USDA-ARS?s Scientific Manuscript database
'Snowstorm' forage kochia (Bassia prostrata [L.] A.J. Scott) (synonym=Kochia prostrata [L.] Schrad.) (Reg. No. CV-_____, PI _____) was released on March 22, 2012, by the USDA-ARS and the Utah Agricultural Experiment Station. Snowstorm was evaluated as OTVSEL and Otavny-select, and was developed as ...
[LESSONS FROM PREPAREDNESS OF HOSPITALS TO SNOWSTORMS].
Merin, Ofer; Goldberg, Sara; Peyser, Amos; Gros, Moshe; Weiss, Gali; Bitan, Aria; Zarka, Salman; Shapira, Kelin
2015-11-01
Snowstorms are not a usual scene in Israel, which normally enjoys relatively warm weather, even in the winter. In the last two years we faced three severe snowstorms that had a major impact on the routine daily life in Israel. Roads were blocked, people experienced long electricity power failures, and secondary to slippery conditions, there was more than a threefold increase of orthopedic injuries. These storms confronted hospitals with unique challenges, both medical and logistic. Hospitals must be prepared to cope with the challenge of maintaining continuation of care. We propose four phases of preparedness strategy: at the beginning of the winter, once there is a weather forecast warning, during the storm itself, and returning to norm. This manuscript deals with the lessons learned by two hospitals in Safed and Jerusalem dealing with snowstorms.
Atmospheric Science Data Center
2013-04-16
... article title: Snowstorm Along the China-Mongolia-Russia Border View Larger Image ... north China's Inner Mongolia Autonomous Region, Mongolia and Russia, caused train and highway traffic to stop for several days along the ...
Scenario-based risk analysis of winter snowstorms in the German lowlands
NASA Astrophysics Data System (ADS)
von Wulffen, Anja
2014-05-01
The northern German lowlands are not especially known for a high frequency of snowfall events. Nevertheless under certain synoptic conditions Lake-Effect-like phenomena caused by the proximity especially of the Baltic Sea can lead to significantly reinforced snowfall intensities that are often accompanied by rather high wind speeds. This makes for infrequent but potentially disastrous snowstorms in a region less accustomed to snow impacts. One possible consequence of an infrastructure failure cascade resulting from severe and longer-lasting snowstorms is a regional disruption of the food supply chain. In the context of "just-in-time"-logistics and the accompanying decrease of storage capabilities, this poses a significant threat to the population's food security. Within the project NeuENV ("New strategies to ensure sufficient food supply in case of crisis in Germany") a snowstorm in the German lowlands involving widespread disruptions of the transportation infrastructure as well as power failures is therefore used as one model for future food supply chain disruptions. In order to obtain a reliable evaluation of the supply chain and crisis management resilience, a detailed snowstorm scenario is being developed. For this purpose, a database of impact reports of past snowstorm events is assembled and analysed to obtain a comprehensive overview of potential infrastructure impairments and failures. Examples of events analysed in this context include the winter 1978/79 with its disastrous snow drifts that commonly attained heights of 3m to 5m leading to a transportation infrastructure collapse across a wide area, the wet snow event in November 2005 in the Münsterland region that caused power failures for up to 250.000 homes, and more recent snowstorms such as Daisy in January 2010. A catalogue of thresholds for relevant parameters indicating when significant failures can be expected is then compiled through a comparison of impact reports with the detailed meteorological conditions. Based on these findings, an exemplary synoptic evolution of a snowstorm leading to representative infrastructure failure cascades is constructed. In a next step, an extrapolation of this obtained scenario to future climate and societal conditions as well as plausible more extreme but not yet observed meteorological conditions is planned in order to obtain a thorough analysis of possible threats to the German food distribution system and a strong foundation for future disaster mitigation planning efforts.
Effects of the February 2010 snowstorms on airline performance
DOT National Transportation Integrated Search
2010-08-01
Several snowstorms in the Northeast, Midwest, and Southeast during February 2010 disrupted air travel not only at airports blanketed with snow but at airports across the United States and its territories. Altogether, more than 20,000 flights, or 4.2 ...
Study on water vapor characteristic of typical heavy snowstorm case in Northern Xinjiang
NASA Astrophysics Data System (ADS)
Cui, C.; Zhang, J.
2017-12-01
Using the daily precipitation at 51 weather stations in the Northern Xinjiang from November to March during 2000—2012 and daily water vapor of NCEP/NCAR 6 h 1°×1° reanalysis data, the water vapor characteristics of 11 typical heavy snowstorm cases were studied. The result shows that the 11 cases are classified into 3 types: West of Northern Xinjiang and along Tianshan edge, north and east of Northern Xinjiang, west of Northern Xinjiang and west Tianshan. There are two main water vapor sources: Near the Mediterranean Sea, the Red Sea or near the Persian Gulf. There are two water vapor transport routes which are west, southwest and northwest, respectively. Water vapor from southwest route is more, that from northwest route is less. The top of water vapor is close to 300 hPa. The strongest water vapor transport level is between 650-750 hPa. Before the every occurrence of 11 heavy snowstorm processes, there are water vapor convergence between 600-1000 hPa in Northern Xinjiang.There are positive correlations between the snowstorm intensity and water vapor convergence between 600-1000 hPa, as well as the convergence strength, rang and duration time in Northern Xinjiang. Hence, some lowest values of the strongest water vapor transport, water vapor convergence and the upper and lower level jet streams are resented also and gave useful references for accurate heavy snowstorm forecasting.
Prairie falcons quit nesting in response to spring snowstorm
John R. Squires; Stanley H. Anderson; Robert Oakleaf
1991-01-01
A small population of Prairie Falcons (Falco mexicanus) (mean = 6 pairs/year) nesting in northcentral Wyoming quit nesting in response to a severe spring snowstorm in 1984. Temperatures during the April storm were similar to years when the falcons reproduced successfully, but the monthly snowfall was 89.2 cm as compared to the 30-yr monthly average of 29.92 cm...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allred, W.S.; Gaud, W.S.
1993-01-01
Abert squirrels (Sciurus aberti) are obligate herbivores on ponderosa pine (Pinus ponderosa). The inner bark of pine shoots is considered one of the predominant food resources obtained by foraging squirrels. As squirrels forage for this resource they induce green needle losses from chosen feed trees. Amounts of induced green needle losses appear to vary according to the availability of alternative foods and squirrel population densities. Weather also induces green needle losses to ponderosa pines. Results of this study indicate that, at least in some years, heavy snowstorms can induce greater amounts of green needle losses than squirrels. Squirrel herbivory wasmore » not indicated as a factor in any tree mortality. However, losses due to snowstorms are more severe since they may cause the actual depletion of trees in the forest because of the tree mortality they inflict.« less
NASA Astrophysics Data System (ADS)
Zarzycki, C. M.
2017-12-01
The northeastern coast of the United States is particularly vulnerable to impacts from extratropical cyclones during winter months, which produce heavy precipitation, high winds, and coastal flooding. These impacts are amplified by the proximity of major population centers to common storm tracks and include risks to health and welfare, massive transportation disruption, lost spending productivity, power outages, and structural damage. Historically, understanding regional snowfall in climate models has generally centered around seasonal mean climatologies even though major impacts typically occur at the scales of hours to days. To quantify discrete snowstorms at the event level, we describe a new objective detection algorithm for gridded data based on the Regional Snowfall Index (RSI) produced by NOAA's National Centers for Environmental Information. The algorithm uses 6-hourly precipitation to collocate storm-integrated snowfall with population density to produce a distribution of snowstorms with societally relevant impacts. The algorithm is tested on the Community Earth System Model (CESM) Large Ensemble Project (LENS) data. Present day distributions of snowfall events is well-replicated within the ensemble. We discuss classification sensitivities to assumptions made in determining precipitation phase and snow water equivalent. We also explore projected reductions in mid-century and end-of-century snowstorms due to changes in snowfall rates and precipitation phase, as well as highlight potential improvements in storm representation from refined horizontal resolution in model simulations.
NASA Astrophysics Data System (ADS)
Kobayashi, Y.; Watanabe, K.; Imai, M.; Watanabe, K.; Naruse, N.; Takahashi, Y.
2016-12-01
Hyper-densely monitoring for poor-visibility occurred by snowstorm is needed to make an alert system, because the snowstorm is difficult to predict from the observation only at a representative point. There are some problems in the previous approaches for the poor-visibility monitoring using video analyses or visibility meters; these require a wired network monitoring (a large amount of data: 10MB/sec at least) and the system cost is high (10,000 at each point). Thus, the risk of poor-visibility has been mainly measured at specific point such as airport and mountain pass, and estimated by simulation two dimensionally. To predict it two dimensionally and accurately, we have developed a low-cost meteorological system to observe the snowstorm hyper-densely. We have developed a low-cost visibility meter which works as the reduced intensity of semiconducting laser light when snow particles block off. Our developed system also has a capability of extending a hyper-densely observation in real-time on wireless network using Zigbee; A/D conversion and wireless data sent from temperature and illuminance sensors. We use a semiconducting laser chip (5) for the light source and a reflection mechanism by the use of three mirrors so as to send the light to a non-sensitive illuminance sensor directly. Thus, our visibility detecting system ($500) becomes much cheaper than previous one. We have checked the correlation between the reduced intensity taken by our system and the visibility recorded by conventional video camera. The value for the correlation coefficient was -0.67, which indicates a strong correlation. It means that our developed system is practical. In conclusion, we have developed low-cost meteorological detecting system to observe poor-visibility occurred by snowstorm, having a potential of hyper-densely monitoring on wireless network, and have made sure the practicability.
A survey of major east coast snowstorms, 1960-1983. Part 2: Case studies of eighteen storms
NASA Technical Reports Server (NTRS)
Kocin, P. J.; Uccellini, L. W.
1985-01-01
Snowfall, surface and upper air charts, and available satellite images are presented for eighteen major East Coast snowstorms that occurred between 1960 and 1983. The charts and descriptions of key fields are provided so that students, weather forecasters, and researchers alike can visualize how a large sample of major winter cyclones form and intensify. Although there are noted similarities in certain aspects of the surface and upper tropospheric development of the storms, significant case-to-case variability precludes the ability to effectively composite these weather systems.
Snow precipitation on Mars driven by cloud-induced night-time convection
NASA Astrophysics Data System (ADS)
Spiga, Aymeric; Hinson, David P.; Madeleine, Jean-Baptiste; Navarro, Thomas; Millour, Ehouarn; Forget, François; Montmessin, Franck
2017-09-01
Although it contains less water vapour than Earth's atmosphere, the Martian atmosphere hosts clouds. These clouds, composed of water-ice particles, influence the global transport of water vapour and the seasonal variations of ice deposits. However, the influence of water-ice clouds on local weather is unclear: it is thought that Martian clouds are devoid of moist convective motions, and snow precipitation occurs only by the slow sedimentation of individual particles. Here we present numerical simulations of the meteorology in Martian cloudy regions that demonstrate that localized convective snowstorms can occur on Mars. We show that such snowstorms--or ice microbursts--can explain deep night-time mixing layers detected from orbit and precipitation signatures detected below water-ice clouds by the Phoenix lander. In our simulations, convective snowstorms occur only during the Martian night, and result from atmospheric instability due to radiative cooling of water-ice cloud particles. This triggers strong convective plumes within and below clouds, with fast snow precipitation resulting from the vigorous descending currents. Night-time convection in Martian water-ice clouds and the associated snow precipitation lead to transport of water both above and below the mixing layers, and thus would affect Mars' water cycle past and present, especially under the high-obliquity conditions associated with a more intense water cycle.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., receive, or read text. Emergency means any hurricane, tornado, storm (e.g. thunderstorm, snowstorm... fuel) or otherwise immediately threatens human life or public welfare, provided such hurricane, tornado...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., receive, or read text. Emergency means any hurricane, tornado, storm (e.g. thunderstorm, snowstorm... fuel) or otherwise immediately threatens human life or public welfare, provided such hurricane, tornado...
24 CFR 791.407 - Headquarters Reserve.
Code of Federal Regulations, 2014 CFR
2014-04-01
... needs resulting from natural and other disasters, including hurricanes, tornadoes, storms, high water..., snowstorms, drought, fires, floods, or explosions, which in the determination of the Secretary cause damage...
24 CFR 791.407 - Headquarters Reserve.
Code of Federal Regulations, 2011 CFR
2011-04-01
... needs resulting from natural and other disasters, including hurricanes, tornadoes, storms, high water..., snowstorms, drought, fires, floods, or explosions, which in the determination of the Secretary cause damage...
24 CFR 791.407 - Headquarters Reserve.
Code of Federal Regulations, 2013 CFR
2013-04-01
... needs resulting from natural and other disasters, including hurricanes, tornadoes, storms, high water..., snowstorms, drought, fires, floods, or explosions, which in the determination of the Secretary cause damage...
24 CFR 791.407 - Headquarters Reserve.
Code of Federal Regulations, 2012 CFR
2012-04-01
... needs resulting from natural and other disasters, including hurricanes, tornadoes, storms, high water..., snowstorms, drought, fires, floods, or explosions, which in the determination of the Secretary cause damage...
... to the touch and lights that flicker. Portable Space Heaters Keep combustible objects at least three feet ... Radiological Dispersion Device Severe Weather Snowstorms & Extreme Cold Space Weather Thunderstorms & Lightning Tornadoes Tsunamis Volcanoes Wildfires Ready. ...
75 FR 17178 - Nebraska Disaster Number NE-00033
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... (FEMA-1878-DR), dated 02/25/2010 . Incident: Severe Winter Storms and Snowstorm. Incident Period: 12/22..., Frontier, Furnas, Gosper, Greeley, Harlan, Holt, Howard, Knox, Loup, Merrick, Nuckolls, Pierce, Platte...
2011-01-01
Background It is important to understand which factors increase the risk of posttraumatic stress disorder (PTSD) in adolescents. Previous studies have shown that the most important risk factors for PTSD include the type, severity, and duration of exposure to the traumatic events. Methods A cross-sectional survey was used to investigate the psychological symptoms associated with the aftermath of a snowstorm disaster in the Hunan province of China in January 2008. Students living in Hunan were surveyed at a three-month follow-up after the disaster. The questionnaire battery included the Impact of Event Scale-Revised (IES-R, trauma and symptoms associated with PTSD), the Chinese version of the Life Orientation Test-Revised (LOT-R, optimism and pessimism), the Chinese version of the Eysenck Personality Questionnaire (EPQ, neuroticism and extraversion), the Chinese Trait Coping Style Questionnaire (TCSQ, positive and negative coping styles), and a range of questions addressing social demographic characteristics and factors relating to the snowstorm. The survey was administered in school, and 968 students completed and returned the questionnaires. Results The results showed that 14.5% of the students had a total IES-R score ≥20. Students with greater school-to-home distances showed higher levels of posttraumatic stress symptoms than students who lived shorter distances from school. Students with emotional support from their teachers reported higher levels of posttraumatic stress symptoms (21.20%) than students without a teacher's emotional support (11.07%). The IES-R total and subscale scores correlated with all variables except extraversion. The binary logistic regression analysis results showed that the teacher's emotional support [odds ratio (OR) = 1.72, 95% confidence interval (CI) = 1.13-2.62], school-to-home distance (OR = 1.01, 95% CI = 1.00-1.01), negative coping (OR = 1.05; 95% CI = 1.02-1.08), and neuroticism (OR = 1.04, 95% CI = 1.02-1.06) were risk factors that predicted PTSD frequency and severity (percentage correct = 85.5%). Conclusions The risk factors that significantly impacted the onset of posttraumatic stress reactions in students living in Hunan, China following a snowstorm disaster were the school-to-home distance, negative coping, neuroticism, and teacher's emotional support. PMID:21314959
Snowplow simulator training evaluation
DOT National Transportation Integrated Search
2006-11-01
Snowplow drivers must operate $200,000 units of equipment in blinding snowstorms and demanding traffic conditions. : Yet traditional training for new drivers, with limited funding and staff, may be only two or three storm shifts with a : partner-trai...
2005-05-18
Despite good rainfall and record-setting snowstorms in the spring of 2005, most of northeastern Wyoming, the Black Hills, and western South Dakota remained in the midst of a severe drought. These images are from NASA Terra spacecraft.
Snowstorm Along the China-Mongolia-Russia Borders
2004-03-31
Heavy snowfall on March 12, 2004, across north China Inner Mongolia Autonomous Region, Mongolia and Russia, caused train and highway traffic to stop for several days along the Russia-China border shown here by NASA Terra spacecraft.
Optimizing snow plowing operations in urban road networks : final research report.
DOT National Transportation Integrated Search
2015-01-01
Due to the disruptive effect of snowstorms on cities, both in terms of : mobility and safety, the faster the streets can be cleared the better. Yet in : most cities (including Pittsburgh), static plans for snowplowing are : developed using simple all...
Heavy snowfall damage Virginia pine
Richard H. Fenton
1959-01-01
In the Coastal Plain from Virginia to Pennsylvania, snowstorms heavy enough to damage trees are unusual. Weather Bureau records for the general area show that heavy snowfall - 8 to 25 inches in a single storm - occurs at an average frequency of about once in 7 years.
NASA Technical Reports Server (NTRS)
Iguchi, Takamichi; Matsui, Toshihisa; Shi, Jainn J.; Tao, Wei-Kuo; Khain, Alexander P.; Hao, Arthur; Cifelli, Robert; Heymsfield, Andrew; Tokay, Ali
2012-01-01
Two distinct snowfall events are observed over the region near the Great Lakes during 19-23 January 2007 under the intensive measurement campaign of the Canadian CloudSat/CALIPSO validation project (C3VP). These events are numerically investigated using the Weather Research and Forecasting model coupled with a spectral bin microphysics (WRF-SBM) scheme that allows a smooth calculation of riming process by predicting the rimed mass fraction on snow aggregates. The fundamental structures of the observed two snowfall systems are distinctly characterized by a localized intense lake-effect snowstorm in one case and a widely distributed moderate snowfall by the synoptic-scale system in another case. Furthermore, the observed microphysical structures are distinguished by differences in bulk density of solid-phase particles, which are probably linked to the presence or absence of supercooled droplets. The WRF-SBM coupled with Goddard Satellite Data Simulator Unit (G-SDSU) has successfully simulated these distinctive structures in the three-dimensional weather prediction run with a horizontal resolution of 1 km. In particular, riming on snow aggregates by supercooled droplets is considered to be of importance in reproducing the specialized microphysical structures in the case studies. Additional sensitivity tests for the lake-effect snowstorm case are conducted utilizing different planetary boundary layer (PBL) models or the same SBM but without the riming process. The PBL process has a large impact on determining the cloud microphysical structure of the lake-effect snowstorm as well as the surface precipitation pattern, whereas the riming process has little influence on the surface precipitation because of the small height of the system.
SciDB versus Spark: A Preliminary Comparison Based on an Earth Science Use Case
NASA Astrophysics Data System (ADS)
Clune, T.; Kuo, K. S.; Doan, K.; Oloso, A.
2015-12-01
We compare two Big Data technologies, SciDB and Spark, for performance, usability, and extensibility, when applied to a representative Earth science use case. SciDB is a new-generation parallel distributed database management system (DBMS) based on the array data model that is capable of handling multidimensional arrays efficiently but requires lengthy data ingest prior to analysis, whereas Spark is a fast and general engine for large scale data processing that can immediately process raw data files and thereby avoid the ingest process. Once data have been ingested, SciDB is very efficient in database operations such as subsetting. Spark, on the other hand, provides greater flexibility by supporting a wide variety of high-level tools including DBMS's. For the performance aspect of this preliminary comparison, we configure Spark to operate directly on text or binary data files and thereby limit the need for additional tools. Arguably, a more appropriate comparison would involve exploring other configurations of Spark which exploit supported high-level tools, but that is beyond our current resources. To make the comparison as "fair" as possible, we export the arrays produced by SciDB into text files (or converting them to binary files) for the intake by Spark and thereby avoid any additional file processing penalties. The Earth science use case selected for this comparison is the identification and tracking of snowstorms in the NASA Modern Era Retrospective-analysis for Research and Applications (MERRA) reanalysis data. The identification portion of the use case is to flag all grid cells of the MERRA high-resolution hourly data that satisfies our criteria for snowstorm, whereas the tracking portion connects flagged cells adjacent in time and space to form a snowstorm episode. We will report the results of our comparisons at this presentation.
75 FR 44994 - Pennsylvania Disaster Number PA-00031
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 12121 and 12122] Pennsylvania Disaster Number... PENNSYLVANIA (FEMA--1898--DR), dated 04/16/2010. Incident: Severe Winter Storms and Snowstorms. Incident Period... Non-Profit organizations in the State of PENNSYLVANIA, dated 04/16/2010, is hereby amended to include...
Floods of December 2004 and January 2005 in Ohio: FEMA Disaster Declaration 1580
Ebner, Andrew D.; Straub, David E.; Lageman, Jonathan D.
2008-01-01
A large snowstorm at the end of December 2004 that left more than 20 inches of snow in some areas of Ohio, followed by unseasonably warm temperatures in early January 2005, caused snowmelt to begin filling river channels. Widespread rain showers during January 2005 combined with this snowmelt to cause flooding throughout Ohio and mudslides in some areas. Record peak streamflows occurred at nine U.S. Geological Survey (USGS) streamgages. Damages caused by the snowstorms, flooding, and mudslides were severe enough for 62 counties in Ohio to be declared Federal disaster areas. In all, approximately 3,664 private structures were damaged or destroyed, and an estimated $238 million in damages occurred. This report describes the meteorological factors that resulted in severe flooding throughout Ohio between December 22, 2004, and February 1, 2005, and examines the damages caused by the storms and flooding. Peak-stage, peak-streamflow, and recurrence-interval data are reported for selected USGS streamgages. Flood profiles determined by the USGS are presented for selected streams.
Muscatiello, Neil A; Babcock, Gwen; Jones, Rena; Horn, Edward; Hwang, Syni-An
2010-01-01
Following an October 2006 snowstorm that caused widespread power outages in western New York State, hospital emergency department (ED) visits for carbon monoxide (CO) poisoning increased. Overall, 264 people representing 155 households were diagnosed with CO poisoning during the power outages. Telephone interviews were conducted with a subset of these individuals. Respondents provided information about exposure sources, CO alarms, and awareness of CO warnings. In many households, portable generators were operated in an enclosed area. Awareness of CO warnings may have contributed to knowledge about locating portable generators outside. When operated outside, however, portable generators were generally located too close to the home. Gas kitchen ranges were used for heat by numerous households. In the short term, CO education and improved clarity of CO warning information is important for increasing awareness about power outage-related CO risks. Improvements in the combustion efficiency of portable generators should be a long-term goal.
76 FR 11553 - New York Disaster #NY-00102
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
.../18/2011. Incident: Severe Winter Storm and Snowstorm. Incident Period: 12/26/2010 through 12/27/2010. Effective Date: 02/18/2011. Physical Loan Application Deadline Date: 04/19/2011. Economic Injury (EIDL) Loan Application Deadline Date: 11/18/2011. ADDRESSES: Submit completed loan applications to: U.S. Small Business...
The Power of Nature. World's Largest Math Event 5.
ERIC Educational Resources Information Center
National Council of Teachers of Mathematics, Inc., Reston, VA.
The theme of the fifth annual World's Largest Math Event (WLME 5) is "The Power of Nature." This theme encourages students to explore natural forces that affect humankind, including phenomena such as hurricanes, earthquakes, and snowstorms, and the mathematics that underlies their study. The 15 activities for WLMES have been grouped into five…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-07
..., 2010, Tianjin United Tire & Rubber International Co., Ltd. (``TUTRIC''), a mandatory respondent... deadlines by seven calendar days due to closure of federal government offices in February 2010 from a...: Tolling of Administrative Deadlines As A Result of the Government Closure During the Recent Snowstorm...
Interception processes during snowstorms
David H. Miller
1964-01-01
Four processes are identified as determining the initial interception of falling snow by forest during storms: delivery of snow particles from the airstream to the forest; true throughfall of particles to the forest floor; impaction and adhesion of particles to foliage and branches; and cohesion of particles into masses of snow. Delivery and impaction processes seem...
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Bruning, Eric C.; Carey, Lawrence D.; Blakeslee, Richard J.
2013-01-01
Tall structures play and important role in development of winter time lightning flashes.To what extent still needs to be assessed. Tower initiated flashes typically occur as banded structures pass near/overhead. Hi resolution RHI s from polarimetric radar show that the lightning has a tendency to propagate through layered structures within these snowstorms.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
..., as amended (``the Act'').\\1\\ \\1\\ Due to the extended closure of the Government between February 5 and... Government Closure During the Recent Snowstorm, available at http://ia.ita.doc.gov/download/administrative... Conversion, Inc., Rotary Drilling Tools, TMK IPSCO, and the United Steel, Paper and Forestry, Rubber...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... Department exercised its discretion to toll deadlines for the duration of the closure of the Federal... Government Closure During the Recent Snowstorms,'' dated February 12, 2010. On April 21, 2010, the Department... encasing one-and-one half inches of sharpened lead on one end and a rubber eraser on the other end...
Yan, Shao-kui; Zhang, Wei-dong; Liu, Yan-xin; Fu, Sheng-lei; Li, Yuan-liang; Wang, Si-long
2009-01-01
In January 2008, southern China suffered an unusual heavy snowstorm and freezing rain over a large area for almost a month long. This catastrophic event was the worst one in past 50 years, which brought the area a serious impact on the infrastructure, ecology, and environment. To understand the long-term impact of this catastrophic event on the forest ecosystems in this area, a field investigation was conducted on the soil fauna in a pure Chinese fir plantation and a mixed Chinese fir plantation-alder plantation in Huitong County of Hunan Province on March 23, 2008, the date 40 days after the heavy snowstorm and freezing rain. With the abundance and community composition as the main parameters and the monitoring data from the two plantations on March 23, 2007 as the reference, the flexibility and resistance of soil fauna to the disturbances of the catastrophic event was preliminarily evaluated. The results showed that there was a significant deviation of soil fauna communities in the two plantations from the reference. An outbreak increase in microfauna nematode abundance was found from 12216.9 ind x m(-2) to 118343.9 ind x m(-2) in pure Chinese fir plantation and from 25435.9 ind x m(-2) to 84573.0 ind x m(-2) in mixed Chinese fir plantation-alder plantation, while a 27.0% and 85.6% decrease of macrofauna abundance was found in the two plantations, respectively, compared with the reference. Mesofauna abundance also had a significant decrease in litter layer but not in soil. The abundance recovery displayed a trend from quick rate for microfauna to slow rate for macrofauna, which indicated that the soil fauna functional groups, in terms of body size, could be used as a vulnerable indicator in evaluating disturbance event and post-disturbance recovery. By using community ordinations, no shift in soil fauna community composition was detected 40 days after the catastrophic event, suggesting that the community composition of soil invertebrate had a high resistance to catastrophic snowstorm and freezing rain disturbances.
NASA Astrophysics Data System (ADS)
Bosart, L. F.; Papin, P. P.; Bentley, A. M.; Benjamin, M.; Winters, A. C.
2015-12-01
Winter 2014-2015 was marked by the coldest November weather in 35 years east of the Rockies and record-breaking snowstorms and cold from the eastern Great Lakes to Atlantic Canada in January and February 2015. Record-breaking warmth prevailed across the Intermountain West and Rockies beneath a persistent upper-level ridge. Winter began with a series of arctic air mass surges that culminated in an epic lake-effect snowstorm occurred over western New York before Thanksgiving and was followed by a series of snow and ice storms that disrupted Thanksgiving holiday travel widely. Winter briefly abated in part of December, but returned with a vengeance between mid-January and mid-February 2015 when multiple extreme weather events that featured record-breaking monthly and seasonal snowfalls and record-breaking daily minimum temperatures were observed. This presentation will show how: (1) the recurvature and extratropical transition (ET) of Supertyphoon (STY) Nuri in the western Pacific in early November 2014, and its subsequent explosive reintensification as an extratropical cyclone (EC), disrupted the North Pacific jet stream and downstream Northern Hemisphere (NH) circulation, produced high-latitude ridging and the formation of an omega block over western North America, triggered downstream baroclinic development and the formation of a deep trough over eastern North America, and ushered in winter 2014-2015, (2) the ET/EC of STY Nuri increased subsequent week two predictability over the North Pacific and North America in association with diabatically influenced high-latitude ridge building, and (3) the amplification of the large-scale NH flow pattern beginning in January 2015 resulted in the formation of persistent high-amplitude ridges over northeastern Russia, Alaska, western North America, and the North Atlantic while deep troughs formed over the eastern North Pacific and eastern North America. This persistent amplified flow pattern supported the occurrence of frequent heavy snowstorms, including blizzards, over parts of the northeastern United States and adjacent Atlantic Canada during the latter part of January and much of February 2015.
Thermal Patterns in the Snow: Icicles as Indicators of Heat Loss
ERIC Educational Resources Information Center
Bartlett, Albert A.
2008-01-01
On Dec. 27, 2006, we drove with our children and their families to a cabin we rented on the grounds of the "YMCA of the Rockies" in Estes Park, CO, for a few days of winter relaxation and recreation. On the night of the 27th a snowstorm dropped over half a meter of new snow, creating a beautiful winter wonderland. For the next couple of days the…
An, Jing; Zhou, Qixing; Liu, Weitao; Ren, Liping
2008-01-01
The horizontal distribution and levels of heavy metals in the biggest snowstorm in Shenyang since 1904 were investigated by analyzing 4 metals (As, Cd, Pb, and Cu) in a series of ultraclean samples collected from 17 sites distributed in different regions of the Shenyang area, China. The results showed that the concentrations of all the 4 heavy metals in snow from the industrial regions were high, up to 7.3 (As), 2.2 (Cd), 850.0 (Pb), and 0.197-20.2 (Cu) microg/kg, respectively. In the suburb, in contrast, their concentrations were not detected, except for As. Because of the long-term application of arsenical pesticides and herbicides, As was detected in the snow samples which collected on the farm. As, Cd, and Pb were also detected in the snow samples collected from the parks, the residential areas, and the commercial districts mainly by reason of human activities. In a sense, long-term industrial activities, traffic activities, coal combustion, and agricultural activities affected the horizontal distribution and levels of these heavy metals in snow differently. The data relating to the horizontal distribution and concentrations of heavy metals in the snow under extreme climatic conditions can provide with a unique snapshot of environmental pollution situation and behaviors in urban areas.
NASA Astrophysics Data System (ADS)
Dean, S.; Loikith, P. C.
2017-12-01
Although the Pacific Northwest has some of the highest wintertime precipitation in the United States, most urban areas receive little in the way of snow. While 37 inches of wintertime rain fall in Portland on average annually, the city only receives four inches of snow on average. Although wintertime extreme snowstorm events are rare in Portland, in the last century they have occurred about once every ten years. On January 10-12th, 2017, winter storm Jupiter brought 11 inches of snow to downtown Portland within a 12-hour period, making it the largest snowstorm for the city in twenty years. The city declared a state of emergency, over 30,000 citizens lost power, and thousands of businesses were forced to shut down. The anomalously cold air and high amounts of snowfall in a short amount of time made the storm different from others in recent years. This study aims to discover the meteorological drivers behind the January 2017 snowstorm in Portland, Oregon. We also aim to understand how this storm compared with other local storms in the past, and assess the likelihood of a similar event occurring in the future. To do this, reanalysis data were used to display the synoptic evolution of the January 2017 storm. We compared this storm with two other extreme snowfall events from December 2008 and January 1980, assessing meteorological similarities and differences between storms. Results show that the 2017 event was associated with a slow moving, strong low-pressure system accompanied by a 500 hPa trough. These large-scale features helped drive slow moving, locally heavy snow bands over the city of Portland. At the same time, an unusually strong Arctic high-pressure system moved into the interior Pacific Northwest allowing for strong cold air advection west through the Cascade Mountain Range and Columbia River Gorge. Temperature trends show warming of 1-2 °C in the Pacific Northwest since the middle of the last century. Because of this, uncertainty associated with occurrence and magnitude of extreme snowfall events with respect to climate change must also be assessed. Understanding essential questions about the synoptic evolution of extreme snowfall events will better equip meteorologists and city planners to understand how this event occurred, and what to look for to better prepare Pacific Northwest cities for future storms.
Research on snow cover monitoring of Northeast China using Fengyun Geostationary Satellite
NASA Astrophysics Data System (ADS)
Wu, Tong; Gu, Lingjia; Ren, Ruizhi; Zhou, TIngting
2017-09-01
Snow cover information has great significance for monitoring and preventing snowstorms. With the development of satellite technology, geostationary satellites are playing more important roles in snow monitoring. Currently, cloud interference is a serious problem for obtaining accurate snow cover information. Therefore, the cloud pixels located in the MODIS snow products are usually replaced by cloud-free pixels around the day, which ignores snow cover dynamics. FengYun-2(FY-2) is the first generation of geostationary satellite in our country which complements the polar orbit satellite. The snow cover monitoring of Northeast China using FY-2G data in January and February 2016 is introduced in this paper. First of all, geometric and radiometric corrections are carried out for visible and infrared channels. Secondly, snow cover information is extracted according to its characteristics in different channels. Multi-threshold judgment methods for the different land types and similarity separation techniques are combined to discriminate snow and cloud. Furthermore, multi-temporal data is used to eliminate cloud effect. Finally, the experimental results are compared with the MOD10A1 and MYD10A1 (MODIS daily snow cover) product. The MODIS product can provide higher resolution of the snow cover information in cloudless conditions. Multi-temporal FY-2G data can get more accurate snow cover information in cloudy conditions, which is beneficial for monitoring snowstorms and climate changes.
Weather Support for the 2002 Winter Olympic and Paralympic Games.
NASA Astrophysics Data System (ADS)
Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W. J.; Eubank, M.; Splitt, M.; Onton, D. J.
2002-02-01
The 2002 Winter Olympic and Paralympic Games will be hosted by Salt Lake City, Utah, during February-March 2002. Adverse weather during this period may delay sporting events, while snow and ice-covered streets and highways may impede access by the athletes and spectators to the venues. While winter snowstorms and other large-scale weather systems typically have widespread impacts throughout northern Utah, hazardous winter weather is often related to local terrain features (the Wasatch Mountains and Great Salt Lake are the most prominent ones). Examples of such hazardous weather include lake-effect snowstorms, ice fog, gap winds, downslope windstorms, and low visibility over mountain passes.A weather support system has been developed to provide weather information to the athletes, games officials, spectators, and the interested public around the world. This system is managed by the Salt Lake Olympic Committee and relies upon meteorologists from the public, private, and academic sectors of the atmospheric science community. Weather forecasting duties will be led by National Weather Service forecasters and a team of private, weather forecasters organized by KSL, the Salt Lake City NBC television affiliate. Other government agencies, commercial firms, and the University of Utah are providing specialized forecasts and support services for the Olympics. The weather support system developed for the 2002 Winter Olympics is expected to provide long-term benefits to the public through improved understanding,monitoring, and prediction of winter weather in the Intermountain West.
The storm of the century. How some hospitals survived it.
McMichen, D
1993-01-01
The March snowstorm that hit Alabama is already the stuff of legend. It paralyzed businesses and travel, and left people trapped indoors wondering if the white stuff would ever melt. Hospitals were not immune to these problems, but the brave men and women who make Alabama's medical facilities what they are persevered and were there when their communities needed them. These are the responses we received from our call for snow stories and the heroes who kept the hospitals going.
NASA Technical Reports Server (NTRS)
Bostian, C. W.; Stutzman, W. L.; Manus, E. A.; Wiley, P. H.; Marshall, R. E.
1975-01-01
The experiment considered is mainly concerned with the depolarizing effects of precipitation at millimeter wavelengths. Excessive depolarization introduces cross talk into communication systems which employ orthogonal polarization for frequency reuse. An understanding of atmospheric depolarization phenomena is, therefore, required for the design of future earth-satellite communications systems. Attenuation and cross polarization ratio data obtained under various meteorological conditions, including rain and a snowstorm, are presented.
NASA Astrophysics Data System (ADS)
Klein, Iris M.; Rousseau, Alain N.; Frigon, Anne; Freudiger, Daphné; Gagnon, Patrick
2016-06-01
Probable maximum snow accumulation (PMSA) is one of the key variables used to estimate the spring probable maximum flood (PMF). A robust methodology for evaluating the PMSA is imperative so the ensuing spring PMF is a reasonable estimation. This is of particular importance in times of climate change (CC) since it is known that solid precipitation in Nordic landscapes will in all likelihood change over the next century. In this paper, a PMSA methodology based on simulated data from regional climate models is developed. Moisture maximization represents the core concept of the proposed methodology; precipitable water being the key variable. Results of stationarity tests indicate that CC will affect the monthly maximum precipitable water and, thus, the ensuing ratio to maximize important snowfall events. Therefore, a non-stationary approach is used to describe the monthly maximum precipitable water. Outputs from three simulations produced by the Canadian Regional Climate Model were used to give first estimates of potential PMSA changes for southern Quebec, Canada. A sensitivity analysis of the computed PMSA was performed with respect to the number of time-steps used (so-called snowstorm duration) and the threshold for a snowstorm to be maximized or not. The developed methodology is robust and a powerful tool to estimate the relative change of the PMSA. Absolute results are in the same order of magnitude as those obtained with the traditional method and observed data; but are also found to depend strongly on the climate projection used and show spatial variability.
Earth Observations taken by Expedition 34 crewmember
2013-02-28
ISS034-E-057550 (28 Feb. 2013) --- One of the Expedition 34 crew members aboard the Earth-orbiting International Space Station photographed this image featuring the Southern High Plains of northwestern Texas, directly south of the city of Amarillo (off the image to the north). At first glance the picture appears more like a map than an actual photo. The winter of 2012-2013 has been marked by powerful snowstorms with record-setting snowfall throughout much of the Midwestern United States The snowstorm that passed through this area left a record snowfall of approximately 43 centimeters (17 inches). Snow blankets the city of Canyon, Texas. Urban street grids and stream channels appear etched into the landscape by the snow, a result of both melting and street clearing in the urban regions and of the incised nature of stream channels in the surrounding plains. Agricultural fields are easily identified due to the even snow cover broken only by roadways between the fields. Palo Duro Canyon is largely free of snow along the Prairie Dog Town Fork of the Red River channel and at lower elevations, allowing the red sedimentary rocks of the canyon walls to be visible. Lake Tanglewood, a reservoir to the northeast of Canyon, appears dark due to a lack of ice cover. Another dark region to the northwest of Canyon is a feed yard for cattle; any snowfall in this area has been removed by the actions of the livestock. The image was recorded with a digital camera using a 400 millimeter lens,
Climate changes and technological disasters in the Russian Federation
NASA Astrophysics Data System (ADS)
Petrova, E. G.
2009-04-01
Global warming and climate change are responsible for many ecological, economic and other significant influences on natural environment and human society. Increasing in number and severity of natural and technological disasters (TD) around the world is among of such influences. Great changes in geographical distribution of disasters are also expected. The study suggested examines this problem by the example of the Russian Federation. Using data base of TD and na-techs (natural-technological disasters) happened in the Russian Federation in 1992-2008 the most important types of disasters caused by various natural hazards were identified and classified for Russian federal regions. In concept of this study na-techs are considered as TD produced by natural factors. 88 percent of all na-techs occurring in the Russian Federation during the observation period were caused by natural processes related to various meteorological and hydrological phenomena. The majority of them were produced by windstorms and hurricanes (37%), snowfalls and snowstorms (27%), rainfalls (16%), hard frost and icy conditions of roads (12%). 11 types of na-techs caused by meteorological and hydrological hazards were found. These types are: (1) accidents at power and heat supply systems caused by windstorms, cyclones, and hurricanes, snowfalls and sleets, hard frost, rainfalls, hailstones, icing, avalanches, or thunderstorms (more than 50% of all na-techs registered in the data base); (2) accidents at water supply systems caused by hard frost, rainfalls, or subsidence of rock (3%); (3) sudden collapses of constructions caused by windstorms, snowfalls, rainfalls, hard frost, subsidence of rock, or floods (12%); (4) automobile accidents caused by snowfalls and snowstorms, icy conditions of roads, rainfalls, fogs, mist, or avalanches (10%); (5) water transport accidents caused by storms, cyclones, typhoons, or fogs (9%); (6) air crashes caused by windstorms, snowfalls, icing, or fogs; (7) railway accidents caused by snowfalls and snowstorms, rainfalls, landslides, or avalanches; (8) fires and explosions caused by lightning or heat; (9) pipeline ruptures caused by windstorms, subsidence of rock, or landslides; (10) agricultural accidents caused by frost, snowfalls, rainfalls, or storm; (11) accidents with toxic emissions caused by floods and landslides The map of their distribution within the Russian Federation was created. Climate changes expected until the end of the XXI century will have important consequences for frequency increasing and change in spatial distribution of na-techs in the Russian Federation. The occurrence of na-techs caused by hydro- and meteorological hazards as well as by other natural hazards related to climate change will be more frequent to the end of this century. The area subjected to technological risk will be enlarged essentially.
A digital simulation of message traffic for natural disaster warning communications satellite
NASA Technical Reports Server (NTRS)
Hein, G. F.; Stevenson, S. M.
1972-01-01
Various types of weather communications are required to alert industries and the general public about the impending occurrence of tornados, hurricanes, snowstorms, floods, etc. A natural disaster warning satellite system has been proposed for meeting the communications requirements of the National Oceanic and Atmospheric Administration. Message traffic for a communications satellite was simulated with a digital computer in order to determine the number of communications channels to meet system requirements. Poisson inputs are used for arrivals and an exponential distribution is used for service.
NASA Astrophysics Data System (ADS)
Insua-Costa, Damián; Miguez-Macho, Gonzalo
2018-02-01
A new moisture tagging tool, usually known as water vapor tracer (WVT) method or online Eulerian method, has been implemented into the Weather Research and Forecasting (WRF) regional meteorological model, enabling it for precise studies on atmospheric moisture sources and pathways. We present here the method and its formulation, along with details of the implementation into WRF. We perform an in-depth validation with a 1-month long simulation over North America at 20 km resolution, tagging all possible moisture sources: lateral boundaries, continental, maritime or lake surfaces and initial atmospheric conditions. We estimate errors as the moisture or precipitation amounts that cannot be traced back to any source. Validation results indicate that the method exhibits high precision, with errors considerably lower than 1 % during the entire simulation period, for both precipitation and total precipitable water. We apply the method to the Great Lake-effect snowstorm of November 2014, aiming at quantifying the contribution of lake evaporation to the large snow accumulations observed in the event. We perform simulations in a nested domain at 5 km resolution with the tagging technique, demonstrating that about 30-50 % of precipitation in the regions immediately downwind, originated from evaporated moisture in the Great Lakes. This contribution increases to between 50 and 60 % of the snow water equivalent in the most severely affected areas, which suggests that evaporative fluxes from the lakes have a fundamental role in producing the most extreme accumulations in these episodes, resulting in the highest socioeconomic impacts.
Bobb, Jennifer F.; Ho, Kalon K. L.; Yeh, Robert W.; Harrington, Lori; Zai, Adrian; Liao, Katherine P.; Dominici, Francesca
2017-01-01
Abstract With global climate change, more frequent severe snowstorms are expected; however, evidence regarding their health effects is very limited. We gathered detailed medical records on hospital admissions (n = 433,037 admissions) from the 4 largest hospitals in Boston, Massachusetts, during the winters of 2010–2015. We estimated the percentage increase in hospitalizations for cardiovascular and cold-related diseases, falls, and injuries on the day of and for 6 days after a day with low (0.05–5.0 inches), moderate (5.1–10.0 inches), or high (>10.0 inches) snowfall using distributed lag regression models. We found that cardiovascular disease admissions decreased by 32% on high snowfall days (relative risk (RR) = 0.68, 95% confidence interval (CI): 0.54, 0.85) but increased by 23% 2 days after (RR = 1.23, 95% CI: 1.01, 1.49); cold-related admissions increased by 3.7% on high snowfall days (RR = 3.7, 95% CI: 1.6, 8.6) and remained high for 5 days after; and admissions for falls increased by 18% on average in the 6 days after a moderate snowfall day (RR = 1.18, 95% CI: 1.09, 1.27). We did not find a higher risk of hospitalizations for injuries. To our knowledge, this is the first study in which the time course of hospitalizations during and immediately after snowfall days has been examined. These findings can be translated into interventions that prevent hospitalizations and protect public health during harsh winter conditions. PMID:28137774
Contribution of Lake-Effect Snow to the Catskill Mountains Snowpack
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Digirolamo, Nicolo E.; Frei, Allan
2017-01-01
Meltwater from snow that falls in the Catskill Mountains in southern New York contributes to reservoirs that supply drinking water to approximately nine million people in New York City. Using the NOAA National Ice Centers Interactive Multisensor Snow and Ice Mapping System (IMS) 4km snow maps, we have identified at least 32 lake-effect (LE) storms emanating from Lake Erie andor Lake Ontario that deposited snow in the CatskillDelaware Watershed in the Catskill Mountains of southern New York State between 2004 and 2017. This represents a large underestimate of the contribution of LE snow to the Catskills snowpack because many of the LE snowstorms are not visible in the IMS snow maps when they travel over snow-covered terrain. Most of the LE snowstorms that we identified originate from Lake Ontario but quite a few originate from both Erie and Ontario, and a few from Lake Erie alone. Using satellite, meteorological and reanalysis data we identify conditions that contributed to LE snowfall in the Catskills. Clear skies following some of the storms permitted measurement of the extent of snow cover in the watershed using multiple satellite sensors. IMS maps tend to overestimate the extent of snow compared to MODerate resolution Imaging Spectroradiometer (MODIS) and Landsat-derived snow-cover extent maps. Using this combination of satellite and meteorological data, we can begin to quantify the important contribution of LE snow to the Catskills Mountain snowpack. Changes that are predicted in LE snowfall from the Great Lakes could impact the distribution of rain vs snow in the Catskills which may affect future reservoir operations in the NYC Water Supply System.
Weather warnings predict fall-related injuries among older adults.
Mondor, Luke; Charland, Katia; Verma, Aman; Buckeridge, David L
2015-05-01
weather predictions are a useful tool for informing public health planning and prevention strategies for non-injury health outcomes, but the association between winter weather warnings and fall-related injuries has not been assessed previously. to examine the association between fall-related injuries among older adults and government-issued winter weather warnings. using a dynamic cohort of individuals ≥65 years of age who lived in Montreal between 1998 and 2006, we identified all fall-related injuries from administrative data using a validated set of diagnostic and procedure codes. We compared rates of injuries on days with freezing rain or snowstorm warnings to rates observed on days without warnings. We also compared the incidence of injuries on winter days to non-winter days. All analyses were performed overall and stratified by age and sex. freezing rain alerts were associated with an increase in fall-related injuries (incidence rate ratio [IRR] = 1.20, 95% confidence interval [CI]: 1.08-1.32), particularly among males (IRR = 1.31, 95% CI: 1.10-1.56), and lower rates of injuries were associated with snowstorm alerts (IRR = 0.89, 95% CI: 0.80-0.99). The rate of fall-related injuries did not differ seasonally (IRR = 1.00, 95% CI: 0.97-1.03). official weather warnings are predictive of increases in fall-related injuries among older adults. Public health agencies should consider using these warnings to trigger initiation of injury prevention strategies in advance of inclement weather. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2016-10-27
This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. This photograph from 1949 shows the main entrance gate to the Jet Propulsion Laboratory in Pasadena, California, after a snowstorm. To the left is JPL's administration building at the time (Building 67). Building 67 is the Materials Research Building today. The Space Flight Operations Facility (Building 230), which houses JPL's Mission Control, now stands over the parking area on the right. As the lab expanded, the main entrance gate moved farther south. http://photojournal.jpl.nasa.gov/catalog/PIA21118
Axillary Silicone Granulomas in Patients With Melanoma.
Fernández Canedo, M I; Blázquez Sánchez, N; Valdés Solís, P; de Troya Martín, M
2016-05-01
Subcutaneous lesions may be detected during follow-up of patients with melanoma. The main entities that should be contemplated in the differential diagnosis in such cases are in-transit and regional lymph node metastases. We describe 2 cases of women with breast implants who developed palpable subcutaneous lesions in the axillary region during follow-up of melanoma. In both cases, the ultrasound study showed diffuse hyperechoic signals forming the characteristic snowstorm sign in the subcutaneous tissue. Ultrasound proved to be a key diagnostic tool for ruling out melanoma-related disease, such as in-transit metastases and regional lymph node metastases. Copyright © 2015 Elsevier España, S.L.U. y AEDV. All rights reserved.
Brunstein, F. Craig
1996-01-01
From 1900 to 1993, latewood frost rings occurred in 1903, 1912, 1941, 1961, and 1965 in 10 to 21% of the sampled bristlecone pines at Almagre Mountain, Colorado. In early to mid September in each of those years, a severe outbreak of unseasonably cold air from higher latitudes produced a memorable or historic late-summer snowstorm in the western United States. Record subfreezing temperatures during these snowstorms probably caused the latewood frost rings, shortened (by about 1 mo in 1912) already colder than normal growing seasons, and caused crop damage in parts of the Western United States. Latewood frost rings recorded in relatively high percentages of the sampled trees (such as the 1805 event in 61% of sampled trees) were probably caused by multiple severe outbreaks of unseasonably cold air from higher latitudes that occurred from early September (possibly as early as mid- or late August) to mid-September. Analyses of 1900-1992 temperature data for two widely separated Colorado stations, Fort Collins and Colorado Springs, show that average summer (June-September) temperatures during latewood frost-ring years in this century were 1.5 and 2.0°C cooler than normal, respectively. Mountain snowpack probably persisted through these cool summers and was subsequently buried by the earlier than normal snowfall in September. Latewood frost-ring, ring-width, historical, and other data suggest that severe to cataclysmic volcanic eruptions from 1812 to 1835 triggered (1) an extended period of climatic cooling from as early as 1816 or 1817 through the early 1850s in the Southern Rocky Mountains, (2) catastrophic winters in Colorado and Wyoming in 1842-43 and 1844-45, and in the Great Salt Lake Basin in 1836-37, that caused large-scale destruction of bison and other large plains animals, and (3) Little Ice Age alpine glacial advances in about 1850-60 in the western United States.
NASA Astrophysics Data System (ADS)
Wu, Zhiwei; Li, Jianping; Jiang, Zhihong; He, Jinhai
2011-10-01
In 2008 (January-February), East Asia (EA) experiences the most severe and long-persisting snowstorm in the past 100 years. Results in this study show that 2007/2008 winter is dominant by the third principal mode of the East Asian winter monsoon (EAWM) which explains 8.7% of the total surface air temperature variance over EA. Significantly distinguished from the first two leading modes, the third mode positive phase features an increased surface pressure over the northwestern EA, an enhanced central Siberian high (CSH), a strengthened and northwestward extended western Pacific subtropical high (WPSH) and anomalously strong moisture transport from western Pacific, Arabian Sea and Bay of Bengal to EA. It also exhibits an intimate linkage with the sea surface temperature anomalies (SSTAs) in the Arctic Ocean areas adjacent to northern Eurasian continent, central North Pacific and northeastern Pacific. Such SSTAs emerge in prior autumn and persist through ensuing winter, signifying precursory conditions for the anomalous third EAWM mode. Numerical experiments with a simple general circulation model demonstrate that the Arctic SSTAs excite geo-potential height anomalies over northern Eurasian continent and impacts on the CSH, while the extra-tropical Pacific SSTAs deform the WPSH. Co-effects of them play crucial roles on origins of the third EAWM mode. Based on these results, an empirical model is established to predict the third mode of the EAWM. Hindcast is performed for the 1957-2008 period, which shows a quite realistic prediction skill in general and good prediction ability in the extreme phase of the third mode of the EAWM such as 2007/2008 winter. Since all these predictors can be readily monitored in real time, this empirical model provides a real time forecast tool and may facilitate the seasonal prediction of high-impact weather associated with the abnormal EAWM.
Climate Variability and Weather Extremes: Model-Simulated and Historical Data. Chapter 9
NASA Technical Reports Server (NTRS)
Schubert, Siegfried D.; Lim, Young-Kwon
2012-01-01
Extremes in weather and climate encompass a wide array of phenomena including tropical storms, mesoscale convective systems, snowstorms, floods, heat waves, and drought. Understanding how such extremes might change in the future requires an understanding of their past behavior including their connections to large-scale climate variability and trends. Previous studies suggest that the most robust findings concerning changes in short-term extremes are those that can be most directly (though not completely) tied to the increase in the global mean temperatures. These include the findings that (IPCC 2007): There has been a widespread reduction in the number of frost days in mid-latitude regions in recent decades, an increase in the number of warm extremes, particularly warm nights, and a reduction in the number of cold extremes, particularly cold nights. For North America in particular (CCSP SAP 3.3, 2008): There are fewer unusually cold days during the last few decades. The last 10 years have seen a lower number of severe cold waves than for any other 10-year period in the historical record that dates back to 1895. There has been a decrease in the number of frost days and a lengthening of the frost-free season, particularly in the western part of North America. Other aspects of extremes such as the changes in storminess have a less clear signature of long term change, with considerable interannual, and decadal variability that can obscure any climate change signal. Nevertheless, regarding extratropical storms (CCSP SAP 3.3, 2008): The balance of evidence suggests that there has been a northward shift in the tracks of strong low pressure systems (storms) in both the North Atlantic and North Pacific basins. For North America: Regional analyses suggest that there has been a decrease in snowstorms in the South and lower Midwest of the United States, and an increase in snowstorms in the upper Midwest and Northeast. Despite the progress already made, our understanding of the basic mechanisms by which extremes vary is incomplete. As noted in IPCC (2007), Incomplete global data sets and remaining model uncertainties still restrict understanding of changes in extremes and attribution of changes to causes, although understanding of changes in the intensity, frequency and risk of extremes has improved. Separating decadal and other shorter-term variability from climate change impacts on extremes requires a better understanding of the processes responsible for the changes. In particular, the physical processes linking sea surface temperature changes to regional climate changes, and a basic understanding of the inherent variability in weather extremes and how that is impacted by atmospheric circulation changes at subseasonal to decadal and longer time scales, are still inadequately understood. Given the fundamental limitations in the time span and quality of global observations, substantial progress on these issues will rely increasingly on improvements in models, with observations continuing to play a critical role, though less as a detection tool, and more as a tool for addressing physical processes, and to insure the quality of the climate models and the verisimilitude of the simulations (CCSP SAP 1.3, 2008).
Natural hazard impact on the technosphere: "blackouts
NASA Astrophysics Data System (ADS)
Petrova, E. G.
2012-04-01
In recent years, natural-technological accidents (NTA) and disasters are increasing in their number and severity all over the world. The term "natural-technological accident (disaster)" applies for an accident (disaster) in the technosphere triggered by any natural process or phenomenon. Their growth is caused, on the one hand, by observed increasing in the frequency and intensity of some natural hazards and hazardous events due to climate change and, on the other hand, by a growing complication of the modern technosphere exposed to natural impacts and advancement of economic activities into the area at natural risk. The most large-scaled natural-technological disaster happened on March 11, 2011 in Japan, as a result of a massive earthquake and tsunami that caused a number of serious technological accidents, including accidents at "Fukushima-1" nuclear power plant, etc. Severe social, ecological and economic consequences of large-scaled NTA make investigation of these events especially important. The most frequent among NTA occurring in Russia are breakdowns in electric power supply systems that lead to so-called "blackouts" (accidental power outages). They are mainly caused by strong winds, snowstorms, deposition of ice, sleet, and snow, rainfalls, floods, and hailstones. Among other triggers earthquakes, hard frost, fierce heat, thunderstorms, landslides, snow avalanches, and debris flows should be mentioned. The great part of transmission facilities in Russia falls on overhead lines that are especially vulnerable to natural impacts. In general, natural triggers are responsible for more than 70 percent of all accidents in power supply systems. They occur more often in Far East, in the Southern and North-Western federal districts, and in some regions of the Central Russia, which are prone to hurricanes, cyclones, snowstorms, and heavy rainfalls accompanying by hailstones, icing, and sleet. A distinctive feature of these events is their synergistic nature, as power outages can cause a chain of other accidents at heat- and water supply, industrial plants, transport and communication facilities, producing so-called "domino effect". A modernization of facilities, replacement of overhead lines by underground cables and protection from falling trees can reduce the problem.
A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events
NASA Astrophysics Data System (ADS)
Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.
2017-12-01
Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles (< 0.5 m s-1) coexisted with faster-falling particles (> 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD radars were available. Larger DWR (>10 dB) suggested large, faster-falling, high-reflectivity particles, consistent with large aggregates (> 1 cm) observed at the ground. The presentation will show an advanced analysis using synergy between multi frequency, polarimetry, and Doppler spectra measurements.
Severe Storms Branch research report (April 1984 April 1985)
NASA Technical Reports Server (NTRS)
Dubach, L. (Editor)
1985-01-01
The Mesoscale Atmospheric Processes Research Program is a program of integrated studies which are to achieve an improved understanding of the basic behavior of the atmosphere through the use of remotely sensed data and space technology. The program consist of four elements: (1) special observations and analysis of mesoscale systems; (20 the development of quanitative algorithms to use remotely sensed observations; (3) the development of new observing systems; and (4) numerical modeling. The Severe Storms Branch objectives are the improvement of the understanding, diagnosis, and prediction of a wide range of atmospheric storms, which includes severe thunderstorms, tornadoes, flash floods, tropical cyclones, and winter snowstorms. The research often shed light upon various aspects of local weather, such as fog, sea breezes, air pollution, showers, and other products of nonsevere cumulus cloud clusters. The part of the program devoted to boundary layer processes, gust front interactions, and soil moisture detection from satellites gives insights into storm growth and behavior.
A case study using kinematic quantities derived from a triangle of VHF Doppler wind profilers
NASA Technical Reports Server (NTRS)
Carlson, Catherine A.; Forbes, Gregory S.
1989-01-01
Horizontal divergence, relative vorticity, kinematic vertical velocity, and geostrophic and ageostrophic winds are computed from Colorado profiler network data to investigate an upslope snowstorm in northeastern Colorado. Horizontal divergence and relative vorticity are computed using the Gauss and Stokes theorems, respectively. Kinematic vertical velocities are obtained from the surface to 9 km by vertically integrating the continuity equation. The geostrophic and ageostrophic winds are computed by applying a finite differencing technique to evaluate the derivatives in the horizontal equations of motion. Comparison of the synoptic-scale data with the profiler network data reveals that the two datasets are generally consistent. Also, the profiler-derived quantities exhibit coherent vertical and temporal patterns consistent with conceptual and theoretical flow fields of various meteorological phenomena. It is suggested that the profiler-derived quantities are of potential use to weather forecasters in that they enable the dynamic and kinematic interpretation of weather system structure to be made and thus have nowcasting and short-term forecasting value.
Monitoring water phase dynamics in winter clouds
NASA Astrophysics Data System (ADS)
Campos, Edwin F.; Ware, Randolph; Joe, Paul; Hudak, David
2014-10-01
This work presents observations of water phase dynamics that demonstrate the theoretical Wegener-Bergeron-Findeisen concepts in mixed-phase winter storms. The work analyzes vertical profiles of air vapor pressure, and equilibrium vapor pressure over liquid water and ice. Based only on the magnitude ranking of these vapor pressures, we identified conditions where liquid droplets and ice particles grow or deplete simultaneously, as well as the conditions where droplets evaporate and ice particles grow by vapor diffusion. The method is applied to ground-based remote-sensing observations during two snowstorms, using two distinct microwave profiling radiometers operating in different climatic regions (North American Central High Plains and Great Lakes). The results are compared with independent microwave radiometer retrievals of vertically integrated liquid water, cloud-base estimates from a co-located ceilometer, reflectivity factor and Doppler velocity observations by nearby vertically pointing radars, and radiometer estimates of liquid water layers aloft. This work thus makes a positive contribution toward monitoring and nowcasting the evolution of supercooled droplets in winter clouds.
NASA Astrophysics Data System (ADS)
Prieto, M. R.; Rojas, F.
2012-05-01
This paper examines the processes underlying changes to the once-extensive Bermejo Wetland, east of the city of Mendoza, Argentina (32°55' S, 68°51' W). Historical documents and maps from the 16th to 20th century are used to reconstruct environmental shifts. Historical documents indicate periods of increased snowfall in the adjacent Andes mountains, as well as high flow volumes in the Mendoza River. Data from georeferenced maps, the first from 1802 and the last from 1903, reflect the changes in the surface area of the wetland. The combined data sets show pulses of growth and retraction, in which major expansions coincided with more intense snowstorms and increased flow in the Mendoza River, which in turn influenced socio-economic activities. The wetland became progressively drier during the 19th century, before drying up completely around 1930, due in part to the construction of drainages and channels.
Monitoring water phase dynamics in winter clouds
Campos, Edwin F.; Ware, Randolph; Joe, Paul; ...
2014-10-01
This work presents observations of water phase dynamics that demonstrate the theoretical Wegener–Bergeron–Findeisen concepts in mixed-phase winter storms. The work analyzes vertical profiles of air vapor pressure, and equilibrium vapor pressure over liquid water and ice. Based only on the magnitude ranking of these vapor pressures, we identified conditions where liquid droplets and ice particles grow or deplete simultaneously, as well as the conditions where droplets evaporate and ice particles grow by vapor diffusion. The method is applied to ground-based remote-sensing observations during two snowstorms, using two distinct microwave profiling radiometers operating in different climatic regions (North American Central Highmore » Plains and Great Lakes). The results are compared with independent microwave radiometer retrievals of vertically integrated liquid water, cloud-base estimates from a co-located ceilometer, reflectivity factor and Doppler velocity observations by nearby vertically pointing radars, and radiometer estimates of liquid water layers aloft. This work thus makes a positive contribution toward monitoring and now casting the evolution of supercooled droplets in winter clouds.« less
Should anthropogenic warming lead to more frequent cold air outbreaks over the northeastern U.S.?
NASA Astrophysics Data System (ADS)
Nicholas, R.
2014-12-01
For the northeastern United States, Winter 2013-14 was the coldest winter since the late 1970s and perhaps the coldest on record relative to prevailing climatic conditions. Frequent snowstorms and cold air outbreaks led to considerable press coverage and heated scholarly debate over the possible role of anthropogenic climate change in modulating wintertime variability in the northern hemisphere polar jet. While mechanisms have been proposed, to date, the observational record offers no definitive evidence for such a relationship, nor does it conclusively exclude one. To further explore this question, we employ a large, initial conditions ensemble of the Community Earth System Model forced with historical and RCP8.5 emissions. The ensemble effectively samples internal variability in the climate system and is used to assess the potential for forced changes in polar jet variability and the frequency of cold air outbreaks over the northeastern U.S. with projected increases in global mean temperature during the 21st century.
Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine.
Hong, Jiarong; Toloui, Mostafa; Chamorro, Leonardo P; Guala, Michele; Howard, Kevin; Riley, Sean; Tucker, James; Sotiropoulos, Fotis
2014-06-24
To improve power production and structural reliability of wind turbines, there is a pressing need to understand how turbines interact with the atmospheric boundary layer. However, experimental techniques capable of quantifying or even qualitatively visualizing the large-scale turbulent flow structures around full-scale turbines do not exist today. Here we use snowflakes from a winter snowstorm as flow tracers to obtain velocity fields downwind of a 2.5-MW wind turbine in a sampling area of ~36 × 36 m(2). The spatial and temporal resolutions of the measurements are sufficiently high to quantify the evolution of blade-generated coherent motions, such as the tip and trailing sheet vortices, identify their instability mechanisms and correlate them with turbine operation, control and performance. Our experiment provides an unprecedented in situ characterization of flow structures around utility-scale turbines, and yields significant insights into the Reynolds number similarity issues presented in wind energy applications.
Satellites see major winter storm marching toward the U.S. East Coast
2017-12-08
NASA and NOAA satellites are providing various views of the major winter storm marching toward the U.S. East coast on March 13. The storm is forecast to merge with another system and is expected to bring large snowfall totals from the Mid-Atlantic to New England. NASA's Aqua satellite gathered infrared data from the storm system and the area ahead of the storm for cloud and ground temperatures. NOAA's GOES-East satellite provided visible and infrared imagery that showed the extent and the movement of the system. Forecasters at the National Weather Service's Weather Prediction Center (WPC) noted that the low pressure system crossing the Midwest states and Ohio Valley is expected to merge with another low off the southeast U.S. coast. WPC stated "This will allow for a strong nor'easter to develop near the coast and cause a late-season snowstorm from the central Appalachians to New England, including many of the big cities in the Northeast U.S." Credits: NASA/NOAA GOES Project
Nódulos subcutáneos faciales de 3 meses de evolución.
Martinez-Lopez, Antonio; Pérez-Lopez, Israel; Sánchez-Cano, Daniel; Ruiz-Villaverde, Ricardo
2017-02-15
Siliconomas are subcutaneous nodules that usuallyappear as a consequence of the migration of freesilicon implanted in other locations. They are morefrequent in women with abnormal breast implants,such as poly implant prostheses (PIP), but they may alsoappear after illegal injection of free silicone. We reporta 57-year-old woman who attended our Dermatologyclinic complaining of relapsing facial panniculitis ofunknown origin. After a thorough work-up, thesenodules were determined to be the consequence ofdermal filler made with fluid silicone, which had beeninjected 20 years prior. High frequency skin ultrasoundof one of the nodules showed a hyperechoic image,also known as "snowstorm," which was located in thesubcutaneous tissue. The disposition of silicone in thisplane obscures the view of any sonographic structurein the underlying plane. Cutaneous sonographyhas become one of the most useful non-invasivetechniques in diagnosis of filler complications andother inflammatory diseases. Combined treatmentwith prednisone and allopurinol was successful, withno recurrence after 1 year of follow-up.
Stakeholder risk perception associated with natural hazards in Iaşi County (Romania)
NASA Astrophysics Data System (ADS)
Ciprian Margarint, Mihai; Niculita, Mihai; Roder, Giulia; Tarolli, Paolo
2017-04-01
The strategies to reduce the risks associated with natural hazards are oriented recently to increasing the level of preparedness and prevention, and the quantification of different levels of impact that human society might face. An essential component of this approach lies in the increase of population awareness, the increasing of educational level, and facilitating communication between scientists and different risk managers. In several recent studies, it is emphasised the importance of risk perception, especially for the stakeholders in diminishing the risks associated with natural hazards since a high level of knowledge can substantially improve the response of society to the adverse effects of the disasters. An important issue related to the risk perception is the assessment of those that, in an emergency situation, must decide and take the measures to protect the population. Stakeholders have an increased role in the case of small, isolated and undeveloped communities, where they have the power to direct or even to control the behaviour of lay people. This is the case of the predominantly agricultural rural communities of the north-eastern part of Romania. Here many studies highlighted a high degree of vulnerability (e.g. an ageing population because of a permanent migration of young peoples to large urban centres or abroad, the poor quality and connectivity of the road infrastructure, among others). In this research, a large spectrum of issues related to stakeholders' risk perception from more than 30 rural administrative units from Iasi County (NE Romania) is analysed. More than 200 questionnaires were distributed to key stakeholders: mayors, local police chiefs, farmers, school directors, and priests. These categories are those that have an important role in small Romanian communities during and after the floods, droughts, spring and summer storms, snowstorms, earthquakes or landslides, the main natural hazards in the study area. From the results obtained, we have found a significant level of awareness of stakeholders regarding the risks and theirs potential effects on exposed elements (people, buildings, roads, bridges) especially for floods, storms and earthquakes (rapid hazards). For floods, it was highlighted a strong spatial relation with recent events along the main rivers of the Iasi County: Siret and Prut Rivers. Following floods, droughts and snowstorms have been considered great source of danger according to their high occurrence in the past. Among all stakeholders, a remarkable correlation with the threats of natural hazards was observed for farmers and heads of schools. This study demonstrates the necessity of an improved education and way of communication, through a closer connection between scientists and local communities.
NASA Astrophysics Data System (ADS)
García, Cristina; Ruíz, Jesús; Gallinar, David; Sánchez de Posada, Covadonga
2014-05-01
Several climatic risks studies based on the analysis of data recorded in newspapers have been published to date. These studies deal with both general (Moltó, 2000; García y Martí, 2000; Hernández Varela et al., 2003; Olcina, 2005) and specific risks such as landslides (Domínguez et al., 1999; Devoli et al., 2007; Polemio y Petrucci, 2010) seastorms (Yanes y Marzol, 2009) and snowstorms (Olcina y Moltó, 2002) among others. The purpose of this paper is to report on the methodology and results of the study of an extreme historical event happened in the Asturian Massif (Northern Spain) in 1888. Special attention has been paid to methodological aspects and to the difficulties found in the goal of devising a method that would enable the reconstruction of this kind of phenomena on the basis of nivometheorogical conditions, geographical location and socio-economic impact. To a great deal we focused our efforts on designing a logical database structure and a set of tables that would allow us to store and cross the information for statistical analysis. This includes outlier detection in order to ensure the quality of the results. The information sources used in our study have been the issues of the daily newspaper 'El Carbayón' and the weekly newspaper 'El Oriente de Asturias' published in Oviedo and Llanes (Asturias) between the 20th of January and 30th of May 1888. A total of 92 issues have been collected via the hard copy microfilm housed in the Central Library of Asturias. We reviewed 70 reports relating to avalanche events happened in the aforementioned period of time. We grouped the consequences of the events into 3 main categories (personal injuries, material damages and absence of both) and 5 child categories (deaths, wounded, house and attached building damage, livestock injuries, damage to infrastructures and communications). We gathered data about the thickness of snow-cover, the number of consecutive snowstorms and, in order to facilitate a territorial analysis of this episode, we also gathered data about the event locations. The primary difficulties we found were lack of information about some details (dates, geographic locations and frequently inaccurate quantification of damage), fuzzy terms or sentences (such as 'heavy snow', 'we have never seen a snowfall like this', 'huge snowslide', etc.) difficult to turn into crisp data, and difficulties in defining categories and allocating every incident into one of the categories. Many of these problems are limitations inherent to work with an information source whose purpose is to describe events for general public and not to write about them for scientific purposes. Others are due to the nature of the climate phenomenon associated to these events. These difficulties are increased, on the other hand, by the lack of development existing at the time which often resulted in villages being isolated by the storms with the ensuing, delays in communication, transportation, etc. The results of our study show the importance of the 1888 avalanche events, caused by three linked and consecutive snowstorms that took place between the 14th of February 1888 and the 22th of March 1888, creating snow covers with a depth ranging between 5 and 7 meters. Sixty six avalanches were documented, 60 of them causing material damage. The number of dead and wounded reached 37 and 23 respectively. The consequences of the event were felt throughout the Asturian Massif; 14 high- and mid-elevation mountain municipalities, were affected by avalanches, some of which displaced 40.000 m3 of snow. In this research, historical media has turned out to be a particularly valuable source of information for the study of this kind of episodes, because it enables us to understand the scope of events that occurred in the distant past in remote locations whose socio-economic impact cannot be directly inferred from instrumental data. On the other hand, we consider studies like the present one as preliminary steps for avalanche episodes modelling. Indeed, the information gathered with this kind of methods has to be supplemented with that obtained from other techniques and field geomorphological evidence.
NASA Technical Reports Server (NTRS)
Kocin, P. J.; Uccellini, L. W.
1985-01-01
Surface and upper-level characteristics of selected meteorological fields are summarized. Two major types of sea level development are described and applied to the cases at hand, with a few storm systems showing characteristics of both types. Aspects such as rapid sea level deepening, coastal frontogenesis, cold air damming, low level jet formation, the development of an S-shaped isotherm pattern, diffluence downwind of a negatively tilted upper level trough axis, upper level confluence and an increase of geopotential heights at the base of the upper level trough characterized the pre-cyclogenetic and cyclogenetic periods of many of the storm systems. Large variability was also observed, especially with regard to the spatial dimensions of the surface and upper level systems, as well as variations in trough/ridge amplification and the evolution of upper level jet streak systems. The influence of transverse circulations associated with a confluent jet streak entrance region and the diffluent exit region of a jet streak/trough system on the production of snowfall is also discussed.
NASA Astrophysics Data System (ADS)
Klein, J. A.; Hopping, K. A.; Yeh, E.; Hu, J.; Nyima, Y.; Boone, R.; Galvin, K.; Kang, S.; Ojima, D. S.
2010-12-01
Pastoralists on the Tibetan Plateau are a marginalized people living in an extreme environment and may be especially vulnerable as the system approaches critical thresholds. In Tibet, temperatures are increasing several times more than the global average while the frequency and severity of severe snowstorms is predicted to increase. Pastoralists are also experiencing reduced mobility and severe grazing restrictions. We are using interdisciplinary frameworks and methods that include a multifactor ecological experiment, household interviews, remote sensing, and a coupled ecosystem and household decision-making model to examine herder and ecosystem vulnerability to climate change and extreme weather events within the context of changing natural resource policies in China. The fully factorial ecological experiment includes two climate changes (warming and spring snow additions) and two types of grazing (yak and pika). We established the experiment in 2008 within the Tibet Autonomous Region (4,870 m) and are monitoring microclimate, vegetation, nutrient availability, carbon fluxes and stable isotopes. We are investigating the sensitivity of the system, whether it is likely to cross critical thresholds, and how resilient this system may be to predicted climate and land use changes. Semi-structured interviews on indigenous knowledge and vulnerability complement the ecological experimental work. We are asking herders about climatic and ecological change and vulnerability to snow disasters. To integrate our ecological and social findings, we are coupling an ecosystem model to an agent-based pastoral household model. Our results from the experiment and the indigenous knowledge study suggest that Kobresia pygmaea, the dominant species and primary grazing resource, is vulnerable to warming. Snow additions can partially mediate this effect. Herders throughout this region share common knowledge about both climatic and ecological changes, but appear to be more closely attuned to ecological shifts than to gradual climate changes. Herder perceptions about climate trends often contradict local weather station data, but herders tend to be in strong agreement that grassland health has declined. These results suggest that rangeland degradation has occurred, and that climate warming may be one driver responsible for these changes. While additional snow may improve ecological conditions, the warming-induced degradation may make the social-ecological system more vulnerable to large snowstorm events. Our findings suggest that climate adaptation strategies should address the effects of both warming and extreme weather events and should also encourage land use policies that will maintain these systems under change. The vulnerability of ecosystems on the roof of the world has implications for the 1x109 people living downstream and for feedbacks to the Earth’s climate system.
Snow and Dust over Inner Mongolia
NASA Technical Reports Server (NTRS)
2002-01-01
A severe snow-and-sand storm hit an 80,000 square-mile (205,000-square-km) stretch of the Chinese province of Mongolia on New Year's Eve, killing 21 people and leaving thousands of people to face possible starvation. The affected area is located about 250 miles (400 km) northwest of Beijing. It is the worst snowstorm to hit the region in more than 50 years. Lasting about 3 days, the storm dumped 24 inches (60 cm) of snow mixed with sand from the Gobi Desert, stranding many residents in deep drifts. The Chinese Red Cross reports that almost 1 million people were affected by the storm and at least 10,000 head of livestock are confirmed dead. As many as 120,000 residents are in need of food and other supplies. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, acquired this image of the storm on January 2, 2001, as it approached China's eastern provinces. You can see storm clouds (white pixels) and windblown dust (brownish pixels) crossing the Yellow Sea and East China Sea toward Japan and the western Pacific. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Diffuse sclerosing variant of thyroid carcinoma presenting as Hashimoto thyroiditis: a case report.
Vukasović, Anamarija; Kuna, Sanja Kusacić; Ostović, Karmen Trutin; Prgomet, Drago; Banek, Tomislav
2012-11-01
The aim of report is to present a case of a rare diffuse sclerosing variant of a papillary thyroid carcinoma. A 15-year old girl referred for ultrasound examination because of painless thyroid swelling lasting 10 days before. An ultrasound of the neck showed diffusely changed thyroid parenchyma, without nodes, looking as lymphocytic thyroiditis Hashimoto at first, but with snow-storm appearance, predominantly in the right lobe. Positive thyroid peroxidase antibodies (TPO-AT) also suggested Hashimoto thyroiditis. Repeated US-FNAB (fine needle-aspiration biopsy) of the right lobe revealed diffuse sclerosing variant of papillary thyroid carcinoma and patient underwent total thyreoidectomy. Patohistologic finding confirmed diffuse sclerosing variant of a papillary thyroid carcinoma in the both thyroid lobes and several metastatic lymph nodes. Two months later patient recived radioablative therapy with 3700 MBq (100 mCi) of 1-131 followed by levothyroxine replacement. At the moment, patient is without evidence of local or distant metastases and next regular control is scheduled in 6 months. In conclusion, a diffuse sclerosing variant is rare form of papillary thyroid carcinoma that echographically looks similar to Hashimoto thyroiditis and sometimes could be easily overlooked.
Berg, W A; Caskey, C I; Hamper, U M; Kuhlman, J E; Anderson, N D; Chang, B W; Sheth, S; Zerhouni, E A
1995-10-01
To evaluate the accuracy of magnetic resonance (MR) and ultrasound (US) criteria for breast implant integrity. One hundred twenty-two single-lumen silicone breast implants and 22 bilumen implants were evaluated with surface coil MR imaging and US and surgically removed. MR criteria for implant failure were a collapsed implant shell ("linguine sign"), foci of silicone outside the shell ("noose sign"), and extracapsular gel, US criteria were collapsed shell, low-level echoes within the gel, and "snowstorm" echoes of extracapsular silicone. Among single-lumen implants, MR imaging depicted 39 of 40 ruptures, 14 of 28 with minimal leakage; 49 of 54 intact implants were correctly interpreted. US depicted 26 of 40 ruptured implants, four of 28 with minimal leakage, and 30 of 54 intact implants. Among bilumen implants, MR imaging depicted four of five implants with rupture of both lumina and nine of 10 as intact; US depicted one rupture and helped identify two of 10 as intact. Mammography accurately depicted the status of 29 of 30 bilumen implants with MR imaging correlation. MR imaging depicts implant integrity more accurately than US; neither method reliably depicts minimal leakage with shell collapse. Mammography is useful in screening bilumen implant integrity.
Intense sea-effect snowfall case on the western coast of Finland
NASA Astrophysics Data System (ADS)
Olsson, Taru; Perttula, Tuuli; Jylhä, Kirsti; Luomaranta, Anna
2017-07-01
A new national daily snowfall record was measured in Finland on 8 January 2016 when it snowed 73 cm (31 mm as liquid water) in less than a day in Merikarvia on the western coast of Finland. The area of the most intense snowfall was very small, which is common in convective precipitation. In this work we used hourly weather radar images to identify the sea-effect snowfall case and to qualitatively estimate the performance of HARMONIE, a non-hydrostatic convection-permitting weather prediction model, in simulating the spatial and temporal evolution of the snowbands. The model simulation, including data assimilation, was run at 2.5 km horizontal resolution and 65 levels in vertical. HARMONIE was found to capture the overall sea-effect snowfall situation quite well, as both the timing and the location of the most intense snowstorm were properly simulated. Based on our preliminary analysis, the snowband case was triggered by atmospheric instability above the mostly ice-free sea and a low-level convergence zone almost perpendicular to the coastline. The simulated convective available potential energy (CAPE) reached a value of 87 J kg-1 near the site of the observed snowfall record.
Modelling and simulating a crisis management system: an organisational perspective
NASA Astrophysics Data System (ADS)
Chaawa, Mohamed; Thabet, Inès; Hanachi, Chihab; Ben Said, Lamjed
2017-04-01
Crises are complex situations due to the dynamism of the environment, its unpredictability and the complexity of the interactions among several different and autonomous involved organisations. In such a context, establishing an organisational view as well as structuring organisations' communications and their functioning is a crucial requirement. In this article, we propose a multi-agent organisational model (OM) to abstract, simulate and analyse a crisis management system (CMS). The objective is to evaluate the CMS from an organisational view, to assess its strength as well as its weakness and to provide deciders with some recommendations for a more flexible and reactive CMS. The proposed OM is illustrated through a real case study: a snowstorm in a Tunisian region. More precisely, we made the following contribution: firstly, we provide an environmental model that identifies the concepts involved in the crisis. Then, we define a role model that copes with the involved actors. In addition, we specify the organisational structure and the interaction model that rule communications and structure actors' functioning. Those models, built following the GAIA methodology, abstract the CMS from an organisational perspective. Finally, we implemented a customisable multi-agent simulator based on the Janus platform to analyse, through several performed simulations, the organisational model.
Snowmelt Runoff: A New Focus of Urban Nonpoint Source Pollution
Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian
2012-01-01
Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing cosntitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control. PMID:23202881
Snowmelt runoff: a new focus of urban nonpoint source pollution.
Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian
2012-11-30
Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing constitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control.
NASA Astrophysics Data System (ADS)
Klein, J.; Hopping, K. A.; Yeh, E.; Nyima, Y.; Galvin, K.; Boone, R.; Dorje, T.; Ojima, D. S.
2012-12-01
Pastoralists and ecosystems on the Tibetan Plateau are facing a suite of novel stresses. Temperatures are increasing several times more than the global average. The frequency and severity of severe snowstorms, which lead to critical losses of livestock, are also increasing. Pastoralists are also experiencing changes to their livelihood activities, including reduced mobility and severe grazing restrictions. We are using interdisciplinary frameworks and methods that integrate results from a multifactor ecological experiment, household interviews, remote sensing, and a coupled ecosystem and household decision-making model to examine herder and ecosystem vulnerability to climate change and extreme weather events (snow disasters) within the context of changing natural resource management policies in China. The fully factorial ecological experiment includes two climate changes (warming and spring snow additions) and two types of grazing (yak and pika) that are being affected by current policy. We established the experiment in 2008 within the Tibet Autonomous Region. We are monitoring microclimate, vegetation, nutrient availability, ecosystem carbon fluxes and stable isotope signatures of select plant species. Through this experiment, we are investigating the sensitivity of the system, whether it can cross critical thresholds, and how resilient this system may be to predicted future climate and land use changes. Semi-structured, in-depth interviews on indigenous knowledge and vulnerability complement the ecological experimental work. We are asking herders about climate and ecological change and their drivers and are also conducting interviews on vulnerability to snow disasters across a three site, 300-500mm precipitation gradient. We are using remote sensing to identify biophysical landscape change over time. To integrate our ecological and social findings, we are coupling the Savanna ecosystem model to the DECUMA agent-based pastoral household model. Our results to date from the experiment and the indigenous knowledge study suggest that Kobresia pygmaea, the dominant plant species and the primary grazing resource, is vulnerable to warming. Moreover, several lines of evidence suggest that warming is causing delayed spring phenology, with important ecosystem and livelihood implications. Herders are observing climatic and ecological changes, knowledge which is important for adaptation, but people whose livelihoods are most directly derived from the rangelands, those situated at higher elevations, and those who are more mobile across the landscape are most attuned to these changes. These results suggest that rangeland degradation and delayed spring phenology are occurring, and that climate warming may be responsible for these changes. While additional snow may improve ecological conditions, the warming-induced degradation may make the social-ecological system more vulnerable to large snowstorm events. Our findings suggest that climate adaptation strategies should address the effects of both climate warming and the changing nature of extreme weather events and should also encourage land use policies that will maintain these systems under change. Moreover, policies that encourage mobility and rangeland-based livelihoods will enhance adaptation to climate change.
The 20-22 January 2007 Snow Events over Canada: Microphysical Properties
NASA Technical Reports Server (NTRS)
Tao. W.K.; Shi, J.J.; Matsui, T.; Hao, A.; Lang, S.; Peters-Lidard, C.; Skofronick-Jackson, G.; Petersen, W.; Cifelli, R.; Rutledge, S.
2009-01-01
One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve precipitation measurements in mid- and high-latitudes during cold seasons through the use of high-frequency passive microwave radiometry. Toward this end, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a Satellite Data Simulation Unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for snowstorm events (January 20-22, 2007) that took place over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) ground site (Centre for Atmospheric Research Experiments - CARE) in Ontario, Canada. In this paper, the performance of the Goddard cloud microphysics scheme both with 2ice (ice and snow) and 3ice (ice, snow and graupel) as well as other WRF microphysics schemes will be presented. The results are compared with data from the Environment Canada (EC) King Radar, an operational C-band radar located near the CARE site. In addition, the WRF model output is used to drive the Goddard SDSU to calculate radiances and backscattering signals consistent with direct satellite observations for evaluating the model results.
Earth Observations taken by the Expedition 10 crew
2004-12-04
ISS010-E-09366 (4 December 2004) --- New Yorks Finger Lakes region is featured in this digital image photographed by an Expedition 10 crewmember on the International Space Station. Shapes of the snow-covered hills are accented by the low sun angles, and contrast with the darker, finger-shaped lakes filling the regions valleys. Scientists believe the steep, roughly parallel valleys and hills of the Finger Lakes region were shaped by advancing and retreating ice sheets that were as much as 2 miles deep during the last ice age. River valleys were scoured into deep troughs; many are now filled with lakes. The two largest lakes, Seneca and Cayuga, are so deep that the bases of their lakebeds are below sea level. The cities of Rochester, Syracuse and Ithaca are included in this field-of-view, as seen from the Space Station. These three cities enjoy large seasonal snowpacks, thanks to the influence of the Great Lakes producing lake-effect snowstorms. According to NASA scientists studying the Space Station imagery, despite its reputation for long winters, the region is balmy compared with the glacial climate present when the landscape was carved. Scientists believe, at the time of the greatest ice extent, yearly average temperatures over northern North America were several degrees lower than today.
NASA Astrophysics Data System (ADS)
Milne, R.; Wallmann, J.; Myrick, D. T.
2010-12-01
The National Weather Service Office in Reno is responsible for issuing Blizzard Warnings, Winter Storm Warnings, and Winter Weather Advisories for the Sierra, including the Lake Tahoe Basin and heavily traveled routes such as Interstate 80, Highway 395 and Highway 50. These forecast products prepare motorists for harsh travel conditions as well as those venturing into the backcountry, which are essential to the NWS mission of saving lives and property. During the winter season, millions of people from around the world visit the numerous world class ski resorts in the Sierra and the Lake Tahoe Basin, which is vital to the local economy. This situation creates a challenging decision for the forecasters to provide appropriate wording in winter statements to keep the public safe, without significantly impacting the local tourism-based economy. Numerous text and graphical products, including online weather briefings, are utilized by NWS Reno to highlight hazards in ensuring the public, businesses, and other government agencies are prepared for winter storms and take appropriate safety measures. The effectiveness of these product types will be explored, with past snowstorms used as examples to show how forecasters determine which type of text or graphical product is most appropriate to convey the hazardous weather threats.
NASA Astrophysics Data System (ADS)
Garcia-Hernandez, Cristina; Ruiz-Fernández, Jesús; Gallinar, David
2015-04-01
This research examines a mass movement event caused in the context of the Great Blizzard of 1888, one of the most severe recorded blizzards in the history of Europe, whose implications go far beyond. In the Asturian Massif the episode consisted in four linked and consecutive snowstorms that took place between the 14th of February 1888 and the 8th of April 1888, creating snow covers with a depth ranging between 5 and 7 m, snow avalanches and flooding, causing dozens of deaths and large material damage. The Asturian Massif belongs to the Atlantic-climate area and is composed mainly by sedimentary and metamorphic paleozoic rocks. Many sectors of the Massif are between 1.000 and 2.000 m a.s.l., and its topography is characterized by a great height difference and steep slopes. Because of the lack of deep soils suitable for farming, the main traditional activity has been livestock keeping, and goods traffic. We have devised a method that enables the reconstruction of this event on the basis of nivo-meteorogical conditions, geographical location and socio-economic impact. The mass movement episode has been studied through the issues of 6 newspapers published in Asturias between the 20th of January and 30th of May 1888, the ancient meteorological station data of the University of Oviedo, and field work. A logical database structure has been designed with the aim to store and cross the information for statistical analysis. Thirty six mass movement worthy of consideration were documented, 28 of them causing material damage (six homes destroyed and at least 22 interruptions with the traffic flow on roads, highways and railways). Ten high- and mid-elevation mountain municipalities were affected by mass movement. We must consider that only the most important events, or those that happened in crowded places, have been considered by the newspapers, so the total number of mass movements should be considered as a minimum figure. We have got to identify and classify 27 of them; 16 as landslides, 5 as rockfalls, 4 as mixed typology of rockfalls with a big amount of mud, and 2 as debris flow. One person died as a consecuence of a rockfall. Thirty out of thirty six events anthropic intervention is proved. It acted as a prior conditioning where the previous topography has been modified (in 29 cases), either as a direct triggering mechanism at least in one landslide episode. The sequence analysis of the events shows that their number and frequency increases with episodes of snow melting during the snowstorm breaks, announcing the highest instabilities on 10th and 11th of March, coinciding with a rainfall peak. However the connection with the rainfall episode seems weak compared with the one than can be settled with the rise of temperatures and the resulting melting intensification. It caused the progressive water saturation of surface formations, that reached a maximum during the second break, triggering 20 events during the 11th of March 1888.
Educating Emergency Managers About Weather -Related Hazards
NASA Astrophysics Data System (ADS)
Spangler, T. C.; Johnson, V.
2006-12-01
The most common crises that emergency managers face are those related to hazardous weather - snowstorms, floods, hurricanes, heat waves, tornadoes, etc. However, man-made disasters, such as accidental releases of hazardous substances or terrorist acts, also often have a weather component. For example, after the bombing of the Alfred P. Murrah Federal Building in Oklahoma City, emergency managers were concerned that thunderstorms in the area might cause the building to collapse, putting rescuers in further danger. Training emergency managers to recognize the importance of weather in disaster planning and response has been a small but important focus of the COMET Program's educational development effort. Topics addressed in COMET training modules that are pertinent to emergency management include fire weather, hurricanes, flood events, and air contaminant dispersion. Additionally, the module entitled Anticipating Hazardous Weather and Community Risk provides an overview of basic meteorological processes, describes a broad range of weather phenomenon, and then addresses what forecast products are available to emergency managers to assess a threat to their community. In many of the modules, learners are presented with scenarios that give them the opportunity to practice decision-making in hazardous weather situations. We will demonstrate some of those scenarios and discuss how training can be used to model good emergency management skills. We will discuss ways to communicate with the emergency management community and provide examples of how distance learning can be used to educate and train emergency managers.
NASA Technical Reports Server (NTRS)
Shi, J. J.; Tao, W.-K.; Matsui, T.; Cifelli, R.; Huo, A.; Lang, S.; Tokay, A.; Peters-Lidard, C.; Jackson, G.; Rutledge, S.;
2009-01-01
One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve cold season precipitation measurements in middle and high latitudes through the use of high-frequency passive microwave radiometry. For this, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a satellite data simulation unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for two snowstorm events, a lake effect and a synoptic event, that occurred between 20 and 22 January 2007 over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) site in Ontario, Canada. The 24h-accumulated snowfall predicted by the WRF model with the Goddard microphysics was comparable to the observed accumulated snowfall by the ground-based radar for both events. The model correctly predicted the onset and ending of both snow events at the CARE site. WRF simulations capture the basic cloud properties as seen by the ground-based radar and satellite (i.e., CloudSAT, AMSU-B) observations as well as the observed cloud streak organization in the lake event. This latter result reveals that WRF was able to capture the cloud macro-structure reasonably well.
Multimodality Imaging-based Evaluation of Single-Lumen Silicone Breast Implants for Rupture.
Seiler, Stephen J; Sharma, Pooja B; Hayes, Jody C; Ganti, Ramapriya; Mootz, Ann R; Eads, Emily D; Teotia, Sumeet S; Evans, W Phil
2017-01-01
Breast implants are frequently encountered on breast imaging studies, and it is essential for any radiologist interpreting these studies to be able to correctly assess implant integrity. Ruptures of silicone gel-filled implants often occur without becoming clinically obvious and are incidentally detected at imaging. Early diagnosis of implant rupture is important because surgical removal of extracapsular silicone in the breast parenchyma and lymphatics is difficult. Conversely, misdiagnosis of rupture may prompt a patient to undergo unnecessary additional surgery to remove the implant. Mammography is the most common breast imaging examination performed and can readily depict extracapsular free silicone, although it is insensitive for detection of intracapsular implant rupture. Ultrasonography (US) can be used to assess the internal structure of the implant and may provide an economical method for initial implant assessment. Common US signs of intracapsular rupture include the "keyhole" or "noose" sign, subcapsular line sign, and "stepladder" sign; extracapsular silicone has a distinctive "snowstorm" or echogenic noise appearance. Magnetic resonance (MR) imaging is the most accurate and reliable means for assessment of implant rupture and is highly sensitive for detection of both intracapsular and extracapsular rupture. MR imaging findings of intracapsular rupture include the keyhole or noose sign, subcapsular line sign, and "linguine" sign, and silicone-selective MR imaging sequences are highly sensitive to small amounts of extracapsular silicone. © RSNA, 2017.
Short and long-term effects of an historic blizzard in Asturias (Northern Spain)
NASA Astrophysics Data System (ADS)
Garcia-Hernandez, Cristina; Ruiz-Fernández, Jesús; Gallinar, David
2016-04-01
This research has combined the consult of several historical sources (historic newspapers, church records, meteorological records) with fieldwork (geographical checking and interviews) and the application of statistical techniques for data processing in order to define, locate and analyze the causes and physical, social, economic and demographic effects (both short- and long-term) of an historic natural disaster that concerned the territory of Asturias (Northern Spain). The storm that hit the Spanish northwest in the winter of 1888 consisted of a four snowstorms concatenation occurred between 14th February 1888 and 8th April 1888. It was a phenomenon that, by its magnitude and rarity, was especially harmful because of the triggering of avalanches of snow and landslides; the generation of large snow deposits (up to 9 meters depth), and the floods related with the effects of the snow thawing. The first results of this research point to 36 people dead and 23 injured, more than 1,000 buildings ruined and more than 19,000 head of cattle lost as a result of all these events. However, the personal and material losses increase if we investigate the long-term consequences and, in this aspect, we have identified several singularities in the 1888 mortality patterns (ie an increase in neonatal mortality rate), and a clear increase in overall mortality in the two years following this episode, affecting to women more than to men.
Mostashari, Farzad; Fine, Annie; Das, Debjani; Adams, John; Layton, Marcelle
2003-06-01
In 1998, the New York City Department of Health and the Mayor's Office of Emergency Management began monitoring the volume of ambulance dispatch calls as a surveillance tool for biologic terrorism. We adapted statistical techniques designed to measure excess influenza mortality and applied them to outbreak detection using ambulance dispatch data. Since 1999, we have been performing serial daily regressions to determine the alarm threshold for the current day. In this article, we evaluate this approach by simulating a series of 2,200 daily regressions. In the influenza detection implementation of this model, there were 71 (3.2%) alarms at the 99% level. Of these alarms, 64 (90%) occurred shortly before or during a period of peak influenza in each of six influenza seasons. In the bioterrorism detection implementation of this methodology, after accounting for current influenza activity, there were 24 (1.1%) alarms at the 99% level. Two occurred during a large snowstorm, 1 is unexplained, and 21 occurred shortly before or during a period of peak influenza activity in each of six influenza seasons. Our findings suggest that this surveillance system is sensitive to communitywide respiratory outbreaks with relatively few false alarms. More work needs to be done to evaluate the sensitivity of this approach for detecting nonrespiratory illness and more localized outbreaks.
Kunkel, Amber; McLay, Laura A
2013-03-01
Emergency medical services (EMS) provide life-saving care and hospital transport to patients with severe trauma or medical conditions. Severe weather events, such as snow events, may lead to adverse patient outcomes by increasing call volumes and service times. Adequate staffing levels during such weather events are critical for ensuring that patients receive timely care. To determine staffing levels that depend on weather, we propose a model that uses a discrete event simulation of a reliability model to identify minimum staffing levels that provide timely patient care, with regression used to provide the input parameters. The system is said to be reliable if there is a high degree of confidence that ambulances can immediately respond to a given proportion of patients (e.g., 99 %). Four weather scenarios capture varying levels of snow falling and snow on the ground. An innovative feature of our approach is that we evaluate the mitigating effects of different extrinsic response policies and intrinsic system adaptation. The models use data from Hanover County, Virginia to quantify how snow reduces EMS system reliability and necessitates increasing staffing levels. The model and its analysis can assist in EMS preparedness by providing a methodology to adjust staffing levels during weather events. A key observation is that when it is snowing, intrinsic system adaptation has similar effects on system reliability as one additional ambulance.
First Observations of GNSS Ionospheric Scintillations From DemoGRAPE Project
NASA Astrophysics Data System (ADS)
Alfonsi, L.; Cilliers, P. J.; Romano, V.; Hunstad, I.; Correia, E.; Linty, N.; Dovis, F.; Terzo, O.; Ruiu, P.; Ward, J.; Riley, P.
2016-10-01
The Istituto Nazionale di Geofisica e Vulcanologia leads an international project funded by the Italian National Program for Antarctic Research, called Demonstrator of Global Navigation Satellite System (GNSS) Research and Application for Polar Environment (DemoGRAPE), in partnership with Politecnico di Torino, Istituto Superiore Mario Boella, and with South African National Space Agency and the Brazilian National Institute of Space Physics, as key collaborators. DemoGRAPE is a new prototype of support for the satellite navigation in Antarctica. Besides the scientific interest, the accuracy of satellite navigation in Antarctica is of paramount importance since there is always the danger that people and vehicles can fall into a crevasse during a snowstorm, when visibility is limited and travel is restricted to following specified routes using satellite navigation systems. The variability of ionospheric delay and ionospheric scintillation are two of the primary factors which affect the accuracy of satellite navigation. The project will provide a demonstrator of cutting edge technology for the empirical assessment of the ionospheric delay and ionospheric scintillations in the polar regions. The scope of the project includes new equipment for the recording and dissemination of GNSS data and products installed at the South African and Brazilian bases in Antarctica. The new equipment will facilitate the exchange of software and derived products via the Cloud computing technology infrastructure. The project portal is accessible at www.demogrape.net. We report the first Global Navigation Satellite System (GNSS) signal scintillations observed in Antarctica.
["Snow" and "Walpurgisnacht". Hans Castorp's exemplary maturation crises in "Zauberberg"].
Heinrich, K; Walter, C
1995-01-01
On the occasion of a rather incidental visit in the sanatorium "Berghof" at Davos, Hans Castorp, the--as to his primary personality--asthenic and low-profile protagonist of the "Zauberberg" is gradually getting caught up in the maelstrom of the there prevailing timelessness and irresponsibility, this being interrupted solely by two tapering to crisis episodes: his amouressness to Mme. Chauchat as an erotic crisis and by the visionary daydream during a snowstorm about the abilities of men as a cognitive, mental crisis. Both events are triggered by a pathoid irritability, following the maxim of Th. Mann that illness, decay and death as borderline experiences may be the presupposition for cognition and reversal. Both crises end without consequences--the "Zauberberg" is the negation of the novel of education and development in the narrower sense. The unsuccessfulness and undecidedness of Hans Castorp's existence culminate in the open end of the novel, regarding his surviving on the battle field, and is in strict contrast to Adrian Leverkühn's determined autoinfection with Lues with the aim of artistic perfection and the creative break-through of "Doctor Faustus". Hans Castorp's regression and self-fragmentation within the decadent-morbid atmosphere of the sanatorium lead to his storming into the battles of the First World War as a last and existential crisis; it is here where finally the individual and national fate are merging. Hans Castorp becomes the paradigma of the German pre-war bourgeoisie and its crisis-prone development.
New Fluid Prevents Railway Ice
NASA Technical Reports Server (NTRS)
2001-01-01
Through a licensing agreement between NASA's Ames Research Center and Midwest Industrial Supply, Inc. (MIS), two MIS products have been enhanced with NASA's anti-icing fluid technology. MIS offers the new fluid in two commercial products, the Zero Gravity(TM) Third Rail Anti-Icer/Deicer and the Ice Free Switch(R). Using NASA's fluid technology, these products form a protective-coating barrier that prevents the buildup of ice and snow. Applying the fluid to the railway components prior to ice or snowstorm works as an anti-icing fluid, remaining in place to melt precipitation as it hits the surface. It also functions as a deicing fluid. If applied to an already frozen switch or rail, it will quickly melt the ice, free the frozen parts, and then remain in place to prevent refreezing. Additional benefits include the ability to cling to vertical rail surfaces and resist the effects of rain and wind. With the Ice Free Switch, it takes only five minutes to treat the switch by spraying, brushing, or pouring on the product. Ice Free Switch requires as little as one gallon per switch whereas other deicing fluids require five to ten gallons of liquid to effectively melt ice. Zero Gravity serves the same anti-icing/deicing purposes but applies fluid to the third rail through a system that is easily installed onto mass transit cars. A tank of fluid and a dispensing system are placed underneath the train car and the fluid is applied as the train runs its route.
Mobility of lightweight robots over snow
NASA Astrophysics Data System (ADS)
Lever, James H.; Shoop, Sally A.
2006-05-01
Snowfields are challenging terrain for lightweight (<50 kg) unmanned ground vehicles. Deep sinkage, high snowcompaction resistance, traction loss while turning and ingestion of snow into the drive train can cause immobility within a few meters of travel. However, for suitably designed vehicles, deep snow offers a smooth, uniform surface that can obliterate obstacles. Key requirements for good over-snow mobility are low ground pressure, large clearance relative to vehicle size and a drive system that tolerates cohesive snow. A small robot will invariably encounter deep snow relative to its ground clearance. Because a single snowstorm can easily deposit 30 cm of fresh snow, robots with ground clearance less than about 10 cm must travel over the snow rather than gain support from the underlying ground. This can be accomplished using low-pressure tracks (< 1.5 kPa). Even still, snow-compaction resistance can exceed 20% of vehicle weight. Also, despite relatively high traction coefficients for low track pressures, differential or skid steering is difficult because the outboard track can easily break traction as the vehicle attempts to turn against the snow. Short track lengths (relative to track separation) or coupled articulated robots offer steering solutions for deep snow. This paper presents preliminary guidance to design lightweight robots for good mobility over snow based on mobility theory and tests of PackBot, Talon and SnoBot, a custom-designed research robot. Because many other considerations constrain robot designs, this guidance can help with development of winterization kits to improve the over-snow performance of existing robots.
Fatal fall into a volcanic fumarole.
Cantrell, Lee; Young, Michael
2009-01-01
Fatalities secondary to inhalation of volcanic gases in the United States have rarely been reported. We report the deaths of 3 ski patrol members at a popular California ski resort. After a snowstorm, ski patrol members were fencing off a well-known volcanic fumarole when the snow around the vent collapsed. Two members slid into the deep hole and rapidly lost consciousness. A third member carrying oxygen descended into the hole and also lost consciousness. A fourth member affixed an oxygen mask, but still lost consciousness upon descent. The 3 initial victims expired at the scene, while the fourth victim survived. Autopsy results for all 3 were consistent with a suffocation/asphyxiation death. In the case described, the involved fumarole is a well-known source of toxic gases. Atmospheric sampling data dating back decades demonstrate that carbon dioxide levels typically range from 97% to 99%, nitrogen gas from 1% to 3%, and hydrogen sulfide from .004% to .07%. Other gases in smaller concentrations include oxygen, hydrogen, and carbon monoxide. Given the rapidity with which our victims lost consciousness and the historical data available on the Mammoth Mountain Fumarole (MMF), it is plausible that our patients suffered from acute asphyxiation, although the contribution of the directly toxic effects of the gases involved cannot be ruled out. During winter months, snow can build up and disguise volcanic vents and potentially trap toxic fumes to form dangerous, gas-filled pits. Recognition of such potential hazards is essential when working in or venturing into volcanically active areas during the winter.
Long distance migratory songbirds respond to extremes in arctic seasonality
NASA Astrophysics Data System (ADS)
Boelman, N.; Asmus, A.; Chmura, H.; Krause, J.; Perez, J. H.; Sweet, S. K.; Gough, L.; Wingfield, J.
2017-12-01
Arctic regions are warming rapidly, with extreme weather events increasing in frequency, duration and intensity, as in other regions. Many studies have focused on how shifting seasonality in environmental conditions affect the phenology and productivity of vegetation, while far fewer have examined how arctic fauna responds. We studied two species of long-distance migratory songbirds, Lapland longspurs, Calcarius lapponicus, and White-crowned sparrows, Zonotrichia leucophrys gambelii, across seven consecutive breeding seasons in northern Alaskan tundra. We aimed to understand how spring environmental conditions affected breeding cycle phenology, food availability, body condition, stress physiology, and ultimately, reproductive success. Spring temperatures, precipitation, storm frequency, and snow-free dates differed significantly among years, with 2013 characterized by unusually late snow cover, and 2015 and 2016 characterized by unusually early snow-free dates and several late spring snowstorms. In response, we found that relative to other study years, there was a significant delay in breeding cycle phenology for both study species in 2013, while breeding cycle phenology was significantly earlier in 2015 only. For both species, we also found significant variation among years in: the seasonal patterns of arthropod availability during the nesting stage; body condition, and; stress physiology. Finally, we found significant variation in reproductive success of both species across years, and that daily survival rates were decreased by snow storm events. Our findings suggest that arctic-breeding passerine communities may be able to adjust phenology to unpredictable shifts in the timing of spring, but extreme conditions during the incubation and nestling stages are detrimental to reproductive success.
Snowfall Retrivals Using a Video Disdrometer
NASA Astrophysics Data System (ADS)
Newman, A. J.; Kucera, P. A.
2004-12-01
A video disdrometer has been recently developed at NASA/Wallops Flight Facility in an effort to improve surface precipitation measurements. One of the goals of the upcoming Global Precipitation Measurement (GPM) mission is to provide improved satellite-based measurements of snowfall in mid-latitudes. Also, with the planned dual-polarization upgrade of US National Weather Service weather radars, there is potential for significant improvements in radar-based estimates of snowfall. The video disdrometer, referred to as the Rain Imaging System (RIS), was deployed in Eastern North Dakota during the 2003-2004 winter season to measure size distributions, precipitation rate, and density estimates of snowfall. The RIS uses CCD grayscale video camera with a zoom lens to observe hydrometers in a sample volume located 2 meters from end of the lens and approximately 1.5 meters away from an independent light source. The design of the RIS may eliminate sampling errors from wind flow around the instrument. The RIS operated almost continuously in the adverse conditions often observed in the Northern Plains. Preliminary analysis of an extended winter snowstorm has shown encouraging results. The RIS was able to provide crystal habit information, variability of particle size distributions for the lifecycle of the storm, snowfall rates, and estimates of snow density. Comparisons with coincident snow core samples and measurements from the nearby NWS Forecast Office indicate the RIS provides reasonable snowfall measurements. WSR-88D radar observations over the RIS were used to generate a snowfall-reflectivity relationship from the storm. These results along with several other cases will be shown during the presentation.
Northern Plains Blizzards in Past and Future Climates
NASA Astrophysics Data System (ADS)
Trellinger, A.; Kennedy, A. D.
2017-12-01
High-latitude regions of the globe including the northern tier of the United States are subject to adverse conditions during the winter such as snowstorms. When snowfall combines with strong winds, blizzards can result and these events have significant personal, societal, and economic impacts for the Northern Plains. Although the climatology of wintertime extremes such as blizzards is reasonably understood, it is not known how the frequency and intensity of these events may change in a warming climate. Complicating factors include competing trends that suggest winter will have more snow over this region, but over a shorter seasonal duration. Identifying blizzards in climate models is difficult due to the horizontal and vertical grid spacing used. Additionally, blowing snow is not considered in these models, so it cannot be directly diagnosed. Instead, alternative ways must be developed to identify these events. The presented work will use a competitive neural network known as the Self-Organizing Map (SOM) to identify meteorological patterns associated with blizzard events over the Northern Plains from 1979-2016. Once these large-scale patterns are identified from observations, they will be identified in Community Climate System Model (CESM) 4.0 20th Century forcing climate simulations run in support for the Coupled Model Intercomparison Project Phase 5 (CMIP-5). In specific, the methodology will rely on the `Mother of All Runs' (MOAR) ensemble member. Because this member provides subdaily output for many variables, specific meteorological patterns can be identified. Blizzard events will be identified during historical time periods to determine biases, and then under future emissions scenarios.
Environment, behavior and physiology: do birds use barometric pressure to predict storms?
Breuner, Creagh W; Sprague, Rachel S; Patterson, Stephen H; Woods, H Arthur
2013-06-01
Severe storms can pose a grave challenge to the temperature and energy homeostasis of small endothermic vertebrates. Storms are accompanied by lower temperatures and wind, increasing metabolic expenditure, and can inhibit foraging, thereby limiting energy intake. To avoid these potential problems, most endotherms have mechanisms for offsetting the energetic risks posed by storms. One possibility is to use cues to predict oncoming storms and to alter physiology and behavior in ways that make survival more likely. Barometric pressure declines predictably before inclement weather, and several lines of evidence indicate that animals alter behavior based on changes in ambient pressure. Here we examined the effects of declining barometric pressure on physiology and behavior in the white-crowned sparrow, Zonotrichia leucophrys. Using field data from a long-term study, we first evaluated the relationship between barometric pressure, storms and stress physiology in free-living white-crowned sparrows. We then manipulated barometric pressure experimentally in the laboratory and determined how it affects activity, food intake, metabolic rates and stress physiology. The field data showed declining barometric pressure in the 12-24 h preceding snowstorms, but we found no relationship between barometric pressure and stress physiology. The laboratory study showed that declining barometric pressure stimulated food intake, but had no effect on metabolic rate or stress physiology. These data suggest that white-crowned sparrows can sense and respond to declining barometric pressure, and we propose that such an ability may be common in wild vertebrates, especially small ones for whom individual storms can be life-threatening events.
Cornwall, C.; Titus, T.N.
2009-01-01
In the 1970s, Mariner and Viking observed features in the Mars northern polar region that were a few hundred kilometers in diameter with 20 fj,m brightness temperatures as low as 130 K (considerably below C02 ice sublimation temperatures). Over the past decade, studies have shown that these areas (commonly called "cold spots") are usually due to emissivity effects of frost deposits and occasionally to active C02 snowstorms. Three Mars years of Mars Global Surveyor Thermal Emission Spectrometer data were used to observe autumn and wintertime cold spot activity within the polar regions. Many cold spots formed on or near scarps of the perennial cap, probably induced by adiabatic cooling due to orographic lifting. These topographically associated cold spots were often smaller than those that were not associated with topography. We determined that initial grain sizes within the cold spots were on the order of a few millimeters, assuming the snow was uncontaminated by dust or water ice. On average, the half-life of the cold spots was 5 Julian days. The Mars global dust storm in 2001 significantly affected cold spot activity in the north polar region. Though overall perennial cap cold spot activity seemed unaffected, the distribution of cold spots did change by a decrease in the number of topographically associated cold spots and an increase in those not associated with topography. We propose that the global dust storm affected the processes that form cold spots and discuss how the global dust storm may have affected these processes. ?? 2009 by the American Geophysical Union.
Satellite Sees Remaining Northeast Snowfall, Connecticut Still Recovering
2017-12-08
Last weekend's late October snow may have melted in Maryland, Delaware, parts of Pennsylvania and New Jersey, but residents in north central Connecticut are still dealing with the effects of the storm. According to Connecticut Light and Power, 430,868 residents were still without power today, Nov. 3, 2011. For estimated restoration times, visit their website at: www.cl-p.com/stormcenter/estimates/. A late October snowstorm from a Nor'easter blanketed the eastern U.S. from West Virginia to Maine and broke records the weekend before Halloween Monday. NASA's Aqua satellite flew over the region on October 30 after the snow was ending in New England and captured the ghostly blanket of white. When NASA's Aqua satellite passed over the northeastern U.S. on November 2, 2011 at 2:00 p.m. EDT, the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument captured a detailed image of the remaining snowfall. Snow still covers the ground in western and central Connecticut, southeastern New York, western and central Massachusetts, and parts of Vermont, New Hampshire and Maine. Over the Atlantic, cirrocumulus clouds create a diagonal border. The image was created at NASA's Goddard Space Flight Center in Greenbelt, Md. Image Credit: NASA Goddard MODIS Rapid Response Team; Caption: NASA Goddard, Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Ogdie, Alexis; Taylor, William J; Neogi, Tuhina; Fransen, Jaap; Jansen, Tim L; Schumacher, H Ralph; Louthrenoo, Worawit; Vazquez-Mellado, Janitzia; Eliseev, Maxim; McCarthy, Geraldine; Stamp, Lisa K; Perez-Ruiz, Fernando; Sivera, Francisca; Ea, Hang-Korng; Gerritsen, Martijn; Cagnotto, Giovanni; Cavagna, Lorenzo; Lin, Chingtsai; Chou, Yin-Yi; Tausche, Anne-Kathrin; Lima Gomes Ochtrop, Manuella; Janssen, Matthijs; Chen, Jiunn-Horng; Slot, Ole; Lazovskis, Juris; White, Douglas; Cimmino, Marco A; Uhlig, Till; Dalbeth, Nicola
2017-02-01
To examine the performance of ultrasound (US) for the diagnosis of gout using the presence of monosodium urate monohydrate (MSU) crystals as the gold standard. We analyzed data from the Study for Updated Gout Classification Criteria (SUGAR), a large, multicenter observational cross-sectional study of consecutive subjects with at least 1 swollen joint who conceivably may have gout. All subjects underwent arthrocentesis; cases were subjects with confirmed MSU crystals. Rheumatologists or radiologists who were blinded with regard to the results of the MSU crystal analysis performed US on 1 or more clinically affected joints. US findings of interest were double contour sign, tophus, and snowstorm appearance. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. Multivariable logistic regression models were used to examine factors associated with positive US results among subjects with gout. US was performed in 824 subjects (416 cases and 408 controls). The sensitivity, specificity, PPV, and NPV for the presence of any 1 of the features were 76.9%, 84.3%, 83.3%, and 78.2%, respectively. Sensitivity was higher among subjects with a disease duration of ≥2 years and among subjects with subcutaneous nodules on examination (suspected tophus). Associations with a positive US finding included suspected clinical tophus (odds ratio [OR] 4.77 [95% confidence interval (95% CI) 2.23-10.21]), any abnormality on plain radiography (OR 4.68 [95% CI 2.68-8.17]), and serum urate level (OR 1.31 [95% CI 1.06-1.62]). US features of MSU crystal deposition had high specificity and high PPV but more limited sensitivity for early gout. The specificity remained high in subjects with early disease and without clinical signs of tophi. © 2016, American College of Rheumatology.
Robust changes in the socio-climate risk over CONUS by mid 21st century
NASA Astrophysics Data System (ADS)
Ashfaq, M.; Rastogi, D.; Batibeniz, F.; Alifa, M.; Pagán, B. R.; Bonds, B. W.; Pal, J. S.; Diffenbaugh, N. S.; Preston, B. L.
2017-12-01
Using high-resolution near-term ensemble projections of hydro-climatic changes, we investigate impacts of climate change on natural and human systems across the CONUS. Climate projections are based a hybrid downscaling approach where a combination of regional and hydrological models are used to downscales 11 Global Climate Models from the 5th phase of Coupled Model Inter-comparison Project to 4km horizontal grid spacing for 41 years in the historical period (1965-2005) and 41 years in the near-term future period (2010-2050) under Representative Concentration Pathway 8.5. Should emissions continue to rise, climatic changes will likely intensify the regional hydrological cycle over CONUS through the acceleration of the historical trends in cold, warm and wet extremes. Our results show robust changes in the occurrence of severe weather conditions and in the likelihood of ice, freezing rain and snowstorms that may have disruptive impact on large human population across the U.S. More summer like conditions will also drive increase in cooling demands and a net increase in the energy consumption over many regions. We further use an integrated vulnerability index that combines human exposure to different climate extremes (hot, cold, wet and dry) and changes in socioeconomic pathways (due to changes in population and income levels), to reveal that future exposure to potentially damaging climatic conditions will likely increase manifold for population living in major urban centers in California, Texas, Florida, Michigan, Illinois and Northeast. With the current trajectory of emissions, these results warrant that a large human population across the U.S. may feel the impacts of climate change within its lifespan.
Chaves, Luis Fernando; Jian, Jiun-Yu; Moji, Kazuhiko
2018-02-08
The bamboo mosquito, Tripteroides bambusa (Yamada) (Diptera: Culicidae), is a common insect across forested landscapes in Japan. Several studies have reported its overwintering as larvae and eggs, in both natural and artificial water containers. Nevertheless, it is unclear how sensitive this mosquito species is to changes in weather patterns associated with global warming. The El Niño event of 2015 through 2016 was one of the strongest on record and provided an ideal scenario for observations on the overwintering of the bamboo mosquito during a winter predicted to be unusually warm. Thus, we set oviposition traps in mid October 2015 and made weekly observations, from December 2015 to May 2016, on bamboo mosquito larval recruitment and pupation in Nagasaki, Japan. We found that larvae were pupating as late as the first week of January (prior records from the study site indicated mosquito pupation ended by mid-late October) and that pupation resumed in mid April (one month earlier than previous records at the study site). We also found that fourth instar larvae were able to survive in frozen oviposition traps following an extremely unusual snowstorm and cold spell and that recruitment of larvae from eggs happened after this unusual event. Our analysis suggested that overwintering and metamorphosis of the bamboo mosquito is sensitive to average and extreme temperatures, the latter measured by temperature kurtosis. Our results highlight the need to better understand changes in overwintering strategies in insects, and associated trade-offs and impacts on population dynamics, in light of climate change. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Sancho, Carlos; Belmonte, Ánchel; Bartolomé, Miguel; Moreno, Ana; Leunda, María; López-Martínez, Jerónimo
2018-02-01
Perennial ice deposits in caves represent unique, but underexplored, terrestrial sequences that potentially contain outstanding palaeoclimatic records. Here, we present a pioneer palaeoenvironmental study of an ice deposit preserved in a small sag-type cave (A294) in the Central Pyrenees (northern Iberian Peninsula). The 9.25-m-thick sequence, which is dated from 6100 ± 107 to 1888 ± 64 cal BP, represents the oldest known firn ice record worldwide. The stratigraphy (detrital layers, unconformities, and cross stratification), plant macrofossils, and isotopic signature (similarity between the ice linear distribution, δ2H = 7.83δ18O + 8.4, and the Global Meteoric Water Line) of the ice point to the diagenesis of snow introduced to the cave by winter snowstorms. Four phases of rapid ice accumulation (6100-5515, 4945-4250, 3810-3155, and 2450-1890 cal BP) are related to wetter and colder winters. Comparison of the isotopic composition (δ18O and deuterium excess) of the ice with other paleoclimate records show that both source effects and the North Atlantic Oscillation (NAO) mechanism exert a dominant influence on the ice cave record. The NAO signal may be a combination of source effects and rainfall amount. Three intervals with low ice accumulation occurred between the phases of rapid accumulation and were related to drier, and possibly warmer, winters. These centennial-scale episodes appear to be in-phase with regional arid events, as established from high altitude lacustrine records and can be correlated to global Rapid Climate Change events. The current warming trend has dramatically decreased the volume of the ice deposit in cave A294.
Impacts of future changes in weather condition on U.S. transportation
NASA Astrophysics Data System (ADS)
Ashfaq, M.; Pagan, B. R.; Bonds, B. W.; Rastogi, D.
2016-12-01
High-resolution near-term climate projections suggest an intensification of the regional hydrological cycle over the U.S., leading to stronger and more frequent precipitation events. Increase in precipitation extremes is driven by both warm season convection driven rainstorms and frontal based cold season snowstorms. Results also indicate that future warming is driven more by hot extremes, as decrease in cold extremes is three times less than increase in hot extremes. While projected changes may likely impact the transportation system across the U.S., accurate estimation of such impacts requires knowledge of changes in precipitation types (rain, snow, ice, freezing rain). Here we apply four commonly used precipitation typing algorithms to determine different types of precipitation in an 11-memebr high-resolution (18 km) climate projections dataset that covers 40 years (1966-2005) in the baseline and 40 years (2011-2050) in the future period under Representative Concentration Pathway 8.5. The results are compared with the NARR-based precipitation classification in the historical period at the county level. Documented weather related county level fatal crash data for the CONUS and non-fatal crash data for selected states in the eastern half of the U.S. is compiled to develop the historical baseline for the impact of weather conditions on transportation. Further analysis is carried out to understand the ability of an ensemble of high-resolution simulations to produce different precipitation types in the baseline period, potential changes in the occurrence of each type of weather condition in the future period and that how such changes may impact road conditions, vehicle crashes and human fatalities. Additional analysis will also be explored to understand the impact of changes in winter weather conditions on the cost associated with road maintenance.
Sensitivity of simulated snow cloud properties to mass-diameter parameterizations.
NASA Astrophysics Data System (ADS)
Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.
2015-12-01
Mass to diameter (m-D) relationships are used in model parameterization schemes to represent ice cloud microphysics and in retrievals of bulk cloud properties from remote sensing instruments. One of the most common relationships, used in the current Global Precipitation Measurement retrieval algorithm for example, assigns the density of snow as a constant tenth of the density of ice (0.1g/m^3). This assumption stands in contrast to the results of derived m-D relationships of snow particles, which imply decreasing particle densities at larger sizes and result in particle masses orders of magnitude below the constant density relationship. In this study, forward simulations of bulk cloud properties (e.g., total water content, radar reflectivity and precipitation rate) derived from measured size distributions using several historical m-D relationships are presented. This expands upon previous studies that mainly focused on smaller ice particles because of the examination of precipitation-sized particles here. In situ and remote sensing data from the GPM Cold season Experiment (GCPEx) and Canadian CloudSAT/Calypso Validation Program (C3VP), both synoptic snowstorm field experiments in southern Ontario, Canada, are used to evaluate the forward simulations against total water content measured by the Nevzorov and Cloud Spectrometer and Impactor (CSI) probe, radar reflectivity measured by a C band ground based radar and a nadir pointing Ku/Ka dual frequency airborne radar, and precipitation rate measured by a 2D video disdrometer. There are differences between the bulk cloud properties derived using varying m-D relations, with constant density assumptions producing results differing substantially from the bulk measured quantities. The variability in bulk cloud properties derived using different m-D relations is compared against the natural variability in those parameters seen in the GCPEx and C3VP field experiments.
Zhou, Youbing; Newman, Chris; Chen, Jin; Xie, Zongqiang; Macdonald, David W
2013-09-01
Ongoing global climate change is predicted to increase the frequency and magnitude of extreme weather events, impacting population dynamics and community structure. There is, however, a critical lack of case studies considering how climatic perturbations affect biotic interactions. Here, we document how an obligate seed dispersal mutualism was disrupted by a temporally anomalous and meteorologically extreme interlude of unseasonably frigid weather, with accompanying snowstorms, in subtropical China, during January-February 2008. Based on the analysis of 5892 fecal samples (representing six mammalian seed dispersers), this event caused a substantial disruption to the relative seed dispersal function for the raisin tree Hovenia dulcis from prestorm 6.29 (2006) and 11.47 (2007), down to 0.35 during the storm (2008). Crucially, this was due to impacts on mammalian seed dispersers and not due to a paucity of fruit, where 4.63 fruit per branch were available in January 2008, vs. 3.73 in 2006 and 3.58 in 2007. An induced dietary shift occurred among omnivorous carnivores during this event, from the consumption fruit to small mammals and birds, reducing their role in seed dispersal substantially. Induced range shift extinguished the functionality of herbivorous mammals completely, however, seed dispersal function was compensated in part by three omnivorous carnivores during poststorm years, and thus while the mutualism remained intact it was enacted by a narrower assemblage of species, rendering the system more vulnerable to extrinsic perturbations. The storm's extended effects also had anthropogenic corollaries - migrating ungulates becoming exposed to heightened levels of illegal hunting - causing long-term modification to the seed dispersal community and mutualism dynamics. Furthermore, degraded forests proved especially vulnerable to the storm's effects. Considering increasing climate variability and anthropogenic disturbance, the impacts of such massive, aberrant events warrant conservation concern, while affording unique insights into the stability of mutualisms and the processes that structure biodiversity and mediate ecosystem dynamics. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Friday, E.; Barron, E. J.; Elfring, C.; Geller, L.
2002-12-01
When a major East Coast snowstorm was forecast during the winter of 2001, people began preparing - both the public and the decision-makers responsible for public services. There was an air of urgency, heightened because just the previous year the region had been hit hard by a storm of unpredicted strength. But this time, the storm never materialized and people were left wondering what went "wrong" with the forecast. Did something go wrong or did forecasters just fail to communicate their information in an effective way? Did they convey a sense of the likelihood of the event and keep people up to date as information changed? In the summer of 2001, the National Academies' Board on Atmospheric Sciences and Climate hosted a workshop designed to explore the communication of uncertainty in weather and climate information. Workshop participants examined five case studies that were chosen to illustrate a range of forecast timescales and certainty levels. The cases were: Red River Flood, Grand Forks, April 1997; East Coast Winter Storm, March 2001; Oklahoma-Kansas Tornado Outbreak, May 3, 1999; El Nino 1997-1998, and Climate Change Science, a report issued in 2001. In each of these cases, participants examined who said what, when, to whom, how, and with what effect. The last two cases specifically address climate-related topics. This paper summarizes the final workshop report (Communicating Uncertainties in Weather and Climate Information: Summary of a Workshop, NRC 2002), including an overview of the five cases and lessons learned about communicating uncertainties in weather and climate forecasts. Among other findings, the report stresses that communication and appropriate dissemination of information, including information about uncertainty in the forecasts and the forecaster's confidence in the product, should be an integral, ongoing part of the forecasting process, not an afterthought. Explaining uncertainty should be an integral part of what weather and climate forecasters do and is essential to delivering accurate and useful information.
NASA Astrophysics Data System (ADS)
Prieto, M. R.; Rojas, F.
2011-11-01
The wrong management of watering in the highest zones of the Mendoza northern oasis, the topography of the terrain and the deficient drainage, together with neotectonics phenomena, but mostly a dramatic and progressive increase of the Rio Mendoza flow volume originated the expansion of the wetlands area at the NE of the city of Mendoza at the turn of the 18th century, while in previous centuries it had retracted to a minimum. The area grew until reaching the dimension of large wetlands in the lowest oasis zones, resulting from a larger runoff and soil saturation by the rise of the phreatic layers. This situation remained throughout the 19th century, affecting the extension and use of the available land for human activity. The purpose of this study was to research this process that culminated in 1930 with the partial desiccation of the area. We have given particular importance to the influence of the climatic fluctuations in the Cordillera de los Andes and to the consequent variations of the Rio Mendoza flow volume in this process. For the analysis we used snowfall series at the cordillera and flow volume of the Rio Mendoza, built by Prieto (2009) with documental data. We analyzed which were the mediate and immediate consequences of the growth and later desiccation of the wetlands over the environment and its present repercussion on the ecosystem (salinization, poor soil drainage, soil alkalinization, sedimentation). In addition, we have also worked over georeferenced historic charts that partially reflect the behavior of the Cienaga del Bermejo during the 18th, 19th and 20th centuries. This behavior characterized by "growth pulses" and retraction moments is reflected in the analyzed charts, where those moments of major growth coincide with cycles of bigger snowstorms and larger flow volume in the Rio Mendoza.
NASA Astrophysics Data System (ADS)
Ajayakumar, J.; Shook, E.; Turner, V. K.
2017-10-01
With social media becoming increasingly location-based, there has been a greater push from researchers across various domains including social science, public health, and disaster management, to tap in the spatial, temporal, and textual data available from these sources to analyze public response during extreme events such as an epidemic outbreak or a natural disaster. Studies based on demographics and other socio-economic factors suggests that social media data could be highly skewed based on the variations of population density with respect to place. To capture the spatio-temporal variations in public response during extreme events we have developed the Socio-Environmental Data Explorer (SEDE). SEDE collects and integrates social media, news and environmental data to support exploration and assessment of public response to extreme events. For this study, using SEDE, we conduct spatio-temporal social media response analysis on four major extreme events in the United States including the "North American storm complex" in December 2015, the "snowstorm Jonas" in January 2016, the "West Virginia floods" in June 2016, and the "Hurricane Matthew" in October 2016. Analysis is conducted on geo-tagged social media data from Twitter and warnings from the storm events database provided by National Centers For Environmental Information (NCEI) for analysis. Results demonstrate that, to support complex social media analyses, spatial and population-based normalization and filtering is necessary. The implications of these results suggests that, while developing software solutions to support analysis of non-conventional data sources such as social media, it is quintessential to identify the inherent biases associated with the data sources, and adapt techniques and enhance capabilities to mitigate the bias. The normalization strategies that we have developed and incorporated to SEDE will be helpful in reducing the population bias associated with social media data and will be useful for researchers and decision makers to enhance their analysis on spatio-temporal social media responses during extreme events.
NASA Astrophysics Data System (ADS)
Prikryl, Paul; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Bruntz, Robert; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel; Pastirčák, Vladimír
2017-04-01
More than four decades have passed since a link between solar wind magnetic sector boundary structure and mid-latitude upper tropospheric vorticity was discovered (Wilcox et al., Science, 180, 185-186, 1973). The link has been later confirmed and various physical mechanisms proposed but apart from controversy, little attention has been drawn to these results. To further emphasize their importance we investigate the occurrence of mid-latitude severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system. It is observed that significant snowstorms, windstorms and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., Ann. Geophys., 27, 1-30, 2009; Prikryl et al., J. Atmos. Sol.-Terr. Phys., 149, 219-231, 2016) is corroborated for the southern hemisphere. A physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., Space Sci. Rev., 54, 297-375, 1990) show that propagating waves originating in the thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere thus initiating convection to form cloud/precipitation bands (Prikryl et al., Ann. Geophys., 27, 31-57, 2009). It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.
The social construction of disasters in the United States: A historical and cultural phenomenon.
Neaves, Tonya T; Wachhaus, T Aaron; Royer, Grace A
Societal risks from hazards are continually increasing. Each year, disasters cause thousands of deaths and cost billions of dollars. In the first half of 2011, the United States endured countless disasters-winter snowstorms in the Midwest and Northeast; severe tornadic weather in the Mississippi, Alabama, and Missouri; flash flooding in Nashville; flooding along the Mississippi River; an earthquake on the East Coast, wildfires in Texas, and Hurricane Irene. Fundamental disaster planning is regarded as an interdisciplinary approach to develop strategies and instituting policies concerned with phases of emergency management; as such, its needs are predicated on the identification of hazards and assessment of risks. Even if the probability or intensity of risks to disasters remains fairly constant, population growth, alongside economic and infrastructural development, will unavoidably result in a concomitant increase of places prone to such events. One of the greatest barriers to emergency management efforts is the failure to fully grasp the socially and politically constructed meaning of disasters. This article investigates the ways in which language has been used historically in the American lexicon to make sense of disasters in the United States in an effort to improve communal resiliency. Serving as both an idea and experience, the terminology used to convey our/the modern-day concept of disaster is a result of a cultural artifact, ie, a given time and specific place. Tools such as Google Ngram Viewer and CASOS AutoMap are used to explore the penetration, duration, and change in disaster terminology among American English literature for more than 200 years, from 1800 to 2008, by quantifying written culture. The language of disasters is an integral part of disaster response, as talking is the primary way that most people respond to and recover from disasters. The vast majority of people are not affected by any given disaster, and so it is through discussing a disaster that people make sense of it, respond, and react to it, and fit something that is overwhelming and beyond human control into the normal order of life.
Survey of Hospital Employees' Personal Preparedness and Willingness to Work Following a Disaster.
Brice, Jane H; Gregg, David; Sawyer, Dalton; Cyr, Julianne M
2017-08-01
Little is known about the personal readiness of hospital staff for disasters. As many as 30% of hospital staff say that they plan not to report for work during a large-scale disaster. We sought to understand the personal disaster preparedness for hospital staff. Surveys were distributed to the staff of a large academic tertiary-care hospital by either a paper-based version distributed through the departmental safety coordinators or a Web-based version distributed through employee e-mail services, depending on employee familiarity with and access to computer services. Surveys assessed the demographic variables and characteristics of personal readiness for disaster. Of the individuals who accessed the survey, 1334 (95.9%) enrolled in it. Women made up 75% of the respondents, with a mean age of 43 years. Respondents had worked at the hospital an average of 9 years, with the majority (90%) being full-time employees. Most households (93%) reported ≤4 members, 6% supported a person with special medical needs, and 17% were headed by a single parent. A small number (24%) of respondents reported an established meeting place for reuniting households during a disaster. Many reported stockpiling a 3-day supply of food (86%) and a 3-day supply of water (51%). Eighteen percent of respondents were not aware of workplace evacuation plans. Most respondents were willing to report to work for natural disasters (eg, tornado, snowstorm; all categories >65%), but fewer respondents were willing to report during events such as an influenza epidemic (54%), a biological outbreak (41%), a chemical exposure, (40%), or a radiation exposure (39%). Multivariate analysis revealed being female, having a child in the household younger than 6 years old, and having a child in school lowered the likelihood of being willing to report to work in two or more event types, whereas pet ownership, being a clinical healthcare worker, and being familiar with the work emergency plan increased the likelihood. Despite being employed at the same facility for a prolonged period, employees reported being willing to report for work at a low rate in a variety of disasters. Subjects reported suboptimal personal preparedness for disaster, which may further limit the number of staff who will report for work. Hospitals should promote personal disaster preparedness for staff and explore staffing models with an understanding of reduced staff availability during disasters.
Natural factors of technological disasters in Russia
NASA Astrophysics Data System (ADS)
Petrova, Elena
2010-05-01
More than 90 percent of disasters occurring in the Russian Federation are technological accidents and catastrophes, which account for nearly 80 percent of all the fatalities and affected people. A total of 1966 technological disasters and 152 natural ones occurred in Russia in 2008. In addition to technical, social, and economic causes of technological disasters, natural factors also play an essential role in triggering or magnifying them. A data base of technological disasters happened in Russia since 1992 has been created. More than 11,000 events are listed in the data base. New information is constantly being added to it. Occurrence time and location, a type of disaster, a number of people killed and affected, economic and ecological losses as well as a probable cause of every disaster are registered; its short description is also included. Using collected data a contribution of various natural hazards and phenomena to occurrence of technological disasters in Russia was assessed. Almost 5 percent of all technological disasters listed in the data base were triggered by natural processes. Natural factors caused the most part of accidents at power supply systems (72 percent), 11 percent of accidents at heat- and 9 percent at water supply systems; more than 10 percent of sudden collapses of buildings and mines as well as water accidents; 4.5 percent of pipeline ruptures, and 2 to 3 percent of air crashes, automobile and railway accidents. The majority of these technological disasters and accidents caused by natural factors were produced by windstorms and hurricanes (37 percent), snowfalls and snowstorms (27 percent), rainfalls (16 percent), hard frost and icy conditions of roads (12 percent), and thunderstorms (nearly 4 percent). Climate changes expected until the end of the century will have important consequences for frequency increasing and change in spatial distribution of technological disasters triggered by hydrometeorological phenomena. Increasing of precipitation (especially in liquid form) in cold seasons and alternation of thaw periods and cold spells may trigger abruption of transmission facilities and other lines of communication, sudden collapses of structures and roofs, increasing in number of transport accidents. Fires and explosions caused by heat may be more frequent in south regions. The area of agricultural accidents may be extending. Permafrost area comes to 63 percent in total area of Russia. Expected permafrost thawing may produce risk of roads, railways, and pipelines disruption, destruction of dangerous waste storages, and sudden collapse of buildings and other structures. The problem of relationships between natural hazards and technological disasters needs further investigation, especially from the point of view of climate change expected.
Imaging plus X: multimodal models of neurodegenerative disease.
Oxtoby, Neil P; Alexander, Daniel C
2017-08-01
This article argues that the time is approaching for data-driven disease modelling to take centre stage in the study and management of neurodegenerative disease. The snowstorm of data now available to the clinician defies qualitative evaluation; the heterogeneity of data types complicates integration through traditional statistical methods; and the large datasets becoming available remain far from the big-data sizes necessary for fully data-driven machine-learning approaches. The recent emergence of data-driven disease progression models provides a balance between imposed knowledge of disease features and patterns learned from data. The resulting models are both predictive of disease progression in individual patients and informative in terms of revealing underlying biological patterns. Largely inspired by observational models, data-driven disease progression models have emerged in the last few years as a feasible means for understanding the development of neurodegenerative diseases. These models have revealed insights into frontotemporal dementia, Huntington's disease, multiple sclerosis, Parkinson's disease and other conditions. For example, event-based models have revealed finer graded understanding of progression patterns; self-modelling regression and differential equation models have provided data-driven biomarker trajectories; spatiotemporal models have shown that brain shape changes, for example of the hippocampus, can occur before detectable neurodegeneration; and network models have provided some support for prion-like mechanistic hypotheses of disease propagation. The most mature results are in sporadic Alzheimer's disease, in large part because of the availability of the Alzheimer's disease neuroimaging initiative dataset. Results generally support the prevailing amyloid-led hypothetical model of Alzheimer's disease, while revealing finer detail and insight into disease progression. The emerging field of disease progression modelling provides a natural mechanism to integrate different kinds of information, for example from imaging, serum and cerebrospinal fluid markers and cognitive tests, to obtain new insights into progressive diseases. Such insights include fine-grained longitudinal patterns of neurodegeneration, from early stages, and the heterogeneity of these trajectories over the population. More pragmatically, such models enable finer precision in patient staging and stratification, prediction of progression rates and earlier and better identification of at-risk individuals. We argue that this will make disease progression modelling invaluable for recruitment and end-points in future clinical trials, potentially ameliorating the high failure rate in trials of, e.g., Alzheimer's disease therapies. We review the state of the art in these techniques and discuss the future steps required to translate the ideas to front-line application.
Introduction to the 2012-2013 Tolbachik eruption special issue
NASA Astrophysics Data System (ADS)
Edwards, Benjamin R.; Belousov, Alexander; Belousova, Marina; Volynets, Anna
2015-12-01
The Tolbachik volcanic complex in central Kamchatka holds a special place in global volcanological studies. It is one of 4 areas of extensive historic volcanic activity in the northern part of the Central Kamchatka Depression (the others being Klyuchevskoy, Bezymianny, Shiveluch), and is part of the Klyuchevskoy volcanic group, which is one of the most active areas of volcanism on Earth. Tolbachik is especially well-known due largely to the massive 1975-1976 eruption that became known as the Great Tolbachik Fissure eruption (GTFE; Fedotov, 1983; Fedotov et al., 1984). This was one of the first eruptions in Russia to be predicted based on precursory seismic activity, based on M5 earthquakes approximately one week before the eruption started, and was intensively studied during its course by a large number of Russian scientists. A summary of those studies was published, first in Russian and then in English, and it became widely read for many reasons. One in particular is that the eruption was somewhat unusual for a subduction zone setting; although many subduction zone stratovolcanoes have associated basaltic tephra cone-lava fields, this was the first such Hawaiian-style eruption to be widely observed. After the end of the eruption in 1976, the complex showed no signs of activity until 27 November 2012, when increased seismic activity was registered by the Kamchatka Branch of the Russian Geophysical Survey and a red glow from the eruption site was first noticed through the snowstorm haze. This prompted them, and then the Kamchatka Volcanic Emergency Response Team (KVERT) to issue an alert that activity was coming from the south flank of Plosky Tolbachik volcano, the younger of two volcanic edifices (the older is Ostry Tolbachik) that together make up the bulk of the complex along with tephra cone-lava fields that lie along a NE-SW fissure zone that transects Plosky Tolbachik. The new eruption lasted for more than 250 days and, like the 1975-1976 eruption, was dominated by Hawaiian-style activity. With the start of the eruption coinciding with the onset of winter months in Kamchatka, field observations, while virtually continuous, were also not as numerous as those that documented the GTFE 36 years previously. Nonetheless the Institute of Volcanology and Seismology (IVS) in Petropavlovsk-Kamchatsky provided almost continuous field-based coverage throughout the eruption. Many of the research projects begun during the eruption comprise international teams of scientists who were able to partner with IVS through international funding, particularly through the United States National Science Foundation and the National Geographic Committee for Research.
NASA Technical Reports Server (NTRS)
Kossin, J. P.; Hall, T.; Knutson, T.; Kunkel, K. E.; Trapp, R. J.; Waliser, D. E.; Wehner, M. F.
2017-01-01
Key Findings: 1. Human activities have contributed substantially to observed ocean-atmosphere variability in the Atlantic Ocean (medium confidence), and these changes have contributed to the observed upward trend in North Atlantic hurricane activity since the 1970s (medium confidence). 2. Both theory and numerical modeling simulations generally indicate an increase in tropical cyclone (TC) intensity in a warmer world, and the models generally show an increase in the number of very intense TCs. For Atlantic and eastern North Pacific hurricanes and western North Pacific typhoons, increases are projected in precipitation rates (high confidence) and intensity (medium confidence). The frequency of the most intense of these storms is projected to increase in the Atlantic and western North Pacific (low confidence) and in the eastern North Pacific (medium confidence). 3. Tornado activity in the United States has become more variable, particularly over the 2000s, with a decrease in the number of days per year with tornadoes and an increase in the number of tornadoes on these days (medium confidence). Confidence in past trends for hail and severe thunderstorm winds, however, is low. Climate models consistently project environmental changes that would putatively support an increase in the frequency and intensity of severe thunderstorms (a category that combines tornadoes, hail, and winds), especially over regions that are currently prone to these hazards, but confidence in the details of this projected increase is low. 4. There has been a trend toward earlier snowmelt and a decrease in snowstorm frequency on the southern margins of climatologically snowy areas (medium confidence). Winter storm tracks have shifted northward since 1950 over the Northern Hemisphere (medium confidence). Projections of winter storm frequency and intensity over the United States vary from increasing to decreasing depending on region, but model agreement is poor and confidence is low. Potential linkages between the frequency and intensity of severe winter storms in the United States and accelerated warming in the Arctic have been postulated, but they are complex, and, to some extent, contested, and confidence in the connection is currently low. 5. The frequency and severity of landfalling "atmospheric rivers" on the U.S. West Coast (narrow streams of moisture that account for 30 percent to 40 percent of the typical snowpack and annual precipitation in the region and are associated with severe flooding events) will increase as a result of increasing evaporation and resulting higher atmospheric water vapor that occurs with increasing temperature. (Medium confidence)
2017-12-08
In orbit above the semi-desert grasslands in Kazakhstan, an astronaut aboard the International Space Station spotted one of the few features that stand out. Lake Tengiz is the only large lake (1590 square kilometers, 615 square miles) in northern Kazakhstan. Through white wisps of cloud, the crew member photographed the 50 kilometer-long eastern shore of the lake, with its thin, winding islands and white beaches. The islands and intervening waterways make a rich habitat for birds in this part of Asia. At least 318 species of birds have been identified at the lake; 22 of them are endangered. It is the northernmost habitat of the pink flamingo. The lake system is Kazakhstan’s first UNESCO World Heritage Site, and it has been declared a RAMSAR wetland site of international importance. Part of the richness of area is its complex hydrology. Fresh water enters the system via the Kulanutpes River, so there are small lakes (lower right) full of fresh water. But in this closed basin, the water in the main lake (top) slowly evaporates, becoming salty. Winds stir up bigger waves on the main lake, dispersing sediment and salt and making the water a cloudier and lighter blue-green. (Another astronaut photograph shows the entire lake system, while this story provides more information.) The strange shape of the islands is not easy to interpret. They may be drowned remnants of delta distributaries of the Kulanutpes River. Westerly winds probably have had a smoothing effect on the shorelines, especially in a shallow lake like Tengiz, which is only about 6 meters (20 feet) deep. The lake has an exciting history for people who follow space exploration. In 1976, a Soyuz spacecraft landed in the lake near the north shore (top right). The capsule crashed through the ice and sank during an October snowstorm when temperatures were -22°C (-8°F). Because of low power, the capsule was unheated and the crew was feared lost. It was many hours before the airtight capsule was located and divers could attach flotation tanks to get the capsule to the surface. It was then dragged ashore across the ice by helicopter. The rescue effort took nine hours before the crew was able to safely exit the capsule. Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Satellite Eyes New England Winter Storm Breaking Records
2015-02-09
Another large snowstorm affecting New England was dropping more snow on the region and breaking records on February 9, as NOAA's GOES-East satellite captured an image of the clouds associated with the storm system. On Feb. 9, NOAA's National Weather Service in Boston, Massachusetts noted that "The 30-day snowfall total at Boston ending 7 a.m. this morning is 61.6 inches. This exceeds the previous maximum 30 day snowfall total on record at Boston, which was 58.8 inches ending Feb 7 1978." The GOES-East image was created by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Maryland. It showed a blanket of clouds over the U.S. northeast that stretched down to the Mid-Atlantic where there was no snow on the ground in Washington, D.C. NOAA's National Weather Service Weather Prediction Center provided a look at the extent of the storm system and noted "Heavy snow will impact portions of New York State and New England as the new week begins. Freezing rain will spread from western Pennsylvania to Long Island, with rain for the mid-Atlantic states." The low pressure area bringing the snow to the northeast was located in central Pennsylvania. A cold front extended southward from the low across the Tennessee Valley while a stationary boundary extended eastward from the low across the central mid-Atlantic. To create the image, NASA/NOAA's GOES Project takes the cloud data from NOAA's GOES-East satellite and overlays it on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, those data created the entire picture of the storm. NOAA's GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric triggers for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's NWS website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Garcia-Hernandez, Cristina; Ruiz-Fernández, Jesús; Gallinar, David
2015-04-01
In this paper we study the events triggered by the Great Blizzard of 1888 in the Asturian Massif as a case study that shows how one hazard can be the main cause of another hazard occurring. The reconstruction of the chain of hazards triggered by the episode has been done on the basis of nivo-meteorogical conditions, event geographical location, and socio-economic impact. The episode has been studied through the analysis of the issues published in six different newspapers between the 20th of January and 30th of May 1888. We have collected the data of the ancient meteorological station of the University of Oviedo, and those contained in parish documents. Field work consisted in visual inspection and interviews to the contemporary residents. The information has been stored and crossed for statistical analysis using a logical database structure that has been designed with this purpose. The snowfall episode consisted in four consecutive snowstorms that occurred between the 14th of February 1888 and the 8th of April 1888, creating snow covers with an average depth ranging between 5 and 7 m. The snow accumulations were the main cause of material damage, affecting 27 high- and mid-elevation mountain municipalities. However, we have to consider that the newspapers only reflected those events affecting densely populated areas along with those which affected vital economic spaces (railway lines, roads in mountain passes, etc.). There were more than 200 interruptions with the traffic flow and communication outages, hampering economic activities. Snow built up on the roofs added extra weight to the structure of the buildings so more than 900 constructions collapsed, killing three persons and causing the loss of more than 19.000 head of cattle. Moreover, these snow accumulations were the basis of an episode of sixty-four snow avalanches that, undoubtedly, meant the main personal damage with a number of dead and wounded that reached 29 and 23 respectively. During the snowfall breaks, snow-melting processes became important: the river rising affected all the main hydrological basins, 29 news related to material damage were documented and three people died drowned. In addition, snow avalanches caused fast damming followed of violent river risings in at least two cases, causing even worse damages because of the surprise effect. Finally, we have to consider the connection that can be made between the melting process and thirty-six mass movements that were documented, destroying six buildings, causing the death of one person and dozens of interruptions in communications: the increase in such events is clearly associated with the temperature rising and, at the same time, its decline can be observed with the temperature dropping. These events took place mainly during the second snowfall break, so we must take into account the cumulative effect on the water saturation of the surface formations.
Snowstorm Along the China-Mongolia-Russia Borders
NASA Technical Reports Server (NTRS)
2004-01-01
Heavy snowfall on March 12, 2004, across north China's Inner Mongolia Autonomous Region, Mongolia and Russia, caused train and highway traffic to stop for several days along the Russia-China border. This pair of images from the Multi-angle Imaging SpectroRadiometer (MISR) highlights the snow and surface properties across the region on March 13. The left-hand image is a multi-spectral false-color view made from the near-infrared, red, and green bands of MISR's vertical-viewing (nadir) camera. The right-hand image is a multi-angle false-color view made from the red band data of the 46-degree aftward camera, the nadir camera, and the 46-degree forward camera. About midway between the frozen expanse of China's Hulun Nur Lake (along the right-hand edge of the images) and Russia's Torey Lakes (above image center) is a dark linear feature that corresponds with the China-Mongolia border. In the upper portion of the images, many small plumes of black smoke rise from coal and wood fires and blow toward the southeast over the frozen lakes and snow-covered grasslands. Along the upper left-hand portion of the images, in Russia's Yablonovyy mountain range and the Onon River Valley, the terrain becomes more hilly and forested. In the nadir image, vegetation appears in shades of red, owing to its high near-infrared reflectivity. In the multi-angle composite, open-canopy forested areas are indicated by green hues. Since this is a multi-angle composite, the green color arises not from the color of the leaves but from the architecture of the surface cover. The green areas appear brighter at the nadir angle than at the oblique angles because more of the snow-covered surface in the gaps between the trees is visible. Color variations in the multi-angle composite also indicate angular reflectance properties for areas covered by snow and ice. The light blue color of the frozen lakes is due to the increased forward scattering of smooth ice, and light orange colors indicate rougher ice or snow, which scatters more light in the backward direction. The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire Earth between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 22525. The panels cover an area of about 355 kilometers x 380 kilometers, and utilize data from blocks 50 to 52 within World Reference System-2 path 126. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.NASA Astrophysics Data System (ADS)
Wasilewski, P. J.
2007-12-01
The Global Snowflake Network (GSN) is a program that is simultaneously a science program and an education program. When the validation of the procedures (collection and identification of the type of snowflakes and the associated satellite image archive, as a serial record of a storm), is achieved, then the program becomes a scientific resource. This latter is the ultimate goal. That's why NASA has launched the Global Snowflake Network, a massive project that aims to involve the general public to "collect and classify" falling snowflakes. The data will be compiled into a massive database, along with satellite images, that will help climatologists and others who study climate-related phenomena gain a better understanding of wintry meteorology as they track various snowstorms around the globe. A great deal of information about the atmosphere dynamics and cloud microphysics can be derived from the serial collection and identification of the types of snow crystals and the degree of riming of the snow crystals during the progress of a snow storm. Forecasting winter weather depends in part on cloud physics, which deals with precipitation type, and if it happens to be snow- the crystal type, size, and density of the snowflake population. The History of Winter website will host the evolving snow and ice features for the IPY. Type "Global Snowflake Network" into the search engine (such as GOOGLE) and you will receive a demonstration of the operation of the preliminary GSN by the Indigenous community. The expeditions FINNMARK2007 and the POLAR Husky GoNorth 2007 expedition took the complement of Thermochrons with multimedia instructions for the Global Snowflake Network. This approach demonstrates the continuous Thermochron monitoring of expedition temperature and provides otherwise inaccessible snowflake information to NASA and others interested in the Polar region snow. In addition, reindeer herder and Ph.D. student, Inger Marie G. Eira, will incorporate the HOW, GSN thermochrons, snow pit observations, and snowflake identification protocols into her Ph.D. dissertation on snow changes, and reindeer pastures in Northern Norway. SCIENTISTS DISCOVER - ARTISTS INTERPRET - TOGETHER WE CAN OPEN THE EYES OF THE WORLD. This theme of the "Polar Artists "can be reached from the web search. Water ice is one of the most widespread, intriguing, and familiar compounds on the planet, in the solar system, and beyond. On the planet, it falls as snow, forms lacy deposits on winter windows, creates skating surfaces on lakes, gracefully drapes rock cliffs, packs thickly on the polar oceans, and lays even thicker on the ice caps blanketing Greenland and Antarctica. Of the 11 forms of water ice so far identified, only the form found on Earth can provide a "Frizion". Communicating this is part of Polar Artists outreach. We are working with Terje Isungset, from Norway, who creates musical instruments from ice. We will demonstrate how ART and Ice and Music and Ice are presented. In addition to video presentations appearing on YOUTUBE, we are preparing additional live performances of this work.
Stratabound copper-silver deposits of the Mesoproterozoic Revett formation, Montana and Idaho
Boleneus, David E.; Appelgate, Larry M.; Stewart, John H.; Zientek, Michael L.
2005-01-01
The western Montana copper belt in western Montana and northern Idaho contains several large stratabound copper-silver deposits in fine- to medium-grained quartzite beds of the Revett Formation of the Mesoproterozoic (1,470-1,401 Ma) Belt Supergroup. Production from the deposits at the Troy Mine and lesser production from the Snowstorm Mine has yielded 222,237 tons Cu and 1,657.4 tons Ag. Estimates of undeveloped resources, mostly from the world-class Rock Creek-Montanore deposits, as well as lesser amounts at the Troy Mine, total more than 2.9 million tons Cu and 2,600 tons Ag in 406 million tons of ore.The Rock Creek-Montanore and Troy deposits, which are currently the most significant undeveloped resources identified in the copper belt, are also among the largest stratabound copper-silver deposits in North America and contain about 15 percent of the copper in such deposits in North America. Worldwide, stratabound copper-silver deposits contain 23 percent of all copper resources and are the second-most important global source of the metal after porphyry copper deposits.The Revett Formation, which consists of subequal amounts of argillite, siltite, and quartzite, is informally divided into lower, middle, and upper members on the basis of the proportions of the dominant rock types. The unit thickness increases from north to south, from 1,700 ft near the Troy Mine, 55 mi north of Wallace, Idaho, to more than 5,300 ft at Wallace, Idaho, in the Coeur d'Alene Trough south of the Osburn Fault, a major right-lateral strike-slip fault.Mineral deposits in the Revett Formation occur mostly in the A-D beds of the lower member and in the middle quartzite of the upper member. The deposits are concentrated along a preore pyrite/hematite interface in relatively coarse grained, thick quartzite beds that acted as paleoaquifers for ore fluids. The deposits are characterized by mineral zones (alteration-mineral assemblages) that are a useful guide to the locations of mineral deposits. In particular, the gradational zone between the chalcopyrite-ankerite and pyrite-calcite zones is the site of most mineral deposits. Detailed information on the geology and mineral deposits of the Revett Formation is presented in the accompanying files that include (1) a tab-delimited text file providing details of the geologic and mineral-resource data for 57 Revett-subtype stratabound copper-silver deposits, occurrences, and prospects; (2) the stratigraphic records of 40 diamond-drill cores and 86 measured sections, totaling 150,752 ft of true thickness, which are provided in Excel spreadsheet and Adobe Portable Document Format files; and (3) spatial geologic data consisting of geologic maps of the Revett Formation, the subsurface locations of resources in Revett-subtype stratabound copper-silver deposits based on diamond-drill-core data, and the locations of diamond-drill holes and measured sections. The spatial data are contained in Arc/Info interchange files. Spatial information derived from these data includes the locations of mineral zones, a digital database showing untested exploration areas, and a digital database of permissive tracts for undiscovered mineral deposits.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Annotated Color-Coded Map Despite good rainfall and record-setting snowstorms in the spring of 2005, most of northeastern Wyoming, the Black Hills, and western South Dakota remain in the midst of a severe drought. This set of images and maps from NASA's Multi-angle Imaging SpectroRadiometer (MISR) contrast the appearance of the Black Hills region of northwestern South Dakota on July 12, 2000 (left column), with views acquired four years later, on July 14, 2004 (right column). The natural-color images along the top are from MISR's nadir (downward-looking) camera. The browning that appears in 2004 compared with 2000 indicates that the vigor of green vegetation was significantly diminished in 2004. The color-coded maps (along the bottom) provide a quantitative measurement of the sunlight reflected from these surfaces, and the loss of sunlight-absorbing vegetation between the 2000 and 2004 dates. As the vegetation faded with the drought, the albedo at the surface increased. Albedo measures the fraction of incident sunlight that is reflected by a surface, and can vary between zero (if all the incident sunlight is absorbed and none is reflected) and one (if all sunlight is reflected and none is absorbed). Dense forest has a low albedo; bright desert, snow and clouds, have a high albedo. Here, albedo is provided for the wavelengths of sunlight that plants use for photosynthesis (400 - 700 nanometers). This measurement is known as the albedo for Photosynthetically Active Radiation (PAR). Surfaces with greater absorption of PAR appear here in blue hues, whereas surfaces with lower absorption appear as green, yellow, orange or red. Black pixels indicate areas where albedo could not be derived, usually due to the presence of clouds. In July 2004, low albedo areas (blue pixels) are notably reduced in extent, and higher albedo areas (yellow, orange and red pixels) have increased. Because incoming sunlight is scattered by tiny particles in the atmosphere, satellite measurements of albedo and other surface properties must correct for the effects of the intervening atmosphere. These albedo retrievals make use of MISR's simultaneously derived aerosol properties to make these corrections. The multiangular nature of MISR data is also used to account for the fact that most surfaces reflect sunlight into all upward directions, with intensities that vary with angle of view. The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. This image area covers about 243 kilometers by 259 kilometers. These data products were generated from a portion of the imagery acquired during Terra orbits 3020 and 24325 and utilize data from within blocks 54 to 56 within World Reference System-2 paths 33 and 34. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.Quality of stormwater runoff discharged from Massachusetts highways, 2005-07
Smith, Kirk P.; Granato, Gregory E.
2010-01-01
The U.S. Geological Survey (USGS), in cooperation with U.S. Department of Transportation Federal Highway Administration and the Massachusetts Department of Transportation, conducted a field study from September 2005 through September 2007 to characterize the quality of highway runoff for a wide range of constituents. The highways studied had annual average daily traffic (AADT) volumes from about 3,000 to more than 190,000 vehicles per day. Highway-monitoring stations were installed at 12 locations in Massachusetts on 8 highways. The 12 monitoring stations were subdivided into 4 primary, 4 secondary, and 4 test stations. Each site contained a 100-percent impervious drainage area that included two or more catch basins sharing a common outflow pipe. Paired primary and secondary stations were located within a few miles of each other on a limited-access section of the same highway. Most of the data were collected at the primary and secondary stations, which were located on four principal highways (Route 119, Route 2, Interstate 495, and Interstate 95). The secondary stations were operated simultaneously with the primary stations for at least a year. Data from the four test stations (Route 8, Interstate 195, Interstate 190, and Interstate 93) were used to determine the transferability of the data collected from the principal highways to other highways characterized by different construction techniques, land use, and geography. Automatic-monitoring techniques were used to collect composite samples of highway runoff and make continuous measurements of several physical characteristics. Flowweighted samples of highway runoff were collected automatically during approximately 140 rain and mixed rain, sleet, and snowstorms. These samples were analyzed for physical characteristics and concentrations of 6 dissolved major ions, total nutrients, 8 total-recoverable metals, suspended sediment, and 85 semivolatile organic compounds (SVOCs), which include priority polyaromatic hydrocarbons (PAHs), phthalate esters, and other anthropogenic or naturally occurring organic compounds. The distribution of particle size of suspended sediment also was determined for composite samples of highway runoff. Samples of highway runoff were collected year round and under various dry antecedent conditions throughout the 2-year sampling period. In addition to samples of highway runoff, supplemental samples also were collected of sediment in highway runoff, background soils, berm materials, maintenance sands, deicing compounds, and vegetation matter. These additional samples were collected near or on the highways to support data analysis. There were few statistically significant differences between populations of constituent concentrations in samples from the primary and secondary stations on the same principal highways (Mann-Whitney test, 95-percent confidence level). Similarly, there were few statistically significant differences between populations of constituent concentrations for the four principal highways (data from the paired primary and secondary stations for each principal highway) and populations for test stations with similar AADT volumes. Exceptions to this include several total-recoverable metals for stations on Route 2 and Interstate 195 (highways with moderate AADT volumes), and for stations on Interstate 95 and Interstate 93 (highways with high AADT volumes). Supplemental data collected during this study indicate that many of these differences may be explained by the quantity, as well as the quality, of the sediment in samples of highway runoff. Nonparametric statistical methods also were used to test for differences between populations of sample constituent concentrations among the four principal highways that differed mainly in traffic volume. These results indicate that there were few statistically significant differences (Mann-Whitney test, 95-percent confidence level) for populations of concentrations of most total-recoverable metals
NASA Astrophysics Data System (ADS)
Kuroda, T.; Medvedev, A. S.; Kasaba, Y.; Hartogh, P.
2013-12-01
The seasonal CO2 polar cap is formed from ice particles that have fallen from the atmosphere as well as those condensed directly on the surface. The possible occurrence of CO2 snowfall in the winter polar regions have been observed, and previous simulation studies have indicated that the longitudinal irregularities of CO2 ice clouds in the northern polar region seemed to be linked to local weather phenomena. Transient planetary waves are the prominent dynamical feature during northern winters in the martian atmosphere, and this study focuses on revealing the mechanism of how the dynamical influence of transient planetary waves affects the occurrences of CO2 ice clouds, snowfalls and formations of seasonal CO2 polar cap in high latitudes during northern winters. The DRAMATIC (Dynamics, RAdiation, MAterial Transport and their mutual InteraCtions) MGCM, which is used for this study, is based on a Japanese terrestrial model (CCSR/NIES/FRCGC MIROC) with a spectral solver for the three-dimensional primitive equations. In this simulation the horizontal resolution is set at about 5.6° × 5.6° (~333 km at equator), the vertical grid consists of 69 σ-levels with the top of the model at about 100 km. Realistic topography, albedo, thermal inertia and roughness data for the Mars surface are included. Radiative effects of CO2 gas (considering only LTE) and dust, in solar and infrared wavelengths, are taken into account. We have implemented a simple scheme representing the formation and transport of CO2 ice clouds into our MGCM, and investigated snowfall in high latitudes during northern winters. The MGCM simulations showed that the CO2 ice clouds are formed at altitudes of up to ~40 km in the northern polar region (northward of 70° N) during winter, which is consistent with the observations (MRO-MCS and MGS-MOLA). In addition, we found that the occurrence of the CO2 ice clouds correlated to a large degree with the cold phases of transient planetary waves. In the altitudes above ~15 km, the cloud formations are very much aligned with the baroclinic waves with zonal wavenumber of 1 and 5-6 sols period. In the lower altitudes the baroclinic waves components with shorter periods (~3 sols) also affect the cloud formations. The fate of ice particles during sedimentation depends on the thermal structure below because it takes ~0.2 sols for particles to descend from 25 km to the surface, which is much shorter than the periods of the transient waves. We found that ice particles formed up to ~20 km can reach the surface in the form of snowfall in certain longitude regions (in 30° W-60° E), while in others these particles likely sublimate in the lower warmer atmospheric layers. Given the regular nature of such atmospheric waves on Mars, the results of this study suggest that the snowstorms may be predicted several weeks in advance. It is simply impossible to predict the snowfall somewhere on Earth in such a long time ahead, but this may be different on Mars. For missions to Mars aiming to explore these regions with rovers, such weather forecasts would offer the possibility of choosing a route that avoids heavy snow storms.
Use of Earth Observing Satellites for Operational Hazard Support
NASA Astrophysics Data System (ADS)
Wood, H. M.; Lauritson, L.
The National Oceanic and Atmospheric Administration (NOAA) relies on Earth observing satellite data to carry out its operational mission to monitor, predict, and assess changes in the Earth's atmosphere, land, and oceans. NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) uses satellite data to help lessen the impacts of natural and man-made disasters due to tropical cyclones, flash floods, heavy snowstorms, volcanic ash clouds (for aviation safety), sea ice (for shipping safety), and harmful algal blooms. Communications systems on NOAA satellites are used to support search and rescue and to relay data from data collection platforms to a variety of users. NOAA's Geostationary (GOES) and Polar (POES) Operational Environmental Satellites are used in conjunction with other satellites to support NOAA's operational mission. While NOAA's National Hurricane Center is responsible for predicting tropical cyclones affecting the U.S. mainland, NESDIS continuously monitors the tropics world wide, relaying valuable satellite interpretations of tropical systems strength and position to users throughout the world. Text messages are sent every six hours for tropical cyclones in the Western Pacific, South Pacific, and Indian Oceans. To support the monitoring, prediction, and assessment of flash floods and winter storms, NESDIS sends out text messages alerting U.S. weather forecast offices whenever NOAA satellite imagery indicates the occurrence of heavy rain or snow. NESDIS also produces a 24-hour rainfall composite graphic image covering those areas affected by heavy precipitation. The International Civil Aviation Organization (ICAO) and other aviation concerns recognized the need to keep aviators informed of volcanic hazards. To that end, nine Volcanic Ash Advisory Centers (VAAC's) were created to monitor volcanic ash plumes within their assigned airspace. NESDIS hosts one of the VAAC's. Although the NESDIS VAAC's primary responsibility is the continental U.S., Carribean, and adjacent oceans, it also tracks volcanic eruptions throughout the world. Text messages are produced along with graphic interpretations. This information, along with volcanic ash forecasts produced by NOAA's National Weather Service, is made available to U.S. Government and international agencies concerned with aviation, seismology, and climate analysis. Earth observing satellites help NESDIS to ensure safe navigation of ships through sea ice by measuring the extent, thickness, and age of ice as well as sea surface winds over the polar regions of the globe, coastal areas, and inland waterways. These satellites also help NESDIS to monitor U.S. coastal areas for dangerous algal blooms or other toxic effects to fish and sea mammals as well as monitoring floods and fires. Experimental fire products can help in the monitoring of fires and fire weather, as well as determining fire risk. Experimental soil moisture products support flood and drought monitoring. Flood extent and damage assessment for a variety of hazards can be determined from several satellites at varying spatial resolutions. The Search and Rescue Satellite Aided Tracking (SARSAT) system detects and locates persons in distress on land or water. NOAA satellites relay distress signals from emergency beacons through a network of ground stations to the U.S. Mission Control Center (USMCC). The USMCC processes the data and alerts the appropriate search and rescue authorities. SARSAT is part of the international Cospas-Sarsat Program. NOAA's GOES Data Collection (DCS) and Argos (jointly with the French space agency) POES Data Collection and Locations Systems transmit data collected from remote land and water based platforms and distributes the data to researchers, governmental and environmental organizations worldwide. The GOES DCS system allows near real time and frequent transmissions, e.g. hourly, over the Americas and much of the Atlantic and Eastern Pacific Oceans. ARGOS transmissions are less frequent, but global and provide the location of moving platforms such as animals and drifting buoys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, David; Erfani, Ehsan; Garnier, Anne
This project has evolved during its execution, and what follows are the key project findings. This project has arguably provided the first global view of how cirrus cloud (defined as having cloud base temperature T < 235 K) nucleation physics (evaluated through satellite retrievals of ice particle number concentration Ni, effective diameter De and ice water content IWC) evolves with the seasons for a given temperature, latitude zone and surface type (e.g. ocean vs. land), based on a new satellite remote sensing method developed for this project. The retrieval method is unique in that it is very sensitive to themore » small ice crystals that govern the number concentration Ni, allowing Ni to be retrieved. The method currently samples single-layer cirrus clouds having visible optical depth ranging from about 0.3 to 3.0, using co-located observations from the Infrared Imaging Radiometer (IIR) and from the CALIOP (Cloud and Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) polar orbiting satellite, employing IIR channels at 10.6 μm and 12.05 μm. Retrievals of Ni are primarily used to estimate the cirrus cloud formation mechanism; that is, either homo- or heterogeneous ice nucleation (henceforth hom and het). This is possible since, in general, hom produces more than an order of magnitude more ice crystals than does het. Thus the retrievals provide insight on how these mechanisms change with the seasons for a given latitude zone or region, based on the years 2008 and 2013. Using a conservative criterion for hom cirrus, on average, the sampled cirrus clouds formed through hom occur about 43% of the time in the Arctic and 50% of the time in the Antarctic, and during winter at mid-latitudes in the Northern Hemisphere, hom cirrus occur 37% of the time. Elsewhere (and during other seasons in the Northern Hemisphere mid-latitudes), this hom cirrus fraction is lower, and it is lowest in the tropics. Thus, the microphysical properties of cirrus clouds in the Polar Regions are much different than they are in the tropics; something unknown prior to this study. Moreover, the frequency of cirrus cloud occurrence in the Polar Regions varies strongly with season, peaking during winter in the Arctic and during spring in the Antarctic. Considering these seasonal changes in microphysics and inferred cloud coverage, this leads us to speculate that the buildup of Arctic cirrus during winter may significantly contribute to tropospheric heating in that region, possibly affecting winter jet-stream dynamics and mid-latitude weather patterns through the thermal-wind balance relationship. This cirrus cloud research provides essential guidance for realistically representing cirrus clouds in climate models; guidance previously unavailable. For example, mid-latitude hom cirrus were widespread during winter over or nearby mountainous terrain, evidently due to mountain-induced waves that produce strong updrafts at cirrus cloud levels. The treatment of turbulent mountain stress and gravity waves will likely need to be improved in climate models in order to adequately represent cirrus clouds outside the tropics. Another goal of this project was to develop a ground-based 94-GHz radar retrieval for winter snowstorms, based on (1) an improved analytical framework describing the interaction of radiation from radar with snowfall and (2) the development of a steady-state snow growth model that predicts the height-evolution of the ice particle size distribution through ice particle growth by vapor diffusion, aggregation and riming (i.e. the growth of snow through collisions with supercooled cloud droplets). Although activities (1) and (2) were completed, there was insufficient time to test and finalize the radar retrieval scheme. However, activity (2) provided a new method for relating ice particle mass “m” and projected area “A” to the ice particle maximum dimension “D”. The ice cloud microphysical processes (which determine ice cloud radiative properties) in climate models are parameterized in terms of these m-D and A-D relationships. By improving these relationships, the ice cloud radiative properties in Community Atmosphere Model version 5, or CAM5 (an atmosphere global climate model, or GCM) were improved. Student funding from the University of Nevada, Reno, was combined with funds from this project to conduct some basic research on the mechanism of the North American monsoon, or NAM. Federal research on the NAM has dwindled since 2006, but atmospheric soundings taken during research vessel cruises in the Gulf of California (GC) during the North American Monsoon Experiment (NAME) were used to reveal a likely mechanism that explains the relationship between an intrusion of tropical warm water into the GC during late spring-early summer and the onset of relatively heavy NAM rainfall in northwest Mexico and the southwestern United States. These soundings, combined with reanalysis data, satellite sea surface temperatures and satellite measurements of outgoing longwave radiation were used to develop and provide evidence for a planetary-scale NAM mechanism. As far as we know, no other physical explanation has been offered for the spring-summer evolution of the NAM system.« less