melt season. Snowmelt basal discharge also significantly increases as snow depth decreases displaying a cluster pattern that peaks during weeks 3-5 of the snowmelt season. These results are explained by the flow of meltwater along snow layer interfaces. As the snowpack becomes less stratified through the melt season, the pattern transforms from preferential flow paths to uniform matrix flow. Correlation ranges of the observed basal discharge correspond to a mean representative elementary area of 100 m2, or a characteristic length of 10 m. Snowmelt models representing processes at scales less than this will need to explicitly incorporate the spatial variability of snowmelt discharge and meltwater flow paths through snow between model pixels.

  2. Impact of model structure on flow simulation and hydrological realism: from a lumped to a semi-distributed approach

    NASA Astrophysics Data System (ADS)

    Garavaglia, Federico; Le Lay, Matthieu; Gottardi, Fréderic; Garçon, Rémy; Gailhard, Joël; Paquet, Emmanuel; Mathevet, Thibault

    2017-08-01

    Model intercomparison experiments are widely used to investigate and improve hydrological model performance. However, a study based only on runoff simulation is not sufficient to discriminate between different model structures. Hence, there is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework is enriched by the assessment of snow and evapotranspiration modeling against in situ and satellite data. The results showed that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures, snow and evapotranspiration predictions. The semi-distributed approach provides better calibration-validation performance for the snow cover area, snow water equivalent and runoff simulation, especially for nival catchments.

  3. Runoff simulations from the Greenland ice sheet at Kangerlussuaq from 2006-2007 to 2007/08. West Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mernild, Sebastian Haugard; Hasholt, Bent; Van Den Broeke, Michiel

    2009-01-01

    This study focuses on runoff from a large sector of the Greenland Ice Sheet (GrIS) - the Kangerlussuaq drainage area, West Greenland - for the runoff observation period 2006/07 to 2007/08. SnowModel, a state-of-the-art snow-evolution modeling system, was used to simulate winter accumulation and summer ablation processes, including runoff. Independent in situ end-of-winter snow depth and high-resolution runoff observations were used for validation of simulated accumulation and ablation processes. Runoff was modeled on both daily and hourly time steps, filling a data gap of runoff exiting part of the GrIS. Using hourly meteorological driving data instead of smoothed daily-averaged datamore » produced more realistic meteorological conditions in relation to snow and melt threshold surface processes, and produced 6-17% higher annual cumulative runoff. The simulated runoff series yielded useful insights into the present conditions of inter-seasonal and inter-annual variability of Kangerlussuaq runoff, and provided an acceptable degree of agreement between simulated and observed runoff. The simulated spatial runoff distributions, in some areas of the GrIS terminus, were as high as 2,750 mm w.eq. of runoff for 2006/07, while only 900 mm w.eq was simulated for 2007/08. The simulated total runoff from Kangerlussuaq was 1.9 km{sup 3} for 2006/07 and 1.2 km{sup 3} for 2007/08, indicating a reduction of 35-40% caused by the climate conditions and changes in the GrIS freshwater storage. The reduction in runoff from 2006/07 to 2007/08 occurred simultaneously with the reduction in the overall pattern of satellite-derived GrIS surface melt from 2007 to 2008.« less

  4. Role of Tibetan Buddhist monasteries in snow leopard conservation.

    PubMed

    Li, Juan; Wang, Dajun; Yin, Hang; Zhaxi, Duojie; Jiagong, Zhala; Schaller, George B; Mishra, Charudutt; McCarthy, Thomas M; Wang, Hao; Wu, Lan; Xiao, Lingyun; Basang, Lamao; Zhang, Yuguang; Zhou, Yunyun; Lu, Zhi

    2014-02-01

    The snow leopard (Panthera uncia) inhabits the rugged mountains in 12 countries of Central Asia, including the Tibetan Plateau. Due to poaching, decreased abundance of prey, and habitat degradation, it was listed as endangered by the International Union for Conservation of Nature in 1972. Current conservation strategies, including nature reserves and incentive programs, have limited capacities to protect snow leopards. We investigated the role of Tibetan Buddhist monasteries in snow leopard conservation in the Sanjiangyuan region in China's Qinghai Province on the Tibetan Plateau. From 2009 to 2011, we systematically surveyed snow leopards in the Sanjiangyuan region. We used the MaxEnt model to determine the relation of their presence to environmental variables (e.g., elevation, ruggedness) and to predict snow leopard distribution. Model results showed 89,602 km(2) of snow leopard habitat in the Sanjiangyuan region, of which 7674 km(2) lay within Sanjiangyuan Nature Reserve's core zones. We analyzed the spatial relation between snow leopard habitat and Buddhist monasteries and found that 46% of monasteries were located in snow leopard habitat and 90% were within 5 km of snow leopard habitat. The 336 monasteries in the Sanjiangyuan region could protect more snow leopard habitat (8342 km(2) ) through social norms and active patrols than the nature reserve's core zones. We conducted 144 household interviews to identify local herders' attitudes and behavior toward snow leopards and other wildlife. Most local herders claimed that they did not kill wildlife, and 42% said they did not kill wildlife because it was a sin in Buddhism. Our results indicate monasteries play an important role in snow leopard conservation. Monastery-based snow leopard conservation could be extended to other Tibetan Buddhist regions that in total would encompass about 80% of the global range of snow leopards. © 2013 Society for Conservation Biology.

  5. Blowing Snow Sublimation at a High Altitude Alpine Site and Effects on the Surface Boundary Layer

    NASA Astrophysics Data System (ADS)

    Vionnet, V.; Guyomarc'h, G.; Sicart, J. E.; Deliot, Y.; Naaim-Bouvet, F.; Bellot, H.; Merzisen, H.

    2017-12-01

    In alpine terrain, wind-induced snow transport strongly influences the spatial and temporal variability of the snow cover. During their transport, blown snow particles undergo sublimation with an intensity depending on atmospheric conditions (air temperature and humidity). The mass loss due to blowing snow sublimation is a source of uncertainty for the mass balance of the alpine snowpack. Additionally, blowing snow sublimation modifies humidity and temperature in the surface boundary layer. To better quantify these effects in alpine terrain, a dedicated measurement setup has been deployed at the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps, Cryobs-Clim network) since winter 2015/2016. It consists in three vertical masts measuring the near-surface vertical profiles (0.2-5 m) of wind speed, air temperature and humidity and blowing snow fluxes and size distribution. Observations collected during blowing snow events without concurrent snowfall show only a slight increase in relative humidity (10-20%) and near-surface saturation is never observed. Estimation of blowing snow sublimation rates are then obtained from these measurements. They range between 0 and 5 mmSWE day-1 for blowing snow events without snowfall in agreement with previous studies in different environments (North American prairies, Antarctica). Finally, an estimation of the mass loss due to blowing snow sublimation at our experimental site is proposed for two consecutive winters. Future use of the database collected in this study includes the evaluation of blowing snow models in alpine terrain.

  6. Modeling runoff generation in a small snow-dominated mountainous catchment

    USDA-ARS?s Scientific Manuscript database

    Snowmelt in mountainous areas is an important contributor to river water flows in the western United States. We developed a distributed model that calculates solar radiation, canopy energy balance, surface energy balance, snow pack dynamics, soil water flow, snow–soil–bedrock heat exchange, soil wat...

  7. A UNIFORM VERSUS AN AGGREGATED WATER BALANCE OF A SEMI-ARID WATERSHED. (R824784)

    EPA Science Inventory

    Hydrologists have long struggled with the problem of how to account for the effects of spatial variability in precipitation, vegetation and soils. This problem is particularly acute in snow-fed, semi-arid watersheds, which typically have considerable variability in snow distribut...

  8. Remotely Sensed Spatio-Temporal Variability of Snow Cover in Himalayan Region with Perspective of Climate Change

    NASA Astrophysics Data System (ADS)

    Dhakal, S.; Ojha, S.

    2017-12-01

    Climate change and its impact of water resource have gained tremendous attention among scientific committee, governments and other stakeholders since last couple of decades, especially in Himalayan region. In this study, we purpose remotely sensed measurements to monitor snow cover, both spatially and temporal, and assess climate change impact on water resource. The snow cover data from MODIS satellite (2000-2010) have been used to analyze some climate change indicators. In particular, the variability in the maximum snow extent with elevations, its temporal variability (8-day, monthly, seasonal and annual), its variation trend and its relation with temperature have been analyzed. The snow products used in this study are the maximum snow extent and fractional snow covers, which come in 8-day temporal and 500m and 0.05 degree spatial resolutions, respectively. The results showed a tremendous potential of the MODIS snow product for studying the spatial and temporal variability of snow as well as the study of climate change impact in large and inaccessible regions like the Himalayas. The snow area extent (SAE) (%) time series exhibits similar patterns during seven hydrological years, even though there are some deviations in the accumulation and melt periods. The analysis showed relatively well inverse relation between the daily mean temperature and SAE during the melting period. Some important trends of snow fall are also observed. In particular, the decreasing trend in January and increasing trend in late winter and early spring may be interpreted as a signal of a possible seasonal shift. However, it requires more years of data to verify this conclusion.

  9. MODIS Snow-Cover Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; DiGirolamo, Nicole E.; Bayr, Klaus J.; Houser, Paul R. (Technical Monitor)

    2002-01-01

    On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. MODIS snow and ice products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to or enhancement of the currently-available operational products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set may be generated for long-term climate studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the products. The MODIS snow product suite begins with a 500-m resolution, 2330-km swath snow-cover map which is then gridded to an integerized sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to a climate-modeling grid (CMG) product at about 5.6-km spatial resolution, with both daily and 8-day composite products. Each pixel of the CMG contains fraction of snow cover from 40 - 100%. Measured errors of commission in the CMG are low, for example, on the continent of Australia in the spring, they vary from 0.02 - 0.10%. Near-term enhancements include daily snow albedo and fractional snow cover. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented to show some early validation work.

  10. Towards Snowpack Characterization using C-band Synthetic Aperture Radar (SAR)

    NASA Astrophysics Data System (ADS)

    Park, J.; Forman, B. A.

    2017-12-01

    Sentinel 1A and 1B, operated by the European Space Agency (ESA), carries a C-band synthetic aperture radar (SAR) sensor that can be used to monitor terrestrial snow properties. This study explores the relationship between terrestrial snow-covered area, snow depth, and snow water equivalent with Sentinel 1 backscatter observations in order to better characterize snow mass. Ground-based observations collected by the National Oceanic and Atmospheric Administration - Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) in Caribou, Maine in the United States are also used in the comparative analysis. Sentinel 1 Ground Range Detected (GRD) imagery with Interferometric Wide swath (IW) were preprocessed through a series of steps accounting for thermal noise, sensor orbit, radiometric calibration, speckle filtering, and terrain correction using ESA's Sentinel Application Platform (SNAP) software package, which is an open-source module written in Python. Comparisons of dual-polarized backscatter coefficients (i.e., σVV and σVH) with in-situ measurements of snow depth and SWE suggest that cross-polarized backscatter observations exhibit a modest correlation between both snow depth and SWE. In the case of the snow-covered area, a multi-temporal change detection method was used. Results using Sentinel 1 yield similar spatial patterns as when using hyperspectral observations collected by the MODerate Resolution Imaging Spectroradiometer (MODIS). These preliminary results suggest the potential application of Sentinel 1A/1B backscatter coefficients towards improved discrimination of snow cover, snow depth, and SWE. One goal of this research is to eventually merge C-band SAR backscatter observations with other snow information (e.g., passive microwave brightness temperatures) as part of a multi-sensor snow assimilation framework.

  11. Two-threshold model for scaling laws of noninteracting snow avalanches

    USGS Publications Warehouse

    Faillettaz, J.; Louchet, F.; Grasso, J.-R.

    2004-01-01

    A two-threshold model was proposed for scaling laws of noninteracting snow avalanches. It was found that the sizes of the largest avalanches just preceding the lattice system were power-law distributed. The proposed model reproduced the range of power-law exponents observe for land, rock or snow avalanches, by tuning the maximum value of the ratio of the two failure thresholds. A two-threshold 2D cellular automation was introduced to study the scaling for gravity-driven systems.

  12. Towards a well-founded and reproducible snow load map for Austria

    NASA Astrophysics Data System (ADS)

    Winkler, Michael; Schellander, Harald

    2017-04-01

    "EN 1991-1-3 Eurocode 1: Part 1-3: Snow Loads" provides standard for the determination of the snow load to be used for the structural design of buildings etc. Since 2006 national specifications for Austria define a snow load map with four "load zones", allowing the calculation of the characteristic ground snow load sk for locations below 1500 m asl. A quadratic regression between altitude and sk is used, as suggested by EN 1991-1-3. The actual snow load map is based on best meteorological practice, but still it is somewhat subjective and non-reproducible. Underlying snow data series often end in the 1980s; in the best case data until about 2005 is used. Moreover, extreme value statistics only rely on the Gumbel distribution and the way in which snow depths are converted to snow loads is generally unknown. This might be enough reasons to rethink the snow load standard for Austria, all the more since today's situation is different to what it was some 15 years ago: Firstly, Austria is rich of multi-decadal, high quality snow depth measurements. These data are not well represented in the actual standard. Secondly, semi-empirical snow models allow sufficiently precise calculations of snow water equivalents and snow loads from snow depth measurements without the need of other parameters like temperature etc. which often are not available at the snow measurement sites. With the help of these tools, modelling of daily snow load series from daily snow depth measurements is possible. Finally, extreme value statistics nowadays offers convincing methods to calculate snow depths and loads with a return period of 50 years, which is the base of sk, and allows reproducible spatial extrapolation. The project introduced here will investigate these issues in order to update the Austrian snow load standard by providing a well-founded and reproducible snow load map for Austria. Not least, we seek for contact with standards bodies of neighboring countries to find intersections as well as to avoid inconsistencies and duplications of effort.

  13. Groundwater dynamics mediate low-flow response to global warming in snow-dominated alpine regions

    Treesearch

    Christina Tague; Gordon E. Grant

    2009-01-01

    In mountain environments, spatial and temporal patterns of snow accumulation and melt are dominant controls on hydrologic responses to climate change. In this paper, we develop a simple conceptual model that links the timing of peak snowmelt with geologically mediated differences in rate of streamflow recession. This model demonstrates that within the western United...

  14. Simulations of a Canadian snowpack brightness temperatures using SURFEX-Crocus for Snow Water Equivalent (SWE) retrievals

    NASA Astrophysics Data System (ADS)

    Larue, Fanny; Royer, Alain; De Sève, Danielle; Langlois, Alexandre; Roy, Alexandre; Saint-Jean-Rondeau, Olivier

    2016-04-01

    In Quebec, the water associated to snowmelt represents 30% of the annual electricity production so that the snow cover evaluation in real time is of primary interest. The key variable is snow water equivalent (SWE) which describes the evolution of a global seasonal snow cover. However, the sparse distribution of meteorological stations in northern Québec generates great uncertainty in the extrapolation of SWE. On the contrary, the spatial and temporal coverage of satellite data offer a source of information with a high potential when considered as an alternative to the poor spatial distribution of in-situ information. Thus, this project aims to improve the prediction of SWE by assimilation of satellite passive microwave brightness temperatures (Tb) observations, independently of any ground observations. The snowpack evolution is simulated by the French snow model SURFEX-Crocus, driven by the Canadian atmospheric model GEM with a spatial resolution of 10 km. The bias of the atmospheric model and the impact of initialization errors on the simulated SWE were quantified from our ground measurements. To assimilate satellite observations, the multi-layered snow model is first coupled with a radiative transfer model using the Dense Media Radiative transfer theory (the DMRT-ML model) to estimate the microwave snow emission of the simulated snowpack. In order to retrieve simulated Tb in frequencies of interest (i.e. sensitive to snow dielectric properties), the snow microstructure needs to be well parameterized. It was shown in previous studies that the specific surface area (SSA) of snow grains is a well-defined parameter to describe the size and the shape of snow grains and which allows reproducible field measurements. SURFEX-Crocus estimates a SSA for each simulated snow layer, however, the snow microstructure in DMRT-ML is defined per layer by monodisperse optical radius of grain (~ 1/SSA) and by the stickiness which is not known. It thus becomes necessary to introduce an empirical factor (noted φ) due to the simplification of the representation of snow as non-sticky spheres of ice in the model. In other words, the measured and simulated SSA has to be converted in an effective snow grain metric by optimizing this scaling factor to minimize the root-mean-square error between the measured and simulated brightness temperatures. The φ factor scaling the Crocus simulated SSA was estimated using ground-based radiometric measurements made during several field campaigns in the James Bay territory, Nunavik (in 2013 and 2015), and Churchill, Manitoba in 2010. This new parameterization, adapted to the Canadian arctic and subarctic snowpack, represents an essential step to optimize SWE maps in this remote region which have yet to be proven accurate.

  15. Snow and ice volume on Mount Spurr Volcano, Alaska, 1981

    USGS Publications Warehouse

    March, Rod S.; Mayo, Lawrence R.; Trabant, Dennis C.

    1997-01-01

    Mount Spurr (3,374 meters altitude) is an active volcano 130 kilometers west of Anchorage, Alaska, with an extensive covering of seasonal and perennial snow, and glaciers. Knowledge of the volume and distribution of snow and ice on a volcano aids in assessing hydrologic hazards such as floods, mudflows, and debris flows. In July 1981, ice thickness was measured at 68 locations on the five main glaciers of Mount Spurr: 64 of these measurements were made using a portable 1.7 megahertz monopulse ice-radar system, and 4 measurements were made using the helicopter altimeter where the glacier bed was exposed by ice avalanching. The distribution of snow and ice derived from these measurements is depicted on contour maps and in tables compiled by altitude and by drainage basins. Basal shear stresses at 20 percent of the measured locations ranged from 200 to 350 kilopascals, which is significantly higher than the 50 to 150 kilopascals commonly referred to in the literature as the 'normal' range for glaciers. Basal shear stresses higher than 'normal' have also been found on steep glaciers on volcanoes in the Cascade Range in the western United States. The area of perennial snow and ice coverage on Mount Spurr was 360 square kilometers in 1981, with an average thickness of 190?50 meters. Seasonal snow increases the volume about 1 percent and increases the area about 30 percent with a maximum in May or June. Runoff from Mount Spurr feeds the Chakachatna River and the Chichantna River (a tributary of the Beluga River). The Chakachatna River drainage contains 14 cubic kilometers of snow and ice and the Chichantna River drainage contains 53 cubic kilometers. The snow and ice volume on the mountain was 67?17 cubic kilometers, approximately 350 times more snow and ice than was on Mount St. Helens before its May 18, 1980, eruption, and 15 times more snow and ice than on Mount Rainier, the most glacierized of the measured volcanoes in the Cascade Range. On the basis of these relative quantities, hazard-producing glaciovolcanic phenomena at Mount Spurr could be significantly greater than similar phenomena at Cascade Volcanoes.

  16. Alaska Division of Geological and Geophysical Surveys

    Science.gov Websites

    Name Title Gabriel Wolken, Ph.D. Program Manager Katreen Wikstrom Jones M.Sc. Geologist Research flood forecasting) rely on a quantitative assessment of distributed snow thickness and stored water . 2015. End-of-winter snow depth variability on glaciers in Alaska. Journal of Geophysical Research

  17. Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Ottlé, Catherine; Boone, Aaron; Ciais, Philippe; Brun, Eric; Morin, Samuel; Krinner, Gerhard; Piao, Shilong; Peng, Shushi

    2013-06-01

    Snow plays an important role in land surface models (LSM) for climate and model applied over Fran studies, but its current treatment as a single layer of constant density and thermal conductivity in ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) induces significant deficiencies. The intermediate complexity snow scheme ISBA-ES (Interaction between Soil, Biosphere and Atmosphere-Explicit Snow) that includes key snow processes has been adapted and implemented into ORCHIDEE, referred to here as ORCHIDEE-ES. In this study, the adapted scheme is evaluated against the observations from the alpine site Col de Porte (CDP) with a continuous 18 year data set and from sites distributed in northern Eurasia. At CDP, the comparisons of snow depth, snow water equivalent, surface temperature, snow albedo, and snowmelt runoff reveal that the improved scheme in ORCHIDEE is capable of simulating the internal snow processes better than the original one. Preliminary sensitivity tests indicate that snow albedo parameterization is the main cause for the large difference in snow-related variables but not for soil temperature simulated by the two models. The ability of the ORCHIDEE-ES to better simulate snow thermal conductivity mainly results in differences in soil temperatures. These are confirmed by performing sensitivity analysis of ORCHIDEE-ES parameters using the Morris method. These features can enable us to more realistically investigate interactions between snow and soil thermal regimes (and related soil carbon decomposition). When the two models are compared over sites located in northern Eurasia from 1979 to 1993, snow-related variables and 20 cm soil temperature are better reproduced by ORCHIDEE-ES than ORCHIDEE, revealing a more accurate representation of spatio-temporal variability.

  18. Snow water equivalent mapping in Norway

    NASA Astrophysics Data System (ADS)

    Tveito, O. E.; Udnæs, H.-C.; Engeset, R.; Førland, E. J.; Isaksen, K.; Mengistu, Z.

    2003-04-01

    In high latitude area snow covers the ground large parts of the year. Information about the water volume as snow is of major importance in many respects. Flood forecasters at NVE need it in order to assess possible flood risks. Hydropower producers need it to plan the most efficient production of the water in their reservoirs, traders to estimate the potential energy available for the market. Meteorologists on their side use the information as boundary conditions in weather forecasting models. The Norwegian meteorological institute has provided snow accumulation maps for Norway for more than 50 years. These maps are now produced twice a month in the winter season. They show the accumulated precipitation in the winter season from the day the permanent snow cover is established. They do however not take melting into account, and do therefore not give a good description of the actual snow amounts during and after periods with snowmelt. Due to an increased need for a direct measure of water volumes as snow cover, met.no and NVE initialized a joint project in order to establish maps of the actual snow cover expressed in water equivalents. The project utilizes recent developments in the use of GIS in spatial modeling. Daily precipitation and temperature are distributed in space by using objective spatial interpolation methods. The interpolation considers topographical and other geographical parameters as well as weather type information. A degree-day model is used at each modeling point to calculate snow-accumulation and snowmelt. The maps represent a spatial scale of 1x1 km2. The modeled snow reservoir is validated by snow pillow values as well traditional snow depth observations. Preliminary results show that the new snow modeling approach reproduces the snow water equivalent well. The spatial approach also opens for a wide use in the terms of areal analysis.

  19. Next Generation Snow Cover Mapping: Can Future Hyperspectral Satellite Spectrometer Systems Improve Subpixel Snow-covered Area and Grain Size in the Sierra Nevada?

    NASA Astrophysics Data System (ADS)

    Hill, R.; Calvin, W. M.; Harpold, A.

    2017-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Building on previous retrieval of subpixel snow-covered area algorithms that take into account varying grain size we present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction, and approximate grain size. In addition, varying simulated models of the data will compare and contrast the retrieval of current snow products such as MODIS Snow-Covered Area and Grain Size (MODSCAG) and the Airborne Space Observatory (ASO). Specifically, does lower spatial resolution (MODIS), broader resolution bandwidth (MODIS), and limited spectral resolution (ASO) affect snow-cover area and grain size approximations? The implications of our findings will help refine snow mapping products for planned hyperspectral satellite spectrometer systems such as EnMAP (slated to launch in 2019), HISUI (planned for inclusion on the International Space Station in 2018), and HyspIRI (currently under consideration).

  20. Impacts of anthropogenic emissions and cold air pools on urban to montane gradients of snowpack ion concentrations in the Wasatch Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Hall, Steven J.; Maurer, Gregory; Hoch, Sebastian W.; Taylor, Raili; Bowling, David R.

    2014-12-01

    Urban montane valleys are often characterized by periodic wintertime temperature inversions (cold air pools) that increase atmospheric particulate matter concentrations, potentially stimulating the deposition of major ions to these snow-covered ecosystems. We assessed spatial and temporal patterns of ion concentrations in snow across urban to montane gradients in Salt Lake City, Utah, USA, and the adjacent Wasatch Mountains during January 2011, a period of several persistent cold air pools. Ion concentrations in fresh snow samples were greatest in urban sites, and were lower by factors of 4-130 in a remote high-elevation montane site. Adjacent undeveloped canyons experienced significant incursions of particulate-rich urban air during stable atmospheric conditions, where snow ion concentrations were lower but not significantly different from urban sites. Surface snow ion concentrations on elevation transects in and adjacent to Salt Lake City varied with temporal and spatial trends in aerosol concentrations, increasing following exposure to particulate-rich air as cold air pools developed, and peaking at intermediate elevations (1500-1600 m above sea level, or 200-300 m above the valley floor). Elevation trends in ion concentrations, especially NH4+ and NO3-, corresponded with patterns of aerosol exposure inferred from laser ceilometer data, suggesting that high particulate matter concentrations stimulated fog or dry ion deposition to snow-covered surfaces at the top of the cold air pools. Fog/dry deposition inputs were similar to wet deposition at mid-elevation montane sites, but appeared negligible at lower and higher-elevation sites. Overall, snow ion concentrations in our urban and adjacent montane sites exceeded many values reported from urban precipitation in North America, and greatly exceeded those reported for remote snowpacks. Sodium, Cl-, NH4+, and NO3- concentrations in fresh snow were high relative to previously measured urban precipitation, with means of 120, 117, 42, and 39 μeq l-1, respectively. After exposure to atmospheric particulate matter during cold pool events, surface snow concentrations peaked at 2500, 3600, 93, and 90 μeq l-1 for these ions. Median nitrogen (N) deposition in fresh urban snow samples measured 0.8 kg N ha-1 during January 2011, with similar fog/dry deposition inputs at mid-elevation montane sites. Wintertime anthropogenic air pollution represents a significant source of ions to snow-covered ecosystems proximate to urban montane areas, with important implications for ecosystem function.

  1. Small scale variability of snow properties on Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Wever, Nander; Leonard, Katherine; Paul, Stephan; Jacobi, Hans-Werner; Proksch, Martin; Lehning, Michael

    2016-04-01

    Snow on sea ice plays an important role in air-ice-sea interactions, as snow accumulation may for example increase the albedo. Snow is also able to smooth the ice surface, thereby reducing the surface roughness, while at the same time it may generate new roughness elements by interactions with the wind. Snow density is a key property in many processes, for example by influencing the thermal conductivity of the snow layer, radiative transfer inside the snow as well as the effects of aerodynamic forcing on the snowpack. By comparing snow density and grain size from snow pits and snow micro penetrometer (SMP) measurements, highly resolved density and grain size profiles were acquired during two subsequent cruises of the RV Polarstern in the Weddell Sea, Antarctica, between June and October 2013. During the first cruise, SMP measurements were done along two approximately 40 m transects with a horizontal resolution of approximately 30 cm. During the second cruise, one transect was made with approximately 7.5 m resolution over a distance of 500 m. Average snow densities are about 300 kg/m3, but the analysis also reveals a high spatial variability in snow density on sea ice in both horizontal and vertical direction, ranging from roughly 180 to 360 kg/m3. This variability is expressed by coherent snow structures over several meters. On the first cruise, the measurements were accompanied by terrestrial laser scanning (TLS) on an area of 50x50 m2. The comparison with the TLS data indicates that the spatial variability is exhibiting similar spatial patterns as deviations in surface topology. This suggests a strong influence from surface processes, for example wind, on the temporal development of density or grain size profiles. The fundamental relationship between variations in snow properties, surface roughness and changes therein as investigated in this study is interpreted with respect to large-scale ice movement and the mass balance.

  2. Average snowcover density values in Eastern Alps mountain

    NASA Astrophysics Data System (ADS)

    Valt, M.; Moro, D.

    2009-04-01

    The Italian Avalanche Warning Services monitor the snow cover characteristics through networks evenly distributed all over the alpine chain. Measurements of snow stratigraphy and density are very frequently performed with sampling rates of 1 -2 times per week. Snow cover density values are used to compute the dimensions of the building roofs as well as to design avalanche barriers. Based on the measured snow densities the Electricity Board can predict the amount of water resources deriving from snow melt in high relieves drainage basins. In this work it was possible to compute characteristic density values of the snow cover in the Eastern Alps using the information contained in the database from the ARPA (Agenzia Regionale Protezione Ambiente)-Centro Valanghe di Arabba, and Ufficio Valanghe- Udine. Among the other things, this database includes 15 years of stratigraphic measurements. More than 6,000 snow stratigraphic logs were analysed, in order to derive typical values as for geographical area, altitude, exposure, snow cover thickness and season. Computed values were compared to those established by the current Italian laws. Eventually, experts identified and evaluated the correlations between the seasonal variations of the average snow density and the variations related to the snowfall rate in the period 1994-2008 in the Eastern Alps mountain range

  3. Noninvasive genetic population survey of snow leopards (Panthera uncia) in Kangchenjunga conservation area, Shey Phoksundo National Park and surrounding buffer zones of Nepal.

    PubMed

    Karmacharya, Dibesh B; Thapa, Kamal; Shrestha, Rinjan; Dhakal, Maheshwar; Janecka, Jan E

    2011-11-28

    The endangered snow leopard is found throughout major mountain ranges of Central Asia, including the remote Himalayas. However, because of their elusive behavior, sparse distribution, and poor access to their habitat, there is a lack of reliable information on their population status and demography, particularly in Nepal. Therefore, we utilized noninvasive genetic techniques to conduct a preliminary snow leopard survey in two protected areas of Nepal. A total of 71 putative snow leopard scats were collected and analyzed from two different areas; Shey Phoksundo National Park (SPNP) in the west and Kangchanjunga Conservation Area (KCA) in the east. Nineteen (27%) scats were genetically identified as snow leopards, and 10 (53%) of these were successfully genotyped at 6 microsatellite loci. Two samples showed identical genotype profiles indicating a total of 9 individual snow leopards. Four individual snow leopards were identified in SPNP (1 male and 3 females) and five (2 males and 3 females) in KCA. We were able to confirm the occurrence of snow leopards in both study areas and determine the minimum number present. This information can be used to design more in-depth population surveys that will enable estimation of snow leopard population abundance at these sites.

  4. Noninvasive genetic population survey of snow leopards (Panthera uncia) in Kangchenjunga conservation area, Shey Phoksundo National Park and surrounding buffer zones of Nepal

    PubMed Central

    2011-01-01

    Background The endangered snow leopard is found throughout major mountain ranges of Central Asia, including the remote Himalayas. However, because of their elusive behavior, sparse distribution, and poor access to their habitat, there is a lack of reliable information on their population status and demography, particularly in Nepal. Therefore, we utilized noninvasive genetic techniques to conduct a preliminary snow leopard survey in two protected areas of Nepal. Results A total of 71 putative snow leopard scats were collected and analyzed from two different areas; Shey Phoksundo National Park (SPNP) in the west and Kangchanjunga Conservation Area (KCA) in the east. Nineteen (27%) scats were genetically identified as snow leopards, and 10 (53%) of these were successfully genotyped at 6 microsatellite loci. Two samples showed identical genotype profiles indicating a total of 9 individual snow leopards. Four individual snow leopards were identified in SPNP (1 male and 3 females) and five (2 males and 3 females) in KCA. Conclusions We were able to confirm the occurrence of snow leopards in both study areas and determine the minimum number present. This information can be used to design more in-depth population surveys that will enable estimation of snow leopard population abundance at these sites. PMID:22117538

  5. Monitoring Mountain Meteorology without Much Money (Invited)

    NASA Astrophysics Data System (ADS)

    Lundquist, J. D.

    2009-12-01

    Mountains are the water towers of the world, storing winter precipitation in the form of snow until summer, when it can be used for agriculture and cities. However, mountain weather is highly variable, and measurements are sparsely distributed. In order adequately sample snow and climate variables in complex terrain, we need as many measurements as possible. This means that instruments must be inexpensive and relatively simple to deploy. Here, we demonstrate how dime-sized temperature sensors developed for the refrigeration industry can be used to monitor air temperature (using evergreen trees as radiation shields) and snow cover duration (using the diurnal cycle in near-surface soil temperature). Together, these measurements can be used to recreate accumulated snow water equivalent over the prior year. We also demonstrate how buckets of water may be placed under networked acoustic snow depth sensors to provide an index of daily evaporation rates at SNOTEL stations. (a) Temperature sensor sealed for deployment in the soil. (b) Launching a temperature sensor into a tree. (c) Pulley system to keep sensor above the snow. (a) Photo of bucket underneath acoustic snow depth sensor. (b) Water depth in the bucket as calculated by the snow depth sensor and by a pressure sensor inside the bucket.

  6. The Electrical Self-Potential Method as a Non-Intrusive Snow-Hydrological Sensor

    NASA Astrophysics Data System (ADS)

    Kulessa, B.; Thompson, S. S.; Luethi, M. P.; Essery, R.

    2015-12-01

    Building on growing momentum in the application of geophysical techniques to snow problems and, specifically, on new theory and an electrical geophysical snow hydrological model published recently; we demonstrate for the first time that the electrical self-potential geophysical technique can sense in-situ bulk meltwater fluxes. This has broad and immediate implications for snow measurement practice, modelling and operational snow forecasting. Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. Encouraged by recent theoretical, modelling and laboratory work, we show here that the diurnal evolution of aerially-distributed self-potential magnitudes closely track those of bulk meltwater fluxes in melting in-situ snowpacks at Rhone and Jungfraujoch glaciers, Switzerland. Numerical modelling infers temporally-evolving liquid water contents in the snowpacks on successive days in close agreement with snow-pit measurements. Muting previous concerns, the governing physical and chemical properties of snow and meltwater became temporally invariant for modelling purposes. Because measurement procedure is straightforward and readily automated for continuous monitoring over significant spatial scales, we conclude that the self-potential geophysical method is a highly-promising non-intrusive snow-hydrological sensor for measurement practice, modelling and operational snow forecasting.

  7. Global Distribution of Polaromonas Phylotypes - Evidence for a Highly Successful Dispersal Capacity

    PubMed Central

    Darcy, John L.; Lynch, Ryan C.; King, Andrew J.; Robeson, Michael S.; Schmidt, Steven K.

    2011-01-01

    Bacteria from the genus Polaromonas are dominant phylotypes in clone libraries and culture collections from polar and high-elevation environments. Although Polaromonas has been found on six continents, we do not know if the same phylotypes exist in all locations or if they exhibit genetic isolation by distance patterns. To examine their biogeographic distribution, we analyzed all available, long-read 16S rRNA gene sequences of Polaromonas phylotypes from glacial and periglacial environments across the globe. Using genetic isolation by geographic distance analyses, including Mantel tests and Mantel correlograms, we found that Polaromonas phylotypes are globally distributed showing weak isolation by distance patterns at global scales. More focused analyses using discrete, equally sampled distances classes, revealed that only two distance classes (out of 12 total) showed significant spatial structuring. Overall, our analyses show that most Polaromonas phylotypes are truly globally distributed, but that some, as yet unknown, environmental variable may be selecting for unique phylotypes at a minority of our global sites. Analyses of aerobiological and genomic data suggest that Polaromonas phylotypes are globally distributed as dormant cells through high-elevation air currents; Polaromonas phylotypes are common in air and snow samples from high altitudes, and a glacial-ice metagenome and the two sequenced Polaromonas genomes contain the gene hipA, suggesting that Polaromonas can form dormant cells. PMID:21897856

  8. Imaging of the CO snow line in a solar nebula analog.

    PubMed

    Qi, Chunhua; Öberg, Karin I; Wilner, David J; D'Alessio, Paola; Bergin, Edwin; Andrews, Sean M; Blake, Geoffrey A; Hogerheijde, Michiel R; van Dishoeck, Ewine F

    2013-08-09

    Planets form in the disks around young stars. Their formation efficiency and composition are intimately linked to the protoplanetary disk locations of "snow lines" of abundant volatiles. We present chemical imaging of the carbon monoxide (CO) snow line in the disk around TW Hya, an analog of the solar nebula, using high spatial and spectral resolution Atacama Large Millimeter/Submillimeter Array observations of diazenylium (N2H(+)), a reactive ion present in large abundance only where CO is frozen out. The N2H(+) emission is distributed in a large ring, with an inner radius that matches CO snow line model predictions. The extracted CO snow line radius of ~30 astronomical units helps to assess models of the formation dynamics of the solar system, when combined with measurements of the bulk composition of planets and comets.

  9. BOREAS RSS-8 Snow Maps Derived from Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy; Chang, Alfred T. C.; Foster, James L.; Chien, Janeet Y. L.; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-8 team utilized Landsat Thematic Mapper (TM) images to perform mapping of snow extent over the Southern Study Area (SSA). This data set consists of two Landsat TM images that were used to determine the snow-covered pixels over the BOREAS SSA on 18 Jan 1993 and on 06 Feb 1994. The data are stored in binary image format files. The RSS-08 snow map data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  10. Physics-based distributed snow models in the operational arena: Current and future challenges

    NASA Astrophysics Data System (ADS)

    Winstral, A. H.; Jonas, T.; Schirmer, M.; Helbig, N.

    2017-12-01

    The demand for modeling tools robust to climate change and weather extremes along with coincident increases in computational capabilities have led to an increase in the use of physics-based snow models in operational applications. Current operational applications include the WSL-SLF's across Switzerland, ASO's in California, and USDA-ARS's in Idaho. While the physics-based approaches offer many advantages there remain limitations and modeling challenges. The most evident limitation remains computation times that often limit forecasters to a single, deterministic model run. Other limitations however remain less conspicuous amidst the assumptions that these models require little to no calibration based on their foundation on physical principles. Yet all energy balance snow models seemingly contain parameterizations or simplifications of processes where validation data are scarce or present understanding is limited. At the research-basin scale where many of these models were developed these modeling elements may prove adequate. However when applied over large areas, spatially invariable parameterizations of snow albedo, roughness lengths and atmospheric exchange coefficients - all vital to determining the snowcover energy balance - become problematic. Moreover as we apply models over larger grid cells, the representation of sub-grid variability such as the snow-covered fraction adds to the challenges. Here, we will demonstrate some of the major sensitivities of distributed energy balance snow models to particular model constructs, the need for advanced and spatially flexible methods and parameterizations, and prompt the community for open dialogue and future collaborations to further modeling capabilities.

  11. What Does a Multilayer Canopy Model Tell Us About Our Current Understanding of Snow-Canopy Unloading?

    NASA Astrophysics Data System (ADS)

    McGowan, L. E.; Paw U, K. T.; Dahlke, H. E.

    2017-12-01

    In the Western U.S., future water resources depend on the forested mountain snowpack. The variations in and estimates of forest mountain snow volume are vital to projecting annual water availability; yet, snow forest processes are not fully known. Most snow models calculate snow-canopy unloading based on time, temperature, Leaf Area Index (LAI), and/or wind speed. While models crudely consider the canopy shape via LAI, current models typically do not consider the vertical canopy structure or varied energetics within multiple canopy layers. Vertical canopy structure influences the spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability. Within the canopy both the snowpack and energetic exposures to the snowpack (wind, shortwave and longwave radiation, turbulent heat fluxes etc.) vary widely in the vertical. The water and energy balance in each layer is dependent on all other layers. For example, increased snow canopy content in the top of the canopy will reduce available shortwave radiation at the bottom and snow unloading in a mid-layer can cascade and remove snow from all the lower layers. We examined vertical interactions and structures of the forest canopy on the impact of unloading utilizing the Advanced Canopy-Atmosphere-Soil-Algorithm (ACASA), a multilayer soil-vegetation-atmosphere numerical model based on higher-order closure of turbulence equations. Our results demonstrate how a multilayer model can be used to elucidate the physical processes of snow unloading, and could help researchers better parameterize unloading in snow-hydrology models.

  12. Contribution of high resolution remote sensing data to the modeling of the snow cover the in Atlas Mountains

    NASA Astrophysics Data System (ADS)

    Baba, Wassim; Gascoin, Simon; Hanich, Lahoucine; Kinnard, Christophe

    2017-04-01

    Snow melt from the Atlas Mountains watersheds represent an important water resource for the semi-arid, cultivated, lowlands. Due to the high incoming solar radiation and low precipitation, the spatial-temporal variability of the snowpack is expected to be strongly influenced by the topography. We explore this hypothesis using a distributed energy balance snow model (SnowModel) in the experimental watershed of the Rheraya River in Morocco (225 km2). The digital elevation model (DEM) in SnowModel is used for the computation of the gridded meteorological forcing from the automatic weather stations data. We acquired three Pléiades stereo pairs in to produce an accurate, high resolution DEM of the Rheraya watershed at 4 m posting. Then, the DEM was resampled to different spatial resolutions (8 m, 30 m, 90 m, 250 m and 500 m) to simulate the snowpack evolution over 2008-2009 snow season. As validation data we used a time series of 15 maps of the snow cover area (SCA) from Formosat-2 imagery over the same snow season in the upper Rheraya watershed. These maps have a resolution of 8 m, which enables to capture small-scale variability in the snow cover. We found that the simulations at 90 m, 30 m and 8 m yield similar results at the catchment scale, with significant differences in areas of very steep topography only. From February to April, an overall good agreement was observed between the simulated SCA and the Formosat-2 SCA at 8 m and 90 m. Before the melting season, true positive (TP) column of confusion matrix is close to 1, but it drops to 0.6 during the melting season. Heidke Skill Score is higher than 0.7 for the most of the validation dates and averages 0.8. On the contrary, 500 m simulation underestimates the SCA throughout the snow season and the TP score is always inferior to the one obtained at 8 m and 90 m. We further analyzed the effect of topography by comparing the distribution of meteorological and snowpack variables along north-south and east-west transects. This analysis indicates that the impact of the topography on the simulated SWE and snow melt is mainly driven by changes in the solar radiations and the precipitations.

  13. Evaluating UAV and LiDAR Retrieval of Snow Depth in a Coniferous Forest in Arizona

    NASA Astrophysics Data System (ADS)

    Van Leeuwen, W. J. D.; Broxton, P.; Biederman, J. A.

    2017-12-01

    Remote sensing of snow depth and cover in forested environments is challenging. Trees interfere with the remote sensing of snowpack below the canopy and cause large variations in the spatial distribution of the snowpack itself (e.g. between below canopy environments to shaded gaps to open clearings). The distribution of trees and topographic variation make it challenging to monitor the snowpack with in-situ observations. Airborne LiDAR has improved our ability to monitor snowpack over large areas in montane and forested environments because of its high sampling rate and ability to penetrate the canopy. However, these LiDAR flights can be too expensive and time-consuming to process, making it hard to use them for real-time snow monitoring. In this research, we evaluate Structure from Motion (SfM) as an alternative to Airborne LiDAR to generate high-resolution snow depth data in forested environments. This past winter, we conducted a snow field campaign over Arizona's Mogollon Rim where we acquired aerial LiDAR, multi-angle aerial photography from a UAV, and extensive field observations of snow depth at two sites. LiDAR and SFM derived snow depth maps were generated by comparing "snow-on" and "snow-off" LiDAR and SfM data. The SfM- and LiDAR-generated snow depth maps were similar at a site with fewer trees, though there were more discrepancies at a site with more trees. Both compared reasonably well with the field observations at the sparser forested site, with poorer agreement at the denser forested site. Finally, although the SfM produced point clouds with much higher point densities than the aerial LiDAR, the SfM was not able to produce meaningful snow depth estimates directly underneath trees and had trouble in areas with deep shadows. Based on these findings, we are optimizing our UAV data acquisition strategies for this upcoming field season. We are using these data, along with high-resolution hydrological modeling, to gain a better understanding of how different forest structural, climatic and topographic conditions affect the snowpack and consequently the water resources available to the Salt River Project, a water utility providing power and water to millions of customers in the Phoenix area

  14. Radiative effects of light-absorbing particles deposited in snow over Himalayas using WRF-Chem simulations

    NASA Astrophysics Data System (ADS)

    Sarangi, C.; Qian, Y.; Painter, T. H.; Liu, Y.; Lin, G.; Wang, H.

    2017-12-01

    Radiative forcing induced by light-absorbing particles (LAP) deposited on snow is an important surface forcing. It has been debated that an aerosol-induced increase in atmospheric and surface warming over Tibetan Plateau (TP) prior to the South Asian summer monsoon can have a significant effect on the regional thermodynamics and South Asian monsoon circulation. However, knowledge about the radiative effects due to deposition of LAP in snow over TP is limited. In this study we have used a high-resolution WRF-Chem (coupled with online chemistry and snow-LAP-radiation model) simulations during 2013-2014 to estimate the spatio-temporal variation in LAP deposition on snow, specifically black carbon (BC) and dust particles, in Himalayas. Simulated distributions in meteorology, aerosol concentrations, snow albedo, snow grain size and snow depth are evaluated against satellite and in-situ measurements. The spatio-temporal change in snow albedo and snow grain size with variation in LAP deposition is investigated and the resulting shortwave LAP radiative forcing at surface is calculated. The LAP-radiative forcing due to aerosol deposition, both BC and dust, is higher in magnitude over Himalayan slopes (terrain height below 4 km) compared to that over TP (terrain height above 4 km). We found that the shortwave aerosol radiative forcing efficiency at surface due to increase in deposited mass of BC particles in snow layer ( 25 (W/m2)/ (mg/m2)) is manifold higher than the efficiency of dust particles ( 0.1 (W/m2)/ (mg/m2)) over TP. However, the radiative forcing of dust deposited in snow is similar in magnitude (maximum 20-30 W/m2) to that of BC deposited in snow over TP. This is mainly because the amount of dust deposited in snow over TP can be about 100 times greater than the amount of BC deposited in snow during polluted conditions. The impact of LAP on surface energy balance, snow melting and atmospheric thermodynamics is also examined.

  15. Use of supplemental food by breeding Ross's Geese and Lesser Snow Geese: Evidence for variable anorexia

    USGS Publications Warehouse

    Gloutney, M.L.; Alisauskas, R.T.; Hobson, K.A.; Afton, A.D.

    1999-01-01

    Recent research suggests that foods eaten during laying and incubation play a greater role in supplying energy and nutrients to arctic-nesting geese than previously believed. We conducted food-supplementation experiments with Ross's Geese (Chen rossii) and Lesser Snow Geese (C. caerulescens) geese to evaluate: (1) if supplemental food was consumed by laying and incubating geese, (2) how food consumption influenced mass dynamics of somatic tissues of breeding geese, (3) if patterns of mass loss were consistent with fasting adaptations, and (4) whether energetic constraints would cause smaller Ross's Geese to consume more food relative to their body size than would larger Snow Geese. Quantity of supplemental food eaten by both species during laying and incubation was highly variable among individuals. Consumption of supplemental food during laying resulted in differences in overall body composition between control and treatment females. Treatment female Ross's Geese completed laying at a higher mass and with more abdominal fat than controls, whereas treatment female Snow Geese completed laying with heavier breast muscles and hearts. Overall body composition did not differ between control and treatment geese (both sexes and species) at the end of incubation, but treatment geese had heavier hearts than control geese. This suggests that treatment females did not rely to the same extent on metabolic adaptations associated with anorexia to meet energetic costs of incubation as did controls. Stable-nitrogen isotope analysis revealed patterns of protein maintenance during incubation consistent with metabolic adaptations to prolonged fasting. Our prediction that energetic constraints would cause smaller Ross's Geese to consume more food relative to their size than would Snow Geese was not supported. Mass-specific food consumption by Ross's Geese was 30% lower than that of Snow Geese during laying and 48% higher during incubation.

  16. The layered evolution of fabric and microstructure of snow at Point Barnola, Central East Antarctica

    NASA Astrophysics Data System (ADS)

    Calonne, Neige; Montagnat, Maurine; Matzl, Margret; Schneebeli, Martin

    2017-02-01

    Snow fabric, defined as the distribution of the c-axis orientations of the ice crystals in snow, is poorly known. So far, only one study exits that measured snow fabric based on a statistically representative technique. This recent study has revealed the impact of temperature gradient metamorphism on the evolution of fabric in natural snow, based on cold laboratory experiments. On polar ice sheets, snow properties are currently investigated regarding their strong variability in time and space, notably because of their potential influence on firn processes and consequently on ice core analysis. Here, we present measurements of fabric and microstructure of snow from Point Barnola, East Antarctica (close to Dome C). We analyzed a snow profile from 0 to 3 m depth, where temperature gradients occur. The main contributions of the paper are (1) a detailed characterization of snow in the upper meters of the ice sheet, especially by providing data on snow fabric, and (2) the study of a fundamental snow process, never observed up to now in a natural snowpack, namely the role of temperature gradient metamorphism on the evolution of the snow fabric. Snow samples were scanned by micro-tomography to measure continuous profiles of microstructural properties (density, specific surface area and pore thickness). Fabric analysis was performed using an automatic ice texture analyzer on 77 representative thin sections cut out from the samples. Different types of snow fabric could be identified and persist at depth. Snow fabric is significantly correlated with snow microstructure, pointing to the simultaneous influence of temperature gradient metamorphism on both properties. We propose a mechanism based on preferential grain growth to explain the fabric evolution under temperature gradients. Our work opens the question of how such a layered profile of fabric and microstructure evolves at depth and further influences the physical and mechanical properties of snow and firn. More generally, it opens the way to further studies on the influence of the snow fabric in snow processes related to anisotropic properties of ice such as grain growth, mechanical response, electromagnetic behavior.

  17. In Situ Microphysical and Scattering Properties of Falling Snow in GPM-GCPEx

    NASA Astrophysics Data System (ADS)

    Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.; Poellot, M.; Chandrasekar, C. V.; Hudak, D. R.

    2013-12-01

    The Global Precipitation Measurement Cold-season Precipitation Experiment (GPM-GCPEx) field campaign was conducted near Egbert, Ontario, Canada in January-February 2012 to study the physical characteristics and microwave radiative properties of the column of hydrometeors in cold season precipitation events. Extensive in situ aircraft profiling was conducted with the University of North Dakota (UND) Citation aircraft within the volume of several remote sensing instruments within a wide variety of precipitation events, from snow to freezing drizzle. Several of the primary goals of GCPEx include improving our understanding of the microphysical characteristics of falling snow and how those characteristics relate to the multi-wavelength radiative characteristics In this study, particle size distribution parameters, effective particle densities, and habit distributions are determined using in-situ cloud measurements obtained on the UND citation using the High Volume Precipitation Spectrometer, the Cloud Particle Imager, and the Cloud Imaging Probe. These quantities are matched compared to multi-frequency radar measurements from the Environment Canada King City C-Band and NASA D3R Ku-Ka Band dual polarization radars. These analysis composites provide the basis for direct evaluation of particle size distributions and observed multi-wavelength and multi-polarization radar observations, including radar reflectivity, differential reflectivity, and dual wavelength ratio) in falling snow at weather radar and GPM radar frequencies. Theoretical predictions from Mie, Rayleigh-Gans, and more complex snowflake aggregate scattering model predictions using observed particle size distributions are compared with observed radar scattering characteristics along the Citation flight track.

  18. Total mercury and methylmercury in high altitude surface snow from the French Alps.

    PubMed

    Marusczak, Nicolas; Larose, Catherine; Dommergue, Aurélien; Yumvihoze, Emmanuel; Lean, David; Nedjai, Rachid; Ferrari, Christophe

    2011-09-01

    Surface snow samples were collected weekly from the 31st of December 2008 to the 21st of June 2009 from Lake Bramant in the French Alps. Total mercury (THg), total dissolved mercury (THgD), methylmercury (MeHg) and particle distributions in surface snow were analyzed. Results showed that THg concentrations, MeHg concentrations and particle load increased with snow surface temperature, which is an indicator of rising temperatures as the season progresses. Significant correlations between MeHg and snow surface temperature and MeHg and total particles greater than 10 μm were observed. This suggests that the MeHg found in the snow originates from atmospheric deposition processes rather than in situ snowpack sources. This study suggests that an important post-winter atmospheric deposition of MeHg and THg occurs on summital zones of the French Alps and it is likely that this contamination originates from the surrounding valleys. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Heavy metals from pyrotechnics in New Years Eve snow

    NASA Astrophysics Data System (ADS)

    Steinhauser, Georg; Sterba, Johannes H.; Foster, Michaela; Grass, Friedrich; Bichler, Max

    Pyrotechnics and fireworks cause pollution with barium aerosols, which is a result of the utilization of barium nitrate as a combined pyrotechnic oxidizer and coloring agent. In this study, the washing-out of barium-rich aerosols by snowflakes during the New Years Eve celebrations in an Austrian village in the Alps has been investigated. It could be shown that the fireworks caused an increase in the barium concentration in snow of up to a factor of 580 compared to the blank value. An increase of the concentrations of strontium and occasionally arsenic in snow was also observed. The geographic distribution of the pyrotechnic combustion products on this snowy evening was restricted to a relatively small area and even in a very local scale, the variations in the concentrations were remarkable. Post-firework snow from the summits of nearby located mountains was found to be as clean as pre-firework snow. However, snow that was visibly contaminated with smoke residues contained exorbitant concentrations of Ba, K, Sr, and Fe.

  20. The electrical self-potential method is a non-intrusive snow-hydrological sensor

    NASA Astrophysics Data System (ADS)

    Thompson, S. S.; Kulessa, B.; Essery, R. L. H.; Lüthi, M. P.

    2015-08-01

    Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. Encouraged by recent theoretical, modelling and laboratory work, we show here that the diurnal evolution of aerially-distributed self-potential magnitudes closely track those of bulk meltwater fluxes in melting in-situ snowpacks at Rhone and Jungfraujoch glaciers, Switzerland. Numerical modelling infers temporally-evolving liquid water contents in the snowpacks on successive days in close agreement with snow-pit measurements. Muting previous concerns, the governing physical and chemical properties of snow and meltwater became temporally invariant for modelling purposes. Because measurement procedure is straightforward and readily automated for continuous monitoring over significant spatial scales, we conclude that the self-potential geophysical method is a highly-promising non-intrusive snow-hydrological sensor for measurement practice, modelling and operational snow forecasting.

  1. Shifts in controls on the temporal coherence of throughfall chemical flux in Acadia National Park, Maine, USA

    USGS Publications Warehouse

    Nelson, Sarah J.; Webster, Katherine E.; Loftin, Cynthia S.; Weathers, Kathleen C.

    2013-01-01

    Major ion and mercury (Hg) inputs to terrestrial ecosystems include both wet and dry deposition (total deposition). Estimating total deposition to sensitive receptor sites is hampered by limited information regarding its spatial heterogeneity and seasonality. We used measurements of throughfall flux, which includes atmospheric inputs to forests and the net effects of canopy leaching or uptake, for ten major ions and Hg collected during 35 time periods in 1999–2005 at over 70 sites within Acadia National Park, Maine to (1) quantify coherence in temporal dynamics of seasonal throughfall deposition and (2) examine controls on these patterns at multiple scales. We quantified temporal coherence as the correlation between all possible site pairs for each solute on a seasonal basis. In the summer growing season and autumn, coherence among pairs of sites with similar vegetation was stronger than for site-pairs that differed in vegetation suggesting that interaction with the canopy and leaching of solutes differed in coniferous, deciduous, mixed, and shrub or open canopy sites. The spatial pattern in throughfall hydrologic inputs across Acadia National Park was more variable during the winter snow season, suggesting that snow re-distribution affects net hydrologic input, which consequently affects chemical flux. Sea-salt corrected calcium concentrations identified a shift in air mass sources from maritime in winter to the continental industrial corridor in summer. Our results suggest that the spatial pattern of throughfall hydrologic flux, dominant seasonal air mass source, and relationship with vegetation in winter differ from the spatial pattern of throughfall flux in these solutes in summer and autumn. The coherence approach applied here made clear the strong influence of spatial heterogeneity in throughfall hydrologic inputs and a maritime air mass source on winter patterns of throughfall flux. By contrast, vegetation type was the most important influence on throughfall chemical flux in summer and autumn.

  2. Archival processes of the water stable isotope signal in East Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean

    2018-05-01

    The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.

  3. A Study on Feasibility of Dual-Wavelength Radar for Identification of Hydrometeor Phases

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert

    2010-01-01

    An important objective for the Dual-wavelength Ku-/Ka-band Precipitation Radar (DPR) that will be on board the Global Precipitation Measuring (GPM) core satellite, is to identify the phase state of hydrometeors along the range direction. To assess this, radar signatures are simulated in snow and rain to explore the relation between the differential frequency ratio (DFR), defined as the difference of radar reflectivity factors between Ku- and Ka-bands, and the radar reflectivity factor at Ku-band, ZKu, for different hydrometeor types. Model simulations indicate that there is clear separation between snow and rain in the ZKu-DFR plane assuming that the snow follows the Gunn-Marshall size distribution (1958) and rain follows the Marshall-Palmer size distribution (1948). In an effort to verify the simulated results, the data collected by the Airborne Second Generation Precipitation Radar (APR-2) in the Wakasa Bay AMSR-E campaign are employed. Using the signatures of Linear Depolarization Ratio (LDR) at Ku-band, the APR-2 data can be easily divided into the regions of snow, mixed phase and rain for stratiform storms. These results are then superimposed onto the theoretical curves computed from the model in the ZKu-DFR plane. It has been found that in 90% of the cases, snow and rain can be distinguished if the Ku-band radar reflectivity exceeds 18 dBZ (the minimum detectable level of GPM DPR at Ku-band). This is also the case for snow and mixed-phase hydrometeors. Although snow can be easily distinguished from rain and melting hydrometeors by using Ku- and Ka-band radar, the rain and mixed-phase particles are not always separable. It is concluded that Ku- and Ka-band dual-wavelength radar might provide a potential means to identify the phase state of hydrometeors.

  4. Seasonal variations of snow chemistry and mineral dust in the snow pit at GV7, Antarctica

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Ho; Hwang, Heejin; Han, Yongchoul; Hong, Sang Bum; Lee, Khanghyun; Do Hur, Soon; Frezzotti, Massimo; Narcisi, Biancamaria

    2015-04-01

    We conducted the scientific ice coring project led by PNRA and KOPRI during the 2013/2014 Italian-Korean Antarctic Expedition in the framework of International Partnerships in Ice Core Science (IPICS) to understand the climatic variability in the last 2000 years. In the part of project, we collected a 3.0 m-depth snow pit at the site of GV7 (S 70° 41'17.1", E 158° 51'48.9", 1950 m a.s.l.), Antarctica. Here, we present the results obtained from the analysis of the water isotope compositions, the major ion concentrations, and the mineral dust concentrations from the snow pit. Snow densities and temperatures also measured in the field. At KOPRI, the samples were melted, then the stable water isotopes, major ions, and particle size distribution were analyzed with the cavity ring-down spectrometers (L1102-i, Piccaro), ion chromatography (ICS-2100, Thermo), and coulter counter (Multisizer 3, Beckman Coulter), respectively. The δ18O varies between -38.3 and -24.1o with a mean value of -31.0o. The δD ranges between -331 and -186o with a mean value of -243o. Among the ion concentrations (Na+, Ca2+, Mg2+, Cl-, SO42-, CH3SO3-(MSA)) from the snow pit, MSA concentrations show a clear seasonal variation. The mineral dust in the pit characterized with the differences of the concentration and the particle size distribution by the seasonality. These data allow us to assume about 4.5 years of snow deposition covered from 2009 to 2013 by these oscillations of the isotopes and geochemical characteristics.

  5. Resilience to Changing Snow Depth in a Shrubland Ecosystem.

    NASA Astrophysics Data System (ADS)

    Loik, M. E.

    2008-12-01

    Snowfall is the dominant hydrologic input for high elevations and latitudes of the arid- and semi-arid western United States. Sierra Nevada snowpack provides numerous important services for California, but is vulnerable to anthropogenic forcing of the coupled ocean-atmosphere system. GCM and RCM scenarios envision reduced snowpack and earlier melt under a warmer climate, but how will these changes affect soil and plant water relations and ecosystem processes? And, how resilient will this ecosystem be to short- and long-term forcing of snow depth and melt timing? To address these questions, our experiments utilize large- scale, long-term roadside snow fences to manipulate snow depth and melt timing in eastern California, USA. Interannual snow depth averages 1344 mm with a CV of 48% (April 1, 1928-2008). Snow fences altered snow melt timing by up to 18 days in high-snowfall years, and affected short-term soil moisture pulses less in low- than medium- or high-snowfall years. Sublimation in this arid location accounted for about 2 mol m- 2 of water loss from the snowpack in 2005. Plant water potential increased after the ENSO winter of 2005 and stayed relatively constant for the following three years, even after the low snowfall of winter 2007. Over the long-term, changes in snow depth and melt timing have impacted cover or biomass of Achnatherum thurberianum, Elymus elemoides, and Purshia tridentata. Growth of adult conifers (Pinus jeffreyi and Pi. contorta) was not equally sensitive to snow depth. Thus, complex interactions between snow depth, soil water inputs, physiological processes, and population patterns help drive the resilience of this ecosystem to changes in snow depth and melt timing.

  6. Prototyping and Testing a Wireless Sensor Network to Retrieve SWE at High Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Kang, D.; Barros, A. P.

    2007-12-01

    A critical challenge in snow research from space is the ability to obtain measurements at the spatial and temporal resolution to characterize the statistical structure of the space-time variability of the physical properties of the snowpack within an area consistent with the pixel resolution in snow hydrology models or that expected from a future NASA mission dedicated to cold region processes. That is, observations of relevant snow dielectric properties are necessary at high spatial and temporal resolution during the accumulation and melt seasons. We present a new wireless sensor network prototype consisting of multiple antennas and buried low-power, multi- channel transmitters operating in L-band that communicate to a central pod equipped with a Vector Signal Analyzer (VSA) that receives, processes and manages the data. Only commercial off-the-shelf hard-ware parts were used to build the sensors. Because the sensors are very low cost and run autonomously, one envisions that self-organizing networks of large numbers of such sensors might be distributed over very large areas, therefore proving much needed data sets for scaling studies. The measurement strategy consists of placing the transmitters the land surface in the beginning of the snow season which are then run autonomously till the end of the spring and waken at pre-determined time-intervals to emit radio frequency signals and thus sample the snowpack. Along with the sensors, an important component of this work entails the development of an estimation algorithm to estimate snow dielectric properties, snow density, and volume fraction of snow (VF) from the time-of-travel, amplitude and phase modification of the multi-channel RF signals as they propagate through the snow-pack. Here, we present results from full system testing and evaluation of the sensors that were conducted at Duke University using ¢®¡Æsynthetic¢®¡¾ limited-area snowpacks (0.5 by 0.5 m2 and 1 by 2 m2) constructed of various combinations of foam layers of different porosities to simulate heterogeneous distributions of water. The existing sensors are currently being primed for field deployment. Discussion is also presented regarding further technology development including power usage, networking, and distribution and operations in remote regions.

  7. Investigating the effect and uncertainties of light absorbing impurities in snow and ice on snow melt and discharge generation using a hydrologic catchment model and satellite data

    NASA Astrophysics Data System (ADS)

    Matt, Felix; Burkhart, John F.

    2017-04-01

    Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of short wave radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the magnitude of these effects as simulated in numerical models have large uncertainties, originating mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters and evaluate the simulated variables connected with the representation of LAISI. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI, a key variable in understanding snowpack energy-balance dynamics. In this study, we assess the effect of LAISI on snow melt and discharge generation and the involved uncertainties in a high mountain catchment located in the western Himalayas by using a distributed hydrological catchment model with focus on the representation of the seasonal snow pack. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of short wave radiation by LAISI into account. Meteorological forcing data is generated from an assimilation of observations and high resolution WRF simulations, and LAISI mixing ratios from deposition rates of Black Carbon simulated with the FLEXPART model. To asses the quality of our simulations and the related uncertainties, we compare the simulated additional energy absorbed by the snow due to the presence of LAISI to the MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithm satellite product.

  8. Contribution of Lake-Effect Snow to the Catskill Mountains Snowpack

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Digirolamo, Nicolo E.; Frei, Allan

    2017-01-01

    Meltwater from snow that falls in the Catskill Mountains in southern New York contributes to reservoirs that supply drinking water to approximately nine million people in New York City. Using the NOAA National Ice Centers Interactive Multisensor Snow and Ice Mapping System (IMS) 4km snow maps, we have identified at least 32 lake-effect (LE) storms emanating from Lake Erie andor Lake Ontario that deposited snow in the CatskillDelaware Watershed in the Catskill Mountains of southern New York State between 2004 and 2017. This represents a large underestimate of the contribution of LE snow to the Catskills snowpack because many of the LE snowstorms are not visible in the IMS snow maps when they travel over snow-covered terrain. Most of the LE snowstorms that we identified originate from Lake Ontario but quite a few originate from both Erie and Ontario, and a few from Lake Erie alone. Using satellite, meteorological and reanalysis data we identify conditions that contributed to LE snowfall in the Catskills. Clear skies following some of the storms permitted measurement of the extent of snow cover in the watershed using multiple satellite sensors. IMS maps tend to overestimate the extent of snow compared to MODerate resolution Imaging Spectroradiometer (MODIS) and Landsat-derived snow-cover extent maps. Using this combination of satellite and meteorological data, we can begin to quantify the important contribution of LE snow to the Catskills Mountain snowpack. Changes that are predicted in LE snowfall from the Great Lakes could impact the distribution of rain vs snow in the Catskills which may affect future reservoir operations in the NYC Water Supply System.

  9. Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Harder, Phillip; Schirmer, Michael; Pomeroy, John; Helgason, Warren

    2016-11-01

    Quantifying the spatial distribution of snow is crucial to predict and assess its water resource potential and understand land-atmosphere interactions. High-resolution remote sensing of snow depth has been limited to terrestrial and airborne laser scanning and more recently with application of structure from motion (SfM) techniques to airborne (manned and unmanned) imagery. In this study, photography from a small unmanned aerial vehicle (UAV) was used to generate digital surface models (DSMs) and orthomosaics for snow cover at a cultivated agricultural Canadian prairie and a sparsely vegetated Rocky Mountain alpine ridgetop site using SfM. The accuracy and repeatability of this method to quantify snow depth, changes in depth and its spatial variability was assessed for different terrain types over time. Root mean square errors in snow depth estimation from differencing snow-covered and non-snow-covered DSMs were 8.8 cm for a short prairie grain stubble surface, 13.7 cm for a tall prairie grain stubble surface and 8.5 cm for an alpine mountain surface. This technique provided useful information on maximum snow accumulation and snow-covered area depletion at all sites, while temporal changes in snow depth could also be quantified at the alpine site due to the deeper snowpack and consequent higher signal-to-noise ratio. The application of SfM to UAV photographs returns meaningful information in areas with mean snow depth > 30 cm, but the direct observation of snow depth depletion of shallow snowpacks with this method is not feasible. Accuracy varied with surface characteristics, sunlight and wind speed during the flight, with the most consistent performance found for wind speeds < 10 m s-1, clear skies, high sun angles and surfaces with negligible vegetation cover.

  10. Trace gas and vegetation feedback responses of Alaskan tussock tundra to long-term snow depth manipulations

    NASA Astrophysics Data System (ADS)

    Ebbs, L. M.; Taneva, L.; Sullivan, P.; Welker, J. M.

    2009-12-01

    Changes in the precipitation and temperature regimes in Northern Alaska are manifesting themselves through shifts in sea ice, vegetation traits, animal migration timing and hydrologic dynamics. Changes in precipitation and soil temperature result in changes in plant mineral nutrition, soil nutrient availability, trace gas exchanges and differential nutrient acquisition strategies by arctic plants. In this study, we report on the extent to which long-term increases in snow depth, along with reductions in snow depth alter the magnitudes and pattern of CO2 exchange, soil properties and vegetation traits. A doubling of snow depth (from ~0.5 to ~1.0m) results in a delay of the growing season by ~ 2 weeks, however, by peak season, the rates of CO2 exchange are 50% higher in areas which had experienced deeper snow depth levels. To the contrary, long-term reductions in snow depth results in accelerated rates of plant phenology, however CO2 exchange rates at peak season are 30% less than those areas under ambient snow cover in the preceding winter. Reduced snow depth areas had the coldest winter soil temperatures while the deeper areas had the warmest winter soil temperatures, which may partially explain the summer CO2 fluxes indirectly via different rates of winter N mineralization and differences in leaf N properties. Our results indicate that shifting fall, winter and spring when snow is the primary form of precipitation, may have profound effects on tussock tundra systems.

  11. Enhancement of the MODIS Daily Snow Albedo Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Schaaf, Crystal B.; Wang, Zhuosen; Riggs, George A.

    2009-01-01

    The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we compare a daily version of MCD43B3 with the daily albedo from MOD10A1. and MCD43B3 with a 16-day average of MOD10A1, over Greenland. We also discuss some near-future planned enhancements to MOD10A1.

  12. Comparison of Bi-directional Reflectance Distribution Functions of Black Spruce Forest in Snow and No-snow Seasons in Alaska

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Nagai, S.; Nakai, T.; Kim, Y.

    2011-12-01

    The Bidirectional Reflectance Distribution Function (BRDF) of the forest is an important clue for remote sensing to reveal the forest structure such as Leaf Area Index (LAI) and above-ground biomass. The BRDF is required for the robust development of forest radiative transfer model, which is applied to the forest structure analysis based on satellite data. To acquire in-situ BRDF of the forest, we carried out the field survey of BRDFs at a boreal forest in no-snow season (July 2010) and snow season (March 2011) in Alaska, and compared them. A black spruce forest, a typical boreal evergreen forest in Alaska, located in the Poker Flat Research Range of University of Alaska Fairbanks (65 07'24"N, 147 29'15"W, 210 m MSL) was targeted. Since the forest homogeneously extends about 500 m wide and the terrain is relatively even, this forest site is highly suitable for the validation of the remote sensing measurement. The tree stand density was about 4000 tree/ha, and the highest tree was 6.4 m. The forest floor is covered by the green vegetation such as moss and grass in summer, while the vegetation on the floor is completely covered by snow during winter and early spring. The observations of the BRDF taken place around the noon of July 7 and 8, 2010 (no-snow season) and March 16 and 17, 2011 (snow season) from the top of the tower (17 m) constructed in the forest. We measured the reflected irradiance from the forest by the spectroradiometer (MS-720; EKO Instruments) changing the viewing angle from 20 to 70 degrees and -20 to -70 degrees(off-nadir angle; positive and negative angles mean forward and back scatter angles, respectively) with 5 degrees interval in the principal plane. Irradiances in the orthogonal (cross) plane were also measured in the same manner. The global radiation was simultaneously measured by the other spectroradiometer for the calculation of the reflectance. The BRDF in the principal plane in the no-snow season showed a kind of bowl-shape distribution with its minimum and maximum at approximately 30 and -70 degrees in visible and near-infrared bands, respectively, that is, the forward scatter was generally smaller than the back scatter. By contrast, in the snow season, the back scatter was generally smaller than the forward scatter, that is, the reverse of that in the no-snow season. These results will be used for the development of the forest radiative transfer model aimed to evaluate the forest biodiversity and ecosystem functions.

  13. Modeling Patterns of Precipitation Phase in the Central Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Strikas, O.; Pavelsky, T.

    2013-12-01

    Snowpack provides 75% of summer hydrologic flow in the western United States. This summer flow is vitally important in California, the country's leading producer of agriculture, with $43.5 billion dollars in cash receipts in 2011. Snowpack in the California Sierra Nevada has declined by approximately half from 1900 to 1990. In this study, we use the Weather Research and Forecasting (WRF) regional climate model at a 3km resolution to understand the critical temperature window at which both snow and rain fall for the Central Sierra Nevada during the 2002 water year. Results suggest that temperature and snow fraction [snowfall / (snowfall + rainfall)] share a logistic relationship with the snow fraction being 1 until approximately 272 K, then the snow fraction decreases by approximately 22%/K leveling at 0 snow fraction at 276.5 K. We further examine the spatial patterns of temperatures, precipitation amounts, and precipitation types in the Sierra Nevada to determine the areas of greatest potential snow to rain transition under a future warmer climate. Preliminary results suggest that the high risk areas are at the low to mid elevations. This research provides evidence that even a minor increase in temperature (+0.5 K) will yield changes in spring and summer hydrographs for the region. The spatial variability of IPCC temperature regime change for 2050 and 2100 will be downscaled for a higher resolution prediction of precipitation. It is currently under investigation how the proposed IPCC (A1 and B2) predictions of climate change for the region by 2050 (+2.7 K; +1.6 K ) and 2100 (+4.4 K; +2.7 K) will alter the corresponding annual river hydrographs. Given the complex topography of the Sierra Nevada, several spatial interpolations using GIS and statistical algorithms will be executed to render this high resolution (3km) output. Other future work with collaborators intends to model the agricultural risk associated with our predicted changes. This plot demonstrates the relation between temperature and snow fraction. The red line represents 273 K. The Loess regression (and its standard error) is shown in black (gray). It indicates a snow fraction decrease that begins 272.5 K and finishes with 100% rain at 277.5 K.

  14. Snowpack spatial variability: Towards understanding its effect on remote sensing measurements and snow slope stability

    NASA Astrophysics Data System (ADS)

    Marshall, Hans-Peter

    The distribution of water in the snow-covered areas of the world is an important climate change indicator, and it is a vital component of the water cycle. At local and regional scales, the snow water equivalent (SWE), the amount of liquid water a given area of the snowpack represents, is very important for water resource management, flood forecasting, and prediction of available hydropower energy. Measurements from only a few automatic weather stations, such as the SNOTEL network, or sparse manual snowpack measurements are typically extrapolated for estimating SWE over an entire basin. Widespread spatial variability in the distribution of SWE and snowpack stratigraphy at local scales causes large errors in these basin estimates. Remote sensing measurements offer a promising alternative, due to their large spatial coverage and high temporal resolution. Although snow cover extent can currently be estimated from remote sensing data, accurately quantifying SWE from remote sensing measurements has remained difficult, due to a high sensitivity to variations in grain size and stratigraphy. In alpine snowpacks, the large degree of spatial variability of snowpack properties and geometry, caused by topographic, vegetative, and microclimatic effects, also makes prediction of snow avalanches very difficult. Ground-based radar and penetrometer measurements can quickly and accurately characterize snowpack properties and SWE in the field. A portable lightweight radar was developed, and allows a real-time estimate of SWE to within 10%, as well as measurements of depths of all major density transitions within the snowpack. New analysis techniques developed in this thesis allow accurate estimates of mechanical properties and an index of grain size to be retrieved from the SnowMicroPenetrometer. These two tools together allow rapid characterization of the snowpack's geometry, mechanical properties, and SWE, and are used to guide a finite element model to study the stress distribution on a slope. The ability to accurately characterize snowpack properties at much higher resolutions and spatial extent than previously possible will hopefully help lead to a more complete understanding of spatial variability, its effect on remote sensing measurements and snow slope stability, and result in improvements in avalanche prediction and accuracy of SWE estimates from space.

  15. The summer snow cover anomaly over the Tibetan Plateau and its association with simultaneous precipitation over the mei-yu-baiu region

    NASA Astrophysics Data System (ADS)

    Liu, Ge; Wu, Renguang; Zhang, Yuanzhi; Nan, Sulan

    2014-07-01

    The summer snow anomalies over the Tibetan Plateau (TP) and their effects on climate variability are often overlooked, possibly due to the fact that some datasets cannot properly capture summer snow cover over high terrain. The satellite-derived Equal-Area Scalable Earth grid (EASE-grid) dataset shows that snow still exists in summer in the western part and along the southern flank of the TP. Analysis demonstrates that the summer snow cover area proportion (SCAP) over the TP has a significant positive correlation with simultaneous precipitation over the mei-yu-baiu (MB) region on the interannual time scale. The close relationship between the summer SCAP and summer precipitation over the MB region could not be simply considered as a simultaneous response to the Silk Road pattern and the SST anomalies in the tropical Indian Ocean and tropical central-eastern Pacific. The SCAP anomaly has an independent effect and may directly modulate the land surface heating and, consequently, vertical motion over the western TP, and concurrently induce anomalous vertical motion over the North Indian Ocean via a meridional vertical circulation. Through a zonal vertical circulation over the tropics and a Kelvin wave-type response, anomalous vertical motion over the North Indian Ocean may result in an anomalous high over the western North Pacific and modulate the convective activity in the western Pacific warm pool, which stimulates the East Asia-Pacific (EAP) pattern and eventually affects summer precipitation over the MB region.

  16. Snow Cover Mapping at the Continental to Global Scale Using Combined Visible and Passive Microwave Satellite Data

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Brodzik, M.; Savoie, M. H.

    2007-12-01

    Over the past several decades both visible and passive microwave satellite data have been utilized for snow mapping at the continental to global scale. Snow mapping using visible data has been based primarily on the magnitude of the surface reflectance, and in more recent cases on specific spectral signatures, while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. We describe the respective problems as well as the advantages and disadvantages of these two types of satellite data for snow cover mapping and demonstrate how a multi-sensor approach is optimal. For the period 1978 to present we combine data from the NOAA weekly snow charts with snow cover derived from the SMMR and SSM/I brightness temperature data. For the period since 2002 we blend NASA EOS MODIS and AMSR-E data sets. Our current product incorporates MODIS data from the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) with microwave-derived snow water equivalent (SWE) at 25 km, resulting in a blended product that includes percent snow cover in the larger grid cell whenever the microwave SWE signal is absent. Validation of AMSR-E at the brightness temperature level is provided through the comparison with data from the well-calibrated heritage SSM/I sensor over large homogeneous snow-covered surfaces (e.g. Dome C region, Antarctica). We also describe how the application of the higher frequency microwave channels (85 and 89 GHz)enhances accurate mapping of shallow and intermittent snow cover.

  17. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014

    PubMed Central

    Chen, Xiaona; Liang, Shunlin; Cao, Yunfeng; He, Tao; Wang, Dongdong

    2015-01-01

    Quantifying and attributing the phenological changes in snow cover are essential for meteorological, hydrological, ecological, and societal implications. However, snow cover phenology changes have not been well documented. Evidence from multiple satellite and reanalysis data from 2001 to 2014 points out that the snow end date (De) advanced by 5.11 (±2.20) days in northern high latitudes (52–75°N) and was delayed by 3.28 (±2.59) days in northern mid-latitudes (32–52°N) at the 90% confidence level. Dominated by changes in De, snow duration days (Dd) was shorter in duration by 5.57 (±2.55) days in high latitudes and longer by 9.74 (±2.58) days in mid-latitudes. Changes in De during the spring season were consistent with the spatiotemporal pattern of land surface albedo change. Decreased land surface temperature combined with increased precipitation in mid-latitudes and significantly increased land surface temperature in high latitudes, impacted by recent Pacific surface cooling, Arctic amplification and strengthening westerlies, result in contrasting changes in the Northern Hemisphere snow cover phenology. Changes in the snow cover phenology led to contrasting anomalies of snow radiative forcing, which is dominated by De and accounts for 51% of the total shortwave flux anomalies at the top of the atmosphere. PMID:26581632

  18. Spatial Variability of Soil-Water Storage in the Southern Sierra Critical Zone Observatory: Measurement and Prediction

    NASA Astrophysics Data System (ADS)

    Oroza, C.; Bales, R. C.; Zheng, Z.; Glaser, S. D.

    2017-12-01

    Predicting the spatial distribution of soil moisture in mountain environments is confounded by multiple factors, including complex topography, spatial variably of soil texture, sub-surface flow paths, and snow-soil interactions. While remote-sensing tools such as passive-microwave monitoring can measure spatial variability of soil moisture, they only capture near-surface soil layers. Large-scale sensor networks are increasingly providing soil-moisture measurements at high temporal resolution across a broader range of depths than are accessible from remote sensing. It may be possible to combine these in-situ measurements with high-resolution LIDAR topography and canopy cover to estimate the spatial distribution of soil moisture at high spatial resolution at multiple depths. We study the feasibility of this approach using six years (2009-2014) of daily volumetric water content measurements at 10-, 30-, and 60-cm depths from the Southern Sierra Critical Zone Observatory. A non-parametric, multivariate regression algorithm, Random Forest, was used to predict the spatial distribution of depth-integrated soil-water storage, based on the in-situ measurements and a combination of node attributes (topographic wetness, northness, elevation, soil texture, and location with respect to canopy cover). We observe predictable patterns of predictor accuracy and independent variable ranking during the six-year study period. Predictor accuracy is highest during the snow-cover and early recession periods but declines during the dry period. Soil texture has consistently high feature importance. Other landscape attributes exhibit seasonal trends: northness peaks during the wet-up period, and elevation and topographic-wetness index peak during the recession and dry period, respectively.

  19. Simulating the Dependence of Aspen on Redistributed Snow

    NASA Astrophysics Data System (ADS)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Winstral, A. H.

    2013-12-01

    In mountainous regions across the western USA, the distribution of aspen (Populus tremuloides) is often directly related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) in southwest Idaho provides a unique opportunity to study the relationship between aspen and redistributed snow. Within the RCEW, the total amount of precipitation has not changed in the past 50 years, but there are sharp declines in the percentage of the precipitation falling as snow. As shifts in the distribution of available moisture continue, future trends in aspen net primary productivity (NPP) remain uncertain. In order to assess the importance of snowdrift subsidies, NPP of three aspen stands was simulated at sites spanning elevational and precipitation gradients using the biogeochemical process model BIOME-BGC. At the aspen site experiencing the driest climate and lowest amount of precipitation from snow, approximately 400 mm of total precipitation was measured from November to March of 2008. However, peak measured snow water equivalent (SWE) held in drifts directly upslope of this stand was approximately 2100 mm, 5 times more moisture than the uniform winter precipitation layer initially assumed by BIOME-BGC. BIOME-BGC simulations in dry years forced by adjusted precipitation data resulted in NPP values approximately 30% higher than simulations assuming a uniform precipitation layer. Using BIOME-BGC and climate data from 1985-2011, the relationship between simulated NPP and measured basal area increments (BAI) improved after accounting for redistributed snow, indicating increased simulation representation. In addition to improved simulation capabilities, soil moisture data, diurnal branch water potential, and stomatal conductance observations at each site detail the use of soil moisture in the rooting zone and the onset of drought stress occurring in stands located along a precipitation phase gradient. These results further emphasize the importance of redistributed snow in heterogeneous landscapes along with the need to account for temporal shifts in water resource availability when assessing ecosystem vulnerability to climate change.

  20. Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations and potential impact on snow albedo and radiative forcing

    NASA Astrophysics Data System (ADS)

    Li, Xiaofei; Kang, Shichang; Zhang, Guoshuai; Qu, Bin; Tripathee, Lekhendra; Paudyal, Rukumesh; Jing, Zhefan; Zhang, Yulan; Yan, Fangping; Li, Gang; Cui, Xiaoqing; Xu, Rui; Hu, Zhaofu; Li, Chaoliu

    2018-02-01

    Light-absorbing impurities (LAIs), such as organic carbon (OC), black carbon (BC), and mineral dust (MD), deposited on the surface snow of glacier can reduce the surface albedo. As there exists insufficient knowledge to completely characterize LAIs variations and difference in LAIs distributions, it is essential to investigate the behaviors of LAIs and their influence on the glaciers across the Tibetan Plateau (TP). Therefore, surface snow and snowpit samples were collected during September 2014 to September 2015 from Zhadang (ZD) glacier in the southern TP to investigate the role of LAIs in the glacier. LAIs concentrations were observed to be higher in surface aged snow than in the fresh snow possibly due to post-depositional processes such as melting or sublimation. The LAIs concentrations showed a significant spatial distribution and marked negative relationship with elevation. Impurity concentrations varied significantly with depth in the vertical profile of the snowpit, with maximum LAIs concentrations frequently occurred in the distinct dust layers which were deposited in non-monsoon, and the bottom of snowpit due to the eluviation in monsoon. Major ions in snowpit and backward trajectory analysis indicated that regional activities and South Asian emissions were the major sources. According to the SNow ICe Aerosol Radiative (SNICAR) model, the average simulated albedo caused by MD and BC in aged snow collected on 31 May 2015 accounts for about 13% ± 3% and 46% ± 2% of the albedo reduction. Furthermore, we also found that instantaneous RF caused by MD and BC in aged snow collected on 31 May 2015 varied between 4-16 W m- 2 and 7-64 W m- 2, respectively. The effect of BC exceeds that of MD on albedo reduction and instantaneous RF in the study area, indicating that BC played a major role on the surface of the ZD glacier.

  1. Comparative spring-staging ecology of sympatric arctic-nesting geese in south-central Nebraska

    USGS Publications Warehouse

    Pearse, Aaron T.; Krapu, Gary L.; Cox, Robert R.

    2013-01-01

    The Rainwater Basin in Nebraska has been a historic staging area for midcontinent greater white-fronted geese (Anser albifrons frontalis) since the 1950s and, in the mid-1990s, millions of midcontinent lesser snow geese (Chen caerulescens caerulescens) expanded their spring migration route to include this region. In response to speculation that snow geese may be in direct competition with white-fronted geese, we compared staging ecology by quantifying diet, habitat use, movement patterns, and time budgets during springs 1998–1999. Collected white-fronted geese (n  =  190) and snow geese (n  =  203) consumed primarily corn (Zea mays; 97–98% aggregate dry mass) while staging in Nebraska; thus, diet overlap was nearly complete. Both species used cornfields most frequently during the morning (54–55%) and wetlands more during the afternoon (51–65%). When found grouped together, snow goose abundance was greater than white-fronted goose abundance by an average of 57 times (se  =  11, n  =  131 groups) in crop fields and 28 times (se  =  9, n  =  84 groups) in wetlands. Snow geese and white-fronted geese flew similar distances between roosting and feeding sites, leaving and returning to wetland roost sties at similar times in mornings and afternoons. Overlap in habitat-specific time budgets was high; resting was the most common behavior on wetlands, and foraging was a common behavior in fields. We observed 111 interspecific agonistic interactions while observing white-fronted and snow geese. White-fronted geese initiated and dominated more interactions with other waterfowl species than did snow geese (32 vs. 14%). Certain aspects of spring-staging niches (i.e., diet, habitat use, movement patterns, and habitat-specific behavior) of white-fronted and snow geese overlapped greatly at this mid-latitude staging site, creating opportunity for potential food- and habitat-based competition between species. Snow geese did not consistently dominate interactions with white-fronted geese; yet large differences in their numbers coupled with high degrees of spatial, temporal, and ecological overlap support potential for exploitative competition during years when waste corn may be in short supply and dry years when few wetlands are available for staging waterfowl.

  2. Refreezing on the Greenland ice sheet: a model comparison

    NASA Astrophysics Data System (ADS)

    Steger, Christian; Reijmer, Carleen; van den Broeke, Michiel; Ligtenberg, Stefan; Kuipers Munneke, Peter; Noël, Brice

    2016-04-01

    Mass loss of the Greenland ice sheet (GrIS) is an important contributor to global sea level rise. Besides calving, surface melt is the dominant source of mass loss. However, only part of the surface melt leaves the ice sheet as runoff whereas the other part percolates into the snow cover and refreezes. Due to this process, part of the meltwater is (intermediately) stored. Refreezing thus impacts the surface mass balance of the ice sheet but it also affects the vertical structure of the snow cover due to transport of mass and energy. Due to the sparse availability of in situ data and the demand of future projections, it is inevitable to use numerical models to simulate refreezing and related processes. Currently, the magnitude of refrozen mass is neither well constrained nor well validated. In this study, we model the snow and firn layer, and compare refreezing on the GrIS as modelled with two different numerical models. Both models are forced with meteorological data from the regional climate model RACMO 2 that has been shown to simulate realistic conditions for Greenland. One model is the UU/IMAU firn densification model (FDM) that can be used both in an on- and offline mode with RACMO 2. The other model is SNOWPACK; a model originally designed to simulate seasonal snow cover in alpine conditions. In contrast to FDM, SNOWPACK accounts for snow metamorphism and microstructure and contains a more physically based snow densification scheme. A first comparison of the models indicates that both seem to be able to capture the general spatial and temporal pattern of refreezing. Spatially, refreezing occurs mostly in the ablation zone and decreases in the accumulation zone towards the interior of the ice sheet. Below the equilibrium line altitude (ELA) where refreezing occurs in seasonal snow cover on bare ice, the storage effect is only intermediate. Temporal patterns on a seasonal range indicate two peaks in refreezing; one at the beginning of the melt season where water infiltrates the cold snow pack and one in early winter where the penetration of the cold surface temperature refreezes the retained liquid water. However, the model comparison reveals differences especially close to the equilibrium line where refreezing and runoff seem to be highly sensitive to the exact model formulation and fresh snow density initialization. Furthermore, SNOWPACK's densification scheme generally underestimates densification rates in case of high overburden pressure.

  3. Estimation of snow albedo reduction by light absorbing impurities using Monte Carlo radiative transfer model

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Gao, L.; Wilcox, E. M.; Beres, N. D.; Moosmüller, H.; Khlystov, A.

    2017-12-01

    Radiative forcing and climate change greatly depends on earth's surface albedo and its temporal and spatial variation. The surface albedo varies greatly depending on the surface characteristics ranging from 5-10% for calm ocean waters to 80% for some snow-covered areas. Clean and fresh snow surfaces have the highest albedo and are most sensitive to contamination with light absorbing impurities that can greatly reduce surface albedo and change overall radiative forcing estimates. Accurate estimation of snow albedo as well as understanding of feedbacks on climate from changes in snow-covered areas is important for radiative forcing, snow energy balance, predicting seasonal snowmelt, and run off rates. Such information is essential to inform timely decision making of stakeholders and policy makers. Light absorbing particles deposited onto the snow surface can greatly alter snow albedo and have been identified as a major contributor to regional climate forcing if seasonal snow cover is involved. However, uncertainty associated with quantification of albedo reduction by these light absorbing particles is high. Here, we use Mie theory (under the assumption of spherical snow grains) to reconstruct the single scattering parameters of snow (i.e., single scattering albedo ῶ and asymmetry parameter g) from observation-based size distribution information and retrieved refractive index values. The single scattering parameters of impurities are extracted with the same approach from datasets obtained during laboratory combustion of biomass samples. Instead of using plane-parallel approximation methods to account for multiple scattering, we have used the simple "Monte Carlo ray/photon tracing approach" to calculate the snow albedo. This simple approach considers multiple scattering to be the "collection" of single scattering events. Using this approach, we vary the effective snow grain size and impurity concentrations to explore the evolution of snow albedo over a wide wavelength range (300 nm - 2000 nm). Results will be compared with the SNICAR model to better understand the differences in snow albedo computation between plane-parallel methods and the statistical Monte Carlo methods.

  4. Snow depth on Arctic and Antarctic sea ice derived from autonomous (Snow Buoy) measurements

    NASA Astrophysics Data System (ADS)

    Nicolaus, Marcel; Arndt, Stefanie; Hendricks, Stefan; Heygster, Georg; Huntemann, Marcus; Katlein, Christian; Langevin, Danielle; Rossmann, Leonard; Schwegmann, Sandra

    2016-04-01

    The snow cover on sea ice received more and more attention in recent sea ice studies and model simulations, because its physical properties dominate many sea ice and upper ocean processes. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of sea ice, as well as for the interaction with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for sea ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic sea ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic sea ice, no such climatology is available. With a few exceptions, snow depth on sea ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on sea ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic and Arctic sea ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on sea ice and will allow new insights into its seasonality. In addition, the instruments report air temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell Sea for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences. Finally, results from seven snow buoys co-deployed on Arctic sea ice throughout the winter season 2015/16 suggest the great importance of local effects, weather events, and potential influences of dynamic sea ice processes on snow accumulation.

  5. NASA sea ice and snow validation plan for the Defense Meteorological Satellite Program special sensor microwave/imager

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J. (Editor); Swift, Calvin T. (Editor)

    1987-01-01

    This document addresses the task of developing and executing a plan for validating the algorithm used for initial processing of sea ice data from the Special Sensor Microwave/Imager (SSMI). The document outlines a plan for monitoring the performance of the SSMI, for validating the derived sea ice parameters, and for providing quality data products before distribution to the research community. Because of recent advances in the application of passive microwave remote sensing to snow cover on land, the validation of snow algorithms is also addressed.

  6. A snow cover climatology for the Pyrenees from MODIS snow products

    NASA Astrophysics Data System (ADS)

    Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sánchez, R.

    2014-11-01

    The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (we) and 105 mm respectively, for both MOD10A1 and MYD10A1. Kappa coefficients are within 0.74 and 0.92 depending on the product and the variable. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both datasets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decreases over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gapfilling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band. We finally analyze the snow patterns for the atypical winter 2011-2012. Snow cover duration anomalies reveal a deficient snowpack on the Spanish side of the Pyrenees, which seems to have caused a drop in the national hydropower production.

  7. Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel

    2016-04-01

    The better understanding of temporal variability and regional distribution of surface melt on Antarctic sea ice is crucial for the understanding of atmosphere-ocean interactions and the determination of mass and energy budgets of sea ice. Since large regions of Antarctic sea ice are covered with snow during most of the year, observed inter-annual and regional variations of surface melt mainly represents melt processes in the snow. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study we combine two approaches for observing both surface and volume snowmelt by means of passive microwave satellite data. The former is achieved by measuring diurnal differences of the brightness temperature TB at 37 GHz, the latter by analyzing the ratio TB(19GHz)/TB(37GHz). Moreover, we use both melt onset proxies to divide the Antarctic sea ice cover into characteristic surface melt patterns from 1988/89 to 2014/15. Our results indicate four characteristic melt types. On average, 43% of the ice-covered ocean shows diurnal freeze-thaw cycles in the surface snow layer, resulting in temporary melt (Type A), less than 1% shows continuous snowmelt throughout the snowpack, resulting in strong melt over a period of several days (Type B), 19% shows Type A and B taking place consecutively (Type C), and for 37% no melt is observed at all (Type D). Continuous melt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 20 days after the onset of temporary melt. Considering the entire data set, snowmelt processes and onset do not show significant temporal trends. Instead, areas of increasing (decreasing) sea-ice extent have longer (shorter) periods of continuous snowmelt.

  8. Seasonal thickness changes of Arctic sea ice north of Svalbard and implications for satellite remote sensing, ecosystem, and environmental management

    NASA Astrophysics Data System (ADS)

    Gerland, S.; Rösel, A.; King, J.; Spreen, G.; Divine, D.; Eltoft, T.; Gallet, J. C.; Hudson, S. R.; Itkin, P.; Krumpen, T.; Liston, G. E.; Merkouriadi, I.; Negrel, J.; Nicolaus, M.; Polashenski, C.; Assmy, P.; Barber, D. G.; Duarte, P.; Doulgeris, A. P.; Haas, C.; Hughes, N.; Johansson, M.; Meier, W.; Perovich, D. K.; Provost, C.; Richter-Menge, J.; Skourup, H.; Wagner, P.; Wilkinson, J.; Granskog, M. A.; Steen, H.

    2016-12-01

    Sea-ice thickness is a crucial parameter to consider when assessing the status of Arctic sea ice, whether for environmental management, monitoring projects, or regional or pan-arctic assessments. Modern satellite remote sensing techniques allow us to monitor ice extent and to estimate sea-ice thickness changes; but accurate quantifications of sea-ice thickness distribution rely on in situ and airborne surveys. From January to June 2015, an international expedition (N-ICE2015) took place in the Arctic Ocean north of Svalbard, with the Norwegian research vessel RV Lance frozen into drifting sea ice. In total, four drifts, with four different floes were made during that time. Sea-ice and snow thickness measurements were conducted on all main ice types present in the region, first year ice, multiyear ice, and young ice. Measurement methods included ground and helicopter based electromagnetic surveys, drillings, hot-wire installations, snow-sonde transects, snow stakes, and ice mass balance and snow buoys. Ice thickness distributions revealed modal thicknesses in spring between 1.6 and 1.7 m, which is lower than reported for the region from comparable studies in 2009 (2.4 m) and 2011 (1.8 m). Knowledge about the ice thickness distribution in a region is crucial to the understanding of climate processes, and also relevant to other disciplines. Sea-ice thickness data collected during N-ICE2015 can also give us insights into how ice and snow thicknesses affect ecosystem processes. In this presentation, we will explore the influence of snow cover and ocean properties on ice thickness, and the role of sea-ice thickness in air-ice-ocean interactions. We will also demonstrate how information about ice thickness aids classification of different sea ice types from SAR satellite remote sensing, which has real-world applications for shipping and ice forecasting, and how sea ice thickness data contributes to climate assessments.

  9. Snow and glacier cover assessment in the high mountains of Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Pramod Krishna, Akhouri

    2005-08-01

    This study highlights the assessment of snow and glacier cover for possible inferences of global climate change impacts in high mountains like the Himalaya. The test catchment of the River Tista lies in the Sikkim state of the Indian Himalayan region, with steep mountains crossing nearly all ecozones, from subtropical to glacial. River flows are highly fluctuating, especially during the peak rainy season and snowmelt periods. Annual rainfall patterns are non-uniform and can cause large floods. Runoff and discharge downstream are highly dependent upon snow and glacier extent. The temporary storage of frozen water brings about a delay in seasonal runoff. Snow cover built up in the higher regions during the winter months melts in the spring-summer-autumn cycles and contributes to groundwater recharge. A spatial baseline inventory of snow cover/glacier, the permanent snowline and its short-term temporal changes in the remote high-mountain areas have been analysed using multidate Indian Remote Sensing Satellite data of 1992 to 1997. A geographic information system-based overlay has led to inferences on snow cover characteristics and the alignment, dimension, slope disposition, heights of the snout and associated features of each of the glaciers. Snow and glacier recession are to be monitored in future on a long-term basis to derive correlations with climate-change parameters.

  10. The Impact Of Snow Melt On Surface Runoff Of Sava River In Slovenia

    NASA Astrophysics Data System (ADS)

    Horvat, A.; Brilly, M.; Vidmar, A.; Kobold, M.

    2009-04-01

    Snow is a type of precipitation in the form of crystalline water ice, consisting of a multitude of snowflakes that fall from clouds. Snow remains on the ground until it melts or sublimates. Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. In temperate zone like in Slovenia the snow melts in the spring and contributes certain amount of water to surface flow. This amount of water can be great and can cause serious floods in case of fast snow melt. For this reason we tried to determine the influence of snow melt on the largest river basin in Slovenia - Sava River basin, on surface runoff. We would like to find out if snow melt in Slovenian Alps can cause spring floods and how serious it can be. First of all we studied the caracteristics of Sava River basin - geology, hydrology, clima, relief and snow conditions in details for each subbasin. Furtermore we focused on snow and described the snow phenomenom in Slovenia, detailed on Sava River basin. We collected all available data on snow - snow water equivalent and snow depth. Snow water equivalent is a much more useful measurement to hydrologists than snow depth, as the density of cool freshly fallen snow widely varies. New snow commonly has a density of between 5% and 15% of water. But unfortunately there is not a lot of available data of SWE available for Slovenia. Later on we compared the data of snow depth and river runoff for some of the 40 winter seasons. Finally we analyzed the use of satellite images for Slovenia to determine the snow cover for hydrology reason. We concluded that snow melt in Slovenia does not have a greater influence on Sava River flow. The snow cover in Alps can melt fast due to higher temperatures but the water distributes and runs off slowly and does not cause floods. About use of satellite images we concluded that first of all, weather is unfavorable - lots of cloudiness in winter, and furthermore a grater part of land is covered by forest which prevents to see the snow cover on image clearly.

  11. General Report of the Researches of Snowpack Properties, Snowmelt Runoff and Evapotranspiration in Japan

    NASA Technical Reports Server (NTRS)

    Takeda, K.

    1985-01-01

    A method was developed for estimating the distribution of snow and the snow water equivalent in Japan by combining LANDSAT data with the degree day method. A snow runoff model was improved and applied to the Okutadami River basin. The Martinec Rango model from the U.S. was applied to Japanese river basins to verify its applicability. This model was then compared with the Japanese model. Analysis of microwave measurements obtained by a radiometer on a tower over dry snow in Hokkaido indicate a certain correlation between brightness temperature and snowpack properties. A correlation between brightness temperature and depth of dry snow in an inland plain area was revealed in NIMBUS SMMR data obtained from the U.S. Calculation of evaporation using airborne remote sensing data and a Priestley-Taylor type of equation shows that the differentiation of evaporation with vegetation type is not remarkable because of little evapotransportation in winter.

  12. BOREAS HYD-4 Standard Snow Course Data

    NASA Technical Reports Server (NTRS)

    Metcalfe, John R.; Goodison, Barry E.; Walker, Anne; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-4 work was focused on collecting data during the winter focused field campaign (FFC-W) to improve the understanding of winter processes within the boreal forest. Knowledge of snow cover and its variability in the boreal forest is fundamental if BOREAS is to achieve its goals of understanding the processes and states involved in the exchange of energy and water. The development and validation of remote sensing algorithms will provide the means to extend the knowledge of these processes and states from the local to the regional scale. A specific thrust of the research is the development and validation of snow cover algorithms from airborne passive microwave measurements. Snow surveys were conducted at special snow courses throughout the 1993/94, 1994/95, 1995/96, and 1996/97 winter seasons. These snow courses were located in different boreal forest land cover types (i.e., old aspen, old black spruce, young jack pine, forest clearing, etc.) to document snow cover variations throughout the season as a function of different land cover. Measurements of snow depth, density, and water equivalent were acquired on or near the first and fifteenth of each month during the snow cover season. The data are provided in tabular ASCII files. The HYD-4 standard snow course data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  13. Retrieval of Snow Properties for Ku- and Ka-band Dual-Frequency Radar

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tokay, Ali; Bliven, Larry F.

    2016-01-01

    The focus of this study is on the estimation of snow microphysical properties and the associated bulk parameters such as snow water content and water equivalent snowfall rate for Ku- and Ka-band dual-frequency radar. This is done by exploring a suitable scattering model and the proper particle size distribution (PSD) assumption that accurately represent, in the electromagnetic domain, the micro/macro-physical properties of snow. The scattering databases computed from simulated aggregates for small-to-moderate particle sizes are combined with a simple scattering model for large particle sizes to characterize snow scattering properties over the full range of particle sizes. With use of the single-scattering results, the snow retrieval lookup tables can be formed in a way that directly links the Ku- and Ka-band radar reflectivities to snow water content and equivalent snowfall rate without use of the derived PSD parameters. A sensitivity study of the retrieval results to the PSD and scattering models is performed to better understand the dual-wavelength retrieval uncertainties. To aid in the development of the Ku- and Ka-band dual-wavelength radar technique and to further evaluate its performance, self-consistency tests are conducted using measurements of the snow PSD and fall velocity acquired from the Snow Video Imager Particle Image Probe (SVIPIP) duringthe winter of 2014 at the NASA Wallops Flight Facility site in Wallops Island, Virginia.

  14. Retrieval of Snow Properties for Ku- and Ka-Band Dual-Frequency Radar

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tokay, Ali; Bliven, Larry F.

    2016-01-01

    The focus of this study is on the estimation of snow microphysical properties and the associated bulk parameters such as snow water content and water equivalent snowfall rate for Ku- and Ka-band dual-frequency radar. This is done by exploring a suitable scattering model and the proper particle size distribution (PSD) assumption that accurately represent, in the electromagnetic domain, the micro-macrophysical properties of snow. The scattering databases computed from simulated aggregates for small-to-moderate particle sizes are combined with a simple scattering model for large particle sizes to characterize snow-scattering properties over the full range of particle sizes. With use of the single-scattering results, the snow retrieval lookup tables can be formed in a way that directly links the Ku- and Ka-band radar reflectivities to snow water content and equivalent snowfall rate without use of the derived PSD parameters. A sensitivity study of the retrieval results to the PSD and scattering models is performed to better understand the dual-wavelength retrieval uncertainties. To aid in the development of the Ku- and Ka-band dual-wavelength radar technique and to further evaluate its performance, self-consistency tests are conducted using measurements of the snow PSD and fall velocity acquired from the Snow Video Imager Particle Image Probe (SVIPIP) during the winter of 2014 at the NASA Wallops Flight Facility site in Wallops Island, Virginia.

  15. Using NASA Earth Observations to Assist the National Park Service in Assessing Snow Cover Distribution and Persistence Changes in the Sky Islands

    NASA Astrophysics Data System (ADS)

    Bayat, F.; Barrow, C., III; Gonsoroski, E.; Dutta, S.; Lynn, T.; Harville, K.; Spruce, J.

    2017-12-01

    Saguaro National Park in southeastern Arizona occupies one of several unique mountain ranges known collectively as the Sky Islands or the Madrean Archipelago. The Sky Islands are biodiversity hotspots and host different ecosystems, ranging from arid deserts to temperate forests. Snowmelt provides a source of water during the dry season for various flora and fauna inhabiting the region. Climate change and its effect on snow cover is of growing concern by resource managers in this location. Currently, the National Park Service (NPS) monitors water presence via stream gauges, but a synoptic record of snow presence does not exist due to the remote and rugged topography of the region. As a result, it is difficult to study how climate change has affected water resources in the Sky Islands and what effect this has on wildlife and vegetation. This project used NASA Earth observations (e.g., Landsat data) and GIS technology to help the NPS in understanding the role of snow cover in the Sky Islands. Historical snow cover maps were compiled using a combination of snow detection indices to provide spatio-temporal information on snow presence and phenology. With a more complete understanding of snow cover trends in the park, the NPS can further analyze snow cover impacts to improve future land management decisions.

  16. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China

    NASA Astrophysics Data System (ADS)

    Huang, Xiaodong; Deng, Jie; Ma, Xiaofang; Wang, Yunlong; Feng, Qisheng; Hao, Xiaohua; Liang, Tiangang

    2016-10-01

    By combining optical remote sensing snow cover products with passive microwave remote sensing snow depth (SD) data, we produced a MODIS (Moderate Resolution Imaging Spectroradiometer) cloudless binary snow cover product and a 500 m snow depth product. The temporal and spatial variations of snow cover from December 2000 to November 2014 in China were analyzed. The results indicate that, over the past 14 years, (1) the mean snow-covered area (SCA) in China was 11.3 % annually and 27 % in the winter season, with the mean SCA decreasing in summer and winter seasons, increasing in spring and fall seasons, and not much change annually; (2) the snow-covered days (SCDs) showed an increase in winter, spring, and fall, and annually, whereas they showed a decrease in summer; (3) the average SD decreased in winter, summer, and fall, while it increased in spring and annually; (4) the spatial distributions of SD and SCD were highly correlated seasonally and annually; and (5) the regional differences in the variation of snow cover in China were significant. Overall, the SCD and SD increased significantly in south and northeast China, and decreased significantly in the north of Xinjiang province. The SCD and SD increased on the southwest edge and in the southeast part of the Tibetan Plateau, whereas it decreased in the north and northwest regions.

  17. Use of distributed snow cover information to update snow storages of a lumped rainfall-runoff model operationally

    NASA Astrophysics Data System (ADS)

    Lisniak, D.; Meissner, D.; Klein, B.; Pinzinger, R.

    2013-12-01

    The German Federal Institute of Hydrology (BfG) offers navigational water-level forecasting services on the Federal Waterways, like the rivers Rhine and Danube. In cooperation with the Federal States this mandate also includes the forecasting of flood events. For the River Rhine, the most frequented inland waterway in Central Europe, the BfG employs a hydrological model (HBV) coupled to a hydraulic model (SOBEK) by the FEWS-framework to perform daily forecasts of water-levels operationally. Sensitivity studies have shown that the state of soil water storage in the hydrological model is a major factor of uncertainty when performing short- to medium-range forecasts some days ahead. Taking into account the various additional sources of uncertainty associated with hydrological modeling, including measurement uncertainties, it is essential to estimate an optimal initial state of the soil water storage before propagating it in time, forced by meteorological forecasts, and transforming it into discharge. We show, that using the Ensemble Kalman Filter these initial states can be updated straightforward under certain hydrologic conditions. However, this approach is not sufficient if the runoff is mainly generated by snow melt. Since the snow cover evolution is modeled rather poorly by the HBV-model in our operational setting, flood events caused by snow melt are consistently underestimated by the HBV-model, which has long term effects in basins characterized by a nival runoff regime. Thus, it appears beneficial to update the snow storage of the HBV-model with information derived from regionalized snow cover observations. We present a method to incorporate spatially distributed snow cover observations into the lumped HBV-model. We show the plausibility of this approach and asses the benefits of a coupled snow cover and soil water storage updating, which combine a direct insertion with an Ensemble Kalman Filter. The Ensemble Kalman Filter used here takes into account the internal routing mechanism of the HBV-model, which causes a delayed response of the simulated discharge at the catchment outlet to changes in internal states.

  18. Coupling of snow and permafrost processes using the Basic Modeling Interface (BMI)

    NASA Astrophysics Data System (ADS)

    Wang, K.; Overeem, I.; Jafarov, E. E.; Piper, M.; Stewart, S.; Clow, G. D.; Schaefer, K. M.

    2017-12-01

    We developed a permafrost modeling tool based by implementing the Kudryavtsev empirical permafrost active layer depth model (the so-called "Ku" component). The model is specifically set up to have a basic model interface (BMI), which enhances the potential coupling to other earth surface processes model components. This model is accessible through the Web Modeling Tool in Community Surface Dynamics Modeling System (CSDMS). The Kudryavtsev model has been applied for entire Alaska to model permafrost distribution at high spatial resolution and model predictions have been verified by Circumpolar Active Layer Monitoring (CALM) in-situ observations. The Ku component uses monthly meteorological forcing, including air temperature, snow depth, and snow density, and predicts active layer thickness (ALT) and temperature on the top of permafrost (TTOP), which are important factors in snow-hydrological processes. BMI provides an easy approach to couple the models with each other. Here, we provide a case of coupling the Ku component to snow process components, including the Snow-Degree-Day (SDD) method and Snow-Energy-Balance (SEB) method, which are existing components in the hydrological model TOPOFLOW. The work flow is (1) get variables from meteorology component, set the values to snow process component, and advance the snow process component, (2) get variables from meteorology and snow component, provide these to the Ku component and advance, (3) get variables from snow process component, set the values to meteorology component, and advance the meteorology component. The next phase is to couple the permafrost component with fully BMI-compliant TOPOFLOW hydrological model, which could provide a useful tool to investigate the permafrost hydrological effect.

  19. Twenty-four year record of Northern Hemisphere snow cover derived from passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Armstrong, Richard L.; Brodzik, Mary Jo

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. It is now possible to monitor the global fluctuation of snow cover over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a smiliar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible statellite data and the visible data typically show higher monthly variability. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as on into the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm is enhanced. Trends in annual averages are similar, decreasing at rates of approximately 2% per decade. The only region where the passive microwave data consistently indicate snow and the visible data do not is over the Tibetan Plateau and surrounding mountain areas. In the effort to determine the accuracy of the microwave algorithm over this region we are acquiring surface snow observations through a collaborative study with CAREERI/Lanzhou. In order to provide an optimal snow cover product in the future, we are developing a procedure that blends snow extent maps derived from MODIS data with snow water equivalent maps derived from both SSM/I and AMSR.

  20. Microwave properties of sea ice in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Larson, R. W.

    1986-01-01

    Active microwave properties of summer sea ice were measured. Backscatter data were acquired at frequencies from 1 to 17 GHz, at angles from 0 to 70 deg from vertical, and with like and cross antenna polarizations. Results show that melt-water, snow thickness, snowpack morphology, snow surface roughness, ice surface roughness, and deformation characteristics are the fundamental scene parameters which govern the summer sea ice backscatter response. A thick, wet snow cover dominates the backscatter response and masks any ice sheet features below. However, snow and melt-water are not distributed uniformly and the stage of melt may also be quite variable. These nonuniformities related to ice type are not necessarily well understood and produce unique microwave signature characteristics.

  1. Spring floods prediction with the use of optical satellite data in Québec

    NASA Astrophysics Data System (ADS)

    Roy, A.; Royer, A.; Turcotte, R.

    2009-04-01

    The Centre d'expertise hydrique du Québec (CEHQ) operates a distributed hydrological model, which integrates a snow model, for the management of dams in the south of Québec. It appears that the estimation of the water quantity of snowmelt in spring remains a variable with a large uncertainty and induces generally to an important error in stream flow simulation. Therefore, the National snow and ice center (NSIDC) produces, from MODIS (Moderate Resolution Imaging Spectroradiometer) data, continuous and homogeneous spatial snow cover (snow/swow-free) data on the whole territory, but with a cloud contamination. This research aims to improve the prediction of spring floods and the estimation of the rate of discharge by integrating snow cover data in the CEHQ's snow model. The study is done on two watersheds: du Nord river watershed (45,8°N) and Aux Écorces river watershed (47,9°N). The snow model used in the study (SPH-AV) is an implementation developed by the CEHQ of the snowmelt model of HYDROLTEL in is hydrological forecast system to simulate the melted water. The melted water estimated is then used as input in the empirical hydrological model MOHYSE to simulate stream flow. MODIS data are considered valid only when the cloud cover on each pixel of the watersheds is less then 30%. A pixel by pixel correction is applied to the snow pack when there is a difference between satellite snow cover and modeled snow cover. In the case of model shows to much snow, a factor is applied on temperatures by iterative process (starting from the last valid MODIS data) to melt the snow. In the opposite case, the snow quantity added to the last valid MODIS data is found by iterative process so that the pixel's snow water equivalent is equal to the nonzero neighbor minimum value. The study shows, through the simulations done on the two watersheds, the interest of the use of snow/snow-free product for the operational update of snow water equivalent with the objective to improve spring snowmelt stream flow simulations. The binary aspect (snow/snowfree) of the data is however a limit. Alternatives are discussed (passive microwave data). Keywords : satellite snow cover data, MODIS, satellite data integration, snow model, hydrological model, stream flow simulation, flood.

  2. Snow Water Equivalent Retrieval By Markov Chain Monte Carlo Based on Memls and Hut Snow Emission Model

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Vanderjagt, B. J.

    2014-12-01

    The Markov chain Monte Carlo (MCMC) method had been proved to be successful in snow water equivalent retrieval based on synthetic point-scale passive microwave brightness temperature (TB) observations. This method needs only general prior information about distribution of snow parameters, and could estimate layered snow properties, including the thickness, temperature, density and snow grain size (or exponential correlation length) of each layer. In this study, the multi-layer HUT (Helsinki University of Technology) model and the MEMLS (Microwave Emission Model of Layered Snowpacks) will be used as observation models to assimilate the observed TB into snow parameter prediction. Previous studies had shown that the multi-layer HUT model tends to underestimate TB at 37 GHz for deep snow, while the MEMLS does not show sensitivity of model bias to snow depth. Therefore, results using HUT model and MEMLS will be compared to see how the observation model will influence the retrieval of snow parameters. The radiometric measurements at 10.65, 18.7, 36.5 and 90 GHz at Sodankyla, Finland will be used as MCMC input, and the statistics of all snow property measurement will be used to calculate the prior information. 43 dry snowpits with complete measurements of all snow parameters will be used for validation. The entire dataset are from NorSREx (Nordic Snow Radar Experiment) experiments carried out by Juha Lemmetyinen, Anna Kontu and Jouni Pulliainen in FMI in 2009-2011 winters, and continued two more winters from 2011 to Spring of 2013. Besides the snow thickness and snow density that are directly related to snow water equivalent, other parameters will be compared with observations, too. For thin snow, the previous studies showed that influence of underlying soil is considerable, especially when the soil is half frozen with part of unfrozen liquid water and part of ice. Therefore, this study will also try to employ a simple frozen soil permittivity model to improve the performance of retrieval. The behavior of the Markov chain in soil parameters will be studied.

  3. Mean wind patterns and snow depths in an alpine-subalpine ecosystem as measured by damage to coniferous trees

    Treesearch

    G. L. Wooldridge; R. C. Musselman; R. A. Sommerfeld; D. G. Fox; B. H. Connell

    1996-01-01

    1. Deformations of Engelmann spruce and subalpine fir trees were surveyed for the purpose of determining climatic wind speeds and directions and snow depths in the Glacier Lakes Ecosystem Experiments Site (GLEES) in the Snowy Range of southeastern Wyoming, USA. Tree deformations were recorded at 50- and 100-m grid intervals over areas of c. 30 ha and 300 ha,...

  4. Thermal Patterns in the Snow: Icicles as Indicators of Heat Loss

    ERIC Educational Resources Information Center

    Bartlett, Albert A.

    2008-01-01

    On Dec. 27, 2006, we drove with our children and their families to a cabin we rented on the grounds of the "YMCA of the Rockies" in Estes Park, CO, for a few days of winter relaxation and recreation. On the night of the 27th a snowstorm dropped over half a meter of new snow, creating a beautiful winter wonderland. For the next couple of days the…

  5. Daily gridded datasets of snow depth and snow water equivalent for the Iberian Peninsula from 1980 to 2014

    NASA Astrophysics Data System (ADS)

    Alonso-González, Esteban; López-Moreno, J. Ignacio; Gascoin, Simon; García-Valdecasas Ojeda, Matilde; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Revuelto, Jesús; Ceballos, Antonio; Jesús Esteban-Parra, María; Essery, Richard

    2018-02-01

    We present snow observations and a validated daily gridded snowpack dataset that was simulated from downscaled reanalysis of data for the Iberian Peninsula. The Iberian Peninsula has long-lasting seasonal snowpacks in its different mountain ranges, and winter snowfall occurs in most of its area. However, there are only limited direct observations of snow depth (SD) and snow water equivalent (SWE), making it difficult to analyze snow dynamics and the spatiotemporal patterns of snowfall. We used meteorological data from downscaled reanalyses as input of a physically based snow energy balance model to simulate SWE and SD over the Iberian Peninsula from 1980 to 2014. More specifically, the ERA-Interim reanalysis was downscaled to 10 km × 10 km resolution using the Weather Research and Forecasting (WRF) model. The WRF outputs were used directly, or as input to other submodels, to obtain data needed to drive the Factorial Snow Model (FSM). We used lapse rate coefficients and hygrobarometric adjustments to simulate snow series at 100 m elevations bands for each 10 km × 10 km grid cell in the Iberian Peninsula. The snow series were validated using data from MODIS satellite sensor and ground observations. The overall simulated snow series accurately reproduced the interannual variability of snowpack and the spatial variability of snow accumulation and melting, even in very complex topographic terrains. Thus, the presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism, and risk management. The data presented here are freely available for download from Zenodo (https://doi.org/10.5281/zenodo.854618). This paper fully describes the work flow, data validation, uncertainty assessment, and possible applications and limitations of the database.

  6. Estimation of daily Snow Cover Area combining MODIS and LANDSAT information by using cellular automata

    NASA Astrophysics Data System (ADS)

    Pardo-Iguzquiza, Eulogio; Juan Collados Lara, Antonio; Pulido-Velazquez, David

    2016-04-01

    The snow availability in Alpine catchments is essential for the economy of these areas. It plays an important role in tourist development but also in the management of the Water Resources Snow is an important water resource in many river basins with mountains in the catchment area. The determination of the snow water equivalent requires the estimation of the evolution of the snow pack (cover area, thickness and snow density) along the time. Although there are complex physical models of the dynamics of the snow pack, sometimes the data available are scarce and a stochastic model like the cellular automata (CA) can be of great practical interest. CA can be used to model the dynamics of growth and wane of the snow pack. The CA is calibrated with historical data. This requires the determination of transition rules that are capable of modeling the evolution of the spatial pattern of snow cover area. Furthermore, CA requires the definition of states and neighborhoods. We have included topographical variables and climatological variables in order to define the state of each pixel. The evolution of snow cover in a pixel depends on its state, the state of the neighboring pixels and the transition rules. The calibration of the CA is done using daily MODIS data, available for the period 24/02/2002 to present with a spatial resolution of 500 m, and the LANDSAT information available with a sixteen-day periodicity from 1984 to the present and with spatial resolution of 30 m. The methodology has been applied to estimation of the snow cover area of Sierra Nevada mountain range in the Southern of Spain to obtain snow cover area daily information with 500 m spatial resolution for the period 1980-2014. Acknowledgments: This research has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank NASA DAAC and LANDSAT project for the data provided for this study.

  7. Role of Non-Precipitation Sources in Regulating the River Hydrology of a Himalayan Catchment

    NASA Astrophysics Data System (ADS)

    Grover, S.; Tayal, S.; Beldring, S.

    2017-12-01

    Hydrology of mountain catchments in Himalayas is strongly regulated by snow/ ice melt. Chenab basin of Himalayas is a snow and glacier fed basin, which makes it perennial and an important source of sustenance for downstream community. It is important to understand the variability in contribution from various sources to the water balance of catchment. Indirect assessment techniques are important to make such an assessment about the runoff patterns especially in data-scarce basins like Chenab. To analyze runoff patterns and contribution from different sources, we applied combination of semi-distributed HBV model and water balance approach for the period between 1971-2007. It was found that the contribution from non-precipitation sources to the total outflow in this region ranged from 30-70% with approximately 30% from glacier ice melt, and base-flow contributing around 20% to annual water-balance. Least precipitation year of 1977 shows maximum contribution from other sources, but also recorded the least outflow in catchment. Seasonal variation of the contribution from glacier ice melt was also estimated and in the months of May and June around 44% of the contribution to the outflow is from glacier melt only. Hydrological balance of the basin is positive during winters with outflow being very less than the inflow of water through precipitation or melt. Melt season starts in March but peaks during May and June with cryospheric contribution being almost twice the base flow contribution. Melting starts receding slowly after September, with its contribution to the outflow declining much below the baseflow contribution in October and November, when base-flow provides around 65% of water to the basin's outflow. Long term (1951-2010) temperature and precipitation data for the higher reaches of the basin indicates a warming trend (0.02 0C yr-1) and a decline in annual precipitation. But on a basin scale, precipitation is increasing and the non-precipitation contribution from snow/ ice melt and base flow is declining. This further emphasizes the fact that climate change is affecting the precipitation regime and liquid precipitation is taking a dominant position in an otherwise snow/ ice fed catchment. Thus, in Chenab basin, non-precipitation contribution is important to drive its water balance.

  8. Modelling technical snow production for skiing areas in the Austrian Alps with the physically based snow model AMUNDSEN

    NASA Astrophysics Data System (ADS)

    Hanzer, F.; Marke, T.; Steiger, R.; Strasser, U.

    2012-04-01

    Tourism and particularly winter tourism is a key factor for the Austrian economy. Judging from currently available climate simulations, the Austrian Alps show a particularly high vulnerability to climatic changes. To reduce the exposure of ski areas towards changes in natural snow conditions as well as to generally enhance snow conditions at skiing sites, technical snowmaking is widely utilized across Austrian ski areas. While such measures result in better snow conditions at the skiing sites and are important for the local skiing industry, its economic efficiency has also to be taken into account. The current work emerges from the project CC-Snow II, where improved future climate scenario simulations are used to determine future natural and artificial snow conditions and their effects on tourism and economy in the Austrian Alps. In a first step, a simple technical snowmaking approach is incorporated into the process based snow model AMUNDSEN, which operates at a spatial resolution of 10-50 m and a temporal resolution of 1-3 hours. Locations of skiing slopes within a ski area in Styria, Austria, were digitized and imported into the model environment. During a predefined time frame in the beginning of the ski season, the model produces a maximum possible amount of technical snow and distributes the associated snow on the slopes, whereas afterwards, until to the end of the ski season, the model tries to maintain a certain snow depth threshold value on the slopes. Due to only few required input parameters, this approach is easily transferable to other ski areas. In our poster contribution, we present first results of this snowmaking approach and give an overview of the data and methodology applied. In a further step in CC-Snow, this simple bulk approach will be extended to consider actual snow cannon locations and technical specifications, which will allow a more detailed description of technical snow production as well as cannon-based recordings of water and energy consumption.

  9. Sensitivity of modelled snow cover to turbulent flux parameterization and forcing data: a case study in a high altitude basin of the dry Andes, northern Chile

    NASA Astrophysics Data System (ADS)

    Kinnard, C.; Irarrazaval, I.; Campos, C.; Gascoin, S.; MacDonell, S.; Macdonell, S.; Herrero, J.

    2016-12-01

    Snow cover in the central-northern Andes of Chile is the main runoff source, providing water for the irrigation of cultures in the fertile valleys downstream. The prospect of adverse climate warming impacts on the hydrological cycle calls for a better understanding of the snow cover dynamics in response to climate, an aspect that has been little studied in the dry Andes. The heterogeneous and often thin snow cover, as well as the paucity of long-term hydrometeorological data makes snow modelling a challenging task in these regions. In this work we applied a physically-based, spatially-distributed snow model (Wimmed) to the La Laguna headwater catchment in the dry Andes (30°S, 70°W) during three hydrological years (2010-2013) when forcing data was available. Model testing at the point scale revealed a large sensitivity of simulated snow depths to the choice of snow roughness parameter (z0), which controls turbulent fluxes, while wind-induced snow erosion at the station in 2010 and 2011 complicated model validation. The inclusion of a mean wind speed map from a previous simulation with the WRF atmospheric model was found to improve the simulation results, while excluding the highest mountain ridge weather station had detrimental effects on the results. A snow roughness (z0) of 1 mm yielded the best comparison between the simulated and observed snow depth at the reference weather station, and between the simulated and MODIS-derived snow cover at the catchment scale. The simulation resulted in large sublimation losses (up to 4 mm day-1), corresponding to more than 80% of snow ablation in the catchment. While such high sublimation rates have been reported before in this region, remaining uncertainties in precipitation data and snow compaction processes call for more detailed studies and increased instrumentation in order to improve future modelling efforts.

  10. Crevasse detection with GPR across the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Delaney, A.; Arcone, S.

    2005-12-01

    We have used 400-MHz ground penetrating radar (GPR) to detect crevasses within a shear zone on the Ross Ice Shelf, Antarctica, to support traverse operations. The transducer was attached to a 6.5-m boom and pushed ahead of an enclosed tracked vehicle. Profile speeds of 4.8-11.3 km / hr allowed real-time crevasse image display and a quick, safe stop when required. Thirty-two crevasses were located with radar along the 4.8 km crossing. Generally, crevasse radar images were characterized by dipping reflections above the voids, high-amplitude reflections originating from ice layers at the base of the snow-bridges, and slanting, diffracting reflections from near-vertical crevasse walls. New cracks and narrow crevasses (<50 cm width) show no distinct snow bridge structure, few diffractions, and a distinct band where pulse reflections are absent. Wide (0.5-5.0 m), vertical wall crevasses show distinct dipping snow bridge layering and intense diffractions from ice layers near the base of the snow bridge. Pulse reflections are absent from voids beneath the snow bridges. Old, wide (3.0-8.0 m) and complexly shaped crevasses show well-developed, broad, dipping snow-bridge layers and a high-amplitude, complex, diffraction pattern. The crevasse mitigation process, which included hot-water drilling, destroying the bridges with dynamite, and back-filling with bulldozed snow, afforded an opportunity to ground-truth GPR interpretations by comparing void size and snow-bridge geometry with the radar images. While second and third season radar profiles collected along the identical flagged route confirmed stability of the filled crevasses, those profiles also identified several new cracks opened by ice extension. Our experiments demonstrate capability of high-frequency GPR in a cold-snow environment for both defining snow layers and locating voids.

  11. Research relative to angular distribution of snow reflectance/snow cover characterization and microwave emission

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Davis, Robert E.

    1987-01-01

    Remote sensing has been applied in recent years to monitoring snow cover properties for applications in hydrologic and energy balance modeling. In addition, snow cover has been recently shown to exert a considerable local influence on weather variables. Of particular importance is the potential of sensors to provide data on the physical properties of snow with high spatial and temporal resolution. Visible and near-infrared measurements of upwelling radiance can be used to infer near-surface properties through the calculation of albedo. Microwave signals usually come from deeper within the snow pack and thus provide depth-integrated information, which can be measured through clouds and does not relay on solar illumination.Fundamental studies examining the influence of snow properties on signals from various parts of the electromagnetic spectrum continue in part because of the promise of new remote sensors with higher spectral and spatial accuracy. Information in the visible and near-infrared parts of the spectrum comprise nearly all available data with high spatial resolution. Current passive microwave sensors have poor spatial resolution and the data are problematic where the scenes consist of mixed landscape features, but they offer timely observations that are independent of cloud cover and solar illumination.

  12. Combining Passive Microwave and Optical Data to Estimate Snow Water Equivalent in Afghanistan's Hindu Kush

    NASA Astrophysics Data System (ADS)

    Dozier, J.; Bair, N.; Calfa, A. A.; Skalka, C.; Tolle, K.; Bongard, J.

    2015-12-01

    The task is to estimate spatiotemporally distributed estimates of snow water equivalent (SWE) in snow-dominated mountain environments, including those that lack on-the-ground measurements such as the Hindu Kush range in Afghanistan. During the snow season, we can use two measurements: (1) passive microwave estimates of SWE, which generally underestimate in the mountains; (2) fractional snow-covered area from MODIS. Once the snow has melted, we can reconstruct the accumulated SWE back to the last significant snowfall by calculating the energy used in melt. The reconstructed SWE values provide a training set for predictions from the passive microwave SWE and snow-covered area. We examine several machine learning methods—regression-boosted decision trees, bagged trees, neural networks, and genetic programming—to estimate SWE. All methods work reasonably well, with R2 values greater than 0.8. Predictors built with multiple years of data reduce the bias that usually appears if we predict one year from just one other year's training set. Genetic programming tends to produce results that additionally provide physical insight. Adding precipitation estimates from the Global Precipitation Measurements mission is in progress.

  13. The Ross Sea Dipole - temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years

    NASA Astrophysics Data System (ADS)

    Bertler, Nancy A. N.; Conway, Howard; Dahl-Jensen, Dorthe; Emanuelsson, Daniel B.; Winstrup, Mai; Vallelonga, Paul T.; Lee, James E.; Brook, Ed J.; Severinghaus, Jeffrey P.; Fudge, Taylor J.; Keller, Elizabeth D.; Baisden, W. Troy; Hindmarsh, Richard C. A.; Neff, Peter D.; Blunier, Thomas; Edwards, Ross; Mayewski, Paul A.; Kipfstuhl, Sepp; Buizert, Christo; Canessa, Silvia; Dadic, Ruzica; Kjær, Helle A.; Kurbatov, Andrei; Zhang, Dongqi; Waddington, Edwin D.; Baccolo, Giovanni; Beers, Thomas; Brightley, Hannah J.; Carter, Lionel; Clemens-Sewall, David; Ciobanu, Viorela G.; Delmonte, Barbara; Eling, Lukas; Ellis, Aja; Ganesh, Shruthi; Golledge, Nicholas R.; Haines, Skylar; Handley, Michael; Hawley, Robert L.; Hogan, Chad M.; Johnson, Katelyn M.; Korotkikh, Elena; Lowry, Daniel P.; Mandeno, Darcy; McKay, Robert M.; Menking, James A.; Naish, Timothy R.; Noerling, Caroline; Ollive, Agathe; Orsi, Anaïs; Proemse, Bernadette C.; Pyne, Alexander R.; Pyne, Rebecca L.; Renwick, James; Scherer, Reed P.; Semper, Stefanie; Simonsen, Marius; Sneed, Sharon B.; Steig, Eric J.; Tuohy, Andrea; Ulayottil Venugopal, Abhijith; Valero-Delgado, Fernando; Venkatesh, Janani; Wang, Feitang; Wang, Shimeng; Winski, Dominic A.; Winton, V. Holly L.; Whiteford, Arran; Xiao, Cunde; Yang, Jiao; Zhang, Xin

    2018-02-01

    High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979-2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.

  14. Towards Understanding the Timing and Frequency of Rain-on-Snow (ROS) Events in Alaska

    NASA Astrophysics Data System (ADS)

    Pan, C.; Kirchner, P. B.; Kimball, J. S.; Kim, Y.; Kamp, U.

    2017-12-01

    Rain-on-snow (ROS) events affect ecosystem processes at multiple spatial and temporal scales including hydrology, carbon cycling, wildlife movement and human transportation and result in marked changes to snowpack processes including enhanced snow melt, surface albedo and energy balance. Changes in the surface structure of the snowpack are visible through optical remote sensing and changes in the relative content and distribution of water, air and ice in the snowpack are detectable using passive microwave remote sensing. This project aims to develop ROS products to elucidate changes in frequency and distribution in ROS events using satellite data products derived from both optical and passive microwave satellite records. To detect ROS events, we use downscaled brightness temperature measurements derived from vertical and horizontal polarizations at 19 and 37 GHz from the Advanced Microwave Scanning Radiometer (AMSR-E/2) passive microwave satellites. Preliminary results indicate an overall classification accuracy of 77.6% relative to in situ weather observations including surface air temperature, precipitation, and snow depth. ROS events are spatially distributed largely to elevations below 500 m and occur most frequently on northern to western aspects in addition to southeastern. Regional ROS hot spots occur in southwest Alaska characterized by warmer climates and transient snowcover. The seasonal timing of ROS events indicates increasing frequency during the fall and spring months.

  15. Lasting effects of snow accumulation on summer performance of large herbivores in alpine ecosystems may not last.

    PubMed

    Mysterud, Atle; Austrheim, Gunnar

    2014-05-01

    One of the clearest predictions from the IPCC is that we can expect much less snow cover due to global warming in the 21st century, especially in the lower alpine areas. In alpine ecosystems, snow accumulation in depressions gives rise to distinct snow-bed vegetation types, assumed to play a key role in ecosystem function. A delayed plant phenology yields high-quality forage in late summer for wild and domestic herbivores. Yet, the mechanistic pathways for how declining snow may affect future performance of large herbivores beyond the effect of phenology remain poorly documented. Here, we link unique individual-based data on diet choice, habitat selection and performance of domestic sheep over a 10-year period to manually GPS-recorded spatial positions of snow cover in early summer (0.57% to 43.3% in snow beds on 1st of July) in an alpine ecosystem. Snowy winters gave a higher proportion of easily digestible herbs in the diet and a more variable use of snow-bed and meadow vegetation types resulting in faster growing lambs. These patterns were consistent between two density treatment levels although slightly more marked for diet at low density, suggesting that effects of simple mitigation efforts such as managing population numbers will be meagre. Our study thus yields novel insight into the strong impact of melting snow on ecosystem function in alpine habitats, which are likely to affect productivity of both domestic and wild ungulate populations. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  16. ARISE (Antarctic Remote Ice Sensing Experiment) in the East 2003: Validation of Satellite-derived Sea-ice Data Product

    NASA Technical Reports Server (NTRS)

    Massom, Robert A.; Worby, Anthony; Lytle, Victoria; Markus, Thorsten; Allison, Ian; Scambos, Theodore; Enomoto, Hiroyuki; Tateyama, Kazutaka; Haran, Terence; Comiso, Josefino C.; hide

    2006-01-01

    Preliminary results are presented from the first validation of geophysical data products (ice concentration, snow thickness on sea ice (h(sub s) and ice temperature (T(sub i))fr om the NASA EOS Aqua AMSR-E sensor, in East Antarctica (in September-October 2003). The challenge of collecting sufficient measurements with which to validate the coarse-resolution AMSR-E data products adequately was addressed by means of a hierarchical approach, using detailed in situ measurements, digital aerial photography and other satellite data. Initial results from a circumnavigation of the experimental site indicate that, at least under cold conditions with a dry snow cover, there is a reasonably close agreement between satellite- and aerial-photo-derived ice concentrations, i.e. 97.2+/-.6% for NT2 and 96.5+/-2.5% for BBA algorithms vs 94.3% for the aerial photos. In general, the AMSR-E concentration represents a slight overestimate of the actual concentration, with the largest discrepancies occurring in regions containing a relatively high proportion of thin ice. The AMSR-E concentrations from the NT2 and BBA algorithms are similar on average, although differences of up to 5% occur in places, again related to thin-ice distribution. The AMSR-E ice temperature (T(sub i)) product agrees with coincident surface measurements to approximately 0.5 C in the limited dataset analyzed. Regarding snow thickness, the AMSR h(sub s) retrieval is a significant underestimate compared to in situ measurements weighted by the percentage of thin ice (and open water) present. For the case study analyzed, the underestimate was 46% for the overall average, but 23% compared to smooth-ice measurements. The spatial distribution of the AMSR-E h(sub s) product follows an expected and consistent spatial pattern, suggesting that the observed difference may be an offset (at least under freezing conditions). Areas of discrepancy are identified, and the need for future work using the more extensive dataset is highlighted.

  17. End-of-winter snow depth variability on glaciers in Alaska

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel; Sass, Louis; O'Neel, Shad; Arendt, Anthony; Wolken, Gabriel; Gusmeroli, Alessio; Kienholz, Christian; McNeil, Christopher

    2015-08-01

    A quantitative understanding of snow thickness and snow water equivalent (SWE) on glaciers is essential to a wide range of scientific and resource management topics. However, robust SWE estimates are observationally challenging, in part because SWE can vary abruptly over short distances in complex terrain due to interactions between topography and meteorological processes. In spring 2013, we measured snow accumulation on several glaciers around the Gulf of Alaska using both ground- and helicopter-based ground-penetrating radar surveys, complemented by extensive ground truth observations. We found that SWE can be highly variable (40% difference) over short spatial scales (tens to hundreds of meters), especially in the ablation zone where the underlying ice surfaces are typically rough. Elevation provides the dominant basin-scale influence on SWE, with gradients ranging from 115 to 400 mm/100 m. Regionally, total accumulation and the accumulation gradient are strongly controlled by a glacier's distance from the coastal moisture source. Multiple linear regressions, used to calculate distributed SWE fields, show that robust results require adequate sampling of the true distribution of multiple terrain parameters. Final SWE estimates (comparable to winter balances) show reasonable agreement with both the Parameter-elevation Relationships on Independent Slopes Model climate data set (9-36% difference) and the U.S. Geological Survey Alaska Benchmark Glaciers (6-36% difference). All the glaciers in our study exhibit substantial sensitivity to changing snow-rain fractions, regardless of their location in a coastal or continental climate. While process-based SWE projections remain elusive, the collection of ground-penetrating radar (GPR)-derived data sets provides a greatly enhanced perspective on the spatial distribution of SWE and will pave the way for future work that may eventually allow such projections.

  18. Advances in snow cover distributed modelling via ensemble simulations and assimilation of satellite data

    NASA Astrophysics Data System (ADS)

    Revuelto, J.; Dumont, M.; Tuzet, F.; Vionnet, V.; Lafaysse, M.; Lecourt, G.; Vernay, M.; Morin, S.; Cosme, E.; Six, D.; Rabatel, A.

    2017-12-01

    Nowadays snowpack models show a good capability in simulating the evolution of snow in mountain areas. However singular deviations of meteorological forcing and shortcomings in the modelling of snow physical processes, when accumulated on time along a snow season, could produce large deviations from real snowpack state. The evaluation of these deviations is usually assessed with on-site observations from automatic weather stations. Nevertheless the location of these stations could strongly influence the results of these evaluations since local topography may have a marked influence on snowpack evolution. Despite the evaluation of snowpack models with automatic weather stations usually reveal good results, there exist a lack of large scale evaluations of simulations results on heterogeneous alpine terrain subjected to local topographic effects.This work firstly presents a complete evaluation of the detailed snowpack model Crocus over an extended mountain area, the Arve upper catchment (western European Alps). This catchment has a wide elevation range with a large area above 2000m a.s.l. and/or glaciated. The evaluation compares results obtained with distributed and semi-distributed simulations (the latter nowadays used on the operational forecasting). Daily observations of the snow covered area from MODIS satellite sensor, seasonal glacier surface mass balance evolution measured in more than 65 locations and the galciers annual equilibrium line altitude from Landsat/Spot/Aster satellites, have been used for model evaluation. Additionally the latest advances in producing ensemble snowpack simulations for assimilating satellite reflectance data over extended areas will be presented. These advances comprises the generation of an ensemble of downscaled high-resolution meteorological forcing from meso-scale meteorological models and the application of a particle filter scheme for assimilating satellite observations. Despite the results are prefatory, they show a good potential improving snowpack forecasting capabilities.

  19. Soil erosion by snow gliding - a first quantification attempt in a sub-alpine area, Switzerland

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.

    2014-03-01

    Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide deposits, the fallout radionuclide 137Cs, and modelling with the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the soil erosion rate of RUSLE and the 137Cs method is related to snow gliding and sediment concentrations in the snow glide deposits. Cumulative snow glide distance was measured for the sites in the winter 2009/10 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance ranged from 2 to 189 cm, with lower values at the north facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed: the difference of RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2= 0.64; p < 0.005) and snow sediment yields (R2 = 0.39; p = 0.13). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.

  20. Design of a High Resolution Open Access Global Snow Cover Web Map Service Using Ground and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Kadlec, J.; Ames, D. P.

    2014-12-01

    The aim of the presented work is creating a freely accessible, dynamic and re-usable snow cover map of the world by combining snow extent and snow depth datasets from multiple sources. The examined data sources are: remote sensing datasets (MODIS, CryoLand), weather forecasting model outputs (OpenWeatherMap, forecast.io), ground observation networks (CUAHSI HIS, GSOD, GHCN, and selected national networks), and user-contributed snow reports on social networks (cross-country and backcountry skiing trip reports). For adding each type of dataset, an interface and an adapter is created. Each adapter supports queries by area, time range, or combination of area and time range. The combined dataset is published as an online snow cover mapping service. This web service lowers the learning curve that is required to view, access, and analyze snow depth maps and snow time-series. All data published by this service are licensed as open data; encouraging the re-use of the data in customized applications in climatology, hydrology, sports and other disciplines. The initial version of the interactive snow map is on the website snow.hydrodata.org. This website supports the view by time and view by site. In view by time, the spatial distribution of snow for a selected area and time period is shown. In view by site, the time-series charts of snow depth at a selected location is displayed. All snow extent and snow depth map layers and time series are accessible and discoverable through internationally approved protocols including WMS, WFS, WCS, WaterOneFlow and WaterML. Therefore they can also be easily added to GIS software or 3rd-party web map applications. The central hypothesis driving this research is that the integration of user contributed data and/or social-network derived snow data together with other open access data sources will result in more accurate and higher resolution - and hence more useful snow cover maps than satellite data or government agency produced data by itself.

  1. Long-term record of atmospheric and snow surface nitrate from Dome C (Central Antarctica)

    NASA Astrophysics Data System (ADS)

    Traversi, Rita; Becagli, Silvia; Brogioni, Marco; Caiazzo, Laura; Ciardini, Virginia; Giardi, Fabio; Legrand, Michel; Macelloni, Giovanni; Petkov, Boyan; Preunkert, Suzanne; Scarchilli, Claudio; Severi, Mirko; Vitale, Vito; Udisti, Roberto

    2017-04-01

    Nitrate is the end product of the oxidation of atmospheric nitrogen oxides and one of the most abundant ions present in polar ice and snow, mainly as nitric acid in present-climate conditions. Nitrate stratigraphies from snow and ice layers have the potential to provide records of past changes in atmospheric composition, including atmospheric NOx cycling and oxidative capacity, as well as past solar activity or major variations in Earth's magnetic field. Nevertheless, in order to exploit such a potential, chemical concentrations in the air, snow, firn and ice core need to be correlated. Hence, the knowledge of the link between atmosphere and snow composition at the time of deposition is basic to reconstruct past climate and past atmospheric chemical composition. The extent of such knowledge depends on whether the species of interest are gaseous or in the condensed phase, and if they are reversible and/or irreversibly deposited to snow. In order to provide a contribution to their air-to-snow exchange in the Antarctic plateau, as well as to the understanding of dominant sources and sinks of nitrate, we present here nitrate records in atmospheric aerosol and surface snow sampled at high resolution, all year-round, at Dome C along 9 years (November 2004 - November 2013). This represents the longest and most highly resolved record from continental Antarctica, where continuous and long-term atmosphere and snow samplings are particularly difficult due to the extreme meteorological conditions and, at the same time, need of extra-care in avoiding contamination due to the low level of ion concentrations. Results confirm, on a larger statistical data set with respect to previous observations, nitrate seasonal pattern with summer maxima both for aerosol and surface snow, in-phase with UV solar irradiance. Such a temporal pattern is likely a combination of nitrate sources and post-depositional processes that enhance during summer. Moreover, a case study of synoptic analysis for a major nitrate event showed the occurrence of a stratosphere-troposphere exchange in the sampled days. The sampling of both matrices carried out at high resolution at the same time allowed detecting a recurring lag, about one-month long, of summer maxima in snow with respect to aerosol. Such a temporal shift can be explained only by taking into account deposition and post-deposition processes taking place at the atmosphere-snow interface, including likely both a net uptake of gaseous nitric acid and a replenishment of the uppermost surface layers driven by a larger temperature gradient in summer. Such a possibility was tested in a preliminary way by a comparison with measurements of surface layers temperature carried out in 2012-13 time period. A comparison with nitrate concentration in the gas phase and total nitrate obtained from Dome C (2012-13) showed the major role of gaseous HNO3 to total nitrate budget hinting to the need of further investigation of the gas-to-particle conversion processes.

  2. Preliminary Estimation of Black Carbon Deposition from Nepal Climate Observatory-Pyramid Data and Its Possible Impact on Snow Albedo Changes Over Himalayan Glaciers During the Pre-Monsoon Season

    NASA Technical Reports Server (NTRS)

    Yasunari, T. J.; Bonasoni, P.; Laj, P.; Fujita, K.; Vuillermoz, E.; Marinoni, A.; Cristofanelli, P.; Duchi, R.; Tartari, G.; Lau, K.-M.

    2010-01-01

    The possible minimal range of reduction in snow surface albedo due to dry deposition of black carbon (BC) in the pre-monsoon period (March-May) was estimated as a lower bound together with the estimation of its accuracy, based on atmospheric observations at the Nepal Climate Observatory-Pyramid (NCO-P) sited at 5079 m a.s.l. in the Himalayan region. We estimated a total BC deposition rate of 2.89 g m-2 day-1 providing a total deposition of 266 micrograms/ square m for March-May at the site, based on a calculation with a minimal deposition velocity of 1.0 10(exp -4) m/s with atmospheric data of equivalent BC concentration. Main BC size at NCO-P site was determined as 103.1-669.8 nm by correlation analysis between equivalent BC concentration and particulate size distribution in the atmosphere. We also estimated BC deposition from the size distribution data and found that 8.7% of the estimated dry deposition corresponds to the estimated BC deposition from equivalent BC concentration data. If all the BC is deposited uniformly on the top 2-cm pure snow, the corresponding BC concentration is 26.0-68.2 microgram/kg assuming snow density variations of 195-512 kg/ cubic m of Yala Glacier close to NCO-P site. Such a concentration of BC in snow could result in 2.0-5.2% albedo reductions. From a simple numerical calculations and if assuming these albedo reductions continue throughout the year, this would lead to a runoff increases of 70-204 mm of water drainage equivalent of 11.6-33.9% of the annual discharge of a typical Tibetan glacier. Our estimates of BC concentration in snow surface for pre-monsoon season can be considered comparable to those at similar altitude in the Himalayan region, where glaciers and perpetual snow region starts in the vicinity of NCO-P. Our estimates from only BC are likely to represent a lower bound for snow albedo reductions, since a fixed slower deposition velocity was used and atmospheric wind and turbulence effects, snow aging, dust deposition, and snow albedo feedbacks were not considered. This study represents the first investigation about BC deposition on snow from atmospheric aerosol data in Himalayas and related albedo effect is especially the first track at the southern slope of Himalayas.

  3. Soil erosion by snow gliding - a first quantification attempt in a subalpine area in Switzerland

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.

    2014-09-01

    Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959-2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha-1 yr-1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha-1 yr-1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.

  4. A Mass Diffusion Model for Dry Snow Utilizing a Fabric Tensor to Characterize Anisotropy

    NASA Astrophysics Data System (ADS)

    Shertzer, Richard H.; Adams, Edward E.

    2018-03-01

    A homogenization algorithm for randomly distributed microstructures is applied to develop a mass diffusion model for dry snow. Homogenization is a multiscale approach linking constituent behavior at the microscopic level—among ice and air—to the macroscopic material—snow. Principles of continuum mechanics at the microscopic scale describe water vapor diffusion across an ice grain's surface to the air-filled pore space. Volume averaging and a localization assumption scale up and down, respectively, between microscopic and macroscopic scales. The model yields a mass diffusivity expression at the macroscopic scale that is, in general, a second-order tensor parameterized by both bulk and microstructural variables. The model predicts a mass diffusivity of water vapor through snow that is less than that through air. Mass diffusivity is expected to decrease linearly with ice volume fraction. Potential anisotropy in snow's mass diffusivity is captured due to the tensor representation. The tensor is built from directional data assigned to specific, idealized microstructural features. Such anisotropy has been observed in the field and laboratories in snow morphologies of interest such as weak layers of depth hoar and near-surface facets.

  5. Fractional Snow Cover Mapping by Artificial Neural Networks and Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Çiftçi, B. B.; Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2017-11-01

    Snow is an important land cover whose distribution over space and time plays a significant role in various environmental processes. Hence, snow cover mapping with high accuracy is necessary to have a real understanding for present and future climate, water cycle, and ecological changes. This study aims to investigate and compare the design and use of artificial neural networks (ANNs) and support vector machines (SVMs) algorithms for fractional snow cover (FSC) mapping from satellite data. ANN and SVM models with different model building settings are trained by using Moderate Resolution Imaging Spectroradiometer surface reflectance values of bands 1-7, normalized difference snow index and normalized difference vegetation index as predictor variables. Reference FSC maps are generated from higher spatial resolution Landsat ETM+ binary snow cover maps. Results on the independent test data set indicate that the developed ANN model with hyperbolic tangent transfer function in the output layer and the SVM model with radial basis function kernel produce high FSC mapping accuracies with the corresponding values of R = 0.93 and R = 0.92, respectively.

  6. Pioneers in infection control: John Snow, Henry Whitehead, the Broad Street pump, and the beginnings of geographical epidemiology.

    PubMed

    Newsom, S W B

    2006-11-01

    John Snow was one of the founders of epidemiology. Already convinced of the value of pure water, he analysed the distribution of cholera cases in the 1848 epidemic in relation to the purity of the water supply in London. His hypothesis that cholera was spread by contaminated water was tested by the 'Broad Street' epidemic of 1854. Snow quickly traced the water used in the houses affected by cholera to the pump in Broad Street, and persuaded the parish council to remove the handle. The epidemic subsided. The council did not really believe Snow, so the curate, Henry Whitehead, set out to repeat Snow's work, albeit at a more leisurely pace as the epidemic had subsided. He located 700 deaths within a 250-yard radius and showed that use of water from the Broad Street pump was strongly correlated with death from cholera. This surprised him as he had drunk water from the pump himself during the outbreak. Thus 'geographical epidemiology' began, although it was some years before Snow's observations were generally accepted.

  7. Monitoring the Impacts of Forest Management on Snowpack Duration

    NASA Astrophysics Data System (ADS)

    O'Halloran, T.; Tyler, S.; Gaffney, R.; Pai, H.

    2017-12-01

    Seasonal snowpack constitutes a significant portion of the hydrologic budget in mountain watersheds and influences dynamic (e.g., runoff magnitude and timing, soil moisture availability) and energetic processes (e.g., surface-atmosphere energy fluxes, ground temperature). Altered forest structure can affect snow accumulation and ablation. As part of a long-term monitoring project, this work examines the impact of forest management practices on snow cover in Lassen National Forest, California. We deployed a fiber optic distributed temperature sensing (DTS) cable and multiple meteorological stations in thinned, clear-cut, and untreated areas of forest. The DTS data was collected at 1 meter spatial intervals every 4 hours from February to May 2017. To determine snow cover, daily temperature variations were examined along locations of the DTS cable associated with our areas of interest. Between the various treatments, snow duration was greater in both clear-cut and untreated forest compared to the thinned area. However, snow duration varied by only six days. We also investigated other meteorological forcings, such as average winter temperature and precipitation, which coupled with forest modifications could explain snow duration in our study.

  8. Comparison of different methods for estimating snowcover in forested, mountainous basins using LANDSAT (ERTS) images. [Washington and Santiam River, Oregon

    NASA Technical Reports Server (NTRS)

    Meier, M. J.; Evans, W. E.

    1975-01-01

    Snow-covered areas on LANDSAT (ERTS) images of the Santiam River basin, Oregon, and other basins in Washington were measured using several operators and methods. Seven methods were used: (1) Snowline tracing followed by measurement with planimeter, (2) mean snowline altitudes determined from many locations, (3) estimates in 2.5 x 2.5 km boxes of snow-covered area with reference to snow-free images, (4) single radiance-threshold level for entire basin, (5) radiance-threshold setting locally edited by reference to altitude contours and other images, (6) two-band color-sensitive extraction locally edited as in (5), and (7) digital (spectral) pattern recognition techniques. The seven methods are compared in regard to speed of measurement, precision, the ability to recognize snow in deep shadow or in trees, relative cost, and whether useful supplemental data are produced.

  9. Distribution and variability of total mercury in snow cover-a case study from a semi-urban site in Poznań, Poland.

    PubMed

    Siudek, Patrycja

    2016-12-01

    In the present paper, the inter-seasonal Hg variability in snow cover was examined based on multivariate statistical analysis of chemical and meteorological data. Samples of freshly fallen snow cover were collected at the semi-urban site in Poznań (central Poland), during 3-month field measurements in winter 2013. It was showed that concentrations of atmospherically deposited Hg were highly variable in snow cover, from 0.43 to 12.5 ng L -1 , with a mean value of 4.62 ng L -1 . The highest Hg concentration in snow cover coincided with local intensification of fossil fuel burning, indicating large contribution from various anthropogenic sources such as commercial and domestic heating, power generation plants, and traffic-related pollution. Moreover, the variability of Hg in collected snow samples was associated with long-range transport of pollutants, nocturnal inversion layer, low boundary layer height, and relatively low air temperature. For three snow episodes, Hg concentration in snow cover was attributed to southerly advection, suggesting significant contribution from the highly polluted region of Poland (Upper Silesia) and major European industrial hotspots. However, the peak Hg concentration was measured in samples collected during predominant N to NE advection of polluted air masses and after a relatively longer period without precipitation. Such significant contribution to the higher Hg accumulation in snow cover was associated with intensive emission from anthropogenic sources (coal combustion) and atmospheric conditions in this area. These results suggest that further measurements are needed to determine how the Hg transformation paths in snow cover change in response to longer/shorter duration of snow cover occurrence and to determine the interactions between mercury and absorbing carbonaceous aerosols in the light of climate change.

  10. Seasonal patterns in soil surface CO2 flux under snow cover in 50 and 300 year old subalpine forests

    Treesearch

    Robert M. Hubbard; Michael G. Ryan; Kelly Elder; Charles C. Rhoades

    2005-01-01

    Soil CO2 flux can contribute as much as 60-80% of total ecosystem respiration in forests. Although considerable research has focused on quantifying this flux during the growing season, comparatively little effort has focused on non-growing season fluxes. We measured soil CO2 efflux through snow in 50 and 300 year old subalpine forest stands near Fraser CO. Our...

  11. Estimation of Sea Ice Thickness Distributions through the Combination of Snow Depth and Satellite Laser Altimetry Data

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan T.; Markus, Thorsten; Cavalieri, Donald J.; Sparling, Lynn C.; Krabill, William B.; Gasiewski, Albin J.; Sonntag, John G.

    2009-01-01

    Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values.

  12. Absence of snow cover reduces understory plant cover and alters plant community composition in boreal forests.

    PubMed

    Kreyling, Juergen; Haei, Mahsa; Laudon, Hjalmar

    2012-02-01

    Snow regimes affect biogeochemistry of boreal ecosystems and are altered by climate change. The effects on plant communities, however, are largely unexplored despite their influence on relevant processes. Here, the impact of snow cover on understory community composition and below-ground production in a boreal Picea abies forest was investigated using a long-term (8-year) snow cover manipulation experiment consisting of the treatments: snow removal, increased insulation (styrofoam pellets), and control. The snow removal treatment caused longer (118 vs. 57 days) and deeper soil frost (mean minimum temperature -5.5 vs. -2.2°C) at 10 cm soil depth in comparison to control. Understory species composition was strongly altered by the snow cover manipulations; vegetation cover declined by more than 50% in the snow removal treatment. In particular, the dominant dwarf shrub Vaccinium myrtillus (-82%) and the most abundant mosses Pleurozium schreberi (-74%) and Dicranum scoparium (-60%) declined strongly. The C:N ratio in V. myrtillus leaves and plant available N in the soil indicated no altered nitrogen nutrition. Fine-root biomass in summer, however, was negatively affected by the reduced snow cover (-50%). Observed effects are attributed to direct frost damage of roots and/ or shoots. Besides the obvious relevance of winter processes on plant ecology and distribution, we propose that shifts in the vegetation caused by frost damage may be an important driver of the reported alterations in biogeochemistry in response to altered snow cover. Understory plant performance clearly needs to be considered in the biogeochemistry of boreal systems in the face of climate change.

  13. High-resolution LIDAR and ground observations of snow cover in a complex forested terrain in the Sierra Nevada - implications for optical remote sensing of seasonal snow.

    NASA Astrophysics Data System (ADS)

    Kostadinov, T. S.; Harpold, A.; Hill, R.; McGwire, K.

    2017-12-01

    Seasonal snow cover is a key component of the hydrologic regime in many regions of the world, especially those in temperate latitudes with mountainous terrain and dry summers. Such regions support large human populations which depend on the mountain snowpack for their water supplies. It is thus important to quantify snow cover accurately and continuously in these regions. Optical remote-sensing methods are able to detect snow and leverage space-borne spectroradiometers with global coverage such as MODIS to produce global snow cover maps. However, snow is harder to detect accurately in mountainous forested terrain, where topography influences retrieval algorithms, and importantly - forest canopies complicate radiative transfer and obfuscate the snow. Current satellite snow cover algorithms assume that fractional snow-covered area (fSCA) under the canopy is the same as the fSCA in the visible portion of the pixel. In-situ observations and first principles considerations indicate otherwise, therefore there is a need for improvement of the under-canopy correction of snow cover. Here, we leverage multiple LIDAR overflights and in-situ observations with a distributed fiber-optic temperature sensor (DTS) to quantify snow cover under canopy as opposed to gap areas at the Sagehen Experimental Forest in the Northern Sierra Nevada, California, USA. Snow-off LIDAR overflights from 2014 are used to create a baseline high-resolution digital elevation model and classify pixels at 1 m resolution as canopy-covered or gap. Low canopy pixels are excluded from the analysis. Snow-on LIDAR overflights conducted by the Airborne Snow Observatory in 2016 are then used to classify all pixels as snow-covered or not and quantify fSCA under canopies vs. in gap areas over the Sagehen watershed. DTS observations are classified as snow-covered or not based on diel temperature fluctuations and used as validation for the LIDAR observations. LIDAR- and DTS-derived fSCA is also compared with retrievals from hyperspectral imaging spectroradiometer (AVIRIS) data. Initial evidence suggest fSCA was generally lower under canopy and that overall snow cover estimates were overestimated as a result. Implications for a canopy correction applicable to coarser-resolution sensors like MODIS are discussed, as are topography and view angle effects.

  14. Improving the Representation of Snow Crystal Properties with a Single-Moment Mircophysics Scheme

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Demek, Scott R.

    2010-01-01

    Single-moment microphysics schemes are utilized in an increasing number of applications and are widely available within numerical modeling packages, often executed in near real-time to aid in the issuance of weather forecasts and advisories. In order to simulate cloud microphysical and precipitation processes, a number of assumptions are made within these schemes. Snow crystals are often assumed to be spherical and of uniform density, and their size distribution intercept may be fixed to simplify calculation of the remaining parameters. Recently, the Canadian CloudSat/CALIPSO Validation Project (C3VP) provided aircraft observations of snow crystal size distributions and environmental state variables, sampling widespread snowfall associated with a passing extratropical cyclone on 22 January 2007. Aircraft instrumentation was supplemented by comparable surface estimations and sampling by two radars: the C-band, dual-polarimetric radar in King City, Ontario and the NASA CloudSat 94 GHz Cloud Profiling Radar. As radar systems respond to both hydrometeor mass and size distribution, they provide value when assessing the accuracy of cloud characteristics as simulated by a forecast model. However, simulation of the 94 GHz radar signal requires special attention, as radar backscatter is sensitive to the assumed crystal shape. Observations obtained during the 22 January 2007 event are used to validate assumptions of density and size distribution within the NASA Goddard six-class single-moment microphysics scheme. Two high resolution forecasts are performed on a 9-3-1 km grid, with C3VP-based alternative parameterizations incorporated and examined for improvement. In order to apply the CloudSat 94 GHz radar to model validation, the single scattering characteristics of various crystal types are used and demonstrate that the assumption of Mie spheres is insufficient for representing CloudSat reflectivity derived from winter precipitation. Furthermore, snow density and size distribution characteristics are allowed to vary with height, based upon direct aircraft estimates obtained from C3VP data. These combinations improve the representation of modeled clouds versus their radar-observed counterparts, based on profiles and vertical distributions of reflectivity. These meteorological events are commonplace within the mid-latitude cold season and present a challenge to operational forecasters. This study focuses on one event, likely representative of others during the winter season, and aims to improve the representation of snow for use in future operational forecasts.

  15. Seasonal albedo of an urban/rural landscape from satellite observations

    NASA Technical Reports Server (NTRS)

    Brest, Christopher L.

    1987-01-01

    Using data from 27 calibrated Landsat observations of the Hartford, Connecticut area, the spatial distribution and seasonal variation of surface reflectance and albedo were examined. Mean values of visible reflectance, near-IR reflectance, and albedo are presented (for both snow-free and snow-cover observations) according to 14 land use/land cover categories. A diversity of albedo values was found to exist in this type of environment, associated with land cover. Many land-cover categories display a seasonal dependence, with intracategory seasonal differences being of comparable magnitude to intercategory differences. Key factors in determining albedo (and its seasonal dynamics) are the presence or absence of vegetation and the canopy structure. Snow-cover/snow-free differences range from a few percent (for urban land covers) to over 40 percent (for low-canopy vegetation).

  16. Effects of snow grain non-sphericity on climate simulations: Sensitivity tests with the NorESM model

    NASA Astrophysics Data System (ADS)

    Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf

    2017-04-01

    Snow grains are non-spherical and generally irregular in shape. Still, in radiative transfer calculations, they are often treated as spheres. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this work, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (≈ 0.78 in the visible region) than in the spherical case (≈ 0.89). Therefore, for a given snow grain size, the use of non-spherical snow grains yields a higher snow broadband albedo, typically by ≈0.03. Consequently, considering the spherical case as the baseline, the use of non-spherical snow grains results in a negative radiative forcing (RF), with a global-mean top-of-the-model value of ≈ -0.22 W m-2. Although this global-mean RF is modest, it has a rather substantial impact on the climate simulated by NoRESM. In particular, the global annual-mean 2-m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further found that the difference between NONSPH and SPH could be largely "tuned away" by adjusting the snow grain size in the NONSPH experiment by ≈ 70%. The impact of snow grain shape on the radiative effect (RE) of absorbing aerosols in snow (black carbon and mineral dust) is also discussed. For an optically thick snowpack with a given snow grain effective size, the absorbing aerosol RE is smaller for non-spherical than for spherical snow grains. The reason for this is that due to the lower asymmetry parameter of the non-spherical snow grains, solar radiation does not penetrate as deep in snow as in the case of spherical snow grains. However, in a climate model simulation, the RE is sensitive to patterns of aerosol deposition and simulated snow cover. In fact, the global land-area mean absorbing aerosol RE is larger in the NONSPH than SPH experiment (0.193 vs. 0.168 W m-2), owing to later snowmelt in spring.

  17. Climate change impacts on maritime mountain snowpack in the Oregon Cascades

    Treesearch

    E. Sproles; A.W. Nolin; K. Rittger; T.H. Painter

    2013-01-01

    This study investigates the effect of projected temperature increases on maritime mountain snowpack in the McKenzie River Basin (MRB; 3041 km2) in the Cascades Mountains of Oregon, USA. We simulated the spatial distribution of snow water equivalent (SWE) in the MRB for the period of 1989–2009 with SnowModel, a spatiallydistributed, process-based...

  18. Improvement of distributed snowmelt energy balance modeling with MODIS-based NDSI-derived fractional snow-covered area data

    Treesearch

    Joel W. Homan; Charles H. Luce; James P. McNamara; Nancy F. Glenn

    2011-01-01

    Describing the spatial variability of heterogeneous snowpacks at a watershed or mountain-front scale is important for improvements in large-scale snowmelt modelling. Snowmelt depletion curves, which relate fractional decreases in snowcovered area (SCA) against normalized decreases in snow water equivalent (SWE), are a common approach to scale-up snowmelt models....

  19. Evolution of the persistence of snow over Sierra Nevada Mountain (southern, Spain) in the last 55 years

    NASA Astrophysics Data System (ADS)

    Pimentel, Rafael; José Pérez-Palazón, María; Herrero, Javier; José Polo, María

    2016-04-01

    Snow plays a crucial role in mountainous areas, not only as water resources for human supply, irrigation and energy production, but also for the ecosystem, flora and fauna, over these areas. Sierra Nevada Mountains, southern Spain, constitutes a rich reservoir of endemic wildlife species, and it is considered the most important center of biodiversity in the wester Mediterranean region. The highest regions of the range were declared UNESCO Biosphere Reserve, Natural and National Parks. Climate trends over the last decades put a lot of pressure on both snowfall occurrence and snow persistence; this poses a risk for biodiversity and has led to its inclusion in the Global Change Observatory Network. This work quantifies the evolution of the persistence of snow over the Sierra Nevada area during the last fifty-five years (1960-2015) as a basis to assess the vulnerability of its ecosystem services. For this, the spatial distribution of the annual number of days with snow, SDS, was analyzed over a study area of 4583 km2 (140-3479 m.a.s.l.), which comprises the head of the five basins in these mountains. The following indicator variables were studied over the whole area and each one of the five head regions identified: 1) the trend of SDS; 2) the annual area where SDS exceeded selected percentiles in its distribution; and 3) the annual minimum altitude where SDS exceeded those percentiles. SDS was obtained during the study period by means of the snow module in WiMMed (Watershed Integrated Model in Mediterranean Environment), a physically-based hydrological model developed, calibrated and validated in the area; the model is based on an energy-mass balance over the snowpack that is spatially distributed through the use of depletion curves, and is operational at hourly and daily scales. A general decreasing trend of SDS (0.25 days year-1) was found over the whole study area for the study period. This value is higher in the more humid basins (0.45 and 0.41 days year-1) than in the drier ones (0.15 and 0.18 days year-1) where the snow is significant only in very wet years. The minimum altitude at which SDS is higher than the 25th percentile of SDS distribution is increasing at a mean rate of 0.0016 m year-1 during the 55-yr period; however, marked differences were found among these years, with and absolute range from 557 to 1594 m.a.s.l., showing the highly variable character of the climate in this region. The observed trend of temperature rather than precipitation seems to be more determining for the snow persistence, with an average correlation coefficient for the whole study period of -0.9 and 0.7 between SDS and the annual mean daily temperature and annual precipitation, respectively. The results led to the further identification of zones facing a significant reduction of the snow presence in the medium and long term, and they constitute a relevant basis to assess the decision-making process for both planning and adaptation actions in the Natural and National Park area.

  20. Snow-borne nanosized particles: Abundance, distribution, composition, and significance in ice nucleation processes

    NASA Astrophysics Data System (ADS)

    Rangel-Alvarado, Rodrigo Benjamin; Nazarenko, Yevgen; Ariya, Parisa A.

    2015-11-01

    Physicochemical processes of nucleation constitute a major uncertainty in understanding aerosol-cloud interactions. To improve the knowledge of the ice nucleation process, we characterized physical, chemical, and biological properties of fresh snow using a suite of state-of-the-art techniques based on mass spectrometry, electron microscopy, chromatography, and optical particle sizing. Samples were collected at two North American Arctic sites, as part of international campaigns (2006 and 2009), and in the city of Montreal, Canada, over the last decade. Particle size distribution analyses, in the range of 3 nm to 10 µm, showed that nanosized particles are the most numerous (38-71%) in fresh snow, with a significant portion (11 to 19%) less than 100 nm in size. Particles with diameters less than 200 nm consistently exhibited relatively high ice-nucleating properties (on average ranged from -19.6 ± 2.4 to -8.1 ± 2.6°C). Chemical analysis of the nanosized fraction suggests that they contain bioorganic materials, such as amino acids, as well as inorganic compounds with similar characteristics to mineral dust. The implication of nanoparticle ubiquity and abundance in diverse snow ecosystems are discussed in the context of their importance in understanding atmospheric nucleation processes.

  1. In situ camera observations reveal major role of zooplankton in modulating marine snow formation during an upwelling-induced plankton bloom

    NASA Astrophysics Data System (ADS)

    Taucher, Jan; Stange, Paul; Algueró-Muñiz, María; Bach, Lennart T.; Nauendorf, Alice; Kolzenburg, Regina; Büdenbender, Jan; Riebesell, Ulf

    2018-05-01

    Particle aggregation and the consequent formation of marine snow alter important properties of biogenic particles (size, sinking rate, degradability), thus playing a key role in controlling the vertical flux of organic matter to the deep ocean. However, there are still large uncertainties about rates and mechanisms of particle aggregation, as well as the role of plankton community structure in modifying biomass transfer from small particles to large fast-sinking aggregates. Here we present data from a high-resolution underwater camera system that we used to observe particle size distributions and formation of marine snow (aggregates >0.5 mm) over the course of a 9-week in situ mesocosm experiment in the Eastern Subtropical North Atlantic. After an oligotrophic phase of almost 4 weeks, addition of nutrient-rich deep water (650 m) initiated the development of a pronounced diatom bloom and the subsequent formation of large marine snow aggregates in all 8 mesocosms. We observed a substantial time lag between the peaks of chlorophyll a and marine snow biovolume of 9-12 days, which is much longer than previously reported and indicates a marked temporal decoupling of phytoplankton growth and marine snow formation during our study. Despite this time lag, our observations revealed substantial transfer of biomass from small particle sizes (single phytoplankton cells and chains) to marine snow aggregates of up to 2.5 mm diameter (ESD), with most of the biovolume being contained in the 0.5-1 mm size range. Notably, the abundance and community composition of mesozooplankton had a substantial influence on the temporal development of particle size spectra and formation of marine snow aggregates: While higher copepod abundances were related to reduced aggregate formation and biomass transfer towards larger particle sizes, the presence of appendicularia and doliolids enhanced formation of large marine snow. Furthermore, we combined in situ particle size distributions with measurements of particle sinking velocity to compute instantaneous (potential) vertical mass flux. However, somewhat surprisingly, we did not find a coherent relationship between our computed flux and measured vertical mass flux (collected by sediment traps in 15 m depth). Although the onset of measured vertical flux roughly coincided with the emergence of marine snow, we found substantial variability in mass flux among mesocosms that was not related to marine snow numbers, and was instead presumably driven by zooplankton-mediated alteration of sinking biomass and export of small particles (fecal pellets). Altogether, our findings highlight the role of zooplankton community composition and feeding interactions on particle size spectra and formation of marine snow aggregates, with important implications for our understanding of particle aggregation and vertical flux of organic matter in the ocean.

  2. Does seasonal snowpacks enhance or decrease mercury contamination of high elevation ecosystems?

    NASA Astrophysics Data System (ADS)

    Pierce, A.; Fain, X.; Obrist, D.; Helmig, D.; Barth, C.; Jacques, H.; Chowanski, K.; Boyle, D.; William, M.

    2009-12-01

    Mercury (Hg) is an extremely toxic pollutant globally dispersed in the environment. Natural and anthropogenic sources emit Hg to the atmosphere, either as gaseous elemental mercury (GEM; Hg0) or as divalent mercury species. Due to the long lifetime of GEM mercury contamination is not limited to industrialized sites, but also a concern in remote areas such as high elevation mountain environments. During winter and spring 2009, we investigated the fate of atmospheric mercury deposited to mountain ecosystems in the Sierra Nevada (Sagehen station, California, USA) and the Rocky Mountains (Niwot Ridge station, Colorado, USA). At Sagehen, we monitored mercury in snow (surface snow sampling and snow pits), wet deposition, and stream water during the snow-dominated season. Comparison of Hg stream discharge to snow Hg wet deposition showed that only a small fraction of Hg wet deposition reached stream in the melt water. Furthermore, Hg concentration in soil transects (25 different locations) showed no correlations to wet deposition Hg loads due to pronounced altitudinal precipitation gradient suggesting that Hg deposited to the snowpack was not transferred to ecosystems. At Niwot Ridge, further characterization of the chemical transformation involving mercury species within snowpacks was achieved by 3-months of continuous monitoring of GEM and ozone concentrations in the snow air at eight depths from the soil-snow interface to the top of the up to 2 meter deep snowpack. Divalent mercury concentrations were monitored as well (surface snow sampling and snow pits). GEM levels in snow air exhibited strong diurnal pattern indicative of both oxidation and reduction processes. Low levels of divalent mercury concentrations in snow pack suggest that large fractions of Hg originally deposited as wet deposition was reemitted back to the atmosphere after reduction. Hence, these results suggest that the presence of a seasonal snowpack may decrease effective wet deposition of mercury and transfer to the underlying ground due to significant evasion losses of Hg from the snowpack to the atmosphere.

  3. Mapping snow depth in open alpine terrain from stereo satellite imagery

    NASA Astrophysics Data System (ADS)

    Marti, R.; Gascoin, S.; Berthier, E.; de Pinel, M.; Houet, T.; Laffly, D.

    2016-07-01

    To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. Here, we examine the potential of very-high-resolution (VHR) optical stereo satellites to this purpose. Two triplets of 0.70 m resolution images were acquired by the Pléiades satellite over an open alpine catchment (14.5 km2) under snow-free and snow-covered conditions. The open-source software Ame's Stereo Pipeline (ASP) was used to match the stereo pairs without ground control points to generate raw photogrammetric clouds and to convert them into high-resolution digital elevation models (DEMs) at 1, 2, and 4 m resolutions. The DEM differences (dDEMs) were computed after 3-D coregistration, including a correction of a -0.48 m vertical bias. The bias-corrected dDEM maps were compared to 451 snow-probe measurements. The results show a decimetric accuracy and precision in the Pléiades-derived snow depths. The median of the residuals is -0.16 m, with a standard deviation (SD) of 0.58 m at a pixel size of 2 m. We compared the 2 m Pléiades dDEM to a 2 m dDEM that was based on a winged unmanned aircraft vehicle (UAV) photogrammetric survey that was performed on the same winter date over a portion of the catchment (3.1 km2). The UAV-derived snow depth map exhibits the same patterns as the Pléiades-derived snow map, with a median of -0.11 m and a SD of 0.62 m when compared to the snow-probe measurements. The Pléiades images benefit from a very broad radiometric range (12 bits), allowing a high correlation success rate over the snow-covered areas. This study demonstrates the value of VHR stereo satellite imagery to map snow depth in remote mountainous areas even when no field data are available.

  4. Influence of tundra snow layer thickness on measured and modelled radar backscatter

    NASA Astrophysics Data System (ADS)

    Rutter, N.; Sandells, M. J.; Derksen, C.; King, J. M.; Toose, P.; Wake, L. M.; Watts, T.

    2017-12-01

    Microwave radar backscatter within a tundra snowpack is strongly influenced by spatial variability of the thickness of internal layering. Arctic tundra snowpacks often comprise layers consisting of two dominant snow microstructures; a basal depth hoar layer overlain by a layer of wind slab. Occasionally there is also a surface layer of decomposing fresh snow. The two main layers have strongly different microwave scattering properties. Depth hoar has a greater capacity for scattering electromagnetic energy than wind slab, however, wind slab usually has a larger snow water equivalent (SWE) than depth hoar per unit volume due to having a higher density. So, determining the relative proportions of depth hoar and wind slab from a snowpack of a known depth may help our future capacity to invert forward models of electromagnetic backscatter within a data assimilation scheme to improve modelled estimates of SWE. Extensive snow measurements were made within Trail Valley Creek, NWT, Canada in April 2013. Snow microstructure was measured at 18 pit and 9 trench locations throughout the catchment (trench extent ranged between 5 to 50 m). Ground microstructure measurements included traditional stratigraphy, near infrared stratigraphy, Specific Surface Area (SSA), and density. Coincident airborne Lidar measurements were made to estimate distributed snow depth across the catchment, in addition to airborne radar snow backscatter using a dual polarized (VV/VH) X- and Ku-band Synthetic Aperture Radar (SnowSAR). Ground measurements showed the mean proportion of depth hoar was just under 30% of total snow depth and was largely unresponsive to increasing snow depth. The mean proportion of wind slab is consistently greater than 50% and showed an increasing trend with increasing total snow depth. A decreasing trend in the mean proportion of surface snow (approximately 25% to 10%) with increasing total depth accounted for this increase in wind slab. This new knowledge of variability in stratigraphic thickness, relative to respective proportions of total snow depth, was used to investigate the representativeness of point measurements of density and microstructure for forward simulations of the SMRT microwave scattering model, using Lidar derived snow depths.

  5. Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments

    NASA Astrophysics Data System (ADS)

    Griessinger, Nena; Seibert, Jan; Magnusson, Jan; Jonas, Tobias

    2016-09-01

    In Alpine catchments, snowmelt is often a major contribution to runoff. Therefore, modeling snow processes is important when concerned with flood or drought forecasting, reservoir operation and inland waterway management. In this study, we address the question of how sensitive hydrological models are to the representation of snow cover dynamics and whether the performance of a hydrological model can be enhanced by integrating data from a dedicated external snow monitoring system. As a framework for our tests we have used the hydrological model HBV (Hydrologiska Byråns Vattenbalansavdelning) in the version HBV-light, which has been applied in many hydrological studies and is also in use for operational purposes. While HBV originally follows a temperature-index approach with time-invariant calibrated degree-day factors to represent snowmelt, in this study the HBV model was modified to use snowmelt time series from an external and spatially distributed snow model as model input. The external snow model integrates three-dimensional sequential assimilation of snow monitoring data with a snowmelt model, which is also based on the temperature-index approach but uses a time-variant degree-day factor. The following three variations of this external snow model were applied: (a) the full model with assimilation of observational snow data from a dense monitoring network, (b) the same snow model but with data assimilation switched off and (c) a downgraded version of the same snow model representing snowmelt with a time-invariant degree-day factor. Model runs were conducted for 20 catchments at different elevations within Switzerland for 15 years. Our results show that at low and mid-elevations the performance of the runoff simulations did not vary considerably with the snow model version chosen. At higher elevations, however, best performance in terms of simulated runoff was obtained when using the snowmelt time series from the snow model, which utilized data assimilation. This was especially true for snow-rich years. These findings suggest that with increasing elevation and the correspondingly increased contribution of snowmelt to runoff, the accurate estimation of snow water equivalent (SWE) and snowmelt rates has gained importance.

  6. Satellite geological and geophysical remote sensing of Iceland

    NASA Technical Reports Server (NTRS)

    Williams, R. S., Jr. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. ERTS-1 imagery provides sufficient resolution to discern two effects of geothermal activity at the Namafjall geothermal area: snowmelt anomalies and delineation of altered ground. The fallout pattern of tephra from Hekla's 1970 volcanic eruption can be mapped where sufficient depth of deposition destroyed the vegetation. Lava flows from the volcanic eruptions at Askja and Hekla can be delineated. Low sun-angle imagery of snow-covered terrain has permitted the mapping of new structural and volcanic features beneath the icecaps. Coastline changes on the islands of Surtsey and Heimaey can be mapped. Variations of sediment plumes from glacial rivers on the south coast give a qualitative indication of seasonal changes in melting rates of glaciers. ERTS-1 imagery has been shown to be especially amenable to portrayal of changing glaciological phenomena: surging glaciers, collapse features in icecaps caused by subglacial volcanic (?) and geothermal activity and resulting jokulhlaups, and variations in size of glacier-margin lakes. A fifth vegetation class has now been added: lichen-covered bedrock. The high latitude permits more precise analysis of landforms, vegetation distribution, occurrence of snow cover, glaciers, and geologic structure.

  7. Neckband retention for lesser snow geese in the western Arctic

    USGS Publications Warehouse

    Samuel, M.D.; Goldberg, Diana R.; Smith, A.E.; Baranyuk, W.; Cooch, E.G.

    2001-01-01

    Neckbands are commonly used in waterfowl studies (especially geese) to identify individuals for determination of movement and behavior and to estimate population parameters. Substantial neckband loss can adversely affect these research objectives and produce biased survival estimates. We used capture, recovery, and observation histories for lesser snow geese (Chen caerulescens caerulescens) banded in the western Arctic, 1993-1996, to estimate neckband retention. We found that neckband retention differed between snow goose breeding colonies at Wrangel Island, Russia, and Banks Island, Northwest Territories, Canada. Male snow geese had higher neckband loss than females, a pattern similar to that found for Canada geese (Branta canadensis) and lesser snow geese in Alaska. We found that the rate of neckband loss increased with time, suggesting that neckbands are lost as the plastic deteriorates. Survival estimates for geese based on resighting neckbands will be biased unless estimates are corrected for neckband loss. We recommend that neckband loss be estimated using survival estimators that incorporate recaptures, recoveries, and observations of marked birds. Research and management studies using neckbands should be designed to improve neckband retention and to include the assessment of neckband retention.

  8. What color should snow algae be and what does it mean for glacier melt?

    NASA Astrophysics Data System (ADS)

    Dial, R. J.; Ganey, G. Q.; Loso, M.; Burgess, A. B.; Skiles, M.

    2017-12-01

    Specialized microbes colonize glaciers and ice sheets worldwide and, like all organisms, they are unable to metabolize water in its solid form. It is well understood that net solar radiation controls melt in almost all snow and ice covered environments, and theoretical and empirical studies have documented the substantial reduction of albedo by these microbes both on ice and on snow, implicating a microbial role in glacier melt. If glacial microbiomes are limited by liquid water, and the albedo-reducing properties of individual cells enhance melt rates, then natural selection should favor those microbes that melt ice and snow crystals most efficiently. Here we: (1) argue that natural selection favors a red color on snow and a near-black color on ice based on instantaneous radiative forcing. (2) Review results of the first replicated, controlled field experiment to both quantify the impact of microbes on snowmelt in "red-snow" communities and demonstrate their water-limitation and (3) show the extent of snow-algae's spatial distribution and estimate their contribution to snowmelt across a large Alaskan icefield using remote sensing. On the 700 km2 of a 2,000 km2 maritime icefield in Alaska where red-snow was present, microbes increased snowmelt over 20% by volume, a percentage likely to increase as the climate warms and particulate pollution intensifies with important implications for models of sea level rise.

  9. Prevalence of pure versus mixed snow cover pixels across spatial resolutions in alpine environments: implications for binary and fractional remote sensing approaches

    USGS Publications Warehouse

    Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.

    2014-01-01

    Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37 days. Our results suggest that mixed snow-covered snow-free pixels are common at the spatial resolutions imaged by both the Landsat and MODIS sensors. This highlights the additional information available from fractional SCA products and suggests fractional SCA can provide a major advantage for hydrological and climatological monitoring and modeling, particularly when accurate representation of the spatial distribution of snow cover is critical.

  10. Monitoring All Weather Precipitation Using PIP and MRR

    NASA Astrophysics Data System (ADS)

    Bliven, Francis; Petersen, Walter; Kulie, Mark; Pettersen, Claire; Wolff, David; Dutter, Michael

    2015-04-01

    The objective of this study is to demonstrate the science benefit of monitoring all weather precipitation for the Global Precipitation Measurement (GPM) Mission Ground Validation Program using a combination of two instruments: the Precipitation Imaging Package (PIP) and a Microwave Rain Radar-II (MRR). The PIP is a new ground based precipitation imaging instrument that uses a high speed camera and advanced processing software to image individual hydrometeors, measure hydrometeor size distributions, track individual hydrometeors and compute fall velocities. PIP hydrometeor data are also processed using algorithms to compute precipitation rates in one-minute time increments, and to discriminate liquid, mixed and frozen (e.g., snow) precipitation. The MRR, a vertically-pointing 24 GHz radar, is well documented in the literature and monitors hydrometeor vertical profile characteristics such as Doppler fall-speed spectra, radar reflectivity, size distribution and precipitation rate. Of interest to GPM direct and physical ground validation are collections of robust, satellite overpass-coincident, long-duration datasets consisting of observations of the aforementioned hydrometeor characteristics for falling snow and mixes of falling-snow and rain, as there are relatively few instruments that provide continuous observations of coincident hydrometeor image, size, and fall velocity in cold regions due to harsh environmental conditions. During extended periods of 2013 and 2014, concurrent PIP and MRR data sets were obtained at the National Weather Service station in Marquette, Michigan (2014), and at the NASA Wallops Flight Facility in Wallops Island, Virginia (2013,14). Herein we present examples of those data sets for a variety of weather conditions (rain, snow, frontal passages, lake effect snow events etc.). The results demonstrate 1) that the PIP and MRR are well-suited to long term operation in cold regions; 2) PIP and MRR data products are useful for characterizing a wide variety of precipitation types and conditions; 3) systematic variability in bulk snow characteristics such as fall speed and size distributions can be observed between event types, but also within individual event types (e.g., within a given synoptic or lake effect storm). The observed behavior suggests that added information on environmental or cloud parameters may be necessary to further define snowfall types/regimes or to estimate snow water equivalent rates using satellite or ground-based active or passive remote sensing tools.

  11. Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry

    USGS Publications Warehouse

    Clow, David W.; Williams, Mark W.; Schuster, Paul F.

    2016-01-01

    Mountain snowpacks are a vital natural resource for ∼1.5 billion people in the northern Hemisphere, helping to meet human and ecological demand for water in excess of that provided by summer rain. Springtime warming and aeolian dust deposition accelerate snowmelt, increasing the risk of water shortages during late summer, when demand is greatest. While climate networks provide data that can be used to evaluate the effect of warming on snowpack resources, there are no established regional networks for monitoring aeolian dust deposition to snow. In this study, we test the hypothesis that chemistry of snow, wet deposition, and aerosols can be used as a surrogate for dust deposition to snow. We then analyze spatial patterns and temporal trends in inferred springtime dust deposition to snow across the Rocky Mountains, USA, for 1993–2014. Geochemical evidence, including strong correlations (r2 ≥ 0.94) between Ca2+, alkalinity, and dust concentrations in snow deposited during dust events, indicate that carbonate minerals in dust impart a strong chemical signature that can be used to track dust deposition to snow. Spatial patterns in chemistry of snow, wet deposition, and aerosols indicate that dust deposition increases from north to south in the Rocky Mountains, and temporal trends indicate that winter/spring dust deposition increased by 81% in the southern Rockies during 1993–2014. Using a multivariate modeling approach, we determined that increases in dust deposition and decreases in springtime snowfall combined to accelerate snowmelt timing in the southern Rockies by approximately 7–18 days between 1993 and 2014. Previous studies have shown that aeolian dust emissions may have doubled globally during the 20th century, possibly due to drought and land-use change. Climate projections for increased aridity in the southwestern U.S., northern Africa, and other mid-latitude regions of the northern Hemisphere suggest that aeolian dust emissions may continue to increase, compounding the risk that climate warming poses to snowpack water resources in arid/semi-arid regions of the world.

  12. Using high resolution Lidar data from SnowEx to characterize the sensitivity of snow depth retrievals to point-cloud density and vegetation

    NASA Astrophysics Data System (ADS)

    Patterson, V. M.; Bormann, K.; Deems, J. S.; Painter, T. H.

    2017-12-01

    The NASA SnowEx campaign conducted in 2016 and 2017 provides a rich source of high-resolution Lidar data from JPL's Airborne Snow Observatory (ASO - http://aso.jpl.nasa.gov) combined with extensive in-situ measurements in two key areas in Colorado: Grand Mesa and Senator Beck. While the uncertainty in the 50m snow depth retrievals from NASA's ASO been estimated at 1-2cm in non-vegetated exposed areas (Painter et al., 2016), the impact of forest cover and point-cloud density on ASO snow lidar depth retrievals is relatively unknown. Dense forest canopies are known to reduce lidar penetration and ground strikes thus affecting the elevation surface retrieved from in the forest. Using high-resolution lidar point cloud data from the ASO SnowEx campaigns (26pt/m2) we applied a series of data decimations (up to 90% point reduction) to the point cloud data to quantify the relationship between vegetation, ground point density, resulting snow-off and snow-on surface elevations and finally snow depth. We observed non-linear reductions in lidar ground point density in forested areas that were strongly correlated to structural forest cover metrics. Previously, the impacts of these data decimations on a small study area in Grand Mesa showed a sharp increase in under-canopy surface elevation errors of -0.18m when ground point densities were reduced to 1.5pt/m2. In this study, we expanded the evaluation to the more topographically challenging Senator Beck basin, have conducted analysis along a vegetation gradient and are considering snow the impacts of snow depth rather than snow-off surface elevation. Preliminary analysis suggest that snow depth retrievals inferred from airborne lidar elevation differentials may systematically underestimate snow depth in forests where canopy density exceeds 1.75 and where tree heights exceed 5m. These results provide a basis from which to identify areas that may suffer from vegetation-induced biases in surface elevation models and snow depths derived from airborne lidar data, and help quantify expected spatial distributions of errors in the snow depth that can be used to improve the accuracy of ASO basin-scale depth and water equivalent products.

  13. Glaciological studies in the central Andes using AIRSAR/TOPSAR

    NASA Technical Reports Server (NTRS)

    Forster, Richard R.; Klein, Andrew G.; Blodgett, Troy A.; Isacks, Bryan L.

    1993-01-01

    The interaction of climate and topography in mountainous regions is dramatically expressed in the spatial distribution of glaciers and snowcover. Monitoring existing alpine glaciers and snow extent provides insight into the present mountain climate system and how it is changing, while mapping the positions of former glaciers as recorded in landforms such as cirques and moraines provide a record of the large past climate change associated with the last glacial maximum. The Andes are an ideal mountain range in which to study the response of snow and ice to past and present climate change. Their expansive latitudinal extent offers the opportunity to study glaciers in diverse climate settings from the tropical glaciers of Peru and Bolivia to the ice caps and tide-water glaciers of sub-polar Patagonia. SAR has advantages over traditional passive remote sensing instruments for monitoring present snow and ice and differentiating moraine relative ages. The cloud penetrating ability of SAR is indispensable for perennially cloud covered mountains. Snow and ice facies can be distinguished from SAR's response to surface roughness, liquid water content and grain size distribution. The combination of SAR with a coregestered high-resolution DEM (TOPSAR) provides a promising tool for measuring glacier change in three dimensions, thus allowing ice volume change to be measured directly. The change in moraine surface roughness over time enables SAR to differentiate older from younger moraines. Polarimetric SAR data have been used to distinguish snow and ice facies and relatively date moraines. However, both algorithms are still experimental and require ground truth verification. We plan to extend the SAR classification of snow and ice facies and moraine age beyond the ground truth sites to throughout the Cordillera Real to provide a regional view of past and present snow and ice. The high resolution DEM will enhance the SAR moraine dating technique by discriminating relative ages based on moraine slope degradation.

  14. Real-Time Alpine Measurement System Using Wireless Sensor Networks

    PubMed Central

    2017-01-01

    Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN)-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra’s wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape. PMID:29120376

  15. A Physical Model to Determine Snowfall over Land by Microwave Radiometry

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, G.; Kim, M.-J.; Weinman, J. A.; Chang, D.-E.

    2003-01-01

    Because microwave brightness temperatures emitted by snow covered surfaces are highly variable, snowfall above such surfaces is difficult to observe using window channels that occur at low frequencies (v less than 100 GHz). Furthermore, at frequencies v less than or equal to 37 GHz, sensitivity to liquid hydrometeors is dominant. These problems are mitigated at high frequencies (v greater than 100 GHz) where water vapor screens the surface emission and sensitivity to frozen hydrometeors is significant. However the scattering effect of snowfall in the atmosphere at those higher frequencies is also impacted by water vapor in the upper atmosphere. This work describes the methodology and results of physically-based retrievals of snow falling over land surfaces. The theory of scattering by randomly oriented dry snow particles at high microwave frequencies appears to be better described by regarding snow as a concatenation of equivalent ice spheres rather than as a sphere with the effective dielectric constant of an air-ice mixture. An equivalent sphere snow scattering model was validated against high frequency attenuation measurements. Satellite-based high frequency observations from an Advanced Microwave Sounding Unit (AMSU-B) instrument during the March 5-6, 2001 New England blizzard were used to retrieve snowfall over land. Vertical distributions of snow, temperature and relative humidity profiles were derived from the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). Those data were applied and modified in a radiative transfer model that derived brightness temperatures consistent with the AMSU-B observations. The retrieved snowfall distribution was validated with radar reflectivity measurements obtained from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) ground-based radar network.

  16. Large scale snow water status monitoring: comparison of different snow water products in the upper Colorado basins

    USGS Publications Warehouse

    Artan, G.A.; Verdin, J.P.; Lietzow, R.

    2013-01-01

    We illustrate the ability to monitor the status of snowpack over large areas by using a~spatially distributed snow accumulation and ablation model in the Upper Colorado Basin. The model was forced with precipitation fields from the National Weather Service (NWS) Multi-sensor Precipitation Estimator (MPE) and the Tropical Rainfall Measuring Mission (TRMM) datasets; remaining meteorological model input data was from NOAA's Global Forecast System (GFS) model output fields. The simulated snow water equivalent (SWE) was compared to SWEs from the Snow Data Assimilation System (SNODAS) and SNOwpack TELemetry system (SNOTEL) over a~region of the Western United States that covers parts of the Upper Colorado Basin. We also compared the SWE product estimated from the Special Sensor Microwave Imager (SSM/I) and Scanning Multichannel Microwave Radiometer (SMMR) to the SNODAS and SNOTEL SWE datasets. Agreement between the spatial distribution of the simulated SWE with both SNODAS and SNOTEL was high for the two model runs for the entire snow accumulation period. Model-simulated SWEs, both with MPE and TRMM, were significantly correlated spatially on average with the SNODAS (r = 0.81 and r = 0.54; d.f. = 543) and the SNOTEL SWE (r = 0.85 and r = 0.55; d.f. = 543), when monthly basinwide simulated average SWE the correlation was also highly significant (r = 0.95 and r = 0.73; d.f. = 12). The SWE estimated from the passive microwave imagery was not correlated either with the SNODAS SWE or (r = 0.14, d.f. = 7) SNOTEL-reported SWE values (r = 0.08, d.f. = 7). The agreement between modeled SWE and the SWE recorded by SNODAS and SNOTEL weakened during the snowmelt period due to an underestimation bias of the air temperature that was used as model input forcing.

  17. Real-Time Alpine Measurement System Using Wireless Sensor Networks.

    PubMed

    Malek, Sami A; Avanzi, Francesco; Brun-Laguna, Keoma; Maurer, Tessa; Oroza, Carlos A; Hartsough, Peter C; Watteyne, Thomas; Glaser, Steven D

    2017-11-09

    Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN)-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra's wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km 2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape.

  18. Altitudinal patterns of plant diversity on the Jade Dragon Snow Mountain, southwestern China.

    PubMed

    Xu, Xiang; Zhang, Huayong; Tian, Wang; Zeng, Xiaoqiang; Huang, Hai

    2016-01-01

    Understanding altitudinal patterns of biological diversity and their underlying mechanisms is critically important for biodiversity conservation in mountainous regions. The contribution of area to plant diversity patterns is widely acknowledged and may mask the effects of other determinant factors. In this context, it is important to examine altitudinal patterns of corrected taxon richness by eliminating the area effect. Here we adopt two methods to correct observed taxon richness: a power-law relationship between richness and area, hereafter "method 1"; and richness counted in equal-area altitudinal bands, hereafter "method 2". We compare these two methods on the Jade Dragon Snow Mountain, which is the nearest large-scale altitudinal gradient to the Equator in the Northern Hemisphere. We find that seed plant species richness, genus richness, family richness, and species richness of trees, shrubs, herbs and Groups I-III (species with elevational range size <150, between 150 and 500, and >500 m, respectively) display distinct hump-shaped patterns along the equal-elevation altitudinal gradient. The corrected taxon richness based on method 2 (TRcor2) also shows hump-shaped patterns for all plant groups, while the one based on method 1 (TRcor1) does not. As for the abiotic factors influencing the patterns, mean annual temperature, mean annual precipitation, and mid-domain effect explain a larger part of the variation in TRcor2 than in TRcor1. In conclusion, for biodiversity patterns on the Jade Dragon Snow Mountain, method 2 preserves the significant influences of abiotic factors to the greatest degree while eliminating the area effect. Our results thus reveal that although the classical method 1 has earned more attention and approval in previous research, method 2 can perform better under certain circumstances. We not only confirm the essential contribution of method 1 in community ecology, but also highlight the significant role of method 2 in eliminating the area effect, and call for more application of method 2 in further macroecological studies.

  19. Studying of tritium content in snowpack of Degelen mountain range.

    PubMed

    Turchenko, D V; Lukashenko, S N; Aidarkhanov, A O; Lyakhova, O N

    2014-06-01

    The paper presents the results of investigation of tritium content in the layers of snow located in the streambeds of the "Degelen" massif contaminated with tritium. The objects of investigation were selected watercourses Karabulak, Uzynbulak, Aktybai located beyond the "Degelen" site. We studied the spatial distribution of tritium relative to the streambed of watercourses and defined the borders of the snow cover contamination. In the centre of the creek watercourses the snow contamination in the surface layer is as high as 40 000 Bq/L. The values of the background levels of tritium in areas not related to the streambed, which range from 40 to 50 Bq/L. The results of snow cover measurements in different seasonal periods were compared. The main mechanisms causing tritium transfer in snow were examined and identified. The most important mechanism of tritium transfer in the streams is tritium emanation from ice or soil surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Snow geese

    USGS Publications Warehouse

    Hupp, Jerry W.; Robertson, Donna G.; Brackney, Alan W.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Part of the coastal plain of the Arctic National Wildlife Refuge, Alaska, is used as an autumn staging area by lesser snow geese (Chen caerulescens caerulescens) from the Western Canadian Arctic population (hereafter called the Western Arctic population). There were approximately 200,000 breeding adults in the Western Arctic population through the mid-1980s (Johnson and Herter 1989), but the population has recently increased to about 500,000 breeding adults (Kerbes et al. 1999).Early in their autumn migration, adult and juvenile snow geese from the Western Arctic population feed intensively while staging on the Beaufort Sea coastal plain in Canada and Alaska to build fat reserves needed for migration. Aerial censuses from 1973 to 1985 indicated that up to 600,000 adult and juvenile snow geese used the coastal plain for 2-4 weeks in late August until mid-September (Oates et al. 1987).We studied annual variation in numbers and spatial distribution of snow geese that staged on the coastal plain of the Arctic Refuge.

  1. Methods for mapping and monitoring global glaciovolcanism

    NASA Astrophysics Data System (ADS)

    Curtis, Aaron; Kyle, Philip

    2017-03-01

    The most deadly (Nevado del Ruiz, 1985) and the most costly (Eyjafjallajökull, 2010) eruptions of the last 100 years were both glaciovolcanic. Considering its great importance to studies of volcanic hazards, global climate, and even astrobiology, the global distribution of glaciovolcanism is insufficiently understood. We present and assess three algorithms for mapping, monitoring, and predicting likely centers of glaciovolcanic activity worldwide. Each algorithm intersects buffer zones representing known Holocene-active volcanic centers with existing datasets of snow, ice, and permafrost. Two detection algorithms, RGGA and PZGA, are simple spatial join operations computed from the Randolph Glacier Inventory and the Permafrost Zonation Index, respectively. The third, MDGA, is an algorithm run on all 15 available years of the MOD10A2 weekly snow cover product from the Terra MODIS satellite radiometer. Shortcomings and advantages of the three methods are discussed, including previously unreported blunders in the MOD10A2 dataset. Comparison of the results leads to an effective approach for integrating the three methods. We show that 20.4% of known Holocene volcanic centers host glaciers or areas of permanent snow. A further 10.9% potentially interact with permafrost. MDGA and PZGA do not rely on any human input, rendering them useful for investigations of change over time. An intermediate step in MDGA involves estimating the snow-covered area at every Holocene volcanic center. These estimations can be updated weekly with no human intervention. To investigate the feasibility of an automatic ice-loss alert system, we consider three examples of glaciovolcanism in the MDGA weekly dataset. We also discuss the potential use of PZGA to model past and future glaciovolcanism based on global circulation model outputs. Combined, the three algorithms provide an automated system for understanding the geographic and temporal patterns of global glaciovolcanism which should be of use for hazard assessment, the search for extreme microbiomes, climate models, and implementation of ice-cover-based volcano monitoring systems.

  2. Inversely Estimating the Vertical Profile of the Soil CO2 Production Rate in a Deciduous Broadleaf Forest Using a Particle Filtering Method

    PubMed Central

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W.; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the “actual” values by decreasing the variance of the posterior distribution of the values. PMID:25793387

  3. Aerosol and precipitation chemistry in the southwestern United States: spatiotemporal trends and interrelationships

    PubMed Central

    Sorooshian, A.; Shingler, T.; Harpold, A.; Feagles, C. W.; Meixner, T.; Brooks, P. D.

    2013-01-01

    This study characterizes the spatial and temporal patterns of aerosol and precipitation composition at six sites across the United States Southwest between 1995 and 2010. Precipitation accumulation occurs mostly during the wintertime (December–February) and during the monsoon season (July–September). Rain and snow pH levels are usually between 5–6, with crustal-derived species playing a major role in acid neutralization. These species (Ca2+, Mg2+, K+, Na+) exhibit their highest concentrations between March and June in both PM2.5 and precipitation due mostly to dust. Crustal-derived species concentrations in precipitation exhibit positive relationships with SO42−, NO3−, and Cl–, suggesting that acidic gases likely react with and partition to either crustal particles or hydrometeors enriched with crustal constituents. Concentrations of particulate SO42− show a statistically significant correlation with rain SO42− unlike snow SO42−, which may be related to some combination of the vertical distribution of SO42− (and precursors) and the varying degree to which SO42−-enriched particles act as cloud condensation nuclei versus ice nuclei in the region. The coarse : fine aerosol mass ratio was correlated with crustal species concentrations in snow unlike rain, suggestive of a preferential role of coarse particles (mainly dust) as ice nuclei in the region. Precipitation NO3− : SO42− ratios exhibit the following features with potential explanations discussed: (i) they are higher in precipitation as compared to PM2.5; (ii) they exhibit the opposite annual cycle compared to particulate NO3− : SO42− ratios; and (iii) they are higher in snow relative to rain during the wintertime. Long-term trend analysis for the monsoon season shows that the NO3− : SO42− ratio in rain increased at the majority of sites due mostly to air pollution regulations of SO42− precursors. PMID:24432030

  4. Dynamics of active layer in wooded palsas of northern Quebec

    NASA Astrophysics Data System (ADS)

    Jean, Mélanie; Payette, Serge

    2014-02-01

    Palsas are organic or mineral soil mounds having a permafrost core. Palsas are widespread in the circumpolar discontinuous permafrost zone. The annual dynamics and evolution of the active layer, which is the uppermost layer over the permafrost table and subjected to the annual freeze-thaw cycle, are influenced by organic layer thickness, snow depth, vegetation type, topography and exposure. This study examines the influence of vegetation types, with an emphasis on forest cover, on active layer dynamics of palsas in the Boniface River watershed (57°45‧ N, 76°00‧ W). In this area, palsas are often colonized by black spruce trees (Picea mariana (Mill.) B.S.P.). Thaw depth and active layer thickness were monitored on 11 wooded or non-wooded mineral and organic palsas in 2009, 2010 and 2011. Snow depth, organic layer thickness, and vegetation types were assessed. The mapping of a palsa covered by various vegetation types and a large range of organic layer thickness were used to identify the factors influencing the spatial patterns of thaw depth and active layer. The active layer was thinner and the thaw rate slower in wooded palsas, whereas it was the opposite in more exposed sites such as forest openings, shrubs and bare ground. Thicker organic layers were associated with thinner active layers and slower thaw rates. Snow depth was not an important factor influencing active layer dynamics. The topography of the mapped palsa was uneven, and the environmental factors such as organic layer, snow depth, and vegetation types were heterogeneously distributed. These factors explain a part of the spatial variation of the active layer. Over the 3-year long study, the area of one studied palsa decreased by 70%. In a context of widespread permafrost decay, increasing our understanding of factors that influence the dynamics of wooded and non-wooded palsas and understanding of the role of vegetation cover will help to define the response of discontinuous permafrost landforms to changing climatic conditions.

  5. Aerosol and precipitation chemistry in the southwestern United States: spatiotemporal trends and interrelationships.

    PubMed

    Sorooshian, A; Shingler, T; Harpold, A; Feagles, C W; Meixner, T; Brooks, P D

    2013-08-01

    This study characterizes the spatial and temporal patterns of aerosol and precipitation composition at six sites across the United States Southwest between 1995 and 2010. Precipitation accumulation occurs mostly during the wintertime (December-February) and during the monsoon season (July-September). Rain and snow pH levels are usually between 5-6, with crustal-derived species playing a major role in acid neutralization. These species (Ca 2+ , Mg 2+ , K + , Na + ) exhibit their highest concentrations between March and June in both PM 2.5 and precipitation due mostly to dust. Crustal-derived species concentrations in precipitation exhibit positive relationships with [Formula: see text], [Formula: see text], and Cl - , suggesting that acidic gases likely react with and partition to either crustal particles or hydrometeors enriched with crustal constituents. Concentrations of particulate [Formula: see text] show a statistically significant correlation with rain [Formula: see text] unlike snow [Formula: see text], which may be related to some combination of the vertical distribution of [Formula: see text] (and precursors) and the varying degree to which [Formula: see text]-enriched particles act as cloud condensation nuclei versus ice nuclei in the region. The coarse : fine aerosol mass ratio was correlated with crustal species concentrations in snow unlike rain, suggestive of a preferential role of coarse particles (mainly dust) as ice nuclei in the region. Precipitation [Formula: see text] : [Formula: see text] ratios exhibit the following features with potential explanations discussed: (i) they are higher in precipitation as compared to PM 2.5 ; (ii) they exhibit the opposite annual cycle compared to particulate [Formula: see text] : [Formula: see text] ratios; and (iii) they are higher in snow relative to rain during the wintertime. Long-term trend analysis for the monsoon season shows that the [Formula: see text] : [Formula: see text] ratio in rain increased at the majority of sites due mostly to air pollution regulations of [Formula: see text] precursors.

  6. Temperate forest impacts on maritime snowpacks across an elevation gradient: An assessment of the snow surface energy balance and airborne lidar derived forest structure

    NASA Astrophysics Data System (ADS)

    Roth, T. R.; Nolin, A. W.

    2016-12-01

    Temperate forests modify snow evolution patterns both spatially and temporally relative to open areas. Dense, warm forests both impede snow accumulation through increased canopy snow interception and increase sub-canopy longwave energy inputs onto the snow surface. These process modifications vary in magnitude and duration depending on climatic, topographic and forest characteristics. Here we present results from a four year study of paired forested and open sites at three elevations, Low - 1150 m, Mid - 1325 m and High - 1465 m. Snowpacks are deeper and last up to 3-4 weeks longer at the Low and Mid elevation Open sites relative to the adjacent Forest sites. Conversely, at the High Forest site, snow is retained 2-4 weeks longer than the Open site. This change in snowpack depth and persistence is attributed to deposition patterns at higher elevations and forest structure differences that alter the canopy interception efficiency and the sub-canopy energy balance. Canopy interception efficiency (CIE) in the Low and Mid Forest sites, over the duration of the study were 79% and 76% of the total event snowfall, whereas CIE was 31% at the High Forest site. Longwave radiation in forested environments is the primary energy component across each elevation band due to the warm winter environment and forest presence, accounting for 82%, 88%, and 59% of the energy balance at the Low, Mid, and High Forest sites, respectively. High wind speeds in the High elevation Open site significantly increases the turbulent energy and creates preferential snowfall deposition in the nearby Forest site. These results show the importance of understanding the effects of forest cover on sub-canopy snowpack evolution and highlight the need for improved forest cover model representation to accurately predict water resources in maritime forests.

  7. Calculation of new snow densities from sub-daily automated snow measurements

    NASA Astrophysics Data System (ADS)

    Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Lehning, Michael; Olefs, Marc

    2017-04-01

    In mountain regions there is an increasing demand for high-quality analysis, nowcasting and short-range forecasts of the spatial distribution of snowfall. Operational services, such as for avalanche warning, road maintenance and hydrology, as well as hydropower companies and ski resorts need reliable information on the depth of new snow (HN) and the corresponding water equivalent (HNW). However, the ratio of HNW to HN can vary from 1:3 to 1:30 because of the high variability of new snow density with respect to meteorological conditions. In the past, attempts were made to calculate new snow densities from meteorological parameters mainly using daily values of temperature and wind. Further complex statistical relationships have been used to calculate new snow densities on hourly to sub-hourly time intervals to drive multi-layer snow cover models. However, only a few long-term in-situ measurements of new snow density exist for sub-daily time intervals. Settling processes within the new snow due to loading and metamorphism need to be considered when computing new snow density. As the effect of these processes is more pronounced for long time intervals, a high temporal resolution of measurements is desirable. Within the pluSnow project data of several automatic weather stations with simultaneous measurements of precipitation (pluviometers), snow water equivalent (SWE) using snow pillows and snow depth (HS) measurements using ultrasonic rangers were analysed. New snow densities were calculated for a set of data filtered on the basis of meteorological thresholds. The calculated new snow densities were compared to results from existing new snow density parameterizations. To account for effects of settling of the snow cover, a case study based on a multi-year data set using the snow cover model SNOWPACK at Weissfluhjoch was performed. Measured median values of hourly new snow densities at the different stations range from 54 to 83 kgm-3. This is considerably lower than a 1:10 approximation (i.e. 100 kgm-3), which is mainly based on daily values in the Alps. Variations in new snow density could not be explained in a satisfactory manner using meteorological data measured at the same location. Likewise, some of the tested parametrizations of new snow density, which primarily use air temperature as a proxy, result in median new snow densities close to the ones from automated measurements, but show only a low correlation between calculated and measured new snow densities. The case study on the influence of snow settling on HN resulted on average in an underestimation of HN by 17%, which corresponds to 2-3% of the cumulated HN from the previous 24 hours. Therefore, the mean hourly new snow densities may be overestimated by 14%. The analysis in this study is especially limited with respect to the meteorological influence on the HS measurement using ultra-sonic rangers. Nevertheless, the reasonable mean values encourage calculating new snow densities from standard hydro-meteorological measurements using more precise observation devices such as optical snow depth sensors and more sensitive scales for SWE measurements also on sub-daily time-scales.

  8. Changes to Watershed Hydrology due to Changing Snowmelt Patterns, Michigan, US

    NASA Astrophysics Data System (ADS)

    Ford, C.; Kendall, A. D.; Hyndman, D. W.

    2017-12-01

    With increasing temperatures and changing precipitation patterns associated with global climate change, the future of hydrologic resources related to snowmelt is less certain than ever. Most existing snowmelt hydrology research focuses on mountainous regions such as the western United States, where snowpack is a primary reservoir of available freshwater. Less research has been done on snowmelt hydrology in non-mountainous, temperate middle to upper latitude regions such as the Midwestern US, where snowmelt is still an important contributor to water budgets (and critically summer water supplies). This study examines the changes to watershed hydrology due to changing snowmelt patterns in Michigan, which has a tension line between seasonally-persistent snowpacks in the north, and episodic snowpacks in the south. This transition varies in space and time, and is likely moving northward as a consequence of climate change. Changes to snow and winter weather were statistically determined from output of the NOAA's Snow Data Assimilation System (SNODAS) model along with historical weather data from the Global Historical Climatology Network. Stream data from the USGS, combined with in-house monitoring data from groundwater and soil moisture networks provide insight into the hydrologic changes. Snowmelt in years with warmer winter temperatures tend to end earlier in the year, resulting in earlier peak stream flows. These changes become more noticeable in the northern regions of the state, where snowfall amounts can be amongst the largest in the country. This study also examines the changing spatial transition zone between regions with snow lasting throughout the season and regions with a more episodic snow presence. In an area with some of the largest freshwater resources in the world, significant changes to streamflow and groundwater recharge could impact already stressed ecosystems and local water supplies.

  9. Growing season soil moisture following restoration treatments of varying intensity in semi-arid ponderosa pine forests

    NASA Astrophysics Data System (ADS)

    O'Donnell, F. C.; Springer, A. E.; Sankey, T.; Masek Lopez, S.

    2014-12-01

    Forest restoration projects are being planned for large areas of overgrown semi-arid ponderosa pine forests of the Southwestern US. Restoration involves the thinning of smaller trees and prescribed or managed fire to reduce tree density, restore a more natural fire regime, and decrease the risk of catastrophic wildfire. The stated goals of these projects generally reduced plant water stress and improvements in hydrologic function. However, little is known about how to design restoration treatments to best meet these goals. As part of a larger project on snow cover, soil moisture, and groundwater recharge, we measured soil moisture, an indicator of plant water status, in four pairs of control and restored sites near Flagstaff, Arizona. The restoration strategies used at the sites range in both amount of open space created and degree of clustering of the remaining trees. We measured soil moisture using 30 cm vertical time domain reflectometry probes installed on 100 m transects at 5 m intervals so it would be possible to analyze the spatial pattern of soil moisture. Soil moisture was higher and more spatially variable in the restored sites than the control sites with differences in spatial pattern among the restoration types. Soil moisture monitoring will continue until the first snow fall, at which point measurements of snow depth and snow water equivalent will be made at the same locations.

  10. Association between atmospheric circulation patterns and firn-ice core records from the Inilchek glacierized area, central Tien Shan, Asia

    USGS Publications Warehouse

    Aizen, V.B.; Aizen, E.M.; Melack, J.M.; Kreutz, K.J.; Cecil, L.D.

    2004-01-01

    Glacioclimatological research in the central Tien Shan was performed in the summers of 1998 and 1999 on the South Inilchek Glacier at 5100-5460 m. A 14.36 m firn-ice core and snow samples were collected and used for stratigraphic, isotopic, and chemical analyses. The firn-ice core and snow records were related to snow pit measurements at an event scale and to meteorological data and synoptic indices of atmospheric circulation at annual and seasonal scales. Linear relationships between the seasonal air temperature and seasonal isotopic composition in accumulated precipitation were established. Changes in the ??18O air temperature relationship, in major ion concentration and in the ratios between chemical species, were used to identify different sources of moisture and investigate changes in atmospheric circulation patterns. Precipitation over the central Tien Shan is characterized by the lowest ionic content among the Tien Shan glaciers and indicates its mainly marine origin. In seasons of minimum precipitation, autumn and winter, water vapor was derived from the and and semiarid regions in central Eurasia and contributed annual maximal solute content to snow accumulation in Tien Shan. The lowest content of major ions was observed in spring and summer layers, which represent maximum seasonal accumulation when moisture originates over the Atlantic Ocean and Mediterranean and Black Seas. Copyright 2004 by the American Geophysical Union.

  11. Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, U.S.

    USGS Publications Warehouse

    Pederson, Gregory T.; Betancourt, Julio L.; McCabe, Gregory J.

    2013-01-01

    We used a first-order, monthly snow model and observations to disentangle seasonal influences on 20th century,regional snowpack anomalies in the Rocky Mountains of western North America, where interannual variations in cool-season (November–March) temperatures are broadly synchronous, but precipitation is typically antiphased north to south and uncorrelated with temperature. Over the previous eight centuries, regional snowpack variability exhibits strong, decadally persistent north-south (N-S) antiphasing of snowpack anomalies. Contrary to the normal regional antiphasing, two intervals of spatially synchronized snow deficits were identified. Snow deficits shown during the 1930s were synchronized north-south by low cool-season precipitation, with spring warming (February–March) since the 1980s driving the majority of the recent synchronous snow declines, especially across the low to middle elevations. Spring warming strongly influenced low snowpacks in the north after 1958, but not in the south until after 1980. The post-1980, synchronous snow decline reduced snow cover at low to middle elevations by ~20% and partly explains earlier and reduced streamflow and both longer and more active fire seasons. Climatologies of Rocky Mountain snowpack are shown to be seasonally and regionally complex, with Pacific decadal variability positively reinforcing the anthropogenic warming trend.

  12. Quantifying the variability of snowpack properties and processes in a small-forested catchment representative of the boreal zone

    NASA Astrophysics Data System (ADS)

    Parajuli, A.; Nadeau, D.; Anctil, F.; Parent, A. C.; Bouchard, B.; Jutras, S.

    2017-12-01

    In snow-fed catchments, it is crucial to monitor and to model snow water equivalent (SWE), particularly to simulate the melt water runoff. However, the distribution of SWE can be highly heterogeneous, particularly within forested environments, mainly because of the large variability in snow depths. Although the boreal forest is the dominant land cover in Canada and in a few other northern countries, very few studies have quantified the spatiotemporal variability of snow depths and snowpack dynamics within this biome. The objective of this paper is to fill this research gap, through a detailed monitoring of snowpack dynamics at nine locations within a 3.57 km2 experimental forested catchment in southern Quebec, Canada (47°N, 71°W). The catchment receives 6 m of snow annually on average and is predominantly covered with balsam fir stand with some traces of spruce and white birch. In this study, we used a network of nine so-called `snow profiling stations', providing automated snow depth and snowpack temperature profile measurements, as well as three contrasting sites (juvenile, sapling and open areas) where sublimation rates were directly measured with flux towers. In addition, a total of 1401 manual snow samples supported by 20 snow pits measurements were collected throughout the winter of 2017. This paper presents some preliminary analyses of this unique dataset. Simple empirical relations relying SWE with easy-to-determine proxies, such as snow depths and snow temperature, are tested. Then, binary regression trees and multiple regression analysis are used to model SWE using topographic characteristics (slope, aspect, elevation), forest features (tree height, tree diameter, forest density and gap fraction) and meteorological forcing (solar radiation, wind speed, snow-pack temperature profile, air temperature, humidity). An analysis of sublimation rates comparing open area, saplings and juvenile forest is also presented in this paper.

  13. Validation of snow characteristics and snow albedo feedback in the Canadian Regional Climate Model simulations over North America

    NASA Astrophysics Data System (ADS)

    Fang, B.; Sushama, L.; Diro, G. T.

    2015-12-01

    Snow characteristics and snow albedo feedback (SAF) over North America, as simulated by the fifth-generation Canadian Regional Climate Model (CRCM5), when driven by ERA-40/ERA-Interim, CanESM2 and MPI-ESM-LR at the lateral boundaries, are analyzed in this study. Validation of snow characteristics is performed by comparing simulations against available observations from MODIS, ISCCP and CMC. Results show that the model is able to represent the main spatial distribution of snow characteristics with some overestimation in snow mass and snow depth over the Canadian high Arctic. Some overestimation in surface albedo is also noted for the boreal region which is believed to be related to the snow unloading parameterization, as well as the overestimation of snow albedo. SAF is assessed both in seasonal and climate change contexts when possible. The strength of SAF is quantified as the amount of additional net shortwave radiation at the top of the atmosphere as surface albedo decreases in association with a 1°C increase in surface temperature. Following Qu and Hall (2007), this is expressed as the product of the variation in planetary albedo with surface albedo and the change in surface albedo for 1°C change in surface air temperature during the season, which in turn is determined by the strength of the snow cover and snowpack metamorphosis feedback loops. Analysis of the latter term in the seasonal cycle suggests that for CRCM5 simulations, the snow cover feedback loop is more dominant compared to the snowpack metamorphosis feedback loop, whereas for MODIS, the two feedback loops have more or less similar strength. Moreover, the SAF strength in the climate change context appears to be weaker than in the seasonal cycle and is sensitive to the driving GCM and the RCP scenario.

  14. Ground based remote sensing retrievals and observations of snowfall in the Telemark region of Norway

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; L'Ecuyer, T. S.; Wood, N.; Cooper, S.; Wolff, M. A.; Petersen, W. A.; Bliven, L. F.; Tushaus, S. A.

    2017-12-01

    Snowfall can be broadly categorized into deep and shallow events, based on the vertical extent of the frozen precipitation in the column. The two categories are driven by different thermodynamic and physical mechanisms in the atmosphere and surface. Though satellites can observe and recognize these patterns in snowfall, these measurements are limited - particularly in cases of shallow and light precipitation and over complex terrain. By enhancing satellite measurements with ground-based instrumentation, whether with limited-term field campaigns or long-term strategic sites, we can further our understanding and assumptions about different snowfall modes. We present data collected in a recently deployed ground suite of instruments based in Norway. The Meteorological Institute of Norway has a snow measurement suite in Haukeliseter located in the orographically complex Telemark region. This suite consists of several snow accumulation instruments as well as meteorological data (temperature, dew point, wind speeds and directions). A joint project between University of Wisconsin and University of Utah augmented this suite with a 24 GHz radar MicroRain Radar (MRR), a NASA Particle Imaging Package (PIP), and a Multi-Angle Snowflake Camera (MASC). Preliminary data from this campaign are presented along with coincident overpasses from the GPM satellite. We compare the ground-based and spaceborne remotely sensed estimates of snowfall with snow gauge observations from the Haukeliseter site. Finally, we discuss how particle size distribution and fall velocity observations from the PIP and MASC can be used to improve remotely-sensed snowfall retrievals as a function of environmental conditions at Haukeliseter.

  15. In-situ measurements of light-absorbing impurities in snow of glacier on Mt. Yulong and implications for radiative forcing estimates.

    PubMed

    Niu, Hewen; Kang, Shichang; Shi, Xiaofei; Paudyal, Rukumesh; He, Yuanqing; Li, Gang; Wang, Shijin; Pu, Tao; Shi, Xiaoyi

    2017-03-01

    The Tibetan Plateau (TP) or the third polar cryosphere borders geographical hotspots for discharges of black carbon (BC). BC and dust play important roles in climate system and Earth's energy budget, particularly after they are deposited on snow and glacial surfaces. BC and dust are two kinds of main light-absorbing impurities (LAIs) in snow and glaciers. Estimating concentrations and distribution of LAIs in snow and glacier ice in the TP is of great interest because this region is a global hotspot in geophysical research. Various snow samples, including surface aged-snow, superimposed ice and snow meltwater samples were collected from a typical temperate glacier on Mt. Yulong in the snow melt season in 2015. The samples were determined for BC, Organic Carbon (OC) concentrations using an improved thermal/optical reflectance (DRI Model 2001) method and gravimetric method for dust concentrations. Results indicated that the LAIs concentrations were highly elevation-dependent in the study area. Higher contents and probably greater deposition at relative lower elevations (generally <5000masl) of the glacier was observed. Temporal difference of LAIs contents demonstrated that LAIs in snow of glacier gradually increased as snow melting progressed. Evaluations of the relative absorption of BC and dust displayed that the impact of dust on snow albedo and radiative forcing (RF) is substantially larger than BC, particularly when dust contents are higher. This was verified by the absorption factor, which was <1.0. In addition, we found the BC-induced albedo reduction to be in the range of 2% to nearly 10% during the snow melting season, and the mean snow albedo reduction was 4.63%, hence for BC contents ranging from 281 to 894ngg -1 in snow of a typical temperate glacier on Mt. Yulong, the associated instantaneous RF will be 76.38-146.96Wm -2 . Further research is needed to partition LAIs induced glacial melt, modeling researches in combination with long-term in-situ observations of LAIs in glaciers is also urgent needed in the future work. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Combining low-cost GPS receivers with upGPR to derive continuously liquid water content, snow height and snow water equivalent in Alpine snow covers

    NASA Astrophysics Data System (ADS)

    Koch, Franziska; Schmid, Lino; Prasch, Monika; Heilig, Achim; Eisen, Olaf; Schweizer, Jürg; Mauser, Wolfram

    2015-04-01

    The temporal evolution of Alpine snowpacks is important for assessing water supply, hydropower generation, flood predictions and avalanche forecasts. Especially in high mountain regions with an extremely varying topography, it is until now often difficult to derive continuous and non-destructive information on snow parameters. Since autumn 2012, we are running a new low-cost GPS (Global Positioning System) snow measurement experiment at the high alpine study site Weissfluhjoch (2450 m a.s.l.) in Switzerland. The globally and freely broadcasted GPS L1-band (1.57542 GHz) was continuously recorded with GPS antennas, which are installed at the ground surface underneath the snowpack. GPS raw data, containing carrier-to-noise power density ratio (C/N0) as well as elevation and azimuth angle information for each time step of 1 s, was stored and analyzed for all 32 GPS satellites. Since the dielectric permittivity of an overlying wet snowpack influences microwave radiation, the bulk volumetric liquid water content as well as daily melt-freeze cycles can be derived non-destructively from GPS signal strength losses and external snow height information. This liquid water content information is qualitatively in good accordance with meteorological and snow-hydrological data and quantitatively highly agrees with continuous data derived from an upward-looking ground-penetrating radar (upGPR) working in a similar frequency range. As a promising novelty, we combined the GPS signal strength data with upGPR travel-time information of active impulse radar rays to the snow surface and back from underneath the snow cover. This combination allows determining liquid water content, snow height and snow water equivalent from beneath the snow cover without using any other external information. The snow parameters derived by combining upGPR and GPS data are in good agreement with conventional sensors as e.g. laser distance gauges or snow pillows. As the GPS sensors are cheap, they can easily be installed in parallel with further upGPR systems or as sensor networks to monitor the snowpack evolution in avalanche paths or at a larger scale in an entire hydrological basin to derive distributed melt-water runoff information.

  17. Simulating the Permafrost Distribution on the Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Busey, R.; Hinzman, L. D.; Yoshikawa, K.; Liston, G. E.

    2005-12-01

    Permafrost extent has been estimated using an equivalent latitude / elevation model based upon good climate, terrain and soil property data. This research extends a previously developed model to a relatively data sparse region. We are applying the general equivalent attitude model developed for Caribou-Poker Creeks Research Watershed over the much larger area of the Seward Peninsula, Alaska. This region of sub-Arctic Alaska is a proxy for a warmer Arctic due to the broad expanses of tussock tundra, invading shrubs and fragile permafrost with average temperatures just below freezing. The equivalent latitude model combines elevation, slope, and aspect with snow cover, where the snow cover distribution was defined using MicroMet and SnowModel. Source data for the distributed snow model came from meteorological stations across the Seward Peninsula from the National Weather Service, SNOTEL, RAWS, and our own stations. Simulations of permafrost extent will enable us to compare the current distribution to that existing during past climates and estimate the future state of permafrost on the Seward Peninsula. The broadest impacts to the terrestrial arctic regions will result through consequent effects of changing permafrost structure and extent. As the climate differentially warms in summer and winter, the permafrost will become warmer, the active layer (the layer of soil above the permafrost that annually experiences freeze and thaw) will become thicker, the lower boundary of permafrost will become shallower and permafrost extent will decrease in area. These simple structural changes will affect every aspect of the surface water and energy balances. As permafrost extent decreases, there is more infiltration to groundwater. This has significant impacts on large and small scales.

  18. Blue sheep in the Annapurna Conservation Area, Nepal: habitat use, population biomass and their contribution to the carrying capacity of snow leopards.

    PubMed

    Aryal, Achyut; Brunton, Dianne; Ji, Weihong; Raubenheimer, David

    2014-01-01

    The Himalaya region of Nepal provides a habitat for the endangered snow leopard (Panthera uncia) and its principal prey species, the blue sheep (Pseudois nayaur). The aim of this study was to describe the habitat, the distribution and the population structure of blue sheep, and to estimate their contribution to the carrying capacity of snow leopard in the upper Mustang region of Nepal. Blue sheep were recorded at altitudes from 3209-5498 m on slopes with gradients of 16-60° and aspects of 40°NE to 140°SE. A total of 939 blue sheep were counted in the upper Mustang region, and 98 were counted in the Yak Kharka region of Manang district; however, upper Mustang had the lowest population density of blue sheep recorded within their distribution range in Nepal (0.86 blue sheep/km(2)). The results of the study show that a higher density of blue sheep is associated with greater plant species diversity. The most important species present in the blue sheep habitat were Kobresia pygmaea, Artemesia spp., Lonicera spp., Lancea tibetica, Poa spp., Astragalus spp. and Ephedra gerardiana. It is estimated that the existing blue sheep population biomass of approximately 38 925 kg in the upper Mustang region could support approximately 19 snow leopards (1.6 snow leopards/100 km(2)). © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  19. Snow duration effects on density of the alpine endemic plant Packera franciscana

    Treesearch

    James F. Fowler; Steven Overby

    2016-01-01

    Packera franciscana (Greene) W.A. Weber and Á. Löve (Asteraceae) (San Francisco Peaks ragwort) is an alpine-zone endemic of the San Francisco Peaks in northern Arizona. Previous studies have shown that P. franciscana is patchily distributed in alpine-zone talus habitats. The purpose of this study was to describe the relationship between snow duration and P. franciscana...

  20. Accuracy assessment of a net radiation and temperature index snowmelt model using ground observations of snow water equivalent in an alpine basin

    NASA Astrophysics Data System (ADS)

    Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.

    2003-04-01

    In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average-solar-radiation zones for SWE accuracy assessment. Model simulations did a poor job at estimating the spatial distribution of SWE. Basin clusters where the solar radiative flux dominated the melt flux were simulated more accurately than those dominated by the turbulent fluxes or the longwave radiative flux.

  1. Use of 2d-video Disdrometer to Derive Mean Density-size and Ze-SR Relations: Four Snow Cases from the Light Precipitation Validation Experiment

    NASA Technical Reports Server (NTRS)

    Huang, Gwo-Jong; Bringi, V. N.; Moisseev, Dmitri; Petersen, Walter A.; Bliven, Francis L.; Hudak, David

    2014-01-01

    The application of the 2D-video disdrometer to measure fall speed and snow size distribution and to derive liquid equivalent snow rate, mean density-size and reflectivity-snow rate power law is described. Inversion of the methodology proposed by Böhm provides the pathway to use measured fall speed, area ratio and '3D' size measurement to estimate the mass of each particle. Four snow cases from the Light Precipitation Validation Experiment are analyzed with supporting data from other instruments such as Precipitation Occurrence Sensor System (POSS), Snow Video Imager (SVI), a network of seven snow gauges and three scanning C9 band radars. The radar-based snow accumulations using the 2DVD-derived Ze-SR relation are in good agreement with a network of seven snow gauges and outperform the accumulations derived from a climatological Ze-SR relation used by the Finnish Meteorological Institute (FMI). The normalized bias between radar-derived and gauge accumulation is reduced from 96% when using the fixed FMI relation to 28% when using the Ze-SR relations based on 2DVD data. The normalized standard error is also reduced significantly from 66% to 31%. For two of the days with widely different coefficients of the Ze-SR power law, the reflectivity structure showed significant differences in spatial variability. Liquid water path estimates from radiometric data also showed significant differences between the two cases. Examination of SVI particle images at the measurement site corroborated these differences in terms of unrimed versus rimed snow particles. The findings reported herein support the application of Böhm's methodology for deriving the mean density-size and Ze-SR power laws using data from 2D-video disdrometer.

  2. A snow cover climatology for the Pyrenees from MODIS snow products

    NASA Astrophysics Data System (ADS)

    Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sanchez, R.

    2015-05-01

    The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (w.e.) and 150 mm, respectively, for both MOD10A1 and MYD10A1. κ coefficients are within 0.74 and 0.92 depending on the product and the variable for these thresholds. However, we also find a seasonal trend in the optimal SWE and SD thresholds, reflecting the hysteresis in the relationship between the depth of the snowpack (or SWE) and its extent within a MODIS pixel. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both data sets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decrease over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gap-filling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band and aspect classes. There is snow on the ground at least 50% of the time above 1600 m between December and April. We finally analyze the snow patterns for the atypical winter 2011-2012. Snow cover duration anomalies reveal a deficient snowpack on the Spanish side of the Pyrenees, which seems to have caused a drop in the national hydropower production.

  3. Impact of snow gliding on soil redistribution for a sub-alpine area in Switzerland

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Alewell, C.

    2013-07-01

    The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. The 14 investigated sites are located close to the valley bottom at approximately 1500 m a.s.l., while the elevation of the surrounding mountain ranges is about 2500 m a.s.l. We used two different approaches to estimate soil erosion rates: the fallout radionuclide 137Cs and the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the erosion rate of RUSLE and the 137Cs method is related to snow gliding. Cumulative snow glide distance was measured for the sites in the winter 2009/2010 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance range from 0 to 189 cm with lower values for the north exposed slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed, the difference of RUSLE and 137Cs erosion rates was correlated to the measured snow glide distance (R2 = 0.73; p < 0.005). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values between different land use/land cover types. The resulting map highlights the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.

  4. Mapping snow depth from stereo satellite imagery

    NASA Astrophysics Data System (ADS)

    Gascoin, S.; Marti, R.; Berthier, E.; Houet, T.; de Pinel, M.; Laffly, D.

    2016-12-01

    To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. Here, we examine the potential of very-high-resolution (VHR) optical stereo satellites to this purpose. Two triplets of 0.70 m resolution images were acquired by the Pléiades satellite over an open alpine catchment (14.5 km²) under snow-free and snow-covered conditions. The open-source software Ame's Stereo Pipeline (ASP) was used to match the stereo pairs without ground control points to generate raw photogrammetric clouds and to convert them into high-resolution digital elevation models (DEMs) at 1, 2, and 4 m resolutions. The DEM differences (dDEMs) were computed after 3-D coregistration, including a correction of a -0.48 m vertical bias. The bias-corrected dDEM maps were compared to 451 snow-probe measurements. The results show a decimetric accuracy and precision in the Pléiades-derived snow depths. The median of the residuals is -0.16 m, with a standard deviation (SD) of 0.58 m at a pixel size of 2 m. We compared the 2 m Pléiades dDEM to a 2 m dDEM that was based on a winged unmanned aircraft vehicle (UAV) photogrammetric survey that was performed on the same winter date over a portion of the catchment (3.1 km²). The UAV-derived snow depth map exhibits the same patterns as the Pléiades-derived snow map, with a median of -0.11 m and a SD of 0.62 m when compared to the snow-probe measurements. The Pléiades images benefit from a very broad radiometric range (12 bits), allowing a high correlation success rate over the snow-covered areas. This study demonstrates the value of VHR stereo satellite imagery to map snow depth in remote mountainous areas even when no field data are available. Based on this method we have initiated a multi-year survey of the peak snow depth in the Bassiès catchment.

  5. Applications systems verification and transfer project. Volume 3: Operational applications of satellite snow cover observations in California

    NASA Technical Reports Server (NTRS)

    Brown, A. J.; Hannaford, J. F.

    1981-01-01

    Five southern Sierra snowmelt basins and two northern Sierra-Southern Cascade snowmelt basins were used to evaluate the effect on operational water supply forecasting from satellite imagery. Manual photointerpretation techniques were used to obtain SCA and equivalent snow line for the years 1973 to 1979 for the seven test basins using LANDSAT imagery and GOES imagery. The use of SCA was tested operationally in 1977-79. Results indicate the addition of SCA improve the water supply forecasts during the snowmelt phase for these basins where there may be an unusual distribution of snowpack throughout the basin, or where there is a limited amount of real time data available. A high correlation to runoff was obtained when SCA was combined with snow water content data obtained from reporting snow sensors.

  6. Enhanced hemispheric-scale snow mapping through the blending of optical and microwave satellite data

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Brodzik, M. J.; Savoie, M.; Knowles, K.

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. Global snow cover fluctuation can now be monitored over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere weekly snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Decadal trends and their significance are compared for the two data types. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as throughout the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm is enhanced. Because the current generation of microwave snow algorithms is unable to consistently detect shallow and intermittent snow, we combine visible satellite data with the microwave data in a single blended product to overcome this problem. For the period 1978 to 2002 we combine data from the NOAA weekly snow charts with passive microwave data from the SMMR and SSM/I brightness temperature record. For the current and future time period we blend MODIS and AMSR-E data sets, both of which have greatly enhanced spatial resolution compared to the earlier data sources. Because it is not possible to determine snow depth or snow water equivalent from visible data, the regions where only the NOAA or MODIS data indicate snow are defined as "shallow snow". However, because our current blended product is being developed in the 25 km EASE-Grid and the MODIS data being used are in the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) the blended product also includes percent snow cover over the larger grid cell. A prototype version of the blended MODIS/AMSR-E product will be available in near real-time from NSIDC during the 2002-2003 winter season.

  7. Detection and quantification of snow algae with an airborne imaging spectrometer.

    PubMed

    Painter, T H; Duval, B; Thomas, W H; Mendez, M; Heintzelman, S; Dozier, J

    2001-11-01

    We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, beta-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 microm and chlorophyll a and b absorption in the wavelength range from 0.6 to 0.7 microm. The integral of the scaled chlorophyll a and b absorption feature (I(0.68)) varies with algal concentration (C(a)). Using the relationship C(a) = 81019.2 I(0.68) + 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km(2) region imaged, the mean algal concentration was 1,306 cells ml(-1), the standard deviation was 1,740 cells ml(-1), and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km(2) snow-covered area, which gave an areal biomass concentration of 0.033 g/m(2).

  8. Detection and Quantification of Snow Algae with an Airborne Imaging Spectrometer

    PubMed Central

    Painter, Thomas H.; Duval, Brian; Thomas, William H.; Mendez, Maria; Heintzelman, Sara; Dozier, Jeff

    2001-01-01

    We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, β-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 μm and chlorophyll a and b absorption in the wavelength range from 0.6 to 0.7 μm. The integral of the scaled chlorophyll a and b absorption feature (I0.68) varies with algal concentration (Ca). Using the relationship Ca = 81019.2 I0.68 + 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km2 region imaged, the mean algal concentration was 1,306 cells ml−1, the standard deviation was 1,740 cells ml−1, and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km2 snow-covered area, which gave an areal biomass concentration of 0.033 g/m2. PMID:11679355

  9. Using Terrain Analysis and Remote Sensing to Improve Snow Mass Balance and Runoff Prediction

    NASA Astrophysics Data System (ADS)

    Venteris, E. R.; Coleman, A. M.; Wigmosta, M. S.

    2010-12-01

    Approximately 70-80% of the water in the international Columbia River basin is sourced from snowmelt. The demand for this water has competing needs, as it is used for agricultural irrigation, municipal, hydro and nuclear power generation, and environmental in-stream flow requirements. Accurate forecasting of water supply is essential for planning current needs and prediction of future demands due to growth and climate change. A significant limitation on current forecasting is spatial and temporal uncertainty in snowpack characteristics, particularly snow water equivalent. Currently, point measurements of snow mass balance are provided by the NRCS SNOTEL network. Each site consists of a snow mass sensor and meteorology station that monitors snow water equivalent, snow depth, precipitation, and temperature. There are currently 152 sites in the mountains of Oregon and Washington. An important step in improving forecasts is determining how representative each SNOTEL site is of the total mass balance of the watershed through a full accounting of the spatiotemporal variability in snowpack processes. This variation is driven by the interaction between meteorological processes, land cover, and landform. Statistical and geostatistical spatial models relate the state of the snowpack (characterized through SNOTEL, snow course measurements, and multispectral remote sensing) to terrain attributes derived from digital elevation models (elevation, aspect, slope, compound topographic index, topographic shading, etc.) and land cover. Time steps representing the progression of the snow season for several meteorologically distinct water years are investigated to identify and quantify dominant physical processes. The spatially distributed snow balance data can be used directly as model inputs to improve short- and long-range hydrologic forecasts.

  10. Does Temperature Modify the Effects of Rain and Snow Precipitation on Road Traffic Injuries?

    PubMed

    Lee, Won-Kyung; Lee, Hye-Ah; Hwang, Seung-sik; Kim, Ho; Lim, Youn-Hee; Hong, Yun-Chul; Ha, Eun-Hee; Park, Hyesook

    2015-01-01

    There are few data on the interaction between temperature and snow and rain precipitation, although they could interact in their effects on road traffic injuries. The integrated database of the Korea Road Traffic Authority was used to calculate the daily frequency of road traffic injuries in Seoul. Weather data included rain and snow precipitation, temperature, pressure, and fog from May 2007 to December 2011. Precipitation of rain and snow were divided into nine and six temperature range categories, respectively. The interactive effects of temperature and rain and snow precipitation on road traffic injuries were analyzed using a generalized additive model with a Poisson distribution. The risk of road traffic injuries during snow increased when the temperature was below freezing. Road traffic injuries increased by 6.6% when it was snowing and above 0 °C, whereas they increased by 15% when it was snowing and at or below 0 °C. In terms of heavy rain precipitation, moderate temperatures were related to an increased prevalence of injuries. When the temperature was 0-20 °C, we found a 12% increase in road traffic injuries, whereas it increased by 8.5% and 6.8% when it was <0 °C and >20 °C, respectively. The interactive effect was consistent across the traffic accident subtypes. The effect of adverse weather conditions on road traffic injuries differed depending on the temperature. More road traffic injuries were related to rain precipitation when the temperature was moderate and to snow when it was below freezing.

  11. Development and testing of a snow interceptometer to quantify canopy water storage and interception processes in the rain/snow transition zone of the North Cascades, Washington, USA

    NASA Astrophysics Data System (ADS)

    Martin, Kael A.; Van Stan, John T.; Dickerson-Lange, Susan E.; Lutz, James A.; Berman, Jeffrey W.; Gersonde, Rolf; Lundquist, Jessica D.

    2013-06-01

    Tree canopy snow interception is a significant hydrological process, capable of removing up to 60% of snow from the ground snowpack. Our understanding of canopy interception has been limited by our ability to measure whole canopy water storage in an undisturbed forest setting. This study presents a relatively inexpensive technique for directly measuring snow canopy water storage using an interceptometer, adapted from Friesen et al. (2008). The interceptometer is composed of four linear motion position sensors distributed evenly around the tree trunk. We incorporate a trunk laser-mapping installation method for precise sensor placement to reduce signal error due to sensor misalignment. Through calibration techniques, the amount of canopy snow required to produce the measured displacements can be calculated. We demonstrate instrument performance on a western hemlock (Tsuga heterophylla) for a snow interception event in November 2011. We find a snow capture efficiency of 83 ± 15% of accumulated ground snowfall with a maximum storage capacity of 50 ± 8 mm snow water equivalent (SWE). The observed interception event is compared to simulated interception, represented by the variable infiltration capacity (VIC) hydrologic model. The model generally underreported interception magnitude by 33% using a leaf area index (LAI) of 5 and 16% using an LAI of 10. The interceptometer captured intrastorm accumulation and melt rates up to 3 and 0.75 mm SWE h-1, respectively, which the model failed to represent. While further implementation and validation is necessary, our preliminary results indicate that forest interception magnitude may be underestimated in maritime areas.

  12. Does Temperature Modify the Effects of Rain and Snow Precipitation on Road Traffic Injuries?

    PubMed Central

    Lee, Won-Kyung; Lee, Hye-Ah; Hwang, Seung-sik; Kim, Ho; Lim, Youn-Hee; Hong, Yun-Chul; Ha, Eun-Hee; Park, Hyesook

    2015-01-01

    Background There are few data on the interaction between temperature and snow and rain precipitation, although they could interact in their effects on road traffic injuries. Methods The integrated database of the Korea Road Traffic Authority was used to calculate the daily frequency of road traffic injuries in Seoul. Weather data included rain and snow precipitation, temperature, pressure, and fog from May 2007 to December 2011. Precipitation of rain and snow were divided into nine and six temperature range categories, respectively. The interactive effects of temperature and rain and snow precipitation on road traffic injuries were analyzed using a generalized additive model with a Poisson distribution. Results The risk of road traffic injuries during snow increased when the temperature was below freezing. Road traffic injuries increased by 6.6% when it was snowing and above 0°C, whereas they increased by 15% when it was snowing and at or below 0°C. In terms of heavy rain precipitation, moderate temperatures were related to an increased prevalence of injuries. When the temperature was 0–20°C, we found a 12% increase in road traffic injuries, whereas it increased by 8.5% and 6.8% when it was <0°C and >20°C, respectively. The interactive effect was consistent across the traffic accident subtypes. Conclusions The effect of adverse weather conditions on road traffic injuries differed depending on the temperature. More road traffic injuries were related to rain precipitation when the temperature was moderate and to snow when it was below freezing. PMID:26073021

  13. Multi-year record of atmospheric and snow surface nitrate in the central Antarctic plateau.

    PubMed

    Traversi, R; Becagli, S; Brogioni, M; Caiazzo, L; Ciardini, V; Giardi, F; Legrand, M; Macelloni, G; Petkov, B; Preunkert, S; Scarchilli, C; Severi, M; Vitale, V; Udisti, R

    2017-04-01

    Continuous all year-round samplings of atmospheric aerosol and surface snow at high (daily to 4-day) resolution were carried out at Dome C since 2004-05 to 2013 and nitrate records are here presented. Basing on a larger statistical data set than previous studies, results confirm that nitrate seasonal pattern is characterized by maxima during austral summer for both aerosol and surface snow, occurring in-phase with solar UV irradiance. This temporal pattern is likely due to a combination of nitrate sources and post-depositional processes whose intensity usually enhances during the summer. Moreover, it should be noted that a case study of the synoptic conditions, which took place during a major nitrate event, showed the occurrence of a stratosphere-troposphere exchange. The sampling of both matrices at the same time with high resolution allowed the detection of a an about one-month long recurring lag of summer maxima in snow with respect to aerosol. This result can be explained by deposition and post-deposition processes occurring at the atmosphere-snow interface, such as a net uptake of gaseous nitric acid and a replenishment of the uppermost surface layers driven by a larger temperature gradient in summer. This hypothesis was preliminarily tested by a comparison with surface layers temperature data in the 2012-13 period. The analysis of the relationship between the nitrate concentration in the gas phase and total nitrate obtained at Dome C (2012-13) showed the major role of gaseous HNO 3 to the total nitrate budget suggesting the need to further investigate the gas-to-particle conversion processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Why Does Rhinopithecus bieti Prefer the Highest Elevation Range in Winter? A Test of the Sunshine Hypothesis

    PubMed Central

    Behm, Jocelyn E.; Wang, Lin; Huang, Yong; Long, Yongcheng; Zhu, Jianguo

    2011-01-01

    Environmental factors that affect spatiotemporal distribution patterns of animals usually include resource availability, temperature, and the risk of predation. However, they do not explain the counterintuitive preference of high elevation range in winter by the black-and-white snub-nosed monkey (Rhinopithecus bieti). We asked whether variation of sunshine along with elevations is the key driving force. To test this hypothesis, we conducted field surveys to demonstrate that there was a statistically significant pattern of high elevation use during winter. We then asked whether this pattern can be explained by certain environmental factors, namely temperature, sunshine duration and solar radiation. Finally, we concluded with a possible ecological mechanism for this pattern. In this study, we employed GIS technology to quantify solar radiation and sunshine duration across the monkey's range. Our results showed that: 1) R. bieti used the high altitude range between 4100–4400 m in winter although the yearly home range spanned from 3500–4500 m; 2) both solar radiation and sunshine duration increased with elevation while temperature decreased with elevation; 3) within the winter range, the use of range was significantly correlated with solar radiation and sunshine duration; 4) monkeys moved to the areas with high solar radiation and duration following a snowfall, where the snow melts faster and food is exposed earlier. We concluded that sunshine was the main factor that influences selection of high elevation habitat for R. bieti in winter. Since some other endotherms in the area exhibit similar winter distributional patterns, we developed a sunshine hypothesis to explain this phenomenon. In addition, our work also represented a new method of integrating GIS models into traditional field ecology research to study spatiotemporal distribution pattern of wildlife. We suggest that further theoretical and empirical studies are necessary for better understanding of sunshine influence on wildlife range use. PMID:21915329

  15. 21st century projections of snowfall and winter severity across central-eastern North America

    NASA Astrophysics Data System (ADS)

    Notaro, M.; Lorenz, D. J.; Hoving, C.; Schummer, M.

    2014-12-01

    Statistically downscaled climate projections from nine global climate models (GCMs) are used to force a snow accumulation and ablation model (SNOW-17) across the central-eastern North American Landscape Conservation Cooperatives (LCCs) to develop high-resolution projections of snowfall, snow depth, and winter severity index (WSI) by the mid- and late 21st century. Here, we use projections of a cumulative WSI (CWSI) known to influence autumn-winter waterfowl migration to demonstrate the utility of SNOW-17 results. The application of statistically downscaled climate data and a snow model leads to a better representation of lake processes in the Great Lakes Basin, topographic effects in the Appalachian Mountains, and spatial patterns of climatological snowfall, compared to the original GCMs. Annual mean snowfall is simulated to decline across the region, particularly in early winter (December-January), leading to a delay in the mean onset of the snow season. Due to a warming-induced acceleration of snowmelt, the percentage loss in snow depth exceeds that of snowfall. Across the Plains and Prairie Potholes LCC and Upper Midwest and Great Lakes LCC, daily snowfall events are projected to become less common, but more intense. The greatest reductions in the number of days per year with a present snowpack are expected close to the historical position of the -5°C isotherm in DJFM, around 44°N. The CWSI is projected to decline substantially during December-January, leading to increased likelihood of delays in timing and intensity of autumn-winter waterfowl migrations.

  16. Quantifying Particle Numbers and Mass Flux in Drifting Snow

    NASA Astrophysics Data System (ADS)

    Crivelli, Philip; Paterna, Enrico; Horender, Stefan; Lehning, Michael

    2016-12-01

    We compare two of the most common methods of quantifying mass flux, particle numbers and particle-size distribution for drifting snow events, the snow-particle counter (SPC), a laser-diode-based particle detector, and particle tracking velocimetry based on digital shadowgraphic imaging. The two methods were correlated for mass flux and particle number flux. For the SPC measurements, the device was calibrated by the manufacturer beforehand. The shadowgrapic imaging method measures particle size and velocity directly from consecutive images, and before each new test the image pixel length is newly calibrated. A calibration study with artificially scattered sand particles and glass beads provides suitable settings for the shadowgraphical imaging as well as obtaining a first correlation of the two methods in a controlled environment. In addition, using snow collected in trays during snowfall, several experiments were performed to observe drifting snow events in a cold wind tunnel. The results demonstrate a high correlation between the mass flux obtained for the calibration studies (r ≥slant 0.93) and good correlation for the drifting snow experiments (r ≥slant 0.81). The impact of measurement settings is discussed in order to reliably quantify particle numbers and mass flux in drifting snow. The study was designed and performed to optimize the settings of the digital shadowgraphic imaging system for both the acquisition and the processing of particles in a drifting snow event. Our results suggest that these optimal settings can be transferred to different imaging set-ups to investigate sediment transport processes.

  17. Cartographic modelling of aerotechnogenic pollution in snow cover in the landscapes of the Kola Peninsula.

    PubMed

    Ratkin, N E; Asming, V E; Koshkin, V V

    2001-01-01

    The goal of this work was to develop computational techniques for sulphates, nickel and copper accumulation in the snow in the local pollution zone. The main task was to reveal the peculiarities of formation and pollution of snow cover on the region with complex cross-relief. A digital cartographic model of aerotechnogenic pollution of snow cover in the landscapes of the local zone has been developed, based on five-year experimental data. Data regarding annual emissions from the industrial complex, information about distribution of wind and the sum of precipitation from meteostation "Nikel" for the winter period, allowed the model to ensure: * material presentation in the form of maps of water capacity and accumulation of sulphates, nickel and copper in the snow over any winter period in retrospective; * calculation of water capacity and accumulation of pollutants for watersheds and other natural-territorial complexes; * solution of the opposite problem about the determination of the emissions of sulphates, nickel and copper from the enterprise by measuring snow pollution in datum points. The model can be used in other northern regions of the Russian Federation with similar physical-geographical and climatic conditions. The relationships between the sum of precipitation and water capacity in the landscapes of the same type and also the relationships between pollution content in snow and relief, pollution content in snow and distance from the source of emissions, were used as the basis for the model.

  18. Why They Fly: An Expectancy-Based Analysis of the Factors that Motivate Commissioned Army Aviators to Gain Flying Experience

    DTIC Science & Technology

    2007-06-15

    Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be... Moroze and Snow (1999) controlled flight into terrain (CFIT) accidents, where the crew unintentionally flies the aircraft into the earth or a man...number of CFIT accidents for the pilots with more flight hours was based on the behavior patterns that result from experience ( Moroze & Snow, 1999

  19. Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year

    USGS Publications Warehouse

    March, Rod S.

    2003-01-01

    The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.

  20. Input and behavior of polycyclic aromatic hydrocarbons in arable, fallow, and forest soils of the taiga zone (Tver oblast)

    NASA Astrophysics Data System (ADS)

    Zhidkin, A. P.; Gennadiev, A. N.; Koshovskii, T. S.

    2017-03-01

    Contents of 11 most prevalent polycyclic aromatic hydrocarbons (PAHs) in snow and soils of arable, fallow, and forest areas significantly remote from impact technogenic sources of polyarenes have been examined in the Torzhok district of Tver oblast. From the analysis of snow samples, the volumes and composition of PAHs coming from the atmosphere onto the areas of different land use have been determined. Light hydrocarbons prevail in PAHs. They make up 65-70% of total PAHs; their share in soils reaches almost 95%. An increase in the content of PAHs is revealed in fallow soils compared to arable and afforested areas. A direct relationship is revealed between the lateral distribution of total PAHs and the content of organic carbon. The distribution of total PAHs is surface-accumulative in forest soils, mainly uniform in arable soils, and deepaccumulative in fallow soils. PAH groups characterized by similar radial distributions and ratios between their reserves in snow and soils are distinguished: (1) fluorene and phenanthrene, (2) biphenyl and naphthalene, (3) benzo(a)anthracene, chrysene, perylene, and benzo[ a]pyrene, and (4) anthracene and benzo[ ghi]pyrene.

  1. Extracting fields snow coverage information with HJ-1A/B satellites data

    NASA Astrophysics Data System (ADS)

    Dong, Wenquan; Meng, Jihua

    2015-10-01

    The distribution and change of snow coverage are sensitive factors of climate change. In northeast part of China, farmlands are still covered with snow in spring. Since sowing activity can only be done when the snow melted, fields snow coverage monitoring provides reference for the determination of sowing date. Because of the restriction of the sensors and application requirements, current researches on remote sensing of snow focus more on the study of musicale and large scale, rather than the study of small scale, and especially research on snow melting period is rarely reported.HJ-1A/B satellites are parts of little satellite constellation, focusing on environment and disaster monitoring and meteorological forecast. Compared to other data sources, HJ-1A/B satellites both have comparatively higher temporal and spatial resolution and are more conducive to monitor the variations of melting snow coverage at small watershed. This paper was based on HJ-1A/1B data, taking Hongxing farm of Bei'an, Heilongjiang Province, China as the study area. In this paper, we exploited the methods for extraction of snow cover information on farmland in two cases, both HJ-1A/1B CCD with HJ-1B IRS data and just HJ-1A/1B CCD data. The reason we chose the two cases is that, the two optical satellites HJ-1A/B are capable of providing a whole territory coverage period in visible light spectrum in two days, infrared spectrum in four days. So sometimes we can only obtain CCD image. In this case, the method of normalized snow index cannot be used to extract snow coverage information. Using HJ-1A/1B CCD with HJ-1B IRS data, combined with the theory of snow remote sensing monitoring, this paper analyzed spectral response characteristics of HJ-1A/1B satellites data, then the widely used Normalized Difference Snow Index(NDSI) and S3 Index were quoted to the HJ-1A/1B satellites data. The NDSI uses reflectance values of Red and SWIR spectral bands of HJ-1B, and S3 index uses reflectance values of NIR, Red and SWIR spectral bands. With multi-temporal HJ satellite data, the optimal threshold of normalized snow index was determined to divide the farmland into snow covering area, melting snow area and non-snow area. The results are quite similar to each other and of high accuracy, and the melting snow coverage can be well extracted by two types of normalized snow index. When we can only obtain CCD image, we use supervised classification method to extract melting snow coverage. With this method, the accuracy of fields snow coverage extraction is slightly lower than that using normalized snow index methods mentioned above. And in mountain area, the snow coverage area is slightly larger than that is extracted by normalized snow index methods, because the shadows make the color of snow in the valley darker, the supervised classification method divides it into non-snow coverage area, while the normalized snow index method well weakened the effect of shadow. This study shows that extraction accuracy in both cases is assessed, and both of them can meet the needs of practical applications. HJ-1A/1B satellites are conducive to monitor the variations of melting snow coverage over farmland, and they can provide reference for the determination of sowing date.

  2. Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events.

    NASA Astrophysics Data System (ADS)

    Hall, J.; Loboda, T. V.

    2017-12-01

    Short lived aerosols and pollutants transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide with a total climate forcing of +1.1Wm-2. Studies have suggested that cropland burning may be a large contributor to the black carbon emissions which are directly deposited on the snow in the Arctic region. However, accurate monitoring of cropland burning from existing active fire and burned area products is limited, thereby leading to an underestimation in black carbon emissions from cropland burning. This research focuses on 1) assessing the potential for the deposition of hypothetical black carbon emissions from known cropland burning in Russia through low-level transport, and 2) identifying a possible atmospheric pattern that may enhance the transport of black carbon emissions to the Arctic. Specifically, atmospheric blocking events present a potential mechanism that could act to enhance the likelihood of transport or accelerate the transport of pollutants to the snow-covered Arctic from Russian cropland burning based on their persistent wind patterns. This research study confirmed the importance of Russian cropland burning as a potential source of black carbon deposition on the Arctic snow in the spring despite the low injection heights associated with cropland burning. Based on the successful transport pathways, this study identified the potential transport of black carbon from Russian cropland burning beyond 80°N which has important implications for permanent sea ice cover. Further, based on the persistent wind patterns of blocking events, this study identified that blocking events are able to accelerate potential transport and increase the success of transport of black carbon emissions to the snow-covered Arctic during spring when the impact on the snow/ice albedo is at its highest. The enhanced transport of black carbon has important implications for the efficacy of deposited black carbon. Therefore, understanding these relationships could lead to possible mitigation strategies for reducing the impact of deposition of black carbon from crop residue burning in the Arctic.

  3. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J. (Principal Investigator); Davis, R. E.; Dubayah, R. O.; Frew, J. E.; Li, S.; Marks, D.; Milliff, R. F.; Rousseau, D. D.; Wan, Z. M.

    1985-01-01

    Work undertaken during the contract and its results are described. Many of the results from this investigation are available in journal or conference proceedings literature - published, accepted for publication, or submitted for publication. For these the reference and the abstract are given. Those results that have not yet been submitted separately for publication are described in detail. Accomplishments during the contract period are summarized as follows: (1) analysis of the snow reflectance characteristics of the LANDSAT Thematic Mapper, including spectral suitability, dynamic range, and spectral resolution; (2) development of a variety of atmospheric models for use with LANDSAT Thematic Mapper data. These include a simple but fast two-stream approximation for inhomogeneous atmospheres over irregular surfaces, and a doubling model for calculation of the angular distribution of spectral radiance at any level in an plane-parallel atmosphere; (3) incorporation of digital elevation data into the atmospheric models and into the analysis of the satellite data; and (4) textural analysis of the spatial distribution of snow cover.

  4. Science data, tools and services available from NSIDC

    NASA Astrophysics Data System (ADS)

    Gergely, K.; Sheffield, E.

    2011-12-01

    While the name may be narrow in focus, the National Snow and Ice Data Center archives, distributes and supports data from many scientific disciplines. It is true that the majority of our holdings are on snow, sea ice, glaciers, ice sheets, and other cryospheric parameters. These are complimented by holdings on soil moisture, ocean data, global altimeter data, and human observations of environmental change, among other data. We facilitate access and use of our data through various tools, subsetters, and visualizing interfaces, and complete the package with a staff of hands-on user support specialists, available by email or phone to assist users with questions about our data and services. Based on user questions about general cryospheric physical processes over the past 35 years, we created a suite of online educational information on our areas of research, including snow, glaciers, sea ice, frozen ground, and others material of interest to the citizen scientist. Our excellent customer service has been noted on a widely distributed annual user survey.

  5. Nutrient and mercury deposition and storage in an alpine snowpack of the Sierra Nevada, USA

    NASA Astrophysics Data System (ADS)

    Pearson, C.; Schumer, R.; Trustman, B. D.; Rittger, K.; Johnson, D. W.; Obrist, D.

    2015-06-01

    Biweekly snowpack core samples were collected at seven sites along two elevation gradients in the Tahoe Basin during two consecutive snow years to evaluate total wintertime snowpack accumulation of nutrients and pollutants in a high-elevation watershed of the Sierra Nevada. Additional sampling of wet deposition and detailed snow pit profiles were conducted the following year to compare wet deposition to snowpack storage and assess the vertical dynamics of snowpack nitrogen, phosphorus, and mercury. Results show that, on average, organic N comprised 48% of all snowpack N, while nitrate (NO3--N) and TAN (total ammonia nitrogen) made up 25 and 27%, respectively. Snowpack NO3--N concentrations were relatively uniform across sampling sites over the sampling seasons and showed little difference between seasonal wet deposition and integrated snow pit concentrations. These patterns are in agreement with previous studies that identify wet deposition as the dominant source of wintertime NO3--N deposition. However, vertical snow pit profiles showed highly variable concentrations of NO3--N within the snowpack indicative of additional deposition and in-snowpack dynamics. Unlike NO3--N, snowpack TAN doubled towards the end of winter, which we attribute to a strong dry deposition component which was particularly pronounced in late winter and spring. Organic N concentrations in the snowpack were highly variable (from 35 to 70%) and showed no clear temporal, spatial, or vertical trends throughout the season. Integrated snowpack organic N concentrations were up to 2.5 times higher than seasonal wet deposition, likely due to microbial immobilization of inorganic N as evident by coinciding increases in organic N and decreases in inorganic N in deeper, aged snow. Spatial and temporal deposition patterns of snowpack P were consistent with particulate-bound dry deposition inputs and strong impacts from in-basin sources causing up to 6 times greater enrichment at urban locations compared to remote sites. Snowpack Hg showed little temporal variability and was dominated by particulate-bound forms (78% on average). Dissolved Hg concentrations were consistently lower in snowpack than in wet deposition, which we attribute to photochemically driven gaseous re-emission. In agreement with this pattern is a significant positive relationship between snowpack Hg and elevation, attributed to a combination of increased snow accumulation at higher elevations causing limited light penetration and lower photochemical re-emission losses in deeper, higher-elevation snowpack. Finally, estimates of basin-wide loading based on spatially extrapolated concentrations and a satellite-based snow water equivalent reconstruction model identify snowpack chemical loading from atmospheric deposition as a substantial source of nutrients and pollutants to the Lake Tahoe Basin, accounting for 113 t of N, 9.3 t of P, and 1.2 kg of Hg each year.

  6. Seasonal frost conditions in different periglacial landforms in the Eastern Pyrenees from 2003 to 2015

    NASA Astrophysics Data System (ADS)

    Salvador-Franch, Ferran; Salvà-Catarineu, Montserrat; Oliva, Marc; Gómez-Ortiz, Antonio

    2016-04-01

    Glaciers shaped the headwaters and valley floors in the Eastern Pyrenees during the Last Glaciation at elevations above 2100-2200 m. Since the deglaciation of these areas, periglacial processes have generated a wide range of periglacial landforms, such as rock glaciers, patterned ground and debris slopes. The role of soil temperatures is decisive for the degree of activity of periglacial processes: cryoturbation, solifluction, frost weathering, etc. Nowadays, periglacial processes in the Eastern Pyrenees are driven by a seasonal frozen layer extending 5-7 months. In general, at 2100 m the seasonal frost reaches 20 cm depth, while at 2700 m reaches 50 cm depth. However, soil temperatures, and thus, periglacial processes are strongly controlled by the large interannual variability of the snow cover. With the purpose of understanding the rhythm and intensity of soil freezing/thawing in 2003 we set up several monitoring sites along a vertical transect from the valley floors (1100 m) to the high plateaus (2700 m) across the southern slope of the Puigpedrós massif (2914 m), in the Eastern Pyrenees. The monitoring of soil temperatures has been conducted from 2003 to 2015 in different periglacial landforms using UTL and Hobo loggers. These loggers were installed at depths of 5, 20 and 50 cm at five sites: Calmquerdós (2730 m), Malniu (2230 m), La Feixa (2150 m), Meranges (1600 m) and Das (1097 m). Air temperatures used as reference come from two automatic stations of the Catalan Meteorological Survey in Malniu and Das, and with two loggers installed in La Feixa and Meranges. No permafrost regime was detected in none of the sites. Data shows evidence of the control of snow cover on the depth of the frozen layer and on the number of freeze-thaw cycles. Air temperatures at 2000-2200 m show a mean of 150 freeze-thaw cycles per year. In La Feixa, with very thin snow cover, only 67 cycles are recorded at 5 cm depth and 5 cycles at 50 cm depth. In Malniu, located at a higher elevation showing a thicker and longer snow cover, only 17 freeze-thaw cycles per year are recorded at 5 cm depth, with no cycles recorded at 50 cm depth. Soils remain unfrozen during years with a very thick snow cover. The snow cover is also largely conditioned by the microtopography and exposure to the dominant winds. These factors condition the distribution, duration and intensity of the frozen ground and, thus, determine the intensity of periglacial processes in these areas.

  7. Ground thermal conditions along a vertical transect with contrasted topography in a high mountain Mediterranean environment (Puigpedrós massif, eastern Pyrenees), from 2003 to 2014

    NASA Astrophysics Data System (ADS)

    Salvador-Franch, Ferran; Salvà-Catarineu, Montserrat; Oliva, Marc; Gómez-Ortiz, Antonio

    2015-04-01

    During the Last Glaciation glaciers shaped the headwaters and valley floors in the Eastern Pyrenees above 2100-2200 m. Since the deglaciation of these high mountain environments, periglacial processes have generated rock glaciers, patterned ground and debris slopes. The role of soil temperatures is decisive regarding the contemporary activity of several processes: cryoturbation, solifluction, frost weathering, etc. Nowadays, periglacial processes are driven by a seasonal frozen layer extending 4-5 months. At 2100 m the seasonal frost reaches 20 cm depth, while at 2700 m reaches 50 cm depth. However, soil temperatures, and thus, periglacial processes are strongly controlled by the large interannual variability of the snow cover. With the purpose of understanding the rhythm and intensity of soil freezing/thawing we have set up several monitoring sites along a vertical transect from the high plateaus (2700 m) to the valley floors (1100 m) across the southern slope of the Puigpedrós massif (2914 m), in the Eastern Pyrenees. The monitoring of soil temperatures extends from 2003 to 2014. TinyTalk, UTL and Hobo loggers have been used in this study. These loggers were installed at depths of -5, -20 and -50 cm at five sites: Calmquerdós (2730 m), Malniu (2230 m), La Feixa (2150 m), Meranges (1600 m) and Das (1097 m). Air temperatures used as reference come from two automatic stations of the Catalan Meteorological Survey (Malniu, Das) as well as from two loggers installed in La Feixa and Meranges. Data shows the control of snow cover on the depth of the frozen layer and on the number of freeze-thaw cycles. Air temperatures at 2000-2200 m show a mean of 150 freeze-thaw cycles per year. In La Feixa, with very thin snow cover, only 67 cycles are recorded at 5 cm depth and 5 cycles at 50 cm depth. In Malniu, located at a higher elevation showing a thicker and longer snow cover, only 17 freeze-thaw cycles per year are recorded at 5 cm depth, with no cycles recorded at 50 cm depth. Soils remain unfrozen during years with a very thick snow cover. The snow cover is also largely conditioned by the microtopography and exposure to the dominant winds. These factors condition the distribution, duration and intensity of the frozen ground and, thus, determine the intensity of periglacial processes in these areas.

  8. Influence of aeolian activities on the distribution of microbial abundance in glacier ice

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, X.-K.; Si, J.; Wu, G.-J.; Tian, L.-D.; Xiang, S.-R.

    2014-10-01

    Microorganisms are continuously blown onto the glacier snow, and thus the glacial depth profiles provide excellent archives of microbial communities and climatic and environmental changes. However, it is uncertain about how aeolian processes that cause climatic changes control the distribution of microorganisms in the glacier ice. In the present study, microbial density, stable isotopic ratios, 18O / 16O in the precipitation, and mineral particle concentrations along the glacial depth profiles were collected from ice cores from the Muztag Ata glacier and the Dunde ice cap. The ice core data showed that microbial abundance was often, but not always associated with high concentrations of particles. Results also revealed clear seasonal patterning with high microbial abundance occurring in both the cooling autumn and warming spring-summer seasons. Microbial comparisons among the neighbouring glaciers display a heterogeneous spatial pattern, with the highest microbial cell density in the glaciers lying adjacent to the central Asian deserts and lowest microbial density in the southwestern margin of the Tibetan Plateau. In conclusion, microbial data of the glaciers indicates the aeolian deposits of microorganisms in the glacier ice and that the spatial patterns of microorgansisms are related to differences in sources of microbial flux and intensity of aeolian activities in the current regions. The results strongly support our hypothesis of aeolian activities being the main agents controlling microbial load in the glacier ice.

  9. Mercury distribution and deposition in glacier snow over western China.

    PubMed

    Zhang, Qianggong; Huang, Jie; Wang, Feiyue; Mark, Loewen; Xu, Jianzhong; Armstrong, Debbie; Li, Chaoliu; Zhang, Yulan; Kang, Shichang

    2012-05-15

    Western China is home to the largest aggregate of glaciers outside the polar regions, yet little is known about how the glaciers in this area affect the transport and cycling of mercury (Hg) regionally and globally. From 2005 to 2010, extensive glacier snow sampling campaigns were carried out in 14 snowpits from 9 glaciers over western China, and the vertical distribution profiles of Hg were obtained. The Total Hg (THg) concentrations in the glacier snow ranged from <1 to 43.6 ng L(-1), and exhibited clear seasonal variations with lower values in summer than in winter. Spatially, higher THg concentrations were typically observed in glacier snows from the northern region where atmospheric particulate loading is comparably high. Glacier snowpit Hg was largely dependent on particulate matters and was associated with particulate Hg, which is less prone to postdepositional changes, thus providing a valuable record of atmospheric Hg deposition. Estimated atmospheric Hg depositional fluxes ranged from 0.74 to 7.89 μg m(-2) yr(-1), agreeing very well with the global natural values, but are one to two orders of magnitude lower than that of the neighboring East Asia. Elevated Hg concentrations were observed in refrozen ice layers in several snowpits subjected to intense melt, indicating that Hg can be potentially released to meltwater.

  10. Changes in Andes snow cover from MODIS data, 2000-2016

    NASA Astrophysics Data System (ADS)

    Saavedra, Freddy A.; Kampf, Stephanie K.; Fassnacht, Steven R.; Sibold, Jason S.

    2018-03-01

    The Andes span a length of 7000 km and are important for sustaining regional water supplies. Snow variability across this region has not been studied in detail due to sparse and unevenly distributed instrumental climate data. We calculated snow persistence (SP) as the fraction of time with snow cover for each year between 2000 and 2016 from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors (500 m, 8-day maximum snow cover extent). This analysis is conducted between 8 and 36° S due to high frequency of cloud (> 30 % of the time) south and north of this range. We ran Mann-Kendall and Theil-Sens analyses to identify areas with significant changes in SP and snowline (the line at lower elevation where SP = 20 %). We evaluated how these trends relate to temperature and precipitation from Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) and University of Delaware datasets and climate indices as El Niño-Southern Oscillation (ENSO), Southern Annular Mode (SAM), and Pacific Decadal Oscillation (PDO). Areas north of 29° S have limited snow cover, and few trends in snow persistence were detected. A large area (34 370 km2) with persistent snow cover between 29 and 36° S experienced a significant loss of snow cover (2-5 fewer days of snow year-1). Snow loss was more pronounced (62 % of the area with significant trends) on the east side of the Andes. We also found a significant increase in the elevation of the snowline at 10-30 m year-1 south of 29-30° S. Decreasing SP correlates with decreasing precipitation and increasing temperature, and the magnitudes of these correlations vary with latitude and elevation. ENSO climate indices better predicted SP conditions north of 31° S, whereas the SAM better predicted SP south of 31° S.

  11. The impact of the snow cover on sea-ice thickness products retrieved by Ku-band radar altimeters

    NASA Astrophysics Data System (ADS)

    Ricker, R.; Hendricks, S.; Helm, V.; Perovich, D. K.

    2015-12-01

    Snow on sea ice is a relevant polar climate parameter related to ocean-atmospheric interactions and surface albedo. It also remains an important factor for sea-ice thickness products retrieved from Ku-band satellite radar altimeters like Envisat or CryoSat-2, which is currently on its mission and the subject of many recent studies. Such satellites sense the height of the sea-ice surface above the sea level, which is called sea-ice freeboard. By assuming hydrostatic equilibrium and that the main scattering horizon is given by the snow-ice interface, the freeboard can be transformed into sea-ice thickness. Therefore, information about the snow load on hemispherical scale is crucial. Due to the lack of sufficient satellite products, only climatological values are used in current studies. Since such values do not represent the high variability of snow distribution in the Arctic, they can be a substantial contributor to the total sea-ice thickness uncertainty budget. Secondly, recent studies suggest that the snow layer cannot be considered as homogenous, but possibly rather featuring a complex stratigraphy due to wind compaction and/or ice lenses. Therefore, the Ku-band radar signal can be scattered at internal layers, causing a shift of the main scattering horizon towards the snow surface. This alters the freeboard and thickness retrieval as the assumption that the main scattering horizon is given by the snow-ice interface is no longer valid and introduces a bias. Here, we present estimates for the impact of snow depth uncertainties and snow properties on CryoSat-2 sea-ice thickness retrievals. We therefore compare CryoSat-2 freeboard measurements with field data from ice mass-balance buoys and aircraft campaigns from the CryoSat Validation Experiment. This unique validation dataset includes airborne laser scanner and radar altimeter measurements in spring coincident to CryoSat-2 overflights, and allows us to evaluate how the main scattering horizon is altered by the presence of a complex snow stratigraphy.

  12. Snow cover surveys in Alaska from ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Benson, C. S.

    1973-01-01

    September and October ERTS scenes have been analyzed to delineate snow cover patterns in northern Alaska's Brooks Range and on Mt. Wrangell, and active volcano in South Central Alaska. ERTS images demonstrate that the snow on the northern foothills of the Brooks Range are significantly more affected by katabatic wind action than are the southern foothills. Aufeis deposits along arctic rivers also can be identified in late summer. A survey of such aufeis deposits could identify additional summertime sources of fresh water supplies. Images of Mt. Wrangell permit monitoring of the interaction between volcanic heat and the mass balance of glaciers that exist on active volcanoes. Temporal changes in the areas of bare rock on the rim of the caldera on the summit reveal significant melting of new snow from an extensive storm on August 18. Digital analysis of data from subsequent passes over the summit on September 7, 23 and 24 revealed considerable bare rock exposed by melting, which is virtually impossible from solar heating at this altitude and date.

  13. Landscape patterns of CH4 fluxes in an alpine tundra ecosystem

    USGS Publications Warehouse

    West, A.E.; Brooks, P.D.; Fisk, M.C.; Smith, Lesley K.; Holland, E.A.; Jaeger, C. H.; Babcock, S.; Lai, R.S.; Schmidt, S.K.

    1999-01-01

    We measured CH4 fluxes from three major plant communities characteristic of alpine tundra in the Colorado Front Range. Plant communities in this ecosystem are determined by soil moisture regimes induced by winter snowpack distribution. Spatial patterns of CH4 flux during the snow-free season corresponded roughly with these plant communities. In Carex-dominated meadows, which receive the most moisture from snowmelt, net CH4 production occurred. However, CH4 production in one Carex site (seasonal mean = +8.45 mg CH4 m-2 d-1) was significantly larger than in the other Carex sites (seasonal means = -0.06 and +0.05 mg CH4 m-2 d-1). This high CH4 flux may have resulted from shallower snowpack during the winter. In Acomastylis meadows, which have an intermediate moisture regime, CH4 oxidation dominated (seasonal mean = -0.43 mg CH4 m-2 d-1). In the windswept Kobresia meadow plant community, which receive the least amount of moisture from snowmelt, only CH4 oxidation was observed (seasonal mean = -0.77 mg CH4 m-2 d-1). Methane fluxes correlated with a different set of environmental factors within each plant community. In the Carex plant community, CH4 emission was limited by soil temperature. In the Acomastylis meadows, CH4 oxidation rates correlated positively with soil temperature and negatively with soil moisture. In the Kobresia community, CH4 oxidation was stimulated by precipitation. Thus, both snow-free season CH4 fluxes and the controls on those CH4 fluxes were related to the plant communities determined by winter snowpack.

  14. Assessment of snow-dominated water resources: (Ir-)relevant scales for observation and modelling

    NASA Astrophysics Data System (ADS)

    Schaefli, Bettina; Ceperley, Natalie; Michelon, Anthony; Larsen, Joshua; Beria, Harsh

    2017-04-01

    High Alpine catchments play an essential role for many world regions since they 1) provide water resources to low lying and often relatively dry regions, 2) are important for hydropower production as a result of their high hydraulic heads, 3) offer relatively undisturbed habitat for fauna and flora and 4) provide a source of cold water often late into the summer season (due to snowmelt), which is essential for many downstream river ecosystems. However, the water balance of such high Alpine hydrological systems is often difficult to accurately estimate, in part because of seasonal to interannual accumulation of precipitation in the form of snow and ice and by relatively low but highly seasonal evapotranspiration rates. These processes are strongly driven by the topography and related vegetation patterns, by air temperature gradients, solar radiation and wind patterns. Based on selected examples, we will discuss how the spatial scale of these patterns dictates at which scales we can make reliable water balance assessments. Overall, this contribution will provide an overview of some of the key open questions in terms of observing and modelling the dominant hydrological processes in Alpine areas at the right scale. A particular focus will be on the observation and modelling of snow accumulation and melt processes, discussing in particular the usefulness of simple models versus fully physical models at different spatial scales and the role of observed data.

  15. Global Mercury Pathways in the Arctic Ecosystem

    NASA Astrophysics Data System (ADS)

    Lahoutifard, N.; Lean, D.

    2003-12-01

    The sudden depletions of atmospheric mercury which occur during the Arctic spring are believed to involve oxidation of gaseous elemental mercury, Hg(0), rendering it less volatile and more soluble. The Hg(II) oxidation product(s) are more susceptible to deposition, consistent with the observation of dramatic increases in snow mercury levels during depletion events. Temporal correlations with ozone depletion events and the proliferation of BrO radicals support the hypothesis that oxidation of Hg(0) occurs in the gas phase and results in its conversion to RGM (Reactive Gaseous Mercury). The mechanisms of Hg(0) oxidation and particularly Hg(II) reduction are as yet unproven. In order to evaluate the feasibility of proposed chemical processes involving mercury in the Arctic atmosphere and its pathway after deposition on the snow from the air, we investigated mercury speciation in air and snow pack at Resolute, Nunavut, Canada (latitude 75° N) prior to and during snow melt during spring 2003. Quantitative, real-time information on emission, air transport and deposition were combined with experimental studies of the distribution and concentrations of different mercury species, methyl mercury, anions, total organic carbon and total inorganic carbon in snow samples. The effect of solar radiation and photoreductants on mercury in snow samples was also investigated. In this work, we quantify mercury removed from the air, and deposited on the snow and the transformation to inorganic and methyl mercury.

  16. Measuring Snow Liquid Water Content with Low-Cost GPS Receivers

    PubMed Central

    Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram

    2014-01-01

    The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements. PMID:25384007

  17. Measuring snow liquid water content with low-cost GPS receivers.

    PubMed

    Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram

    2014-11-06

    The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements.

  18. Snow model design for operational purposes

    NASA Astrophysics Data System (ADS)

    Kolberg, Sjur

    2017-04-01

    A parsimonious distributed energy balance snow model intended for operational use is evaluated using discharge, snow covered area and grain size; the latter two as observed from the MODIS sensor. The snow model is an improvement of the existing GamSnow model, which is a part of the Enki modelling framework. Core requirements for the new version have been: 1. Reduction of calibration freedom, motivated by previous experience of non-identifiable parameters in the existing version 2. Improvement of process representation based on recent advances in physically based snow modelling 3. Limiting the sensitivity to forcing data which are poorly known over the spatial domain of interest (often in mountainous areas) 4. Preference for observable states, and the ability to improve from updates. The albedo calculation is completely revised, now based on grain size through an emulation of the SNICAR model (Flanner and Zender, 2006; Gardener and Sharp, 2010). The number of calibration parameters in the albedo model is reduced from 6 to 2. The wind function governing turbulent energy fluxes has been reduced from 2 to 1 parameter. Following Raleigh et al (2011), snow surface radiant temperature is split from the top layer thermodynamic temperature, using bias-corrected wet-bulb temperature to model the former. Analyses are ongoing, and the poster will bring evaluation results from 16 years of MODIS observations and more than 25 catchments in southern Norway.

  19. Applications of HCMM data to soil moisture snow and estuarine current studies. [Cooper River and Delaware Bay

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R. (Principal Investigator); Mcginnis, D. F.; Matson, M.

    1980-01-01

    The author has identified the following significant results. The HCMM thermal data are useful for monitoring estuarine surface thermal patterns. Estuarine thermal patterns, are, under certain conditions, indicative of the surface tidal current circulation patterns. Under optimum conditions, estuaries as small as the Cooper River (i.e., approximately 100 sq km) can be monitored for tidal/thermal circulation patterns by HCMM-type IR sensors.

  20. Cloud-based Computing and Applications of New Snow Metrics for Societal Benefit

    NASA Astrophysics Data System (ADS)

    Nolin, A. W.; Sproles, E. A.; Crumley, R. L.; Wilson, A.; Mar, E.; van de Kerk, M.; Prugh, L.

    2017-12-01

    Seasonal and interannual variability in snow cover affects socio-environmental systems including water resources, forest ecology, freshwater and terrestrial habitat, and winter recreation. We have developed two new seasonal snow metrics: snow cover frequency (SCF) and snow disappearance date (SDD). These metrics are calculated at 500-m resolution using NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data (MOD10A1). SCF is the number of times snow is observed in a pixel over the user-defined observation period. SDD is the last date of observed snow in a water year. These pixel-level metrics are calculated rapidly and globally in the Google Earth Engine cloud-based environment. SCF and SDD can be interactively visualized in a map-based interface, allowing users to explore spatial and temporal snowcover patterns from 2000-present. These metrics are especially valuable in regions where snow data are sparse or non-existent. We have used these metrics in several ongoing projects. When SCF was linked with a simple hydrologic model in the La Laguna watershed in northern Chile, it successfully predicted summer low flows with a Nash-Sutcliffe value of 0.86. SCF has also been used to help explain changes in Dall sheep populations in Alaska where sheep populations are negatively impacted by late snow cover and low snowline elevation during the spring lambing season. In forest management, SCF and SDD appear to be valuable predictors of post-wildfire vegetation growth. We see a positive relationship between winter SCF and subsequent summer greening for several years post-fire. For western US winter recreation, we are exploring trends in SDD and SCF for regions where snow sports are economically important. In a world with declining snowpacks and increasing uncertainty, these metrics extend across elevations and fill data gaps to provide valuable information for decision-making. SCF and SDD are being produced so that anyone with Internet access and a Google account can access, visualize, and download the data with a minimum of technical expertise and no need for proprietary software.

Top