Sample records for snps detection linked

  1. Remarkable variation in the informativeness of RFLP markers linked to hemophilia B locus in Indian population groups: implication in the strategy for carrier detection.

    PubMed

    Mukherjee, S; Saha, A; Kumar P, Senthil; Chandak, G R; Majumder, P P; Ray, K

    2006-01-01

    Hemophilia B, an X-linked recessive bleeding disorder, is caused by heterogeneous mutations in the factor IX (F9) gene. Hence, carriers of the disease are usually detected by F9 gene linked RFLP analysis. We aimed to test a set of RFLP markers (DdeI, XmnI, MnlI, TaqI & HhaI), used worldwide for carrier detection, to estimate its heterozygosity in different population groups of India, and identify additional single nucleotide polymorphisms (SNPs) if necessary. A total of 8 population groups encompassing different regions of India, consisting of 107 unrelated normal females without any history of hemophilia B in the family and 13 unrelated obligate carriers were recruited in the study. Regions of F9 gene were amplified by PCR from genomic DNA of the donors followed by restriction enzyme digestion and/or sequencing as appropriate. Combined informativeness for the markers varied between 52-86% among normal females belonging to different geographical locations of India. Haplotype analysis revealed that the most prevalent haplotype lacked the restriction sites for all five RFLP markers. Screening regions of F9 gene that harbor 10 SNPs reported in dbSNP yielded only two SNPs, which increased the overall informativeness in each population group and heterozygosity in the obligate carriers for the disease from 38% to 69%. Our data show that heterozygosity of commonly used RFLP markers is remarkably variable across different regions of India. Thus prudent selection of the markers based on specific population groups including usage of additional markers is recommended for efficient carrier detection.

  2. Remarkable Variation in the Informativeness of RFLP Markers Linked to Hemophilia B Locus in Indian Population Groups: Implication in the Strategy for Carrier Detection

    PubMed Central

    Mukherjee, S.; Saha, A.; Kumar P., Senthil; Chandak, G. R.; Majumder, P. P.; Ray, K.

    2006-01-01

    Hemophilia B, an X-linked recessive bleeding disorder, is caused by heterogeneous mutations in the factor IX (F9) gene. Hence, carriers of the disease are usually detected by F9 gene linked RFLP analysis. We aimed to test a set of RFLP markers (DdeI, XmnI, MnlI, TaqI & HhaI), used worldwide for carrier detection, to estimate its heterozygosity in different population groups of India, and identify additional single nucleotide polymorphisms (SNPs) if necessary. A total of 8 population groups encompassing different regions of India, consisting of 107 unrelated normal females without any history of hemophilia B in the family and 13 unrelated obligate carriers were recruited in the study. Regions of F9 gene were amplified by PCR from genomic DNA of the donors followed by restriction enzyme digestion and/or sequencing as appropriate. Combined informativeness for the markers varied between 52–86% among normal females belonging to different geographical locations of India. Haplotype analysis revealed that the most prevalent haplotype lacked the restriction sites for all five RFLP markers. Screening regions of F9 gene that harbor 10 SNPs reported in dbSNP yielded only two SNPs, which increased the overall informativeness in each population group and heterozygosity in the obligate carriers for the disease from 38% to 69%. Our data show that heterozygosity of commonly used RFLP markers is remarkably variable across different regions of India. Thus prudent selection of the markers based on specific population groups including usage of additional markers is recommended for efficient carrier detection. PMID:17264403

  3. Nano-enabled bioanalytical approaches to ultrasensitive detection of low abundance single nucleotide polymorphisms

    PubMed Central

    Lapitan Jr., Lorico D. S.; Guo, Yuan

    2015-01-01

    Single nucleotide polymorphisms (SNPs) constitute the most common types of genetic variations in the human genome. A number of SNPs have been linked to the development of life threatening diseases including cancer, cardiovascular diseases and neurodegenerative diseases. The ability for ultrasensitive and accurate detection of low abundant disease-related SNPs in bodily fluids (e.g. blood, serum, etc.) holds a significant value in the development of non-invasive future biodiagnostic tools. Over the past two decades, nanomaterials have been utilized in a myriad of biosensing applications due to their ability of detecting extremely low quantities of biologically important biomarkers with high sensitivity and accuracy. Of particular interest is the application of such technologies in the detection of SNPs. The use of various nanomaterials, coupled with different powerful signal amplification strategies, has paved the way for a new generation of ultrasensitive SNP biodiagnostic assays. Over the past few years, several ultrasensitive SNP biosensors capable of detecting specific targets down to the ultra-low regimes (ca. aM and below) and therefore holding great promises for early clinical diagnosis of diseases have been developed. This mini review will highlight some of the most recent, significant advances in nanomaterial-based ultrasensitive SNP sensing technologies capable of detecting specific targets on the attomolar (10–18 M) regime or below. In particular, the design of novel, powerful signal amplification strategies that hold the key to the ultrasensitivity is highlighted. PMID:25785914

  4. Detection and mapping of QTL for temperature tolerance and body size in Chinook salmon (Oncorhynchus tshawytscha) using genotyping by sequencing

    PubMed Central

    Everett, Meredith V; Seeb, James E

    2014-01-01

    Understanding how organisms interact with their environments is increasingly important for conservation efforts in many species, especially in light of highly anticipated climate changes. One method for understanding this relationship is to use genetic maps and QTL mapping to detect genomic regions linked to phenotypic traits of importance for adaptation. We used high-throughput genotyping by sequencing (GBS) to both detect and map thousands of SNPs in haploid Chinook salmon (Oncorhynchus tshawytscha). We next applied this map to detect QTL related to temperature tolerance and body size in families of diploid Chinook salmon. Using these techniques, we mapped 3534 SNPs in 34 linkage groups which is consistent with the haploid chromosome number for Chinook salmon. We successfully detected three QTL for temperature tolerance and one QTL for body size at the experiment-wide level, as well as additional QTL significant at the chromosome-wide level. The use of haploids coupled with GBS provides a robust pathway to rapidly develop genomic resources in nonmodel organisms; these QTL represent preliminary progress toward linking traits of conservation interest to regions in the Chinook salmon genome. PMID:24822082

  5. A Multi-Trait, Meta-analysis for Detecting Pleiotropic Polymorphisms for Stature, Fatness and Reproduction in Beef Cattle

    PubMed Central

    Bolormaa, Sunduimijid; Pryce, Jennie E.; Reverter, Antonio; Zhang, Yuandan; Barendse, William; Kemper, Kathryn; Tier, Bruce; Savin, Keith; Hayes, Ben J.; Goddard, Michael E.

    2014-01-01

    Polymorphisms that affect complex traits or quantitative trait loci (QTL) often affect multiple traits. We describe two novel methods (1) for finding single nucleotide polymorphisms (SNPs) significantly associated with one or more traits using a multi-trait, meta-analysis, and (2) for distinguishing between a single pleiotropic QTL and multiple linked QTL. The meta-analysis uses the effect of each SNP on each of n traits, estimated in single trait genome wide association studies (GWAS). These effects are expressed as a vector of signed t-values (t) and the error covariance matrix of these t values is approximated by the correlation matrix of t-values among the traits calculated across the SNP (V). Consequently, t'V−1t is approximately distributed as a chi-squared with n degrees of freedom. An attractive feature of the meta-analysis is that it uses estimated effects of SNPs from single trait GWAS, so it can be applied to published data where individual records are not available. We demonstrate that the multi-trait method can be used to increase the power (numbers of SNPs validated in an independent population) of GWAS in a beef cattle data set including 10,191 animals genotyped for 729,068 SNPs with 32 traits recorded, including growth and reproduction traits. We can distinguish between a single pleiotropic QTL and multiple linked QTL because multiple SNPs tagging the same QTL show the same pattern of effects across traits. We confirm this finding by demonstrating that when one SNP is included in the statistical model the other SNPs have a non-significant effect. In the beef cattle data set, cluster analysis yielded four groups of QTL with similar patterns of effects across traits within a group. A linear index was used to validate SNPs having effects on multiple traits and to identify additional SNPs belonging to these four groups. PMID:24675618

  6. CsSNP: A Web-Based Tool for the Detecting of Comparative Segments SNPs.

    PubMed

    Wang, Yi; Wang, Shuangshuang; Zhou, Dongjie; Yang, Shuai; Xu, Yongchao; Yang, Chao; Yang, Long

    2016-07-01

    SNP (single nucleotide polymorphism) is a popular tool for the study of genetic diversity, evolution, and other areas. Therefore, it is necessary to develop a convenient, utility, robust, rapid, and open source detecting-SNP tool for all researchers. Since the detection of SNPs needs special software and series steps including alignment, detection, analysis and present, the study of SNPs is limited for nonprofessional users. CsSNP (Comparative segments SNP, http://biodb.sdau.edu.cn/cssnp/ ) is a freely available web tool based on the Blat, Blast, and Perl programs to detect comparative segments SNPs and to show the detail information of SNPs. The results are filtered and presented in the statistics figure and a Gbrowse map. This platform contains the reference genomic sequences and coding sequences of 60 plant species, and also provides new opportunities for the users to detect SNPs easily. CsSNP is provided a convenient tool for nonprofessional users to find comparative segments SNPs in their own sequences, and give the users the information and the analysis of SNPs, and display these data in a dynamic map. It provides a new method to detect SNPs and may accelerate related studies.

  7. A multianalytical approach to evaluate the association of 55 SNPs in 28 genes with obesity risk in North Indian adults.

    PubMed

    Srivastava, Apurva; Mittal, Balraj; Prakash, Jai; Srivastava, Pranjal; Srivastava, Nimisha; Srivastava, Neena

    2017-03-01

    The aim of the study was to investigate the association of 55 SNPs in 28 genes with obesity risk in a North Indian population using a multianalytical approach. Overall, 480 subjects from the North Indian population were studied using strict inclusion/exclusion criteria. SNP Genotyping was carried out by Sequenom Mass ARRAY platform (Sequenom, San Diego, CA) and validated Taqman ® allelic discrimination (Applied Biosystems ® ). Statistical analyses were performed using SPSS software version 19.0, SNPStats, GMDR software (version 6) and GENEMANIA. Logistic regression analysis of 55 SNPs revealed significant associations (P < .05) of 49 SNPs with BMI linked obesity risk whereas the remaining 6 SNPs revealed no association (P > .05). The pathway-wise G-score revealed the significant role (P = .0001) of food intake-energy expenditure pathway genes. In CART analysis, the combined genotypes of FTO rs9939609 and TCF7L2 rs7903146 revealed the highest risk for BMI linked obesity. The analysis of the FTO-IRX3 locus revealed high LD and high order gene-gene interactions for BMI linked obesity. The interaction network of all of the associated genes in the present study generated by GENEMANIA revealed direct and indirect connections. In addition, the analysis with centralized obesity revealed that none of the SNPs except for FTO rs17818902 were significantly associated (P < .05). In this multi-analytical approach, FTO rs9939609 and IRX3 rs3751723, along with TCF7L2 rs7903146 and TMEM18 rs6548238, emerged as the major SNPs contributing to BMI linked obesity risk in the North Indian population. © 2016 Wiley Periodicals, Inc.

  8. Pathway-Based Genome-Wide Association Studies for Two Meat Production Traits in Simmental Cattle.

    PubMed

    Fan, Huizhong; Wu, Yang; Zhou, Xiaojing; Xia, Jiangwei; Zhang, Wengang; Song, Yuxin; Liu, Fei; Chen, Yan; Zhang, Lupei; Gao, Xue; Gao, Huijiang; Li, Junya

    2015-12-17

    Most single nucleotide polymorphisms (SNPs) detected by genome-wide association studies (GWAS), explain only a small fraction of phenotypic variation. Pathway-based GWAS were proposed to improve the proportion of genes for some human complex traits that could be explained by enriching a mass of SNPs within genetic groups. However, few attempts have been made to describe the quantitative traits in domestic animals. In this study, we used a dataset with approximately 7,700,000 SNPs from 807 Simmental cattle and analyzed live weight and longissimus muscle area using a modified pathway-based GWAS method to orthogonalise the highly linked SNPs within each gene using principal component analysis (PCA). As a result, of the 262 biological pathways of cattle collected from the KEGG database, the gamma aminobutyric acid (GABA)ergic synapse pathway and the non-alcoholic fatty liver disease (NAFLD) pathway were significantly associated with the two traits analyzed. The GABAergic synapse pathway was biologically applicable to the traits analyzed because of its roles in feed intake and weight gain. The proposed method had high statistical power and a low false discovery rate, compared to those of the smallest P-value and SNP set enrichment analysis methods.

  9. Genome Wide Analysis of Fertility and Production Traits in Italian Holstein Cattle

    PubMed Central

    Stella, Alessandra; Biffani, Stefano; Negrini, Riccardo; Lazzari, Barbara; Ajmone-Marsan, Paolo; Williams, John L .

    2013-01-01

    A genome wide scan was performed on a total of 2093 Italian Holstein proven bulls genotyped with 50K single nucleotide polymorphisms (SNPs), with the objective of identifying loci associated with fertility related traits and to test their effects on milk production traits. The analysis was carried out using estimated breeding values for the aggregate fertility index and for each trait contributing to the index: angularity, calving interval, non-return rate at 56 days, days to first service, and 305 day first parity lactation. In addition, two production traits not included in the aggregate fertility index were analysed: fat yield and protein yield. Analyses were carried out using all SNPs treated separately, further the most significant marker on BTA14 associated to milk quality located in the DGAT1 region was treated as fixed effect. Genome wide association analysis identified 61 significant SNPs and 75 significant marker-trait associations. Eight additional SNP associations were detected when SNP located near DGAT1 was included as a fixed effect. As there were no obvious common SNPs between the traits analyzed independently in this study, a network analysis was carried out to identify unforeseen relationships that may link production and fertility traits. PMID:24265800

  10. CLUSTAG: hierarchical clustering and graph methods for selecting tag SNPs.

    PubMed

    Ao, S I; Yip, Kevin; Ng, Michael; Cheung, David; Fong, Pui-Yee; Melhado, Ian; Sham, Pak C

    2005-04-15

    Cluster and set-cover algorithms are developed to obtain a set of tag single nucleotide polymorphisms (SNPs) that can represent all the known SNPs in a chromosomal region, subject to the constraint that all SNPs must have a squared correlation R2>C with at least one tag SNP, where C is specified by the user. http://hkumath.hku.hk/web/link/CLUSTAG/CLUSTAG.html mng@maths.hku.hk.

  11. Top single nucleotide polymorphisms affecting carbohydrate metabolism in metabolic syndrome: from the LIPGENE study.

    PubMed

    Delgado-Lista, Javier; Perez-Martinez, Pablo; Solivera, Juan; Garcia-Rios, Antonio; Perez-Caballero, A I; Lovegrove, Julie A; Drevon, Christian A; Defoort, Catherine; Blaak, Ellen E; Dembinska-Kieć, Aldona; Risérus, Ulf; Herruzo-Gomez, Ezequiel; Camargo, Antonio; Ordovas, Jose M; Roche, Helen; Lopez-Miranda, José

    2014-02-01

    Metabolic syndrome (MetS) is a high-prevalence condition characterized by altered energy metabolism, insulin resistance, and elevated cardiovascular risk. Although many individual single nucleotide polymorphisms (SNPs) have been linked to certain MetS features, there are few studies analyzing the influence of SNPs on carbohydrate metabolism in MetS. A total of 904 SNPs (tag SNPs and functional SNPs) were tested for influence on 8 fasting and dynamic markers of carbohydrate metabolism, by performance of an intravenous glucose tolerance test in 450 participants in the LIPGENE study. From 382 initial gene-phenotype associations between SNPs and any phenotypic variables, 61 (16% of the preselected variables) remained significant after bootstrapping. Top SNPs affecting glucose metabolism variables were as follows: fasting glucose, rs26125 (PPARGC1B); fasting insulin, rs4759277 (LRP1); C-peptide, rs4759277 (LRP1); homeostasis assessment of insulin resistance, rs4759277 (LRP1); quantitative insulin sensitivity check index, rs184003 (AGER); sensitivity index, rs7301876 (ABCC9), acute insulin response to glucose, rs290481 (TCF7L2); and disposition index, rs12691 (CEBPA). We describe here the top SNPs linked to phenotypic features in carbohydrate metabolism among approximately 1000 candidate gene variations in fasting and postprandial samples of 450 patients with MetS from the LIPGENE study.

  12. In Silico Detection of Sequence Variations Modifying Transcriptional Regulation

    PubMed Central

    Andersen, Malin C; Engström, Pär G; Lithwick, Stuart; Arenillas, David; Eriksson, Per; Lenhard, Boris; Wasserman, Wyeth W; Odeberg, Jacob

    2008-01-01

    Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers). The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation. PMID:18208319

  13. TIA: algorithms for development of identity-linked SNP islands for analysis by massively parallel DNA sequencing.

    PubMed

    Farris, M Heath; Scott, Andrew R; Texter, Pamela A; Bartlett, Marta; Coleman, Patricia; Masters, David

    2018-04-11

    Single nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of DNA from individual contributors. Massively parallel DNA sequencing (MPS) technologies and human genome SNP databases allow for the design of suites of identity-linked target regions, amenable to sequencing in a multiplexed and massively parallel manner. Therefore, tools are needed for leveraging the genotypic information found within SNP databases for the discovery of genomic targets that can be evaluated on MPS platforms. The SNP island target identification algorithm (TIA) was developed as a user-tunable system to leverage SNP information within databases. Using data within the 1000 Genomes Project SNP database, human genome regions were identified that contain globally ubiquitous identity-linked SNPs and that were responsive to targeted resequencing on MPS platforms. Algorithmic filters were used to exclude target regions that did not conform to user-tunable SNP island target characteristics. To validate the accuracy of TIA for discovering these identity-linked SNP islands within the human genome, SNP island target regions were amplified from 70 contributor genomic DNA samples using the polymerase chain reaction. Multiplexed amplicons were sequenced using the Illumina MiSeq platform, and the resulting sequences were analyzed for SNP variations. 166 putative identity-linked SNPs were targeted in the identified genomic regions. Of the 309 SNPs that provided discerning power across individual SNP profiles, 74 previously undefined SNPs were identified during evaluation of targets from individual genomes. Overall, DNA samples of 70 individuals were uniquely identified using a subset of the suite of identity-linked SNP islands. TIA offers a tunable genome search tool for the discovery of targeted genomic regions that are scalable in the population frequency and numbers of SNPs contained within the SNP island regions. It also allows the definition of sequence length and sequence variability of the target region as well as the less variable flanking regions for tailoring to MPS platforms. As shown in this study, TIA can be used to discover identity-linked SNP islands within the human genome, useful for differentiating individuals by targeted resequencing on MPS technologies.

  14. Multifaceted Genomic Risk for Brain Function in Schizophrenia

    PubMed Central

    Chen, Jiayu; Calhoun, Vince D.; Pearlson, Godfrey D.; Ehrlich, Stefan; Turner, Jessica A.; Ho, Beng-Choon; Wassink, Thomas H.; Michael, Andrew M; Liu, Jingyu

    2012-01-01

    Recently, deriving candidate endophenotypes from brain imaging data has become a valuable approach to study genetic influences on schizophrenia (SZ), whose pathophysiology remains unclear. In this work we utilized a multivariate approach, parallel independent component analysis, to identify genomic risk components associated with brain function abnormalities in SZ. 5157 candidate single nucleotide polymorphisms (SNPs) were derived from genome-wide array based on their possible connections with SZ and further investigated for their associations with brain activations captured with functional magnetic resonance imaging (fMRI) during a sensorimotor task. Using data from 92 SZ patients and 116 healthy controls, we detected a significant correlation (r= 0.29; p= 2.41×10−5) between one fMRI component and one SNP component, both of which significantly differentiated patients from controls. The fMRI component mainly consisted of precentral and postcentral gyri, the major activated regions in the motor task. On average, higher activation in these regions was observed in participants with higher loadings of the linked SNP component, predominantly contributed to by 253 SNPs. 138 identified SNPs were from known coding regions of 100 unique genes. 31 identified SNPs did not differ between groups, but moderately correlated with some other group-discriminating SNPs, indicating interactions among alleles contributing towards elevated SZ susceptibility. The genes associated with the identified SNPs participated in four neurotransmitter pathways: GABA receptor signaling, dopamine receptor signaling, neuregulin signaling and glutamate receptor signaling. In summary, our work provides further evidence for the complexity of genomic risk to the functional brain abnormality in SZ and suggests a pathological role of interactions between SNPs, genes and multiple neurotransmitter pathways. PMID:22440650

  15. Evaluation of ACE, SP17, and FSHB as candidates for stallion fertility in Hanoverian warmblood horses.

    PubMed

    Giesecke, K; Hamann, H; Stock, K F; Klewitz, J; Martinsson, G; Distl, O; Sieme, H

    2011-07-01

    The research of fertility in humans and other mammals has strongly advanced in the recent years. The examination of molecular mechanisms influencing horse fertility is relatively recent. We chose the angiotensin converting enzyme (ACE), the sperm autoantigenic protein 17 (SP17) and the follicle stimulating hormone (FSHB) as candidates for determining stallion fertility and to analyze associations of intragenic single nucleotide polymorphisms (SNPs), flanking microsatellites and candidate-gene linked haplotypes with the pregnancy rate per oestrus (PRO) in 179 Hanoverian stallions. Fertility traits analyzed were the least square means of PRO for stallions (LSMs) and the paternal and embryonic component of breeding values for PRO (BVs). We detected nine SNPs and two flanking microsatellites in ACE, eight SNPs and two flanking microsatellites in SP17 and four SNPs and one flanking microsatellite in FSHB. Three SP17-associated SNPs and the two flanking microsatellites showed significant association with the embryonic component of BVs and one SP17-associated microsatellite was also significantly associated with the paternal component of BVs. Two ACE-associated SNPs were significantly associated with the embryonic component of BVs. Significantly associated haplotypes were shown for all three candidate genes and the tested fertility parameters. The final regression analysis model indicated that haplotypes of all three candidate genes significantly contributed to the paternal and embryonic fertility components of PRO. This is the first report of associations of ACE, SP17 and FSHB with fertility traits of stallions. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Effect prediction of identified SNPs linked to fruit quality and chilling injury in peach [Prunus persica (L.) Batsch].

    PubMed

    Martínez-García, Pedro J; Fresnedo-Ramírez, Jonathan; Parfitt, Dan E; Gradziel, Thomas M; Crisosto, Carlos H

    2013-01-01

    Single nucleotide polymorphisms (SNPs) are a fundamental source of genomic variation. Large SNP panels have been developed for Prunus species. Fruit quality traits are essential peach breeding program objectives since they determine consumer acceptance, fruit consumption, industry trends and cultivar adoption. For many cultivars, these traits are negatively impacted by cold storage, used to extend fruit market life. The major symptoms of chilling injury are lack of flavor, off flavor, mealiness, flesh browning, and flesh bleeding. A set of 1,109 SNPs was mapped previously and 67 were linked with these complex traits. The prediction of the effects associated with these SNPs on downstream products from the 'peach v1.0' genome sequence was carried out. A total of 2,163 effects were detected, 282 effects (non-synonymous, synonymous or stop codon gained) were located in exonic regions (13.04 %) and 294 placed in intronic regions (13.59 %). An extended list of genes and proteins that could be related to these traits was developed. Two SNP markers that explain a high percentage of the observed phenotypic variance, UCD_SNP_1084 and UCD_SNP_46, are associated with zinc finger (C3HC4-type RING finger) family protein and AOX1A (alternative oxidase 1a) protein groups, respectively. In addition, phenotypic variation suggests that the observed polymorphism for SNP UCD_SNP_1084 [A/G] mutation could be a candidate quantitative trait nucleotide affecting quantitative trait loci for mealiness. The interaction and expression of affected proteins could explain the variation observed in each individual and facilitate understanding of gene regulatory networks for fruit quality traits in peach.

  17. Development of a RAD-Seq Based DNA Polymorphism Identification Software, AgroMarker Finder, and Its Application in Rice Marker-Assisted Breeding

    PubMed Central

    Luo, Zhijing; Chen, Mingjiao; Zhao, Xiangxiang; Zhang, Dabing; Qi, Yiping; Yuan, Zheng

    2016-01-01

    Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection. PMID:26799713

  18. Development of a RAD-Seq Based DNA Polymorphism Identification Software, AgroMarker Finder, and Its Application in Rice Marker-Assisted Breeding.

    PubMed

    Fan, Wei; Zong, Jie; Luo, Zhijing; Chen, Mingjiao; Zhao, Xiangxiang; Zhang, Dabing; Qi, Yiping; Yuan, Zheng

    2016-01-01

    Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection.

  19. Whole-genome association studies of alcoholism with loci linked to schizophrenia susceptibility.

    PubMed

    Namkung, Junghyun; Kim, Youngchul; Park, Taesung

    2005-12-30

    Alcoholism is a complex disease. There have been many reports on significant comorbidity between alcoholism and schizophrenia. For the genetic study of complex diseases, association analysis has been recommended because of its higher power than that of the linkage analysis for detecting genes with modest effects on disease. To identify alcoholism susceptibility loci, we performed genome-wide single-nucleotide polymorphisms (SNP) association tests, which yielded 489 significant SNPs at the 1% significance level. The association tests showed that tsc0593964 (P-value 0.000013) on chromosome 7 was most significantly associated with alcoholism. From 489 SNPs, 74 genes were identified. Among these genes, GABRA1 is a member of the same gene family with GABRA2 that was recently reported as alcoholism susceptibility gene. By comparing 74 genes to the published results of various linkage studies of schizophrenia, we identified 13 alcoholism associated genes that were located in the regions reported to be linked to schizophrenia. These 13 identified genes can be important candidate genes to study the genetic mechanism of co-occurrence of both diseases.

  20. Linkage disequilibrium and signatures of positive selection around LINE-1 retrotransposons in the human genome.

    PubMed

    Kuhn, Alexandre; Ong, Yao Min; Cheng, Ching-Yu; Wong, Tien Yin; Quake, Stephen R; Burkholder, William F

    2014-06-03

    Insertions of the human-specific subfamily of LINE-1 (L1) retrotransposon are highly polymorphic across individuals and can critically influence the human transcriptome. We hypothesized that L1 insertions could represent genetic variants determining important human phenotypic traits, and performed an integrated analysis of L1 elements and single nucleotide polymorphisms (SNPs) in several human populations. We found that a large fraction of L1s were in high linkage disequilibrium with their surrounding genomic regions and that they were well tagged by SNPs. However, L1 variants were only partially captured by SNPs on standard SNP arrays, so that their potential phenotypic impact would be frequently missed by SNP array-based genome-wide association studies. We next identified potential phenotypic effects of L1s by looking for signatures of natural selection linked to L1 insertions; significant extended haplotype homozygosity was detected around several L1 insertions. This finding suggests that some of these L1 insertions may have been the target of recent positive selection.

  1. Identification of single nucleotide polymorphism in ginger using expressed sequence tags

    PubMed Central

    Chandrasekar, Arumugam; Riju, Aikkal; Sithara, Kandiyl; Anoop, Sahadevan; Eapen, Santhosh J

    2009-01-01

    Ginger (Zingiber officinale Rosc) (Family: Zingiberaceae) is a herbaceous perennial, the rhizomes of which are used as a spice. Ginger is a plant which is well known for its medicinal applications. Recently EST-derived SNPs are a free by-product of the currently expanding EST (Expressed Sequence Tag) databases. The development of high-throughput methods for the detection of SNPs (Single Nucleotide Polymorphism) and small indels (insertion/deletion) has led to a revolution in their use as molecular markers. Available (38139) Ginger EST sequences were mined from dbEST of NCBI. CAP3 program was used to assemble EST sequences into contigs. Candidate SNPs and Indel polymorphisms were detected using the perl script AutoSNP version 1.0 which has used 31905 ESTs for detecting SNPs and Indel sites. We found 64026 SNP sites and 7034 indel polymorphisms with frequency of 0.84 SNPs / 100 bp. Among the three tissues from which the EST libraries had been generated, Rhizomes had high frequency of 1.08 SNPs/indels per 100 bp whereas the leaves had lowest frequency of 0.63 per 100 bp and root is showing relative frequency 0.82/100bp. Transitions and transversion ratio is 0.90. In overall detected SNP, transversion is high when compare to transition. These detected SNPs can be used as markers for genetic studies. Availability The results of the present study hosted in our webserver www.spices.res.in/spicesnip PMID:20198184

  2. SNP discovery in the bovine milk transcriptome using RNA-Seq technology.

    PubMed

    Cánovas, Angela; Rincon, Gonzalo; Islas-Trejo, Alma; Wickramasinghe, Saumya; Medrano, Juan F

    2010-12-01

    High-throughput sequencing of RNA (RNA-Seq) was developed primarily to analyze global gene expression in different tissues. However, it also is an efficient way to discover coding SNPs. The objective of this study was to perform a SNP discovery analysis in the milk transcriptome using RNA-Seq. Seven milk samples from Holstein cows were analyzed by sequencing cDNAs using the Illumina Genome Analyzer system. We detected 19,175 genes expressed in milk samples corresponding to approximately 70% of the total number of genes analyzed. The SNP detection analysis revealed 100,734 SNPs in Holstein samples, and a large number of those corresponded to differences between the Holstein breed and the Hereford bovine genome assembly Btau4.0. The number of polymorphic SNPs within Holstein cows was 33,045. The accuracy of RNA-Seq SNP discovery was tested by comparing SNPs detected in a set of 42 candidate genes expressed in milk that had been resequenced earlier using Sanger sequencing technology. Seventy of 86 SNPs were detected using both RNA-Seq and Sanger sequencing technologies. The KASPar Genotyping System was used to validate unique SNPs found by RNA-Seq but not observed by Sanger technology. Our results confirm that analyzing the transcriptome using RNA-Seq technology is an efficient and cost-effective method to identify SNPs in transcribed regions. This study creates guidelines to maximize the accuracy of SNP discovery and prevention of false-positive SNP detection, and provides more than 33,000 SNPs located in coding regions of genes expressed during lactation that can be used to develop genotyping platforms to perform marker-trait association studies in Holstein cattle.

  3. Detection of gene-environment interactions in the presence of linkage disequilibrium and noise by using genetic risk scores with internal weights from elastic net regression.

    PubMed

    Hüls, Anke; Ickstadt, Katja; Schikowski, Tamara; Krämer, Ursula

    2017-06-12

    For the analysis of gene-environment (GxE) interactions commonly single nucleotide polymorphisms (SNPs) are used to characterize genetic susceptibility, an approach that mostly lacks power and has poor reproducibility. One promising approach to overcome this problem might be the use of weighted genetic risk scores (GRS), which are defined as weighted sums of risk alleles of gene variants. The gold-standard is to use external weights from published meta-analyses. In this study, we used internal weights from the marginal genetic effects of the SNPs estimated by a multivariate elastic net regression and thereby provided a method that can be used if there are no external weights available. We conducted a simulation study for the detection of GxE interactions and compared power and type I error of single SNPs analyses with Bonferroni correction and corresponding analysis with unweighted and our weighted GRS approach in scenarios with six risk SNPs and an increasing number of highly correlated (up to 210) and noise SNPs (up to 840). Applying weighted GRS increased the power enormously in comparison to the common single SNPs approach (e.g. 94.2% vs. 35.4%, respectively, to detect a weak interaction with an OR ≈ 1.04 for six uncorrelated risk SNPs and n = 700 with a well-controlled type I error). Furthermore, weighted GRS outperformed the unweighted GRS, in particular in the presence of SNPs without any effect on the phenotype (e.g. 90.1% vs. 43.9%, respectively, when 20 noise SNPs were added to the six risk SNPs). This outperforming of the weighted GRS was confirmed in a real data application on lung inflammation in the SALIA cohort (n = 402). However, in scenarios with a high number of noise SNPs (>200 vs. 6 risk SNPs), larger sample sizes are needed to avoid an increased type I error, whereas a high number of correlated SNPs can be handled even in small samples (e.g. n = 400). In conclusion, weighted GRS with weights from the marginal genetic effects of the SNPs estimated by a multivariate elastic net regression were shown to be a powerful tool to detect gene-environment interactions in scenarios of high Linkage disequilibrium and noise.

  4. Transfer of genetic therapy across human populations: molecular targets for increasing patient coverage in repeat expansion diseases

    PubMed Central

    Varela, Miguel A; Curtis, Helen J; Douglas, Andrew GL; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew JA

    2016-01-01

    Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets. PMID:25990798

  5. Transfer of genetic therapy across human populations: molecular targets for increasing patient coverage in repeat expansion diseases.

    PubMed

    Varela, Miguel A; Curtis, Helen J; Douglas, Andrew G L; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew J A

    2016-02-01

    Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets.

  6. A whole genome association study to detect additive and dominant single nucleotide polymorphisms for growth and carcass traits in Korean native cattle, Hanwoo.

    PubMed

    Li, Yi; Gao, Yuxuan; Kim, You-Sam; Iqbal, Asif; Kim, Jong-Joo

    2017-01-01

    A whole genome association study was conducted to identify single nucleotide polymorphisms (SNPs) with additive and dominant effects for growth and carcass traits in Korean native cattle, Hanwoo. The data set comprised 61 sires and their 486 Hanwoo steers that were born between spring of 2005 and fall of 2007. The steers were genotyped with the 35,968 SNPs that were embedded in the Illumina bovine SNP 50K beadchip and six growth and carcass quality traits were measured for the steers. A series of lack-of-fit tests between the models was applied to classify gene expression pattern as additive or dominant. A total of 18 (0), 15 (3), 12 (8), 15 (18), 11 (7), and 21 (1) SNPs were detected at the 5% chromosome (genome) - wise level for weaning weight (WWT), yearling weight (YWT), carcass weight (CWT), backfat thickness (BFT), longissimus dorsi muscle area (LMA) and marbling score, respectively. Among the significant 129 SNPs, 56 SNPs had additive effects, 20 SNPs dominance effects, and 53 SNPs both additive and dominance effects, suggesting that dominance inheritance mode be considered in genetic improvement for growth and carcass quality in Hanwoo. The significant SNPs were located at 33 quantitative trait locus (QTL) regions on 18 Bos Taurus chromosomes (i.e. BTA 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 23, 26, 28, and 29) were detected. There is strong evidence that BTA14 is the key chromosome affecting CWT. Also, BTA20 is the key chromosome for almost all traits measured (WWT, YWT, LMA). The application of various additive and dominance SNP models enabled better characterization of SNP inheritance mode for growth and carcass quality traits in Hanwoo, and many of the detected SNPs or QTL had dominance effects, suggesting that dominance be considered for the whole-genome SNPs data and implementation of successive molecular breeding schemes in Hanwoo.

  7. Neuropeptide Y gene-by-psychosocial stress interaction effect is associated with obesity in a Korean population.

    PubMed

    Kim, Hyun-Jin; Min, Kyoung-Bok; Min, Jin-Young

    2016-07-01

    Chronic psychosocial stress is a crucial risk factor in the development of many diseases including obesity. Neuropeptide Y (NPY), distributed throughout the peripheral and central nervous system, is believed to pay a role in the pathophysiologic relationship between stress and obesity. Although several animal studies have investigated the impact on obesity of interactions between NPY single nucleotide polymorphisms (SNPs) and stress, the same remains to be analyzed in humans. To identify NPY gene-by-stress interaction effects on human obesity, we analyzed the interaction between four NPY SNPs and stress with obesity-related traits, including visceral adipose tissue (VAT). A total of 1468 adult subjects were included for this analysis. In a SNP-only model without interaction with stress, no significant SNPs were found (pSNP>0.05). However, NPY SNPs-by-stress interaction effects were significantly linked to body mass index (BMI), waist circumference, and VAT (pint<0.05), even though a significant interaction effect for rs16135 on BMI was not identified. These significant interaction effects were also detected in interaction results for the binary traits of obesity. Among the obesity traits, mean changes of VAT by increased stress levels in homozygous risk allele carriers were the greatest (range of mean increases for four SNPs (min-max)=12.57cm(2)-29.86cm(2)). This study suggests that common polymorphisms for NPY were associated with human obesity by interacting with psychosocial stress, emphasizing the need for stress management in obesity prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Genome-wide association mapping of virulence gene in rice blast fungus Magnaporthe oryzae using a genotyping by sequencing approach.

    PubMed

    Korinsak, Siripar; Tangphatsornruang, Sithichoke; Pootakham, Wirulda; Wanchana, Samart; Plabpla, Anucha; Jantasuriyarat, Chatchawan; Patarapuwadol, Sujin; Vanavichit, Apichart; Toojinda, Theerayut

    2018-05-15

    Magnaporthe oryzae is a fungal pathogen causing blast disease in many plant species. In this study, seventy three isolates of M. oryzae collected from rice (Oryza sativa) in 1996-2014 were genotyped using a genotyping-by-sequencing approach to detect genetic variation. An association study was performed to identify single nucleotide polymorphisms (SNPs) associated with virulence genes using 831 selected SNP and infection phenotypes on local and improved rice varieties. Population structure analysis revealed eight subpopulations. The division into eight groups was not related to the degree of virulence. Association mapping showed five SNPs associated with fungal virulence on chromosome 1, 2, 3, 4 and 7. The SNP on chromosome 1 was associated with virulence against RD6-Pi7 and IRBL7-M which might be linked to the previously reported AvrPi7. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Empirical characteristics of family-based linkage to a complex trait: the ADIPOQ region and adiponectin levels.

    PubMed

    Hellwege, Jacklyn N; Palmer, Nicholette D; Mark Brown, W; Brown, Mark W; Ziegler, Julie T; Sandy An, S; An, Sandy S; Guo, Xiuqing; Ida Chen, Y-D; Chen, Ida Y-D; Taylor, Kent; Hawkins, Gregory A; Ng, Maggie C Y; Speliotes, Elizabeth K; Lorenzo, Carlos; Norris, Jill M; Rotter, Jerome I; Wagenknecht, Lynne E; Langefeld, Carl D; Bowden, Donald W

    2015-02-01

    We previously identified a low-frequency (1.1 %) coding variant (G45R; rs200573126) in the adiponectin gene (ADIPOQ) which was the basis for a multipoint microsatellite linkage signal (LOD = 8.2) for plasma adiponectin levels in Hispanic families. We have empirically evaluated the ability of data from targeted common variants, exome chip genotyping, and genome-wide association study data to detect linkage and association to adiponectin protein levels at this locus. Simple two-point linkage and association analyses were performed in 88 Hispanic families (1,150 individuals) using 10,958 SNPs on chromosome 3. Approaches were compared for their ability to map the functional variant, G45R, which was strongly linked (two-point LOD = 20.98) and powerfully associated (p value = 8.1 × 10(-50)). Over 450 SNPs within a broad 61 Mb interval around rs200573126 showed nominal evidence of linkage (LOD > 3) but only four other SNPs in this region were associated with p values < 1.0 × 10(-4). When G45R was accounted for, the maximum LOD score across the interval dropped to 4.39 and the best p value was 1.1 × 10(-5). Linked and/or associated variants ranged in frequency (0.0018-0.50) and type (coding, non-coding) and had little detectable linkage disequilibrium with rs200573126 (r (2) < 0.20). In addition, the two-point linkage approach empirically outperformed multipoint microsatellite and multipoint SNP analysis. In the absence of data for rs200573126, family-based linkage analysis using a moderately dense SNP dataset, including both common and low-frequency variants, resulted in stronger evidence for an adiponectin locus than association data alone. Thus, linkage analysis can be a useful tool to facilitate identification of high-impact genetic variants.

  10. Association of Single-Nucleotide Polymorphisms in IL28B, but Not TNF-α, With Severity of Disease Caused by Andes Virus

    PubMed Central

    Angulo, Jenniffer; Pino, Karla; Echeverría-Chagas, Natalia; Marco, Claudia; Martínez-Valdebenito, Constanza; Galeno, Héctor; Villagra, Eliecer; Vera, Lilian; Lagos, Natalia; Becerra, Natalia; Mora, Judith; Bermúdez, Andrea; Cárcamo, Marcela; Díaz, Janepsy; Miquel, Juan Francisco; Ferrés, Marcela; López-Lastra, Marcelo

    2015-01-01

    Background. Andes virus (ANDV) is the sole etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in Chile, with a fatality rate of about 35%. Individual host factors affecting ANDV infection outcome are poorly understood. In this case-control genetic association analysis, we explored the link between single-nucleotide polymorphisms (SNPs) rs12979860, rs8099917 and rs1800629 and the clinical outcome of ANDV-induced disease. The SNPs rs12979860 and rs8099917 are known to play a role in the differential expression of the interleukin 28B gene (IL28B), whereas SNP rs1800629 is implicated in the expression of tumor necrosis factor α gene (TNF-α). Methods. A total of 238 samples from confirmed ANDV-infected patients collected between 2006 and 2014, and categorized according to the severity of the disease, were genotyped for SNPs rs12979860, rs8099917, and rs1800629. Results. Analysis of IL28B SNPs rs12979860 and rs8099917 revealed a link between homozygosity of the minor alleles (TT and GG, respectively), displaying a mild disease progression, whereas heterozygosity or homozygosity for the major alleles (CT/CC and TG/TT, respectively) in both IL28B SNPs is associated with severe disease. No association with the clinical outcome of HCPS was observed for TNF-α SNP rs1800629 (TNF −308G>A). Conclusions. The IL28B SNPs rs12979860 and rs8099917, but not TNF-α SNP rs1800629, are associated with the clinical outcome of ANDV-induced disease, suggesting a possible link between IL28B expression and ANDV pathogenesis. PMID:26394672

  11. Association of Single-Nucleotide Polymorphisms in IL28B, but Not TNF-α, With Severity of Disease Caused by Andes Virus.

    PubMed

    Angulo, Jenniffer; Pino, Karla; Echeverría-Chagas, Natalia; Marco, Claudia; Martínez-Valdebenito, Constanza; Galeno, Héctor; Villagra, Eliecer; Vera, Lilian; Lagos, Natalia; Becerra, Natalia; Mora, Judith; Bermúdez, Andrea; Cárcamo, Marcela; Díaz, Janepsy; Miquel, Juan Francisco; Ferrés, Marcela; López-Lastra, Marcelo

    2015-12-15

    Andes virus (ANDV) is the sole etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in Chile, with a fatality rate of about 35%. Individual host factors affecting ANDV infection outcome are poorly understood. In this case-control genetic association analysis, we explored the link between single-nucleotide polymorphisms (SNPs) rs12979860, rs8099917 and rs1800629 and the clinical outcome of ANDV-induced disease. The SNPs rs12979860 and rs8099917 are known to play a role in the differential expression of the interleukin 28B gene (IL28B), whereas SNP rs1800629 is implicated in the expression of tumor necrosis factor α gene (TNF-α). A total of 238 samples from confirmed ANDV-infected patients collected between 2006 and 2014, and categorized according to the severity of the disease, were genotyped for SNPs rs12979860, rs8099917, and rs1800629. Analysis of IL28B SNPs rs12979860 and rs8099917 revealed a link between homozygosity of the minor alleles (TT and GG, respectively), displaying a mild disease progression, whereas heterozygosity or homozygosity for the major alleles (CT/CC and TG/TT, respectively) in both IL28B SNPs is associated with severe disease. No association with the clinical outcome of HCPS was observed for TNF-α SNP rs1800629 (TNF -308G>A). The IL28B SNPs rs12979860 and rs8099917, but not TNF-α SNP rs1800629, are associated with the clinical outcome of ANDV-induced disease, suggesting a possible link between IL28B expression and ANDV pathogenesis. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Genomic variation at the tips of the adaptive radiation of Darwin's finches.

    PubMed

    Chaves, Jaime A; Cooper, Elizabeth A; Hendry, Andrew P; Podos, Jeffrey; De León, Luis F; Raeymaekers, Joost A M; MacMillan, W Owen; Uy, J Albert C

    2016-11-01

    Adaptive radiation unfolds as selection acts on the genetic variation underlying functional traits. The nature of this variation can be revealed by studying the tips of an ongoing adaptive radiation. We studied genomic variation at the tips of the Darwin's finch radiation; specifically focusing on polymorphism within, and variation among, three sympatric species of the genus Geospiza. Using restriction site-associated DNA (RAD-seq), we characterized 32 569 single-nucleotide polymorphisms (SNPs), from which 11 outlier SNPs for beak and body size were uncovered by a genomewide association study (GWAS). Principal component analysis revealed that these 11 SNPs formed four statistically linked groups. Stepwise regression then revealed that the first PC score, which included 6 of the 11 top SNPs, explained over 80% of the variation in beak size, suggesting that selection on these traits influences multiple correlated loci. The two SNPs most strongly associated with beak size were near genes associated with beak morphology across deeper branches of the radiation: delta-like 1 homologue (DLK1) and high-mobility group AT-hook 2 (HMGA2). Our results suggest that (i) key adaptive traits are associated with a small fraction of the genome (11 of 32 569 SNPs), (ii) SNPs linked to the candidate genes are dispersed throughout the genome (on several chromosomes), and (iii) micro- and macro-evolutionary variation (roots and tips of the radiation) involve some shared and some unique genomic regions. © 2016 John Wiley & Sons Ltd.

  13. An omnibus permutation test on ensembles of two-locus analyses can detect pure epistasis and genetic heterogeneity in genome-wide association studies.

    PubMed

    Setsirichok, Damrongrit; Tienboon, Phuwadej; Jaroonruang, Nattapong; Kittichaijaroen, Somkit; Wongseree, Waranyu; Piroonratana, Theera; Usavanarong, Touchpong; Limwongse, Chanin; Aporntewan, Chatchawit; Phadoongsidhi, Marong; Chaiyaratana, Nachol

    2013-01-01

    This article presents the ability of an omnibus permutation test on ensembles of two-locus analyses (2LOmb) to detect pure epistasis in the presence of genetic heterogeneity. The performance of 2LOmb is evaluated in various simulation scenarios covering two independent causes of complex disease where each cause is governed by a purely epistatic interaction. Different scenarios are set up by varying the number of available single nucleotide polymorphisms (SNPs) in data, number of causative SNPs and ratio of case samples from two affected groups. The simulation results indicate that 2LOmb outperforms multifactor dimensionality reduction (MDR) and random forest (RF) techniques in terms of a low number of output SNPs and a high number of correctly-identified causative SNPs. Moreover, 2LOmb is capable of identifying the number of independent interactions in tractable computational time and can be used in genome-wide association studies. 2LOmb is subsequently applied to a type 1 diabetes mellitus (T1D) data set, which is collected from a UK population by the Wellcome Trust Case Control Consortium (WTCCC). After screening for SNPs that locate within or near genes and exhibit no marginal single-locus effects, the T1D data set is reduced to 95,991 SNPs from 12,146 genes. The 2LOmb search in the reduced T1D data set reveals that 12 SNPs, which can be divided into two independent sets, are associated with the disease. The first SNP set consists of three SNPs from MUC21 (mucin 21, cell surface associated), three SNPs from MUC22 (mucin 22), two SNPs from PSORS1C1 (psoriasis susceptibility 1 candidate 1) and one SNP from TCF19 (transcription factor 19). A four-locus interaction between these four genes is also detected. The second SNP set consists of three SNPs from ATAD1 (ATPase family, AAA domain containing 1). Overall, the findings indicate the detection of pure epistasis in the presence of genetic heterogeneity and provide an alternative explanation for the aetiology of T1D in the UK population.

  14. Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs.

    PubMed

    Ricaño-Ponce, Isis; Zhernakova, Daria V; Deelen, Patrick; Luo, Oscar; Li, Xingwang; Isaacs, Aaron; Karjalainen, Juha; Di Tommaso, Jennifer; Borek, Zuzanna Agnieszka; Zorro, Maria M; Gutierrez-Achury, Javier; Uitterlinden, Andre G; Hofman, Albert; van Meurs, Joyce; Netea, Mihai G; Jonkers, Iris H; Withoff, Sebo; van Duijn, Cornelia M; Li, Yang; Ruan, Yijun; Franke, Lude; Wijmenga, Cisca; Kumar, Vinod

    2016-04-01

    Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. A PLSPM-Based Test Statistic for Detecting Gene-Gene Co-Association in Genome-Wide Association Study with Case-Control Design

    PubMed Central

    Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong

    2013-01-01

    For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods. PMID:23620809

  16. A PLSPM-based test statistic for detecting gene-gene co-association in genome-wide association study with case-control design.

    PubMed

    Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong

    2013-01-01

    For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods.

  17. Putative Prostate Cancer Risk SNP in an Androgen Receptor‐Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites

    PubMed Central

    Bu, Huajie; Narisu, Narisu; Schlick, Bettina; Rainer, Johannes; Manke, Thomas; Schäfer, Georg; Pasqualini, Lorenza; Chines, Peter; Schweiger, Michal R.; Fuchsberger, Christian

    2015-01-01

    ABSTRACT Genome‐wide association studies have identified genomic loci, whose single‐nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the mechanisms of most of these variants are largely unknown. We integrated chromatin‐immunoprecipitation‐coupled sequencing and microarray expression profiling in TMPRSS2‐ERG gene rearrangement positive DUCaP cells with the GWAS PCa risk SNPs catalog to identify disease susceptibility SNPs localized within functional androgen receptor‐binding sites (ARBSs). Among the 48 GWAS index risk SNPs and 3,917 linked SNPs, 80 were found located in ARBSs. Of these, rs11891426:T>G in an intron of the melanophilin gene (MLPH) was within a novel putative auxiliary AR‐binding motif, which is enriched in the neighborhood of canonical androgen‐responsive elements. T→G exchange attenuated the transcriptional activity of the ARBS in an AR reporter gene assay. The expression of MLPH in primary prostate tumors was significantly lower in those with the G compared with the T allele and correlated significantly with AR protein. Higher melanophilin level in prostate tissue of patients with a favorable PCa risk profile points out a tumor‐suppressive effect. These results unravel a hidden link between AR and a functional putative PCa risk SNP, whose allele alteration affects androgen regulation of its host gene MLPH. PMID:26411452

  18. In Vitro vs In Silico Detected SNPs for the Development of a Genotyping Array: What Can We Learn from a Non-Model Species?

    PubMed Central

    Lepoittevin, Camille; Frigerio, Jean-Marc; Garnier-Géré, Pauline; Salin, Franck; Cervera, María-Teresa; Vornam, Barbara; Harvengt, Luc; Plomion, Christophe

    2010-01-01

    Background There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size (∼23.8 Gb/C). Methodology/Principal Findings A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates). Conclusions/Significance This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome. PMID:20543950

  19. BayesPI-BAR: a new biophysical model for characterization of regulatory sequence variations

    PubMed Central

    Wang, Junbai; Batmanov, Kirill

    2015-01-01

    Sequence variations in regulatory DNA regions are known to cause functionally important consequences for gene expression. DNA sequence variations may have an essential role in determining phenotypes and may be linked to disease; however, their identification through analysis of massive genome-wide sequencing data is a great challenge. In this work, a new computational pipeline, a Bayesian method for protein–DNA interaction with binding affinity ranking (BayesPI-BAR), is proposed for quantifying the effect of sequence variations on protein binding. BayesPI-BAR uses biophysical modeling of protein–DNA interactions to predict single nucleotide polymorphisms (SNPs) that cause significant changes in the binding affinity of a regulatory region for transcription factors (TFs). The method includes two new parameters (TF chemical potentials or protein concentrations and direct TF binding targets) that are neglected by previous methods. The new method is verified on 67 known human regulatory SNPs, of which 47 (70%) have predicted true TFs ranked in the top 10. Importantly, the performance of BayesPI-BAR, which uses principal component analysis to integrate multiple predictions from various TF chemical potentials, is found to be better than that of existing programs, such as sTRAP and is-rSNP, when evaluated on the same SNPs. BayesPI-BAR is a publicly available tool and is able to carry out parallelized computation, which helps to investigate a large number of TFs or SNPs and to detect disease-associated regulatory sequence variations in the sea of genome-wide noncoding regions. PMID:26202972

  20. Powerful Bivariate Genome-Wide Association Analyses Suggest the SOX6 Gene Influencing Both Obesity and Osteoporosis Phenotypes in Males

    PubMed Central

    Liu, Yao-Zhong; Pei, Yu-Fang; Liu, Jian-Feng; Yang, Fang; Guo, Yan; Zhang, Lei; Liu, Xiao-Gang; Yan, Han; Wang, Liang; Zhang, Yin-Ping; Levy, Shawn; Recker, Robert R.; Deng, Hong-Wen

    2009-01-01

    Background Current genome-wide association studies (GWAS) are normally implemented in a univariate framework and analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically. Principal Findings To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the obesity phenotype, body mass index (BMI), with the osteoporosis risk phenotype, hip bone mineral density (BMD), scanning ∼380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6) gene, rs297325 and rs4756846, which were bivariately associated with both BMI and hip BMD, achieving p values of 6.82×10−7 and 1.47×10−6, respectively. The two SNPs ranked at the top in significance for bivariate association with BMI and hip BMD in the male subjects among all the ∼380,000 SNPs examined genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS) cohort containing 3,355 Caucasians (1,370 males and 1,985 females) from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02, respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene's dual role in both bone and fat. Conclusions Our findings, together with the prior biological evidence, suggest the SOX6 gene's importance in co-regulation of obesity and osteoporosis. PMID:19714249

  1. Identification of SNPs associated with muscle yield and quality traits using allelic-imbalance analyses of pooled RNA-Seq samples in rainbow trout.

    PubMed

    Al-Tobasei, Rafet; Ali, Ali; Leeds, Timothy D; Liu, Sixin; Palti, Yniv; Kenney, Brett; Salem, Mohamed

    2017-08-07

    Coding/functional SNPs change the biological function of a gene and, therefore, could serve as "large-effect" genetic markers. In this study, we used two bioinformatics pipelines, GATK and SAMtools, for discovering coding/functional SNPs with allelic-imbalances associated with total body weight, muscle yield, muscle fat content, shear force, and whiteness. Phenotypic data were collected for approximately 500 fish, representing 98 families (5 fish/family), from a growth-selected line, and the muscle transcriptome was sequenced from 22 families with divergent phenotypes (4 low- versus 4 high-ranked families per trait). GATK detected 59,112 putative SNPs; of these SNPs, 4798 showed allelic imbalances (>2.0 as an amplification and <0.5 as loss of heterozygosity). SAMtools detected 87,066 putative SNPs; and of them, 4962 had allelic imbalances between the low- and high-ranked families. Only 1829 SNPs with allelic imbalances were common between the two datasets, indicating significant differences in algorithms. The two datasets contained 7930 non-redundant SNPs of which 4439 mapped to 1498 protein-coding genes (with 6.4% non-synonymous SNPs) and 684 mapped to 295 lncRNAs. Validation of a subset of 92 SNPs revealed 1) 86.7-93.8% success rate in calling polymorphic SNPs and 2) 95.4% consistent matching between DNA and cDNA genotypes indicating a high rate of identifying SNPs with allelic imbalances. In addition, 4.64% SNPs revealed random monoallelic expression. Genome distribution of the SNPs with allelic imbalances exhibited high density for all five traits in several chromosomes, especially chromosome 9, 20 and 28. Most of the SNP-harboring genes were assigned to important growth-related metabolic pathways. These results demonstrate utility of RNA-Seq in assessing phenotype-associated allelic imbalances in pooled RNA-Seq samples. The SNPs identified in this study were included in a new SNP-Chip design (available from Affymetrix) for genomic and genetic analyses in rainbow trout.

  2. Development of a molecular test of Paget's disease of bone.

    PubMed

    Guay-Bélanger, Sabrina; Simonyan, David; Bureau, Alexandre; Gagnon, Edith; Albert, Caroline; Morissette, Jean; Siris, Ethel S; Orcel, Philippe; Brown, Jacques P; Michou, Laëtitia

    2016-03-01

    Depending on populations, 15 to 40% of patients have a familial form of Paget's disease of bone (PDB), which is transmitted in an autosomal-dominant mode of inheritance with incomplete penetrance. To date, only SQSTM1 gene mutations have been linked to the disease. Several single nucleotide polymorphisms (SNPs) have been associated with PDB in patient non-carriers of SQSTM1 mutations, but they have minor size effects. The current clinical practice guidelines still recommend to measure total serum alkaline phosphatase (sALP) for PDB screening. However, genetic or bone biomarkers alone may lack sensitivity to detect PDB. Thus, the objective of this study was to develop a molecular test of PDB, combining genetic and bone biomarkers, in order to detect PDB, which is frequently asymptomatic. We genotyped 35 SNPs previously associated with PDB in 305 patients, and 292 healthy controls. In addition, serum levels of 14 bone biomarkers were assayed in 51 patients and 151 healthy controls. Bivariate and multivariate logistic regression models with adjustment for age and sex were fitted to search for a combination of SNPs and/or bone biomarkers that could best detect PDB in patient non-carriers of SQSTM1 mutations. First, a combination of five genetic markers gave rise to the highest area under the ROC curve (AUC) with 95% confidence interval [95% CI] of 0.731 [0.688; 0.773], which allowed us to detect 81.5% of patients with PDB. Second, a combination of two bone biomarkers had an AUC of 0.822 [0.726; 0.918], and was present in 81.5% of patients with PDB. Then, the combination of the five genetic markers and the two bone biomarkers increased the AUC up to 0.892 [0.833; 0.951], and detected 88.5% of patients with PDB. These results suggested that an algorithm integrating first a screen for SQSTM1 gene mutations, followed by either a genetic markers combination or a combined genetic and biochemical markers test in patients non-carrier of any SQSTM1 mutation, may detect the PDB phenotype better than biomarkers already available in the clinical practice. Copyright © 2016 Amgen Inc. Published by Elsevier Inc. All rights reserved.

  3. SNP-markers in Allium species to facilitate introgression breeding in onion.

    PubMed

    Scholten, Olga E; van Kaauwen, Martijn P W; Shahin, Arwa; Hendrickx, Patrick M; Keizer, L C Paul; Burger, Karin; van Heusden, Adriaan W; van der Linden, C Gerard; Vosman, Ben

    2016-08-31

    Within onion, Allium cepa L., the availability of disease resistance is limited. The identification of sources of resistance in related species, such as Allium roylei and Allium fistulosum, was a first step towards the improvement of onion cultivars by breeding. SNP markers linked to resistance and polymorphic between these related species and onion cultivars are a valuable tool to efficiently introgress disease resistance genes. In this paper we describe the identification and validation of SNP markers valuable for onion breeding. Transcriptome sequencing resulted in 192 million RNA seq reads from the interspecific F1 hybrid between A. roylei and A. fistulosum (RF) and nine onion cultivars. After assembly, reliable SNPs were discovered in about 36 % of the contigs. For genotyping of the interspecific three-way cross population, derived from a cross between an onion cultivar and the RF (CCxRF), 1100 SNPs that are polymorphic in RF and monomorphic in the onion cultivars (RF SNPs) were selected for the development of KASP assays. A molecular linkage map based on 667 RF-SNP markers was constructed for CCxRF. In addition, KASP assays were developed for 1600 onion-SNPs (SNPs polymorphic among onion cultivars). A second linkage map was constructed for an F2 of onion x A. roylei (F2(CxR)) that consisted of 182 onion-SNPs and 119 RF-SNPs, and 76 previously mapped markers. Markers co-segregating in both the F2(CxR) and the CCxRF population were used to assign the linkage groups of RF to onion chromosomes. To validate usefulness of these SNP markers, QTL mapping was applied in the CCxRF population that segregates for resistance to Botrytis squamosa and resulted in a QTL for resistance on chromosome 6 of A. roylei. Our research has more than doubled the publicly available marker sequences of expressed onion genes and two onion-related species. It resulted in a detailed genetic map for the interspecific CCxRF population. This is the first paper that reports the detection of a QTL for resistance to B. squamosa in A. roylei.

  4. Developing a new nonbinary SNP fluorescent multiplex detection system for forensic application in China.

    PubMed

    Liu, Yanfang; Liao, Huidan; Liu, Ying; Guo, Juanjuan; Sun, Yi; Fu, Xiaoliang; Xiao, Ding; Cai, Jifeng; Lan, Lingmei; Xie, Pingli; Zha, Lagabaiyila

    2017-04-01

    Nonbinary single-nucleotide polymorphisms (SNPs) are potential forensic genetic markers because their discrimination power is greater than that of normal binary SNPs, and that they can detect highly degraded samples. We previously developed a nonbinary SNP multiplex typing assay. In this study, we selected additional 20 nonbinary SNPs from the NCBI SNP database and verified them through pyrosequencing. These 20 nonbinary SNPs were analyzed using the fluorescent-labeled SNaPshot multiplex SNP typing method. The allele frequencies and genetic parameters of these 20 nonbinary SNPs were determined among 314 unrelated individuals from Han populations from China. The total power of discrimination was 0.9999999999994, and the cumulative probability of exclusion was 0.9986. Moreover, the result of the combination of this 20 nonbinary SNP assay with the 20 nonbinary SNP assay we previously developed demonstrated that the cumulative probability of exclusion of the 40 nonbinary SNPs was 0.999991 and that no significant linkage disequilibrium was observed in all 40 nonbinary SNPs. Thus, we concluded that this new system consisting of new 20 nonbinary SNPs could provide highly informative polymorphic data which would be further used in forensic application and would serve as a potentially valuable supplement to forensic DNA analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Allele-Skewed DNA Modification in the Brain: Relevance to a Schizophrenia GWAS

    PubMed Central

    Gagliano, Sarah A.; Ptak, Carolyn; Mak, Denise Y.F.; Shamsi, Mehrdad; Oh, Gabriel; Knight, Joanne; Boutros, Paul C.; Petronis, Arturas

    2016-01-01

    Numerous recent studies have suggested that phenotypic effects of DNA sequence variants can be mediated or modulated by their epigenetic marks, such as allele-skewed DNA modification (ASM). Using Affymetrix SNP microarrays, we performed a comprehensive search of ASM effects in human post-mortem brain and sperm samples (total n = 256) from individuals with major psychosis and control individuals. Depending on the phenotypic category of the brain samples, 1.4%–7.5% of interrogated SNPs exhibited ASM effects. Next, we investigated ASM in the context of genetic studies of schizophrenia and detected that brain ASM SNPs were significantly overrepresented among sub-threshold SNPs from a schizophrenia genome-wide association study (GWAS). Brain ASM SNPs showed a much stronger enrichment in a schizophrenia GWAS than in 17 large GWASs of non-psychiatric diseases and traits, arguing that ASM effects are at least partially tissue specific. Studies of germline and control brain ASM SNPs supported a causal association between ASM and schizophrenia. Finally, significantly higher proportions of ASM SNPs than of non-ASM SNPs were detected at loci exhibiting epigenetic signatures of enhancers and promoters, and they were overrepresented within transcription factor binding regions and DNase I hypersensitive sites. All of these findings collectively indicate that ASM SNPs should be prioritized in follow-up GWASs. PMID:27087318

  6. SNP discovery and genotyping using Genotyping-by-Sequencing in Pekin ducks.

    PubMed

    Zhu, Feng; Cui, Qian-Qian; Hou, Zhuo-Cheng

    2016-11-15

    Genomic selection and genome-wide association studies need thousands to millions of SNPs. However, many non-model species do not have reference chips for detecting variation. Our goal was to develop and validate an inexpensive but effective method for detecting SNP variation. Genotyping by sequencing (GBS) can be a highly efficient strategy for genome-wide SNP detection, as an alternative to microarray chips. Here, we developed a GBS protocol for ducks and tested it to genotype 49 Pekin ducks. A total of 169,209 SNPs were identified from all animals, with a mean of 55,920 SNPs per individual. The average SNP density reached 1156 SNPs/MB. In this study, the first application of GBS to ducks, we demonstrate the power and simplicity of this method. GBS can be used for genetic studies in to provide an effective method for genome-wide SNP discovery.

  7. Diet-gene interactions underlie metabolic individuality and influence brain development: Implications for clinical practice

    PubMed Central

    Zeisel, Steven H.

    2014-01-01

    One of the underlying mechanisms for metabolic individuality is genetic variation. Single nucleotide polymorphisms (SNPs) in genes of metabolic pathways can create metabolic inefficiencies that alter the dietary requirement for, and responses to nutrients. These SNPS can be detected using genetic profiling and the metabolic inefficiencies they cause can be detected using metabolomic profiling. Studies on the human dietary requirement for choline illustrate how useful these new approaches can be, as this requirement is influenced by SNPs in genes of choline and folate metabolism. In adults, these SNPs determine whether people develop fatty liver, liver damage and muscle damage when eating diets low in choline. Because choline is very important for fetal development, these SNPs may identify women who need to eat more choline during pregnancy. Some of the actions of choline are mediated by epigenetic mechanisms that permit “retuning” of metabolic pathways during early life. PMID:22614815

  8. Integrating Milk Metabolite Profile Information for the Prediction of Traditional Milk Traits Based on SNP Information for Holstein Cows

    PubMed Central

    Melzer, Nina; Wittenburg, Dörte; Repsilber, Dirk

    2013-01-01

    In this study the benefit of metabolome level analysis for the prediction of genetic value of three traditional milk traits was investigated. Our proposed approach consists of three steps: First, milk metabolite profiles are used to predict three traditional milk traits of 1,305 Holstein cows. Two regression methods, both enabling variable selection, are applied to identify important milk metabolites in this step. Second, the prediction of these important milk metabolite from single nucleotide polymorphisms (SNPs) enables the detection of SNPs with significant genetic effects. Finally, these SNPs are used to predict milk traits. The observed precision of predicted genetic values was compared to the results observed for the classical genotype-phenotype prediction using all SNPs or a reduced SNP subset (reduced classical approach). To enable a comparison between SNP subsets, a special invariable evaluation design was implemented. SNPs close to or within known quantitative trait loci (QTL) were determined. This enabled us to determine if detected important SNP subsets were enriched in these regions. The results show that our approach can lead to genetic value prediction, but requires less than 1% of the total amount of (40,317) SNPs., significantly more important SNPs in known QTL regions were detected using our approach compared to the reduced classical approach. Concluding, our approach allows a deeper insight into the associations between the different levels of the genotype-phenotype map (genotype-metabolome, metabolome-phenotype, genotype-phenotype). PMID:23990900

  9. Screening for polymorphisms in the PXR gene in a Dutch population.

    PubMed

    Bosch, Tessa M; Deenen, Maarten; Pruntel, Roelof; Smits, Paul H M; Schellens, Jan H M; Beijnen, Jos H; Meijerman, Irma

    2006-05-01

    Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of over 50% of all drugs currently in use. However, CYP3A4 expression shows a large inter-individual variation that cannot only be explained by genetic polymorphisms identified in this gene. The pregnane X receptor (PXR) has been identified as a transcriptional regulator of CYP3A4. Single nucleotide polymorphisms (SNPs) in the PXR gene could influence PXR activity and thereby CYP3A4 expression. This study was therefore aimed at determining the frequencies of known SNPs and detecting yet unknown SNPs in the PXR gene in a Dutch population. Genomic DNA was isolated from blood samples obtained from 100 healthy volunteers and subjected to PCR amplification, followed by DNA sequencing. The population, of which the ethnicity was 93% Caucasian, consisted of 79 female individuals and 21 males. A total of 24 SNPs were found in the PXR gene, eight of which are previously unknown. The allelic frequencies found in this population varied from 0.5 to 73%. Most of the previously detected SNPs were located in introns. One new SNP, T8555G in exon 8, causes an amino acid change of C379G and is located in the Ligand Binding Domain of PXR. Several SNPs were detected in the PXR gene, one of which is located in the ligand binding domain (LBD). These SNPs may influence PXR-mediated CYP3A4 induction.

  10. Using Next Generation Sequencing for Multiplexed Trait-Linked Markers in Wheat

    PubMed Central

    Bernardo, Amy; Wang, Shan; St. Amand, Paul; Bai, Guihua

    2015-01-01

    With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat ( Triticum aestivum L.) that can be effectively used in marker-assisted selection (MAS) is still limited and SNP assays for MAS are usually uniplex. A shift from uniplex to multiplex assays will allow the simultaneous analysis of multiple markers and increase MAS efficiency. We designed 33 locus-specific markers from SNP or indel-based marker sequences that linked to 20 different quantitative trait loci (QTL) or genes of agronomic importance in wheat and analyzed the amplicon sequences using an Ion Torrent Proton Sequencer and a custom allele detection pipeline to determine the genotypes of 24 selected germplasm accessions. Among the 33 markers, 27 were successfully multiplexed and 23 had 100% SNP call rates. Results from analysis of "kompetitive allele-specific PCR" (KASP) and sequence tagged site (STS) markers developed from the same loci fully verified the genotype calls of 23 markers. The NGS-based multiplexed assay developed in this study is suitable for rapid and high-throughput screening of SNPs and some indel-based markers in wheat. PMID:26625271

  11. Metal-doped inorganic nanoparticles for multiplex detection of biomarkers by a sandwich-type ICP-MS immunoassay.

    PubMed

    Ko, Jung Aa; Lim, H B

    2016-09-28

    Metal-doped inorganic nanoparticles were synthesized for the multiplex detection of biomarkers by a sandwich-type inductively coupled plasma mass spectrometry (ICP-MS) immunoassay. The synthesized Cs-doped multicore magnetic nanoparticles (MMNPs) were used not only for magnetic extraction of targets but also for ratiometric measurement in ICP-MS. In addition, three different metal/dye-doped silica nanoparticles (SNPs) were synthesized as probes for multiplex detection: Y/RhBITC (rhodamine B isothiocyanate)-doped SNPs for CRP (cardiovascular disease), Cd/RhBITC-doped SNPs for AFP (tumor), and Au/5(6)-XRITC (X-rhodamine-5-(and-6)-isothiocyanate)-doped SNPs for NSE (heart disease). For quantification, the doped metals of SNPs were measured by ICP-MS and then the signal ratio to Cs of MMNPs was plotted with respect to the concentration of targets by a ratiometry. Limits of detection (LOD) of 0.35 ng/mL to 77 ng mL(-1) and recoveries of 83%-125% were obtained for serum samples spiked with the biomarkers. Since no sample treatment was necessary prior to the extraction, the proposed method provided short analysis time and convenience for the multiplex determination of biomarkers, which will be valuable for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Lymphocyte Antigen 75 Polymorphisms Are Associated with Disease Susceptibility and Phenotype in Japanese Patients with Inflammatory Bowel Disease.

    PubMed

    Hirayama, Atsuhiro; Joshita, Satoru; Kitahara, Kei; Mukawa, Kenji; Suga, Tomoaki; Umemura, Takeji; Tanaka, Eiji; Ota, Masao

    2016-01-01

    Recent genome-wide association studies have rapidly improved our understanding of the molecular pathways leading to inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC). Although several reports have demonstrated that gene single nucleotide polymorphisms (SNPs) are associated with susceptibility to IBD, its precise genetic factors have not been fully clarified. Here, we performed an association analysis between lymphocyte antigen 75 ( LY75 ) genetic variations and IBD susceptibility or phenotype. SNPs were genotyped in 51 CD patients, 94 UC patients, and 269 healthy controls of Japanese ethnicity. We detected a significant relationship with CD susceptibility for the rs16822581 LY75 SNP ( P = 0.045). One haplotype (GT, P = 0.042) was also associated with CD susceptibility, while another carrying the opposite SNP (CA) was linked to an absence of surgical history for CD. Our findings confirm that LY75 is involved in CD susceptibility and may play a role in disease activity in the Japanese population.

  13. Characterization of Foodborne Outbreaks of Salmonella enterica Serovar Enteritidis with Whole-Genome Sequencing Single Nucleotide Polymorphism-Based Analysis for Surveillance and Outbreak Detection.

    PubMed

    Taylor, Angela J; Lappi, Victoria; Wolfgang, William J; Lapierre, Pascal; Palumbo, Michael J; Medus, Carlota; Boxrud, David

    2015-10-01

    Salmonella enterica serovar Enteritidis is a significant cause of gastrointestinal illness in the United States; however, current molecular subtyping methods lack resolution for this highly clonal serovar. Advances in next-generation sequencing technologies have made it possible to examine whole-genome sequencing (WGS) as a potential molecular subtyping tool for outbreak detection and source trace back. Here, we conducted a retrospective analysis of S. Enteritidis isolates from seven epidemiologically confirmed foodborne outbreaks and sporadic isolates (not epidemiologically linked) to determine the utility of WGS to identify outbreaks. A collection of 55 epidemiologically characterized clinical and environmental S. Enteritidis isolates were sequenced. Single nucleotide polymorphism (SNP)-based cluster analysis of the S. Enteritidis genomes revealed well supported clades, with less than four-SNP pairwise diversity, that were concordant with epidemiologically defined outbreaks. Sporadic isolates were an average of 42.5 SNPs distant from the outbreak clusters. Isolates collected from the same patient over several weeks differed by only two SNPs. Our findings show that WGS provided greater resolution between outbreak, sporadic, and suspect isolates than the current gold standard subtyping method, pulsed-field gel electrophoresis (PFGE). Furthermore, results could be obtained in a time frame suitable for surveillance activities, supporting the use of WGS as an outbreak detection and characterization method for S. Enteritidis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Powerful Identification of Cis-regulatory SNPs in Human Primary Monocytes Using Allele-Specific Gene Expression

    PubMed Central

    Almlöf, Jonas Carlsson; Lundmark, Per; Lundmark, Anders; Ge, Bing; Maouche, Seraya; Göring, Harald H. H.; Liljedahl, Ulrika; Enström, Camilla; Brocheton, Jessy; Proust, Carole; Godefroy, Tiphaine; Sambrook, Jennifer G.; Jolley, Jennifer; Crisp-Hihn, Abigail; Foad, Nicola; Lloyd-Jones, Heather; Stephens, Jonathan; Gwilliam, Rhian; Rice, Catherine M.; Hengstenberg, Christian; Samani, Nilesh J.; Erdmann, Jeanette; Schunkert, Heribert; Pastinen, Tomi; Deloukas, Panos; Goodall, Alison H.; Ouwehand, Willem H.; Cambien, François; Syvänen, Ann-Christine

    2012-01-01

    A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers. PMID:23300628

  15. Automated detection system of single nucleotide polymorphisms using two kinds of functional magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Hongna; Li, Song; Wang, Zhifei; Li, Zhiyang; Deng, Yan; Wang, Hua; Shi, Zhiyang; He, Nongyue

    2008-11-01

    Single nucleotide polymorphisms (SNPs) comprise the most abundant source of genetic variation in the human genome wide codominant SNPs identification. Therefore, large-scale codominant SNPs identification, especially for those associated with complex diseases, has induced the need for completely high-throughput and automated SNP genotyping method. Herein, we present an automated detection system of SNPs based on two kinds of functional magnetic nanoparticles (MNPs) and dual-color hybridization. The amido-modified MNPs (NH 2-MNPs) modified with APTES were used for DNA extraction from whole blood directly by electrostatic reaction, and followed by PCR, was successfully performed. Furthermore, biotinylated PCR products were captured on the streptavidin-coated MNPs (SA-MNPs) and interrogated by hybridization with a pair of dual-color probes to determine SNP, then the genotype of each sample can be simultaneously identified by scanning the microarray printed with the denatured fluorescent probes. This system provided a rapid, sensitive and highly versatile automated procedure that will greatly facilitate the analysis of different known SNPs in human genome.

  16. Diet-gene interactions underlie metabolic individuality and influence brain development: implications for clinical practice derived from studies on choline metabolism.

    PubMed

    Zeisel, Steven H

    2012-01-01

    One of the underlying mechanisms for metabolic individuality is genetic variation. Single nucleotide polymorphisms (SNPs) in genes of metabolic pathways can create metabolic inefficiencies that alter the dietary requirement for, and responses to, nutrients. These SNPs can be detected using genetic profiling and the metabolic inefficiencies they cause can be detected using metabolomic profiling. Studies on the human dietary requirement for choline illustrate how useful these new approaches can be, as this requirement is influenced by SNPs in genes of choline and folate metabolism. In adults, these SNPs determine whether people develop fatty liver, liver damage and muscle damage when eating diets low in choline. Because choline is very important for fetal development, these SNPs may identify women who need to eat more choline during pregnancy. Some of the actions of choline are mediated by epigenetic mechanisms that permit 'retuning' of metabolic pathways during early life. Copyright © 2012 S. Karger AG, Basel.

  17. Caucasian Families Exhibit Significant Linkage of Myopia to Chromosome 11p.

    PubMed

    Musolf, Anthony M; Simpson, Claire L; Moiz, Bilal A; Long, Kyle A; Portas, Laura; Murgia, Federico; Ciner, Elise B; Stambolian, Dwight; Bailey-Wilson, Joan E

    2017-07-01

    Myopia is a common visual disorder caused by eye overgrowth, resulting in blurry vision. It affects one in four Americans, and its prevalence is increasing. The genetic mechanisms that underpin myopia are not completely understood. Here, we use genotype data and linkage analyses to identify high-risk genetic loci that are significantly linked to myopia. Individuals from 56 Caucasian families with a history of myopia were genotyped on an exome-based array, and the single nucleotide polymorphism (SNP) data were merged with microsatellite genotype data. Refractive error measures on the samples were converted into binary phenotypes consisting of affected, unaffected, or unknown myopia status. Parametric linkage analyses assuming an autosomal dominant model with 90% penetrance and 10% phenocopy rate were performed. Single variant two-point analyses yielded three significantly linked SNPs at 11p14.1 and 11p11.2; a further 45 SNPs at 11p were found to be suggestive. No other chromosome had any significant SNPs or more than seven suggestive linkages. Two of the significant SNPs were located in BBOX1-AS1 and one in the intergenic region between ORA47 and TRIM49B. Collapsed haplotype pattern two-point analysis and multipoint analyses also yielded multiple suggestively linked genes at 11p. Multipoint analysis also identified suggestive evidence of linkage on 20q13. We identified three genome-wide significant linked variants on 11p for myopia in Caucasians. Although the novel specific signals still need to be replicated, 11p is a promising region that has been identified by other linkage studies with a number of potentially interesting candidate genes. We hope that the identification of these regions on 11p as potential causal regions for myopia will lead to more focus on these regions and maybe possible replication of our specific linkage peaks in other studies. We further plan targeted sequencing on 11p for our most highly linked families to more clearly understand the source of the linkage in this region.

  18. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.).

    PubMed

    Peng, Fred Y; Yang, Rong-Cai

    2017-06-20

    The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for adult resistance and six SNPs for seedling resistance in the NLR genes. Most of these coding SNPs were predicted to alter encoded amino acids and such information may serve as a starting point towards more thorough molecular and functional characterization of the designated Lr genes. Using the primer sequences of 99 known non-SNP markers from leaf rust resistance QTLs, we found candidate genes closely linked to these markers, including Lr34 with distances to its two gene-specific markers being 1212 bases (to cssfr1) and 2189 bases (to cssfr2). This study represents a comprehensive analysis of ABC, NLR and START genes in the hexaploid wheat genome and their physical relationships with QTLs for leaf rust resistance at seedling and adult stages. Our analysis suggests that the ABC (and START) genes are more likely to be co-located with QTLs for race-nonspecific, adult resistance whereas the NLR genes are more likely to be co-located with QTLs for race-specific resistance that would be often expressed at the seedling stage. Though our analysis was hampered by inaccurate or unknown physical positions of numerous QTLs due to the incomplete assembly of the complex hexaploid wheat genome that is currently available, the observed associations between (i) QTLs for race-specific resistance and NLR genes and (ii) QTLs for nonspecific resistance and ABC genes will help discover SNP variants for leaf rust resistance at seedling and adult stages. The genes containing nonsynonymous SNPs are promising candidates that can be investigated in future studies as potential new sources of leaf rust resistance in wheat breeding.

  19. Nucleotide, cytogenetic and expression impact of the human chromosome 8p23.1 inversion polymorphism.

    PubMed

    Bosch, Nina; Morell, Marta; Ponsa, Immaculada; Mercader, Josep Maria; Armengol, Lluís; Estivill, Xavier

    2009-12-14

    The human chromosome 8p23.1 region contains a 3.8-4.5 Mb segment which can be found in different orientations (defined as genomic inversion) among individuals. The identification of single nucleotide polymorphisms (SNPs) tightly linked to the genomic orientation of a given region should be useful to indirectly evaluate the genotypes of large genomic orientations in the individuals. We have identified 16 SNPs, which are in linkage disequilibrium (LD) with the 8p23.1 inversion as detected by fluorescent in situ hybridization (FISH). The variability of the 8p23.1 orientation in 150 HapMap samples was predicted using this set of SNPs and was verified by FISH in a subset of samples. Four genes (NEIL2, MSRA, CTSB and BLK) were found differentially expressed (p<0.0005) according to the orientation of the 8p23.1 region. Finally, we have found variable levels of mosaicism for the orientation of the 8p23.1 as determined by FISH. By means of dense SNP genotyping of the region, haplotype-based computational analyses and FISH experiments we could infer and verify the orientation status of alleles in the 8p23.1 region by detecting two short haplotype stretches at both ends of the inverted region, which are likely the relic of the chromosome in which the original inversion occurred. Moreover, an impact of 8p23.1 inversion on gene expression levels cannot be ruled out, since four genes from this region have statistically significant different expression levels depending on the inversion status. FISH results in lymphoblastoid cell lines suggest the presence of mosaicism regarding the 8p23.1 inversion.

  20. Single-nucleotide polymorphism-gene intermixed networking reveals co-linkers connected to multiple gene expression phenotypes

    PubMed Central

    Gong, Bin-Sheng; Zhang, Qing-Pu; Zhang, Guang-Mei; Zhang, Shao-Jun; Zhang, Wei; Lv, Hong-Chao; Zhang, Fan; Lv, Sa-Li; Li, Chuan-Xing; Rao, Shao-Qi; Li, Xia

    2007-01-01

    Gene expression profiles and single-nucleotide polymorphism (SNP) profiles are modern data for genetic analysis. It is possible to use the two types of information to analyze the relationships among genes by some genetical genomics approaches. In this study, gene expression profiles were used as expression traits. And relationships among the genes, which were co-linked to a common SNP(s), were identified by integrating the two types of information. Further research on the co-expressions among the co-linked genes was carried out after the gene-SNP relationships were established using the Haseman-Elston sib-pair regression. The results showed that the co-expressions among the co-linked genes were significantly higher if the number of connections between the genes and a SNP(s) was more than six. Then, the genes were interconnected via one or more SNP co-linkers to construct a gene-SNP intermixed network. The genes sharing more SNPs tended to have a stronger correlation. Finally, a gene-gene network was constructed with their intensities of relationships (the number of SNP co-linkers shared) as the weights for the edges. PMID:18466544

  1. The search for loci under selection: trends, biases and progress.

    PubMed

    Ahrens, Collin W; Rymer, Paul D; Stow, Adam; Bragg, Jason; Dillon, Shannon; Umbers, Kate D L; Dudaniec, Rachael Y

    2018-03-01

    Detecting genetic variants under selection using F ST outlier analysis (OA) and environmental association analyses (EAAs) are popular approaches that provide insight into the genetic basis of local adaptation. Despite the frequent use of OA and EAA approaches and their increasing attractiveness for detecting signatures of selection, their application to field-based empirical data have not been synthesized. Here, we review 66 empirical studies that use Single Nucleotide Polymorphisms (SNPs) in OA and EAA. We report trends and biases across biological systems, sequencing methods, approaches, parameters, environmental variables and their influence on detecting signatures of selection. We found striking variability in both the use and reporting of environmental data and statistical parameters. For example, linkage disequilibrium among SNPs and numbers of unique SNP associations identified with EAA were rarely reported. The proportion of putatively adaptive SNPs detected varied widely among studies, and decreased with the number of SNPs analysed. We found that genomic sampling effort had a greater impact than biological sampling effort on the proportion of identified SNPs under selection. OA identified a higher proportion of outliers when more individuals were sampled, but this was not the case for EAA. To facilitate repeatability, interpretation and synthesis of studies detecting selection, we recommend that future studies consistently report geographical coordinates, environmental data, model parameters, linkage disequilibrium, and measures of genetic structure. Identifying standards for how OA and EAA studies are designed and reported will aid future transparency and comparability of SNP-based selection studies and help to progress landscape and evolutionary genomics. © 2018 John Wiley & Sons Ltd.

  2. A novel fluorescent aptasensor based on gold and silica nanoparticles for the ultrasensitive detection of ochratoxin A

    NASA Astrophysics Data System (ADS)

    Taghdisi, Seyed Mohammad; Danesh, Noor Mohammad; Beheshti, Hamed Reza; Ramezani, Mohammad; Abnous, Khalil

    2016-02-01

    Analytical approaches for the detection and quantitation of ochratoxin A (OTA) in blood serum and food products are high in demand. In this study, a fluorescent aptamer-based sensor (aptasensor) is developed for the selective and sensitive detection of OTA, based on a complementary strand of aptamer (CS) and two types of nanoparticles, gold nanoparticles (AuNPs) and silica nanoparticles (SNPs) coated with streptavidin. The fabricated aptasensor inherits the characteristics of SNPs, as enhancers of fluorescence intensity; AuNPs, such as large surface area and unique optical properties; and high affinity of the aptamer toward its target compared to its CS. In the absence of OTA, no FAM and biotin-labeled CS is in the environment of the SNPs coated with streptavidin, which leads to no fluorescence emission. In the presence of the target, an FAM and biotin-labeled CS-SNPs coated with streptavidin conjugate is formed, thus resulting in a very strong fluorescence emission. The designed fluorescent aptasensor exhibits high selectivity toward OTA with a limit of detection (LOD) as low as 0.098 nM. Furthermore, the fabricated aptasensor was successfully applied for the detection of OTA in grape juice and serum with LODs of 0.113 and 0.152 nM, respectively.

  3. A study of possible associations between single nucleotide polymorphisms in the estrogen receptor 2 gene and female sexual desire.

    PubMed

    Gunst, Annika; Jern, Patrick; Westberg, Lars; Johansson, Ada; Salo, Benny; Burri, Andrea; Spector, Tim; Eriksson, Elias; Sandnabba, N Kenneth; Santtila, Pekka

    2015-03-01

    Female sexual desire and arousal problems have been shown to have a heritable component of moderate size. Previous molecular genetic studies on sexual desire have mainly focused on genes associated with neurotransmitters such as dopamine and serotonin. Nevertheless, there is reason to believe that hormones with more specific functions concerning sexuality could have an impact on sexual desire and arousal. The aim of the present study was to investigate the possible effects of 17 single nucleotide polymorphisms (SNPs) located in estrogen receptor genes on female sexual desire and subjective and genital arousal (lubrication). Based on previous research, we hypothesized that ESR1 and ESR2 are relevant genes that contribute to female sexual desire and arousal. The desire, arousal, and lubrication subdomains of the Female Sexual Function Index self-report questionnaire were used. The present study involved 2,448 female twins and their sisters aged 18-49 who had submitted saliva samples for genotyping. The participants were a subset from a large-scale, population-based sample. We found nominally significant main effects on sexual desire for three ESR2 -linked SNPs when controlled for anxiety, suggesting that individuals homozygous for the G allele of the rs1271572 SNP, and the A allele of the rs4986938 and rs928554 SNPs had lower levels of sexual desire. The rs4986938 SNP also had a nominally significant effect on lubrication. No effects for any of the SNPs on subjective arousal could be detected. The number of nominally significant results for SNPs in the ESR2 gene before correcting for multiple testing suggests that further studies on the possible influence of this gene on interindividual variation in female sexual functioning are warranted. In contrast, no support for an involvement of ESR1 was obtained. Our results should be interpreted with caution until replicated in independent, large samples. © 2014 International Society for Sexual Medicine.

  4. Spectrum of sequence variations in the FANCA gene: an International Fanconi Anemia Registry (IFAR) study.

    PubMed

    Levran, Orna; Diotti, Raffaella; Pujara, Kanan; Batish, Sat D; Hanenberg, Helmut; Auerbach, Arleen D

    2005-02-01

    Fanconi anemia (FA) is an autosomal recessive disorder that is defined by cellular hypersensitivity to DNA cross-linking agents, and is characterized clinically by developmental abnormalities, progressive bone-marrow failure, and predisposition to leukemia and solid tumors. There is extensive genetic heterogeneity, with at least 11 different FA complementation groups. FA-A is the most common group, accounting for approximately 65% of all affected individuals. The mutation spectrum of the FANCA gene, located on chromosome 16q24.3, is highly heterogeneous. Here we summarize all sequence variations (mutations and polymorphisms) in FANCA described in the literature and listed in the Fanconi Anemia Mutation Database as of March 2004, and report 61 novel FANCA mutations identified in FA patients registered in the International Fanconi Anemia Registry (IFAR). Thirty-eight novel SNPs, previously unreported in the literature or in dbSNP, were also identified. We studied the segregation of common FANCA SNPs in FA families to generate haplotypes. We found that FANCA SNP data are highly useful for carrier testing, prenatal diagnosis, and preimplantation genetic diagnosis, particularly when the disease-causing mutations are unknown. Twenty-two large genomic deletions were identified by detection of apparent homozygosity for rare SNPs. In addition, a conserved SNP haplotype block spanning at least 60 kb of the FANCA gene was identified in individuals from various ethnic groups. (c) 2005 Wiley-Liss, Inc.

  5. Automated SNP detection from a large collection of white spruce expressed sequences: contributing factors and approaches for the categorization of SNPs

    PubMed Central

    Pavy, Nathalie; Parsons, Lee S; Paule, Charles; MacKay, John; Bousquet, Jean

    2006-01-01

    Background High-throughput genotyping technologies represent a highly efficient way to accelerate genetic mapping and enable association studies. As a first step toward this goal, we aimed to develop a resource of candidate Single Nucleotide Polymorphisms (SNP) in white spruce (Picea glauca [Moench] Voss), a softwood tree of major economic importance. Results A white spruce SNP resource encompassing 12,264 SNPs was constructed from a set of 6,459 contigs derived from Expressed Sequence Tags (EST) and by using the bayesian-based statistical software PolyBayes. Several parameters influencing the SNP prediction were analysed including the a priori expected polymorphism, the probability score (PSNP), and the contig depth and length. SNP detection in 3' and 5' reads from the same clones revealed a level of inconsistency between overlapping sequences as low as 1%. A subset of 245 predicted SNPs were verified through the independent resequencing of genomic DNA of a genotype also used to prepare cDNA libraries. The validation rate reached a maximum of 85% for SNPs predicted with either PSNP ≥ 0.95 or ≥ 0.99. A total of 9,310 SNPs were detected by using PSNP ≥ 0.95 as a criterion. The SNPs were distributed among 3,590 contigs encompassing an array of broad functional categories, with an overall frequency of 1 SNP per 700 nucleotide sites. Experimental and statistical approaches were used to evaluate the proportion of paralogous SNPs, with estimates in the range of 8 to 12%. The 3,789 coding SNPs identified through coding region annotation and ORF prediction, were distributed into 39% nonsynonymous and 61% synonymous substitutions. Overall, there were 0.9 SNP per 1,000 nonsynonymous sites and 5.2 SNPs per 1,000 synonymous sites, for a genome-wide nonsynonymous to synonymous substitution rate ratio (Ka/Ks) of 0.17. Conclusion We integrated the SNP data in the ForestTreeDB database along with functional annotations to provide a tool facilitating the choice of candidate genes for mapping purposes or association studies. PMID:16824208

  6. Comparative analysis of methods for detecting interacting loci

    PubMed Central

    2011-01-01

    Background Interactions among genetic loci are believed to play an important role in disease risk. While many methods have been proposed for detecting such interactions, their relative performance remains largely unclear, mainly because different data sources, detection performance criteria, and experimental protocols were used in the papers introducing these methods and in subsequent studies. Moreover, there have been very few studies strictly focused on comparison of existing methods. Given the importance of detecting gene-gene and gene-environment interactions, a rigorous, comprehensive comparison of performance and limitations of available interaction detection methods is warranted. Results We report a comparison of eight representative methods, of which seven were specifically designed to detect interactions among single nucleotide polymorphisms (SNPs), with the last a popular main-effect testing method used as a baseline for performance evaluation. The selected methods, multifactor dimensionality reduction (MDR), full interaction model (FIM), information gain (IG), Bayesian epistasis association mapping (BEAM), SNP harvester (SH), maximum entropy conditional probability modeling (MECPM), logistic regression with an interaction term (LRIT), and logistic regression (LR) were compared on a large number of simulated data sets, each, consistent with complex disease models, embedding multiple sets of interacting SNPs, under different interaction models. The assessment criteria included several relevant detection power measures, family-wise type I error rate, and computational complexity. There are several important results from this study. First, while some SNPs in interactions with strong effects are successfully detected, most of the methods miss many interacting SNPs at an acceptable rate of false positives. In this study, the best-performing method was MECPM. Second, the statistical significance assessment criteria, used by some of the methods to control the type I error rate, are quite conservative, thereby limiting their power and making it difficult to fairly compare them. Third, as expected, power varies for different models and as a function of penetrance, minor allele frequency, linkage disequilibrium and marginal effects. Fourth, the analytical relationships between power and these factors are derived, aiding in the interpretation of the study results. Fifth, for these methods the magnitude of the main effect influences the power of the tests. Sixth, most methods can detect some ground-truth SNPs but have modest power to detect the whole set of interacting SNPs. Conclusion This comparison study provides new insights into the strengths and limitations of current methods for detecting interacting loci. This study, along with freely available simulation tools we provide, should help support development of improved methods. The simulation tools are available at: http://code.google.com/p/simulation-tool-bmc-ms9169818735220977/downloads/list. PMID:21729295

  7. Comparative analysis of methods for detecting interacting loci.

    PubMed

    Chen, Li; Yu, Guoqiang; Langefeld, Carl D; Miller, David J; Guy, Richard T; Raghuram, Jayaram; Yuan, Xiguo; Herrington, David M; Wang, Yue

    2011-07-05

    Interactions among genetic loci are believed to play an important role in disease risk. While many methods have been proposed for detecting such interactions, their relative performance remains largely unclear, mainly because different data sources, detection performance criteria, and experimental protocols were used in the papers introducing these methods and in subsequent studies. Moreover, there have been very few studies strictly focused on comparison of existing methods. Given the importance of detecting gene-gene and gene-environment interactions, a rigorous, comprehensive comparison of performance and limitations of available interaction detection methods is warranted. We report a comparison of eight representative methods, of which seven were specifically designed to detect interactions among single nucleotide polymorphisms (SNPs), with the last a popular main-effect testing method used as a baseline for performance evaluation. The selected methods, multifactor dimensionality reduction (MDR), full interaction model (FIM), information gain (IG), Bayesian epistasis association mapping (BEAM), SNP harvester (SH), maximum entropy conditional probability modeling (MECPM), logistic regression with an interaction term (LRIT), and logistic regression (LR) were compared on a large number of simulated data sets, each, consistent with complex disease models, embedding multiple sets of interacting SNPs, under different interaction models. The assessment criteria included several relevant detection power measures, family-wise type I error rate, and computational complexity. There are several important results from this study. First, while some SNPs in interactions with strong effects are successfully detected, most of the methods miss many interacting SNPs at an acceptable rate of false positives. In this study, the best-performing method was MECPM. Second, the statistical significance assessment criteria, used by some of the methods to control the type I error rate, are quite conservative, thereby limiting their power and making it difficult to fairly compare them. Third, as expected, power varies for different models and as a function of penetrance, minor allele frequency, linkage disequilibrium and marginal effects. Fourth, the analytical relationships between power and these factors are derived, aiding in the interpretation of the study results. Fifth, for these methods the magnitude of the main effect influences the power of the tests. Sixth, most methods can detect some ground-truth SNPs but have modest power to detect the whole set of interacting SNPs. This comparison study provides new insights into the strengths and limitations of current methods for detecting interacting loci. This study, along with freely available simulation tools we provide, should help support development of improved methods. The simulation tools are available at: http://code.google.com/p/simulation-tool-bmc-ms9169818735220977/downloads/list.

  8. Altools: a user friendly NGS data analyser.

    PubMed

    Camiolo, Salvatore; Sablok, Gaurav; Porceddu, Andrea

    2016-02-17

    Genotyping by re-sequencing has become a standard approach to estimate single nucleotide polymorphism (SNP) diversity, haplotype structure and the biodiversity and has been defined as an efficient approach to address geographical population genomics of several model species. To access core SNPs and insertion/deletion polymorphisms (indels), and to infer the phyletic patterns of speciation, most such approaches map short reads to the reference genome. Variant calling is important to establish patterns of genome-wide association studies (GWAS) for quantitative trait loci (QTLs), and to determine the population and haplotype structure based on SNPs, thus allowing content-dependent trait and evolutionary analysis. Several tools have been developed to investigate such polymorphisms as well as more complex genomic rearrangements such as copy number variations, presence/absence variations and large deletions. The programs available for this purpose have different strengths (e.g. accuracy, sensitivity and specificity) and weaknesses (e.g. low computation speed, complex installation procedure and absence of a user-friendly interface). Here we introduce Altools, a software package that is easy to install and use, which allows the precise detection of polymorphisms and structural variations. Altools uses the BWA/SAMtools/VarScan pipeline to call SNPs and indels, and the dnaCopy algorithm to achieve genome segmentation according to local coverage differences in order to identify copy number variations. It also uses insert size information from the alignment of paired-end reads and detects potential large deletions. A double mapping approach (BWA/BLASTn) identifies precise breakpoints while ensuring rapid elaboration. Finally, Altools implements several processes that yield deeper insight into the genes affected by the detected polymorphisms. Altools was used to analyse both simulated and real next-generation sequencing (NGS) data and performed satisfactorily in terms of positive predictive values, sensitivity, the identification of large deletion breakpoints and copy number detection. Altools is fast, reliable and easy to use for the mining of NGS data. The software package also attempts to link identified polymorphisms and structural variants to their biological functions thus providing more valuable information than similar tools.

  9. Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content.

    PubMed

    Tran, Hue T M; Ramaraj, Thiruvarangan; Furtado, Agnelo; Lee, Leonard Slade; Henry, Robert J

    2018-03-07

    Arabica coffee (Coffea arabica) has a small gene pool limiting genetic improvement. Selection for caffeine content within this gene pool would be assisted by identification of the genes controlling this important trait. Sequencing of DNA bulks from 18 genotypes with extreme high- or low-caffeine content from a population of 232 genotypes was used to identify linked polymorphisms. To obtain a reference genome, a whole genome assembly of arabica coffee (variety K7) was achieved by sequencing using short read (Illumina) and long-read (PacBio) technology. Assembly was performed using a range of assembly tools resulting in 76 409 scaffolds with a scaffold N50 of 54 544 bp and a total scaffold length of 1448 Mb. Validation of the genome assembly using different tools showed high completeness of the genome. More than 99% of transcriptome sequences mapped to the C. arabica draft genome, and 89% of BUSCOs were present. The assembled genome annotated using AUGUSTUS yielded 99 829 gene models. Using the draft arabica genome as reference in mapping and variant calling allowed the detection of 1444 nonsynonymous single nucleotide polymorphisms (SNPs) associated with caffeine content. Based on Kyoto Encyclopaedia of Genes and Genomes pathway-based analysis, 65 caffeine-associated SNPs were discovered, among which 11 SNPs were associated with genes encoding enzymes involved in the conversion of substrates, which participate in the caffeine biosynthesis pathways. This analysis demonstrated the complex genetic control of this key trait in coffee. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Genome-wide association study in discordant sibships identifies multiple inherited susceptibility alleles linked to lung cancer.

    PubMed

    Galvan, Antonella; Falvella, Felicia S; Frullanti, Elisa; Spinola, Monica; Incarbone, Matteo; Nosotti, Mario; Santambrogio, Luigi; Conti, Barbara; Pastorino, Ugo; Gonzalez-Neira, Anna; Dragani, Tommaso A

    2010-03-01

    We analyzed a series of young (median age = 52 years) non-smoker lung cancer patients and their unaffected siblings as controls, using a genome-wide 620 901 single-nucleotide polymorphism (SNP) array analysis and a case-control DNA pooling approach. We identified 82 putatively associated SNPs that were retested by individual genotyping followed by use of the sib transmission disequilibrium test, pointing to 36 SNPs associated with lung cancer risk in the discordant sibs series. Analysis of these 36 SNPs in a polygenic model characterized by additive and interchangeable effects of rare alleles revealed a highly statistically significant dosage-dependent association between risk allele carrier status and proportion of cancer cases. Replication of the same 36 SNPs in a population-based series confirmed the association with lung cancer for three SNPs, suggesting that phenocopies and genetic heterogeneity can play a major role in the complex genetics of lung cancer risk in the general population.

  11. VarDetect: a nucleotide sequence variation exploratory tool

    PubMed Central

    Ngamphiw, Chumpol; Kulawonganunchai, Supasak; Assawamakin, Anunchai; Jenwitheesuk, Ekachai; Tongsima, Sissades

    2008-01-01

    Background Single nucleotide polymorphisms (SNPs) are the most commonly studied units of genetic variation. The discovery of such variation may help to identify causative gene mutations in monogenic diseases and SNPs associated with predisposing genes in complex diseases. Accurate detection of SNPs requires software that can correctly interpret chromatogram signals to nucleotides. Results We present VarDetect, a stand-alone nucleotide variation exploratory tool that automatically detects nucleotide variation from fluorescence based chromatogram traces. Accurate SNP base-calling is achieved using pre-calculated peak content ratios, and is enhanced by rules which account for common sequence reading artifacts. The proposed software tool is benchmarked against four other well-known SNP discovery software tools (PolyPhred, novoSNP, Genalys and Mutation Surveyor) using fluorescence based chromatograms from 15 human genes. These chromatograms were obtained from sequencing 16 two-pooled DNA samples; a total of 32 individual DNA samples. In this comparison of automatic SNP detection tools, VarDetect achieved the highest detection efficiency. Availability VarDetect is compatible with most major operating systems such as Microsoft Windows, Linux, and Mac OSX. The current version of VarDetect is freely available at . PMID:19091032

  12. Application of whole genome sequence data in analyzing the molecular epidemiology of Shiga toxin-producing Escherichia coli O157:H7/H.

    PubMed

    Yokoyama, Eiji; Hirai, Shinichiro; Ishige, Taichiro; Murakami, Satoshi

    2018-01-02

    Seventeen clusters of Shiga toxin-producing Escherichia coli O157:H7/- (O157) strains, determined by cluster analysis of pulsed-field gel electrophoresis patterns, were analyzed using whole genome sequence (WGS) data to investigate this pathogen's molecular epidemiology. The 17 clusters included 136 strains containing strains from nine outbreaks, with each outbreak caused by a single source contaminated with the organism, as shown by epidemiological contact surveys. WGS data of these strains were used to identify single nucleotide polymorphisms (SNPs) by two methods: short read data were directly mapped to a reference genome (mapping derived SNPs) and common SNPs between the mapping derived SNPs and SNPs in assembled data of short read data (common SNPs). Among both SNPs, those that were detected in genes with a gap were excluded to remove ambiguous SNPs from further analysis. The effectiveness of both SNPs was investigated among all the concatenated SNPs that were detected (whole SNP set); SNPs were divided into three categories based on the genes in which they were located (i.e., backbone SNP set, O-island SNP set, and mobile element SNP set); and SNPs in non-coding regions (intergenic region SNP set). When SNPs from strains isolated from the nine single source derived outbreaks were analyzed using an unweighted pair group method with arithmetic mean tree (UPGMA) and a minimum spanning tree (MST), the maximum pair-wise distances of the backbone SNP set of the mapping derived SNPs were significantly smaller than those of the whole and intergenic region SNP set on both UPGMAs and MSTs. This significant difference was also observed when the backbone SNP set of the common SNPs were examined (Steel-Dwass test, P≤0.01). When the maximum pair-wise distances were compared between the mapping derived and common SNPs, significant differences were observed in those of the whole, mobile element, and intergenic region SNP set (Wilcoxon signed rank test, P≤0.01). When all the strains included in one complex on an MST or one cluster on a UPGMA were designated as the same genotype, the values of the Hunter-Gaston Discriminatory Power Index for the backbone SNP set of the mapping derived and common SNPs were higher than those of other SNP sets. In contrast, the mobile element SNP set could not robustly subdivide lineage I strains of tested O157 strains using both the mapping derived and common SNPs. These results suggested that the backbone SNP set were the most effective for analysis of WGS data for O157 in enabling an appropriation of its molecular epidemiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Genetic variation in Pythium myriotylum based on SNP typing and development of a PCR-RFLP detection of isolates recovered from Pythium soft rot ginger.

    PubMed

    Le, D P; Smith, M K; Aitken, E A B

    2017-10-01

    Pythium myriotylum is responsible for severe losses in both capsicum and ginger crops in Australia under different regimes. Intraspecific genomic variation within the pathogen might explain the differences in aggressiveness and pathogenicity on diverse hosts. In this study, whole genome data of four P. myriotylum isolates recovered from three hosts and one Pythium zingiberis isolate were derived and analysed for sequence diversity based on single nucleotide polymorphisms (SNPs). A higher number of true and unique SNPs occurred in P. myriotylum isolates obtained from ginger with symptoms of Pythium soft rot (PSR) in Australia compared to other P. myriotylum isolates. Overall, SNPs were discovered more in the mitochondrial genome than those in the nuclear genome. Among the SNPs, a single substitution from the cytosine (C) to the thymine (T) in the partially sequenced CoxII gene of 14 representatives of PSR P. myriotylum isolates was within a restriction site of HinP1I enzyme which was used in the PCR-RFLP for detection and identification of the isolates without sequencing. The PCR-RFLP was also sensitive to detect PSR P. myriotylum strains from artificially infected ginger without the need for isolation for pure cultures. This is the first study of intraspecific variants of Pythium myriotylum isolates recovered from different hosts and origins based on single nucleotide polymorphism (SNP) genotyping of multiple genes. The SNPs discovered provide valuable makers for detection and identification of P. myriotylum strains initially isolated from Pythium soft rot (PSR) ginger by using PCR-RFLP of the CoxII locus. The PCR-RFLP was also sensitive to detect P. myriotylum directly from PSR ginger sampled from pot trials without the need of isolation for pure cultures. © 2017 The Society for Applied Microbiology.

  14. Somatic Genetic Variation in Solid Pseudopapillary Tumor of the Pancreas by Whole Exome Sequencing

    PubMed Central

    Guo, Meng; Luo, Guopei; Jin, Kaizhou; Long, Jiang; Cheng, He; Lu, Yu; Wang, Zhengshi; Yang, Chao; Xu, Jin; Ni, Quanxing; Yu, Xianjun; Liu, Chen

    2017-01-01

    Solid pseudopapillary tumor of the pancreas (SPT) is a rare pancreatic disease with a unique clinical manifestation. Although CTNNB1 gene mutations had been universally reported, genetic variation profiles of SPT are largely unidentified. We conducted whole exome sequencing in nine SPT patients to probe the SPT-specific insertions and deletions (indels) and single nucleotide polymorphisms (SNPs). In total, 54 SNPs and 41 indels of prominent variations were demonstrated through parallel exome sequencing. We detected that CTNNB1 mutations presented throughout all patients studied (100%), and a higher count of SNPs was particularly detected in patients with older age, larger tumor, and metastatic disease. By aggregating 95 detected variation events and viewing the interconnections among each of the genes with variations, CTNNB1 was identified as the core portion in the network, which might collaborate with other events such as variations of USP9X, EP400, HTT, MED12, and PKD1 to regulate tumorigenesis. Pathway analysis showed that the events involved in other cancers had the potential to influence the progression of the SNPs count. Our study revealed an insight into the variation of the gene encoding region underlying solid-pseudopapillary neoplasm tumorigenesis. The detection of these variations might partly reflect the potential molecular mechanism. PMID:28054945

  15. Genetic Determinants of Enterovirus Infections: Polymorphisms in Type 1 Diabetes and Innate Immune Genes in the MIDIA Study.

    PubMed

    Witsø, Elisabet; Cinek, Ondrej; Tapia, German; Brorsson, Caroline A; Stene, Lars C; Gjessing, Håkon K; Rasmussen, Trond; Bergholdt, Regine; Pociot, Flemming M; Rønningen, Kjersti S

    2015-12-01

    Enteroviruses have been suggested as triggers of type 1 diabetes (T1D). We aimed to assess whether established T1D susceptibility single nucleotide polymorphisms (SNPs) and candidate SNPs in innate immune genes were associated with the frequency of enterovirus infection in otherwise healthy children. Fifty-six established T1D SNPs and 97 other candidate immunity SNPs were typed in 419 children carrying the T1D high-risk genotype, HLA-DR4-DQ8/DR3-DQ2 genotype, and 373 children without this genotype. Enteroviral RNA was detected using real-time polymerase chain reaction, with primers detecting essentially all enterovirus serotypes, in 7,393 longitudinal stool samples collected monthly (age range 3-36 months). The most significant association was with two T1D SNPs, rs12150079 (ZPBP2/ORMDL3/GSDMB region) (enterovirus frequency: AA 7.3%, AG 8.7%, GG 9.7%, RR = 0.86, overall p = 1.87E-02) and rs229541 (C1QTNF6/SSTR3/RAC2) (enterovirus frequency: CC 7.8%, CT 9.7%, TT 9.4%, RR = 1.13, overall p = 3.6E-02), followed by TLR8 (rs2407992) (p = 3.8E-02), TLR3 (1914926) (p = 4.9E-02), and two other T1D SNPs (IFIH1 rs3747517, p = 4.9E-02 and PTPN22, rs2476601, p = 5.3E-02). However, the quantile-quantile plot of p-values with confidence intervals for all 153 SNPs did not reveal clear evidence for rejection of the complete null hypothesis. Among a number of SNPs in candidate genes, we found no evidence for strong associations with enterovirus presence in stool samples from Norwegian children.

  16. LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures.

    PubMed

    Ryan, Michael; Diekhans, Mark; Lien, Stephanie; Liu, Yun; Karchin, Rachel

    2009-06-01

    LS-SNP/PDB is a new WWW resource for genome-wide annotation of human non-synonymous (amino acid changing) SNPs. It serves high-quality protein graphics rendered with UCSF Chimera molecular visualization software. The system is kept up-to-date by an automated, high-throughput build pipeline that systematically maps human nsSNPs onto Protein Data Bank structures and annotates several biologically relevant features. LS-SNP/PDB is available at (http://ls-snp.icm.jhu.edu/ls-snp-pdb) and via links from protein data bank (PDB) biology and chemistry tabs, UCSC Genome Browser Gene Details and SNP Details pages and PharmGKB Gene Variants Downloads/Cross-References pages.

  17. Identification of genome regions determining semen quality in Holstein-Friesian bulls using information theory.

    PubMed

    Borowska, Alicja; Szwaczkowski, Tomasz; Kamiński, Stanisław; Hering, Dorota M; Kordan, Władysław; Lecewicz, Marek

    2018-05-01

    Use of information theory can be an alternative statistical approach to detect genome regions and candidate genes that are associated with livestock traits. The aim of this study was to verify the validity of the SNPs effects on some semen quality variables of bulls using entropy analysis. Records from 288 Holstein-Friesian bulls from one AI station were included. The following semen quality variables were analyzed: CASA kinematic variables of sperm (total motility, average path velocity, straight line velocity, curvilinear velocity, amplitude of lateral head displacement, beat cross frequency, straightness, linearity), sperm membrane integrity (plazmolema, mitochondrial function), sperm ATP content. Molecular data included 48,192 SNPs. After filtering (call rate = 0.95 and MAF = 0.05), 34,794 SNPs were included in the entropy analysis. The entropy and conditional entropy were estimated for each SNP. Conditional entropy quantifies the remaining uncertainty about values of the variable with the knowledge of SNP. The most informative SNPs for each variable were determined. The computations were performed using the R statistical package. A majority of the loci had relatively small contributions. The most informative SNPs for all variables were mainly located on chromosomes: 3, 4, 5 and 16. The results from the study indicate that important genome regions and candidate genes that determine semen quality variables in bulls are located on a number of chromosomes. Some detected clusters of SNPs were located in RNA (U6 and 5S_rRNA) for all the variables for which analysis occurred. Associations between PARK2 as well GALNT13 genes and some semen characteristics were also detected. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Segregating polymorphisms of FOXP2 are associated with measures of inner speech, speech fluency and strength of handedness in a healthy population.

    PubMed

    Crespi, Bernard; Read, Silven; Hurd, Peter

    2017-10-01

    We genotyped a healthy population for three haplotype-tagging FOXP2 SNPs, and tested for associations of these SNPs with strength of handedness and questionnaire-based metrics of inner speech characteristics (ISP) and speech fluency (FLU), as derived from the Schizotypal Personality Questionnaire-BR. Levels of mixed-handedness were positively correlated with ISP and FLU, supporting prior work on these two domains. Genotype for rs7799109, a SNP previously linked with lateralization of left frontal regions underlying language, was associated with degree of mixed handedness and with scores for ISP and FLU phenotypes. Genotype of rs1456031, which has previously been linked with auditory hallucinations, was also associated with ISP phenotypes. These results provide evidence that FOXP2 SNPs influence aspects of human inner speech and fluency that are related to lateralized phenotypes, and suggest that the evolution of human language, as mediated by the adaptive evolution of FOXP2, involved features of inner speech. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. SNPing Away at Complex Diseases: Analysis of Single-Nucleotide Polymorphisms around APOE in Alzheimer Disease

    PubMed Central

    Martin, Eden R.; Lai, Eric H.; Gilbert, John R.; Rogala, Allison R.; Afshari, A. J.; Riley, John; Finch, K. L.; Stevens, J. F.; Livak, K. J.; Slotterbeck, Brandon D.; Slifer, Susan H.; Warren, Liling L.; Conneally, P. Michael; Schmechel, Donald E.; Purvis, Ian; Pericak-Vance, Margaret A.; Roses, Allen D.; Vance, Jeffery M.

    2000-01-01

    There has been great interest in the prospects of using single-nucleotide polymorphisms (SNPs) in the search for complex disease genes, and several initiatives devoted to the identification and mapping of SNPs throughout the human genome are currently underway. However, actual data investigating the use of SNPs for identification of complex disease genes are scarce. To begin to look at issues surrounding the use of SNPs in complex disease studies, we have initiated a collaborative SNP mapping study around APOE, the well-established susceptibility gene for late-onset Alzheimer disease (AD). Sixty SNPs in a 1.5-Mb region surrounding APOE were genotyped in samples of unrelated cases of AD, in controls, and in families with AD. Standard tests were conducted to look for association of SNP alleles with AD, in cases and controls. We also used family-based association analyses, including recently developed methods to look for haplotype association. Evidence of association (P⩽.05) was identified for 7 of 13 SNPs, including the APOE-4 polymorphism, spanning 40 kb on either side of APOE. As expected, very strong evidence for association with AD was seen for the APOE-4 polymorphism, as well as for two other SNPs that lie <16 kb from APOE. Haplotype analysis using family data increased significance over that seen in single-locus tests for some of the markers, and, for these data, improved localization of the gene. Our results demonstrate that associations can be detected at SNPs near a complex disease gene. We found that a high density of markers will be necessary in order to have a good chance of including SNPs with detectable levels of allelic association with the disease mutation, and statistical analysis based on haplotypes can provide additional information with respect to tests of significance and fine localization of complex disease genes. PMID:10869235

  20. Development and Evaluation of a Genome-Wide 6K SNP Array for Diploid Sweet Cherry and Tetraploid Sour Cherry

    PubMed Central

    Peace, Cameron; Bassil, Nahla; Main, Dorrie; Ficklin, Stephen; Rosyara, Umesh R.; Stegmeir, Travis; Sebolt, Audrey; Gilmore, Barbara; Lawley, Cindy; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Iezzoni, Amy

    2012-01-01

    High-throughput genome scans are important tools for genetic studies and breeding applications. Here, a 6K SNP array for use with the Illumina Infinium® system was developed for diploid sweet cherry (Prunus avium) and allotetraploid sour cherry (P. cerasus). This effort was led by RosBREED, a community initiative to enable marker-assisted breeding for rosaceous crops. Next-generation sequencing in diverse breeding germplasm provided 25 billion basepairs (Gb) of cherry DNA sequence from which were identified genome-wide SNPs for sweet cherry and for the two sour cherry subgenomes derived from sweet cherry (avium subgenome) and P. fruticosa (fruticosa subgenome). Anchoring to the peach genome sequence, recently released by the International Peach Genome Initiative, predicted relative physical locations of the 1.9 million putative SNPs detected, preliminarily filtered to 368,943 SNPs. Further filtering was guided by results of a 144-SNP subset examined with the Illumina GoldenGate® assay on 160 accessions. A 6K Infinium® II array was designed with SNPs evenly spaced genetically across the sweet and sour cherry genomes. SNPs were developed for each sour cherry subgenome by using minor allele frequency in the sour cherry detection panel to enrich for subgenome-specific SNPs followed by targeting to either subgenome according to alleles observed in sweet cherry. The array was evaluated using panels of sweet (n = 269) and sour (n = 330) cherry breeding germplasm. Approximately one third of array SNPs were informative for each crop. A total of 1825 polymorphic SNPs were verified in sweet cherry, 13% of these originally developed for sour cherry. Allele dosage was resolved for 2058 polymorphic SNPs in sour cherry, one third of these being originally developed for sweet cherry. This publicly available genomics resource represents a significant advance in cherry genome-scanning capability that will accelerate marker-locus-trait association discovery, genome structure investigation, and genetic diversity assessment in this diploid-tetraploid crop group. PMID:23284615

  1. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease.

    PubMed

    Martin, E R; Lai, E H; Gilbert, J R; Rogala, A R; Afshari, A J; Riley, J; Finch, K L; Stevens, J F; Livak, K J; Slotterbeck, B D; Slifer, S H; Warren, L L; Conneally, P M; Schmechel, D E; Purvis, I; Pericak-Vance, M A; Roses, A D; Vance, J M

    2000-08-01

    There has been great interest in the prospects of using single-nucleotide polymorphisms (SNPs) in the search for complex disease genes, and several initiatives devoted to the identification and mapping of SNPs throughout the human genome are currently underway. However, actual data investigating the use of SNPs for identification of complex disease genes are scarce. To begin to look at issues surrounding the use of SNPs in complex disease studies, we have initiated a collaborative SNP mapping study around APOE, the well-established susceptibility gene for late-onset Alzheimer disease (AD). Sixty SNPs in a 1.5-Mb region surrounding APOE were genotyped in samples of unrelated cases of AD, in controls, and in families with AD. Standard tests were conducted to look for association of SNP alleles with AD, in cases and controls. We also used family-based association analyses, including recently developed methods to look for haplotype association. Evidence of association (P

  2. Single nucleotide polymorphisms from Theobroma cacao expressed sequence tags associated with witches' broom disease in cacao.

    PubMed

    Lima, L S; Gramacho, K P; Carels, N; Novais, R; Gaiotto, F A; Lopes, U V; Gesteira, A S; Zaidan, H A; Cascardo, J C M; Pires, J L; Micheli, F

    2009-07-14

    In order to increase the efficiency of cacao tree resistance to witches' broom disease, which is caused by Moniliophthora perniciosa (Tricholomataceae), we looked for molecular markers that could help in the selection of resistant cacao genotypes. Among the different markers useful for developing marker-assisted selection, single nucleotide polymorphisms (SNPs) constitute the most common type of sequence difference between alleles and can be easily detected by in silico analysis from expressed sequence tag libraries. We report the first detection and analysis of SNPs from cacao-M. perniciosa interaction expressed sequence tags, using bioinformatics. Selection based on analysis of these SNPs should be useful for developing cacao varieties resistant to this devastating disease.

  3. Identification of single-nucleotide polymorphisms of the prion protein gene in sika deer (Cervus nippon laiouanus)

    PubMed Central

    Jeong, Hyun-Jeong; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Kim, Bo-Sook; Rho, Jung-Rae; Yoo, Mi-Hyun; Jeong, Byung-Hoon; Kim, Yong-Sun

    2007-01-01

    Polymorphisms of the prion protein gene (PRNP) have been detected in several cervid species. In order to confirm the genetic variations, this study examined the DNA sequences of the PRNP obtained from 33 captive sika deer (Cervus nippon laiouanus) in Korea. A total of three single-nucleotide polymorphisms (SNPs) at codons 100, 136 and 226 in the PRNP of the sika deer were identified. The polymorphic site located at codon 100 has not been reported. The SNPs detected at codons 100 and 226 induced amino acid substitutions. The SNP at codon 136 was a silent mutation that does not induce any amino acid change. The genotype and allele frequencies were determined for each of the SNPs. PMID:17679779

  4. Obesity-related genetic variants, human pigmentation, and risk of melanoma

    PubMed Central

    Li, Xin; Liang, Liming; Zhang, Mingfeng; Song, Fengju; Nan, Hongmei; Wang, Li-E; Wei, Qingyi; Lee, Jeffrey E.; Amos, Christopher I.; Qureshi, Abrar A.; Han, Jiali

    2013-01-01

    Previous biological studies showed evidence of a genetic link between obesity and pigmentation in both animal models and humans. Our study investigated the individual and joint associations between obesity-related single nucleotide polymorphisms (SNPs) and both human pigmentation and risk of melanoma. Eight obesity-related SNPs in the FTO, MAP2K5, NEGR1, FLJ35779, ETV5, CADM2, and NUDT3 genes were nominally significantly associated with hair color among 5,876 individuals of European ancestry. The genetic score combining 35 independent obesity-risk loci was significantly associated with darker hair color (beta-coefficient per ten alleles=0.12, P-value=4 10−5). However, single SNPs or genetic scores showed non-significant association with tanning ability. We further examined the SNPs at the FTO locus for their associations with pigmentation and risk of melanoma. Among the 783 SNPs in the FTO gene with imputation R-square quality metric >0.8 using the 1000 genome data set, ten and three independent SNPs were significantly associated with hair color and tanning ability respectively. Moreover, five independent FTO SNPs showed nominally significant association with risk of melanoma in 1,804 cases and 1,026 controls. But none of them was associated with obesity or in linkage disequilibrium with obesity-related variants. FTO locus may confer variation in human pigmentation and risk of melanoma, which may be independent of its effect on obesity. PMID:23539184

  5. Genome-Wide SNP Discovery, Genotyping and Their Preliminary Applications for Population Genetic Inference in Spotted Sea Bass (Lateolabrax maculatus)

    PubMed Central

    Wang, Juan; Xue, Dong-Xiu; Zhang, Bai-Dong; Li, Yu-Long; Liu, Bing-Jian; Liu, Jin-Xian

    2016-01-01

    Next-generation sequencing and the collection of genome-wide single-nucleotide polymorphisms (SNPs) allow identifying fine-scale population genetic structure and genomic regions under selection. The spotted sea bass (Lateolabrax maculatus) is a non-model species of ecological and commercial importance and widely distributed in northwestern Pacific. A total of 22 648 SNPs was discovered across the genome of L. maculatus by paired-end sequencing of restriction-site associated DNA (RAD-PE) for 30 individuals from two populations. The nucleotide diversity (π) for each population was 0.0028±0.0001 in Dandong and 0.0018±0.0001 in Beihai, respectively. Shallow but significant genetic differentiation was detected between the two populations analyzed by using both the whole data set (FST = 0.0550, P < 0.001) and the putatively neutral SNPs (FST = 0.0347, P < 0.001). However, the two populations were highly differentiated based on the putatively adaptive SNPs (FST = 0.6929, P < 0.001). Moreover, a total of 356 SNPs representing 298 unique loci were detected as outliers putatively under divergent selection by FST-based outlier tests as implemented in BAYESCAN and LOSITAN. Functional annotation of the contigs containing putatively adaptive SNPs yielded hits for 22 of 55 (40%) significant BLASTX matches. Candidate genes for local selection constituted a wide array of functions, including binding, catalytic and metabolic activities, etc. The analyses with the SNPs developed in the present study highlighted the importance of genome-wide genetic variation for inference of population structure and local adaptation in L. maculatus. PMID:27336696

  6. Genome-Wide SNP Discovery, Genotyping and Their Preliminary Applications for Population Genetic Inference in Spotted Sea Bass (Lateolabrax maculatus).

    PubMed

    Wang, Juan; Xue, Dong-Xiu; Zhang, Bai-Dong; Li, Yu-Long; Liu, Bing-Jian; Liu, Jin-Xian

    2016-01-01

    Next-generation sequencing and the collection of genome-wide single-nucleotide polymorphisms (SNPs) allow identifying fine-scale population genetic structure and genomic regions under selection. The spotted sea bass (Lateolabrax maculatus) is a non-model species of ecological and commercial importance and widely distributed in northwestern Pacific. A total of 22 648 SNPs was discovered across the genome of L. maculatus by paired-end sequencing of restriction-site associated DNA (RAD-PE) for 30 individuals from two populations. The nucleotide diversity (π) for each population was 0.0028±0.0001 in Dandong and 0.0018±0.0001 in Beihai, respectively. Shallow but significant genetic differentiation was detected between the two populations analyzed by using both the whole data set (FST = 0.0550, P < 0.001) and the putatively neutral SNPs (FST = 0.0347, P < 0.001). However, the two populations were highly differentiated based on the putatively adaptive SNPs (FST = 0.6929, P < 0.001). Moreover, a total of 356 SNPs representing 298 unique loci were detected as outliers putatively under divergent selection by FST-based outlier tests as implemented in BAYESCAN and LOSITAN. Functional annotation of the contigs containing putatively adaptive SNPs yielded hits for 22 of 55 (40%) significant BLASTX matches. Candidate genes for local selection constituted a wide array of functions, including binding, catalytic and metabolic activities, etc. The analyses with the SNPs developed in the present study highlighted the importance of genome-wide genetic variation for inference of population structure and local adaptation in L. maculatus.

  7. Development of a cost-efficient novel method for rapid, concurrent genotyping of five common single nucleotide polymorphisms of the brain derived neurotrophic factor (BDNF) gene by tetra-primer amplification refractory mutation system.

    PubMed

    Wang, Cathy K; Xu, Michael S; Ross, Colin J; Lo, Ryan; Procyshyn, Ric M; Vila-Rodriguez, Fidel; White, Randall F; Honer, William G; Barr, Alasdair M

    2015-09-01

    Brain derived neurotrophic factor (BDNF) is a molecular trophic factor that plays a key role in neuronal survival and plasticity. Single nucleotide polymorphisms (SNPs) of the BDNF gene have been associated with specific phenotypic traits in a large number of neuropsychiatric disorders and the response to psychotherapeutic medications in patient populations. Nevertheless, due to study differences and occasionally contrasting findings, substantial further research is required to understand in better detail the association between specific BDNF SNPs and these psychiatric disorders. While considerable progress has been made recently in developing advanced genotyping platforms of SNPs, many high-throughput probe- or array-based detection methods currently available are limited by high costs, slow processing times or access to advanced instrumentation. The polymerase chain reaction (PCR)-based, tetra-primer amplification refractory mutation system (T-ARMS) method is a potential alternative technique for detecting SNP genotypes efficiently, quickly, easily, and cheaply. As a tool in psychopathology research, T-ARMS was shown to be capable of detecting five common SNPs in the BDNF gene (rs6265, rs988748, rs11030104, 11757G/C and rs7103411), which are all SNPs with previously demonstrated clinical relevance to schizophrenia and depression. The present technique therefore represents a suitable protocol for many research laboratories to study the genetic correlates of BDNF in psychiatric disorders. Copyright Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. A genotyping system capable of simultaneously analyzing >1000 single nucleotide polymorphisms in a haploid genome.

    PubMed

    Wang, Hui-Yun; Luo, Minjie; Tereshchenko, Irina V; Frikker, Danielle M; Cui, Xiangfeng; Li, James Y; Hu, Guohong; Chu, Yi; Azaro, Marco A; Lin, Yong; Shen, Li; Yang, Qifeng; Kambouris, Manousos E; Gao, Richeng; Shih, Weichung; Li, Honghua

    2005-02-01

    A high-throughput genotyping system for scoring single nucleotide polymorphisms (SNPs) has been developed. With this system, >1000 SNPs can be analyzed in a single assay, with a sensitivity that allows the use of single haploid cells as starting material. In the multiplex polymorphic sequence amplification step, instead of attaching universal sequences to the amplicons, primers that are unlikely to have nonspecific and productive interactions are used. Genotypes of SNPs are then determined by using the widely accessible microarray technology and the simple single-base extension assay. Three SNP panels, each consisting of >1000 SNPs, were incorporated into this system. The system was used to analyze 24 human genomic DNA samples. With 5 ng of human genomic DNA, the average detection rate was 98.22% when single probes were used, and 96.71% could be detected by dual probes in different directions. When single sperm cells were used, 91.88% of the SNPs were detectable, which is comparable to the level that was reached when very few genetic markers were used. By using a dual-probe assay, the average genotyping accuracy was 99.96% for 5 ng of human genomic DNA and 99.95% for single sperm. This system may be used to significantly facilitate large-scale genetic analysis even if the amount of DNA template is very limited or even highly degraded as that obtained from paraffin-embedded cancer specimens, and to make many unpractical research projects highly realistic and affordable.

  9. Evolutionary evidence of the effect of rare variants on disease etiology.

    PubMed

    Gorlov, I P; Gorlova, O Y; Frazier, M L; Spitz, M R; Amos, C I

    2011-03-01

    The common disease/common variant hypothesis has been popular for describing the genetic architecture of common human diseases for several years. According to the originally stated hypothesis, one or a few common genetic variants with a large effect size control the risk of common diseases. A growing body of evidence, however, suggests that rare single-nucleotide polymorphisms (SNPs), i.e. those with a minor allele frequency of less than 5%, are also an important component of the genetic architecture of common human diseases. In this study, we analyzed the relevance of rare SNPs to the risk of common diseases from an evolutionary perspective and found that rare SNPs are more likely than common SNPs to be functional and tend to have a stronger effect size than do common SNPs. This observation, and the fact that most of the SNPs in the human genome are rare, suggests that rare SNPs are a crucial element of the genetic architecture of common human diseases. We propose that the next generation of genomic studies should focus on analyzing rare SNPs. Further, targeting patients with a family history of the disease, an extreme phenotype, or early disease onset may facilitate the detection of risk-associated rare SNPs. © 2010 John Wiley & Sons A/S.

  10. Impact of SNPs on Protein Phosphorylation Status in Rice (Oryza sativa L.).

    PubMed

    Lin, Shoukai; Chen, Lijuan; Tao, Huan; Huang, Jian; Xu, Chaoqun; Li, Lin; Ma, Shiwei; Tian, Tian; Liu, Wei; Xue, Lichun; Ai, Yufang; He, Huaqin

    2016-11-11

    Single nucleotide polymorphisms (SNPs) are widely used in functional genomics and genetics research work. The high-quality sequence of rice genome has provided a genome-wide SNP and proteome resource. However, the impact of SNPs on protein phosphorylation status in rice is not fully understood. In this paper, we firstly updated rice SNP resource based on the new rice genome Ver. 7.0, then systematically analyzed the potential impact of Non-synonymous SNPs (nsSNPs) on the protein phosphorylation status. There were 3,897,312 SNPs in Ver. 7.0 rice genome, among which 9.9% was nsSNPs. Whilst, a total 2,508,261 phosphorylated sites were predicted in rice proteome. Interestingly, we observed that 150,197 (39.1%) nsSNPs could influence protein phosphorylation status, among which 52.2% might induce changes of protein kinase (PK) types for adjacent phosphorylation sites. We constructed a database, SNP_rice, to deposit the updated rice SNP resource and phosSNPs information. It was freely available to academic researchers at http://bioinformatics.fafu.edu.cn. As a case study, we detected five nsSNPs that potentially influenced heterotrimeric G proteins phosphorylation status in rice, indicating that genetic polymorphisms showed impact on the signal transduction by influencing the phosphorylation status of heterotrimeric G proteins. The results in this work could be a useful resource for future experimental identification and provide interesting information for better rice breeding.

  11. Single nucleotide polymorphism analysis of Korean native chickens using next generation sequencing data.

    PubMed

    Seo, Dong-Won; Oh, Jae-Don; Jin, Shil; Song, Ki-Duk; Park, Hee-Bok; Heo, Kang-Nyeong; Shin, Younhee; Jung, Myunghee; Park, Junhyung; Jo, Cheorun; Lee, Hak-Kyo; Lee, Jun-Heon

    2015-02-01

    There are five native chicken lines in Korea, which are mainly classified by plumage colors (black, white, red, yellow, gray). These five lines are very important genetic resources in the Korean poultry industry. Based on a next generation sequencing technology, whole genome sequence and reference assemblies were performed using Gallus_gallus_4.0 (NCBI) with whole genome sequences from these lines to identify common and novel single nucleotide polymorphisms (SNPs). We obtained 36,660,731,136 ± 1,257,159,120 bp of raw sequence and average 26.6-fold of 25-29 billion reference assembly sequences representing 97.288 % coverage. Also, 4,006,068 ± 97,534 SNPs were observed from 29 autosomes and the Z chromosome and, of these, 752,309 SNPs are the common SNPs across lines. Among the identified SNPs, the number of novel- and known-location assigned SNPs was 1,047,951 ± 14,956 and 2,948,648 ± 81,414, respectively. The number of unassigned known SNPs was 1,181 ± 150 and unassigned novel SNPs was 8,238 ± 1,019. Synonymous SNPs, non-synonymous SNPs, and SNPs having character changes were 26,266 ± 1,456, 11,467 ± 604, 8,180 ± 458, respectively. Overall, 443,048 ± 26,389 SNPs in each bird were identified by comparing with dbSNP in NCBI. The presently obtained genome sequence and SNP information in Korean native chickens have wide applications for further genome studies such as genetic diversity studies to detect causative mutations for economic and disease related traits.

  12. A genome wide association study links glutamate receptor pathway to sporadic Creutzfeldt-Jakob disease risk.

    PubMed

    Sanchez-Juan, Pascual; Bishop, Matthew T; Kovacs, Gabor G; Calero, Miguel; Aulchenko, Yurii S; Ladogana, Anna; Boyd, Alison; Lewis, Victoria; Ponto, Claudia; Calero, Olga; Poleggi, Anna; Carracedo, Ángel; van der Lee, Sven J; Ströbel, Thomas; Rivadeneira, Fernando; Hofman, Albert; Haïk, Stéphane; Combarros, Onofre; Berciano, José; Uitterlinden, Andre G; Collins, Steven J; Budka, Herbert; Brandel, Jean-Philippe; Laplanche, Jean Louis; Pocchiari, Maurizio; Zerr, Inga; Knight, Richard S G; Will, Robert G; van Duijn, Cornelia M

    2014-01-01

    We performed a genome-wide association (GWA) study in 434 sporadic Creutzfeldt-Jakob disease (sCJD) patients and 1939 controls from the United Kingdom, Germany and The Netherlands. The findings were replicated in an independent sample of 1109 sCJD and 2264 controls provided by a multinational consortium. From the initial GWA analysis we selected 23 SNPs for further genotyping in 1109 sCJD cases from seven different countries. Five SNPs were significantly associated with sCJD after correction for multiple testing. Subsequently these five SNPs were genotyped in 2264 controls. The pooled analysis, including 1543 sCJD cases and 4203 controls, yielded two genome wide significant results: rs6107516 (p-value=7.62x10-9) a variant tagging the prion protein gene (PRNP); and rs6951643 (p-value=1.66x10-8) tagging the Glutamate Receptor Metabotropic 8 gene (GRM8). Next we analysed the data stratifying by country of origin combining samples from the pooled analysis with genotypes from the 1000 Genomes Project and imputed genotypes from the Rotterdam Study (Total n=12967). The meta-analysis of the results showed that rs6107516 (p-value=3.00x10-8) and rs6951643 (p-value=3.91x10-5) remained as the two most significantly associated SNPs. Rs6951643 is located in an intronic region of GRM8, a gene that was additionally tagged by a cluster of 12 SNPs within our top100 ranked results. GRM8 encodes for mGluR8, a protein which belongs to the metabotropic glutamate receptor family, recently shown to be involved in the transduction of cellular signals triggered by the prion protein. Pathway enrichment analyses performed with both Ingenuity Pathway Analysis and ALIGATOR postulates glutamate receptor signalling as one of the main pathways associated with sCJD. In summary, we have detected GRM8 as a novel, non-PRNP, genome-wide significant marker associated with heightened disease risk, providing additional evidence supporting a role of glutamate receptors in sCJD pathogenesis.

  13. Choice of Reference Sequence and Assembler for Alignment of Listeria monocytogenes Short-Read Sequence Data Greatly Influences Rates of Error in SNP Analyses

    PubMed Central

    Pightling, Arthur W.; Petronella, Nicholas; Pagotto, Franco

    2014-01-01

    The wide availability of whole-genome sequencing (WGS) and an abundance of open-source software have made detection of single-nucleotide polymorphisms (SNPs) in bacterial genomes an increasingly accessible and effective tool for comparative analyses. Thus, ensuring that real nucleotide differences between genomes (i.e., true SNPs) are detected at high rates and that the influences of errors (such as false positive SNPs, ambiguously called sites, and gaps) are mitigated is of utmost importance. The choices researchers make regarding the generation and analysis of WGS data can greatly influence the accuracy of short-read sequence alignments and, therefore, the efficacy of such experiments. We studied the effects of some of these choices, including: i) depth of sequencing coverage, ii) choice of reference-guided short-read sequence assembler, iii) choice of reference genome, and iv) whether to perform read-quality filtering and trimming, on our ability to detect true SNPs and on the frequencies of errors. We performed benchmarking experiments, during which we assembled simulated and real Listeria monocytogenes strain 08-5578 short-read sequence datasets of varying quality with four commonly used assemblers (BWA, MOSAIK, Novoalign, and SMALT), using reference genomes of varying genetic distances, and with or without read pre-processing (i.e., quality filtering and trimming). We found that assemblies of at least 50-fold coverage provided the most accurate results. In addition, MOSAIK yielded the fewest errors when reads were aligned to a nearly identical reference genome, while using SMALT to align reads against a reference sequence that is ∼0.82% distant from 08-5578 at the nucleotide level resulted in the detection of the greatest numbers of true SNPs and the fewest errors. Finally, we show that whether read pre-processing improves SNP detection depends upon the choice of reference sequence and assembler. In total, this study demonstrates that researchers should test a variety of conditions to achieve optimal results. PMID:25144537

  14. Insights to Genetic Characterization Tools for Epidemiological Tracking of Francisella tularensis in Sweden

    PubMed Central

    Wahab, Tara; Birdsell, Dawn N.; Hjertqvist, Marika; Mitchell, Cedar L.; Wagner, David M.; Keim, Paul S.; Hedenström, Ingela; Löfdahl, Sven

    2014-01-01

    Tularaemia, caused by the bacterium Francisella tularensis, is endemic in Sweden and is poorly understood. The aim of this study was to evaluate the effectiveness of three different genetic typing systems to link a genetic type to the source and place of tularemia infection in Sweden. Canonical single nucleotide polymorphisms (canSNPs), MLVA including five variable number of tandem repeat loci and PmeI-PFGE were tested on 127 F. tularensis positive specimens collected from Swedish case-patients. All three typing methods identified two major genetic groups with near-perfect agreement. Higher genetic resolution was obtained with canSNP and MLVA compared to PFGE; F. tularensis samples were first assigned into ten phylogroups based on canSNPs followed by 33 unique MLVA types. Phylogroups were geographically analysed to reveal complex phylogeographic patterns in Sweden. The extensive phylogenetic diversity found within individual counties posed a challenge to linking specific genetic types with specific geographic locations. Despite this, a single phylogroup (B.22), defined by a SNP marker specific to a lone Swedish sequenced strain, did link genetic type with a likely geographic place. This result suggests that SNP markers, highly specific to a particular reference genome, may be found most frequently among samples recovered from the same location where the reference genome originated. This insight compels us to consider whole-genome sequencing (WGS) as the appropriate tool for effectively linking specific genetic type to geography. Comparing the WGS of an unknown sample to WGS databases of archived Swedish strains maximizes the likelihood of revealing those rare geographically informative SNPs. PMID:25401326

  15. Design and characterization of a 52K SNP chip for goats.

    PubMed

    Tosser-Klopp, Gwenola; Bardou, Philippe; Bouchez, Olivier; Cabau, Cédric; Crooijmans, Richard; Dong, Yang; Donnadieu-Tonon, Cécile; Eggen, André; Heuven, Henri C M; Jamli, Saadiah; Jiken, Abdullah Johari; Klopp, Christophe; Lawley, Cynthia T; McEwan, John; Martin, Patrice; Moreno, Carole R; Mulsant, Philippe; Nabihoudine, Ibouniyamine; Pailhoux, Eric; Palhière, Isabelle; Rupp, Rachel; Sarry, Julien; Sayre, Brian L; Tircazes, Aurélie; Jun Wang; Wang, Wen; Zhang, Wenguang

    2014-01-01

    The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a 50-60,000 SNP chip for goats. The success of a moderate density SNP assay depends on reliable bioinformatic SNP detection procedures, the technological success rate of the SNP design, even spacing of SNPs on the genome and selection of Minor Allele Frequencies (MAF) suitable to use in diverse breeds. Through the federation of three SNP discovery projects consolidated as the International Goat Genome Consortium, we have identified approximately twelve million high quality SNP variants in the goat genome stored in a database together with their biological and technical characteristics. These SNPs were identified within and between six breeds (meat, milk and mixed): Alpine, Boer, Creole, Katjang, Saanen and Savanna, comprising a total of 97 animals. Whole genome and Reduced Representation Library sequences were aligned on >10 kb scaffolds of the de novo goat genome assembly. The 60,000 selected SNPs, evenly spaced on the goat genome, were submitted for oligo manufacturing (Illumina, Inc) and published in dbSNP along with flanking sequences and map position on goat assemblies (i.e. scaffolds and pseudo-chromosomes), sheep genome V2 and cattle UMD3.1 assembly. Ten breeds were then used to validate the SNP content and 52,295 loci could be successfully genotyped and used to generate a final cluster file. The combined strategy of using mainly whole genome Next Generation Sequencing and mapping on a contig genome assembly, complemented with Illumina design tools proved to be efficient in producing this GoatSNP50 chip. Advances in use of molecular markers are expected to accelerate goat genomic studies in coming years.

  16. Design and Characterization of a 52K SNP Chip for Goats

    PubMed Central

    Tosser-Klopp, Gwenola; Bardou, Philippe; Bouchez, Olivier; Cabau, Cédric; Crooijmans, Richard; Dong, Yang; Donnadieu-Tonon, Cécile; Eggen, André; Heuven, Henri C. M.; Jamli, Saadiah; Jiken, Abdullah Johari; Klopp, Christophe; Lawley, Cynthia T.; McEwan, John; Martin, Patrice; Moreno, Carole R.; Mulsant, Philippe; Nabihoudine, Ibouniyamine; Pailhoux, Eric; Palhière, Isabelle; Rupp, Rachel; Sarry, Julien; Sayre, Brian L.; Tircazes, Aurélie; Jun Wang; Wang, Wen; Zhang, Wenguang

    2014-01-01

    The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a 50–60,000 SNP chip for goats. The success of a moderate density SNP assay depends on reliable bioinformatic SNP detection procedures, the technological success rate of the SNP design, even spacing of SNPs on the genome and selection of Minor Allele Frequencies (MAF) suitable to use in diverse breeds. Through the federation of three SNP discovery projects consolidated as the International Goat Genome Consortium, we have identified approximately twelve million high quality SNP variants in the goat genome stored in a database together with their biological and technical characteristics. These SNPs were identified within and between six breeds (meat, milk and mixed): Alpine, Boer, Creole, Katjang, Saanen and Savanna, comprising a total of 97 animals. Whole genome and Reduced Representation Library sequences were aligned on >10 kb scaffolds of the de novo goat genome assembly. The 60,000 selected SNPs, evenly spaced on the goat genome, were submitted for oligo manufacturing (Illumina, Inc) and published in dbSNP along with flanking sequences and map position on goat assemblies (i.e. scaffolds and pseudo-chromosomes), sheep genome V2 and cattle UMD3.1 assembly. Ten breeds were then used to validate the SNP content and 52,295 loci could be successfully genotyped and used to generate a final cluster file. The combined strategy of using mainly whole genome Next Generation Sequencing and mapping on a contig genome assembly, complemented with Illumina design tools proved to be efficient in producing this GoatSNP50 chip. Advances in use of molecular markers are expected to accelerate goat genomic studies in coming years. PMID:24465974

  17. The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies

    PubMed Central

    Barnett, Ian; Mukherjee, Rajarshi; Lin, Xihong

    2017-01-01

    It is of substantial interest to study the effects of genes, genetic pathways, and networks on the risk of complex diseases. These genetic constructs each contain multiple SNPs, which are often correlated and function jointly, and might be large in number. However, only a sparse subset of SNPs in a genetic construct is generally associated with the disease of interest. In this article, we propose the generalized higher criticism (GHC) to test for the association between an SNP set and a disease outcome. The higher criticism is a test traditionally used in high-dimensional signal detection settings when marginal test statistics are independent and the number of parameters is very large. However, these assumptions do not always hold in genetic association studies, due to linkage disequilibrium among SNPs and the finite number of SNPs in an SNP set in each genetic construct. The proposed GHC overcomes the limitations of the higher criticism by allowing for arbitrary correlation structures among the SNPs in an SNP-set, while performing accurate analytic p-value calculations for any finite number of SNPs in the SNP-set. We obtain the detection boundary of the GHC test. We compared empirically using simulations the power of the GHC method with existing SNP-set tests over a range of genetic regions with varied correlation structures and signal sparsity. We apply the proposed methods to analyze the CGEM breast cancer genome-wide association study. Supplementary materials for this article are available online. PMID:28736464

  18. Mining SNPs from EST sequences using filters and ensemble classifiers.

    PubMed

    Wang, J; Zou, Q; Guo, M Z

    2010-05-04

    Abundant single nucleotide polymorphisms (SNPs) provide the most complete information for genome-wide association studies. However, due to the bottleneck of manual discovery of putative SNPs and the inaccessibility of the original sequencing reads, it is essential to develop a more efficient and accurate computational method for automated SNP detection. We propose a novel computational method to rapidly find true SNPs in public-available EST (expressed sequence tag) databases; this method is implemented as SNPDigger. EST sequences are clustered and aligned. SNP candidates are then obtained according to a measure of redundant frequency. Several new informative biological features, such as the structural neighbor profiles and the physical position of the SNP, were extracted from EST sequences, and the effectiveness of these features was demonstrated. An ensemble classifier, which employs a carefully selected feature set, was included for the imbalanced training data. The sensitivity and specificity of our method both exceeded 80% for human genetic data in the cross validation. Our method enables detection of SNPs from the user's own EST dataset and can be used on species for which there is no genome data. Our tests showed that this method can effectively guide SNP discovery in ESTs and will be useful to avoid and save the cost of biological analyses.

  19. Assessing polar bear (Ursus maritimus) population structure in the Hudson Bay region using SNPs.

    PubMed

    Viengkone, Michelle; Derocher, Andrew Edward; Richardson, Evan Shaun; Malenfant, René Michael; Miller, Joshua Moses; Obbard, Martyn E; Dyck, Markus G; Lunn, Nick J; Sahanatien, Vicki; Davis, Corey S

    2016-12-01

    Defining subpopulations using genetics has traditionally used data from microsatellite markers to investigate population structure; however, single-nucleotide polymorphisms (SNPs) have emerged as a tool for detection of fine-scale structure. In Hudson Bay, Canada, three polar bear ( Ursus maritimus ) subpopulations (Foxe Basin (FB), Southern Hudson Bay (SH), and Western Hudson Bay (WH)) have been delineated based on mark-recapture studies, radiotelemetry and satellite telemetry, return of marked animals in the subsistence harvest, and population genetics using microsatellites. We used SNPs to detect fine-scale population structure in polar bears from the Hudson Bay region and compared our results to the current designations using 414 individuals genotyped at 2,603 SNPs. Analyses based on discriminant analysis of principal components (DAPC) and STRUCTURE support the presence of four genetic clusters: (i) Western-including individuals sampled in WH, SH (excluding Akimiski Island in James Bay), and southern FB (south of Southampton Island); (ii) Northern-individuals sampled in northern FB (Baffin Island) and Davis Strait (DS) (Labrador coast); (iii) Southeast-individuals from SH (Akimiski Island in James Bay); and (iv) Northeast-individuals from DS (Baffin Island). Population structure differed from microsatellite studies and current management designations demonstrating the value of using SNPs for fine-scale population delineation in polar bears.

  20. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder

    PubMed Central

    Baum, AE; Akula, N; Cabanero, M; Cardona, I; Corona, W; Klemens, B; Schulze, TG; Cichon, S; Rietschel, M; Nöthen, MM; Georgi, A; Schumacher, J; Schwarz, M; Jamra, R Abou; Höfels, S; Propping, P; Satagopan, J; Detera-Wadleigh, SD; Hardy, J; McMahon, FJ

    2008-01-01

    The genetic basis of bipolar disorder has long been thought to be complex, with the potential involvement of multiple genes, but methods to analyze populations with respect to this complexity have only recently become available. We have carried out a genome-wide association study of bipolar disorder by genotyping over 550,000 SNPs in two independent case-control samples of European origin. The initial association screen was performed using pooled DNA; selected SNPs were confirmed by individual genotyping. While DNA pooling reduces power to detect genetic associations, there is a substantial cost savings and gain in efficiency. A total of 88 SNPs representing 80 different genes met the prior criteria for replication in both samples. Effect sizes were modest: no single SNP of large effect was detected. Of 37 SNPs selected for individual genotyping, the strongest association signal was detected at a marker within the first intron of DGKH (p = 1.5 × 10−8, experiment-wide p<0.01, OR= 1.59). This gene encodes diacylglycerol kinase eta, a key protein in the lithium-sensitive phosphatidyl inositol pathway. This first genome-wide association study of bipolar disorder shows that several genes, each of modest effect, reproducibly influence disease risk. Bipolar disorder may be a polygenic disease. PMID:17486107

  1. Resequencing of IRS2 reveals rare variants for obesity but not fasting glucose homeostasis in Hispanic children.

    PubMed

    Butte, Nancy F; Voruganti, V Saroja; Cole, Shelley A; Haack, Karin; Comuzzie, Anthony G; Muzny, Donna M; Wheeler, David A; Chang, Kyle; Hawes, Alicia; Gibbs, Richard A

    2011-09-22

    Our objective was to resequence insulin receptor substrate 2 (IRS2) to identify variants associated with obesity- and diabetes-related traits in Hispanic children. Exonic and intronic segments, 5' and 3' flanking regions of IRS2 (∼14.5 kb), were bidirectionally sequenced for single nucleotide polymorphism (SNP) discovery in 934 Hispanic children using 3730XL DNA Sequencers. Additionally, 15 SNPs derived from Illumina HumanOmni1-Quad BeadChips were analyzed. Measured genotype analysis tested associations between SNPs and obesity and diabetes-related traits. Bayesian quantitative trait nucleotide analysis was used to statistically infer the most likely functional polymorphisms. A total of 140 SNPs were identified with minor allele frequencies (MAF) ranging from 0.001 to 0.47. Forty-two of the 70 coding SNPs result in nonsynonymous amino acid substitutions relative to the consensus sequence; 28 SNPs were detected in the promoter, 12 in introns, 28 in the 3'-UTR, and 2 in the 5'-UTR. Two insertion/deletions (indels) were detected. Ten independent rare SNPs (MAF = 0.001-0.009) were associated with obesity-related traits (P = 0.01-0.00002). SNP 10510452_139 in the promoter region was shown to have a high posterior probability (P = 0.77-0.86) of influencing BMI, fat mass, and waist circumference in Hispanic children. SNP 10510452_139 contributed between 2 and 4% of the population variance in body weight and composition. None of the SNPs or indels were associated with diabetes-related traits or accounted for a previously identified quantitative trait locus on chromosome 13 for fasting serum glucose. Rare but not common IRS2 variants may play a role in the regulation of body weight but not an essential role in fasting glucose homeostasis in Hispanic children.

  2. Single-nucleotide polymorphisms at the 9p21.3 genomic region not associated with the risk of cardiovascular disease in patients with rheumatoid arthritis.

    PubMed

    García-Bermúdez, M; López-Mejías, R; Genre, F; Castañeda, S; González-Juanatey, C; Llorca, J; Corrales, A; Miranda-Filloy, J A; Pina, T; Gómez-Vaquero, C; Rodríguez-Rodríguez, L; Fernández-Gutiérrez, B; Pascual-Salcedo, D; Balsa, A; López-Longo, F J; Carreira, P; Blanco, R; González-Álvaro, I; Martín, J; González-Gay, M A

    2013-12-01

    Rheumatoid arthritis (RA) is a chronic polygenic inflammatory disease associated with accelerated atherosclerosis and high risk of cardiovascular disease (CVD). In this study, we evaluated the potential association of 9p21.3 single-nucleotide polymorphisms (SNPs) - previously linked to coronary artery disease - and CVD risk in 2001 Spanish RA patients genotyped for 9p21.3 SNPs using TaqMan™ assays. Carotid intima media thickness (cIMT) and presence of carotid plaques were also analyzed. Cox regression model did not disclose significant differences between patients who experienced CVD and those who did not. Neither association was found between cIMT or carotid plaques and SNPs allele distribution. In conclusion, results do not support a role of rs10116277 or rs1537375 SNPs in CVD risk in Spanish RA patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle

    PubMed Central

    2014-01-01

    Background This study was conducted to: (1) identify new SNPs for residual feed intake (RFI) and performance traits within candidate genes identified in a genome wide association study (GWAS); (2) estimate the proportion of variation in RFI explained by the detected SNPs; (3) estimate the effects of detected SNPs on carcass traits to avoid undesirable correlated effects on these economically important traits when selecting for feed efficiency; and (4) map the genes to biological mechanisms and pathways. A total number of 339 SNPs corresponding to 180 genes were tested for association with phenotypes using a single locus regression (SLRM) and genotypic model on 726 and 990 crossbred animals for feed efficiency and carcass traits, respectively. Results Strong evidence of associations for RFI were located on chromosomes 8, 15, 16, 18, 19, 21, and 28. The strongest association with RFI (P = 0.0017) was found with a newly discovered SNP located on BTA 8 within the ELP3 gene. SNPs rs41820824 and rs41821600 on BTA 16 within the gene HMCN1 were strongly associated with RFI (P = 0.0064 and P = 0.0033, respectively). A SNP located on BTA 18 within the ZNF423 gene provided strong evidence for association with RFI (P = 0.0028). Genomic estimated breeding values (GEBV) from 98 significant SNPs were moderately correlated (0.47) to the estimated breeding values (EBVs) from a mixed animal model. The significant (P < 0.05) SNPs (98) explained 26% of the genetic variance for RFI. In silico functional analysis for the genes suggested 35 and 39 biological processes and pathways, respectively for feed efficiency traits. Conclusions This study identified several positional and functional candidate genes involved in important biological mechanisms associated with feed efficiency and performance. Significant SNPs should be validated in other populations to establish their potential utilization in genetic improvement programs. PMID:24476087

  4. Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm

    PubMed Central

    Scalabrin, Simone; Gilmore, Barbara; Lawley, Cynthia T.; Gasic, Ksenija; Micheletti, Diego; Rosyara, Umesh R.; Cattonaro, Federica; Vendramin, Elisa; Main, Dorrie; Aramini, Valeria; Blas, Andrea L.; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Troggio, Michela; Sosinski, Bryon; Aranzana, Maria José; Arús, Pere; Iezzoni, Amy; Morgante, Michele; Peace, Cameron

    2012-01-01

    Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs. The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species. PMID:22536421

  5. Whole genome sequencing based characterization of extensively drug-resistant Mycobacterium tuberculosis isolates from Pakistan.

    PubMed

    Ali, Asho; Hasan, Zahra; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G; Hasan, Rumina

    2015-01-01

    Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91-94 codons in 81% of strains; four strains had only gyrB mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded targets for drug resistance detection in MTB isolates.

  6. Application of Multi-SNP Approaches Bayesian LASSO and AUC-RF to Detect Main Effects of Inflammatory-Gene Variants Associated with Bladder Cancer Risk

    PubMed Central

    Calle, M. Luz; Rothman, Nathaniel; Urrea, Víctor; Kogevinas, Manolis; Petrus, Sandra; Chanock, Stephen J.; Tardón, Adonina; García-Closas, Montserrat; González-Neira, Anna; Vellalta, Gemma; Carrato, Alfredo; Navarro, Arcadi; Lorente-Galdós, Belén; Silverman, Debra T.; Real, Francisco X.; Wu, Xifeng; Malats, Núria

    2013-01-01

    The relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988 controls from the Spanish Bladder Cancer (SBC)/EPICURO Study. A preliminary exploration with the widely used univariate logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold LASSO (BTL), a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed. The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk. PMID:24391818

  7. Genome-wide Association Study Identifies African-Specific Susceptibility Loci in African Americans with Inflammatory Bowel Disease

    PubMed Central

    Brant, Steven R.; Okou, David T.; Simpson, Claire L.; Cutler, David J.; Haritunians, Talin; Bradfield, Jonathan P.; Chopra, Pankaj; Prince, Jarod; Begum, Ferdouse; Kumar, Archana; Huang, Chengrui; Venkateswaran, Suresh; Datta, Lisa W.; Wei, Zhi; Thomas, Kelly; Herrinton, Lisa J.; Klapproth, Jan-Micheal A.; Quiros, Antonio J.; Seminerio, Jenifer; Liu, Zhenqiu; Alexander, Jonathan S.; Baldassano, Robert N.; Dudley-Brown, Sharon; Cross, Raymond K.; Dassopoulos, Themistocles; Denson, Lee A.; Dhere, Tanvi A.; Dryden, Gerald W.; Hanson, John S.; Hou, Jason K.; Hussain, Sunny Z.; Hyams, Jeffrey S.; Isaacs, Kim L.; Kader, Howard; Kappelman, Michael D.; Katz, Jeffry; Kellermayer, Richard; Kirschner, Barbara S.; Kuemmerle, John F.; Kwon, John H.; Lazarev, Mark; Li, Ellen; Mack, David; Mannon, Peter; Moulton, Dedrick E.; Newberry, Rodney D.; Osuntokun, Bankole O.; Patel, Ashish S.; Saeed, Shehzad A.; Targan, Stephan R.; Valentine, John F.; Wang, Ming-Hsi; Zonca, Martin; Rioux, John D.; Duerr, Richard H.; Silverberg, Mark S.; Cho, Judy H.; Hakonarson, Hakon; Zwick, Michael E.; McGovern, Dermot P.B.; Kugathasan, Subra

    2016-01-01

    Background & Aims The inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn’s disease (CD) cause significant morbidity and are increasing in prevalence among all populations, including African Americans. More than 200 susceptibility loci have been identified in populations of predominantly European ancestry, but few loci have been associated with IBD in other ethnicities. Methods We performed 2 high-density, genome-wide scans comprising 2345 cases of African Americans with IBD (1646 with CD, 583 with UC, and 116 inflammatory bowel disease unclassified [IBD-U]) and 5002 individuals without IBD (controls, identified from the Health Retirement Study and Kaiser Permanente database). Single-nucleotide polymorphisms (SNPs) associated at P<5.0×10−8 in meta-analysis with a nominal evidence (P<.05) in each scan were considered to have genome-wide significance. Results We detected SNPs at HLA-DRB1, and African-specific SNPs at ZNF649 and LSAMP, with associations of genome-wide significance for UC. We detected SNPs at USP25 with associations of genome-wide significance associations for IBD. No associations of genome-wide significance were detected for CD. In addition, 9 genes previously associated with IBD contained SNPs with significant evidence for replication (P<1.6×10−6): ADCY3, CXCR6, HLA-DRB1 to HLA-DQA1 (genome-wide significance on conditioning), IL12B, PTGER4, and TNC for IBD; IL23R, PTGER4, and SNX20 (in strong linkage disequilibrium with NOD2) for CD; and KCNQ2 (near TNFRSF6B) for UC. Several of these genes, such as TNC (near TNFSF15), CXCR6, and genes associated with IBD at the HLA locus, contained SNPs with unique association patterns with African-specific alleles. Conclusions We performed a genome-wide association study of African Americans with IBD and identified loci associated with CD and UC in only this population; we also replicated loci identified in European populations. The detection of variants associated with IBD risk in only people of African descent demonstrates the importance of studying the genetics of IBD and other complex diseases in populations beyond those of European ancestry. PMID:27693347

  8. Colorimetric Detection Based on Localised Surface Plasmon Resonance Optical Characteristics for the Detection of Hydrogen Peroxide Using Acacia Gum–Stabilised Silver Nanoparticles

    PubMed Central

    Alzahrani, Eman

    2017-01-01

    The use of nanoparticles in sensing is attracting the interest of many researchers. The aim of this work was to fabricate Acacia gum–stabilised silver nanoparticles (SNPs) using green chemistry to use them as a highly sensitive and cost-effective localised surface plasmon resonance (LSPR) colorimeter sensor for the determination of reactive oxygen species, such as hydrogen peroxide (H2O2). Silver nanoparticles were fabricated by the reduction of an inorganic precursor silver nitrate solution (AgNO3) using white sugar as the reducing reagent and Acacia gum as the stabilising reagent and a sonication bath to form uniform silver nanoparticles. The fabricated nanoparticles were characterised by visual observation, ultraviolet-visible (UV-Vis) spectrophotometry, transmission electron microscopy (TEM) analysis, energy-dispersive X-ray spectroscopy (EDAX), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR). The TEM micrographs of the synthesised nanoparticles showed the presence of spherical nanoparticles with sizes of approximately 10 nm. The EDAX spectrum result confirmed the presence of silver (58%), carbon (30%), and oxygen (12%). Plasmon colorimetric sensing of H2O2 solution was investigated by introducing H2O2 solution into Acacia gum–capped SNP dispersion, and the change in the LSPR band in the UV-Vis region of spectra was monitored. In this study, it was found that the yellow colour of Acacia gum–stabilised SNPs gradually changed to transparent, and moreover, a remarkable change in the LSPR absorbance strength was observed. The calibration curve was linear over 0.1–0.00001 M H2O2, with a correlation estimation (R2) of .953. This was due to the aggregation of SNPs following introduction of the H2O2 solution. Furthermore, the fabricated SNPs were successfully used to detect H2O2 solution in a liquid milk sample, thereby demonstrating the ability of the fabricated SNPs to detect H2O2 solution in liquid milk samples. This work showed that Acacia gum–stabilised SNPs may have the potential as a colour indicator in medical and environmental applications. PMID:28469405

  9. DNA Three-Way Junction for Differentiation of Single-Nucleotide Polymorphisms with Fluorescent Copper Nanoparticles.

    PubMed

    Sun, Feifei; You, Ying; Liu, Jie; Song, Quanwei; Shen, Xiaotong; Na, Na; Ouyang, Jin

    2017-05-23

    A label- and enzyme-free fluorescent sensor for the detection of single-nucleotide polymorphisms (SNPs) at room temperature is proposed, using new copper nanoparticles (CuNPs) as fluorescent reporters. The CuNPs were constructed by using a DNA three-way junction (3WJ) template. In this assay, two complementary adenine/thymine-rich probes can hybridize with the wild-type target simultaneously to construct a 3WJ structure, serving as an efficient scaffold for the generation of CuNPs. However, the CuNPs produce weak fluorescence when the probes bind with a mutant-type target. SNPs can be identified by the difference in fluorescence intensity of the CuNPs. This SNPs detection strategy is straightforward, cost-effective, and avoids the complicated procedures of labeling or enzymatic reactions. The fluorescent sensor is versatile and can be applied to all types of mutation because the probes are programmable. Moreover, the sensor exhibits good detection performance in biological samples. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electronic medical records and genomics (eMERGE) network exploration in cataract: Several new potential susceptibility loci

    PubMed Central

    Verma, Shefali S.; Hall, Molly A.; Goodloe, Robert J.; Berg, Richard L.; Carrell, Dave S.; Carlson, Christopher S.; Chen, Lin; Crosslin, David R.; Denny, Joshua C.; Jarvik, Gail; Li, Rongling; Linneman, James G.; Pathak, Jyoti; Peissig, Peggy; Rasmussen, Luke V.; Ramirez, Andrea H.; Wang, Xiaoming; Wilke, Russell A.; Wolf, Wendy A.; Torstenson, Eric S.; Turner, Stephen D.; McCarty, Catherine A.

    2014-01-01

    Purpose Cataract is the leading cause of blindness in the world, and in the United States accounts for approximately 60% of Medicare costs related to vision. The purpose of this study was to identify genetic markers for age-related cataract through a genome-wide association study (GWAS). Methods In the electronic medical records and genomics (eMERGE) network, we ran an electronic phenotyping algorithm on individuals in each of five sites with electronic medical records linked to DNA biobanks. We performed a GWAS using 530,101 SNPs from the Illumina 660W-Quad in a total of 7,397 individuals (5,503 cases and 1,894 controls). We also performed an age-at-diagnosis case-only analysis. Results We identified several statistically significant associations with age-related cataract (45 SNPs) as well as age at diagnosis (44 SNPs). The 45 SNPs associated with cataract at p<1×10−5 are in several interesting genes, including ALDOB, MAP3K1, and MEF2C. All have potential biologic relationships with cataracts. Conclusions This is the first genome-wide association study of age-related cataract, and several regions of interest have been identified. The eMERGE network has pioneered the exploration of genomic associations in biobanks linked to electronic health records, and this study is another example of the utility of such resources. Explorations of age-related cataract including validation and replication of the association results identified herein are needed in future studies. PMID:25352737

  11. Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis.

    PubMed

    Cho, Seoae; Kim, Haseong; Oh, Sohee; Kim, Kyunga; Park, Taesung

    2009-12-15

    The current trend in genome-wide association studies is to identify regions where the true disease-causing genes may lie by evaluating thousands of single-nucleotide polymorphisms (SNPs) across the whole genome. However, many challenges exist in detecting disease-causing genes among the thousands of SNPs. Examples include multicollinearity and multiple testing issues, especially when a large number of correlated SNPs are simultaneously tested. Multicollinearity can often occur when predictor variables in a multiple regression model are highly correlated, and can cause imprecise estimation of association. In this study, we propose a simple stepwise procedure that identifies disease-causing SNPs simultaneously by employing elastic-net regularization, a variable selection method that allows one to address multicollinearity. At Step 1, the single-marker association analysis was conducted to screen SNPs. At Step 2, the multiple-marker association was scanned based on the elastic-net regularization. The proposed approach was applied to the rheumatoid arthritis (RA) case-control data set of Genetic Analysis Workshop 16. While the selected SNPs at the screening step are located mostly on chromosome 6, the elastic-net approach identified putative RA-related SNPs on other chromosomes in an increased proportion. For some of those putative RA-related SNPs, we identified the interactions with sex, a well known factor affecting RA susceptibility.

  12. regSNPs: a strategy for prioritizing regulatory single nucleotide substitutions

    PubMed Central

    Teng, Mingxiang; Ichikawa, Shoji; Padgett, Leah R.; Wang, Yadong; Mort, Matthew; Cooper, David N.; Koller, Daniel L.; Foroud, Tatiana; Edenberg, Howard J.; Econs, Michael J.; Liu, Yunlong

    2012-01-01

    Motivation: One of the fundamental questions in genetics study is to identify functional DNA variants that are responsible to a disease or phenotype of interest. Results from large-scale genetics studies, such as genome-wide association studies (GWAS), and the availability of high-throughput sequencing technologies provide opportunities in identifying causal variants. Despite the technical advances, informatics methodologies need to be developed to prioritize thousands of variants for potential causative effects. Results: We present regSNPs, an informatics strategy that integrates several established bioinformatics tools, for prioritizing regulatory SNPs, i.e. the SNPs in the promoter regions that potentially affect phenotype through changing transcription of downstream genes. Comparing to existing tools, regSNPs has two distinct features. It considers degenerative features of binding motifs by calculating the differences on the binding affinity caused by the candidate variants and integrates potential phenotypic effects of various transcription factors. When tested by using the disease-causing variants documented in the Human Gene Mutation Database, regSNPs showed mixed performance on various diseases. regSNPs predicted three SNPs that can potentially affect bone density in a region detected in an earlier linkage study. Potential effects of one of the variants were validated using luciferase reporter assay. Contact: yunliu@iupui.edu Supplementary information: Supplementary data are available at Bioinformatics online PMID:22611130

  13. Lack of association between two key SNPs on chromosome 12p13 and ischemic stroke in Chinese Uyghur population.

    PubMed

    Tong, Yeqing; Zhan, Faxian; Han, Jinjun; Zhang, Yanwei; Yin, Xiaoxu; Geng, Yijie; Hou, Shuangyi; Ye, Jianjun; Guan, Xuhua; Han, Shenhong; Wang, Yunxia; Mason, Katherine A; Lu, Zuxun; Liu, Jiafa; Cheng, Jinquan

    2012-12-15

    Recent genome-wide association studies (GWAS) have identified two key SNPs (rs11833579 and rs12425791) on chromosome 12p13 that were significantly associated with stroke in Caucasians. However, the validity of the association has remained controversial. We performed genetic association analyses in a very unique population which has 60% European ancestry and 40% East Asian ancestry. No significant association between these two SNPs and ischemic stroke was detected in this Chinese Uyghur population. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Detection of single-nucleotide polymorphisms using an ON-OFF switching of regenerated biosensor based on a locked nucleic acid-integrated and toehold-mediated strand displacement reaction.

    PubMed

    Gao, Zhong Feng; Ling, Yu; Lu, Lu; Chen, Ning Yu; Luo, Hong Qun; Li, Nian Bing

    2014-03-04

    Although various strategies have been reported for single-nucleotide polymorphisms (SNPs) detection, development of a time-saving, specific, and regenerated electrochemical sensing platform still remains a realistic goal. In this study, an ON-OFF switching of a regenerated biosensor based on a locked nucleic acid (LNA)-integrated and toehold-mediated strand displacement reaction technique is constructed for detection of SNPs. The LNA-integrated and methylene blue-labeled capture probe with an external toehold is designed to switch on the sensing system. The mutant-type DNA probe completes complementary with the capture probe to trigger the strand displacement reaction, which switches off the sensing system. However, when the single-base mismatched wild-type DNA probe is presented, the strand displacement reaction cannot be achieved; therefore, the sensing system still keeps the ON state. This DNA sensor is stable over five reuses. We further testify that the LNA-integrated sequence has better recognition ability for SNPs detection compared to the DNA-integrated sequence. Moreover, this DNA senor exhibits a remarkable discrimination capability of SNPs among abundant wild-type targets and 6000-fold (m/m) excess of genomic DNA. In addition, it is selective enough in complex and contaminant-ridden samples, such as human urine, soil, saliva, and beer. Overall, these results demonstrate that this reliable DNA sensor is easy to be fabricated, simple to operate, and stable enough to be readily regenerated.

  15. A novel fluorescent aptasensor based on hairpin structure of complementary strand of aptamer and nanoparticles as a signal amplification approach for ultrasensitive detection of cocaine.

    PubMed

    Emrani, Ahmad Sarreshtehdar; Danesh, Noor Mohammad; Ramezani, Mohammad; Taghdisi, Seyed Mohammad; Abnous, Khalil

    2016-05-15

    Cocaine is one of the most commonly misused stimulant which could influence the central nervous system. In this study, a fluorescent aptamer-based sensor (aptasensor) was designed for sensitive and selective detection of cocaine, based on hairpin structure of complementary strand of aptamer (CS), target-induced release of aptamer (Apt) from CS and two kinds of nanoparticles, including silica nanoparticles (SNPs) coated with streptavidin and gold nanoparticles (AuNPs). The designed aptasensor acquires characteristics of AuNPs such as unique optical properties and large surface area, SNPs as amplifiers of fluorescence intensity, higher affinity of Apt toward its target relative to its CS, and finally the hairpin structure of CS that brings the fluorophore (FAM) to close proximity to the surface of SNPs. In the absence of cocaine, FAM is in close proximity to the surface of AuNPs, resulting in a weak fluorescence emission. In the presence of target, FAM comes to close proximity to the surface of SNPs because of the formation of hairpin structure of CS, leading to a very strong fluorescence emission. The fabricated fluorescent aptasensor exhibited a good selectivity toward cocaine with a limit of detection (LOD) as low as 209 pM. Moreover, the designed aptasensor was successfully utilized to detect cocaine in serum with a LOD as low as 293 pM. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis.

    PubMed

    Hong, Yanbin; Pandey, Manish K; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut.

  17. The Genetic Link between Parkinson's Disease and the Kynurenine Pathway Is Still Missing

    PubMed Central

    Török, Nóra; Török, Rita; Szolnoki, Zoltán; Somogyvári, Ferenc; Klivényi, Péter; Vécsei, László

    2015-01-01

    Background. There is substantial evidence that the kynurenine pathway (KP) plays a role in the normal physiology of the brain and is involved in the pathology of neurodegenerative disorders such as Huntington's disease and Parkinson's disease (PD). Objective. We set out to investigate the potential roles in PD of single nucleotide polymorphisms (SNPs) from one of the key enzymes of the KP, kynurenine 3-monooxygenase (KMO). Methods. 105 unrelated, clinically definitive PD patients and 131 healthy controls were enrolled to investigate the possible effects of the different alleles of KMO. Fluorescently labeled TaqMan probes were used for allele discrimination. Results. None of the four investigated SNPs proved to be associated with PD or influenced the age at onset of the disease. Conclusions. The genetic link between the KP and PD is still missing. The investigated SNPs presumably do not appear to influence the function of KMO and probably do not contain binding sites for regulatory proteins of relevance in PD. This is the first study to assess the genetic background behind the biochemical alterations of the kynurenine pathway in PD, directing the attention to this previously unexamined field. PMID:25785227

  18. The Genetic Link between Parkinson's Disease and the Kynurenine Pathway Is Still Missing.

    PubMed

    Török, Nóra; Török, Rita; Szolnoki, Zoltán; Somogyvári, Ferenc; Klivényi, Péter; Vécsei, László

    2015-01-01

    Background. There is substantial evidence that the kynurenine pathway (KP) plays a role in the normal physiology of the brain and is involved in the pathology of neurodegenerative disorders such as Huntington's disease and Parkinson's disease (PD). Objective. We set out to investigate the potential roles in PD of single nucleotide polymorphisms (SNPs) from one of the key enzymes of the KP, kynurenine 3-monooxygenase (KMO). Methods. 105 unrelated, clinically definitive PD patients and 131 healthy controls were enrolled to investigate the possible effects of the different alleles of KMO. Fluorescently labeled TaqMan probes were used for allele discrimination. Results. None of the four investigated SNPs proved to be associated with PD or influenced the age at onset of the disease. Conclusions. The genetic link between the KP and PD is still missing. The investigated SNPs presumably do not appear to influence the function of KMO and probably do not contain binding sites for regulatory proteins of relevance in PD. This is the first study to assess the genetic background behind the biochemical alterations of the kynurenine pathway in PD, directing the attention to this previously unexamined field.

  19. Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia

    PubMed Central

    Yamada, Kazuo; Gerber, David J.; Iwayama, Yoshimi; Ohnishi, Tetsuo; Ohba, Hisako; Toyota, Tomoko; Aruga, Jun; Minabe, Yoshio; Tonegawa, Susumu; Yoshikawa, Takeo

    2007-01-01

    The calcineurin cascade is central to neuronal signal transduction, and genes in this network are intriguing candidate schizophrenia susceptibility genes. To replicate and extend our previously reported association between the PPP3CC gene, encoding the calcineurin catalytic γ-subunit, and schizophrenia, we examined 84 SNPs from 14 calcineurin-related candidate genes for genetic association by using 124 Japanese schizophrenic pedigrees. Four of these genes (PPP3CC, EGR2, EGR3, and EGR4) showed nominally significant association with schizophrenia. In a postmortem brain study, EGR1, EGR2, and EGR3 transcripts were shown to be down-regulated in the prefrontal cortex of schizophrenic, but not bipolar, patients. These findings raise a potentially important role for EGR genes in schizophrenia pathogenesis. Because EGR3 is an attractive candidate gene based on its chromosomal location close to PPP3CC within 8p21.3 and its functional link to dopamine, glutamate, and neuregulin signaling, we extended our analysis by resequencing the entire EGR3 genomic interval and detected 15 SNPs. One of these, IVS1 + 607A→G SNP, displayed the strongest evidence for disease association, which was confirmed in 1,140 independent case-control samples. An in vitro promoter assay detected a possible expression-regulatory effect of this SNP. These findings support the previous genetic association of altered calcineurin signaling with schizophrenia pathogenesis and identify EGR3 as a compelling susceptibility gene. PMID:17360599

  20. Development of a spreadsheet for SNPs typing using Microsoft EXCEL.

    PubMed

    Hashiyada, Masaki; Itakura, Yukio; Takahashi, Shirushi; Sakai, Jun; Funayama, Masato

    2009-04-01

    Single-nucleotide polymorphisms (SNPs) have some characteristics that make them very appropriate for forensic studies and applications. In our institute, SNPs typings were performed by the TaqMan SNP Genotyping Assays using the ABI PRISM 7500 FAST Real-Time PCR System (AppliedBiosystems) and Sequence Detection Software ver.1.4 (AppliedBiosystem). The TaqMan method was desired two positive control (Allele1 and 2) and one negative control to analyze each SNP locus. Therefore, it can be analyzed up to 24 loci of a person on a 96-well-plate at the same time. If SNPs analysis is expected to apply to biometrics authentication, 48 and over loci are required to identify a person. In this study, we designed a spreadsheet package using Microsoft EXCEL, and population data were used from our 120 SNPs population studies. On the spreadsheet, we defined SNP types using 'template files' instead of positive and negative controls. "Template files" consisted of the results of 94 unknown samples and two negative controls of each of 120 SNPs loci we had previously studied. By the use of the files, the spreadsheet could analyze 96 SNPs on a 96-wells-plate simultaneously.

  1. Genome-wide association study of alcohol dependence

    PubMed Central

    Treutlein, Jens; Cichon, Sven; Ridinger, Monika; Wodarz, Norbert; Soyka, Michael; Zill, Peter; Maier, Wolfgang; Moessner, Rainald; Gaebel, Wolfgang; Dahmen, Norbert; Fehr, Christoph; Scherbaum, Norbert; Steffens, Michael; Ludwig, Kerstin U.; Frank, Josef; Wichmann, H.- Erich; Schreiber, Stefan; Dragano, Nico; Sommer, Wolfgang; Leonardi-Essmann, Fernando; Lourdusamy, Anbarasu; Gebicke-Haerter, Peter; Wienker, Thomas F.; Sullivan, Patrick F.; Nöthen, Markus M.; Kiefer, Falk; Spanagel, Rainer; Mann, Karl; Rietschel, Marcella

    2014-01-01

    Context Identification of genes contributing to alcohol dependence will improve our understanding of the mechanisms underlying this disorder. Objective To identify susceptibility genes for alcohol dependence through a genome-wide association study (GWAS) and follow-up study in a population of German male inpatients with an early age at onset. Design The GWAS included 487 male inpatients with DSM-IV alcohol dependence with an age at onset below 28 years and 1,358 population based control individuals. The follow-up study included 1,024 male inpatients and 996 age-matched male controls. All subjects were of German descent. The GWAS tested 524,396 single nucleotide polymorphisms (SNPs). All SNPs with p<10-4 were subjected to the follow-up study. In addition, nominally significant SNPs from those genes that had also shown expression changes in rat brains after chronic alcohol consumption were selected for the follow-up step. Results The GWAS produced 121 SNPs with nominal p<10-4. These, together with 19 additional SNPs from homologs of rat genes showing differential expression, were genotyped in the follow-up sample. Fifteen SNPs showed significant association with the same allele as in the GWAS. In the combined analysis, two closely linked intergenic SNPs met genome-wide significance (rs7590720 p=9.72×10-9; rs1344694 p=1.69×10-8). They are located on chromosome 2q35, a region which has been implicated in linkage studies for alcohol phenotypes. Nine SNPs were located in genes, including CDH13 and ADH1C genes which have been reported to be associated with alcohol dependence. Conclusion This is the first GWAS and follow-up study to identify a genome-wide significant association in alcohol dependence. Further independent studies are required to confirm these findings. PMID:19581569

  2. Effects of Early Dual-Eligible Special Needs Plans on Health Expenditure.

    PubMed

    Zhang, Yongkang; Diana, Mark L

    2017-10-18

    To examine the effects of the penetration of dual-eligible special needs plans (D-SNPs) on health care spending. Secondary state-level panel data from Medicare-Medicaid Linked Enrollee Analytic Data Source (MMLEADS) public use file and Special Needs Plan Comprehensive Reports, Area Health Resource Files, and Medicaid Managed Care Enrollment Report between 2007 and 2011. A difference-in-difference strategy that adjusts for dual-eligibles' demographic and socioeconomic characteristics, state health resources, beneficiaries' health risk factors, Medicare/Medicaid enrollment, and state- and year-fixed effects. Data from MMLEADS were summarized from Centers for Medicare and Medicaid Services (CMS)'s Chronic Conditions Data Warehouse, which contains 100 percent of Medicare enrollment data, claims for beneficiaries who are enrolled in the fee-for-service (FFS) program, and Medicaid Analytic Extract files. The MMLEADS public use file also includes payment information for managed care. Data in Special Needs Plan Comprehensive Reports were from CMS's Health Plan Management System. Results indicate that D-SNPs penetration was associated with reduced Medicare spending per dual-eligible beneficiary. Specifically, a 1 percent increase in D-SNPs penetration was associated with 0.2 percent reduction in Medicare spending per beneficiary. We found no association between D-SNPs penetration and Medicaid or total spending. Involving Medicaid services in D-SNPs may be crucial to improve coordination between Medicare and Medicaid programs and control Medicaid spending among dual-eligible beneficiaries. Starting from 2013, D-SNPs were mandated to have contracts with state Medicaid agencies. This change may introduce new effects of D-SNPs on health care spending. More research is needed to examine the impact of D-SNPs on dual-eligible spending. © Health Research and Educational Trust.

  3. Mining of haplotype-based expressed sequence tag single nucleotide polymorphisms in citrus

    PubMed Central

    2013-01-01

    Background Single nucleotide polymorphisms (SNPs), the most abundant variations in a genome, have been widely used in various studies. Detection and characterization of citrus haplotype-based expressed sequence tag (EST) SNPs will greatly facilitate further utilization of these gene-based resources. Results In this paper, haplotype-based SNPs were mined out of publicly available citrus expressed sequence tags (ESTs) from different citrus cultivars (genotypes) individually and collectively for comparison. There were a total of 567,297 ESTs belonging to 27 cultivars in varying numbers and consequentially yielding different numbers of haplotype-based quality SNPs. Sweet orange (SO) had the most (213,830) ESTs, generating 11,182 quality SNPs in 3,327 out of 4,228 usable contigs. Summed from all the individually mining results, a total of 25,417 quality SNPs were discovered – 15,010 (59.1%) were transitions (AG and CT), 9,114 (35.9%) were transversions (AC, GT, CG, and AT), and 1,293 (5.0%) were insertion/deletions (indels). A vast majority of SNP-containing contigs consisted of only 2 haplotypes, as expected, but the percentages of 2 haplotype contigs varied widely in these citrus cultivars. BLAST of the 25,417 25-mer SNP oligos to the Clementine reference genome scaffolds revealed 2,947 SNPs had “no hits found”, 19,943 had 1 unique hit / alignment, 1,571 had one hit and 2+ alignments per hit, and 956 had 2+ hits and 1+ alignment per hit. Of the total 24,293 scaffold hits, 23,955 (98.6%) were on the main scaffolds 1 to 9, and only 338 were on 87 minor scaffolds. Most alignments had 100% (25/25) or 96% (24/25) nucleotide identities, accounting for 93% of all the alignments. Considering almost all the nucleotide discrepancies in the 24/25 alignments were at the SNP sites, it served well as in silico validation of these SNPs, in addition to and consistent with the rate (81%) validated by sequencing and SNaPshot assay. Conclusions High-quality EST-SNPs from different citrus genotypes were detected, and compared to estimate the heterozygosity of each genome. All the SNP oligo sequences were aligned with the Clementine citrus genome to determine their distribution and uniqueness and for in silico validation, in addition to SNaPshot and sequencing validation of selected SNPs. PMID:24175923

  4. Whole-genome sequencing to determine Neisseria gonorrhoeae transmission: an observational study

    PubMed Central

    Cole, Kevin; Cole, Michelle J; Cresswell, Fiona; Dean, Gillian; Dave, Jayshree; Thomas, Daniel Rh; Foster, Kirsty; Waldram, Alison; Wilson, Daniel J; Didelot, Xavier; Grad, Yonatan H; Crook, Derrick W; Peto, Tim EA; Walker, A Sarah

    2016-01-01

    Background New approaches are urgently required to address increasing rates of gonorrhoea and the emergence and global spread of antibiotic-resistant Neisseria gonorrhoeae. Whole genome sequencing (WGS) can be applied to study transmission and track resistance. Methods We performed WGS on 1659 isolates from Brighton, UK, and 217 additional isolates from other UK locations. We included WGS data (n=196) from the USA. Estimated mutation rates, plus diversity observed within patients across anatomical sites and probable transmission pairs, were used to fit a coalescent model to determine the number of single nucleotide polymorphisms (SNPs) expected between sequences related by direct/indirect transmission, depending on the time between samples. Findings We detected extensive local transmission. 281/1061(26%) Brighton cases were indistinguishable (0 SNPs) to ≥1 previous case(s), and 786(74%) had evidence of a sampled direct or indirect Brighton source. There was evidence of sustained transmission of some lineages. We observed multiple related samples across geographic locations. Of 1273 infections in Brighton, 225(18%) were linked to another case from elsewhere in the UK, and 115(9%) to a case from the USA. Four lineages initially identified in Brighton could be linked to 70 USA sequences, including 61 from a lineage carrying the mosaic penA XXXIV associated with reduced cefixime susceptibility. Interpretation We present a WGS-based tool for genomic contact tracing of N. gonorrhoeae and demonstrate local, national and international transmission. WGS can be applied across geographical boundaries to investigate gonorrhoea transmission and to track antimicrobial resistance. Funding Oxford NIHR Health Protection Research Unit and Biomedical Research Centre. PMID:27427203

  5. The 'Fat Mass and Obesity Related' (FTO) gene: Mechanisms of Impact on Obesity and Energy Balance.

    PubMed

    Speakman, John R

    2015-03-01

    A cluster of single nucleotide polymorphisms (SNPs) in the first intron of the fat mass and obesity related (FTO) gene were the first common variants discovered to be associated with body mass index and body fatness. This review summarises what has been later discovered about the biology of FTO drawing together information from both human and animal studies. Subsequent work showed that the 'at risk' alleles of these SNPs are associated with greater food intake and increased hunger/lowered satiety, but are not associated with altered resting energy expenditure or low physical activity in humans. FTO is an FE (II) and 2-oxoglutarate dependent DNA/RNA methylase. Contrasting the impact of the SNPs on energy balance in humans, knocking out or reducing activity of the Fto gene in the mouse resulted in lowered adiposity, elevated energy expenditure with no impact on food intake (but the impact on expenditure is disputed). In contrast, overexpression of the gene in mice led to elevated food intake and adiposity, with no impact on expenditure. In rodents, the Fto gene is widely expressed in the brain including hypothalamic nuclei linked to food intake regulation. Since its activity is 2-oxoglutarate dependent it could potentially act as a sensor of citrate acid cycle flux, but this function has been dismissed, and instead it has been suggested to be much more likely to act as an amino acid sensor, linking circulating AAs to the mammalian target of rapamycin complex 1. This may be fundamental to its role in development but the link to obesity is less clear. It has been recently suggested that although the obesity related SNPs reside in the first intron of FTO, they may not only impact FTO but mediate their obesity effects via nearby genes (notably RPGRIP1L and IRX3).

  6. Identification of novel drought-tolerant-associated SNPs in common bean (Phaseolus vulgaris)

    PubMed Central

    Villordo-Pineda, Emiliano; González-Chavira, Mario M.; Giraldo-Carbajo, Patricia; Acosta-Gallegos, Jorge A.; Caballero-Pérez, Juan

    2015-01-01

    Common bean (Phaseolus vulgaris L.) is a leguminous in high demand for human nutrition and a very important agricultural product. Production of common bean is constrained by environmental stresses such as drought. Although conventional plant selection has been used to increase production yield and stress tolerance, drought tolerance selection based on phenotype is complicated by associated physiological, anatomical, cellular, biochemical, and molecular changes. These changes are modulated by differential gene expression. A common method to identify genes associated with phenotypes of interest is the characterization of Single Nucleotide Polymorphims (SNPs) to link them to specific functions. In this work, we selected two drought-tolerant parental lines from Mesoamerica, Pinto Villa, and Pinto Saltillo. The parental lines were used to generate a population of 282 families (F3:5) and characterized by 169 SNPs. We associated the segregation of the molecular markers in our population with phenotypes including flowering time, physiological maturity, reproductive period, plant, seed and total biomass, reuse index, seed yield, weight of 100 seeds, and harvest index in three cultivation cycles. We observed 83 SNPs with significant association (p < 0.0003 after Bonferroni correction) with our quantified phenotypes. Phenotypes most associated were days to flowering and seed biomass with 58 and 44 associated SNPs, respectively. Thirty-seven out of the 83 SNPs were annotated to a gene with a potential function related to drought tolerance or relevant molecular/biochemical functions. Some SNPs such as SNP28 and SNP128 are related to starch biosynthesis, a common osmotic protector; and SNP18 is related to proline biosynthesis, another well-known osmotic protector. PMID:26257755

  7. Identification of novel drought-tolerant-associated SNPs in common bean (Phaseolus vulgaris).

    PubMed

    Villordo-Pineda, Emiliano; González-Chavira, Mario M; Giraldo-Carbajo, Patricia; Acosta-Gallegos, Jorge A; Caballero-Pérez, Juan

    2015-01-01

    Common bean (Phaseolus vulgaris L.) is a leguminous in high demand for human nutrition and a very important agricultural product. Production of common bean is constrained by environmental stresses such as drought. Although conventional plant selection has been used to increase production yield and stress tolerance, drought tolerance selection based on phenotype is complicated by associated physiological, anatomical, cellular, biochemical, and molecular changes. These changes are modulated by differential gene expression. A common method to identify genes associated with phenotypes of interest is the characterization of Single Nucleotide Polymorphims (SNPs) to link them to specific functions. In this work, we selected two drought-tolerant parental lines from Mesoamerica, Pinto Villa, and Pinto Saltillo. The parental lines were used to generate a population of 282 families (F3:5) and characterized by 169 SNPs. We associated the segregation of the molecular markers in our population with phenotypes including flowering time, physiological maturity, reproductive period, plant, seed and total biomass, reuse index, seed yield, weight of 100 seeds, and harvest index in three cultivation cycles. We observed 83 SNPs with significant association (p < 0.0003 after Bonferroni correction) with our quantified phenotypes. Phenotypes most associated were days to flowering and seed biomass with 58 and 44 associated SNPs, respectively. Thirty-seven out of the 83 SNPs were annotated to a gene with a potential function related to drought tolerance or relevant molecular/biochemical functions. Some SNPs such as SNP28 and SNP128 are related to starch biosynthesis, a common osmotic protector; and SNP18 is related to proline biosynthesis, another well-known osmotic protector.

  8. Electroactive chitosan nanoparticles for the detection of single-nucleotide polymorphisms using peptide nucleic acids.

    PubMed

    Kerman, Kagan; Saito, Masato; Tamiya, Eiichi

    2008-08-01

    Here we report an electrochemical biosensor that would allow for simple and rapid analysis of nucleic acids in combination with nuclease activity on nucleic acids and electroactive bionanoparticles. The detection of single-nucleotide polymorphisms (SNPs) using PNA probes takes advantage of the significant structural and physicochemical differences between the full hybrids and SNPs in PNA/DNA and DNA/DNA duplexes. Ferrocene-conjugated chitosan nanoparticles (Chi-Fc) were used as the electroactive indicator of hybridization. Chi-Fc had no affinity towards the neutral PNA probe immobilized on a gold electrode (AuE) surface. When the PNA probe on the electrode surface hybridized with a full-complementary target DNA, Chi-Fc electrostatically attached to the negatively-charged phosphate backbone of DNA on the surface and gave rise to a high electrochemical oxidation signal from ferrocene at approximately 0.30 V. Exposing the surface to a single-stranded DNA specific nuclease, Nuclease S1, was found to be very effective for removing the nonspecifically adsorbed SNP DNA. An SNP in the target DNA to PNA made it susceptible to the enzymatic digestion. After the enzymatic digestion and subsequent exposure to Chi-Fc, the presence of SNPs was determined by monitoring the changes in the electrical current response of Chi-Fc. The method provided a detection limit of 1 fM (S/N = 3) for the target DNA oligonucleotide. Additionally, asymmetric PCR was employed to detect the presence of genetically modified organism (GMO) in standard Roundup Ready soybean samples. PNA-mediated PCR amplification of real DNA samples was performed to detect SNPs related to alcohol dehydrogenase (ALDH). Chitosan nanoparticles are promising biomaterials for various analytical and pharmaceutical applications.

  9. Discovery of Pod Shatter-Resistant Associated SNPs by Deep Sequencing of a Representative Library Followed by Bulk Segregant Analysis in Rapeseed

    PubMed Central

    Huang, Shunmou; Yang, Hongli; Zhan, Gaomiao; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2012-01-01

    Background Single nucleotide polymorphisms (SNPs) are an important class of genetic marker for target gene mapping. As of yet, there is no rapid and effective method to identify SNPs linked with agronomic traits in rapeseed and other crop species. Methodology/Principal Findings We demonstrate a novel method for identifying SNP markers in rapeseed by deep sequencing a representative library and performing bulk segregant analysis. With this method, SNPs associated with rapeseed pod shatter-resistance were discovered. Firstly, a reduced representation of the rapeseed genome was used. Genomic fragments ranging from 450–550 bp were prepared from the susceptible bulk (ten F2 plants with the silique shattering resistance index, SSRI <0.10) and the resistance bulk (ten F2 plants with SSRI >0.90), and also Solexa sequencing-produced 90 bp reads. Approximately 50 million of these sequence reads were assembled into contigs to a depth of 20-fold coverage. Secondly, 60,396 ‘simple SNPs’ were identified, and the statistical significance was evaluated using Fisher's exact test. There were 70 associated SNPs whose –log10 p value over 16 were selected to be further analyzed. The distribution of these SNPs appeared a tight cluster, which consisted of 14 associated SNPs within a 396 kb region on chromosome A09. Our evidence indicates that this region contains a major quantitative trait locus (QTL). Finally, two associated SNPs from this region were mapped on a major QTL region. Conclusions/Significance 70 associated SNPs were discovered and a major QTL for rapeseed pod shatter-resistance was found on chromosome A09 using our novel method. The associated SNP markers were used for mapping of the QTL, and may be useful for improving pod shatter-resistance in rapeseed through marker-assisted selection and map-based cloning. This approach will accelerate the discovery of major QTLs and the cloning of functional genes for important agronomic traits in rapeseed and other crop species. PMID:22529909

  10. Improving the detection of pathways in genome-wide association studies by combined effects of SNPs from Linkage Disequilibrium blocks.

    PubMed

    Zhao, Huiying; Nyholt, Dale R; Yang, Yuanhao; Wang, Jihua; Yang, Yuedong

    2017-06-14

    Genome-wide association studies (GWAS) have successfully identified single variants associated with diseases. To increase the power of GWAS, gene-based and pathway-based tests are commonly employed to detect more risk factors. However, the gene- and pathway-based association tests may be biased towards genes or pathways containing a large number of single-nucleotide polymorphisms (SNPs) with small P-values caused by high linkage disequilibrium (LD) correlations. To address such bias, numerous pathway-based methods have been developed. Here we propose a novel method, DGAT-path, to divide all SNPs assigned to genes in each pathway into LD blocks, and to sum the chi-square statistics of LD blocks for assessing the significance of the pathway by permutation tests. The method was proven robust with the type I error rate >1.6 times lower than other methods. Meanwhile, the method displays a higher power and is not biased by the pathway size. The applications to the GWAS summary statistics for schizophrenia and breast cancer indicate that the detected top pathways contain more genes close to associated SNPs than other methods. As a result, the method identified 17 and 12 significant pathways containing 20 and 21 novel associated genes, respectively for two diseases. The method is available online by http://sparks-lab.org/server/DGAT-path .

  11. [Detection of novel genetic markers of susceptibility to preeclampsia based on an analysis of the regulatory genes in the placental tissue].

    PubMed

    Serebrova, V N; Trifonova, E A; Gabidulina, T V; Bukharina, I Yu; Agarkova, T A; Evtushenko, I D; Maksimova, N R; Stepanov, V A

    2016-01-01

    Regulatory single nucleotide polymorphisms (rSNPs) are the least-studied group of SNP; however, they play an essential role in the development of human pathology by altering the level of candidate genes expression. In this work, we analyzed 29 rSNPs in 17 new candidate genes associated with preeclampsia (PE) according to the analysis of the transcriptome in placental tissue. Three ethnic groups have been studied (yakut, russian, and buryat). We have detected significant associations of PE with eight rSNPs in six differentially expressed genes, i.e., rs10423795 in the LHB gene; rs3771787 in the HK2 gene; rs72959687 in the INHA gene; rs12678229, rs2227262, and rs3802252 in the NDRG1 gene; rs34845949 in the SASH1 gene; and rs66707428 in the PPP1R12C gene. We used a new approach to detecting genetic markers of multifactorial diseases in the case of PE based on a combination of genomic, transcriptomic, and bioinformatic approaches. This approach proved its efficiency and may be applied to detecting new potential genetic markers in genes involved in disease pathogenesis, which reduces missing heritability in multifactorial diseases.

  12. Exploiting Genome Structure in Association Analysis

    PubMed Central

    Kim, Seyoung

    2014-01-01

    Abstract A genome-wide association study involves examining a large number of single-nucleotide polymorphisms (SNPs) to identify SNPs that are significantly associated with the given phenotype, while trying to reduce the false positive rate. Although haplotype-based association methods have been proposed to accommodate correlation information across nearby SNPs that are in linkage disequilibrium, none of these methods directly incorporated the structural information such as recombination events along chromosome. In this paper, we propose a new approach called stochastic block lasso for association mapping that exploits prior knowledge on linkage disequilibrium structure in the genome such as recombination rates and distances between adjacent SNPs in order to increase the power of detecting true associations while reducing false positives. Following a typical linear regression framework with the genotypes as inputs and the phenotype as output, our proposed method employs a sparsity-enforcing Laplacian prior for the regression coefficients, augmented by a first-order Markov process along the sequence of SNPs that incorporates the prior information on the linkage disequilibrium structure. The Markov-chain prior models the structural dependencies between a pair of adjacent SNPs, and allows us to look for association SNPs in a coupled manner, combining strength from multiple nearby SNPs. Our results on HapMap-simulated datasets and mouse datasets show that there is a significant advantage in incorporating the prior knowledge on linkage disequilibrium structure for marker identification under whole-genome association. PMID:21548809

  13. SNPServer: a real-time SNP discovery tool.

    PubMed

    Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-07-01

    SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.

  14. Denaturing high-performance liquid chromatography for mutation detection and genotyping.

    PubMed

    Fackenthal, Donna Lee; Chen, Pei Xian; Howe, Ted; Das, Soma

    2013-01-01

    Denaturing high-performance liquid chromatography (DHPLC) is an accurate and efficient screening technique used for detecting DNA sequence changes by heteroduplex analysis. It can also be used for genotyping of single nucleotide polymorphisms (SNPs). The high sensitivity of DHPLC has made this technique one of the most reliable approaches to mutation analysis and, therefore, used in various areas of genetics, both in the research and clinical arena. This chapter describes the methods used for mutation detection analysis and the genotyping of SNPs by DHPLC on the WAVE™ system from Transgenomic Inc. ("WAVE" and "DNASep" are registered trademarks, and "Navigator" is a trademark, of Transgenomic, used with permission. All other trademarks are property of the respective owners).

  15. Allelic clustering and ancestry-dependent frequencies of rs6232, rs6234, and rs6235 PCSK1 SNPs in a Northern Ontario population sample.

    PubMed

    Sirois, Francine; Kaefer, Nadine; Currie, Krista A; Chrétien, Michel; Nkongolo, Kabwe K; Mbikay, Majambu

    2012-10-01

    The PCSK1 (proprotein convertase subtilisin/kexin type 1) locus encodes proprotein convertase 1/3, an endoprotease that converts prohormones and proneuropeptides to their active forms. Spontaneous loss-of-function mutations in the coding sequence of its gene have been linked to obesity in humans. Minor alleles of two common non-synonymous single-nucleotide polymorphisms (SNPs), rs6232 (T > C, N221D) and rs6235 (C > G, S690T), have been associated with increased risk of obesity in European populations. In this study, we compared the frequencies of the rs6232 and rs6234 (G > C, Q665E) SNPs in Aboriginal and Caucasian populations of Northern Ontario. The two SNPs were all relatively less frequent in Aboriginals: The minor allele frequency of the rs6232 SNP was 0.01 in Aboriginals and 0.08 in Caucasians (P < 4.10(-6)); for the rs6234 SNP, it was 0.20 and 0.32, respectively (P < 0.001). Resequencing revealed that the rs6234 SNP variation was tightly linked to that of the rs6235 SNP, as previously reported. Most interestingly, all carriers of the rs6232 SNP variation also carried the rs6234/rs6235 SNP clustered variations, but not the reverse, suggesting the former occurred later on an allele already carrying the latter. These data indicate that, in Northern Ontario Aboriginals, the triple-variant PCSK1 allele is relatively rare and might be of lesser significance for obesity risk in this population.

  16. Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds.

    PubMed

    Webster, Matthew T; Kamgari, Nona; Perloski, Michele; Hoeppner, Marc P; Axelsson, Erik; Hedhammar, Åke; Pielberg, Gerli; Lindblad-Toh, Kerstin

    2015-06-23

    The domestic dog is a rich resource for mapping the genetic components of phenotypic variation due to its unique population history involving strong artificial selection. Genome-wide association studies have revealed a number of chromosomal regions where genetic variation associates with morphological characters that typify dog breeds. A region on chromosome 10 is among those with the highest levels of genetic differentiation between dog breeds and is associated with body mass and ear morphology, a common motif of animal domestication. We characterised variation in this region to uncover haplotype structure and identify candidate functional variants. We first identified SNPs that strongly associate with body mass and ear type by comparing sequence variation in a 3 Mb region between 19 breeds with a variety of phenotypes. We next genotyped a subset of 123 candidate SNPs in 288 samples from 46 breeds to identify the variants most highly associated with phenotype and infer haplotype structure. A cluster of SNPs that associate strongly with the drop ear phenotype is located within a narrow interval downstream of the gene MSRB3, which is involved in human hearing. These SNPs are in strong genetic linkage with another set of variants that correlate with body mass within the gene HMGA2, which affects human height. In addition we find evidence that this region has been under selection during dog domestication, and identify a cluster of SNPs within MSRB3 that are highly differentiated between dogs and wolves. We characterise genetically linked variants that potentially influence ear type and body mass in dog breeds, both key traits that have been modified by selective breeding that may also be important for domestication. The finding that variants on long haplotypes have effects on more than one trait suggests that genetic linkage can be an important determinant of the phenotypic response to selection in domestic animals.

  17. Reward-related genes and personality traits in alcohol-dependent individuals: a pilot case control study.

    PubMed

    Landgren, Sara; Berglund, Kristina; Jerlhag, Elisabet; Fahlke, Claudia; Balldin, Jan; Berggren, Ulf; Zetterberg, Henrik; Blennow, Kaj; Engel, Jörgen A

    2011-01-01

    Components of the brain reward system, i.e. the mesolimbic dopamine, laterodorsal cholinergic and ghrelin signaling systems, have been implicated in alcohol reward in preclinical studies. Genetic variants of these systems have previously been linked to alcohol dependence. Here, we genotyped 31 single nucleotide polymorphisms (SNPs): 1 SNP in the dopamine D₂ receptor (DRD2) gene, 20 SNPs in 5 different nicotinic acetylcholine receptor subunit (CHRN*) genes, and 10 SNPs in the genes encoding pro-ghrelin (GHRL) and its receptor (GHSR), in a pilot study of type 1 alcoholics (n = 84) and healthy controls (n = 32). These individuals were characterized using the Temperament and Character Inventory. None of the SNPs were associated with risk of alcohol dependence in this population. The GG genotype of SNP rs13261190 in the CHRNB3 was associated with increased novelty seeking, while SNPs of the ghrelin signaling system were associated with decreased self-directedness (AA of rs495225, GHSR) and alterations in self-transcendence (AA of both rs42451 and rs35680, GHRL). In conclusion, this pilot study suggests that reward-related genes are associated with altered personality scores in type 1 alcohol dependence, which warrants future studies of these associations in larger study samples. Copyright © 2011 S. Karger AG, Basel.

  18. Association of SNPs in GHSR rs292216 and rs509035 on dietary intake in Indonesian obese female adolescents.

    PubMed

    Luglio, Harry Freitag; Inggriyani, Cut Gina; Huriyati, Emy; Julia, Madarina; Susilowati, Rina

    2014-01-01

    Obesity has been linked to high dietary intake and low physical activity. Studies showed that those factors were not only regulated by environment but also by genetic. However, the relationship is less been understood in obese children and adolescents. The objective of this study was to examine the role of SNPs in GHSR rs292216 and rs509035 on dietary intake in obese female adolescents. This is an observational study with cross sectional design. Respondents were obese female adolescents enrolled from obesity screening done in six junior high schools in Yogyakarta. Dietary intake was measured using 6 days 24 hours inconsecutive dietary recall. Genotyping of 2 SNPs from GHSR was done using FRLP-PCR. There were 78 obese female adolescents joined this study. We found that no significant association between SNPs GHSR and dietary intake (p < 0.05). In addition, a SNP-SNP interaction analysis shown there is no difference between combination of GHSR rs292216 and rs509035 on dietary intake (p < 0.05). We concluded that SNPs on GHSR rs292216 and rs509035 were not related to dietary intake in Indonesian obese female adolescents. Further study is necessary to investigate the effect of those genes on dietary intake in the broader population.

  19. Possible association of VISA gene polymorphisms with susceptibility to systemic lupus erythematosus in Chinese population.

    PubMed

    Liu, Xiaowen; Jiao, Yulian; Wen, Xin; Wang, Laicheng; Ma, Chunyan; Gao, Xuejun; Chen, Zi-Jiang; Zhao, Yueran

    2011-10-01

    Virus-induced signaling adapter (VISA), an important adaptor protein linking both RIG-I and MDA-5 to downstream signaling events, may mediates the activation of NF kappaB and IRFs and the induction of type I IFN. As the evidence has showed that Toll-like receptors (TLRs), I-IFN and IFN-inducible genes contribute to the pathogenesis of systemic lupus erythematosus (SLE), the aim of the current study was to investigate the possible associations between the VISA gene and SLE. Four single nucleotide polymorphisms (SNPs), rs17857295, rs2326369, rs7262903, and rs7269320, in VISA gene were genotyped in 123 SLE patients and 95 healthy controls. Genotyping was performed using direct sequencing the purified PCR products. Associations were analyzed by using the chi-square test and Fisher's exact test. Haplotype analysis was performed using haploview and PHASE2.1. None of the four SNPs was found to be associated with SLE. The four-SNPs haplotype analysis showed different effect between cases and controls. While the SNPs, rs17857295 and rs2326369, were found to be associated with the renal nephritis and arthritis of SLE patient, respectively. The SNPs rs7269320 showed associations with different manifestations. Our data reveal that polymorphisms in the VISA gene may be related to disease susceptibility and manifestations of SLE.

  20. Contributions of IKZF1, DDC, CDKN2A, CEBPE, and LMO1 Gene Polymorphisms to Acute Lymphoblastic Leukemia in a Yemeni Population.

    PubMed

    Al-Absi, Boshra; Razif, Muhammad F M; Noor, Suzita M; Saif-Ali, Riyadh; Aqlan, Mohammed; Salem, Sameer D; Ahmed, Radwan H; Muniandy, Sekaran

    2017-10-01

    Genome-wide and candidate gene association studies have previously revealed links between a predisposition to acute lymphoblastic leukemia (ALL) and genetic polymorphisms in the following genes: IKZF1 (7p12.2; ID: 10320), DDC (7p12.2; ID: 1644), CDKN2A (9p21.3; ID: 1029), CEBPE (14q11.2; ID: 1053), and LMO1 (11p15; ID: 4004). In this study, we aimed to conduct an investigation into the possible association between polymorphisms in these genes and ALL within a sample of Yemeni children of Arab-Asian descent. Seven single-nucleotide polymorphisms (SNPs) in IKZF1, three SNPs in DDC, two SNPs in CDKN2A, two SNPs in CEBPE, and three SNPs in LMO1 were genotyped in 289 Yemeni children (136 cases and 153 controls), using the nanofluidic Dynamic Array (Fluidigm 192.24 Dynamic Array). Logistic regression analyses were used to estimate ALL risk, and the strength of association was expressed as odds ratios with 95% confidence intervals. We found that the IKZF1 SNP rs10235796 C allele (p = 0.002), the IKZF1 rs6964969 A>G polymorphism (p = 0.048, GG vs. AA), the CDKN2A rs3731246 G>C polymorphism (p = 0.047, GC+CC vs. GG), and the CDKN2A SNP rs3731246 C allele (p = 0.007) were significantly associated with ALL in Yemenis of Arab-Asian descent. In addition, a borderline association was found between IKZF1 rs4132601 T>G variant and ALL risk. No associations were found between the IKZF1 SNPs (rs11978267; rs7789635), DDC SNPs (rs3779084; rs880028; rs7809758), CDKN2A SNP (rs3731217), the CEBPE SNPs (rs2239633; rs12434881) and LMO1 SNPs (rs442264; rs3794012; rs4237770) with ALL in Yemeni children. The IKZF1 SNPs, rs10235796 and rs6964969, and the CDKN2A SNP rs3731246 (previously unreported) could serve as risk markers for ALL susceptibility in Yemeni children.

  1. Surface Plasmon Resonance of Counterions coated Charged Silver Nanoparticles and Application in Bio-interaction

    NASA Astrophysics Data System (ADS)

    Ghosh, Goutam; Panicker, Lata; Naveen Kumar, N.; Mallick, Vivek

    2018-05-01

    Silver nanoparticles (SNPs) play very significant roles in biomedical applications, e.g., biosensors in numerous assays for quantitative detection, and the surface chemistry adds an important factor in that. In this investigation, we coated SNPs either by anionic citrates, like tri-lithium citrate (TLC) or tri-potassium citrate (TKC) which are associated with Li+ or K+ counterions, respectively; or by cationic surfactants, like cetylpyridinium chloride (CPC) or cetylpyridinium iodide (CPI) which are associated with Cl‑ or I‑ counterions, respectively, at the surface of nanoparticles. Our aim was to study (i) how the counterions affect the optical property of SNPs and (ii) the interaction of coated SNPs with a protein, hen egg white lysozyme (HEWL). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques were used to measure the size, and UV absorption spectroscopy was used to characterize the surface plasmon resonance (SPR) band of SNPs. ζ-potential, fluorescence quenching and circular dichroism (CD) spectroscopy techniques were used for characterizing the protein-nanoparticles interaction.

  2. Resequencing of IRS2 reveals rare variants for obesity but not fasting glucose homeostasis in Hispanic children

    PubMed Central

    Voruganti, V. Saroja; Cole, Shelley A.; Haack, Karin; Comuzzie, Anthony G.; Muzny, Donna M.; Wheeler, David A.; Chang, Kyle; Hawes, Alicia; Gibbs, Richard A.

    2011-01-01

    Our objective was to resequence insulin receptor substrate 2 (IRS2) to identify variants associated with obesity- and diabetes-related traits in Hispanic children. Exonic and intronic segments, 5′ and 3′ flanking regions of IRS2 (∼14.5 kb), were bidirectionally sequenced for single nucleotide polymorphism (SNP) discovery in 934 Hispanic children using 3730XL DNA Sequencers. Additionally, 15 SNPs derived from Illumina HumanOmni1-Quad BeadChips were analyzed. Measured genotype analysis tested associations between SNPs and obesity and diabetes-related traits. Bayesian quantitative trait nucleotide analysis was used to statistically infer the most likely functional polymorphisms. A total of 140 SNPs were identified with minor allele frequencies (MAF) ranging from 0.001 to 0.47. Forty-two of the 70 coding SNPs result in nonsynonymous amino acid substitutions relative to the consensus sequence; 28 SNPs were detected in the promoter, 12 in introns, 28 in the 3′-UTR, and 2 in the 5′-UTR. Two insertion/deletions (indels) were detected. Ten independent rare SNPs (MAF = 0.001–0.009) were associated with obesity-related traits (P = 0.01–0.00002). SNP 10510452_139 in the promoter region was shown to have a high posterior probability (P = 0.77–0.86) of influencing BMI, fat mass, and waist circumference in Hispanic children. SNP 10510452_139 contributed between 2 and 4% of the population variance in body weight and composition. None of the SNPs or indels were associated with diabetes-related traits or accounted for a previously identified quantitative trait locus on chromosome 13 for fasting serum glucose. Rare but not common IRS2 variants may play a role in the regulation of body weight but not an essential role in fasting glucose homeostasis in Hispanic children. PMID:21771880

  3. Contribution of Selected Gene Mutations to Resistance in Clinical Isolates of Vancomycin-Intermediate Staphylococcus aureus

    PubMed Central

    Hafer, Cory; Lin, Ying; Kornblum, John; Lowy, Franklin D.

    2012-01-01

    Infections with vancomycin-intermediate Staphylococcus aureus (VISA) have been associated with vancomycin treatment failures and poor clinical outcomes. Routine identification of clinical isolates with increased vancomycin MICs remains challenging, and no molecular marker exists to aid in diagnosis of VISA strains. We tested vancomycin susceptibilities by using microscan, Etest, and population analyses in a collection of putative VISA, methicillin-resistant S. aureus, and methicillin-sensitive S. aureus (VSSA) infectious isolates from community- or hospital-associated S. aureus infections (n = 77) and identified 22 VISA and 9 heterogeneous VISA (hVISA) isolates. Sequencing of VISA candidate loci vraS, vraR, yvqF, graR, graS, walR, walK, and rpoB revealed a high diversity of nonsynonymous single-nucleotide polymorphisms (SNPs). For vraS, vraR, yvqF, walK, and rpoB, SNPs were more frequently present in VISA and hVISA than in VSSA isolates, whereas mutations in graR, graS, and walR were exclusively detected in VISA isolates. For each of the individual loci, SNPs were only detected in about half of the VISA isolates. All but one VISA isolate had at least one SNP in any of the genes sequenced, and isolates with an MIC of 6 or 8 μg/ml harbored at least 2 SNPs. Overall, increasing vancomycin MICs were paralleled by a higher proportion of isolates with SNPs. Depending on the clonal background, SNPs appeared to preferentially accumulate in vraS and vraR for sequence type 8 (ST8) and in walK and walR for ST5 isolates. Taken together, by comparing VISA, hVISA, and VSSA controls, we observed preferential clustering of SNPs in VISA candidate genes, with an unexpectedly high diversity across these loci. Our results support a polygenetic etiology of VISA. PMID:22948864

  4. Fast Screening Technology for Drug Emergency Management: Predicting Suspicious SNPs for ADR with Information Theory-based Models.

    PubMed

    Liang, Zhaohui; Liu, Jun; Huang, Jimmy X; Zeng, Xing

    2018-01-01

    The genetic polymorphism of Cytochrome P450 (CYP 450) is considered as one of the main causes for adverse drug reactions (ADRs). In order to explore the latent correlations between ADRs and potentially corresponding single-nucleotide polymorphism (SNPs) in CYP450, three algorithms based on information theory are used as the main method to predict the possible relation. The study uses a retrospective case-control study to explore the potential relation of ADRs to specific genomic locations and single-nucleotide polymorphism (SNP). The genomic data collected from 53 healthy volunteers are applied for the analysis, another group of genomic data collected from 30 healthy volunteers excluded from the study are used as the control group. The SNPs respective on five loci of CYP2D6*2,*10,*14 and CYP1A2*1C, *1F are detected by the Applied Biosystem 3130xl. The raw data is processed by ChromasPro to detect the specific alleles on the above loci from each sample. The secondary data are reorganized and processed by R combined with the reports of ADRs from clinical reports. Three information theory based algorithms are implemented for the screening task: JMI, CMIM, and mRMR. If a SNP is selected by more than two algorithms, we are confident to conclude that it is related to the corresponding ADR. The selection results are compared with the control decision tree + LASSO regression model. In the study group where ADRs occur, 10 SNPs are considered relevant to the occurrence of a specific ADR by the combined information theory model. In comparison, only 5 SNPs are considered relevant to a specific ADR by the decision tree + LASSO regression model. In addition, the new method detects more relevant pairs of SNP and ADR which are affected by both SNP and dosage. This implies that the new information theory based model is effective to discover correlations of ADRs and CYP 450 SNPs and is helpful in predicting the potential vulnerable genotype for some ADRs. The newly proposed information theory based model has superiority performance in detecting the relation between SNP and ADR compared to the decision tree + LASSO regression model. The new model is more sensitive to detect ADRs compared to the old method, while the old method is more reliable. Therefore, the selection criteria for selecting algorithms should depend on the pragmatic needs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Genotypic variants at 2q33 and risk of esophageal squamous cell carcinoma in China: a meta-analysis of genome-wide association studies

    PubMed Central

    Abnet, Christian C.; Wang, Zhaoming; Song, Xin; Hu, Nan; Zhou, Fu-You; Freedman, Neal D.; Li, Xue-Min; Yu, Kai; Shu, Xiao-Ou; Yuan, Jian-Min; Zheng, Wei; Dawsey, Sanford M.; Liao, Linda M.; Lee, Maxwell P.; Ding, Ti; Qiao, You-Lin; Gao, Yu-Tang; Koh, Woon-Puay; Xiang, Yong-Bing; Tang, Ze-Zhong; Fan, Jin-Hu; Chung, Charles C.; Wang, Chaoyu; Wheeler, William; Yeager, Meredith; Yuenger, Jeff; Hutchinson, Amy; Jacobs, Kevin B.; Giffen, Carol A.; Burdett, Laurie; Fraumeni, Joseph F.; Tucker, Margaret A.; Chow, Wong-Ho; Zhao, Xue-Ke; Li, Jiang-Man; Li, Ai-Li; Sun, Liang-Dan; Wei, Wu; Li, Ji-Lin; Zhang, Peng; Li, Hong-Lei; Cui, Wen-Yan; Wang, Wei-Peng; Liu, Zhi-Cai; Yang, Xia; Fu, Wen-Jing; Cui, Ji-Li; Lin, Hong-Li; Zhu, Wen-Liang; Liu, Min; Chen, Xi; Chen, Jie; Guo, Li; Han, Jing-Jing; Zhou, Sheng-Li; Huang, Jia; Wu, Yue; Yuan, Chao; Huang, Jing; Ji, Ai-Fang; Kul, Jian-Wei; Fan, Zhong-Min; Wang, Jian-Po; Zhang, Dong-Yun; Zhang, Lian-Qun; Zhang, Wei; Chen, Yuan-Fang; Ren, Jing-Li; Li, Xiu-Min; Dong, Jin-Cheng; Xing, Guo-Lan; Guo, Zhi-Gang; Yang, Jian-Xue; Mao, Yi-Ming; Yuan, Yuan; Guo, Er-Tao; Zhang, Wei; Hou, Zhi-Chao; Liu, Jing; Li, Yan; Tang, Sa; Chang, Jia; Peng, Xiu-Qin; Han, Min; Yin, Wan-Li; Liu, Ya-Li; Hu, Yan-Long; Liu, Yu; Yang, Liu-Qin; Zhu, Fu-Guo; Yang, Xiu-Feng; Feng, Xiao-Shan; Wang, Zhou; Li, Yin; Gao, She-Gan; Liu, Hai-Lin; Yuan, Ling; Jin, Yan; Zhang, Yan-Rui; Sheyhidin, Ilyar; Li, Feng; Chen, Bao-Ping; Ren, Shu-Wei; Liu, Bin; Li, Dan; Zhang, Gao-Fu; Yue, Wen-Bin; Feng, Chang-Wei; Qige, Qirenwang; Zhao, Jian-Ting; Yang, Wen-Jun; Lei, Guang-Yan; Chen, Long-Qi; Li, En-Min; Xu, Li-Yan; Wu, Zhi-Yong; Bao, Zhi-Qin; Chen, Ji-Li; Li, Xian-Chang; Zhuang, Xiang; Zhou, Ying-Fa; Zuo, Xian-Bo; Dong, Zi-Ming; Wang, Lu-Wen; Fan, Xue-Pin; Wang, Jin; Zhou, Qi; Ma, Guo-Shun; Zhang, Qin-Xian; Liu, Hai; Jian, Xin-Ying; Lian, Sin-Yong; Wang, Jin-Sheng; Chang, Fu-Bao; Lu, Chang-Dong; Miao, Jian-Jun; Chen, Zhi-Guo; Wang, Ran; Guo, Ming; Fan, Zeng-Lin; Tao, Ping; Liu, Tai-Jing; Wei, Jin-Chang; Kong, Qing-Peng; Fan, Lei; Wang, Xian-Zeng; Gao, Fu-Sheng; Wang, Tian-Yun; Xie, Dong; Wang, Li; Chen, Shu-Qing; Yang, Wan-Cai; Hong, Jun-Yan; Wang, Liang; Qiu, Song-Liang; Goldstein, Alisa M.; Yuan, Zhi-Qing; Chanock, Stephen J.; Zhang, Xue-Jun; Taylor, Philip R.; Wang, Li-Dong

    2012-01-01

    Genome-wide association studies have identified susceptibility loci for esophageal squamous cell carcinoma (ESCC). We conducted a meta-analysis of all single-nucleotide polymorphisms (SNPs) that showed nominally significant P-values in two previously published genome-wide scans that included a total of 2961 ESCC cases and 3400 controls. The meta-analysis revealed five SNPs at 2q33 with P< 5 × 10−8, and the strongest signal was rs13016963, with a combined odds ratio (95% confidence interval) of 1.29 (1.19–1.40) and P= 7.63 × 10−10. An imputation analysis of 4304 SNPs at 2q33 suggested a single association signal, and the strongest imputed SNP associations were similar to those from the genotyped SNPs. We conducted an ancestral recombination graph analysis with 53 SNPs to identify one or more haplotypes that harbor the variants directly responsible for the detected association signal. This showed that the five SNPs exist in a single haplotype along with 45 imputed SNPs in strong linkage disequilibrium, and the strongest candidate was rs10201587, one of the genotyped SNPs. Our meta-analysis found genome-wide significant SNPs at 2q33 that map to the CASP8/ALS2CR12/TRAK2 gene region. Variants in CASP8 have been extensively studied across a spectrum of cancers with mixed results. The locus we identified appears to be distinct from the widely studied rs3834129 and rs1045485 SNPs in CASP8. Future studies of esophageal and other cancers should focus on comprehensive sequencing of this 2q33 locus and functional analysis of rs13016963 and rs10201587 and other strongly correlated variants. PMID:22323360

  6. Genotypic variants at 2q33 and risk of esophageal squamous cell carcinoma in China: a meta-analysis of genome-wide association studies.

    PubMed

    Abnet, Christian C; Wang, Zhaoming; Song, Xin; Hu, Nan; Zhou, Fu-You; Freedman, Neal D; Li, Xue-Min; Yu, Kai; Shu, Xiao-Ou; Yuan, Jian-Min; Zheng, Wei; Dawsey, Sanford M; Liao, Linda M; Lee, Maxwell P; Ding, Ti; Qiao, You-Lin; Gao, Yu-Tang; Koh, Woon-Puay; Xiang, Yong-Bing; Tang, Ze-Zhong; Fan, Jin-Hu; Chung, Charles C; Wang, Chaoyu; Wheeler, William; Yeager, Meredith; Yuenger, Jeff; Hutchinson, Amy; Jacobs, Kevin B; Giffen, Carol A; Burdett, Laurie; Fraumeni, Joseph F; Tucker, Margaret A; Chow, Wong-Ho; Zhao, Xue-Ke; Li, Jiang-Man; Li, Ai-Li; Sun, Liang-Dan; Wei, Wu; Li, Ji-Lin; Zhang, Peng; Li, Hong-Lei; Cui, Wen-Yan; Wang, Wei-Peng; Liu, Zhi-Cai; Yang, Xia; Fu, Wen-Jing; Cui, Ji-Li; Lin, Hong-Li; Zhu, Wen-Liang; Liu, Min; Chen, Xi; Chen, Jie; Guo, Li; Han, Jing-Jing; Zhou, Sheng-Li; Huang, Jia; Wu, Yue; Yuan, Chao; Huang, Jing; Ji, Ai-Fang; Kul, Jian-Wei; Fan, Zhong-Min; Wang, Jian-Po; Zhang, Dong-Yun; Zhang, Lian-Qun; Zhang, Wei; Chen, Yuan-Fang; Ren, Jing-Li; Li, Xiu-Min; Dong, Jin-Cheng; Xing, Guo-Lan; Guo, Zhi-Gang; Yang, Jian-Xue; Mao, Yi-Ming; Yuan, Yuan; Guo, Er-Tao; Zhang, Wei; Hou, Zhi-Chao; Liu, Jing; Li, Yan; Tang, Sa; Chang, Jia; Peng, Xiu-Qin; Han, Min; Yin, Wan-Li; Liu, Ya-Li; Hu, Yan-Long; Liu, Yu; Yang, Liu-Qin; Zhu, Fu-Guo; Yang, Xiu-Feng; Feng, Xiao-Shan; Wang, Zhou; Li, Yin; Gao, She-Gan; Liu, Hai-Lin; Yuan, Ling; Jin, Yan; Zhang, Yan-Rui; Sheyhidin, Ilyar; Li, Feng; Chen, Bao-Ping; Ren, Shu-Wei; Liu, Bin; Li, Dan; Zhang, Gao-Fu; Yue, Wen-Bin; Feng, Chang-Wei; Qige, Qirenwang; Zhao, Jian-Ting; Yang, Wen-Jun; Lei, Guang-Yan; Chen, Long-Qi; Li, En-Min; Xu, Li-Yan; Wu, Zhi-Yong; Bao, Zhi-Qin; Chen, Ji-Li; Li, Xian-Chang; Zhuang, Xiang; Zhou, Ying-Fa; Zuo, Xian-Bo; Dong, Zi-Ming; Wang, Lu-Wen; Fan, Xue-Pin; Wang, Jin; Zhou, Qi; Ma, Guo-Shun; Zhang, Qin-Xian; Liu, Hai; Jian, Xin-Ying; Lian, Sin-Yong; Wang, Jin-Sheng; Chang, Fu-Bao; Lu, Chang-Dong; Miao, Jian-Jun; Chen, Zhi-Guo; Wang, Ran; Guo, Ming; Fan, Zeng-Lin; Tao, Ping; Liu, Tai-Jing; Wei, Jin-Chang; Kong, Qing-Peng; Fan, Lei; Wang, Xian-Zeng; Gao, Fu-Sheng; Wang, Tian-Yun; Xie, Dong; Wang, Li; Chen, Shu-Qing; Yang, Wan-Cai; Hong, Jun-Yan; Wang, Liang; Qiu, Song-Liang; Goldstein, Alisa M; Yuan, Zhi-Qing; Chanock, Stephen J; Zhang, Xue-Jun; Taylor, Philip R; Wang, Li-Dong

    2012-05-01

    Genome-wide association studies have identified susceptibility loci for esophageal squamous cell carcinoma (ESCC). We conducted a meta-analysis of all single-nucleotide polymorphisms (SNPs) that showed nominally significant P-values in two previously published genome-wide scans that included a total of 2961 ESCC cases and 3400 controls. The meta-analysis revealed five SNPs at 2q33 with P< 5 × 10(-8), and the strongest signal was rs13016963, with a combined odds ratio (95% confidence interval) of 1.29 (1.19-1.40) and P= 7.63 × 10(-10). An imputation analysis of 4304 SNPs at 2q33 suggested a single association signal, and the strongest imputed SNP associations were similar to those from the genotyped SNPs. We conducted an ancestral recombination graph analysis with 53 SNPs to identify one or more haplotypes that harbor the variants directly responsible for the detected association signal. This showed that the five SNPs exist in a single haplotype along with 45 imputed SNPs in strong linkage disequilibrium, and the strongest candidate was rs10201587, one of the genotyped SNPs. Our meta-analysis found genome-wide significant SNPs at 2q33 that map to the CASP8/ALS2CR12/TRAK2 gene region. Variants in CASP8 have been extensively studied across a spectrum of cancers with mixed results. The locus we identified appears to be distinct from the widely studied rs3834129 and rs1045485 SNPs in CASP8. Future studies of esophageal and other cancers should focus on comprehensive sequencing of this 2q33 locus and functional analysis of rs13016963 and rs10201587 and other strongly correlated variants.

  7. Whole Genome Sequencing Based Characterization of Extensively Drug-Resistant Mycobacterium tuberculosis Isolates from Pakistan

    PubMed Central

    Ali, Asho; Hasan, Zahra; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G.; Hasan, Rumina

    2015-01-01

    Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91–94 codons in 81% of strains; four strains had only gyrB mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded targets for drug resistance detection in MTB isolates. PMID:25719196

  8. Genome-Wide Association Study Identifies African-Specific Susceptibility Loci in African Americans With Inflammatory Bowel Disease.

    PubMed

    Brant, Steven R; Okou, David T; Simpson, Claire L; Cutler, David J; Haritunians, Talin; Bradfield, Jonathan P; Chopra, Pankaj; Prince, Jarod; Begum, Ferdouse; Kumar, Archana; Huang, Chengrui; Venkateswaran, Suresh; Datta, Lisa W; Wei, Zhi; Thomas, Kelly; Herrinton, Lisa J; Klapproth, Jan-Micheal A; Quiros, Antonio J; Seminerio, Jenifer; Liu, Zhenqiu; Alexander, Jonathan S; Baldassano, Robert N; Dudley-Brown, Sharon; Cross, Raymond K; Dassopoulos, Themistocles; Denson, Lee A; Dhere, Tanvi A; Dryden, Gerald W; Hanson, John S; Hou, Jason K; Hussain, Sunny Z; Hyams, Jeffrey S; Isaacs, Kim L; Kader, Howard; Kappelman, Michael D; Katz, Jeffry; Kellermayer, Richard; Kirschner, Barbara S; Kuemmerle, John F; Kwon, John H; Lazarev, Mark; Li, Ellen; Mack, David; Mannon, Peter; Moulton, Dedrick E; Newberry, Rodney D; Osuntokun, Bankole O; Patel, Ashish S; Saeed, Shehzad A; Targan, Stephan R; Valentine, John F; Wang, Ming-Hsi; Zonca, Martin; Rioux, John D; Duerr, Richard H; Silverberg, Mark S; Cho, Judy H; Hakonarson, Hakon; Zwick, Michael E; McGovern, Dermot P B; Kugathasan, Subra

    2017-01-01

    The inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn's disease (CD) cause significant morbidity and are increasing in prevalence among all populations, including African Americans. More than 200 susceptibility loci have been identified in populations of predominantly European ancestry, but few loci have been associated with IBD in other ethnicities. We performed 2 high-density, genome-wide scans comprising 2345 cases of African Americans with IBD (1646 with CD, 583 with UC, and 116 inflammatory bowel disease unclassified) and 5002 individuals without IBD (controls, identified from the Health Retirement Study and Kaiser Permanente database). Single-nucleotide polymorphisms (SNPs) associated at P < 5.0 × 10 -8 in meta-analysis with a nominal evidence (P < .05) in each scan were considered to have genome-wide significance. We detected SNPs at HLA-DRB1, and African-specific SNPs at ZNF649 and LSAMP, with associations of genome-wide significance for UC. We detected SNPs at USP25 with associations of genome-wide significance for IBD. No associations of genome-wide significance were detected for CD. In addition, 9 genes previously associated with IBD contained SNPs with significant evidence for replication (P < 1.6 × 10 -6 ): ADCY3, CXCR6, HLA-DRB1 to HLA-DQA1 (genome-wide significance on conditioning), IL12B,PTGER4, and TNC for IBD; IL23R, PTGER4, and SNX20 (in strong linkage disequilibrium with NOD2) for CD; and KCNQ2 (near TNFRSF6B) for UC. Several of these genes, such as TNC (near TNFSF15), CXCR6, and genes associated with IBD at the HLA locus, contained SNPs with unique association patterns with African-specific alleles. We performed a genome-wide association study of African Americans with IBD and identified loci associated with UC in only this population; we also replicated IBD, CD, and UC loci identified in European populations. The detection of variants associated with IBD risk in only people of African descent demonstrates the importance of studying the genetics of IBD and other complex diseases in populations beyond those of European ancestry. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Responder Interferon λ Genotypes Are Associated With Higher Risk of Liver Fibrosis in HIV-Hepatitis C Virus Coinfection.

    PubMed

    Moqueet, Nasheed; Cooper, Curtis; Gill, John; Hull, Mark; Platt, Robert W; Klein, Marina B

    2016-07-01

    Liver fibrosis progresses faster in individuals coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Interferon λ3 (IFN-λ3) has both antiviral and proinflammatory properties. Genotypes at IFNL single-nucleotide proteins (SNPs; rs12979860CC and rs8099917TT) are linked to higher HCV clearance, potentially via rs8103142. We examined the relationship between IFN-λ genotypes and significant liver fibrosis in HIV-HCV coinfection. From the prospective Canadian Co-infection Cohort (n = 1423), HCV RNA-positive participants in whom IFN-λ genotypes were detected and who were free of fibrosis, end-stage liver disease, and chronic hepatitis B at baseline (n = 485) were included. Time to significant fibrosis (defined as an aspartate transaminase level to platelet count ratio index [APRI] of ≥1.5) by IFN-λ genotypes was analyzed using Cox proportional hazards, with adjustment for age, sex, ethnicity, alcohol use, CD4(+) T-cell count, HCV genotype, γ-glutamyl transferase level, and baseline APRI. Haplotype analysis was performed, with adjustment for ethnicity. A total of 125 participants developed fibrosis over 1595 person-years (7.84 cases/100 person-years; 95% confidence interval [CI], 6.58-9.34 cases/100 person-years). Each genotype was associated with an increased fibrosis risk, with adjusted hazard ratios of 1.37 (95% CI, .94-2.02) for rs12979860CC, 1.34 (95% CI, .91-1.97) for rs8103142TT, and 1.79 (95% CI, 1.24-2.57) for rs8099917TT. Haplotype TCT was also linked with a higher risk (hazard ratio, 1.14 [95% CI, .73-1.77]). IFN-λ SNPs rs12979860, rs8099917, and rs81013142 were individually linked to higher rates of fibrosis in individuals with HIV-HCV coinfection. IFN-λ genotypes may be useful to target HCV treatments to people who are at higher risk of liver disease. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  10. Novel efficient genome-wide SNP panels for the conservation of the highly endangered Iberian lynx.

    PubMed

    Kleinman-Ruiz, Daniel; Martínez-Cruz, Begoña; Soriano, Laura; Lucena-Perez, Maria; Cruz, Fernando; Villanueva, Beatriz; Fernández, Jesús; Godoy, José A

    2017-07-21

    The Iberian lynx (Lynx pardinus) has been acknowledged as the most endangered felid species in the world. An intense contraction and fragmentation during the twentieth century left less than 100 individuals split in two isolated and genetically eroded populations by 2002. Genetic monitoring and management so far have been based on 36 STRs, but their limited variability and the more complex situation of current populations demand more efficient molecular markers. The recent characterization of the Iberian lynx genome identified more than 1.6 million SNPs, of which 1536 were selected and genotyped in an extended Iberian lynx sample. We validated 1492 SNPs and analysed their heterozygosity, Hardy-Weinberg equilibrium, and linkage disequilibrium. We then selected a panel of 343 minimally linked autosomal SNPs from which we extracted subsets optimized for four different typical tasks in conservation applications: individual identification, parentage assignment, relatedness estimation, and admixture classification, and compared their power to currently used STR panels. We ascribed 21 SNPs to chromosome X based on their segregation patterns, and identified one additional marker that showed significant differentiation between sexes. For all applications considered, panels of autosomal SNPs showed higher power than the currently used STR set with only a very modest increase in the number of markers. These novel panels of highly informative genome-wide SNPs provide more powerful, efficient, and flexible tools for the genetic management and non-invasive monitoring of Iberian lynx populations. This example highlights an important outcome of whole-genome studies in genetically threatened species.

  11. Genome-wide association study of coronary and aortic calcification in lung cancer screening CT

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; van Setten, Jessica; de Jong, Pim A.; Mali, Willem P.; Oudkerk, Matthijs; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Arterial calcification has been related to cardiovascular disease (CVD) and osteoporosis. However, little is known about the role of genetics and exact pathways leading to arterial calcification and its relation to bone density changes indicating osteoporosis. In this study, we conducted a genome-wide association study of arterial calcification burden, followed by a look-up of known single nucleotide polymorphisms (SNPs) for coronary artery disease (CAD) and myocardial infarction (MI), and bone mineral density (BMD) to test for a shared genetic basis between the traits. The study included a subcohort of the Dutch-Belgian lung cancer screening trial comprised of 2,561 participants. Participants underwent baseline CT screening in one of two hospitals participating in the trial. Low-dose chest CT images were acquired without contrast enhancement and without ECG-synchronization. In these images coronary and aortic calcifications were identified automatically. Subsequently, the detected calcifications were quantified using coronary artery calcium Agatston and volume scores. Genotype data was available for these participants. A genome-wide association study was conducted on 10,220,814 SNPs using a linear regression model. To reduce multiple testing burden, known CAD/MI and BMD SNPs were specifically tested (45 SNPs from the CARDIoGRAMplusC4D consortium and 60 SNPS from the GEFOS consortium). No novel significant SNPs were found. Significant enrichment for CAD/MI SNPs was observed in testing Agatston and coronary artery calcium volume scores. Moreover, a significant enrichment of BMD SNPs was shown in aortic calcium volume scores. This may indicate genetic relation of BMD SNPs and arterial calcification burden.

  12. Evidence for Hitchhiking of Deleterious Mutations within the Human Genome

    PubMed Central

    Chun, Sung; Fay, Justin C.

    2011-01-01

    Deleterious mutations present a significant obstacle to adaptive evolution. Deleterious mutations can inhibit the spread of linked adaptive mutations through a population; conversely, adaptive substitutions can increase the frequency of linked deleterious mutations and even result in their fixation. To assess the impact of adaptive mutations on linked deleterious mutations, we examined the distribution of deleterious and neutral amino acid polymorphism in the human genome. Within genomic regions that show evidence of recent hitchhiking, we find fewer neutral but a similar number of deleterious SNPs compared to other genomic regions. The higher ratio of deleterious to neutral SNPs is consistent with simulated hitchhiking events and implies that positive selection eliminates some deleterious alleles and increases the frequency of others. The distribution of disease-associated alleles is also altered in hitchhiking regions. Disease alleles within hitchhiking regions have been associated with auto-immune disorders, metabolic diseases, cancers, and mental disorders. Our results suggest that positive selection has had a significant impact on deleterious polymorphism and may be partly responsible for the high frequency of certain human disease alleles. PMID:21901107

  13. Genes associated with Type 2 Diabetes and vascular complications.

    PubMed

    Montesanto, Alberto; Bonfigli, Anna Rita; Crocco, Paolina; Garagnani, Paolo; De Luca, Maria; Boemi, Massimo; Marasco, Elena; Pirazzini, Chiara; Giuliani, Cristina; Franceschi, Claudio; Passarino, Giuseppe; Testa, Roberto; Olivieri, Fabiola; Rose, Giuseppina

    2018-02-04

    Type 2 Diabetes (T2D) is a chronic disease associated with a number of micro- and macrovascular complications that increase the morbidity and mortality of patients. The risk of diabetic complications has a strong genetic component. To this end, we sought to evaluate the association of 40 single nucleotide polymorphisms (SNPs) in 21 candidate genes with T2D and its vascular complications in 503 T2D patients and 580 healthy controls. The genes were chosen because previously reported to be associated with T2D complications and/or with the aging process. We replicated the association of T2D risk with I GF2BP rs4402960 and detected novel associations with TERT rs2735940 and rs2736098. The addition of these SNPs to a model including traditional risk factors slightly improved risk prediction. After stratification of patients according to the presence/absence of vascular complications, we found significant associations of variants in the CAT , FTO , and UCP1 genes with diabetic retinopathy and nephropathy. Additionally, a variant in the ADIPOQ gene was found associated with macrovascular complications. Notably, these genes are involved in some way in mitochondrial biology and reactive oxygen species regulation. Hence, our findings strongly suggest a potential link between mitochondrial oxidative homeostasis and individual predisposition to diabetic vascular complications.

  14. Construction of a high-density genetic map for grape using specific length amplified fragment (SLAF) sequencing

    PubMed Central

    Guo, Yinshan; Xing, Huiyang; Zhao, Yuhui; Liu, Zhendong; Li, Kun; Guo, Xiuwu

    2017-01-01

    Genetic maps are important tools in plant genomics and breeding. We report a large-scale discovery of single nucleotide polymorphisms (SNPs) using the specific length amplified fragment sequencing (SLAF-seq) technique for the construction of high-density genetic maps for two elite wine grape cultivars, ‘Chardonnay’ and ‘Beibinghong’, and their 130 F1 plants. A total of 372.53 M paired-end reads were obtained after preprocessing. The average sequencing depth was 33.81 for ‘Chardonnay’ (the female parent), 48.20 for ‘Beibinghong’ (the male parent), and 12.66 for the F1 offspring. We detected 202,349 high-quality SLAFs of which 144,972 were polymorphic; 10,042 SNPs were used to construct a genetic map that spanned 1,969.95 cM, with an average genetic distance of 0.23 cM between adjacent markers. This genetic map contains the largest molecular marker number of the grape maps so far reported. We thus demonstrate that SLAF-seq is a promising strategy for the construction of high-density genetic maps; the map that we report here is a good potential resource for QTL mapping of genes linked to major economic and agronomic traits, map-based cloning, and marker-assisted selection of grape. PMID:28746364

  15. Genetic variations in MTHFR and esophageal squamous cell carcinoma susceptibility in Chinese Han population.

    PubMed

    Tang, Weifeng; Zhang, Sheng; Qiu, Hao; Wang, Lixin; Sun, Bin; Yin, Jun; Gu, Haiyong

    2014-05-01

    Esophageal cancer is the sixth most common cancer worldwide. Esophageal squamous cell carcinoma (ESCC) is a fatal malignancy associated with low 5-year survival rate. The aim of this study was to assess the association between methylenetetrahydrofolate reductase (MTHFR) tagging single nucleotide polymorphisms (SNPs) rs1801133 C>T, rs3753584 A>G, rs4845882 G>A, rs4846048 A>G and rs9651118 T>C genotypes and ESCC susceptibility in a hospital-based case-control study. We conducted genotyping analyses for these five SNPs with 629 ESCC cases and 686 controls in a Chinese Han population. Ligation detection reaction method was used to identify genotypes of these MTHFR SNPs. Our results demonstrated that MTHFR rs1801133 C>T was associated with the risk of ESCC; however, MTHFR rs4845882 G>A and rs4846048 A>G SNPs were associated with the decreased risk of ESCC, and MTHFR rs3753584 A>G and rs9651118 T>C SNPs were not associated with ESCC risk. Our findings suggests that MTHFR rs1801133 C>T, rs4845882 G>A and rs4846048 A>G SNPs may be genetic modifiers for developing ESCC in Chinese Han population.

  16. Development of a novel forensic STR multiplex for ancestry analysis and extended identity testing.

    PubMed

    Phillips, Chris; Fernandez-Formoso, Luis; Gelabert-Besada, Miguel; Garcia-Magariños, Manuel; Santos, Carla; Fondevila, Manuel; Carracedo, Angel; Lareu, Maria Victoria

    2013-04-01

    There is growing interest in developing additional DNA typing techniques to provide better investigative leads in forensic analysis. These include inference of genetic ancestry and prediction of common physical characteristics of DNA donors. To date, forensic ancestry analysis has centered on population-divergent SNPs but these binary loci cannot reliably detect DNA mixtures, common in forensic samples. Furthermore, STR genotypes, forming the principal DNA profiling system, are not routinely combined with forensic SNPs to strengthen frequency data available for ancestry inference. We report development of a 12-STR multiplex composed of ancestry informative marker STRs (AIM-STRs) selected from 434 tetranucleotide repeat loci. We adapted our online Bayesian classifier for AIM-SNPs: Snipper, to handle multiallele STR data using frequency-based training sets. We assessed the ability of the 12-plex AIM-STRs to differentiate CEPH Human Genome Diversity Panel populations, plus their informativeness combined with established forensic STRs and AIM-SNPs. We found combining STRs and SNPs improves the success rate of ancestry assignments while providing a reliable mixture detection system lacking from SNP analysis alone. As the 12 STRs generally show a broad range of alleles in all populations, they provide highly informative supplementary STRs for extended relationship testing and identification of missing persons with incomplete reference pedigrees. Lastly, mixed marker approaches (combining STRs with binary loci) for simple ancestry inference tests beyond forensic analysis bring advantages and we discuss the genotyping options available. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Genome-Wide Detection of Allele Specific Copy Number Variation Associated with Insulin Resistance in African Americans from the HyperGEN Study

    PubMed Central

    Pajewski, Nicholas M.; Kabagambe, Edmond K.; Gu, Charles C.; Pankow, Jim; North, Kari E.; Wilk, Jemma B.; Freedman, Barry I.; Franceschini, Nora; Broeckel, Uli; Tiwari, Hemant K.; Arnett, Donna K.

    2011-01-01

    African Americans have been understudied in genome wide association studies of diabetes and related traits. In the current study, we examined the joint association of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with fasting insulin and an index of insulin resistance (HOMA-IR) in the HyperGEN study, a family based study with proband ascertainment for hypertension. This analysis is restricted to 1,040 African Americans without diabetes. We generated allele specific CNV genotypes at 872,243 autosomal loci using Birdsuite, a freely available multi-stage program. Joint tests of association for SNPs and CNVs were performed using linear mixed models adjusting for covariates and familial relationships. Our results highlight SNPs associated with fasting insulin and HOMA-IR (rs6576507 and rs8026527, 3.7*10−7≤P≤1.1*10−5) near ATPase, class V, type 10A (ATP10A), and the L Type voltage dependent calcium channel (CACNA1D, rs1401492, P≤5.2*10−6). ATP10A belongs to a family of aminophospholipid-transporting ATPases and has been associated with type 2 diabetes in mice. CACNA1D has been linked to pancreatic beta cell generation in mice. The two most significant copy variable markers (rs10277702 and rs361367; P<2.0*10−4) were in the beta variable region of the T-cell receptor gene (TCRVB). Human and mouse TCR has been shown to mimic insulin and its receptor and could contribute to insulin resistance. Our findings differ from genome wide association studies of fasting insulin and other diabetes related traits in European populations, highlighting the continued need to investigate unique genetic influences for understudied populations such as African Americans. PMID:21901158

  18. Genome-wide detection of allele specific copy number variation associated with insulin resistance in African Americans from the HyperGEN study.

    PubMed

    Irvin, Marguerite R; Wineinger, Nathan E; Rice, Treva K; Pajewski, Nicholas M; Kabagambe, Edmond K; Gu, Charles C; Pankow, Jim; North, Kari E; Wilk, Jemma B; Freedman, Barry I; Franceschini, Nora; Broeckel, Uli; Tiwari, Hemant K; Arnett, Donna K

    2011-01-01

    African Americans have been understudied in genome wide association studies of diabetes and related traits. In the current study, we examined the joint association of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with fasting insulin and an index of insulin resistance (HOMA-IR) in the HyperGEN study, a family based study with proband ascertainment for hypertension. This analysis is restricted to 1,040 African Americans without diabetes. We generated allele specific CNV genotypes at 872,243 autosomal loci using Birdsuite, a freely available multi-stage program. Joint tests of association for SNPs and CNVs were performed using linear mixed models adjusting for covariates and familial relationships. Our results highlight SNPs associated with fasting insulin and HOMA-IR (rs6576507 and rs8026527, 3.7*10(-7)≤P≤1.1*10(-5)) near ATPase, class V, type 10A (ATP10A), and the L Type voltage dependent calcium channel (CACNA1D, rs1401492, P≤5.2*10(-6)). ATP10A belongs to a family of aminophospholipid-transporting ATPases and has been associated with type 2 diabetes in mice. CACNA1D has been linked to pancreatic beta cell generation in mice. The two most significant copy variable markers (rs10277702 and rs361367; P<2.0*10(-4)) were in the beta variable region of the T-cell receptor gene (TCRVB). Human and mouse TCR has been shown to mimic insulin and its receptor and could contribute to insulin resistance. Our findings differ from genome wide association studies of fasting insulin and other diabetes related traits in European populations, highlighting the continued need to investigate unique genetic influences for understudied populations such as African Americans.

  19. Empirical Distributions of F ST from Large-Scale Human Polymorphism Data

    PubMed Central

    Elhaik, Eran

    2012-01-01

    Studies of the apportionment of human genetic variation have long established that most human variation is within population groups and that the additional variation between population groups is small but greatest when comparing different continental populations. These studies often used Wright’s F ST that apportions the standardized variance in allele frequencies within and between population groups. Because local adaptations increase population differentiation, high-F ST may be found at closely linked loci under selection and used to identify genes undergoing directional or heterotic selection. We re-examined these processes using HapMap data. We analyzed 3 million SNPs on 602 samples from eight worldwide populations and a consensus subset of 1 million SNPs found in all populations. We identified four major features of the data: First, a hierarchically F ST analysis showed that only a paucity (12%) of the total genetic variation is distributed between continental populations and even a lesser genetic variation (1%) is found between intra-continental populations. Second, the global F ST distribution closely follows an exponential distribution. Third, although the overall F ST distribution is similarly shaped (inverse J), F ST distributions varies markedly by allele frequency when divided into non-overlapping groups by allele frequency range. Because the mean allele frequency is a crude indicator of allele age, these distributions mark the time-dependent change in genetic differentiation. Finally, the change in mean-F ST of these groups is linear in allele frequency. These results suggest that investigating the extremes of the F ST distribution for each allele frequency group is more efficient for detecting selection. Consequently, we demonstrate that such extreme SNPs are more clustered along the chromosomes than expected from linkage disequilibrium for each allele frequency group. These genomic regions are therefore likely candidates for natural selection. PMID:23185452

  20. Empirical distributions of F(ST) from large-scale human polymorphism data.

    PubMed

    Elhaik, Eran

    2012-01-01

    Studies of the apportionment of human genetic variation have long established that most human variation is within population groups and that the additional variation between population groups is small but greatest when comparing different continental populations. These studies often used Wright's F(ST) that apportions the standardized variance in allele frequencies within and between population groups. Because local adaptations increase population differentiation, high-F(ST) may be found at closely linked loci under selection and used to identify genes undergoing directional or heterotic selection. We re-examined these processes using HapMap data. We analyzed 3 million SNPs on 602 samples from eight worldwide populations and a consensus subset of 1 million SNPs found in all populations. We identified four major features of the data: First, a hierarchically F(ST) analysis showed that only a paucity (12%) of the total genetic variation is distributed between continental populations and even a lesser genetic variation (1%) is found between intra-continental populations. Second, the global F(ST) distribution closely follows an exponential distribution. Third, although the overall F(ST) distribution is similarly shaped (inverse J), F(ST) distributions varies markedly by allele frequency when divided into non-overlapping groups by allele frequency range. Because the mean allele frequency is a crude indicator of allele age, these distributions mark the time-dependent change in genetic differentiation. Finally, the change in mean-F(ST) of these groups is linear in allele frequency. These results suggest that investigating the extremes of the F(ST) distribution for each allele frequency group is more efficient for detecting selection. Consequently, we demonstrate that such extreme SNPs are more clustered along the chromosomes than expected from linkage disequilibrium for each allele frequency group. These genomic regions are therefore likely candidates for natural selection.

  1. IREB2, CHRNA5, CHRNA3, FAM13A & hedgehog interacting protein genes polymorphisms & risk of chronic obstructive pulmonary disease in Tatar population from Russia.

    PubMed

    Korytina, Gulnaz Faritovna; Akhmadishina, Leysan Zinurovna; Viktorova, Elena Vitalievna; Kochetova, Olga Vladimirovna; Viktorova, Tatyana Victorovna

    2016-12-01

    Chronic obstructive pulmonary disease (COPD) is a complex chronic inflammatory disease of the respiratory system affecting primarily distal respiratory pathways and lung parenchyma. This study was aimed at investigating the association of COPD with IREB2, CHRNA5, CHRNA3, FAM13A and hedgehog interacting protein (HHIP) genes in a Tatar population from Russia. Six single nucleotide polymorphisms (SNPs) (rs13180, rs16969968, rs1051730, rs6495309, rs7671167, rs13118928) were genotyped by the real-time polymerase chain reaction in this study (511 COPD patients and 508 controls). Logistic regression was used to detect the association of SNPs and haplotypes of linked loci in different models. Linear regression analyses were performed to estimate the relationship between SNPs and lung function parameters and pack-years. The rs13180 (IREB2), rs16969968 (CHRNA5) and rs1051730 (CHRNA3) were significantly associated with COPD in additive model [Padj =0.00001, odds ratio (OR)=0.64; Padj =0.0001, OR=1.41 and Padj =0.0001, OR=1.47]. The C-G haplotype by rs13180 and rs1051730 was a protective factor for COPD in our population (Padj =0.0005, OR=0.61). These results were confirmed only in smokers. The rs16969968 and rs1051730 were associated with decrease of forced expiratory volume in 1 sec % predicted (Padj =0.005 and Padj =0.0019). Our study showed the association of rs13180, rs16969968 and rs1051730 with COPD and lung function in Tatar population from Russia. Further studies need to be done in other ethnic populations.

  2. An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon (Oncorhynchus nerka) population.

    PubMed

    Hauser, Lorenz; Baird, Melissa; Hilborn, Ray; Seeb, Lisa W; Seeb, James E

    2011-03-01

    Because of their high variability, microsatellites are still considered the marker of choice for studies on parentage and kinship in wild populations. Nevertheless, single nucleotide polymorphisms (SNPs) are becoming increasing popular in many areas of molecular ecology, owing to their high-throughput, easy transferability between laboratories and low genotyping error. An ongoing discussion concerns the relative power of SNPs compared to microsatellites-that is, how many SNP loci are needed to replace a panel of microsatellites? Here, we evaluate the assignment power of 80 SNPs (H(E) = 0.30, 80 independent alleles) and 11 microsatellites (H(E) = 0.85, 192 independent alleles) in a wild population of about 400 sockeye salmon with two commonly used software packages (Cervus3, Colony2) and, for SNPs only, a newly developed software (SNPPIT). Assignment success was higher for SNPs than for microsatellites, especially for parent pairs, irrespective of the method used. Colony2 assigned a larger proportion of offspring to at least one parent than the other methods, although Cervus and SNPPIT detected more parent pairs. Identification of full-sib groups without parental information from relatedness measures was possible using both marker systems, although explicit reconstruction of such groups in Colony2 was impossible for SNPs because of computation time. Our results confirm the applicability of SNPs for parentage analyses and refute the predictability of assignment success from the number of independent alleles. © 2011 Blackwell Publishing Ltd.

  3. Efficient SNP Discovery by Combining Microarray and Lab-on-a-Chip Data for Animal Breeding and Selection

    PubMed Central

    Huang, Chao-Wei; Lin, Yu-Tsung; Ding, Shih-Torng; Lo, Ling-Ling; Wang, Pei-Hwa; Lin, En-Chung; Liu, Fang-Wei; Lu, Yen-Wen

    2015-01-01

    The genetic markers associated with economic traits have been widely explored for animal breeding. Among these markers, single-nucleotide polymorphism (SNPs) are gradually becoming a prevalent and effective evaluation tool. Since SNPs only focus on the genetic sequences of interest, it thereby reduces the evaluation time and cost. Compared to traditional approaches, SNP genotyping techniques incorporate informative genetic background, improve the breeding prediction accuracy and acquiesce breeding quality on the farm. This article therefore reviews the typical procedures of animal breeding using SNPs and the current status of related techniques. The associated SNP information and genotyping techniques, including microarray and Lab-on-a-Chip based platforms, along with their potential are highlighted. Examples in pig and poultry with different SNP loci linked to high economic trait values are given. The recommendations for utilizing SNP genotyping in nimal breeding are summarized. PMID:27600241

  4. Polymorphism in exons of the myostatin gene and its relationship with body weight traits in the Bian chicken.

    PubMed

    Zhang, Genxi; Ding, Fuxiang; Wang, Jinyu; Dai, Guojun; Xie, Kaizhou; Zhang, Lijun; Wang, Wei; Zhou, Shenghua

    2011-02-01

    In our research, single nucleotide polymorphisms (SNPs) of exon regions of the myostatin gene were detected by PCR-SSCP in the Bian chicken and three reference chicken populations (Jinghai, Youxi, and Arbor Acre). Four novel SNPs (G2283A, C7552T, C7638T, and T7661A) were detected. The findings from the least square means showed that Bian chickens with EE and DE genotypes had significantly higher body weight, at 6-18 weeks of age, than those of the DD genotype (P < 0.05). The results suggest that the mutation G2283A, detected in exon 1, has potential as a genetic marker for body weight traits in the Bian chicken.

  5. Genome-Wide Association Study for Identification and Validation of Novel SNP Markers for Sr6 Stem Rust Resistance Gene in Bread Wheat.

    PubMed

    Mourad, Amira M I; Sallam, Ahmed; Belamkar, Vikas; Wegulo, Stephen; Bowden, Robert; Jin, Yue; Mahdy, Ezzat; Bakheit, Bahy; El-Wafaa, Atif A; Poland, Jesse; Baenziger, Peter S

    2018-01-01

    Stem rust (caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn.), is a major disease in wheat ( Triticum aestivium L.). However, in recent years it occurs rarely in Nebraska due to weather and the effective selection and gene pyramiding of resistance genes. To understand the genetic basis of stem rust resistance in Nebraska winter wheat, we applied genome-wide association study (GWAS) on a set of 270 winter wheat genotypes (A-set). Genotyping was carried out using genotyping-by-sequencing and ∼35,000 high-quality SNPs were identified. The tested genotypes were evaluated for their resistance to the common stem rust race in Nebraska (QFCSC) in two replications. Marker-trait association identified 32 SNP markers, which were significantly (Bonferroni corrected P < 0.05) associated with the resistance on chromosome 2D. The chromosomal location of the significant SNPs (chromosome 2D) matched the location of Sr6 gene which was expected in these genotypes based on pedigree information. A highly significant linkage disequilibrium (LD, r 2 ) was found between the significant SNPs and the specific SSR marker for the Sr6 gene ( Xcfd43 ). This suggests the significant SNP markers are tagging Sr6 gene. Out of the 32 significant SNPs, eight SNPs were in six genes that are annotated as being linked to disease resistance in the IWGSC RefSeq v1.0. The 32 significant SNP markers were located in nine haplotype blocks. All the 32 significant SNPs were validated in a set of 60 different genotypes (V-set) using single marker analysis. SNP markers identified in this study can be used in marker-assisted selection, genomic selection, and to develop KASP (Kompetitive Allele Specific PCR) marker for the Sr6 gene. Novel SNPs for Sr6 gene, an important stem rust resistant gene, were identified and validated in this study. These SNPs can be used to improve stem rust resistance in wheat.

  6. Functional Genomics Analysis of Big Data Identifies Novel Peroxisome Proliferator-Activated Receptor γ Target Single Nucleotide Polymorphisms Showing Association With Cardiometabolic Outcomes.

    PubMed

    Richardson, Kris; Schnitzler, Gavin R; Lai, Chao-Qiang; Ordovas, Jose M

    2015-12-01

    Cardiovascular disease and type 2 diabetes mellitus represent overlapping diseases where a large portion of the variation attributable to genetics remains unexplained. An important player in their pathogenesis is peroxisome proliferator-activated receptor γ (PPARγ) that is involved in lipid and glucose metabolism and maintenance of metabolic homeostasis. We used a functional genomics methodology to interrogate human chromatin immunoprecipitation-sequencing, genome-wide association studies, and expression quantitative trait locus data to inform selection of candidate functional single nucleotide polymorphisms (SNPs) falling in PPARγ motifs. We derived 27 328 chromatin immunoprecipitation-sequencing peaks for PPARγ in human adipocytes through meta-analysis of 3 data sets. The PPARγ consensus motif showed greatest enrichment and mapped to 8637 peaks. We identified 146 SNPs in these motifs. This number was significantly less than would be expected by chance, and Inference of Natural Selection from Interspersed Genomically coHerent elemenTs analysis indicated that these motifs are under weak negative selection. A screen of these SNPs against genome-wide association studies for cardiometabolic traits revealed significant enrichment with 16 SNPs. A screen against the MuTHER expression quantitative trait locus data revealed 8 of these were significantly associated with altered gene expression in human adipose, more than would be expected by chance. Several SNPs fall close, or are linked by expression quantitative trait locus to lipid-metabolism loci including CYP26A1. We demonstrated the use of functional genomics to identify SNPs of potential function. Specifically, that SNPs within PPARγ motifs that bind PPARγ in adipocytes are significantly associated with cardiometabolic disease and with the regulation of transcription in adipose. This method may be used to uncover functional SNPs that do not reach significance thresholds in the agnostic approach of genome-wide association studies. © 2015 American Heart Association, Inc.

  7. The Folate Pathway and Nonsyndromic Cleft Lip and Palate

    PubMed Central

    Blanton, Susan H.; Henry, Robin R.; Yuan, Quiping; Mulliken, John B.; Stal, Samuel; Finnell, Richard H.; Hecht, Jacqueline T.

    2013-01-01

    Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth malformation caused by genetic, environmental and gene-environment interactions. Periconceptional supplementation with folic acid, a key component in DNA synthesis and cell division, has reduced the birth prevalence of neural tube defects (NTDs) and may similarly reduce the birth prevalence of other complex birth defects including NSCLP. Past studies investigating the role of two common methylenetetrahydrofolate reductase (MTHFR) SNP polymorphisms, C677T (rs1801133) and A1298C (rs1801131), in NSCLP have produced conflicting results. Most studies of folate pathway genes have been limited in scope, as few genes/SNPs have been interrogated. In this study, we asked whether variations in a more comprehensive group of folate pathway genes were associated with NSCLP and, if so, were there detectable interactions between these genes and environmental exposures. In addition, we evaluated the data for a sex effect. Fourteen folate metabolism related genes were interrogated using eighty-nine SNPs in multiplex and simplex non-Hispanic White (NHW) (317) and Hispanic (128) NSCLP families. Evidence for a risk association between NSCLP and SNPs in nitrous oxide 3 (NOS3) and thymidylate synthetase (TYMS) was detected in the NHW group, whereas associations with methionine synthase (MTR), betaine-homocysteine methyltransferase (BHMT2), MTHFS and SLC19A1 were detected in the Hispanic group. Evidence for over-transmission of haplotypes and gene interactions in the methionine arm was detected. These results suggest that perturbations of the genes in the folate pathway may contribute to NSCLP. There was evidence for an interaction between several SNPs and maternal smoking, and for one SNP with sex of the offspring. These results provide support for other studies that suggest that high maternal homocysteine levels may contribute to NSCLP and should be further investigated. PMID:21254359

  8. A Nonsynonymous SNP Catalog of Mycobacterium tuberculosis Virulence Genes and Its Use for Detecting New Potentially Virulent Sublineages.

    PubMed

    Mikheecheva, Natalya E; Zaychikova, Marina V; Melerzanov, Alexander V; Danilenko, Valery N

    2017-04-01

    Mycobacterium tuberculosis is divided into several distinct lineages, and various genetic markers such as IS-elements, VNTR, and SNPs are used for lineage identification. We propose an M. tuberculosis classification approach based on functional polymorphisms in virulence genes. An M. tuberculosis virulence genes catalog has been established, including 319 genes from various protein groups, such as proteases, cell wall proteins, fatty acid and lipid metabolism proteins, sigma factors, toxin-antitoxin systems. Another catalog of 1,573 M. tuberculosis isolates of different lineages has been developed. The developed SNP-calling program has identified 3,563 nonsynonymous SNPs. The constructed SNP-based phylogeny reflected the evolutionary relationship between lineages and detected new sublineages. SNP analysis of sublineage F15/LAM4/KZN revealed four lineage-specific mutations in cyp125, mce3B, vapC25, and vapB34. The Ural lineage has been divided into two geographical clusters based on different SNPs in virulence genes. A new sublineage, B0/N-90, was detected inside the Beijing-B0/W-148 by SNPs in irtB, mce3F and vapC46. We have found 27 members of B0/N-90 among the 227 available genomes of the Beijing-B0/W-148 sublineage. Whole-genome sequencing of strain B9741, isolated from an HIV-positive patient, was demonstrated to belong to the new B0/N-90 group. A primer set for PCR detection of B0/N-90 lineage-specific mutations has been developed. The prospective use of mce3 mutant genes as genetically engineered vaccine is discussed. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    PubMed

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  10. Polymorphisms in Protein Tyrosine Phosphatase Non-receptor Type 2 and 22 (PTPN2/22) Are Linked to Hyper-Proliferative T-Cells and Susceptibility to Mycobacteria in Rheumatoid Arthritis

    PubMed Central

    Sharp, Robert C.; Beg, Shazia A.; Naser, Saleh A.

    2018-01-01

    A shared genetic pre-disposition, chronic inflammation, and treatment with similar biologics between Rheumatoid arthritis (RA) and Crohn's disease (CD) have intrigued us to investigate whether the two disorders share trigger association or possible causation. We hypothesized earlier that Single Nucleotide Polymorphisms (SNPs) in the negative regulators Protein Tyrosine Phosphatase Non-receptor type 2 and 22 (PTPN2/22) lead to a dysregulated immune response, susceptibility to environmental triggers, and continued apoptosis as seen in chronic inflammation in RA and CD. To test the hypothesis, peripheral leukocytes samples from 132 consented subjects were genotyped for 9 SNPs in PTPN2/22 using TaqMan™ genotyping. The effect of the SNPs on PTPN2/22 and IFN-γ expression was determined using real time PCR. T-cell proliferation and response to phytohematoagglutonin (PHA) mitogen and mycobacterial antigens were determined by BrdU proliferation assay. Blood samples were also analyzed for the Mycobacterium avium subspecies paratuberculosis (MAP) IS900 gene by nPCR. Out of 9 SNPs examined, heterozygous (TC) or minor (CC) alleles of PTPN2:rs478582 occurred in 79% RA compared to 60% healthy controls (p-values ≤ 0.05; OR = 2.28). Similarly, heterozygous (GA) or minor (AA) alleles of PTPN22:rs2476601 occurred in 29% RA compared to 6% healthy controls (p-values ≤ 0.05; OR = 5.90). PTPN2/22 expression in RA was decreased by 1.2-fold compared to healthy controls. PTPN2:rs478582 upregulated IFN-γ in RA by 1.5-fold. Combined PTPN2:rs478582 and PTPN22:rs2476601 increased T-cell proliferation by 2.7-fold when treated with PHA. Surprisingly, MAP DNA was detected in 34% of RA samples compared to 8% healthy controls, (p-values ≤ 0.05, OR = 5.74). RA samples with PTPN2:rs478582 and/or PTPN22:rs2476601 were more positive for MAP than samples without polymorphisms. Combined occurrence of PTPN2:rs478582 and PTPN22:rs2476601 in association with the presence of MAP has significantly increased T-cell response and elevated IFN-γ expression in RA samples. The data suggest that genetic polymorphisms may play vital role in T-cell regulation, susceptibility to mycobacteria and ultimately response to treatment. This is the first study to report the detection of MAP DNA in the blood of RA patients; further studies are needed using larger number of samples. PMID:29423382

  11. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations.

    PubMed

    Gomez-Uchida, Daniel; Seeb, James E; Smith, Matt J; Habicht, Christopher; Quinn, Thomas P; Seeb, Lisa W

    2011-02-18

    Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic.

  12. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations

    PubMed Central

    2011-01-01

    Background Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. Results For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. Conclusions First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic. PMID:21332997

  13. The ankyrin-3 gene is associated with posttraumatic stress disorder and externalizing comorbidity

    PubMed Central

    Logue, Mark W.; Solovieff, Nadia; Leussis, Melanie P.; Wolf, Erika J.; Melista, Efi; Baldwin, Clinton; Koenen, Karestan C.; Petryshen, Tracey; Miller, Mark W.

    2013-01-01

    Background The ankyrin 3 gene (ANK3) produces the ankyrin G protein that plays an integral role in regulating neuronal activity. Previous studies have linked ANK3 to bipolar disorder and schizophrenia. A recent mouse study suggests that ANK3 may regulate behavioral disinhibition and stress reactivity. This led us to hypothesize that ANK3 might also be associated with stress-related psychopathology such as posttraumatic stress disorder (PTSD), as well as disorders of the externalizing spectrum such as antisocial personality disorder and substance-related disorders that are etiologically linked to impulsivity and temperamental disinhibition. Methods We examined the possibility of association between ANK3 SNPs and both PTSD and externalizing (defined by a factor score representing a composite of adult antisociality and substance abuse) in a cohort of white non-Hispanic combat veterans and their intimate partners (N=554). Initially, we focused on rs9804190— a SNP previously reported to be associated with bipolar disorder, schizophrenia, and ankyrin G expression in brain. Then we examined 358 additional ANK3 SNPs utilizing a multiple-testing correction. Results rs9804190 was associated with both externalizing and PTSD (p=0.028 and p=0.042 respectively). Analysis of other ANK3 SNPs identified several that were more strongly associated with either trait. The most significant association with externalizing was observed at rs1049862 (p=0.00040, pcorrected=0.60). The most significant association with PTSD (p=0.00060, pcorrected=0.045) was found with three SNPs in complete linkage disequilibrium (LD)—rs28932171, rs11599164, and rs17208576. Conclusions These findings support a role of ANK3 in risk of stress-related and externalizing disorders, beyond its previous associations with bipolar disorder and schizophrenia. PMID:23796624

  14. Identification of a Linkage Disequilibrium Block in Chromosome 1q Associated With BMD in Premenopausal White Women

    PubMed Central

    Ichikawa, Shoji; Koller, Daniel L; Curry, Leah R; Lai, Dongbing; Xuei, Xiaoling; Pugh, Elizabeth W; Tsai, Ya-Yu; Doheny, Kimberly F; Edenberg, Howard J; Hui, Siu L; Foroud, Tatiana; Peacock, Munro; Econs, Michael J

    2008-01-01

    Osteoporosis is a complex disease with both genetic and environmental risk factors. A major determinant of osteoporotic fractures is peak BMD obtained during young adulthood. We previously reported linkage of chromosome 1q (LOD = 4.3) with variation in spinal areal BMD in healthy premenopausal white women. In this study, we used a two-stage genotyping approach to identify genes in the linked region that contributed to the variation of femoral neck and lumbar spine areal BMD. In the first stage, 654 SNPs across the linked region were genotyped in a sample of 1309 premenopausal white women. The most significant evidence of association for lumbar spine (p = 1.3 × 10−6) was found with rs1127091 in the GATAD2B gene. In the second stage, 52 SNPs around this candidate gene were genotyped in an expanded sample of 1692 white women. Significant evidence of association with spinal BMD (p < 10−5), and to a lesser extent with femoral neck BMD, was observed with eight SNPs within a single 230-kb linkage disequilibrium (LD) block. The most significant SNP (p = 3.4 × 10−7) accounted for >2.5% of the variation in spinal BMD in these women. The 230-kb LD block contains 11 genes, but because of the extensive LD, the specific gene(s) contributing to the variation in BMD could not be determined. In conclusion, the significant association between spinal BMD and SNPs in the 230-kb LD block in chromosome 1q indicates that genetic factor(s) in this block plays an important role in peak spinal BMD in healthy premenopausal white women. PMID:18505370

  15. Association of Single Nucleotide Polymorphisms in the ST3GAL4 Gene with VWF Antigen and Factor VIII Activity.

    PubMed

    Song, Jaewoo; Xue, Cheng; Preisser, John S; Cramer, Drake W; Houck, Katie L; Liu, Guo; Folsom, Aaron R; Couper, David; Yu, Fuli; Dong, Jing-Fei

    2016-01-01

    VWF is extensively glycosylated with biantennary core fucosylated glycans. Most N-linked and O-linked glycans on VWF are sialylated. FVIII is also glycosylated, with a glycan structure similar to that of VWF. ST3GAL sialyltransferases catalyze the transfer of sialic acids in the α2,3 linkage to termini of N- and O-glycans. This sialic acid modification is critical for VWF synthesis and activity. We analyzed genetic and phenotypic data from the Atherosclerosis Risk in Communities (ARIC) study for the association of single nucleotide polymorphisms (SNPs) in the ST3GAL4 gene with plasma VWF levels and FVIII activity in 12,117 subjects. We also analyzed ST3GAL4 SNPs found in 2,535 subjects of 26 ethnicities from the 1000 Genomes (1000G) project for ethnic diversity, SNP imputation, and ST3GAL4 haplotypes. We identified 14 and 1,714 ST3GAL4 variants in the ARIC GWAS and 1000G databases respectively, with 46% being ethnically diverse in their allele frequencies. Among the 14 ST3GAL4 SNPs found in ARIC GWAS, the intronic rs2186717, rs7928391, and rs11220465 were associated with VWF levels and with FVIII activity after adjustment for age, BMI, hypertension, diabetes, ever-smoking status, and ABO. This study illustrates the power of next-generation sequencing in the discovery of new genetic variants and a significant ethnic diversity in the ST3GAL4 gene. We discuss potential mechanisms through which these intronic SNPs regulate ST3GAL4 biosynthesis and the activity that affects VWF and FVIII.

  16. Comparative Analysis of Disease-Linked Single Nucleotide Polymorphic Markers from Brassica rapa for Their Applicability to Brassica oleracea

    PubMed Central

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283

  17. Leveraging cell type specific regulatory regions to detect SNPs associated with tissue factor pathway inhibitor plasma levels.

    PubMed

    Dennis, Jessica; Medina-Rivera, Alejandra; Truong, Vinh; Antounians, Lina; Zwingerman, Nora; Carrasco, Giovana; Strug, Lisa; Wells, Phil; Trégouët, David-Alexandre; Morange, Pierre-Emmanuel; Wilson, Michael D; Gagnon, France

    2017-07-01

    Tissue factor pathway inhibitor (TFPI) regulates the formation of intravascular blood clots, which manifest clinically as ischemic heart disease, ischemic stroke, and venous thromboembolism (VTE). TFPI plasma levels are heritable, but the genetics underlying TFPI plasma level variability are poorly understood. Herein we report the first genome-wide association scan (GWAS) of TFPI plasma levels, conducted in 251 individuals from five extended French-Canadian Families ascertained on VTE. To improve discovery, we also applied a hypothesis-driven (HD) GWAS approach that prioritized single nucleotide polymorphisms (SNPs) in (1) hemostasis pathway genes, and (2) vascular endothelial cell (EC) regulatory regions, which are among the highest expressers of TFPI. Our GWAS identified 131 SNPs with suggestive evidence of association (P-value < 5 × 10 -8 ), but no SNPs reached the genome-wide threshold for statistical significance. Hemostasis pathway genes were not enriched for TFPI plasma level associated SNPs (global hypothesis test P-value = 0.147), but EC regulatory regions contained more TFPI plasma level associated SNPs than expected by chance (global hypothesis test P-value = 0.046). We therefore stratified our genome-wide SNPs, prioritizing those in EC regulatory regions via stratified false discovery rate (sFDR) control, and reranked the SNPs by q-value. The minimum q-value was 0.27, and the top-ranked SNPs did not show association evidence in the MARTHA replication sample of 1,033 unrelated VTE cases. Although this study did not result in new loci for TFPI, our work lays out a strategy to utilize epigenomic data in prioritization schemes for future GWAS studies. © 2017 WILEY PERIODICALS, INC.

  18. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.

    PubMed

    Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi

    2008-04-15

    The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.

  19. LincSNP 2.0: an updated database for linking disease-associated SNPs to human long non-coding RNAs and their TFBSs.

    PubMed

    Ning, Shangwei; Yue, Ming; Wang, Peng; Liu, Yue; Zhi, Hui; Zhang, Yan; Zhang, Jizhou; Gao, Yue; Guo, Maoni; Zhou, Dianshuang; Li, Xin; Li, Xia

    2017-01-04

    We describe LincSNP 2.0 (http://bioinfo.hrbmu.edu.cn/LincSNP), an updated database that is used specifically to store and annotate disease-associated single nucleotide polymorphisms (SNPs) in human long non-coding RNAs (lncRNAs) and their transcription factor binding sites (TFBSs). In LincSNP 2.0, we have updated the database with more data and several new features, including (i) expanding disease-associated SNPs in human lncRNAs; (ii) identifying disease-associated SNPs in lncRNA TFBSs; (iii) updating LD-SNPs from the 1000 Genomes Project; and (iv) collecting more experimentally supported SNP-lncRNA-disease associations. Furthermore, we developed three flexible online tools to retrieve and analyze the data. Linc-Mart is a convenient way for users to customize their own data. Linc-Browse is a tool for all data visualization. Linc-Score predicts the associations between lncRNA and disease. In addition, we provided users a newly designed, user-friendly interface to search and download all the data in LincSNP 2.0 and we also provided an interface to submit novel data into the database. LincSNP 2.0 is a continually updated database and will serve as an important resource for investigating the functions and mechanisms of lncRNAs in human diseases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Gene by Environment Investigation of Incident Lung Cancer Risk in African-Americans.

    PubMed

    David, Sean P; Wang, Ange; Kapphahn, Kristopher; Hedlin, Haley; Desai, Manisha; Henderson, Michael; Yang, Lingyao; Walsh, Kyle M; Schwartz, Ann G; Wiencke, John K; Spitz, Margaret R; Wenzlaff, Angela S; Wrensch, Margaret R; Eaton, Charles B; Furberg, Helena; Mark Brown, W; Goldstein, Benjamin A; Assimes, Themistocles; Tang, Hua; Kooperberg, Charles L; Quesenberry, Charles P; Tindle, Hilary; Patel, Manali I; Amos, Christopher I; Bergen, Andrew W; Swan, Gary E; Stefanick, Marcia L

    2016-02-01

    Genome-wide association studies have identified polymorphisms linked to both smoking exposure and risk of lung cancer. The degree to which lung cancer risk is driven by increased smoking, genetics, or gene-environment interactions is not well understood. We analyzed associations between 28 single nucleotide polymorphisms (SNPs) previously associated with smoking quantity and lung cancer in 7156 African-American females in the Women's Health Initiative (WHI), then analyzed main effects of top nominally significant SNPs and interactions between SNPs, cigarettes per day (CPD) and pack-years for lung cancer in an independent, multi-center case-control study of African-American females and males (1078 lung cancer cases and 822 controls). Nine nominally significant SNPs for CPD in WHI were associated with incident lung cancer (corrected p-values from 0.027 to 6.09 × 10(-5)). CPD was found to be a nominally significant effect modifier between SNP and lung cancer for six SNPs, including CHRNA5 rs2036527[A](betaSNP*CPD = - 0.017, p = 0.0061, corrected p = 0.054), which was associated with CPD in a previous genome-wide meta-analysis of African-Americans. These results suggest that chromosome 15q25.1 variants are robustly associated with CPD and lung cancer in African-Americans and that the allelic dose effect of these polymorphisms on lung cancer risk is most pronounced in lighter smokers.

  1. A Novel Multiplex HRM Assay to Detect Clopidogrel Resistance.

    PubMed

    Zhang, Lichen; Ma, Xiaowei; You, Guoling; Zhang, Xiaoqing; Fu, Qihua

    2017-11-22

    Clopidogrel is an antiplatelet medicine used to prevent blood clots in patients who have had a heart attack, stroke, or other symptoms. Variability in the clinical response to clopidogrel treatment has been attributed to genetic factors. In particular, five SNPs of rs4244285, rs4986893, rs12248560, rs662 and rs1045642 have been associated with resistance to clopidogrel therapy in Chinese population. This work involves the development of a multiplex high-resolution melting (HRM) assay to genotype all five of these loci in 2 tubes. Amplicons corresponding to distinct SNPs in a common tube were designed with the aid of uMelt prediction software to have different melting temperatures Tm by addition of a GC-rich tail to the 5' end of the certain primers. Two kinds of commercial methods, Digital Fluorescence Molecular Hybridization (DFMH) and Sanger sequencing, were used as a control. Three hundred sixteen DFMH pretested samples from consecutive acute coronary syndrome patients were used for a blinded study of multiplex HRM. The sensitivity of HRM was 100% and the specificity was 99.93% reflecting detection of variants other than the known resistance SNPs. Multiplex HRM is an effective closed-tube, highly accurate, fast, and inexpensive method for genotyping the 5 clopidogrel resistance associated SNPs.

  2. Ferrocenyl-doped silica nanoparticles as an immobilized affinity support for electrochemical immunoassay of cancer antigen 15-3.

    PubMed

    Hong, Chenglin; Yuan, Ruo; Chai, Yaqin; Zhuo, Ying

    2009-02-09

    The aim of this study is to elaborate a simple and sensitive electrochemical immunoassay using ferrocenecarboxylic (Fc-COOH)-doped silica nanoparticles (SNPs) as an immobilized affinity support for cancer antigen 15-3 (CA 15-3) detection. The Fc-COOH-doped SNPs with redox-active were prepared by using a water-in-oil microemulsion method. The use of colloidal silica could prevent the leakage of Fc-COOH and were easily modified with trialkoxysilane reagents for covalent conjugation of CA 15-3 antibodies (anti-CA 15-3). The Fc-COOH-doped SNPs were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The fabrication process of the electrochemical immunosensor was demonstrated by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Under optimal conditions, the developed immunosensor showed good linearity at the studied concentration range of 2.0-240 UmL(-1) with a coefficient 0.9986 and a detection limit of 0.64 UmL(-1) at S/N=3.

  3. A false single nucleotide polymorphism generated by gene duplication compromises meat traceability.

    PubMed

    Sanz, Arianne; Ordovás, Laura; Zaragoza, Pilar; Sanz, Albina; de Blas, Ignacio; Rodellar, Clementina

    2012-07-01

    Controlling meat traceability using SNPs is an effective method of ensuring food safety. We have analyzed several SNPs to create a panel for bovine genetic identification and traceability studies. One of these was the transversion g.329C>T (Genbank accession no. AJ496781) on the cytochrome P450 17A1 gene, which has been included in previously published panels. Using minisequencing reactions, we have tested 701 samples belonging to eight Spanish cattle breeds. Surprisingly, an excess of heterozygotes was detected, implying an extreme departure from Hardy-Weinberg equilibrium (P<0.001). By alignment analysis and sequencing, we detected that the g.329C>T SNP is a false positive polymorphism, which allows us to explain the inflated heterozygotic value. We recommend that this ambiguous SNP, as well as other polymorphisms located in this region, should not be used in identification, traceability or disease association studies. Annotation of these false SNPs should improve association studies and avoid misinterpretations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Single nucleotide polymorphisms in the bovine MHC region of Japanese Black cattle are associated with bovine leukemia virus proviral load.

    PubMed

    Takeshima, Shin-Nosuke; Sasaki, Shinji; Meripet, Polat; Sugimoto, Yoshikazu; Aida, Yoko

    2017-04-04

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, a malignant B cell lymphoma that has spread worldwide and causes serious problems for the cattle industry. The BLV proviral load, which represents the BLV genome integrated into host genome, is a useful index for estimating disease progression and transmission risk. Here, we conducted a genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with BLV proviral load in Japanese Black cattle. The study examined 93 cattle with a high proviral load and 266 with a low proviral load. Three SNPs showed a significant association with proviral load. One SNP was detected in the CNTN3 gene on chromosome 22, and two (which were not in linkage disequilibrium) were detected in the bovine major histocompatibility complex region on chromosome 23. These results suggest that polymorphisms in the major histocompatibility complex region affect proviral load. This is the first report to detect SNPs associated with BLV proviral load in Japanese Black cattle using whole genome association study, and understanding host factors may provide important clues for controlling the spread of BLV in Japanese Black cattle.

  5. SNPs at 3'-UTR of the bovine CDIPT gene associated with Qinchuan cattle meat quality traits.

    PubMed

    Fu, C Z; Wang, H; Mei, C G; Wang, J L; Jiang, B J; Ma, X H; Wang, H B; Cheng, G; Zan, L S

    2013-03-13

    The CDIPT is crucial to the fatty acid metabolic pathway, intracellular signal transduction and energy metabolism in eukaryotic cells. We detected three SNPs at 3'-untranslated regions (UTR), named 3'-UTR_108 A > G, 3'-UTR_448 G > A and 3'-UTR_477 C > G, of the CDIPT gene in 618 Qinchuan cattle using PCR-RFLP and DNA sequencing methods. At each of the three SNPs, we found three genotypes named as follows: AA, AB, BB (3'-UTR_108 A > G), CC, CD, DD (3'-UTR_448 G > A) and EE, EF, FF (3'-UTR_477 C > G.). Based on association analysis of these SNPs with ultrasound measurement traits, individuals of genotype BB had a significantly larger loin muscle area than genotype AA. Individuals of genotype CC had significantly thicker back fat than individuals of genotype DD. Individuals of genotype EE also had significantly thicker back fat than did individuals of genotype FF. We conclude that these SNPs of the CDIPT gene could be used as molecular markers for selecting and breeding beef cattle with superior body traits, depending on breeding goals.

  6. Patterns of linkage disequilibrium at PARK16 may explain variances in genetic association studies.

    PubMed

    Li, Huihua; Teo, Yik-Ying; Tan, Eng-King

    2015-09-01

    Reproducing genomewide association studies findings in different populations is challenging, because the reproducibility fundamentally relies on the similar patterns of linkage disequilibrium between the unknown causal variants and the genotyped single-nucleotide polymorphisms (SNPs). The PARK16 locus was reported to alter the risk of Parkinson's disease (PD) in genomewide association studies in Japanese and Caucasians. We evaluated the regional linkage disequilibrium pattern at PARK16 locus in Caucasians, Japanese, and Chinese from HapMap and Chinese, Malays, and Indians from the Singapore Genome Variation Project, using the traditional heatmaps and targeted analysis of PARK16 gene via Monte Carlo simulation through varLD scores of these ethnic groups. One hundred SNPs in Caucasians, 95 SNPs in Chinese, 78 SNPs in Japanese from HapMap, 86 SNPs in Chinese, 99 SNPs in Indians, and 97 SNPs in Malays from the Singapore Genome Variation Project were included. Our targeted analysis showed that the linkage disequilibrium pattern of SNPs close to rs947211 was similar in Caucasians and Asians, including Chinese, Japanese, and Malay (all P > 0.0001), whereas different linkage disequilibrium patterns around rs823128, rs823156, and rs708730 were found between Caucasians and these Asian groups (all P < 0.0001). Our study suggests a higher chance to detect the association between rs947211 and PD in Chinese, Malay, and other Caucasian groups because of the similar linkage disequilibrium pattern around rs947211. The associations between rs823128/rs823156/rs708730 and PD are more likely to be replicated in Chinese and Malay populations. © 2015 International Parkinson and Movement Disorder Society.

  7. Design of a 9K illumina BeadChip for polar bears (Ursus maritimus) from RAD and transcriptome sequencing.

    PubMed

    Malenfant, René M; Coltman, David W; Davis, Corey S

    2015-05-01

    Single-nucleotide polymorphisms (SNPs) offer numerous advantages over anonymous markers such as microsatellites, including improved estimation of population parameters, finer-scale resolution of population structure and more precise genomic dissection of quantitative traits. However, many SNPs are needed to equal the resolution of a single microsatellite, and reliable large-scale genotyping of SNPs remains a challenge in nonmodel species. Here, we document the creation of a 9K Illumina Infinium BeadChip for polar bears (Ursus maritimus), which will be used to investigate: (i) the fine-scale population structure among Canadian polar bears and (ii) the genomic architecture of phenotypic traits in the Western Hudson Bay subpopulation. To this end, we used restriction-site associated DNA (RAD) sequencing from 38 bears across their circumpolar range, as well as blood/fat transcriptome sequencing of 10 individuals from Western Hudson Bay. Six-thousand RAD SNPs and 3000 transcriptomic SNPs were selected for the chip, based primarily on genomic spacing and gene function respectively. Of the 9000 SNPs ordered from Illumina, 8042 were successfully printed, and - after genotyping 1450 polar bears - 5441 of these SNPs were found to be well clustered and polymorphic. Using this array, we show rapid linkage disequilibrium decay among polar bears, we demonstrate that in a subsample of 78 individuals, our SNPs detect known genetic structure more clearly than 24 microsatellites genotyped for the same individuals and that these results are not driven by the SNP ascertainment scheme. Here, we present one of the first large-scale genotyping resources designed for a threatened species. © 2014 John Wiley & Sons Ltd.

  8. A survey of single nucleotide polymorphisms identified from whole-genome sequencing and their functional effect in the porcine genome.

    PubMed

    Keel, B N; Nonneman, D J; Rohrer, G A

    2017-08-01

    Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a more significant effect on phenotypic variation than do other types of genetic variants. Hence, a comprehensive list of these functional variants would be of considerable interest in swine genomic studies, particularly those targeting fertility and production traits. Whole-genome sequence was obtained from 72 of the founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the founding boars (12 Duroc and 12 Landrace) and 48 Yorkshire-Landrace composite sows. Sequence reads were mapped to the Sscrofa10.2 genome build, resulting in a mean of 6.1 fold (×) coverage per genome. A total of 22 342 915 high confidence SNPs were identified from the sequenced genomes. These included 21 million previously reported SNPs and 79% of the 62 163 SNPs on the PorcineSNP60 BeadChip assay. Variation was detected in the coding sequence or untranslated regions (UTRs) of 87.8% of the genes in the porcine genome: loss-of-function variants were predicted in 504 genes, 10 202 genes contained nonsynonymous variants, 10 773 had variation in UTRs and 13 010 genes contained synonymous variants. Approximately 139 000 SNPs were classified as loss-of-function, nonsynonymous or regulatory, which suggests that over 99% of the variation detected in our pigs could potentially be ignored, allowing us to focus on a much smaller number of functional SNPs during future analyses. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  9. A hidden two-locus disease association pattern in genome-wide association studies

    PubMed Central

    2011-01-01

    Background Recent association analyses in genome-wide association studies (GWAS) mainly focus on single-locus association tests (marginal tests) and two-locus interaction detections. These analysis methods have provided strong evidence of associations between genetics variances and complex diseases. However, there exists a type of association pattern, which often occurs within local regions in the genome and is unlikely to be detected by either marginal tests or interaction tests. This association pattern involves a group of correlated single-nucleotide polymorphisms (SNPs). The correlation among SNPs can lead to weak marginal effects and the interaction does not play a role in this association pattern. This phenomenon is due to the existence of unfaithfulness: the marginal effects of correlated SNPs do not express their significant joint effects faithfully due to the correlation cancelation. Results In this paper, we develop a computational method to detect this association pattern masked by unfaithfulness. We have applied our method to analyze seven data sets from the Wellcome Trust Case Control Consortium (WTCCC). The analysis for each data set takes about one week to finish the examination of all pairs of SNPs. Based on the empirical result of these real data, we show that this type of association masked by unfaithfulness widely exists in GWAS. Conclusions These newly identified associations enrich the discoveries of GWAS, which may provide new insights both in the analysis of tagSNPs and in the experiment design of GWAS. Since these associations may be easily missed by existing analysis tools, we can only connect some of them to publicly available findings from other association studies. As independent data set is limited at this moment, we also have difficulties to replicate these findings. More biological implications need further investigation. Availability The software is freely available at http://bioinformatics.ust.hk/hidden_pattern_finder.zip. PMID:21569557

  10. High resolution melting analysis is a more sensitive and effective alternative to gel-based platforms in analysis of SSR--an example in citrus.

    PubMed

    Distefano, Gaetano; Caruso, Marco; La Malfa, Stefano; Gentile, Alessandra; Wu, Shu-Biao

    2012-01-01

    High resolution melting curve analysis (HRM) has been used as an efficient, accurate and cost-effective tool to detect single nucleotide polymorphisms (SNPs) or insertions or deletions (INDELs). However, its efficiency, accuracy and applicability to discriminate microsatellite polymorphism have not been extensively assessed. The traditional protocols used for SSR genotyping include PCR amplification of the DNA fragment and the separation of the fragments on electrophoresis-based platform. However, post-PCR handling processes are laborious and costly. Furthermore, SNPs present in the sequences flanking repeat motif cannot be detected by polyacrylamide-gel-electrophoresis based methods. In the present study, we compared the discriminating power of HRM with the traditional electrophoresis-based methods and provided a panel of primers for HRM genotyping in Citrus. The results showed that sixteen SSR markers produced distinct polymorphic melting curves among the Citrus spp investigated through HRM analysis. Among those, 10 showed more genotypes by HRM analysis than capillary electrophoresis owing to the presence of SNPs in the amplicons. For the SSR markers without SNPs present in the flanking region, HRM also gave distinct melting curves which detected same genotypes as were shown in capillary electrophoresis (CE) analysis. Moreover, HRM analysis allowed the discrimination of most of the 15 citrus genotypes and the resulting genetic distance analysis clustered them into three main branches. In conclusion, it has been approved that HRM is not only an efficient and cost-effective alternative of electrophoresis-based method for SSR markers, but also a method to uncover more polymorphisms contributed by SNPs present in SSRs. It was therefore suggested that the panel of SSR markers could be used in a variety of applications in the citrus biodiversity and breeding programs using HRM analysis. Furthermore, we speculate that the HRM analysis can be employed to analyse SSR markers in a wide range of applications in all other species.

  11. Genome-wide association study for backfat thickness in Canchim beef cattle using Random Forest approach

    PubMed Central

    2013-01-01

    Background Meat quality involves many traits, such as marbling, tenderness, juiciness, and backfat thickness, all of which require attention from livestock producers. Backfat thickness improvement by means of traditional selection techniques in Canchim beef cattle has been challenging due to its low heritability, and it is measured late in an animal’s life. Therefore, the implementation of new methodologies for identification of single nucleotide polymorphisms (SNPs) linked to backfat thickness are an important strategy for genetic improvement of carcass and meat quality. Results The set of SNPs identified by the random forest approach explained as much as 50% of the deregressed estimated breeding value (dEBV) variance associated with backfat thickness, and a small set of 5 SNPs were able to explain 34% of the dEBV for backfat thickness. Several quantitative trait loci (QTL) for fat-related traits were found in the surrounding areas of the SNPs, as well as many genes with roles in lipid metabolism. Conclusions These results provided a better understanding of the backfat deposition and regulation pathways, and can be considered a starting point for future implementation of a genomic selection program for backfat thickness in Canchim beef cattle. PMID:23738659

  12. Association Studies of 22 Candidate SNPs with Late-Onset Alzheimer's Disease

    PubMed Central

    Figgins, Jessica A.; Minster, Ryan L.; Demirci, F. Yesim; DeKosky, Steven T.; Kamboh, M. Ilyas

    2009-01-01

    Alzheimer's disease (AD) is a complex and multifactorial disease with the possible involvement of several genes. With the exception of the APOE gene as a susceptibility marker, no other genes have been shown consistently to be associated with late-onset AD (LOAD). A recent genome-wide association study of 17,343 gene-based putative functional single nucleotide polymorphisms (SNPs) found 19 significant variants, including 3 linked to APOE, showing association with LOAD (Hum Mol Genet 2007; 16:865–873). We have set out to replicate the 16 new significant associations in a large case-control cohort of American Whites. Additionally, we examined six variants present in positional and/or biological candidate genes for AD. We genotyped the 22 SNPs in up to 1,009 Caucasian Americans with LOAD and up to 1,010 age-matched healthy Caucasian Americans, using 5′ nuclease assays. We did not observe a statistically significant association between the SNPs and the risk of AD, either individually or stratified by APOE. Our data suggest that the association of the studied variants with LOAD risk, if it exists, is not statistically significant in our sample. PMID:18780302

  13. From Single Nucleotide Polymorphisms to Constant Immunosuppression: Mesenchymal Stem Cell Therapy for Autoimmune Diseases

    PubMed Central

    Galipeau, Jacques; Nooka, Ajay K.

    2013-01-01

    The regenerative abilities and the immunosuppressive properties of mesenchymal stromal cells (MSCs) make them potentially the ideal cellular product of choice for treatment of autoimmune and other immune mediated disorders. Although the usefulness of MSCs for therapeutic applications is in early phases, their potential clinical use remains of great interest. Current clinical evidence of use of MSCs from both autologous and allogeneic sources to treat autoimmune disorders confers conflicting clinical benefit outcomes. These varied results may possibly be due to MSC use across wide range of autoimmune disorders with clinical heterogeneity or due to variability of the cellular product. In the light of recent genome wide association studies (GWAS), linking predisposition of autoimmune diseases to single nucleotide polymorphisms (SNPs) in the susceptible genetic loci, the clinical relevance of MSCs possessing SNPs in the critical effector molecules of immunosuppression is largely undiscussed. It is of further interest in the allogeneic setting, where SNPs in the target pathway of MSC's intervention may also modulate clinical outcome. In the present review, we have discussed the known critical SNPs predisposing to disease susceptibility in various autoimmune diseases and their significance in the immunomodulatory properties of MSCs. PMID:24350294

  14. Regulatory element-based prediction identifies new susceptibility regulatory variants for osteoporosis.

    PubMed

    Yao, Shi; Guo, Yan; Dong, Shan-Shan; Hao, Ruo-Han; Chen, Xiao-Feng; Chen, Yi-Xiao; Chen, Jia-Bin; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin

    2017-08-01

    Despite genome-wide association studies (GWASs) have identified many susceptibility genes for osteoporosis, it still leaves a large part of missing heritability to be discovered. Integrating regulatory information and GWASs could offer new insights into the biological link between the susceptibility SNPs and osteoporosis. We generated five machine learning classifiers with osteoporosis-associated variants and regulatory features data. We gained the optimal classifier and predicted genome-wide SNPs to discover susceptibility regulatory variants. We further utilized Genetic Factors for Osteoporosis Consortium (GEFOS) and three in-house GWASs samples to validate the associations for predicted positive SNPs. The random forest classifier performed best among all machine learning methods with the F1 score of 0.8871. Using the optimized model, we predicted 37,584 candidate SNPs for osteoporosis. According to the meta-analysis results, a list of regulatory variants was significantly associated with osteoporosis after multiple testing corrections and contributed to the expression of known osteoporosis-associated protein-coding genes. In summary, combining GWASs and regulatory elements through machine learning could provide additional information for understanding the mechanism of osteoporosis. The regulatory variants we predicted will provide novel targets for etiology research and treatment of osteoporosis.

  15. Genotyping of the Alzheimer's Disease Genome-Wide Association Study Index Single Nucleotide Polymorphisms in the Brains for Dementia Research Cohort.

    PubMed

    Brookes, Keeley J; McConnell, George; Williams, Kirsty; Chaudhury, Sultan; Madhan, Gaganjit; Patel, Tulsi; Turley, Christopher; Guetta-Baranes, Tamar; Bras, Jose; Guerreiro, Rita; Hardy, John; Francis, Paul T; Morgan, Kevin

    2018-06-08

    The Brains for Dementia Research project is a recently established longitudinal cohort which aims to provide brain tissue for research purposes from neuropathologically defined samples. Here we present the findings from our analysis on the 19 established GWAS index SNPs for Alzheimer's disease, in order to demonstrate if the BDR sample also displays association to these variants. A highly significant association of the APOEɛ4 allele was identified (p = 3.99×10-12). Association tests for the 19 GWAS SNPs found that although no SNPs survive multiple testing, nominal significant findings were detected and concordance with the Lambert et al. GWAS meta-analysis was observed.

  16. Is there a genetic cause for cancer cachexia? – a clinical validation study in 1797 patients

    PubMed Central

    Solheim, T S; Fayers, P M; Fladvad, T; Tan, B; Skorpen, F; Fearon, K; Baracos, V E; Klepstad, P; Strasser, F; Kaasa, S

    2011-01-01

    Background: Cachexia has major impact on cancer patients' morbidity and mortality. Future development of cachexia treatment needs methods for early identification of patients at risk. The aim of the study was to validate nine single-nucleotide polymorphisms (SNPs) previously associated with cachexia, and to explore 182 other candidate SNPs with the potential to be involved in the pathophysiology. Method: A total of 1797 cancer patients, classified as either having severe cachexia, mild cachexia or no cachexia, were genotyped. Results: After allowing for multiple testing, there was no statistically significant association between any of the SNPs analysed and the cachexia groups. However, consistent with prior reports, two SNPs from the acylpeptide hydrolase (APEH) gene showed suggestive statistical significance (P=0.02; OR, 0.78). Conclusion: This study failed to detect any significant association between any of the SNPs analysed and cachexia; although two SNPs from the APEH gene had a trend towards significance. The APEH gene encodes the enzyme APEH, postulated to be important in the endpoint of the ubiquitin system and thus the breakdown of proteins into free amino acids. In cachexia, there is an extensive breakdown of muscle proteins and an increase in the production of acute phase proteins in the liver. PMID:21934689

  17. Spectral study of interaction between chondroitin sulfate and nanoparticles and its application in quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Wei, Maojie; Zhang, Xiao; Zhao, Ting; Liu, Xiumei; Zhou, Guanglian

    2016-01-01

    In this work, the interaction between chondroitin sulfate (CS) and gold nanoparticles (GNPs) and silver nanoparticles (SNPs) was characterized for the first time. Plasma resonance scattering (PRS) and plasma resonance absorption (PRA) were used to investigate the characteristics of their spectrum. The results suggested that the CS with negative charge could interact with metal nanoparticles with negative charge and the adsorption of CS on the surface of SNPs was more regular than that of GNPs. The resonance scattering spectra also further confirmed the interaction between CS and SNPs. A new method for detection of CS based on the interaction was developed. CS concentrations in the range of 0.02-3.5 μg/mL were proportional to the decreases of absorbance of SNPs. Compared with other reported methods, the proposed method is simple and workable without complex process, high consumption and expensive equipments. The developed method was applied to the determination of the CS contents from different biological origins and the results were compared with those obtained by the method of Chinese Pharmacopeia. The effects of matrix in plasma and other glycosaminoglycans on the determination of CS were also investigated. The results showed that a small quantity of blood plasma had no effect on the determination of CS and when the concentration ratio of CS to heparin was more than 10:1, the influence of heparin on the detection of CS could be ignored. This work gave a specific research direction for the detection of CS in the presence of metal nanoparticles.

  18. Effects of PCSK1 genetic variants on obesity among Thai children and their family members: in relation to health risk, and biochemical and anthropometric parameters.

    PubMed

    Kulanuwat, Sirikul; Phonrat, Benjaluck; Tungtrongchitr, Anchalee; Limwongse, Chanin; Chongviriyaphan, Nalinee; Tungtrongchitr, Rungsunn; Santiprabhob, Jeerunda

    2014-01-01

    Single nucleotide polymorphisms (SNPs) in PCSK1, namely, rs6234, rs6235, and rs271939 have been linked to obesity in European population; and rs3811951 has also been connected to type 2 diabetes and obesity parameters in Chinese population. In this family-based case-control study, we analyzed links between PCSK1 genetic variants and obesity in Thai children and their families. Eleven obese children with a percent weight for height > or = 140 who had family history of obesity and 69 family members were recruited. SNPs rs6234, rs6235, rs3811951, and rs271939 of PCSK1 were analyzed using PCR and gene sequencing methods. DNA of 200 normal weight subjects was used as control. Participants with variant genotypes in the rs6234-6235 pair are at significantly more risk of being obese [OR = 2.44 (1.35-4.43), p = 0.003], and also at increased risk of being severely obese (obese class III) [OR = 3.03 (1.20-7.66), p = 0.015]. Variant rs3811951 showed no association with being obese, but is significantly linked to an increased risk of being severely obese [OR = 3.59 (1.42-9.08) p = 0.005]. Moreover, high density lipoprotein (HDL)-C levels between normal and variant rs3811951 group differed considerably, with patients with variant genotype having a lower HDL-C level (p = 0.037). Thus, Thais carrying SNPs rs6234-5 are at increased risk of being obese, and the risk of severe obesity increases when carrying both rs6234-5 and rs3811951, but not with rs271939. Furthermore, patients with genetic variations at rs3811951 are at risk of having low HDL-C levels.

  19. SNP mining in Crassostrea gigas EST data: transferability to four other Crassostrea species, phylogenetic inferences and outlier SNPs under selection.

    PubMed

    Zhong, Xiaoxiao; Li, Qi; Yu, Hong; Kong, Lingfeng

    2014-01-01

    Oysters, with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. Our study is intended to generate new EST-SNP markers and to evaluate their potential for cross-species utilization in phylogenetic study of the genus Crassostrea. In the study, 57 novel SNPs were developed from an EST database of C. gigas by the HRM (high-resolution melting) method. Transferability of 377 SNPs developed for C. gigas was examined on four other Crassostrea species: C. sikamea, C. angulata, C. hongkongensis and C. ariakensis. Among the 377 primer pairs tested, 311 (82.5%) primers showed amplification in C. sikamea, 353 (93.6%) in C. angulata, 254 (67.4%) in C. hongkongensis and 253 (67.1%) in C. ariakensis. A total of 214 SNPs were found to be transferable to all four species. Phylogenetic analyses showed that C. hongkongensis was a sister species of C. ariakensis and that this clade was sister to the clade containing C. sikamea, C. angulata and C. gigas. Within this clade, C. gigas and C. angulata had the closest relationship, with C. sikamea being the sister group. In addition, we detected eight SNPs as potentially being under selection by two outlier tests (fdist and hierarchical methods). The SNPs studied here should be useful for genetic diversity, comparative mapping and phylogenetic studies across species in Crassostrea and the candidate outlier SNPs are worth exploring in more detail regarding association genetics and functional studies.

  20. Silica nanoparticles induce multinucleation through activation of PI3K/Akt/GSK-3β pathway and downregulation of chromosomal passenger proteins in L-02 cells

    NASA Astrophysics Data System (ADS)

    Geng, Weijia; Li, Yang; Yu, Yongbo; Yu, Yang; Duan, Junchao; Jiang, Lizhen; Li, Qiuling; Sun, Zhiwei

    2016-04-01

    Silica nanoparticles (SNPs) are applicable in various fields due to their unique physicochemical characteristics. However, concerns over their potential adverse effects have been raised. In our previous studies, we reported that SNPs could induce abnormal high incidence of multinucleation. The aim of this study is to further investigate the mechanisms of multinucleation induced by SNPs (68 nm) in human normal liver L-02 cells (L-02 cells). In order to determine the cytotoxicity of SNPs, MTT assay was performed, and the cell viability was decreased in a dose-dependent manner. The intracellular reactive oxygen species (ROS) detected by flow cytometry and multinucleation observed by Giemsa stain showed that ROS generation and rate of multinucleated cells increased after SNPs exposure. N-acetyl-cysteine (NAC), a glutathione precursor against SNP-induced toxicity, was used as a ROS inhibitor to elucidate the relationship between ROS and multinucleation. The presence of NAC resulted in inhibition of both ROS generation and rate of multinucleation. Moreover, Western blot analysis showed that the protein levels of Cdc20, Aurora B, and Survivin were down-regulated, and the PI3K/Akt/GSK-3β pathway was activated by SNPs. In conclusion, our findings strongly suggested that multinucleation induced by SNPs was related to PI3K/Akt/GSK-3β signal pathway activation and downregulation of G2/M phase-related protein and chromosomal passenger proteins.

  1. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    PubMed Central

    Chagné, David; Crowhurst, Ross N.; Troggio, Michela; Davey, Mark W.; Gilmore, Barbara; Lawley, Cindy; Vanderzande, Stijn; Hellens, Roger P.; Kumar, Satish; Cestaro, Alessandro; Velasco, Riccardo; Main, Dorrie; Rees, Jasper D.; Iezzoni, Amy; Mockler, Todd; Wilhelm, Larry; Van de Weg, Eric; Gardiner, Susan E.; Bassil, Nahla; Peace, Cameron

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of ‘Golden Delicious’, SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple. PMID:22363718

  2. A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens.

    PubMed

    Moreira, Gabriel Costa Monteiro; Boschiero, Clarissa; Cesar, Aline Silva Mello; Reecy, James M; Godoy, Thaís Fernanda; Trevisoli, Priscila Anchieta; Cantão, Maurício E; Ledur, Mônica Corrêa; Ibelli, Adriana Mércia Guaratini; Peixoto, Jane de Oliveira; Moura, Ana Silvia Alves Meira Tavares; Garrick, Dorian; Coutinho, Luiz Lehmann

    2018-05-21

    Excess fat content in chickens has a negative impact on poultry production. The discovery of QTL associated with fat deposition in the carcass allows the identification of positional candidate genes (PCGs) that might regulate fat deposition and be useful for selection against excess fat content in chicken's carcass. This study aimed to estimate genomic heritability coefficients and to identify QTLs and PCGs for abdominal fat (ABF) and skin (SKIN) traits in a broiler chicken population, originated from the White Plymouth Rock and White Cornish breeds. ABF and SKIN are moderately heritable traits in our broiler population with estimates ranging from 0.23 to 0.33. Using a high density SNP panel (355,027 informative SNPs), we detected nine unique QTLs that were associated with these fat traits. Among these, four QTL were novel, while five have been previously reported in the literature. Thirteen PCGs were identified that might regulate fat deposition in these QTL regions: JDP2, PLCG1, HNF4A, FITM2, ADIPOR1, PTPN11, MVK, APOA1, APOA4, APOA5, ENSGALG00000000477, ENSGALG00000000483, and ENSGALG00000005043. We used sequence information from founder animals to detect 4843 SNPs in the 13 PCGs. Among those, two were classified as potentially deleterious and two as high impact SNPs. This study generated novel results that can contribute to a better understanding of fat deposition in chickens. The use of high density array of SNPs increases genome coverage and improves QTL resolution than would have been achieved with low density. The identified PCGs were involved in many biological processes that regulate lipid storage. The SNPs identified in the PCGs, especially those predicted as potentially deleterious and high impact, may affect fat deposition. Validation should be undertaken before using these SNPs for selection against carcass fat accumulation and to improve feed efficiency in broiler chicken production.

  3. Genetic variation in protein specific antigen detected prostate cancer and the effect of control selection on genetic association studies

    PubMed Central

    Knipe, Duleeka W; Evans, David M; Kemp, John P.; Eeles, Rosalind; Easton, Douglas F; Kote-Jarai, Zsofia; Al Olama, Ali Amin; Benlloch, Sara; Donovan, Jenny L.; Hamdy, Freddie C.; Neal, David E

    2014-01-01

    Background Only a minority of the genetic component of prostate cancer (PrCa) risk has been explained. Some observed associations of single nucleotide polymorphisms (SNPs) with PrCa might arise from associations of these SNPs with circulating prostate specific antigen (PSA) because PSA values are used to select controls. Methods We undertook a genome-wide association study (GWAS) of screen detected PrCa (ProtecT 1146 cases and 1804 controls); meta-analysed the results with those from the previously published UK Genetic Prostate Cancer Study (1854 cases and 1437 controls); investigated associations of SNPs with PrCa using either ‘low’ (PSA <0.5ng/ml) or ‘high’ (PSA ≥3ng/ml, biopsy negative) PSA controls; and investigated associations of SNPs with PSA. Results The ProtecT GWAS confirmed previously reported associations of PrCa at 3 loci: 10q11.23, 17q24.3 and 19q13.33. The meta-analysis confirmed associations of PrCa with SNPs near 4 previously identified loci (8q24.21,10q11.23, 17q24.3 and 19q13.33). When comparing PrCa cases with low PSA controls, alleles at genetic markers rs1512268, rs445114, rs10788160, rs11199874, rs17632542, rs266849 and rs2735839 were associated with an increased risk of PrCa, but the effect-estimates were attenuated to the null when using high PSA controls (p for heterogeneity in effect-estimates<0.04). We found a novel inverse association of rs9311171-T with circulating PSA. Conclusions Differences in effect estimates for PrCa observed when comparing low vs. high PSA controls, may be explained by associations of these SNPs with PSA. Impact These findings highlight the need for inferences from genetic studies of PrCa risk to carefully consider the influence of control selection criteria. PMID:24753544

  4. Allelic-based gene-gene interaction associated with quantitative traits.

    PubMed

    Jung, Jeesun; Sun, Bin; Kwon, Deukwoo; Koller, Daniel L; Foroud, Tatiana M

    2009-05-01

    Recent studies have shown that quantitative phenotypes may be influenced not only by multiple single nucleotide polymorphisms (SNPs) within a gene but also by the interaction between SNPs at unlinked genes. We propose a new statistical approach that can detect gene-gene interactions at the allelic level which contribute to the phenotypic variation in a quantitative trait. By testing for the association of allelic combinations at multiple unlinked loci with a quantitative trait, we can detect the SNP allelic interaction whether or not it can be detected as a main effect. Our proposed method assigns a score to unrelated subjects according to their allelic combination inferred from observed genotypes at two or more unlinked SNPs, and then tests for the association of the allelic score with a quantitative trait. To investigate the statistical properties of the proposed method, we performed a simulation study to estimate type I error rates and power and demonstrated that this allelic approach achieves greater power than the more commonly used genotypic approach to test for gene-gene interaction. As an example, the proposed method was applied to data obtained as part of a candidate gene study of sodium retention by the kidney. We found that this method detects an interaction between the calcium-sensing receptor gene (CaSR), the chloride channel gene (CLCNKB) and the Na, K, 2Cl cotransporter gene (CLC12A1) that contributes to variation in diastolic blood pressure.

  5. Homogeneous real-time detection of single-nucleotide polymorphisms by strand displacement amplification on the BD ProbeTec ET system.

    PubMed

    Wang, Sha-Sha; Thornton, Keith; Kuhn, Andrew M; Nadeau, James G; Hellyer, Tobin J

    2003-10-01

    The BD ProbeTec ET System is based on isothermal strand displacement amplification (SDA) of target nucleic acid coupled with homogeneous real-time detection using fluorescent probes. We have developed a novel, rapid method using this platform that incorporates a universal detection format for identification of single-nucleotide polymorphisms (SNPs) and other genotypic variations. The system uses a common pair of fluorescent Detector Probes in conjunction with unlabeled allele-specific Adapter Primers and a universal buffer chemistry to permit analysis of multiple SNP loci under generic assay conditions. We used Detector Probes labeled with different dyes to facilitate differentiation of two alternative alleles in a single reaction with no postamplification manipulation. We analyzed six SNPs within the human beta(2)-adrenergic receptor (beta(2)AR) gene, using whole blood, buccal swabs, and urine samples, and compared results with those obtained by DNA sequencing. Unprocessed whole blood was successfully genotyped with as little as 0.1-1 micro L of sample per reaction. All six beta(2)AR assays were able to accommodate >/==" BORDER="0">20 micro L of unprocessed whole blood. For the 14 individuals tested, genotypes determined with the six beta(2)AR assays agreed with DNA sequencing results. SDA-based allelic differentiation on the BD ProbeTec ET System can detect SNPs rapidly, using whole blood, buccal swabs, or urine.

  6. Strong Signature of Natural Selection within an FHIT Intron Implicated in Prostate Cancer Risk

    PubMed Central

    Ding, Yan; Larson, Garrett; Rivas, Guillermo; Lundberg, Cathryn; Geller, Louis; Ouyang, Ching; Weitzel, Jeffrey; Archambeau, John; Slater, Jerry; Daly, Mary B.; Benson, Al B.; Kirkwood, John M.; O'Dwyer, Peter J.; Sutphen, Rebecca; Stewart, James A.; Johnson, David; Nordborg, Magnus; Krontiris, Theodore G.

    2008-01-01

    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, re-sequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D = 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. PMID:18953408

  7. IL1RN Variation Influences both Disease Susceptibility and Response to Human Recombinant IL-1RA Therapy in Systemic Juvenile Idiopathic Arthritis.

    PubMed

    Arthur, Victoria L; Shuldiner, Emily; Remmers, Elaine F; Hinks, Anne; Grom, Alexei A; Foell, Dirk; Martini, Alberto; Gattorno, Marco; Özen, Seza; Prahalad, Sampath; Zeft, Andrew S; Bohnsack, John F; Ilowite, Norman T; Mellins, Elizabeth D; Russo, Ricardo; Len, Claudio; Oliveira, Sheila; Yeung, Rae S M; Rosenberg, Alan M; Wedderburn, Lucy R; Anton, Jordi; Haas, Johannes-Peter; Rösen-Wolff, Angela; Minden, Kirsten; Szymanski, Ann Marie; Thomson, Wendy; Kastner, Daniel L; Woo, Patricia; Ombrello, Michael J

    2018-04-02

    To determine whether systemic juvenile idiopathic arthritis (sJIA) susceptibility loci identified by candidate gene studies demonstrated association with sJIA in the largest study population assembled to date. Single nucleotide polymorphisms (SNPs) from 11 previously reported sJIA risk loci were examined for association in 9 populations, including 770 sJIA cases and 6947 control subjects. The effect of sJIA-associated SNPs on gene expression was evaluated in silico in paired whole genome and RNA sequencing data from lymphoblastoid cell lines (LCL) of 373 European 1000 Genomes Project subjects. The relationship between sJIA-associated SNPs and response to anakinra treatment was evaluated in 38 US patients for whom treatment response data were available. We found no association of the 26 SNPs previously reported as sJIA-associated. Expanded analysis of the regions containing the 26 SNPs revealed only one significant association, the promoter region of IL1RN (p<1E-4). sJIA-associated SNPs correlated with IL1RN expression in LCLs, with an inverse correlation between sJIA risk and IL1RN expression. The presence of homozygous IL1RN high expression alleles correlated strongly with non-response to anakinra therapy (OR 28.7 [3.2, 255.8]). IL1RN was the only candidate locus associated with sJIA in our study. The implicated SNPs are among the strongest known determinants of IL1RN and IL1RA levels, linking low expression with increased sJIA risk. Homozygous high expression alleles predicted non-response to anakinra therapy, nominating them as candidate biomarkers to guide sJIA treatment. This is an important first step towards the personalized treatment of sJIA. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis spp.)

    PubMed Central

    Ma, Keyi; Liao, Minghui; Liu, Feng; Ye, Baoqing; Sun, Fei; Yue, Gen Hua

    2016-01-01

    Zinc finger AN1-type domain 3 (ZFAND3) is essential for spermatogenesis in mice. However, its function in teleosts remains unclear. In this study, we characterized the ZFAND3 gene (termed as OsZFAND3) in an important food fish, tilapia. The OsZFAND3 cDNA sequence is 1,050 bp in length, containing an ORF of 615 bp, which encodes a putative peptide of 204 amino acid residues. Quantitative real-time PCR revealed that the OsZFAND3 transcripts were exclusively expressed in the testis and ovary. In situ hybridization showed that the high expression of OsZFAND3 transcripts was predominantly localized in the spermatocyte and spermatid. These results suggest that OsZFAND3 is involved in male germ cell maturation. Three single nucleotide polymorphisms (SNPs) were detected in the introns of OsZFAND3. The OsZFAND3 gene was mapped in the sex-determining locus on linkage group 1 (LG1). The three SNPs in the OsZFAND3 gene were strictly associated with sex phenotype, suggesting that the OsZFAND3 gene is tightly linked to the sex-determining locus. Our study provides new insights into the functions of the OsZFAND3 gene in tilapia and a foundation for further detailed analysis of the OsZFAND3 gene in sex determination and differentiation. PMID:27137111

  9. Haplotypes and Sequence Variation in the Ovine Adiponectin Gene (ADIPOQ)

    PubMed Central

    An, Qing-Ming; Zhou, Hui-Tong; Hu, Jiang; Luo, Yu-Zhu; Hickford, Jon G. H.

    2015-01-01

    The adiponectin gene (ADIPOQ) plays an important role in energy homeostasis. In this study five separate regions (regions 1 to 5) of ovine ADIPOQ were analysed using PCR-SSCP. Four different PCR-SSCP patterns (A1-D1, A2-D2) were detected in region-1 and region-2, respectively, with seven and six SNPs being revealed. In region-3, three different patterns (A3-C3) and three SNPs were observed. Two patterns (A4-B4, A5-B5) and two and one SNPs were observed in region-4 and region-5, respectively. In total, nineteen SNPs were detected, with five of them in the coding region and two (c.46T/C and c.515G/A) putatively resulting in amino acid changes (p.Tyr16His and p.Lys172Arg). In region-1, -2 and -3 of 316 sheep from eight New Zealand breeds, variants A1, A2 and A3 were the most common, although variant frequencies differed in the eight breeds. Across region-1 and region-3, nine haplotypes were identified and haplotypes A1-A3, A1-C3, B1-A3 and B1-C3 were most common. These results indicate that the ADIPOQ gene is polymorphic and suggest that further analysis is required to see if the variation in the gene is associated with animal production traits. PMID:26610572

  10. GENOME-WIDE GENETIC INTERACTION ANALYSIS OF GLAUCOMA USING EXPERT KNOWLEDGE DERIVED FROM HUMAN PHENOTYPE NETWORKS

    PubMed Central

    HU, TING; DARABOS, CHRISTIAN; CRICCO, MARIA E.; KONG, EMILY; MOORE, JASON H.

    2014-01-01

    The large volume of GWAS data poses great computational challenges for analyzing genetic interactions associated with common human diseases. We propose a computational framework for characterizing epistatic interactions among large sets of genetic attributes in GWAS data. We build the human phenotype network (HPN) and focus around a disease of interest. In this study, we use the GLAUGEN glaucoma GWAS dataset and apply the HPN as a biological knowledge-based filter to prioritize genetic variants. Then, we use the statistical epistasis network (SEN) to identify a significant connected network of pairwise epistatic interactions among the prioritized SNPs. These clearly highlight the complex genetic basis of glaucoma. Furthermore, we identify key SNPs by quantifying structural network characteristics. Through functional annotation of these key SNPs using Biofilter, a software accessing multiple publicly available human genetic data sources, we find supporting biomedical evidences linking glaucoma to an array of genetic diseases, proving our concept. We conclude by suggesting hypotheses for a better understanding of the disease. PMID:25592582

  11. The Oxytocin Receptor Gene ( OXTR) and Face Recognition.

    PubMed

    Verhallen, Roeland J; Bosten, Jenny M; Goodbourn, Patrick T; Lawrance-Owen, Adam J; Bargary, Gary; Mollon, J D

    2017-01-01

    A recent study has linked individual differences in face recognition to rs237887, a single-nucleotide polymorphism (SNP) of the oxytocin receptor gene ( OXTR; Skuse et al., 2014). In that study, participants were assessed using the Warrington Recognition Memory Test for Faces, but performance on Warrington's test has been shown not to rely purely on face recognition processes. We administered the widely used Cambridge Face Memory Test-a purer test of face recognition-to 370 participants. Performance was not significantly associated with rs237887, with 16 other SNPs of OXTR that we genotyped, or with a further 75 imputed SNPs. We also administered three other tests of face processing (the Mooney Face Test, the Glasgow Face Matching Test, and the Composite Face Test), but performance was never significantly associated with rs237887 or with any of the other genotyped or imputed SNPs, after corrections for multiple testing. In addition, we found no associations between OXTR and Autism-Spectrum Quotient scores.

  12. Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine

    PubMed Central

    2011-01-01

    Background Single nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (Pinus pinaster Ait.), the main conifer used for commercial plantation in southwestern Europe. Results We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 in vitro SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 in silico SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for in silico and in vitro SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a Pinus taeda linkage map, made it possible to align the 12 linkage groups of both species. Conclusions Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation sequencing technologies and will include SNPs from comparative orthologous sequences that were identified in the present study, providing a wider collection of anchor points for comparative genomics among the conifers. PMID:21767361

  13. Novel approach identifies SNPs in SLC2A10 and KCNK9 with evidence for parent-of-origin effect on body mass index.

    PubMed

    Hoggart, Clive J; Venturini, Giulia; Mangino, Massimo; Gomez, Felicia; Ascari, Giulia; Zhao, Jing Hua; Teumer, Alexander; Winkler, Thomas W; Tšernikova, Natalia; Luan, Jian'an; Mihailov, Evelin; Ehret, Georg B; Zhang, Weihua; Lamparter, David; Esko, Tõnu; Macé, Aurelien; Rüeger, Sina; Bochud, Pierre-Yves; Barcella, Matteo; Dauvilliers, Yves; Benyamin, Beben; Evans, David M; Hayward, Caroline; Lopez, Mary F; Franke, Lude; Russo, Alessia; Heid, Iris M; Salvi, Erika; Vendantam, Sailaja; Arking, Dan E; Boerwinkle, Eric; Chambers, John C; Fiorito, Giovanni; Grallert, Harald; Guarrera, Simonetta; Homuth, Georg; Huffman, Jennifer E; Porteous, David; Moradpour, Darius; Iranzo, Alex; Hebebrand, Johannes; Kemp, John P; Lammers, Gert J; Aubert, Vincent; Heim, Markus H; Martin, Nicholas G; Montgomery, Grant W; Peraita-Adrados, Rosa; Santamaria, Joan; Negro, Francesco; Schmidt, Carsten O; Scott, Robert A; Spector, Tim D; Strauch, Konstantin; Völzke, Henry; Wareham, Nicholas J; Yuan, Wei; Bell, Jordana T; Chakravarti, Aravinda; Kooner, Jaspal S; Peters, Annette; Matullo, Giuseppe; Wallaschofski, Henri; Whitfield, John B; Paccaud, Fred; Vollenweider, Peter; Bergmann, Sven; Beckmann, Jacques S; Tafti, Mehdi; Hastie, Nicholas D; Cusi, Daniele; Bochud, Murielle; Frayling, Timothy M; Metspalu, Andres; Jarvelin, Marjo-Riitta; Scherag, André; Smith, George Davey; Borecki, Ingrid B; Rousson, Valentin; Hirschhorn, Joel N; Rivolta, Carlo; Loos, Ruth J F; Kutalik, Zoltán

    2014-07-01

    The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups. We applied the method to >56,000 unrelated individuals to search for POEs influencing body mass index (BMI). Six lead SNPs were carried forward for replication in five family-based studies (of ∼4,000 trios). Two SNPs replicated: the paternal rs2471083-C allele (located near the imprinted KCNK9 gene) and the paternal rs3091869-T allele (located near the SLC2A10 gene) increased BMI equally (beta = 0.11 (SD), P<0.0027) compared to the respective maternal alleles. Real-time PCR experiments of lymphoblastoid cell lines from the CEPH families showed that expression of both genes was dependent on parental origin of the SNPs alleles (P<0.01). Our scheme opens new opportunities to exploit GWAS data of unrelated individuals to identify POEs and demonstrates that they play an important role in adult obesity.

  14. Novel Approach Identifies SNPs in SLC2A10 and KCNK9 with Evidence for Parent-of-Origin Effect on Body Mass Index

    PubMed Central

    Hoggart, Clive J.; Venturini, Giulia; Mangino, Massimo; Gomez, Felicia; Ascari, Giulia; Zhao, Jing Hua; Teumer, Alexander; Winkler, Thomas W.; Tšernikova, Natalia; Luan, Jian'an; Mihailov, Evelin; Ehret, Georg B.; Zhang, Weihua; Lamparter, David; Esko, Tõnu; Macé, Aurelien; Rüeger, Sina; Bochud, Pierre-Yves; Barcella, Matteo; Dauvilliers, Yves; Benyamin, Beben; Evans, David M.; Hayward, Caroline; Lopez, Mary F.; Franke, Lude; Russo, Alessia; Heid, Iris M.; Salvi, Erika; Vendantam, Sailaja; Arking, Dan E.; Boerwinkle, Eric; Chambers, John C.; Fiorito, Giovanni; Grallert, Harald; Guarrera, Simonetta; Homuth, Georg; Huffman, Jennifer E.; Porteous, David; Moradpour, Darius; Iranzo, Alex; Hebebrand, Johannes; Kemp, John P.; Lammers, Gert J.; Aubert, Vincent; Heim, Markus H.; Martin, Nicholas G.; Montgomery, Grant W.; Peraita-Adrados, Rosa; Santamaria, Joan; Negro, Francesco; Schmidt, Carsten O.; Scott, Robert A.; Spector, Tim D.; Strauch, Konstantin; Völzke, Henry; Wareham, Nicholas J.; Yuan, Wei; Bell, Jordana T.; Chakravarti, Aravinda; Kooner, Jaspal S.; Peters, Annette; Matullo, Giuseppe; Wallaschofski, Henri; Whitfield, John B.; Paccaud, Fred; Vollenweider, Peter; Bergmann, Sven; Beckmann, Jacques S.; Tafti, Mehdi; Hastie, Nicholas D.; Cusi, Daniele; Bochud, Murielle; Frayling, Timothy M.; Metspalu, Andres; Jarvelin, Marjo-Riitta; Scherag, André; Smith, George Davey; Borecki, Ingrid B.; Rousson, Valentin; Hirschhorn, Joel N.; Rivolta, Carlo; Loos, Ruth J. F.; Kutalik, Zoltán

    2014-01-01

    The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups. We applied the method to >56,000 unrelated individuals to search for POEs influencing body mass index (BMI). Six lead SNPs were carried forward for replication in five family-based studies (of ∼4,000 trios). Two SNPs replicated: the paternal rs2471083-C allele (located near the imprinted KCNK9 gene) and the paternal rs3091869-T allele (located near the SLC2A10 gene) increased BMI equally (beta = 0.11 (SD), P<0.0027) compared to the respective maternal alleles. Real-time PCR experiments of lymphoblastoid cell lines from the CEPH families showed that expression of both genes was dependent on parental origin of the SNPs alleles (P<0.01). Our scheme opens new opportunities to exploit GWAS data of unrelated individuals to identify POEs and demonstrates that they play an important role in adult obesity. PMID:25078964

  15. SNPs located at CpG sites modulate genome-epigenome interaction

    USDA-ARS?s Scientific Manuscript database

    DNA methylation is an important molecular-level phenotype that links genotypes and complex disease traits. Previous studies have found local correlation between genetic variants and DNA methylation levels (cis-meQTLs). However, general mechanisms underlying cis-meQTLs are unclear. We conducted a cis...

  16. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections.

    PubMed

    Baniecki, Mary Lynn; Faust, Aubrey L; Schaffner, Stephen F; Park, Daniel J; Galinsky, Kevin; Daniels, Rachel F; Hamilton, Elizabeth; Ferreira, Marcelo U; Karunaweera, Nadira D; Serre, David; Zimmerman, Peter A; Sá, Juliana M; Wellems, Thomas E; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E; Volkman, Sarah K; Wirth, Dyann F; Sabeti, Pardis C

    2015-03-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.

  17. Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

    PubMed Central

    Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.

    2015-01-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  18. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.

    PubMed

    Nguyen, Thanh-Tung; Huang, Joshua; Wu, Qingyao; Nguyen, Thuy; Li, Mark

    2015-01-01

    Single-nucleotide polymorphisms (SNPs) selection and identification are the most important tasks in Genome-wide association data analysis. The problem is difficult because genome-wide association data is very high dimensional and a large portion of SNPs in the data is irrelevant to the disease. Advanced machine learning methods have been successfully used in Genome-wide association studies (GWAS) for identification of genetic variants that have relatively big effects in some common, complex diseases. Among them, the most successful one is Random Forests (RF). Despite of performing well in terms of prediction accuracy in some data sets with moderate size, RF still suffers from working in GWAS for selecting informative SNPs and building accurate prediction models. In this paper, we propose to use a new two-stage quality-based sampling method in random forests, named ts-RF, for SNP subspace selection for GWAS. The method first applies p-value assessment to find a cut-off point that separates informative and irrelevant SNPs in two groups. The informative SNPs group is further divided into two sub-groups: highly informative and weak informative SNPs. When sampling the SNP subspace for building trees for the forest, only those SNPs from the two sub-groups are taken into account. The feature subspaces always contain highly informative SNPs when used to split a node at a tree. This approach enables one to generate more accurate trees with a lower prediction error, meanwhile possibly avoiding overfitting. It allows one to detect interactions of multiple SNPs with the diseases, and to reduce the dimensionality and the amount of Genome-wide association data needed for learning the RF model. Extensive experiments on two genome-wide SNP data sets (Parkinson case-control data comprised of 408,803 SNPs and Alzheimer case-control data comprised of 380,157 SNPs) and 10 gene data sets have demonstrated that the proposed model significantly reduced prediction errors and outperformed most existing the-state-of-the-art random forests. The top 25 SNPs in Parkinson data set were identified by the proposed model including four interesting genes associated with neurological disorders. The presented approach has shown to be effective in selecting informative sub-groups of SNPs potentially associated with diseases that traditional statistical approaches might fail. The new RF works well for the data where the number of case-control objects is much smaller than the number of SNPs, which is a typical problem in gene data and GWAS. Experiment results demonstrated the effectiveness of the proposed RF model that outperformed the state-of-the-art RFs, including Breiman's RF, GRRF and wsRF methods.

  19. A genome-wide pleiotropy scan for prostate cancer risk.

    PubMed

    Panagiotou, Orestis A; Travis, Ruth C; Campa, Daniele; Berndt, Sonja I; Lindstrom, Sara; Kraft, Peter; Schumacher, Fredrick R; Siddiq, Afshan; Papatheodorou, Stefania I; Stanford, Janet L; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie J; Diver, W Ryan; Gapstur, Susan M; Stevens, Victoria L; Boeing, Heiner; Bueno-de-Mesquita, H Bas; Barricarte Gurrea, Aurelio; Kaaks, Rudolf; Khaw, Kay-Tee; Krogh, Vittorio; Overvad, Kim; Riboli, Elio; Trichopoulos, Dimitrios; Giovannucci, Edward; Stampfer, Meir; Haiman, Christopher; Henderson, Brian; Le Marchand, Loic; Gaziano, J Michael; Hunter, David J; Koutros, Stella; Yeager, Meredith; Hoover, Robert N; Chanock, Stephen J; Wacholder, Sholom; Key, Timothy J; Tsilidis, Konstantinos K

    2015-04-01

    No single-nucleotide polymorphisms (SNPs) specific for aggressive prostate cancer have been identified in genome-wide association studies (GWAS). To test if SNPs associated with other traits may also affect the risk of aggressive prostate cancer. SNPs implicated in any phenotype other than prostate cancer (p≤10(-7)) were identified through the catalog of published GWAS and tested in 2891 aggressive prostate cancer cases and 4592 controls from the Breast and Prostate Cancer Cohort Consortium (BPC3). The 40 most significant SNPs were followed up in 4872 aggressive prostate cancer cases and 24,534 controls from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium. Odds ratios (ORs) and 95% confidence intervals (CIs) for aggressive prostate cancer were estimated. A total of 4666 SNPs were evaluated by the BPC3. Two signals were seen in regions already reported for prostate cancer risk. rs7014346 at 8q24.21 was marginally associated with aggressive prostate cancer in the BPC3 trial (p=1.6×10(-6)), whereas after meta-analysis by PRACTICAL the summary OR was 1.21 (95% CI 1.16-1.27; p=3.22×10(-18)). rs9900242 at 17q24.3 was also marginally associated with aggressive disease in the meta-analysis (OR 0.90, 95% CI 0.86-0.94; p=2.5×10(-6)). Neither of these SNPs remained statistically significant when conditioning on correlated known prostate cancer SNPs. The meta-analysis by BPC3 and PRACTICAL identified a third promising signal, marked by rs16844874 at 2q34, independent of known prostate cancer loci (OR 1.12, 95% CI 1.06-1.19; p=4.67×10(-5)); it has been shown that SNPs correlated with this signal affect glycine concentrations. The main limitation is the heterogeneity in the definition of aggressive prostate cancer between BPC3 and PRACTICAL. We did not identify new SNPs for aggressive prostate cancer. However, rs16844874 may provide preliminary genetic evidence on the role of the glycine pathway in prostate cancer etiology. We evaluated whether genetic variants associated with several traits are linked to the risk of aggressive prostate cancer. No new such variants were identified. Copyright © 2014 European Association of Urology. All rights reserved.

  20. Whole genome sequencing in the search for genes associated with the control of SIV infection in the Mauritian macaque model.

    PubMed

    de Manuel, Marc; Shiina, Takashi; Suzuki, Shingo; Dereuddre-Bosquet, Nathalie; Garchon, Henri-Jean; Tanaka, Masayuki; Congy-Jolivet, Nicolas; Aarnink, Alice; Le Grand, Roger; Marques-Bonet, Tomas; Blancher, Antoine

    2018-05-08

    In the Mauritian macaque experimentally inoculated with SIV, gene polymorphisms potentially associated with the plasma virus load at a set point, approximately 100 days post inoculation, were investigated. Among the 42 animals inoculated with 50 AID 50 of the same strain of SIV, none of which received any preventive or curative treatment, nine individuals were selected: three with a plasma virus load (PVL) among the lowest, three with intermediate PVL values and three among the highest PVL values. The complete genomes of these nine animals were then analyzed. Initially, attention was focused on variants with a potential functional impact on protein encoding genes (non-synonymous SNPs (NS-SNPs) and splicing variants). Thus, 424 NS-SNPs possibly associated with PVL were detected. The 424 candidates SNPs were genotyped in these 42 SIV experimentally infected animals (including the nine animals subjected to whole genome sequencing). The genes containing variants most probably associated with PVL at a set time point are analyzed herein.

  1. [Association analysis between SNPs of the growth hormone receptor gene and growth traits in arctic fox].

    PubMed

    DU, Zhi-Heng; Liu, Zong-Yue; Bai, Xiu-Juan

    2010-06-01

    Using single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing, single nucleotide polymorphisms (SNPs) of growth hormone receptor (GHR) gene were detected in an arctic fox population. Correlation analysis between GHR polymorphisms and growth traits were carried out using the appropriate model. Four SNPs, G3A in the 5'UTR, C99T in the first exon, T59C and G65A in the fifth exon were identified on the arctic fox GHR gene. The G3A and C99T polymorphisms of GHR were associated with female fox body weight (Pamp;0.05) and the T59C and G65A polymorphisms of GHR were associated with male fox body weight (Pamp;0.05) and the skin length of the female fox (Pamp;0.01). Therefore, marker assistant selection on body weight and skin length of arctic foxes using these SNPs can be applied to get big and high quality arctic foxes.

  2. Genome-wide association study reveals regions associated with gestation length in two pig populations.

    PubMed

    Hidalgo, A M; Lopes, M S; Harlizius, B; Bastiaansen, J W M

    2016-04-01

    Reproduction traits, such as gestation length (GLE), play an important role in dam line breeding in pigs. The objective of our study was to identify single nucleotide polymorphisms (SNPs) that are associated with GLE in two pig populations. Genotypes and deregressed breeding values were available for 2081 Dutch Landrace-based (DL) and 2301 Large White-based (LW) pigs. We identified two QTL regions for GLE, one in each population. For DL, three associated SNPs were detected in one QTL region spanning 0.52 Mbp on Sus scrofa chromosome (SSC) 2. For LW, four associated SNPs were detected in one region of 0.14 Mbp on SSC5. The region on SSC2 contains the heparin-binding EGF-like growth factor (HBEGF) gene, which promotes embryo implantation and has been described to be involved in embryo survival throughout gestation. The associated SNP can be used for marker-assisted selection in the studied populations, and further studies of the HBEGF gene are warranted to investigate its role in GLE. © 2015 Stichting International Foundation for Animal Genetics.

  3. Variant discovery in the sheepmeat odour and flavour in javanese fat tailed sheep using RNA sequencing

    NASA Astrophysics Data System (ADS)

    Abuzahra, M. A. M.; Jakaria; Listyarini, K.; Furqon, A.; Sumantri, C.; Uddin, M. J.; Gunawan, A.

    2018-05-01

    High-throughput RNA sequencing (RNA-Seq) reveals new challenges for the detection of transcriptome variants (SNPs) in different tissues and species. The aims of this study was to characterize a SNP discovery analysis in the sheep meat odour and flavour transcriptome using RNA-Seq. Six liver samples from divergent sheep meat odour and flavour were analyzed using the Illumina Genome Hiseq 2500 Analyzer. The SNP detection analysis revealed 142 SNPs in sheep meat samples, and a large number of those corresponded to differences between high and low sheep meat odour and flavour ovis genome assembly OAR v4.0. Among them, about 90.4% of genes had multiple polymorphisms within 12 genes (JAML, ANGPTL8, LOC101103463, SEPW1, SCN5A, LOC101113036, DOCK6, GTSE1, KIF12, KCTD17, KANK2, CYP2A6). Several of the SNPs (JAML, CYP2A6, SEPW1, and KIF12) found in this study could be included as suitable markers in genotyping platforms to perform association analyses in commercial populations and apply genomic selection protocols in the sheep meat production.

  4. Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data

    PubMed Central

    Degner, Jacob F.; Marioni, John C.; Pai, Athma A.; Pickrell, Joseph K.; Nkadori, Everlyne; Gilad, Yoav; Pritchard, Jonathan K.

    2009-01-01

    Motivation: Next-generation sequencing has become an important tool for genome-wide quantification of DNA and RNA. However, a major technical hurdle lies in the need to map short sequence reads back to their correct locations in a reference genome. Here, we investigate the impact of SNP variation on the reliability of read-mapping in the context of detecting allele-specific expression (ASE). Results: We generated 16 million 35 bp reads from mRNA of each of two HapMap Yoruba individuals. When we mapped these reads to the human genome we found that, at heterozygous SNPs, there was a significant bias toward higher mapping rates of the allele in the reference sequence, compared with the alternative allele. Masking known SNP positions in the genome sequence eliminated the reference bias but, surprisingly, did not lead to more reliable results overall. We find that even after masking, ∼5–10% of SNPs still have an inherent bias toward more effective mapping of one allele. Filtering out inherently biased SNPs removes 40% of the top signals of ASE. The remaining SNPs showing ASE are enriched in genes previously known to harbor cis-regulatory variation or known to show uniparental imprinting. Our results have implications for a variety of applications involving detection of alternate alleles from short-read sequence data. Availability: Scripts, written in Perl and R, for simulating short reads, masking SNP variation in a reference genome and analyzing the simulation output are available upon request from JFD. Raw short read data were deposited in GEO (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE18156. Contact: jdegner@uchicago.edu; marioni@uchicago.edu; gilad@uchicago.edu; pritch@uchicago.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19808877

  5. Genome-wide association study reveals a QTL and strong candidate genes for umbilical hernia in pigs on SSC14.

    PubMed

    Grindflek, Eli; Hansen, Marianne H S; Lien, Sigbjørn; van Son, Maren

    2018-05-29

    Umbilical hernia is one of the most prevalent congenital defect in pigs, causing economic losses and substantial animal welfare problems. Identification and implementation of genomic regions controlling umbilical hernia in breeding is of great interest to reduce incidences of hernia in commercial pig production. The aim of this study was to identify such regions and possibly identify causative variation affecting umbilical hernia in pigs. A case/control material consisting of 739 Norwegian Landrace pigs was collected and applied in a GWAS study with a genome-wide distributed panel of 60 K SNPs. Additionally candidate genes were sequenced to detect additional polymorphisms that were used for single SNP and haplotype association analyses in 453 of the pigs. The GWAS in this report detected a highly significant region affecting umbilical hernia around 50 Mb on SSC14 (P < 0.0001) explaining up to 8.6% of the phenotypic variance of the trait. The region is rather broad and includes 62 significant SNPs in high linkage disequilibrium with each other. Targeted sequencing of candidate genes within the region revealed polymorphisms within the Leukemia inhibitory factor (LIF) and Oncostatin M (OSM) that were significantly associated with umbilical hernia (P < 0.001). A highly significant QTL for umbilical hernia in Norwegian Landrace pigs was detected around 50 Mb on SSC14. Resequencing of candidate genes within the region revealed SNPs within LIF and OSM highly associated with the trait. However, because of extended LD within the region, studies in other populations and functional studies are needed to determine whether these variants are causal or not. Still without this knowledge, SNPs within the region can be used as genetic markers to reduce incidences of umbilical hernia in Norwegian Landrace pigs.

  6. Methods to Increase the Sensitivity of High Resolution Melting Single Nucleotide Polymorphism Genotyping in Malaria.

    PubMed

    Daniels, Rachel; Hamilton, Elizabeth J; Durfee, Katelyn; Ndiaye, Daouda; Wirth, Dyann F; Hartl, Daniel L; Volkman, Sarah K

    2015-11-10

    Despite decades of eradication efforts, malaria remains a global burden. Recent renewed interest in regional elimination and global eradication has been accompanied by increased genomic information about Plasmodium parasite species responsible for malaria, including characteristics of geographical populations as well as variations associated with reduced susceptibility to anti-malarial drugs. One common genetic variation, single-nucleotide polymorphisms (SNPs), offers attractive targets for parasite genotyping. These markers are useful not only for tracking drug resistance markers but also for tracking parasite populations using markers not under drug or other selective pressures. SNP genotyping methods offer the ability to track drug resistance as well as to fingerprint individual parasites for population surveillance, particularly in response to malaria control efforts in regions nearing elimination status. While informative SNPs have been identified that are agnostic to specific genotyping technologies, high-resolution melting (HRM) analysis is particularly suited to field-based studies. Compared to standard fluorescent-probe based methods that require individual SNPs in a single labeled probe and offer at best 10% sensitivity to detect SNPs in samples that contain multiple genomes (polygenomic), HRM offers 2-5% sensitivity. Modifications to HRM, such as blocked probes and asymmetric primer concentrations as well as optimization of amplification annealing temperatures to bias PCR towards amplification of the minor allele, further increase the sensitivity of HRM. While the sensitivity improvement depends on the specific assay, we have increased detection sensitivities to less than 1% of the minor allele. In regions approaching malaria eradication, early detection of emerging or imported drug resistance is essential for prompt response. Similarly, the ability to detect polygenomic infections and differentiate imported parasite types from cryptic local reservoirs can inform control programs. This manuscript describes modifications to high resolution melting technology that further increase its sensitivity to identify polygenomic infections in patient samples.

  7. Association of Reported Prostate Cancer Risk Alleles With PSA Levels Among Men Without a Diagnosis of Prostate Cancer

    PubMed Central

    Wiklund, Fredrik; Zheng, S. Lilly; Sun, Jielin; Adami, Hans-Olov; Lilja, Hans; Hsu, Fang-Chi; Stattin, Pär; Adolfsson, Jan; Cramer, Scott D.; Duggan, David; Carpten, John D.; Chang, Bao-Li; Isaacs, William B.; Grönberg, Henrik; Xu, Jianfeng

    2012-01-01

    BACKGROUND Prostate specific antigen (PSA) is widely used for prostate cancer screening but its levels are influenced by many non cancer-related factors. The goal of the study is to estimate the effect of genetic variants on PSA levels. METHODS We evaluated the association of SNPs that were reported to be associated with prostate cancer risk in recent genome-wide association studies with plasma PSA levels in a Swedish study population, including 1,722 control subjects without a diagnosis of prostate cancer. RESULTS Of the 16 SNPs analyzed in control subjects, significant associations with PSA levels (P≤0.05) were found for six SNPs. These six SNPs had a cumulative effect on PSA levels; the mean PSA levels in men were almost twofold increased across increasing quintile of number of PSA associated alleles, P-trend=3.4×10−14. In this Swedish study population risk allele frequencies were similar among T1c case patients (cancer detected by elevated PSA levels alone) as compared to T2 and above prostate cancer case patients. CONCLUSIONS Results from this study may have two important clinical implications. The cumulative effect of six SNPs on PSA levels suggests genetic-specific PSA cutoff values may be used to improve the discriminatory performance of this test for prostate cancer; and the dual associations of these SNPs with PSA levels and prostate cancer risk raise a concern that some of reported prostate cancer risk-associated SNPs may be confounded by the prevalent use of PSA screening. PMID:19116992

  8. Polymorphisms of the resistin gene and their association with obesity and resistin levels in Malaysian Malays.

    PubMed

    Apalasamy, Yamunah Devi; Rampal, Sanjay; Salim, Agus; Moy, Foong Ming; Su, Tin Tin; Majid, Hazreen Abdul; Bulgiba, Awang; Mohamed, Zahurin

    2015-06-01

    Single nucleotide polymorphisms (SNP) in the resistin gene (RETN) are linked to obesity and resistin levels in various populations. However, results have been inconsistent. This study aimed to investigate association between polymorphisms in the resistin gene with obesity in a homogenous Malaysian Malay population. This study is also aimed to determine association between resistin levels with certain SNPs and haplotypes of RETN. A total of 631 Malaysian Malay subjects were included in this study and genotyping was carried out using Sequenom MassARRAY. There was no significant difference found in both allelic and genotype frequencies of each of the RETN SNPs between the obese and non-obese groups after Bonferroni correction. RETN rs34861192 and rs3219175 SNPs were significantly associated with log-resistin levels. The GG genotype carriers are found to have higher levels of log-resistin compared to A allele carriers. The RETN haplotypes (CAG, CGA and GA) were significantly associated with resistin levels. However, the haplotypes of the RETN gene were not associated with obesity. Resistin levels were not correlated to metabolic parameters such as body weight, waist circumference, body mass index, and lipid parameters. RETN SNPs and haplotypes are of apparent functional importance in the regulation of resistin levels but are not correlated with obesity and related markers.

  9. Association of Adenylate Cyclase 10 (ADCY10) Polymorphisms and Bone Mineral Density in Healthy Adults

    PubMed Central

    Ichikawa, Shoji; Koller, Daniel L.; Curry, Leah R.; Lai, Dongbing; Xuei, Xiaoling; Edenberg, Howard J.; Hui, Siu L.; Peacock, Munro; Foroud, Tatiana; Econs, Michael J.

    2010-01-01

    Phenotypic variation in bone mineral density (BMD) among healthy adults is influenced by both genetic and environmental factors. Genetic sequence variations in the adenylate cyclase 10 (ADCY10) gene, which is also called soluble adenylate cyclase, have previously been reported to be associated with low spinal BMD in hypercalciuric patients. Since ADCY10 is located in the region linked to spinal BMD in our previous linkage analysis, we tested whether polymorphisms in this gene are also associated with normal BMD variation in healthy adults. Sixteen single nucleotide polymorphisms (SNPs) distributed throughout ADCY10 were genotyped in two healthy groups of American whites: 1,692 premenopausal women and 715 men. Statistical analyses were performed in the two groups to test for association between these SNPs and femoral neck and lumbar spine areal BMD. We observed significant evidence of association (p<0.01) with one SNP each in men and women. Genotypes at these SNPs accounted for less than 1% of hip BMD variation in men, but 1.5% of spinal BMD in women. However, adjacent SNPs did not corroborate the association in either males or females. In conclusion, we found a modest association between an ADCY10 polymorphism and spinal areal BMD in premenopausal white women. PMID:19093065

  10. T cells are influenced by a long non-coding RNA in the autoimmune associated PTPN2 locus.

    PubMed

    Houtman, Miranda; Shchetynsky, Klementy; Chemin, Karine; Hensvold, Aase Haj; Ramsköld, Daniel; Tandre, Karolina; Eloranta, Maija-Leena; Rönnblom, Lars; Uebe, Steffen; Catrina, Anca Irinel; Malmström, Vivianne; Padyukov, Leonid

    2018-06-01

    Non-coding SNPs in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) locus have been linked with several autoimmune diseases, including rheumatoid arthritis, type I diabetes, and inflammatory bowel disease. However, the functional consequences of these SNPs are poorly characterized. Herein, we show in blood cells that SNPs in the PTPN2 locus are highly correlated with DNA methylation levels at four CpG sites downstream of PTPN2 and expression levels of the long non-coding RNA (lncRNA) LINC01882 downstream of these CpG sites. We observed that LINC01882 is mainly expressed in T cells and that anti-CD3/CD28 activated naïve CD4 + T cells downregulate the expression of LINC01882. RNA sequencing analysis of LINC01882 knockdown in Jurkat T cells, using a combination of antisense oligonucleotides and RNA interference, revealed the upregulation of the transcription factor ZEB1 and kinase MAP2K4, both involved in IL-2 regulation. Overall, our data suggests the involvement of LINC01882 in T cell activation and hints towards an auxiliary role of these non-coding SNPs in autoimmunity associated with the PTPN2 locus. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Common variants in Mendelian kidney disease genes and their association with renal function.

    PubMed

    Parsa, Afshin; Fuchsberger, Christian; Köttgen, Anna; O'Seaghdha, Conall M; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Bochud, Murielle; Heid, Iris M; Siscovick, David S; Fox, Caroline S; Kao, W Linda; Böger, Carsten A

    2013-12-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.

  12. Prevalence and Molecular Characterization of Glucose-6-Phosphate Dehydrogenase Deficiency at the China-Myanmar Border.

    PubMed

    Li, Qing; Yang, Fang; Liu, Rong; Luo, Lan; Yang, Yuling; Zhang, Lu; Liu, Huaie; Zhang, Wen; Fan, Zhixiang; Yang, Zhaoqing; Cui, Liwang; He, Yongshu

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked hereditary disease that predisposes red blood cells to oxidative damage. G6PD deficiency is particularly prevalent in historically malaria-endemic areas. Use of primaquine for malaria treatment may result in severe hemolysis in G6PD deficient patients. In this study, we systematically evaluated the prevalence of G6PD deficiency in the Kachin (Jingpo) ethnic group along the China-Myanmar border and determined the underlying G6PD genotypes. We surveyed G6PD deficiency in 1770 adult individuals (671 males and 1099 females) of the Kachin ethnicity using a G6PD fluorescent spot test. The overall prevalence of G6PD deficiency in the study population was 29.6% (523/1770), among which 27.9% and 30.6% were males and females, respectively. From these G6PD deficient samples, 198 unrelated individuals (147 females and 51 males) were selected for genotyping at 11 known G6PD single nucleotide polymorphisms (SNPs) in Southeast Asia (ten in exons and one in intron 11) using a multiplex SNaPshot assay. Mutations with known association to a deficient phenotype were detected in 43.9% (87/198) of cases, intronic and synonymous mutations were detected alone in 34.8% (69/198) cases and no mutation were found in 21.2% (42/198) cases. Five non-synonymous mutations, Mahidol 487G>A, Kaiping 1388G>A, Canton 1376G>T, Chinese 4 392G>T, and Viangchan 871G>A were detected. Of the 87 cases with known deficient mutations, the Mahidol variant was the most common (89.7%; 78/87), followed by the Kaiping (8.0%; 7/87) and the Viangchan (2.2%; 2/87) variants. The Canton and Chinese 4 variants were found in 1.1% of these 87 cases. Among them, two females carried the Mahidol/Viangchan and Mahidol/Kaiping double mutations, respectively. Interestingly, the silent SNPs 1311C>T and IVS11nt93T>C both occurred in the same 95 subjects with frequencies at 56.4% and 23.5% in tested females and males, respectively (P<0.05). It is noteworthy that 24 subjects carrying the Mahidol mutation and two carrying the Kaiping mutation also carried the 1311C>T/IVS11nt93T>C SNPs. Further studies are needed to determine the enzyme levels of the G6PD deficient people and presence of additional G6PD mutations in the study population.

  13. Large scale variation in DNA copy number in chicken breeds

    USDA-ARS?s Scientific Manuscript database

    Background Detecting genetic variation is a critical step in elucidating the molecular mechanisms underlying phenotypic diversity. Until recently, such detection has mostly focused on single nucleotide polymorphisms (SNPs) because of the ease in screening complete genomes. Another type of variant, c...

  14. SNP-based genotyping in lentil: linking sequence information with phenotypes

    USDA-ARS?s Scientific Manuscript database

    Lentil (Lens culinaris) has been late to enter the world of high throughput molecular analysis due to a general lack of genomic resources. Using a 454 sequencing-based approach, SNPs have been identified in genes across the lentil genome. Several hundred have been turned into single SNP KASP assay...

  15. Using next generation sequencing for multiplexed trait-linked markers in wheat

    USDA-ARS?s Scientific Manuscript database

    With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat (Triticum aestivum L.) that can be effectively used...

  16. Electrochemical primer extension based on polyoxometalate electroactive labels for multiplexed detection of single nucleotide polymorphisms.

    PubMed

    Chahin, Nassif; Uribe, Laura A; Debela, Ahmed M; Thorimbert, Serge; Hasenknopf, Bernold; Ortiz, Mayreli; Katakis, Ioannis; O'Sullivan, Ciara K

    2018-06-07

    Polyoxymetalates (POMs) ([SiW 11 O 39 {Sn(CH 2 ) 2 CO)}] 4- and [P 2 W 17 O 61 {Sn(CH 2 ) 2 CO)}] 6- ) were used to modify dideoxynucleotides (ddNTPs) through amide bond formation, and applied to the multiplexed detection of single nucleotide polymorphisms (SNPs) in an electrochemical primer extension reaction. Each gold electrode of an array was functionalised with a short single stranded thiolated DNA probe, specifically designed to extend with the POM-ddNTP at the SNP site to be interrogated. The system was applied to the simultaneous detection of 4 SNPs within a single stranded 103-mer model target generated using asymmetric PCR, highlighting the potential of POM-ddNTPs for targeted, multiplexed SNP detection. The four DNA bases were successfully labelled with both ([SiW 11 O 39 {Sn(CH 2 ) 2 CO)}] 4- and [P 2 W 17 O 61 {Sn(CH 2 ) 2 CO)}] 6- ), and [SiW 11 O 39 {Sn(CH 2 ) 2 CO)}] 4- demonstrated to be the more suitable due to its single oxidation peak, which provides an unequivocal signal. The POM-ddNTP enzymatically incorporated to the DNA anchored to the surface was visualised by AFM using gold coated mica. The developed assay has been demonstrated to be highly reproducible, simple to carry out and with very low non-specific background signals. Future work will focus on applying the developed platform to the detection of SNPs associated with rifampicin resistance in real samples from patients suffering from tuberculosis. Copyright © 2018. Published by Elsevier B.V.

  17. Next generation sequencing of SNPs using the HID-Ion AmpliSeq™ Identity Panel on the Ion Torrent PGM™ platform.

    PubMed

    Guo, Fei; Zhou, Yishu; Song, He; Zhao, Jinling; Shen, Hongying; Zhao, Bin; Liu, Feng; Jiang, Xianhua

    2016-11-01

    The HID-Ion AmpliSeq™ Identity Panel (the HID Identity Panel) is designed to detect 124-plex single nucleotide polymorphisms (SNPs) with next generation sequencing (NGS) technology on the Ion Torrent PGM™ platform, including 90 individual identification SNPs (IISNPs) on autosomal chromosomes and 34 lineage informative SNPs (LISNPs) on Y chromosome. In this study, we evaluated performance for the HID Identity Panel to provide a reference for NGS-SNP application, focusing on locus strand balance, locus coverage balance, heterozygote balance, and background signals. Besides, several experiments were carried out to find out improvements and limitations of this panel, including studies of species specificity, repeatability and concordance, sensitivity, mixtures, case-type samples and degraded samples, population genetics and pedigrees following the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines. In addition, Southern and Northern Chinese Han were investigated to assess applicability of this panel. Results showed this panel led to cross-reactivity with primates to some extent but rarely with non-primate animals. Repeatable and concordant genotypes could be obtained in triplicate with one exception at rs7520386. Full profiles could be obtained from 100pg input DNA, but the optimal input DNA would be 1ng-200pg with 21 initial PCR cycles. A sample with ≥20% minor contributor could be considered as a mixture by the number of homozygotes, and full profiles belonging to minor contributors could be detected between 9:1 and 1:9 mixtures with known reference profiles. Also, this assay could be used for case-type samples and degraded samples. For autosomal SNPs (A-SNPs), F ST across all 90loci was not significantly different between Southern and Northern Chinese Han or between male and female samples. All A-SNP loci were independent in Chinese Han population. Except for 18loci with H e <0.4, most of the A-SNPs in the HID Identity Panel presented high polymorphisms. Forensic parameters were calculated as >99.999% for combined discrimination power (CDP), 0.999999724 for combined power of exclusion (CPE), 1.390×10 11 for combined likelihood ratio (CLR) of trios, and 2.361×10 6 for CLR of motherless duos. For Y-SNPs, a total of 8 haplotypes were observed with the value of 0.684 for haplotype diversity. As a whole, the HID Identity Panel is a well-performed, robust, reliable and high informative NGS-SNP assay and it can fully meet requirements for individual identification and paternity testing in forensic science. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects.

    PubMed

    Dereeper, Alexis; Nicolas, Stéphane; Le Cunff, Loïc; Bacilieri, Roberto; Doligez, Agnès; Peros, Jean-Pierre; Ruiz, Manuel; This, Patrice

    2011-05-05

    High-throughput re-sequencing, new genotyping technologies and the availability of reference genomes allow the extensive characterization of Single Nucleotide Polymorphisms (SNPs) and insertion/deletion events (indels) in many plant species. The rapidly increasing amount of re-sequencing and genotyping data generated by large-scale genetic diversity projects requires the development of integrated bioinformatics tools able to efficiently manage, analyze, and combine these genetic data with genome structure and external data. In this context, we developed SNiPlay, a flexible, user-friendly and integrative web-based tool dedicated to polymorphism discovery and analysis. It integrates:1) a pipeline, freely accessible through the internet, combining existing softwares with new tools to detect SNPs and to compute different types of statistical indices and graphical layouts for SNP data. From standard sequence alignments, genotyping data or Sanger sequencing traces given as input, SNiPlay detects SNPs and indels events and outputs submission files for the design of Illumina's SNP chips. Subsequently, it sends sequences and genotyping data into a series of modules in charge of various processes: physical mapping to a reference genome, annotation (genomic position, intron/exon location, synonymous/non-synonymous substitutions), SNP frequency determination in user-defined groups, haplotype reconstruction and network, linkage disequilibrium evaluation, and diversity analysis (Pi, Watterson's Theta, Tajima's D).Furthermore, the pipeline allows the use of external data (such as phenotype, geographic origin, taxa, stratification) to define groups and compare statistical indices.2) a database storing polymorphisms, genotyping data and grapevine sequences released by public and private projects. It allows the user to retrieve SNPs using various filters (such as genomic position, missing data, polymorphism type, allele frequency), to compare SNP patterns between populations, and to export genotyping data or sequences in various formats. Our experiments on grapevine genetic projects showed that SNiPlay allows geneticists to rapidly obtain advanced results in several key research areas of plant genetic diversity. Both the management and treatment of large amounts of SNP data are rendered considerably easier for end-users through automation and integration. Current developments are taking into account new advances in high-throughput technologies.SNiPlay is available at: http://sniplay.cirad.fr/.

  19. Massively parallel sequencing of forensic STRs and SNPs using the Illumina® ForenSeq™ DNA Signature Prep Kit on the MiSeq FGx™ Forensic Genomics System.

    PubMed

    Guo, Fei; Yu, Jiao; Zhang, Lu; Li, Jun

    2017-11-01

    The ForenSeq™ DNA Signature Prep Kit (ForenSeq Kit) is designed to detect more than 200 forensically relevant markers in a single reaction on the MiSeq FGx™ Forensic Genomics System (MiSeq FGx System), including Amelogenin, 27 autosomal short tandem repeats (A-STRs), 7 X chromosomal STRs (X-STRs), 24 Y chromosomal STRs (Y-STRs) and 94 identity-informative single nucleotide polymorphisms (iSNPs) with the option to contain 22 phenotypic-informative SNPs (pSNPs) and 56 ancestry-informative SNPs (aSNPs). In this study, we evaluated the MiSeq FGx System on three major parts: methodological optimization (DNA extraction, sample quantification, library normalization, diluted libraries concentration, and sample-to-cell arrangement), massively parallel sequencing (MPS) performance (depth of coverage, sequence coverage ratio, and allele coverage ratio), and ForenSeq Kit characteristics (repeatability and concordance, sensitivity, mixture, stability and case-type samples). Results showed that quantitative polymerase chain reaction (qPCR)-based sample quantification and library normalization and the appropriate number of pooled libraries and concentration of diluted libraries provided a greater level of MPS performance and repeatability. Repeatable and concordant genotypes were obtained by the ForenSeq Kit. Full profiles were obtained from ≥100pg input DNA for STRs and ≥200pg for SNPs. A sample with ≥5% minor contributors was considered as a mixture by imbalanced allele coverage ratio distribution, and full profiles from minor contributors were easily detected between 9:1 and 1:9 mixtures with known reference profiles. The ForenSeq Kit tolerated considerable concentrations of inhibitors like ≤200μM hematin and ≤50μg/ml humic acid, and >56% STR profiles and >88% SNP profiles were obtained from ≥200-bp degraded samples. Also, it was adapted to case-type samples. As a whole, the ForenSeq Kit is a well-performed, robust, reliable, reproducible and highly informative assay, and it can fully meet requirements for human identification. Further, sensitive QC indicator and automated sample comparison function in the ForenSeq™ Universal Analysis Software are quite helpful, so that we can concentrate on questionable genotypes and avoid tedious and time-consuming labor to maximum the time spent in data analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Examination of chromosome 7p22 candidate genes RBaK, PMS2 and GNA12 in familial hyperaldosteronism type II.

    PubMed

    Jeske, Y W A; So, A; Kelemen, L; Sukor, N; Willys, C; Bulmer, B; Gordon, R D; Duffy, D; Stowasser, M

    2008-04-01

    1. There are two types of familial hyperaldosteronism (FH): FH-I and FH-II. FH-I is caused by a hybrid CYP11B1/CYP11B2 gene mutation. The genetic cause of FH-II, which is more common, is unknown. Adrenal hyperplasia and adenomas are features. We previously reported linkage of FH-II to a approximately 5 Mb region on chromosome 7p22. We subsequently reported finding no causative mutations in the retinoblastoma-associated Kruppel-associated box gene (RBaK), a candidate at 7p22 involved in tumorigenesis and cell cycle control. 2. In the current study we investigated RBaK regulatory regions and two other candidate genes: postmeiotic segregation increased 2 (PMS2, involved in DNA mismatch repair and tumour predisposition) and guanine nucleotide-binding protein alpha-12 (GNA12, a transforming oncogene). 3. The GNA12 and PMS2 genes were examined in two affected (A1, A2) and two unaffected (U1, U2) subjects from a large 7p22-linked FH-II family (family 1). No mutations were found. 4. The RBaK and PMS2 distal promoters were sequenced to -2150 bp from the transcription start site for RBaK and-2800 bp for PMS2. Five unreported single nucleotide polymorphisms (SNPs) were found in subjects A1, A2 but not in U1 or U2; A(-2031 bp)T, T(-2030 bp)G, G(-834 bp)C, C(-821 bp)G in RBaK and A(-876 bp)G in PMS2. Additional affected and unaffected subjects from family 1 and from two other 7p22-linked FH-II families and 58 unrelated normotensive control subjects were genotyped for these SNPs. 5. The five novel SNPs were found to be present in a significant proportion of normotensive controls. The four RBaK promoter SNPs were found to be in linkage disequilibrium in the normal population. The RBaK promoter (-)2031T/2030G/834C/821T allele was found to be in linkage disequilibrium with the causative mutation in FH-II family 1, but not in families 2 and 3. The PMS2 promoter (-)876G allele was also found to be linked to affected phenotypes in family 1. 6. The RBaK and PMS2 promoter SNPs alter the binding sites for several transcription factors. Although present in the normal population, it is possible that the RBaK (-)2031T/2030G/834C/821T and PMS2 (-)876G alleles may have functional roles contributing to the FH-II phenotype in family 1.

  1. Identification and validation of single nucleotide polymorphisms as tools to detect hybridization and population structure in freshwater stingrays.

    PubMed

    Cruz, Vanessa P; Vera, Manuel; Pardo, Belén G; Taggart, John; Martinez, Paulino; Oliveira, Claudio; Foresti, Fausto

    2017-05-01

    Single nucleotide polymorphism (SNP) markers were identified and validated for two stingrays species, Potamotrygon motoro and Potamotrygon falkneri, using double digest restriction-site associated DNA (ddRAD) reads using 454-Roche technology. A total of 226 774 reads (65.5 Mb) were obtained (mean read length 289 ± 183 bp) detecting a total of 5399 contigs (mean contig length: 396 ± 91 bp). Mining this data set, a panel of 143 in silico SNPs was selected. Eighty-two of these SNPs were successfully validated and 61 were polymorphic: 14 in P. falkneri, 21 in P. motoro, 3 in both species and 26 fixed for alternative variants in both species, thus being useful for population analyses and hybrid detection. © 2016 John Wiley & Sons Ltd.

  2. Association of type 2 diabetes susceptibility genes (TCF7L2, SLC30A8, PCSK1 and PCSK2) and proinsulin conversion in a Chinese population.

    PubMed

    Zheng, Xiaoya; Ren, Wei; Zhang, Suhua; Liu, Jingjing; Li, Sufang; Li, Jinchao; Yang, Ping; He, Jun; Su, Shaochu; Li, Ping

    2012-01-01

    TCF7L2 and SLC30A8 have been found to be associated with type 2 diabetes mellitus (T2DM) as well as with impaired proinsulin processing recently, enzymes encoded by PCSK1 and PCSK2 are reported to play an important role in the process of proinsulin conversion. To investigate whether the single nucleotide polymorphisms (SNPs) of TCF7L2, SLC30A8, PCSK1 and PCSK2 were associated with T2DM as well as with proinsulin conversion in a Han Chinese population from Chongqing. A case-control study was performed in Han Chinese subjects with normal control (n=152) and T2DM (n=227), we genotyped rs7903146 and rs11196218 at TCF7L2, rs13266634 at SLC30A8, rs3811951 at PCSK1 and rs2021785 at PCSK2. Plasma levels of proinsulin were measured with an Enzyme Linked Immunosorbent Assay (ELISA). Genotype distribution and associations with T2DM and fasting levels of proinsulin and proinsulin/insulin ratios were analyzed. We confirmed the association of risk allele of rs2021785 at PCSK2 with type 2 diabetes also existed in Han Chinese population [OR=1.4489 with 95% CI (1.0285, 2.0412), P=0.0335]. Rs13266634 at SLC30A8 had a tendency to be associated with fasting plasma levels of proinsulin (P=0.0639 in additive model). We did not find the significant association between other SNPs and T2DM or fasting levels of proinsulin or proinsulin/insulin ratios. Our results provide evidence that the association of PCSK2 and T2DM was also existed in Han Chinese population in Chongqing. We were underpowered to detect the association between other SNPs and T2DM or proinsulin conversion.

  3. A phylogenetic framework facilitates Y-STR variant discovery and classification via massively parallel sequencing.

    PubMed

    Huszar, Tunde I; Jobling, Mark A; Wetton, Jon H

    2018-04-12

    Short tandem repeats on the male-specific region of the Y chromosome (Y-STRs) are permanently linked as haplotypes, and therefore Y-STR sequence diversity can be considered within the robust framework of a phylogeny of haplogroups defined by single nucleotide polymorphisms (SNPs). Here we use massively parallel sequencing (MPS) to analyse the 23 Y-STRs in Promega's prototype PowerSeq™ Auto/Mito/Y System kit (containing the markers of the PowerPlex® Y23 [PPY23] System) in a set of 100 diverse Y chromosomes whose phylogenetic relationships are known from previous megabase-scale resequencing. Including allele duplications and alleles resulting from likely somatic mutation, we characterised 2311 alleles, demonstrating 99.83% concordance with capillary electrophoresis (CE) data on the same sample set. The set contains 267 distinct sequence-based alleles (an increase of 58% compared to the 169 detectable by CE), including 60 novel Y-STR variants phased with their flanking sequences which have not been reported previously to our knowledge. Variation includes 46 distinct alleles containing non-reference variants of SNPs/indels in both repeat and flanking regions, and 145 distinct alleles containing repeat pattern variants (RPV). For DYS385a,b, DYS481 and DYS390 we observed repeat count variation in short flanking segments previously considered invariable, and suggest new MPS-based structural designations based on these. We considered the observed variation in the context of the Y phylogeny: several specific haplogroup associations were observed for SNPs and indels, reflecting the low mutation rates of such variant types; however, RPVs showed less phylogenetic coherence and more recurrence, reflecting their relatively high mutation rates. In conclusion, our study reveals considerable additional diversity at the Y-STRs of the PPY23 set via MPS analysis, demonstrates high concordance with CE data, facilitates nomenclature standardisation, and places Y-STR sequence variants in their phylogenetic context. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Association of Genetic Variants with Self-Assessed Color Categories in Brazilians

    PubMed Central

    Durso, Danielle Fernandes; Bydlowski, Sergio Paulo; Hutz, Mara Helena; Suarez-Kurtz, Guilherme; Magalhães, Tiago R.; Junho Pena, Sérgio Danilo

    2014-01-01

    The Brazilian population was formed by extensive admixture of three different ancestral roots: Amerindians, Europeans and Africans. Our previous work has shown that at an individual level, ancestry, as estimated using molecular markers, was a poor predictor of color in Brazilians. We now investigate if SNPs known to be associated with human skin pigmentation can be used to predict color in Brazilians. For that, we studied the association of fifteen SNPs, previously known to be linked with skin color, in 243 unrelated Brazilian individuals self-identified as White, Browns or Blacks from Rio de Janeiro and 212 unrelated Brazilian individuals self-identified as White or Blacks from São Paulo. The significance of association of SNP genotypes with self-assessed color was evaluated using partial regression analysis. After controlling for ancestry estimates as covariates, only four SNPs remained significantly associated with skin pigmentation: rs1426654 and rs2555364 within SLC24A5, rs16891982 at SLC45A2 and rs1042602 at TYR. These loci are known to be involved in melanin synthesis or transport of melanosomes. We found that neither genotypes of these SNPs, nor their combination with biogeographical ancestry in principal component analysis, could predict self-assessed color in Brazilians at an individual level. However, significant correlations did emerge at group level, demonstrating that even though elements other than skin, eye and hair pigmentation do influence self-assessed color in Brazilians, the sociological act of self-classification is still substantially dependent of genotype at these four SNPs. PMID:24416183

  5. Genetic effects of PDGFRB and MARCH1 identified in GWAS revealing strong associations with semen production traits in Chinese Holstein bulls.

    PubMed

    Liu, Shuli; Yin, Hongwei; Li, Cong; Qin, Chunhua; Cai, Wentao; Cao, Mingyue; Zhang, Shengli

    2017-07-03

    Using a genome-wide association study strategy, our previous study discovered 19 significant single-nucleotide polymorphisms (SNPs) related to semen production traits in Chinese Holstein bulls. Among them, three SNPs were within or close to the phosphodiesterase 3A (PDE3A), membrane associated ring-CH-type finger 1 (MARCH1) and platelet derived growth factor receptor beta (PDGFRB) genes. The present study was designed with the objectives of identifying genetic polymorphism of the PDE3A, PDGFRB and MARCH1 genes and their effects on semen production traits in a Holstein bull population. A total of 20 SNPs were detected and genotyped in 730 bulls. Association analyses using de-regressed estimated breeding values of each semen production trait revealed four statistically significant SNPs for one or more semen production traits (P < 0.05): one SNP was located downstream of PDGFRB and three SNPs were located in the promoter of MARCH1. Interestingly, for MARCH1, haplotype-based analysis revealed significant associations of haplotypes with semen volume per ejaculate. Furthermore, high expression of the MARCH1 gene was observed in sperm cells. One SNP (rs43445726) in the regulatory region of MARCH1 had a significant effect on gene expression. Our study demonstrated the significant associations of genetic variants of the PDGFRB and MARCH1 genes with semen production traits. The identified SNPs may serve as genetic markers to optimize breeding programs for semen production traits in Holstein bull populations.

  6. Nonsynonymous Polymorphism in Guanine Monophosphate Synthetase Is a Risk Factor for Unfavorable Thiopurine Metabolite Ratios in Patients With Inflammatory Bowel Disease.

    PubMed

    Roberts, Rebecca L; Wallace, Mary C; Seinen, Margien L; van Bodegraven, Adriaan A; Krishnaprasad, Krupa; Jones, Gregory T; van Rij, Andre M; Baird, Angela; Lawrance, Ian C; Prosser, Ruth; Bampton, Peter; Grafton, Rachel; Simms, Lisa A; Studd, Corrie; Bell, Sally J; Kennedy, Martin A; Halliwell, Jacob; Gearry, Richard B; Radford-Smith, Graham; Andrews, Jane M; McHugh, Patrick C; Barclay, Murray L

    2018-05-16

    Up to 20% of patients with inflammatory bowel disease (IBD) who are refractory to thiopurine therapy preferentially produce 6-methylmercaptopurine (6-MMP) at the expense of 6-thioguanine nucleotides (6-TGN), resulting in a high 6-MMP:6-TGN ratio (>20). The objective of this study was to evaluate whether genetic variability in guanine monophosphate synthetase (GMPS) contributes to preferential 6-MMP metabolizer phenotype. Exome sequencing was performed in a cohort of IBD patients with 6-MMP:6-TGN ratios of >100 to identify nonsynonymous single nucleotide polymorphisms (nsSNPs). In vitro assays were performed to measure GMPS activity associated with these nsSNPs. Frequency of the nsSNPs was measured in a cohort of 530 Caucasian IBD patients. Two nsSNPs in GMPS (rs747629729, rs61750370) were detected in 11 patients with very high 6-MMP:6-TGN ratios. The 2 nsSNPs were predicted to be damaging by in silico analysis. In vitro assays demonstrated that both nsSNPs resulted in a significant reduction in GMPS activity (P < 0.05). The SNP rs61750370 was significantly associated with 6-MMP:6-TGN ratios ≥100 (odds ratio, 5.64; 95% confidence interval, 1.01-25.12; P < 0.031) in a subset of 264 Caucasian IBD patients. The GMPS SNP rs61750370 may be a reliable risk factor for extreme 6MMP preferential metabolism.

  7. The investigation of genetic polymorphisms in the carbonic anhydrase VI gene exon 2 and salivary parameters in type 2 diabetic patients and healthy adults.

    PubMed

    Koç Öztürk, Leyla; Ulucan, Korkut; Akyüz, Serap; Furuncuoğlu, Halit; Bayer, Hikmet; Yarat, Ayşen

    2012-05-01

    The aim of this study was to investigate carbonic anhydrase (CA) VI Exon 2 single nucleotide polymorphism (SNP) and its possible association with salivary parameters in type 2 diabetic patients compared to healthy adults. Caries status was measured by using the DMFT (number of decayed, missing, and filled teeth) index. Unstimulated whole saliva and blood samples were taken. SNPs of CA gene exon 2 were determined by PCR and DNA sequencing. Salivary CA activity and buffering capacity were determined by the method of Verpoorte and Ericson, respectively. Furthermore, salivary pH was measured with pH paper and salivary flow rate was calculated. Salivary buffering capacity and pH were significantly lower in diabetic patients than those of healthy subjects (P < 0.05). Salivary flow rate, CA activity and DMFT levels did not differ between groups (P > 0.05). Four SNPs were detected; their pubmed database number are rs2274327 (C/T), rs2274328 (A/C), rs2274329 (G/C) and rs2274330. While first three of those were responsible for amino acid changes, the last one was not. The frequencies of SNPs were not significant between groups (P > 0.05). Positive significant correlation was found between CA activity and the frequency of SNPs. There was no correlation between the SNPs frequencies and pH or buffering capacity. SNPs found in this study may be related to salivary CA activity in diabetics.

  8. Functional variants of human papillomavirus type 16 demonstrate host genome integration and transcriptional alterations corresponding to their unique cancer epidemiology.

    PubMed

    Jackson, Robert; Rosa, Bruce A; Lameiras, Sonia; Cuninghame, Sean; Bernard, Josee; Floriano, Wely B; Lambert, Paul F; Nicolas, Alain; Zehbe, Ingeborg

    2016-11-02

    Human papillomaviruses (HPVs) are a worldwide burden as they are a widespread group of tumour viruses in humans. Having a tropism for mucosal tissues, high-risk HPVs are detected in nearly all cervical cancers. HPV16 is the most common high-risk type but not all women infected with high-risk HPV develop a malignant tumour. Likely relevant, HPV genomes are polymorphic and some HPV16 single nucleotide polymorphisms (SNPs) are under evolutionary constraint instigating variable oncogenicity and immunogenicity in the infected host. To investigate the tumourigenicity of two common HPV16 variants, we used our recently developed, three-dimensional organotypic model reminiscent of the natural HPV infectious cycle and conducted various "omics" and bioinformatics approaches. Based on epidemiological studies we chose to examine the HPV16 Asian-American (AA) and HPV16 European Prototype (EP) variants. They differ by three non-synonymous SNPs in the transforming and virus-encoded E6 oncogene where AAE6 is classified as a high- and EPE6 as a low-risk variant. Remarkably, the high-risk AAE6 variant genome integrated into the host DNA, while the low-risk EPE6 variant genome remained episomal as evidenced by highly sensitive Capt-HPV sequencing. RNA-seq experiments showed that the truncated form of AAE6, integrated in chromosome 5q32, produced a local gene over-expression and a large variety of viral-human fusion transcripts, including long distance spliced transcripts. In addition, differential enrichment of host cell pathways was observed between both HPV16 E6 variant-containing epithelia. Finally, in the high-risk variant, we detected a molecular signature of host chromosomal instability, a common property of cancer cells. We show how naturally occurring SNPs in the HPV16 E6 oncogene cause significant changes in the outcome of HPV infections and subsequent viral and host transcriptome alterations prone to drive carcinogenesis. Host genome instability is closely linked to viral integration into the host genome of HPV-infected cells, which is a key phenomenon for malignant cellular transformation and the reason for uncontrolled E6 oncogene expression. In particular, the finding of variant-specific integration potential represents a new paradigm in HPV variant biology.

  9. Application of the stepwise focusing method to optimize the cost-effectiveness of genome-wide association studies with limited research budgets for genotyping and phenotyping.

    PubMed

    Ohashi, J; Clark, A G

    2005-05-01

    The recent cataloguing of a large number of SNPs enables us to perform genome-wide association studies for detecting common genetic variants associated with disease. Such studies, however, generally have limited research budgets for genotyping and phenotyping. It is therefore necessary to optimize the study design by determining the most cost-effective numbers of SNPs and individuals to analyze. In this report we applied the stepwise focusing method, with two-stage design, developed by Satagopan et al. (2002) and Saito & Kamatani (2002), to optimize the cost-effectiveness of a genome-wide direct association study using a transmission/disequilibrium test (TDT). The stepwise focusing method consists of two steps: a large number of SNPs are examined in the first focusing step, and then all the SNPs showing a significant P-value are tested again using a larger set of individuals in the second focusing step. In the framework of optimization, the numbers of SNPs and families and the significance levels in the first and second steps were regarded as variables to be considered. Our results showed that the stepwise focusing method achieves a distinct gain of power compared to a conventional method with the same research budget.

  10. Variability of the caprine whey protein genes and their association with milk yield, composition and renneting properties in the Sarda breed. 1. The LALBA gene.

    PubMed

    Dettori, Maria Luisa; Pazzola, Michele; Paschino, Pietro; Pira, Maria Giovanna; Vacca, Giuseppe Massimo

    2015-11-01

    The 5' flanking region and 3' UTR of the caprine LALBA gene were analysed by SSCP and sequencing. A total of nine SNPs were detected: three in the promoter region, two were synonymous coding SNPs at exon-1, and four SNPs were in exon-4, within the 3'UTR. The nucleotide changes located in the promoter region (c.-358T>C, c.-163G>A, c.-121T>G) were genotyped by SSCP in 263 Sarda goats to evaluate their possible effect on milk yield, composition and renneting properties. We observed an effect of the three SNPs on milk yield and lactose content. Genotypes TT and CT at c.-358T>C (P A (P C and c.-121T>G were part of transcription factors binding sites, potentially involved in modulating the LALBA gene expression. The LALBA genotype affected renneting properties (P < 0.001), as heterozygotes c.-358CT and c.-163GA were characterised by delayed rennet coagulation time and curd firming time and the lowest value of curd firmness. The present investigation increases the panel of SNPs and adds new information about the effects of the caprine LALBA gene polymorphism.

  11. Development of a set of SNP markers present in expressed genes of the apple.

    PubMed

    Chagné, David; Gasic, Ksenija; Crowhurst, Ross N; Han, Yuepeng; Bassett, Heather C; Bowatte, Deepa R; Lawrence, Timothy J; Rikkerink, Erik H A; Gardiner, Susan E; Korban, Schuyler S

    2008-11-01

    Molecular markers associated with gene coding regions are useful tools for bridging functional and structural genomics. Due to their high abundance in plant genomes, single nucleotide polymorphisms (SNPs) are present within virtually all genomic regions, including most coding sequences. The objective of this study was to develop a set of SNPs for the apple by taking advantage of the wealth of genomics resources available for the apple, including a large collection of expressed sequenced tags (ESTs). Using bioinformatics tools, a search for SNPs within an EST database of approximately 350,000 sequences developed from a variety of apple accessions was conducted. This resulted in the identification of a total of 71,482 putative SNPs. As the apple genome is reported to be an ancient polyploid, attempts were made to verify whether those SNPs detected in silico were attributable either to allelic polymorphisms or to gene duplication or paralogous or homeologous sequence variations. To this end, a set of 464 PCR primer pairs was designed, PCR was amplified using two subsets of plants, and the PCR products were sequenced. The SNPs retrieved from these sequences were then mapped onto apple genetic maps, including a newly constructed map of a Royal Gala x A689-24 cross and a Malling 9 x Robusta 5, map using a bin mapping strategy. The SNP genotyping was performed using the high-resolution melting (HRM) technique. A total of 93 new markers containing 210 coding SNPs were successfully mapped. This new set of SNP markers for the apple offers new opportunities for understanding the genetic control of important horticultural traits using quantitative trait loci (QTL) or linkage disequilibrium analysis. These also serve as useful markers for aligning physical and genetic maps, and as potential transferable markers across the Rosaceae family.

  12. Association of single-nucleotide polymorphisms of the tau gene with late-onset Parkinson disease.

    PubMed

    Martin, E R; Scott, W K; Nance, M A; Watts, R L; Hubble, J P; Koller, W C; Lyons, K; Pahwa, R; Stern, M B; Colcher, A; Hiner, B C; Jankovic, J; Ondo, W G; Allen, F H; Goetz, C G; Small, G W; Masterman, D; Mastaglia, F; Laing, N G; Stajich, J M; Ribble, R C; Booze, M W; Rogala, A; Hauser, M A; Zhang, F; Gibson, R A; Middleton, L T; Roses, A D; Haines, J L; Scott, B L; Pericak-Vance, M A; Vance, J M

    2001-11-14

    The human tau gene, which promotes assembly of neuronal microtubules, has been associated with several rare neurologic diseases that clinically include parkinsonian features. We recently observed linkage in idiopathic Parkinson disease (PD) to a region on chromosome 17q21 that contains the tau gene. These factors make tau a good candidate for investigation as a susceptibility gene for idiopathic PD, the most common form of the disease. To investigate whether the tau gene is involved in idiopathic PD. Among a sample of 1056 individuals from 235 families selected from 13 clinical centers in the United States and Australia and from a family ascertainment core center, we tested 5 single-nucleotide polymorphisms (SNPs) within the tau gene for association with PD, using family-based tests of association. Both affected (n = 426) and unaffected (n = 579) family members were included; 51 individuals had unclear PD status. Analyses were conducted to test individual SNPs and SNP haplotypes within the tau gene. Family-based tests of association, calculated using asymptotic distributions. Analysis of association between the SNPs and PD yielded significant evidence of association for 3 of the 5 SNPs tested: SNP 3, P =.03; SNP 9i, P =.04; and SNP 11, P =.04. The 2 other SNPs did not show evidence of significant association (SNP 9ii, P =.11, and SNP 9iii, P =.87). Strong evidence of association was found with haplotype analysis, with a positive association with one haplotype (P =.009) and a negative association with another haplotype (P =.007). Substantial linkage disequilibrium (P<.001) was detected between 4 of the 5 SNPs (SNPs 3, 9i, 9ii, and 11). This integrated approach of genetic linkage and positional association analyses implicates tau as a susceptibility gene for idiopathic PD.

  13. Dissecting the genetics of the human transcriptome identifies novel trait-related trans-eQTLs and corroborates the regulatory relevance of non-protein coding loci†

    PubMed Central

    Kirsten, Holger; Al-Hasani, Hoor; Holdt, Lesca; Gross, Arnd; Beutner, Frank; Krohn, Knut; Horn, Katrin; Ahnert, Peter; Burkhardt, Ralph; Reiche, Kristin; Hackermüller, Jörg; Löffler, Markus; Teupser, Daniel; Thiery, Joachim; Scholz, Markus

    2015-01-01

    Genetics of gene expression (eQTLs or expression QTLs) has proved an indispensable tool for understanding biological pathways and pathomechanisms of trait-associated SNPs. However, power of most genome-wide eQTL studies is still limited. We performed a large eQTL study in peripheral blood mononuclear cells of 2112 individuals increasing the power to detect trans-effects genome-wide. Going beyond univariate SNP-transcript associations, we analyse relations of eQTLs to biological pathways, polygenetic effects of expression regulation, trans-clusters and enrichment of co-localized functional elements. We found eQTLs for about 85% of analysed genes, and 18% of genes were trans-regulated. Local eSNPs were enriched up to a distance of 5 Mb to the transcript challenging typically implemented ranges of cis-regulations. Pathway enrichment within regulated genes of GWAS-related eSNPs supported functional relevance of identified eQTLs. We demonstrate that nearest genes of GWAS-SNPs might frequently be misleading functional candidates. We identified novel trans-clusters of potential functional relevance for GWAS-SNPs of several phenotypes including obesity-related traits, HDL-cholesterol levels and haematological phenotypes. We used chromatin immunoprecipitation data for demonstrating biological effects. Yet, we show for strongly heritable transcripts that still little trans-chromosomal heritability is explained by all identified trans-eSNPs; however, our data suggest that most cis-heritability of these transcripts seems explained. Dissection of co-localized functional elements indicated a prominent role of SNPs in loci of pseudogenes and non-coding RNAs for the regulation of coding genes. In summary, our study substantially increases the catalogue of human eQTLs and improves our understanding of the complex genetic regulation of gene expression, pathways and disease-related processes. PMID:26019233

  14. Association of Notch3 single-nucleotide polymorphisms and lacunar infarctions in patients.

    PubMed

    Li, Ying; Liu, Nan; Chen, Hui; Huang, Yonghua; Zhang, Weiwei

    2016-01-01

    Cerebrovascular disease is a leading cause of morbidity and mortality worldwide, which is influenced by genetic and environmental factors. The aim of the present study was to examine the association between single-nucleotide polymorphisms (SNPs) in Notch3 exons 3-6 and lacunar infarction by comparing SNPs between control subjects and those with lacunar infarction. A single-center case-control study was conducted to investigate the association between Notch3 SNPs and risk of stroke. A total of 140 patients were included in the study, 30 of whom had no infarction (control) and 110 had lacunar infarction. Lacunar patients were divided into the 'pure lacunar' and 'lacunar + leukoarasis' groups based on brain imaging. All the patients were of Chinese Han ethnicity, and the male to female ratio was 84:56. Patient clinical histories included hypertension, diabetes mellitus (DM), hyperlipidemia, and heart disease were recorded. The Notch3 sequence was obtained from the National Centser for Biotechnology Information database. Notch3 was amplified by polymerase chain reaction from whole blood samples, and exons 3-6 were sequenced to identify SNPs. The result showed that there was no significant difference in the prevalence of hypertension, DM, hyperlipidemia, and heart disease between the control and lacunar infarction patients. Notabley, the age of the lacunar + leukoarasis patients was significantly higher than that of the control and pure lacunar patients (P<0.05). Eight SNPs were detected at low frequencies, and only rs3815388 and rs1043994 exhibited slightly higher frequencies. A χ 2 test indicated that Notch3 SNPs, particularly rs1043994, were associated with lacunar infarction (P<0.05). In conclusion, the result of the present study have shown that Notch3 SNPs, particularly rs1043994, are associated with lacunar infarction.

  15. A genome-wide association study of seed protein and oil content in soybean

    PubMed Central

    2014-01-01

    Background Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. Results A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r 2 ) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. Conclusions This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise marker-assisted allele selection and will expedite positional cloning of the causal gene(s). PMID:24382143

  16. SNP discovery by high-throughput sequencing in soybean

    PubMed Central

    2010-01-01

    Background With the advance of new massively parallel genotyping technologies, quantitative trait loci (QTL) fine mapping and map-based cloning become more achievable in identifying genes for important and complex traits. Development of high-density genetic markers in the QTL regions of specific mapping populations is essential for fine-mapping and map-based cloning of economically important genes. Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variation existing between any diverse genotypes that are usually used for QTL mapping studies. The massively parallel sequencing technologies (Roche GS/454, Illumina GA/Solexa, and ABI/SOLiD), have been widely applied to identify genome-wide sequence variations. However, it is still remains unclear whether sequence data at a low sequencing depth are enough to detect the variations existing in any QTL regions of interest in a crop genome, and how to prepare sequencing samples for a complex genome such as soybean. Therefore, with the aims of identifying SNP markers in a cost effective way for fine-mapping several QTL regions, and testing the validation rate of the putative SNPs predicted with Solexa short sequence reads at a low sequencing depth, we evaluated a pooled DNA fragment reduced representation library and SNP detection methods applied to short read sequences generated by Solexa high-throughput sequencing technology. Results A total of 39,022 putative SNPs were identified by the Illumina/Solexa sequencing system using a reduced representation DNA library of two parental lines of a mapping population. The validation rates of these putative SNPs predicted with low and high stringency were 72% and 85%, respectively. One hundred sixty four SNP markers resulted from the validation of putative SNPs and have been selectively chosen to target a known QTL, thereby increasing the marker density of the targeted region to one marker per 42 K bp. Conclusions We have demonstrated how to quickly identify large numbers of SNPs for fine mapping of QTL regions by applying massively parallel sequencing combined with genome complexity reduction techniques. This SNP discovery approach is more efficient for targeting multiple QTL regions in a same genetic population, which can be applied to other crops. PMID:20701770

  17. A genome-wide association study of seed protein and oil content in soybean.

    PubMed

    Hwang, Eun-Young; Song, Qijian; Jia, Gaofeng; Specht, James E; Hyten, David L; Costa, Jose; Cregan, Perry B

    2014-01-02

    Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r2) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise marker-assisted allele selection and will expedite positional cloning of the causal gene(s).

  18. Effect of two non-synonymous ecto-5'-nucleotidase variants on the genetic architecture of inosine 5'-monophosphate (IMP) and its degradation products in Japanese Black beef.

    PubMed

    Uemoto, Yoshinobu; Ohtake, Tsuyoshi; Sasago, Nanae; Takeda, Masayuki; Abe, Tsuyoshi; Sakuma, Hironori; Kojima, Takatoshi; Sasaki, Shinji

    2017-11-13

    Umami is a Japanese term for the fifth basic taste and is an important sensory property of beef palatability. Inosine 5'-monophosphate (IMP) contributes to umami taste in beef. Thus, the overall change in concentration of IMP and its degradation products can potentially affect the beef palatability. In this study, we investigated the genetic architecture of IMP and its degradation products in Japanese Black beef. First, we performed genome-wide association study (GWAS), candidate gene analysis, and functional analysis to detect the causal variants that affect IMP, inosine, and hypoxanthine. Second, we evaluated the allele frequencies in the different breeds, the contribution of genetic variance, and the effect on other economical traits using the detected variants. A total of 574 Japanese Black cattle were genotyped using the Illumina BovineSNP50 BeadChip and were then used for GWAS. The results of GWAS showed that the genome-wide significant single nucleotide polymorphisms (SNPs) on BTA9 were detected for IMP, inosine, and hypoxanthine. The ecto-5'-nucleotidase (NT5E) gene, which encodes the enzyme NT5E for the extracellular degradation of IMP to inosine, was located near the significant region on BTA9. The results of candidate gene analysis and functional analysis showed that two non-synonymous SNPs (c.1318C > T and c.1475 T > A) in NT5E affected the amount of IMP and its degradation products in beef by regulating the enzymatic activity of NT5E. The Q haplotype showed a positive effect on IMP and a negative effect on the enzymatic activity of NT5E in IMP degradation. The two SNPs were under perfect linkage disequilibrium in five different breeds, and different haplotype frequencies were seen among breeds. The two SNPs contribute to about half of the total genetic variance in IMP, and the results of genetic relationship between IMP and its degradation products showed that NT5E affected the overall concentration balance of IMP and its degradation products. In addition, the SNPs in NT5E did not have an unfavorable effect on the other economical traits. Based on all the above findings taken together, two non-synonymous SNPs in NT5E would be useful for improving IMP and its degradation products by marker-assisted selection in Japanese Black cattle.

  19. A high-quality human reference panel reveals the complexity and distribution of genomic structural variants.

    PubMed

    Hehir-Kwa, Jayne Y; Marschall, Tobias; Kloosterman, Wigard P; Francioli, Laurent C; Baaijens, Jasmijn A; Dijkstra, Louis J; Abdellaoui, Abdel; Koval, Vyacheslav; Thung, Djie Tjwan; Wardenaar, René; Renkens, Ivo; Coe, Bradley P; Deelen, Patrick; de Ligt, Joep; Lameijer, Eric-Wubbo; van Dijk, Freerk; Hormozdiari, Fereydoun; Uitterlinden, André G; van Duijn, Cornelia M; Eichler, Evan E; de Bakker, Paul I W; Swertz, Morris A; Wijmenga, Cisca; van Ommen, Gert-Jan B; Slagboom, P Eline; Boomsma, Dorret I; Schönhuth, Alexander; Ye, Kai; Guryev, Victor

    2016-10-06

    Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic variation. Here, we analyse whole genome sequencing data of 769 individuals from 250 Dutch families, and provide a haplotype-resolved map of 1.9 million genome variants across 9 different variant classes, including novel forms of complex indels, and retrotransposition-mediated insertions of mobile elements and processed RNAs. A large proportion are previously under reported variants sized between 21 and 100 bp. We detect 4 megabases of novel sequence, encoding 11 new transcripts. Finally, we show 191 known, trait-associated SNPs to be in strong linkage disequilibrium with SVs and demonstrate that our panel facilitates accurate imputation of SVs in unrelated individuals.

  20. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus

    USDA-ARS?s Scientific Manuscript database

    Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 ...

  1. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation.

    PubMed

    Howe, Glenn T; Yu, Jianbin; Knaus, Brian; Cronn, Richard; Kolpak, Scott; Dolan, Peter; Lorenz, W Walter; Dean, Jeffrey F D

    2013-02-28

    Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties of Douglas-fir (vars. menziesii and glauca) are native to North America, the coastal variety is also widely planted for timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a 454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference, identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping platform. We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and 102,623 singletons from 2.76 million 454 and Sanger cDNA sequences from coastal Douglas-fir. We identified 278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium SNP genotyping array. Of these SNPs, 5847 (72.5%) were called successfully and were polymorphic. Based on our validation efficiency, our SNP database may contain as many as ~200,000 true SNPs, and as many as ~69,000 SNPs that could be genotyped at ~20,000 gene loci using an Infinium II array-more SNPs than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation and potential responses to climate change.

  2. Heritability of submaximal exercise heart rate response to exercise training is accounted for by nine SNPs.

    PubMed

    Rankinen, Tuomo; Sung, Yun Ju; Sarzynski, Mark A; Rice, Treva K; Rao, D C; Bouchard, Claude

    2012-03-01

    Endurance training-induced changes in hemodynamic traits are heritable. However, few genes associated with heart rate training responses have been identified. The purpose of our study was to perform a genome-wide association study to uncover DNA sequence variants associated with submaximal exercise heart rate training responses in the HERITAGE Family Study. Heart rate was measured during steady-state exercise at 50 W (HR50) on 2 separate days before and after a 20-wk endurance training program in 483 white subjects from 99 families. Illumina HumanCNV370-Quad v3.0 BeadChips were genotyped using the Illumina BeadStation 500GX platform. After quality control procedures, 320,000 single-nucleotide polymorphisms (SNPs) were available for the genome-wide association study analyses, which were performed using the MERLIN software package (single-SNP analyses and conditional heritability tests) and standard regression models (multivariate analyses). The strongest associations for HR50 training response adjusted for age, sex, body mass index, and baseline HR50 were detected with SNPs at the YWHAQ locus on chromosome 2p25 (P = 8.1 × 10(-7)), the RBPMS locus on chromosome 8p12 (P = 3.8 × 10(-6)), and the CREB1 locus on chromosome 2q34 (P = 1.6 × 10(-5)). In addition, 37 other SNPs showed P values <9.9 × 10(-5). After removal of redundant SNPs, the 10 most significant SNPs explained 35.9% of the ΔHR50 variance in a multivariate regression model. Conditional heritability tests showed that nine of these SNPs (all intragenic) accounted for 100% of the ΔHR50 heritability. Our results indicate that SNPs in nine genes related to cardiomyocyte and neuronal functions, as well as cardiac memory formation, fully account for the heritability of the submaximal heart rate training response.

  3. Population differentiation in allele frequencies of obesity-associated SNPs.

    PubMed

    Mao, Linyong; Fang, Yayin; Campbell, Michael; Southerland, William M

    2017-11-10

    Obesity is emerging as a global health problem, with more than one-third of the world's adult population being overweight or obese. In this study, we investigated worldwide population differentiation in allele frequencies of obesity-associated SNPs (single nucleotide polymorphisms). We collected a total of 225 obesity-associated SNPs from a public database. Their population-level allele frequencies were derived based on the genotype data from 1000 Genomes Project (phase 3). We used hypergeometric model to assess whether the effect allele at a given SNP is significantly enriched or depleted in each of the 26 populations surveyed in the 1000 Genomes Project with respect to the overall pooled population. Our results indicate that 195 out of 225 SNPs (86.7%) possess effect alleles significantly enriched or depleted in at least one of the 26 populations. Populations within the same continental group exhibit similar allele enrichment/depletion patterns whereas inter-continental populations show distinct patterns. Among the 225 SNPs, 15 SNPs cluster in the first intron region of the FTO gene, which is a major gene associated with body-mass index (BMI) and fat mass. African populations exhibit much smaller blocks of LD (linkage disequilibrium) among these15 SNPs while European and Asian populations have larger blocks. To estimate the cumulative effect of all variants associated with obesity, we developed the personal composite genetic risk score for obesity. Our results indicate that the East Asian populations have the lowest averages of the composite risk scores, whereas three European populations have the highest averages. In addition, the population-level average of composite genetic risk scores is significantly correlated (R 2 = 0.35, P = 0.0060) with obesity prevalence. We have detected substantial population differentiation in allele frequencies of obesity-associated SNPs. The results will help elucidate the genetic basis which may contribute to population disparities in obesity prevalence.

  4. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation

    PubMed Central

    2013-01-01

    Background Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties of Douglas-fir (vars. menziesii and glauca) are native to North America, the coastal variety is also widely planted for timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a 454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference, identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping platform. Results We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and 102,623 singletons from 2.76 million 454 and Sanger cDNA sequences from coastal Douglas-fir. We identified 278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium SNP genotyping array. Of these SNPs, 5847 (72.5%) were called successfully and were polymorphic. Conclusions Based on our validation efficiency, our SNP database may contain as many as ~200,000 true SNPs, and as many as ~69,000 SNPs that could be genotyped at ~20,000 gene loci using an Infinium II array—more SNPs than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation and potential responses to climate change. PMID:23445355

  5. Heritability of submaximal exercise heart rate response to exercise training is accounted for by nine SNPs

    PubMed Central

    Sung, Yun Ju; Sarzynski, Mark A.; Rice, Treva K.; Rao, D. C.; Bouchard, Claude

    2012-01-01

    Endurance training-induced changes in hemodynamic traits are heritable. However, few genes associated with heart rate training responses have been identified. The purpose of our study was to perform a genome-wide association study to uncover DNA sequence variants associated with submaximal exercise heart rate training responses in the HERITAGE Family Study. Heart rate was measured during steady-state exercise at 50 W (HR50) on 2 separate days before and after a 20-wk endurance training program in 483 white subjects from 99 families. Illumina HumanCNV370-Quad v3.0 BeadChips were genotyped using the Illumina BeadStation 500GX platform. After quality control procedures, 320,000 single-nucleotide polymorphisms (SNPs) were available for the genome-wide association study analyses, which were performed using the MERLIN software package (single-SNP analyses and conditional heritability tests) and standard regression models (multivariate analyses). The strongest associations for HR50 training response adjusted for age, sex, body mass index, and baseline HR50 were detected with SNPs at the YWHAQ locus on chromosome 2p25 (P = 8.1 × 10−7), the RBPMS locus on chromosome 8p12 (P = 3.8 × 10−6), and the CREB1 locus on chromosome 2q34 (P = 1.6 × 10−5). In addition, 37 other SNPs showed P values <9.9 × 10−5. After removal of redundant SNPs, the 10 most significant SNPs explained 35.9% of the ΔHR50 variance in a multivariate regression model. Conditional heritability tests showed that nine of these SNPs (all intragenic) accounted for 100% of the ΔHR50 heritability. Our results indicate that SNPs in nine genes related to cardiomyocyte and neuronal functions, as well as cardiac memory formation, fully account for the heritability of the submaximal heart rate training response. PMID:22174390

  6. Using microarray analysis to evaluate genetic polymorphisms involved in the metabolism of environmental chemicals.

    PubMed

    Ban, Susumu; Kondo, Tomoko; Ishizuka, Mayumi; Sasaki, Seiko; Konishi, Kanae; Washino, Noriaki; Fujita, Syoichi; Kishi, Reiko

    2007-05-01

    The field of molecular biology currently faces the need for a comprehensive method of evaluating individual differences derived from genetic variation in the form of single nucleotide polymorphisms (SNPs). SNPs in human genes are generally considered to be very useful in determining inherited genetic disorders, susceptibility to certain diseases, and cancer predisposition. Quick and accurate discrimination of SNPs is the key characteristic of technology used in DNA diagnostics. For this study, we first developed a DNA microarray and then evaluated its efficacy by determining the detection ability and validity of this method. Using DNA obtained from 380 pregnant Japanese women, we examined 13 polymorphisms of 9 genes, which are associated with the metabolism of environmental chemical compounds found in high frequency among Japanese populations. The ability to detect CYP1A1 I462V, CYP1B1 L432V, GSTP1 I105V and AhR R554K gene polymorphisms was above 98%, and agreement rates when compared with real time PCR analysis methods (kappa values) showed high validity: 0.98 (0.96), 0.97 (0.93), 0.90 (0.81), 0.90 (0.91), respectively. While this DNA microarray analysis should prove important as a method for initial screening, it is still necessary that we find better methods for improving the detection of other gene polymorphisms not part of this study.

  7. Polymorphisms in the estrogen receptor alpha gene (ESR1), daily cycling estrogen and mammographic density phenotypes.

    PubMed

    Fjeldheim, F N; Frydenberg, H; Flote, V G; McTiernan, A; Furberg, A-S; Ellison, P T; Barrett, E S; Wilsgaard, T; Jasienska, G; Ursin, G; Wist, E A; Thune, I

    2016-10-07

    Single nucleotide polymorphisms (SNPs) involved in the estrogen pathway and SNPs in the estrogen receptor alpha gene (ESR1 6q25) have been linked to breast cancer development, and mammographic density is an established breast cancer risk factor. Whether there is an association between daily estradiol levels, SNPs in ESR1 and premenopausal mammographic density phenotypes is unknown. We assessed estradiol in daily saliva samples throughout an entire menstrual cycle in 202 healthy premenopausal women in the Norwegian Energy Balance and Breast Cancer Aspects I study. DNA was genotyped using the Illumina Golden Gate platform. Mammograms were taken between days 7 and 12 of the menstrual cycle, and digitized mammographic density was assessed using a computer-assisted method (Madena). Multivariable regression models were used to study the association between SNPs in ESR1, premenopausal mammographic density phenotypes and daily cycling estradiol. We observed inverse linear associations between the minor alleles of eight measured SNPs (rs3020364, rs2474148, rs12154178, rs2347867, rs6927072, rs2982712, rs3020407, rs9322335) and percent mammographic density (p-values: 0.002-0.026), these associations were strongest in lean women (BMI, ≤23.6 kg/m 2. ). The odds of above-median percent mammographic density (>28.5 %) among women with major homozygous genotypes were 3-6 times higher than those of women with minor homozygous genotypes in seven SNPs. Women with rs3020364 major homozygous genotype had an OR of 6.46 for above-median percent mammographic density (OR: 6.46; 95 % Confidence Interval 1.61, 25.94) when compared to women with the minor homozygous genotype. These associations were not observed in relation to absolute mammographic density. No associations between SNPs and daily cycling estradiol were observed. However, we suggest, based on results of borderline significance (p values: 0.025-0.079) that the level of 17β-estradiol for women with the minor genotype for rs3020364, rs24744148 and rs2982712 were lower throughout the cycle in women with low (<28.5 %) percent mammographic density and higher in women with high (>28.5 %) percent mammographic density, when compared to women with the major genotype. Our results support an association between eight selected SNPs in the ESR1 gene and percent mammographic density. The results need to be confirmed in larger studies.

  8. SNPchiMp: a database to disentangle the SNPchip jungle in bovine livestock.

    PubMed

    Nicolazzi, Ezequiel Luis; Picciolini, Matteo; Strozzi, Francesco; Schnabel, Robert David; Lawley, Cindy; Pirani, Ali; Brew, Fiona; Stella, Alessandra

    2014-02-11

    Currently, six commercial whole-genome SNP chips are available for cattle genotyping, produced by two different genotyping platforms. Technical issues need to be addressed to combine data that originates from the different platforms, or different versions of the same array generated by the manufacturer. For example: i) genome coordinates for SNPs may refer to different genome assemblies; ii) reference genome sequences are updated over time changing the positions, or even removing sequences which contain SNPs; iii) not all commercial SNP ID's are searchable within public databases; iv) SNPs can be coded using different formats and referencing different strands (e.g. A/B or A/C/T/G alleles, referencing forward/reverse, top/bottom or plus/minus strand); v) Due to new information being discovered, higher density chips do not necessarily include all the SNPs present in the lower density chips; and, vi) SNP IDs may not be consistent across chips and platforms. Most researchers and breed associations manage SNP data in real-time and thus require tools to standardise data in a user-friendly manner. Here we present SNPchiMp, a MySQL database linked to an open access web-based interface. Features of this interface include, but are not limited to, the following functions: 1) referencing the SNP mapping information to the latest genome assembly, 2) extraction of information contained in dbSNP for SNPs present in all commercially available bovine chips, and 3) identification of SNPs in common between two or more bovine chips (e.g. for SNP imputation from lower to higher density). In addition, SNPchiMp can retrieve this information on subsets of SNPs, accessing such data either via physical position on a supported assembly, or by a list of SNP IDs, rs or ss identifiers. This tool combines many different sources of information, that otherwise are time consuming to obtain and difficult to integrate. The SNPchiMp not only provides the information in a user-friendly format, but also enables researchers to perform a large number of operations with a few clicks of the mouse. This significantly reduces the time needed to execute the large number of operations required to manage SNP data.

  9. Associations between breast density and a panel of single nucleotide polymorphisms linked to breast cancer risk: a cohort study with digital mammography.

    PubMed

    Keller, Brad M; McCarthy, Anne Marie; Chen, Jinbo; Armstrong, Katrina; Conant, Emily F; Domchek, Susan M; Kontos, Despina

    2015-03-18

    Breast density and single-nucleotide polymorphisms (SNPs) have both been associated with breast cancer risk. To determine the extent to which these two breast cancer risk factors are associated, we investigate the association between a panel of validated SNPs related to breast cancer and quantitative measures of mammographic density in a cohort of Caucasian and African-American women. In this IRB-approved, HIPAA-compliant study, we analyzed a screening population of 639 women (250 African American and 389 Caucasian) who were tested with a validated panel assay of 12 SNPs previously associated to breast cancer risk. Each woman underwent digital mammography as part of routine screening and all were interpreted as negative. Both absolute and percent estimates of area and volumetric density were quantified on a per-woman basis using validated software. Associations between the number of risk alleles in each SNP and the density measures were assessed through a race-stratified linear regression analysis, adjusted for age, BMI, and Gail lifetime risk. The majority of SNPs were not found to be associated with any measure of breast density. SNP rs3817198 (in LSP1) was significantly associated with both absolute area (p = 0.004) and volumetric (p = 0.019) breast density in Caucasian women. In African-American women, SNPs rs3803662 (in TNRC9/TOX3) and rs4973768 (in NEK10) were significantly associated with absolute (p = 0.042) and percent (p = 0.028) volume density respectively. The majority of SNPs investigated in our study were not found to be significantly associated with breast density, even when accounting for age, BMI, and Gail risk, suggesting that these two different risk factors contain potentially independent information regarding a woman's risk to develop breast cancer. Additionally, the few statistically significant associations between breast density and SNPs were different for Caucasian versus African American women. Larger prospective studies are warranted to validate our findings and determine potential implications for breast cancer risk assessment.

  10. Determining Effects of Non-synonymous SNPs on Protein-Protein Interactions using Supervised and Semi-supervised Learning

    PubMed Central

    Zhao, Nan; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2014-01-01

    Single nucleotide polymorphisms (SNPs) are among the most common types of genetic variation in complex genetic disorders. A growing number of studies link the functional role of SNPs with the networks and pathways mediated by the disease-associated genes. For example, many non-synonymous missense SNPs (nsSNPs) have been found near or inside the protein-protein interaction (PPI) interfaces. Determining whether such nsSNP will disrupt or preserve a PPI is a challenging task to address, both experimentally and computationally. Here, we present this task as three related classification problems, and develop a new computational method, called the SNP-IN tool (non-synonymous SNP INteraction effect predictor). Our method predicts the effects of nsSNPs on PPIs, given the interaction's structure. It leverages supervised and semi-supervised feature-based classifiers, including our new Random Forest self-learning protocol. The classifiers are trained based on a dataset of comprehensive mutagenesis studies for 151 PPI complexes, with experimentally determined binding affinities of the mutant and wild-type interactions. Three classification problems were considered: (1) a 2-class problem (strengthening/weakening PPI mutations), (2) another 2-class problem (mutations that disrupt/preserve a PPI), and (3) a 3-class classification (detrimental/neutral/beneficial mutation effects). In total, 11 different supervised and semi-supervised classifiers were trained and assessed resulting in a promising performance, with the weighted f-measure ranging from 0.87 for Problem 1 to 0.70 for the most challenging Problem 3. By integrating prediction results of the 2-class classifiers into the 3-class classifier, we further improved its performance for Problem 3. To demonstrate the utility of SNP-IN tool, it was applied to study the nsSNP-induced rewiring of two disease-centered networks. The accurate and balanced performance of SNP-IN tool makes it readily available to study the rewiring of large-scale protein-protein interaction networks, and can be useful for functional annotation of disease-associated SNPs. SNIP-IN tool is freely accessible as a web-server at http://korkinlab.org/snpintool/. PMID:24784581

  11. Linkage maps of the Atlantic salmon (Salmo salar) genome derived from RAD sequencing

    PubMed Central

    2014-01-01

    Background Genetic linkage maps are useful tools for mapping quantitative trait loci (QTL) influencing variation in traits of interest in a population. Genotyping-by-sequencing approaches such as Restriction-site Associated DNA sequencing (RAD-Seq) now enable the rapid discovery and genotyping of genome-wide SNP markers suitable for the development of dense SNP linkage maps, including in non-model organisms such as Atlantic salmon (Salmo salar). This paper describes the development and characterisation of a high density SNP linkage map based on SbfI RAD-Seq SNP markers from two Atlantic salmon reference families. Results Approximately 6,000 SNPs were assigned to 29 linkage groups, utilising markers from known genomic locations as anchors. Linkage maps were then constructed for the four mapping parents separately. Overall map lengths were comparable between male and female parents, but the distribution of the SNPs showed sex-specific patterns with a greater degree of clustering of sire-segregating SNPs to single chromosome regions. The maps were integrated with the Atlantic salmon draft reference genome contigs, allowing the unique assignment of ~4,000 contigs to a linkage group. 112 genome contigs mapped to two or more linkage groups, highlighting regions of putative homeology within the salmon genome. A comparative genomics analysis with the stickleback reference genome identified putative genes closely linked to approximately half of the ordered SNPs and demonstrated blocks of orthology between the Atlantic salmon and stickleback genomes. A subset of 47 RAD-Seq SNPs were successfully validated using a high-throughput genotyping assay, with a correspondence of 97% between the two assays. Conclusions This Atlantic salmon RAD-Seq linkage map is a resource for salmonid genomics research as genotyping-by-sequencing becomes increasingly common. This is aided by the integration of the SbfI RAD-Seq SNPs with existing reference maps and the draft reference genome, as well as the identification of putative genes proximal to the SNPs. Differences in the distribution of recombination events between the sexes is evident, and regions of homeology have been identified which are reflective of the recent salmonid whole genome duplication. PMID:24571138

  12. Genetic association of SNPs in the FTO gene and predisposition to obesity in Malaysian Malays.

    PubMed

    Apalasamy, Y D; Ming, M F; Rampal, S; Bulgiba, A; Mohamed, Z

    2012-12-01

    The common variants in the fat mass- and obesity-associated (FTO) gene have been previously found to be associated with obesity in various adult populations. The objective of the present study was to investigate whether the single nucleotide polymorphisms (SNPs) and linkage disequilibrium (LD) blocks in various regions of the FTO gene are associated with predisposition to obesity in Malaysian Malays. Thirty-one FTO SNPs were genotyped in 587 (158 obese and 429 non-obese) Malaysian Malay subjects. Obesity traits and lipid profiles were measured and single-marker association testing, LD testing, and haplotype association analysis were performed. LD analysis of the FTO SNPs revealed the presence of 57 regions with complete LD (D' = 1.0). In addition, we detected the association of rs17817288 with low-density lipoprotein cholesterol. The FTO gene may therefore be involved in lipid metabolism in Malaysian Malays. Two haplotype blocks were present in this region of the FTO gene, but no particular haplotype was found to be significantly associated with an increased risk of obesity in Malaysian Malays.

  13. Effect of polymorphisms in candidate genes on carcass and meat quality traits in double muscled Piemontese cattle.

    PubMed

    Ribeca, C; Bonfatti, V; Cecchinato, A; Albera, A; Gallo, L; Carnier, P

    2014-03-01

    The aim of this study was to investigate the association between 10 candidate genes and carcass weight and conformation, carcass daily gain, and meat quality (pH, color, cooking loss, drip loss and shear force) in 990 double-muscled Piemontese young bulls. Animals were genotyped at each of the following genes: growth hormone, growth hormone receptor, pro-opiomelanocortin, pro-opiomelanocortin class 1 homeobox 1, melanocortin-4 receptor, corticotrophin-releasing hormone, diacylglycerol O-acyltransferase-1, thyroglobulin, carboxypeptidase E and gamma-3 regulatory subunit of the AMP-activated protein kinase. All the investigated SNPs had additive effects which were relevant for at least one of the traits. Relevant associations between the investigated SNPs and carcass weight, carcass daily gain and carcass conformation were detected, whereas associations of SNPs with meat quality were moderate. Results confirmed some of previously reported associations, but diverged for others. Validation in other cattle breeds is required to use these SNPs in gene-assisted selection programs for enhancement of carcass traits and meat quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Genetic association between ghrelin polymorphisms and Alzheimer's disease in a Japanese population.

    PubMed

    Shibata, Nobuto; Ohnuma, Tohru; Kuerban, Bolati; Komatsu, Miwa; Arai, Heii

    2011-01-01

    Ghrelin has been reported to enter the hippocampus and to bind to the neurons of the hippocampal formation. This peptide also affects neuronal glucose uptake and decreases tau hyperphosphorylation. There is increasing evidence suggesting an association between ghrelin and Alzheimer's disease (AD) pathology. The aim of this study was to investigate whether single nucleotide polymorphisms (SNPs) of the ghrelin gene are associated with AD. The SNPs were genotyped using TaqMan technology and were analyzed using a case-control study design. Our case-control dataset consisted of 182 AD patients and 143 age-matched controls. Hardy-Weinberg equilibrium and linkage disequilibrium analyses suggest that the region in and around the gene is highly polymorphic. One SNP, rs4684677 (Leu90Gln), showed a marginal association with age of AD onset. We did not detect any association between the other SNPs of the ghrelin gene and AD. There have been few genetic studies on the relationship between circulating ghrelin and functional SNPs. Further multifactorial studies are needed to clarify the relationship between ghrelin and AD. Copyright © 2011 S. Karger AG, Basel.

  15. Genetic association of SNPs in the FTO gene and predisposition to obesity in Malaysian Malays

    PubMed Central

    Apalasamy, Y.D.; Ming, M.F.; Rampal, S.; Bulgiba, A.; Mohamed, Z.

    2012-01-01

    The common variants in the fat mass- and obesity-associated (FTO) gene have been previously found to be associated with obesity in various adult populations. The objective of the present study was to investigate whether the single nucleotide polymorphisms (SNPs) and linkage disequilibrium (LD) blocks in various regions of the FTO gene are associated with predisposition to obesity in Malaysian Malays. Thirty-one FTO SNPs were genotyped in 587 (158 obese and 429 non-obese) Malaysian Malay subjects. Obesity traits and lipid profiles were measured and single-marker association testing, LD testing, and haplotype association analysis were performed. LD analysis of the FTO SNPs revealed the presence of 57 regions with complete LD (D' = 1.0). In addition, we detected the association of rs17817288 with low-density lipoprotein cholesterol. The FTO gene may therefore be involved in lipid metabolism in Malaysian Malays. Two haplotype blocks were present in this region of the FTO gene, but no particular haplotype was found to be significantly associated with an increased risk of obesity in Malaysian Malays. PMID:22911346

  16. Comparison of three PCR-based assays for SNP genotyping in sugar beet

    USDA-ARS?s Scientific Manuscript database

    Background: PCR allelic discrimination technologies have broad applications in the detection of single nucleotide polymorphisms (SNPs) in genetics and genomics. The use of fluorescence-tagged probes is the leading method for targeted SNP detection, but assay costs and error rates could be improved t...

  17. A gold nanoparticles-based colorimetric test to detect single nucleotide polymorphisms for improvement of personalized therapy of psoriasis

    NASA Astrophysics Data System (ADS)

    Marsella, Alessandra; Valentini, Paola; Tarantino, Paolo; Congedo, Maurizio; Pompa, Pier Paolo

    2016-04-01

    We report a simple, rapid and low-cost test, based on gold nanoparticles, for the naked-eye colorimetric detection of a signature of single nucleotide polymorphisms (SNPs) relevant for the personalized medicine of psoriasis patients. We validated the colorimetric assay on real-world DNA samples from a cohort of 30 psoriasis patients and we compared the results, in double-blind, with those obtained with two state-of-the-art instrumental techniques, namely reverse dot blotting and direct sequencing, finding 100% agreement. We demonstrated high accuracy, sensitivity and specificity of the colorimetric test that can be easily adapted for the genotypization of different SNPs, important for the pharmacogenomics of various diseases, and in other fields, such as food traceability and population structure analysis.

  18. Genetically-Predicted Adult Height and Alzheimer's Disease.

    PubMed

    Larsson, Susanna C; Traylor, Matthew; Burgess, Stephen; Markus, Hugh S

    2017-01-01

    Observational studies have linked increased adult height with better cognitive performance and reduced risk of Alzheimer's disease (AD). It is unclear whether the associations are due to shared biological processes that influence height and AD or due to confounding by early life exposures or environmental factors. To use a genetic approach to investigate the association between adult height and AD. We selected 682 single nucleotide polymorphisms (SNPs) associated with height at genome-wide significance (p < 5×10-8) in the Genetic Investigation of ANthropometric Traits (GIANT) consortium. Summary statistics for each of these SNPs on AD were obtained from the International Genomics of Alzheimer's Project (IGAP) of 17,008 individuals with AD and 37,154 controls. The estimate of the association between genetically predicted height and AD was calculated using the inverse-variance weighted method. The odds ratio of AD was 0.91 (95% confidence interval, 0.86-0.95; p = 9.8×10-5) per one standard deviation increase (about 6.5 cm) in genetically predicted height based on 682 SNPs, which were clustered in 419 loci. In an analysis restricted to one SNP from each height-associated locus (n = 419 SNPs), the corresponding OR was 0.92 (95% confidence interval, 0.86-0.97; p = 4.8×10-3). This finding suggests that biological processes that influence adult height may have a role in the etiology of AD.

  19. Association of ADIPOQ gene with obesity and adiponectin levels in Malaysian Malays.

    PubMed

    Apalasamy, Yamunah Devi; Rampal, Sanjay; Salim, Agus; Moy, Foong Ming; Bulgiba, Awang; Mohamed, Zahurin

    2014-05-01

    Studies have shown that single-nucleotide polymorphisms (SNPs) on the ADIPOQ gene have been linked with obesity and with adiponectin levels in various populations. Here, we aimed to investigate the association of ADIPOQ rs17366568 and rs3774261 SNPs with obesity and with adiponectin levels in Malaysian Malays. Obesity parameters and adiponectin levels were measured in 574 subjects. Genotyping was performed using real-time polymerase chain reaction and Sequenom MassARRAY. A significant genotypic association was observed between ADIPOQ rs17366568 and obesity. The frequencies of AG and AA genotypes were significantly higher in the obese group (11%) than in the non-obese group (5%) (P=0.024). The odds of A alleles occurring among the obese group were twice those among the non-obese group (odds ratio 2.15; 95% confidence interval 1.13-4.09). However, no significant association was found between allelic frequencies of ADIPOQ rs17366568 and obesity after Bonferroni correction (P>0.025) or between ADIPOQ rs3774261 and obesity both at allelic and genotypic levels. ADIPOQ SNPs were not significantly associated with log-adiponectin levels. GA, GG, and AG haplotypes of the ADIPOQ gene were not associated with obesity. We confirmed the previously reported association of ADIPOQ rs17366568 with the risk of obesity. ADIPOQ SNPs are not important modulators of adiponectin levels in this population.

  20. Forensic and population genetic characteristics of 62 X chromosome SNPs revealed by multiplex PCR and MALDI-TOF mass spectrometry genotyping in 4 North Eurasian populations.

    PubMed

    Stepanov, Vadim; Vagaitseva, Ksenyia; Kharkov, Vladimir; Cherednichenko, Anastasia; Bocharova, Anna; Berezina, Galina; Svyatova, Gulnara

    2016-01-01

    X chromosome genetic markers are widely used in basic population genetic research as well as in forensic genetics. In this paper we analyze the genetic diversity of 62 X chromosome SNPs in 4 populations using multiplex genotyping based on multi-locus PCR and MALDI-TOF mass spectrometry, and report forensic and population genetic features of the panel of X-linked SNPs (XSNPid). Studied populations represent Siberian (Buryat and Khakas), North Asian (Khanty) and Central Asian (Kazakh) native people. Khanty, Khakas and Kazakh population demonstrate average gene diversity over 0.45. Only East Siberian Buryat population is characterized by lower average heterozygosity (0.436). AMOVA analysis of genetic structure reveals a relatively low but significant level of genetic differentiation in a group of 4 population studied (FST=0.023, p=0.0000). The XSNPid panel provides a very high discriminating power in each population. The combined probability of discrimination in females (PDf) for XSNPid panel ranged between populations from 0.99999999999999999999999982 in Khakas to 0.9999999999999999999999963 in Buryats. The combined discriminating power in males (PDm) varies from 0.999999999999999792 to 0.9999999999999999819. The developed multiplex set of X chromosome SNPs can be a useful tool for population genetic studies and for forensic identity and kinship testing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Common Variants in Mendelian Kidney Disease Genes and Their Association with Renal Function

    PubMed Central

    Fuchsberger, Christian; Köttgen, Anna; O’Seaghdha, Conall M.; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I.; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J.; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V.; O’Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M.; Bochud, Murielle; Heid, Iris M.; Siscovick, David S.; Fox, Caroline S.; Kao, W. Linda; Böger, Carsten A.

    2013-01-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research. PMID:24029420

  2. Polymorphisms in genes of the renin-angiotensin-aldosterone system and renal cell cancer risk: interplay with hypertension and intakes of sodium, potassium and fluid.

    PubMed

    Deckers, Ivette A; van den Brandt, Piet A; van Engeland, Manon; van Schooten, Frederik-Jan; Godschalk, Roger W; Keszei, András P; Schouten, Leo J

    2015-03-01

    Hypertension is an established risk factor for renal cell cancer (RCC). The renin-angiotensin-aldosterone system (RAAS) regulates blood pressure and is closely linked to hypertension. RAAS additionally influences homeostasis of electrolytes (e.g. sodium and potassium) and fluid. We investigated single nucleotide polymorphisms (SNPs) in RAAS and their interactions with hypertension and intakes of sodium, potassium and fluid regarding RCC risk in the Netherlands Cohort Study (NLCS), which was initiated in 1986 and included 120,852 participants aged 55 to 69 years. Diet and lifestyle were assessed by questionnaires and toenail clippings were collected. Genotyping of toenail DNA was performed using the SEQUENOM® MassARRAY® platform for a literature-based selection of 13 candidate SNPs in seven key RAAS genes. After 20.3 years of follow-up, Cox regression analyses were conducted using a case-cohort approach including 3,583 subcohort members and 503 RCC cases. Two SNPs in AGTR1 were associated with RCC risk. AGTR1_rs1492078 (AA vs. GG) decreased RCC risk [hazard ratio (HR) (95% confidence interval (CI)): 0.70(0.49-1.00)], whereas AGTR1_rs5186 (CC vs. AA) increased RCC risk [HR(95%CI): 1.49(1.08-2.05)]. Associations were stronger in participants with hypertension. The RCC risk for AGT_rs3889728 (AG + AA vs. GG) was modified by hypertension (p interaction = 0.039). SNP-diet interactions were not significant, although HRs suggested interaction between SNPs in ACE and sodium intake. SNPs in AGTR1 and AGT influenced RCC susceptibility, and their effects were modified by hypertension. Sodium intake was differentially associated with RCC risk across genotypes of several SNPs, yet some analyses had probably inadequate power to show significant interaction. Results suggest that RAAS may be a candidate pathway in RCC etiology. © 2014 UICC.

  3. Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans.

    PubMed

    Bassi, Denis; Briñez, Boris; Rosa, Juliana Santa; Oblessuc, Paula Rodrigues; Almeida, Caléo Panhoca de; Nucci, Stella Maris; Silva, Larissa Chariel Domingos da; Chiorato, Alisson Fernando; Vianello, Rosana Pereira; Camargo, Luis Eduardo Aranha; Blair, Matthew Wohlgemuth; Benchimol-Reis, Luciana Lasry

    2017-01-01

    Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases causing significant yield losses in common beans. In this study, a new genetic linkage map was constructed using single sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277 x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were performed in the greenhouse to identify quantitative trait loci (QTLs) associated with resistance by means of the composite interval mapping analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS, linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect (R2 = 26.5%) on ALS phenotypic variance. For PWM resistance, two QTLs were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining 7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped on the same genomic region, suggesting that it is a pleiotropic region. The present study resulted in the identification of new markers closely linked to ALS and PWM QTLs, which can be used for marker-assisted selection, fine mapping and positional cloning.

  4. A Functional Genetic Link between Distinct Developmental Language Disorders

    PubMed Central

    Vernes, Sonja C.; Newbury, Dianne F.; Abrahams, Brett S.; Winchester, Laura; Nicod, Jérôme; Groszer, Matthias; Alarcón, Maricela; Oliver, Peter L.; Davies, Kay E.; Geschwind, Daniel H.; Monaco, Anthony P.; Fisher, Simon E.

    2009-01-01

    BACKGROUND Rare mutations affecting the FOXP2 transcription factor cause a monogenic speech and language disorder. We hypothesized that neural pathways downstream of FOXP2 influence more common phenotypes, such as specific language impairment. METHODS We performed genomic screening for regions bound by FOXP2 using chromatin immunoprecipitation, which led us to focus on one particular gene that was a strong candidate for involvement in language impairments. We then tested for associations between single-nucleotide polymorphisms (SNPs) in this gene and language deficits in a well-characterized set of 184 families affected with specific language impairment. RESULTS We found that FOXP2 binds to and dramatically down-regulates CNTNAP2, a gene that encodes a neurexin and is expressed in the developing human cortex. On analyzing CNTNAP2 polymorphisms in children with typical specific language impairment, we detected significant quantitative associations with nonsense-word repetition, a heritable behavioral marker of this disorder (peak association, P = 5.0×10-5 at SNP rs17236239). Intriguingly, this region coincides with one associated with language delays in children with autism. CONCLUSIONS The FOXP2-CNTNAP2 pathway provides a mechanistic link between clinically distinct syndromes involving disrupted language. PMID:18987363

  5. Association between Psoriasis and haplotypes of the IgH 3' Regulatory Region 1.

    PubMed

    D'Addabbo, Pietro; Serone, Eliseo; Esposito, Maria; Vaccari, Gabriele; Gargioli, Cesare; Frezza, Domenico; Bianchi, Luca

    2018-08-30

    The association studies of several immune-diseases with the 3' Regulatory Region 1 (3'RR1) increased interest on the role that the region plays in the immune-regulation. The 3'RR1 is a polymorphic region on human chromosome 14q32, acting as a cis-regulative element on the Immunoglobulin constant-gene locus recently considered as super-enhancer. The human 3'RR1 share large sequences with its paralogous 3'RR2, at high level of similarity. Thus, a focused investigation was necessary to discriminate each one of the duplicated components of the two regions and its specific contribution to the immunologic phenotype. One of the duplicated elements is the hs1.2 enhancer. The 3'RR1 alleles of this enhancer were demonstrated to play a role in autoimmune diseases, including Psoriasis. We sequenced a specific region internal to the 3'RR1 in hs1.2 homozygous subjects, to detect SNPs associated to the main alleles of the enhancer. We identified two alternative nine-SNPs haplotypes strictly linked to the allele *1 and *2 of hs1.2, that could be used as markers to further investigate the region and associations to pathology. Finally, we identified two haplotypes, namely E2A1 and E2A2, that strongly support the hypothesis of a relevant effect of the rs35216181 in the onset of Psoriasis when the *2 allele is present. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize.

    PubMed

    Riedelsheimer, Christian; Lisec, Jan; Czedik-Eysenberg, Angelika; Sulpice, Ronan; Flis, Anna; Grieder, Christoph; Altmann, Thomas; Stitt, Mark; Willmitzer, Lothar; Melchinger, Albrecht E

    2012-06-05

    The diversity of metabolites found in plants is by far greater than in most other organisms. Metabolic profiling techniques, which measure many of these compounds simultaneously, enabled investigating the regulation of metabolic networks and proved to be useful for predicting important agronomic traits. However, little is known about the genetic basis of metabolites in crops such as maize. Here, a set of 289 diverse maize inbred lines was genotyped with 56,110 SNPs and assayed for 118 biochemical compounds in the leaves of young plants, as well as for agronomic traits of mature plants in field trials. Metabolite concentrations had on average a repeatability of 0.73 and showed a correlation pattern that largely reflected their functional grouping. Genome-wide association mapping with correction for population structure and cryptic relatedness identified for 26 distinct metabolites strong associations with SNPs, explaining up to 32.0% of the observed genetic variance. On nine chromosomes, we detected 15 distinct SNP-metabolite associations, each of which explained more then 15% of the genetic variance. For lignin precursors, including p-coumaric acid and caffeic acid, we found strong associations (P values to ) with a region on chromosome 9 harboring cinnamoyl-CoA reductase, a key enzyme in monolignol synthesis and a target for improving the quality of lignocellulosic biomass by genetic engineering approaches. Moreover, lignin precursors correlated significantly with lignin content, plant height, and dry matter yield, suggesting that metabolites represent promising connecting links for narrowing the genotype-phenotype gap of complex agronomic traits.

  7. Multianalyte, dipstick-type, nanoparticle-based DNA biosensor for visual genotyping of single-nucleotide polymorphisms.

    PubMed

    Litos, Ioannis K; Ioannou, Penelope C; Christopoulos, Theodore K; Traeger-Synodinos, Jan; Kanavakis, Emmanuel

    2009-06-15

    DNA biosensors involve molecular recognition of the target sequence by hybridization with specific probes and detection by electrochemical, optical or gravimetric transduction. Disposable, dipstick-type biosensors have been developed recently, which enable visual detection of DNA without using instruments. In this context, we report a multianalyte DNA biosensor for visual genotyping of two single-nucleotide polymorphisms (SNPs). As a model, the biosensor was applied to the simultaneous genotyping of two SNPs, entailing the detection of four alleles. A PCR product that flanks both polymorphic sites is subjected to a single primer extension (PEXT) reaction employing four allele-specific primers, each containing a region complementary to an allele and a characteristic segment that enables subsequent capture on a test zone of the biosensor. The primers are extended with dNTPs and biotin-dUTP only if there is perfect complementarity with the interrogated sequence. The PEXT mixture is applied to the biosensor. As the developing buffer migrates along the strip, all the allele-specific primers are captured by immobilized oligonucleotides at the four test zones of the biosensor and detected by antibiotin-functionalized gold nanoparticles. As a result, the test zones are colored red if extension has occurred denoting the presence of the corresponding allele in the original sample. The excess nanoparticles are captured by immobilized biotinylated albumin at the control zone of the sensor forming another red zone that indicates the proper performance of the system. The assay was applied successfully to the genotyping of twenty clinical samples for two common SNPs of MBL2 gene.

  8. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology.

    PubMed

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N; Kumar, Dibyendu

    2017-01-01

    RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive QTL/CG analysis of 110 QTL/CG with RNA-seq data identified 20 monomorphic SNP hit loci (CARTPT, GAD1, GDF5, GHRH, GHRL, GRB10, IGFBPL1, IGFL1, LEP, LHX4, MC4R, MSTN, NKAIN1, PLAG1, POU1F1, SDR16C5, SH2B2, TOX, UCP3 and WNT10B) in all three cattle breeds. However, six SNP loci (CCSER1, GHR, KCNIP4, MTSS1, EGFR and NSMCE2) were identified as highly polymorphic among the cattle breeds. This study identified breed-specific SNPs with greater SNP ratio and excellent mapping coverage, as well as monomorphic and highly polymorphic putative SNP loci within QTL/CGs of bovine liver tissue. A breed-specific SNP-db constructed for bovine liver yielded nearly six million SNPs. In addition, a KASPTM SNP genotyping assay, as a reliable cost-effective method, successfully validated the breed-specific putative SNPs originating from the RNA-seq experiments.

  9. A mega-analysis of genome-wide association studies for major depressive disorder.

    PubMed

    Ripke, Stephan; Wray, Naomi R; Lewis, Cathryn M; Hamilton, Steven P; Weissman, Myrna M; Breen, Gerome; Byrne, Enda M; Blackwood, Douglas H R; Boomsma, Dorret I; Cichon, Sven; Heath, Andrew C; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A F; Martin, Nicholas G; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M; Penninx, Brenda P; Pergadia, Michele L; Potash, James B; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H; Preisig, Martin; Smoller, Jordan W; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R; Bettecken, Thomas; Binder, Elisabeth B; Breuer, René; Castro, Victor M; Churchill, Susanne E; Coryell, William H; Craddock, Nick; Craig, Ian W; Czamara, Darina; De Geus, Eco J; Degenhardt, Franziska; Farmer, Anne E; Fava, Maurizio; Frank, Josef; Gainer, Vivian S; Gallagher, Patience J; Gordon, Scott D; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K; Herms, Stefan; Hickie, Ian B; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A; Kohane, Isaac S; Kohli, Martin A; Korszun, Ania; Landen, Mikael; Lawson, William B; Lewis, Glyn; Macintyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M; Middleton, Lefkos; Montgomery, Grant M; Murphy, Shawn N; Nauck, Matthias; Nolen, Willem A; Nyholt, Dale R; O'Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A; Schulz, Andrea; Schulze, Thomas G; Shyn, Stanley I; Sigurdsson, Engilbert; Slager, Susan L; Smit, Johannes H; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J C G; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B; Willemsen, Gonneke; Zitman, Frans G; Neale, Benjamin; Daly, Mark; Levinson, Douglas F; Sullivan, Patrick F

    2013-04-01

    Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 × 10(-8)), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 × 10(-9) at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status.

  10. Microsatellite genotyping and genome-wide single nucleotide polymorphism-based indices of Plasmodium falciparum diversity within clinical infections.

    PubMed

    Murray, Lee; Mobegi, Victor A; Duffy, Craig W; Assefa, Samuel A; Kwiatkowski, Dominic P; Laman, Eugene; Loua, Kovana M; Conway, David J

    2016-05-12

    In regions where malaria is endemic, individuals are often infected with multiple distinct parasite genotypes, a situation that may impact on evolution of parasite virulence and drug resistance. Most approaches to studying genotypic diversity have involved analysis of a modest number of polymorphic loci, although whole genome sequencing enables a broader characterisation of samples. PCR-based microsatellite typing of a panel of ten loci was performed on Plasmodium falciparum in 95 clinical isolates from a highly endemic area in the Republic of Guinea, to characterize within-isolate genetic diversity. Separately, single nucleotide polymorphism (SNP) data from genome-wide short-read sequences of the same samples were used to derive within-isolate fixation indices (F ws), an inverse measure of diversity within each isolate compared to overall local genetic diversity. The latter indices were compared with the microsatellite results, and also with indices derived by randomly sampling modest numbers of SNPs. As expected, the number of microsatellite loci with more than one allele in each isolate was highly significantly inversely correlated with the genome-wide F ws fixation index (r = -0.88, P < 0.001). However, the microsatellite analysis revealed that most isolates contained mixed genotypes, even those that had no detectable genome sequence heterogeneity. Random sampling of different numbers of SNPs showed that an F ws index derived from ten or more SNPs with minor allele frequencies of >10 % had high correlation (r > 0.90) with the index derived using all SNPs. Different types of data give highly correlated indices of within-infection diversity, although PCR-based analysis detects low-level minority genotypes not apparent in bulk sequence analysis. When whole-genome data are not obtainable, quantitative assay of ten or more SNPs can yield a reasonably accurate estimate of the within-infection fixation index (F ws).

  11. Genome-wide DNA polymorphisms in two cultivars of mei (Prunus mume sieb. et zucc.).

    PubMed

    Sun, Lidan; Zhang, Qixiang; Xu, Zongda; Yang, Weiru; Guo, Yu; Lu, Jiuxing; Pan, Huitang; Cheng, Tangren; Cai, Ming

    2013-10-06

    Mei (Prunus mume Sieb. et Zucc.) is a famous ornamental plant and fruit crop grown in East Asian countries. Limited genetic resources, especially molecular markers, have hindered the progress of mei breeding projects. Here, we performed low-depth whole-genome sequencing of Prunus mume 'Fenban' and Prunus mume 'Kouzi Yudie' to identify high-quality polymorphic markers between the two cultivars on a large scale. A total of 1464.1 Mb and 1422.1 Mb of 'Fenban' and 'Kouzi Yudie' sequencing data were uniquely mapped to the mei reference genome with about 6-fold coverage, respectively. We detected a large number of putative polymorphic markers from the 196.9 Mb of sequencing data shared by the two cultivars, which together contained 200,627 SNPs, 4,900 InDels, and 7,063 SSRs. Among these markers, 38,773 SNPs, 174 InDels, and 418 SSRs were distributed in the 22.4 Mb CDS region, and 63.0% of these marker-containing CDS sequences were assigned to GO terms. Subsequently, 670 selected SNPs were validated using an Agilent's SureSelect solution phase hybridization assay. A subset of 599 SNPs was used to assess the genetic similarity of a panel of mei germplasm samples and a plum (P. salicina) cultivar, producing a set of informative diversity data. We also analyzed the frequency and distribution of detected InDels and SSRs in mei genome and validated their usefulness as DNA markers. These markers were successfully amplified in the cultivars and in their segregating progeny. A large set of high-quality polymorphic SNPs, InDels, and SSRs were identified in parallel between 'Fenban' and 'Kouzi Yudie' using low-depth whole-genome sequencing. The study presents extensive data on these polymorphic markers, which can be useful for constructing high-resolution genetic maps, performing genome-wide association studies, and designing genomic selection strategies in mei.

  12. Comparison of Genetic Variants in Cancer-Related Genes between Chinese Hui and Han Populations

    PubMed Central

    Tian, Chaoyong; Chen, Zhiqiang; Ma, Xixian; Yang, Ming; Wang, Zhizhong; Dong, Ying; Yang, Ting; Yang, Wenjun

    2015-01-01

    Background The Chinese Hui population, as the second largest minority ethnic group in China, may have a different genetic background from Han people because of its unique demographic history. In this study, we aimed to identify genetic differences between Han and Hui Chinese from the Ningxia region of China by comparing eighteen single nucleotide polymorphisms in cancer-related genes. Methods DNA samples were collected from 99 Hui and 145 Han people from the Ningxia Hui Autonomous Region in China, and SNPs were detected using an improved multiplex ligase detection reaction method. Genotyping data from six 1000 Genomes Project population samples (99 Utah residents with northern and western European ancestry (CEU), 107 Toscani in Italy (TSI), 108 Yoruba in Ibadan (YRI), 61 of African ancestry in the southwestern US (ASW), 103 Han Chinese in Beijing (CHB), and 104 Japanese in Tokyo (JPT)) were also included in this study. Differences in the distribution of alleles among the populations were assessed using χ2 tests, and FST was used to measure the degree of population differentiation. Results We found that the genetic diversity of many SNPs in cancer-related genes in the Hui Chinese in Ningxia was different from that in the Han Chinese in Ningxia. For example, the allele frequencies of four SNPs (rs13361707, rs2274223, rs465498, and rs753955) showed different genetic distributions (p<0.05) between Chinese Ningxia Han and Chinese Ningxia Hui. Five SNPs (rs730506, rs13361707, rs2274223, rs465498 and rs753955) had different FST values (FST >0.000) between the Hui and Han populations. Conclusions These results suggest that some SNPs associated with cancer-related genes vary among different Chinese ethnic groups. We suggest that population differences should be carefully considered in evaluating cancer risk and prognosis as well as the efficacy of cancer therapy. PMID:26683024

  13. Comparison of Genetic Variants in Cancer-Related Genes between Chinese Hui and Han Populations.

    PubMed

    Tian, Chaoyong; Chen, Zhiqiang; Ma, Xixian; Yang, Ming; Wang, Zhizhong; Dong, Ying; Yang, Ting; Yang, Wenjun

    2015-01-01

    The Chinese Hui population, as the second largest minority ethnic group in China, may have a different genetic background from Han people because of its unique demographic history. In this study, we aimed to identify genetic differences between Han and Hui Chinese from the Ningxia region of China by comparing eighteen single nucleotide polymorphisms in cancer-related genes. DNA samples were collected from 99 Hui and 145 Han people from the Ningxia Hui Autonomous Region in China, and SNPs were detected using an improved multiplex ligase detection reaction method. Genotyping data from six 1000 Genomes Project population samples (99 Utah residents with northern and western European ancestry (CEU), 107 Toscani in Italy (TSI), 108 Yoruba in Ibadan (YRI), 61 of African ancestry in the southwestern US (ASW), 103 Han Chinese in Beijing (CHB), and 104 Japanese in Tokyo (JPT)) were also included in this study. Differences in the distribution of alleles among the populations were assessed using χ2 tests, and FST was used to measure the degree of population differentiation. We found that the genetic diversity of many SNPs in cancer-related genes in the Hui Chinese in Ningxia was different from that in the Han Chinese in Ningxia. For example, the allele frequencies of four SNPs (rs13361707, rs2274223, rs465498, and rs753955) showed different genetic distributions (p<0.05) between Chinese Ningxia Han and Chinese Ningxia Hui. Five SNPs (rs730506, rs13361707, rs2274223, rs465498 and rs753955) had different FST values (FST>0.000) between the Hui and Han populations. These results suggest that some SNPs associated with cancer-related genes vary among different Chinese ethnic groups. We suggest that population differences should be carefully considered in evaluating cancer risk and prognosis as well as the efficacy of cancer therapy.

  14. Gender-specific association of variants in the AKR1C1 gene with dimensional anxiety in patients with panic disorder: additional evidence for the importance of neurosteroids in anxiety?

    PubMed

    Quast, Carina; Reif, Andreas; Brückl, Tanja; Pfister, Hildegard; Weber, Heike; Mattheisen, Manuel; Cichon, Sven; Lang, Thomas; Hamm, Alfons; Fehm, Lydia; Ströhle, Andreas; Arolt, Volker; Domschke, Katharina; Kircher, Tilo; Wittchen, Hans-Ulrich; Pauli, Paul; Gerlach, Alexander L; Alpers, Georg W; Deckert, Jürgen; Rupprecht, Rainer; Binder, Elisabeth B; Erhardt, Angelika

    2014-10-01

    Neurosteroids are synthesized both in brain and peripheral steroidogenic tissue from cholesterol or steroidal precursors. Neurosteroids have been shown to be implicated in neural proliferation, differentiation, and activity. Preclinical and clinical studies also suggest a modulatory role of neurosteroids in anxiety-related phenotypes. However, little is known about the contribution of genetic variants in genes relevant for the neurosteroidogenesis to anxiety disorders. We performed an association analysis of single nucleotide polymorphisms (SNPs) in five genes related to the neurosteroidal pathway with emphasis on progesterone and allopregnanolone biosynthesis (steroid-5-alpha-reductase 1A (SRD5A1), aldo-keto reductase family 1 C1-C3 (AKR1C1-AKR1C3) and translocator protein 18 kDA (TSPO) with panic disorder (PD) and dimensional anxiety in two German PD samples (cases N = 522, controls N = 1,115). Case-control analysis for PD and SNPs in the five selected genes was negative in the combined sample. However, we detected a significant association of anticipatory anxiety with two intronic SNPs (rs3930965, rs41314625) located in the gene AKR1C1 surviving correction for multiple testing in PD patients. Stratification analysis for gender revealed a female-specific effect of the associations of both SNPs. These results suggest a modulatory effect of AKR1C1 activity on anxiety levels, most likely through changes in progesterone and allopregnanolone levels within and outside the brain. In summary, this is the first evidence for the gender-specific implication of the AKR1C1 gene in the expression of anticipatory anxiety in PD. Further analyses to unravel the functional role of the SNPs detected here and replication analyses are needed to validate our results. © 2014 Wiley Periodicals, Inc.

  15. Mutation analysis of BRCA1/2 mutations with special reference to polymorphic SNPs in Indian breast cancer patients.

    PubMed

    Shah, Nidhi D; Shah, Parth S; Panchal, Yash Y; Katudia, Kalpesh H; Khatri, Nikunj B; Ray, Hari Shankar P; Bhatiya, Upti R; Shah, Sandip C; Shah, Bhavini S; Rao, Mandava V

    2018-01-01

    Germline mutations BRCA1 and BRCA2 contribute almost equally in the causation of breast cancer (BC). The type of mutations in the Indian population that cause this condition is largely unknown. In this cohort, 79 randomized BC patients were screened for various types of BRCA1 and BRCA2 mutations including frameshift, nonsense, missense, in-frame and splice site types. The purified extracted DNA of each referral patient was subjected to Sanger gene sequencing using Codon Code Analyzer and Mutation Surveyor and next-generation sequencing (NGS) methods with Ion torrent software, after appropriate care. The data revealed that 35 cases were positive for BRCA1 or BRCA2 (35/79: 44.3%). BRCA2 mutations were higher (52.4%) than BRCA1 mutations (47.6%). Five novel mutations detected in this study were p.pro163 frameshift, p.asn997 frameshift, p.ser148 frameshift and two splice site single-nucleotide polymorphisms (SNPs). Additionally, four nonsense and one in-frame deletion were identified, which all seemed to be pathogenic. Polymorphic SNPs contributed the highest percentage of mutations (72/82: 87.8%) and contributed to pathogenic, likely pathogenic, likely benign, benign and variant of unknown significance (VUS). Young age groups (20-60 years) had a high frequency of germline mutations (62/82;75.6%) in the Indian population. This study suggested that polymorphic SNPs contributed a high percentage of mutations along with five novel types. Younger age groups are prone to having BC with a higher mutational rate. Furthermore, the SNPs detected in exons 10, 11 and 16 of BRCA1 and BRCA2 were higher than those in other exons 2, 3 and 9 polymorphic sites in two germline genes. These may be contributory for BC although missense types are known to be susceptible for cancer depending on the type of amino acid replaced in the protein and associated with pathologic events. Accordingly, appropriate counseling and treatment may be suggested.

  16. Evolution of the Bovine TLR Gene Family and Member Associations with Mycobacterium avium Subspecies paratuberculosis Infection

    PubMed Central

    Fisher, Colleen A.; Bhattarai, Eric K.; Osterstock, Jason B.; Dowd, Scot E.; Seabury, Paul M.; Vikram, Meenu; Whitlock, Robert H.; Schukken, Ynte H.; Schnabel, Robert D.; Taylor, Jeremy F.; Womack, James E.; Seabury, Christopher M.

    2011-01-01

    Members of the Toll-like receptor (TLR) gene family occupy key roles in the mammalian innate immune system by functioning as sentries for the detection of invading pathogens, thereafter provoking host innate immune responses. We utilized a custom next-generation sequencing approach and allele-specific genotyping assays to detect and validate 280 biallelic variants across all 10 bovine TLR genes, including 71 nonsynonymous single nucleotide polymorphisms (SNPs) and one putative nonsense SNP. Bayesian haplotype reconstructions and median joining networks revealed haplotype sharing between Bos taurus taurus and Bos taurus indicus breeds at every locus, and specialized beef and dairy breeds could not be differentiated despite an average polymorphism density of 1 marker/158 bp. Collectively, 160 tagSNPs and two tag insertion-deletion mutations (indels) were sufficient to predict 100% of the variation at 280 variable sites for both Bos subspecies and their hybrids, whereas 118 tagSNPs and 1 tagIndel predictively captured 100% of the variation at 235 variable sites for B. t. taurus. Polyphen and SIFT analyses of amino acid (AA) replacements encoded by bovine TLR SNPs indicated that up to 32% of the AA substitutions were expected to impact protein function. Classical and newly developed tests of diversity provide strong support for balancing selection operating on TLR3 and TLR8, and purifying selection acting on TLR10. An investigation of the persistence and continuity of linkage disequilibrium (r2≥0.50) between adjacent variable sites also supported the presence of selection acting on TLR3 and TLR8. A case-control study employing validated variants from bovine TLR genes recognizing bacterial ligands revealed six SNPs potentially eliciting small effects on susceptibility to Mycobacterium avium spp paratuberculosis infection in dairy cattle. The results of this study will broadly impact domestic cattle research by providing the necessary foundation to explore several avenues of bovine translational genomics, and the potential for marker-assisted vaccination. PMID:22164200

  17. Single-nucleotide polymorphisms g.151435C>T and g.173057T>C in PRLR gene regulated by bta-miR-302a are associated with litter size in goats.

    PubMed

    An, Xiaopeng; Hou, Jinxing; Gao, Teyang; Lei, Yingnan; Li, Guang; Song, Yuxuan; Wang, Jiangang; Cao, Binyun

    2015-06-01

    Single-nucleotide polymorphisms (SNPs) located at microRNA-binding sites (miR-SNPs) can affect the expression of genes. This study aimed to identify the miR-SNPs associated with litter size. Guanzhong (n = 321) and Boer (n = 191) goat breeds were used to detect SNPs in the caprine prolactin receptor (PRLR) gene by DNA sequencing, primer-introduced restriction analysis-polymerase chain reaction, and polymerase chain reaction-restriction fragment length polymorphism. Three novel SNPs (g.151435C>T, g.151454A>G, and g.173057T>C) were identified in the caprine PRLR gene. Statistical results indicated that the g.151435C>T and g.173057T>C SNPs were significantly associated with litter size in Guanzhong and Boer goat breeds. Further analysis revealed that combinative genotype C6 (TTAACC) was better than the others for litter size in both goat breeds. Furthermore, the PRLR g.173057T>C polymorphism was predicted to regulate the binding activity of bta-miR-302a. Luciferase reporter gene assay confirmed that 173057C to T substitution disrupted the binding site for bta-miR-302a, resulting in the reduced levels of luciferase. Taken together, these findings suggested that bta-miR-302a can influence the expression of PRLR protein by binding with 3'untranslated region, resulting in that the g.173057T>C SNP had significant effects on litter size. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Hippocampal Sclerosis of Aging, a Common Alzheimer's Disease 'Mimic': Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe.

    PubMed

    Nho, Kwangsik; Saykin, Andrew J; Nelson, Peter T

    2016-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer's disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (∼50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer's disease contribution to atrophy outside of the hippocampus in older adults.

  19. Identification and validation of single nucleotide polymorphisms in growth- and maturation-related candidate genes in sole (Solea solea L.).

    PubMed

    Diopere, Eveline; Hellemans, Bart; Volckaert, Filip A M; Maes, Gregory E

    2013-03-01

    Genomic methodologies applied in evolutionary and fisheries research have been of great benefit to understand the marine ecosystem and the management of natural resources. Although single nucleotide polymorphisms (SNPs) are attractive for the study of local adaptation, spatial stock management and traceability, and investigating the effects of fisheries-induced selection, they have rarely been exploited in non-model organisms. This is partly due to difficulties in finding and validating SNPs in species with limited or no genomic resources. Complementary to random genome-scan approaches, a targeted candidate gene approach has the potential to unveil pre-selected functional diversity and provides more in depth information on the action of selection at specific genes. For example genes can be under selective pressure due to climate change and sustained periods of heavy fishing pressure. In this study, we applied a candidate gene approach in sole (Solea solea L.), an important member of the demersal ecosystem. As consumption flatfish it is heavy exploited and has experienced associated life-history changes over the last 60years. To discover novel genetic polymorphisms in or around genes linked to important life history traits in sole, we screened a total of 76 candidate genes related to growth and maturation using a targeted resequencing approach. We identified in total 86 putative SNPs in 22 genes and validated 29 SNPs using a multiplex single-base extension genotyping assay. We found 22 informative SNPs, of which two represent non-synonymous mutations, potentially of functional relevance. These novel markers should be rapidly and broadly applicable in analyses of natural sole populations, as a measure of the evolutionary signature of overfishing and for initiatives on marker assisted selection. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Hippocampal Sclerosis of Aging, a Common Alzheimer’s Disease ‘Mimic’: Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe

    PubMed Central

    Nho, Kwangsik; Saykin, Andrew J.; Nelson, Peter T.

    2016-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer’s disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer’s Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (~50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer’s disease contribution to atrophy outside of the hippocampus in older adults. PMID:27003218

  1. Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V.

    PubMed

    Achenbach, Ute; Paulo, Joao; Ilarionova, Evgenyia; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhard; Gebhardt, Christiane

    2009-02-01

    The damage caused by the parasitic root cyst nematode Globodera pallida is a major yield-limiting factor in potato cultivation . Breeding for resistance is facilitated by the PCR-based marker 'HC', which is diagnostic for an allele conferring high resistance against G. pallida pathotype Pa2/3 that has been introgressed from the wild potato species Solanum vernei into the Solanum tuberosum tetraploid breeding pool. The major quantitative trait locus (QTL) controlling this nematode resistance maps on potato chromosome V in a hot spot for resistance to various pathogens including nematodes and the oomycete Phytophthora infestans. An unstructured sample of 79 tetraploid, highly heterozygous varieties and breeding clones was selected based on presence (41 genotypes) or absence (38 genotypes) of the HC marker. Testing the clones for resistance to G. pallida confirmed the diagnostic power of the HC marker. The 79 individuals were genotyped for 100 single nucleotide polymorphisms (SNPs) at 10 loci distributed over 38 cM on chromosome V. Forty-five SNPs at six loci spanning 2 cM in the interval between markers GP21-GP179 were associated with resistance to G. pallida. Based on linkage disequilibrium (LD) between SNP markers, six LD groups comprising between 2 and 18 SNPs were identified. The LD groups indicated the existence of multiple alleles at a single resistance locus or at several, physically linked resistance loci. LD group C comprising 18 SNPs corresponded to the 'HC' marker. LD group E included 16 SNPs and showed an association peak, which positioned one nematode resistance locus physically close to the R1 gene family.

  2. Gene variations of nitric oxide synthase regulate the effects of a saturated fat rich meal on endothelial function

    USDA-ARS?s Scientific Manuscript database

    Objective: Endothelial nitric oxide synthase gene variations have been linked to a higher risk for cardiovascular diseases by unknown mechanisms. Our aim was to determine if two SNPs located in NOS3 (E298D and i19342) interfere with microvascular endothelial function (MEF) and/or oxidative stress du...

  3. The easy road to genome-wide medium density SNP screening in a non-model species: development and application of a 10 K SNP-chip for the house sparrow (Passer domesticus).

    PubMed

    Hagen, Ingerid J; Billing, Anna M; Rønning, Bernt; Pedersen, Sindre A; Pärn, Henrik; Slate, Jon; Jensen, Henrik

    2013-05-01

    With the advent of next generation sequencing, new avenues have opened to study genomics in wild populations of non-model species. Here, we describe a successful approach to a genome-wide medium density Single Nucleotide Polymorphism (SNP) panel in a non-model species, the house sparrow (Passer domesticus), through the development of a 10 K Illumina iSelect HD BeadChip. Genomic DNA and cDNA derived from six individuals were sequenced on a 454 GS FLX system and generated a total of 1.2 million sequences, in which SNPs were detected. As no reference genome exists for the house sparrow, we used the zebra finch (Taeniopygia guttata) reference genome to determine the most likely position of each SNP. The 10 000 SNPs on the SNP-chip were selected to be distributed evenly across 31 chromosomes, giving on average one SNP per 100 000 bp. The SNP-chip was screened across 1968 individual house sparrows from four island populations. Of the original 10 000 SNPs, 7413 were found to be variable, and 99% of these SNPs were successfully called in at least 93% of all individuals. We used the SNP-chip to demonstrate the ability of such genome-wide marker data to detect population sub-division, and compared these results to similar analyses using microsatellites. The SNP-chip will be used to map Quantitative Trait Loci (QTL) for fitness-related phenotypic traits in natural populations. © 2013 Blackwell Publishing Ltd.

  4. Re-Ranking Sequencing Variants in the Post-GWAS Era for Accurate Causal Variant Identification

    PubMed Central

    Faye, Laura L.; Machiela, Mitchell J.; Kraft, Peter; Bull, Shelley B.; Sun, Lei

    2013-01-01

    Next generation sequencing has dramatically increased our ability to localize disease-causing variants by providing base-pair level information at costs increasingly feasible for the large sample sizes required to detect complex-trait associations. Yet, identification of causal variants within an established region of association remains a challenge. Counter-intuitively, certain factors that increase power to detect an associated region can decrease power to localize the causal variant. First, combining GWAS with imputation or low coverage sequencing to achieve the large sample sizes required for high power can have the unintended effect of producing differential genotyping error among SNPs. This tends to bias the relative evidence for association toward better genotyped SNPs. Second, re-use of GWAS data for fine-mapping exploits previous findings to ensure genome-wide significance in GWAS-associated regions. However, using GWAS findings to inform fine-mapping analysis can bias evidence away from the causal SNP toward the tag SNP and SNPs in high LD with the tag. Together these factors can reduce power to localize the causal SNP by more than half. Other strategies commonly employed to increase power to detect association, namely increasing sample size and using higher density genotyping arrays, can, in certain common scenarios, actually exacerbate these effects and further decrease power to localize causal variants. We develop a re-ranking procedure that accounts for these adverse effects and substantially improves the accuracy of causal SNP identification, often doubling the probability that the causal SNP is top-ranked. Application to the NCI BPC3 aggressive prostate cancer GWAS with imputation meta-analysis identified a new top SNP at 2 of 3 associated loci and several additional possible causal SNPs at these loci that may have otherwise been overlooked. This method is simple to implement using R scripts provided on the author's website. PMID:23950724

  5. Association of MYF5 and KLF15 gene polymorphisms with carcass traits in domestic pigeons (Columba livia).

    PubMed

    Yin, Z Z; Dong, X Y; Dong, D J; Ma, Y Z

    2016-10-01

    Single nucleotide polymorphisms (SNPs) in the exons of the myogenic factor 5 (MYF5) and Kruppel-like factor 15 (KLF15) genes were identified and analysed by using DNA sequencing methods in 60 female domestic pigeons (Columba livia). Five SNPs (T5067A, C5084T, C5101T, T5127A and C5154G) were detected in exon 3 of MYF5 and 6 SNPs (C1398T, C1464T, G1542A, C1929T, G1965A and A2355G) were found in exon 2 of KLF15, respectively. The analysis revealed three genotypes, in which the AA genotype was dominant and the A allele showed a dominant advantage. For the MYF5 gene, the C5084T and T5127A SNP genotypes were significantly associated with carcass traits of pigeons. Within those two SNPs, the BB genotype showed relatively higher trait association values than those of AA or AB genotypes. No significant association was observed between the KLF15 SNP genotypes and carcass traits. These results indicated that the MYF5 gene is a potential major gene affecting carcass traits in domestic pigeons. The BB genotype of the C5084T and T5127A SNPs could be a potential candidate genetic marker for marker-assisted selection in pigeon.

  6. Role of DISC1 interacting proteins in schizophrenia risk from genome-wide analysis of missense SNPs.

    PubMed

    Costas, Javier; Suárez-Rama, Jose Javier; Carrera, Noa; Paz, Eduardo; Páramo, Mario; Agra, Santiago; Brenlla, Julio; Ramos-Ríos, Ramón; Arrojo, Manuel

    2013-11-01

    A balanced translocation affecting DISC1 cosegregates with several psychiatric disorders, including schizophrenia, in a Scottish family. DISC1 is a hub protein of a network of protein-protein interactions involved in multiple developmental pathways within the brain. Gene set-based analysis has been proposed as an alternative to individual analysis of single nucleotide polymorphisms (SNPs) to get information from genome-wide association studies. In this work, we tested for an overrepresentation of the DISC1 interacting proteins within the top results of our ranked list of genes based on our previous genome-wide association study of missense SNPs in schizophrenia. Our data set consisted of 5100 common missense SNPs genotyped in 476 schizophrenic patients and 447 control subjects from Galicia, NW Spain. We used a modification of the Gene Set Enrichment Analysis adapted for SNPs, as implemented in the GenGen software. The analysis detected an overrepresentation of the DISC1 interacting proteins (permuted P-value=0.0158), indicative of the role of this gene set in schizophrenia risk. We identified seven leading-edge genes, MACF1, UTRN, DST, DISC1, KIF3A, SYNE1, and AKAP9, responsible for the overrepresentation. These genes are involved in neuronal cytoskeleton organization and intracellular transport through the microtubule cytoskeleton, suggesting that these processes may be impaired in schizophrenia. © 2013 John Wiley & Sons Ltd/University College London.

  7. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and White Leghorn chickens.

    PubMed

    Liao, R; Zhang, X; Chen, Q; Wang, Z; Wang, Q; Yang, C; Pan, Y

    2016-10-01

    This study was designed to investigate the genetic basis of growth and egg traits in Dongxiang blue-shelled chickens and White Leghorn chickens. In this study, we employed a reduced representation sequencing approach called genotyping by genome reducing and sequencing to detect genome-wide SNPs in 252 Dongxiang blue-shelled chickens and 252 White Leghorn chickens. The Dongxiang blue-shelled chicken breed has many specific traits and is characterized by blue-shelled eggs, black plumage, black skin, black bone and black organs. The White Leghorn chicken is an egg-type breed with high productivity. As multibreed genome-wide association studies (GWASs) can improve precision due to less linkage disequilibrium across breeds, a multibreed GWAS was performed with 156 575 SNPs to identify the associated variants underlying growth and egg traits within the two chicken breeds. The analysis revealed 32 SNPs exhibiting a significant genome-wide association with growth and egg traits. Some of the significant SNPs are located in genes that are known to impact growth and egg traits, but nearly half of the significant SNPs are located in genes with unclear functions in chickens. To our knowledge, this is the first multibreed genome-wide report for the genetics of growth and egg traits in the Dongxiang blue-shelled and White Leghorn chickens. © 2016 Stichting International Foundation for Animal Genetics.

  8. Resampling to Address the Winner's Curse in Genetic Association Analysis of Time to Event

    PubMed Central

    Poirier, Julia G.; Faye, Laura L.; Dimitromanolakis, Apostolos; Paterson, Andrew D.; Sun, Lei

    2015-01-01

    ABSTRACT The “winner's curse” is a subtle and difficult problem in interpretation of genetic association, in which association estimates from large‐scale gene detection studies are larger in magnitude than those from subsequent replication studies. This is practically important because use of a biased estimate from the original study will yield an underestimate of sample size requirements for replication, leaving the investigators with an underpowered study. Motivated by investigation of the genetics of type 1 diabetes complications in a longitudinal cohort of participants in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Genetics Study, we apply a bootstrap resampling method in analysis of time to nephropathy under a Cox proportional hazards model, examining 1,213 single‐nucleotide polymorphisms (SNPs) in 201 candidate genes custom genotyped in 1,361 white probands. Among 15 top‐ranked SNPs, bias reduction in log hazard ratio estimates ranges from 43.1% to 80.5%. In simulation studies based on the observed DCCT/EDIC genotype data, genome‐wide bootstrap estimates for false‐positive SNPs and for true‐positive SNPs with low‐to‐moderate power are closer to the true values than uncorrected naïve estimates, but tend to overcorrect SNPs with high power. This bias‐reduction technique is generally applicable for complex trait studies including quantitative, binary, and time‐to‐event traits. PMID:26411674

  9. Japan PGx Data Science Consortium Database: SNPs and HLA genotype data from 2994 Japanese healthy individuals for pharmacogenomics studies.

    PubMed

    Kamitsuji, Shigeo; Matsuda, Takashi; Nishimura, Koichi; Endo, Seiko; Wada, Chisa; Watanabe, Kenji; Hasegawa, Koichi; Hishigaki, Haretsugu; Masuda, Masatoshi; Kuwahara, Yusuke; Tsuritani, Katsuki; Sugiura, Kenkichi; Kubota, Tomoko; Miyoshi, Shinji; Okada, Kinya; Nakazono, Kazuyuki; Sugaya, Yuki; Yang, Woosung; Sawamoto, Taiji; Uchida, Wataru; Shinagawa, Akira; Fujiwara, Tsutomu; Yamada, Hisaharu; Suematsu, Koji; Tsutsui, Naohisa; Kamatani, Naoyuki; Liou, Shyh-Yuh

    2015-06-01

    Japan Pharmacogenomics Data Science Consortium (JPDSC) has assembled a database for conducting pharmacogenomics (PGx) studies in Japanese subjects. The database contains the genotypes of 2.5 million single-nucleotide polymorphisms (SNPs) and 5 human leukocyte antigen loci from 2994 Japanese healthy volunteers, as well as 121 kinds of clinical information, including self-reports, physiological data, hematological data and biochemical data. In this article, the reliability of our data was evaluated by principal component analysis (PCA) and association analysis for hematological and biochemical traits by using genome-wide SNP data. PCA of the SNPs showed that all the samples were collected from the Japanese population and that the samples were separated into two major clusters by birthplace, Okinawa and other than Okinawa, as had been previously reported. Among 87 SNPs that have been reported to be associated with 18 hematological and biochemical traits in genome-wide association studies (GWAS), the associations of 56 SNPs were replicated using our data base. Statistical power simulations showed that the sample size of the JPDSC control database is large enough to detect genetic markers having a relatively strong association even when the case sample size is small. The JPDSC database will be useful as control data for conducting PGx studies to explore genetic markers to improve the safety and efficacy of drugs either during clinical development or in post-marketing.

  10. SNPs detection in DHPS-WDR83 overlapping genes mapping on porcine chromosome 2 in a QTL region for meat pH.

    PubMed

    Zambonelli, Paolo; Davoli, Roberta; Bigi, Mila; Braglia, Silvia; De Paolis, Luigi Francesco; Buttazzoni, Luca; Gallo, Maurizio; Russo, Vincenzo

    2013-10-08

    The pH is an important parameter influencing technological quality of pig meat, a trait affected by environmental and genetic factors. Several quantitative trait loci associated to meat pH are described on PigQTL database but only two genes influencing this parameter have been so far detected: Ryanodine receptor 1 and Protein kinase, AMP-activated, gamma 3 non-catalytic subunit. To search for genes influencing meat pH we analyzed genomic regions with quantitative effect on this trait in order to detect SNPs to use for an association study. The expressed sequences mapping on porcine chromosomes 1, 2, 3 in regions associated to pork pH were searched in silico to find SNPs. 356 out of 617 detected SNPs were used to genotype Italian Large White pigs and to perform an association analysis with meat pH values recorded in semimembranosus muscle at about 1 hour (pH1) and 24 hours (pHu) post mortem.The results of the analysis showed that 5 markers mapping on chromosomes 1 or 3 were associated with pH1 and 10 markers mapping on chromosomes 1 or 2 were associated with pHu. After False Discovery Rate correction only one SNP mapping on chromosome 2 was confirmed to be associated to pHu. This polymorphism was located in the 3'UTR of two partly overlapping genes, Deoxyhypusine synthase (DHPS) and WD repeat domain 83 (WDR83). The overlapping of the 3'UTRs allows the co-regulation of mRNAs stability by a cis-natural antisense transcript method of regulation. DHPS catalyzes the first step in hypusine formation, a unique amino acid formed by the posttranslational modification of the protein eukaryotic translation initiation factor 5A in a specific lysine residue. WDR83 has an important role in the modulation of a cascade of genes involved in cellular hypoxia defense by intensifying the glycolytic pathway and, theoretically, the meat pH value. The involvement of the SNP detected in the DHPS/WDR83 genes on meat pH phenotypic variability and their functional role are suggestive of molecular and biological processes related to glycolysis increase during post-mortem phase. This finding, after validation, can be applied to identify new biomarkers to be used to improve pig meat quality.

  11. The impact of single nucleotide polymorphism in monomeric alpha-amylase inhibitor genes from wild emmer wheat, primarily from Israel and Golan

    PubMed Central

    2010-01-01

    Background Various enzyme inhibitors act on key insect gut digestive hydrolases, including alpha-amylases and proteinases. Alpha-amylase inhibitors have been widely investigated for their possible use in strengthening a plant's defense against insects that are highly dependent on starch as an energy source. We attempted to unravel the diversity of monomeric alpha-amylase inhibitor genes of Israeli and Golan Heights' wild emmer wheat with different ecological factors (e.g., geography, water, and temperature). Population methods that analyze the nature and frequency of allele diversity within a species and the codon analysis method (comparing patterns of synonymous and non-synonymous changes in protein coding sequences) were used to detect natural selection. Results Three hundred and forty-eight sequences encoding monomeric alpha-amylase inhibitors (WMAI) were obtained from 14 populations of wild emmer wheat. The frequency of SNPs in WMAI genes was 1 out of 16.3 bases, where 28 SNPs were detected in the coding sequence. The results of purifying and the positive selection hypothesis (p < 0.05) showed that the sequences of WMAI were contributed by both natural selection and co-evolution, which ensured conservation of protein function and inhibition against diverse insect amylases. The majority of amino acid substitutions occurred at the C-terminal (positive selection domain), which ensured the stability of WMAI. SNPs in this gene could be classified into several categories associated with water, temperature, and geographic factors, respectively. Conclusions Great diversity at the WMAI locus, both between and within populations, was detected in the populations of wild emmer wheat. It was revealed that WMAI were naturally selected for across populations by a ratio of dN/dS as expected. Ecological factors, singly or in combination, explained a significant proportion of the variations in the SNPs. A sharp genetic divergence over very short geographic distances compared to a small genetic divergence between large geographic distances also suggested that the SNPs were subjected to natural selection, and ecological factors had an important evolutionary role in polymorphisms at this locus. According to population and codon analysis, these results suggested that monomeric alpha-amylase inhibitors are adaptively selected under different environmental conditions. PMID:20534122

  12. A survey about methods dedicated to epistasis detection.

    PubMed

    Niel, Clément; Sinoquet, Christine; Dina, Christian; Rocheleau, Ghislain

    2015-01-01

    During the past decade, findings of genome-wide association studies (GWAS) improved our knowledge and understanding of disease genetics. To date, thousands of SNPs have been associated with diseases and other complex traits. Statistical analysis typically looks for association between a phenotype and a SNP taken individually via single-locus tests. However, geneticists admit this is an oversimplified approach to tackle the complexity of underlying biological mechanisms. Interaction between SNPs, namely epistasis, must be considered. Unfortunately, epistasis detection gives rise to analytic challenges since analyzing every SNP combination is at present impractical at a genome-wide scale. In this review, we will present the main strategies recently proposed to detect epistatic interactions, along with their operating principle. Some of these methods are exhaustive, such as multifactor dimensionality reduction, likelihood ratio-based tests or receiver operating characteristic curve analysis; some are non-exhaustive, such as machine learning techniques (random forests, Bayesian networks) or combinatorial optimization approaches (ant colony optimization, computational evolution system).

  13. A 200K SNP chip reveals a novel Pacific salmon louse genotype linked to differential efficacy of emamectin benzoate.

    PubMed

    Messmer, Amber M; Leong, Jong S; Rondeau, Eric B; Mueller, Anita; Despins, Cody A; Minkley, David R; Kent, Matthew P; Lien, Sigbjørn; Boyce, Brad; Morrison, Diane; Fast, Mark D; Norman, Joseph D; Danzmann, Roy G; Koop, Ben F

    2018-04-16

    Antiparasitic drugs such as emamectin benzoate (EMB) are relied upon to reduce the parasite load, particularly of the sea louse Lepeophtheirus salmonis, on farmed salmon. The decline in EMB treatment efficacy for this purpose is an important issue for salmon producers around the world, and particularly for those in the Atlantic Ocean where widespread EMB tolerance in sea lice is recognized as a significant problem. Salmon farms in the Northeast Pacific Ocean have not historically experienced the same issues with treatment efficacy, possibly due to the relatively large population of endemic salmonid hosts that serve to both redistribute surviving lice and dilute populations potentially under selection by introducing naïve lice to farms. Frequent migration of lice among farmed and wild hosts should limit the effect of farm-specific selection pressures on changes to the overall allele frequencies of sea lice in the Pacific Ocean. A previous study using microsatellites examined L. salmonis oncorhynchi from 10 Pacific locations from wild and farmed hosts and found no population structure. Recently however, a farm population of sea lice was detected where EMB bioassay exposure tolerance was abnormally elevated. In response, we have developed a Pacific louse draft genome that complements the previously-released Atlantic louse sequence. These genomes were combined with whole-genome re-sequencing data to design a highly sensitive 201,279 marker SNP array applicable for both subspecies (90,827 validated Pacific loci; 153,569 validated Atlantic loci). Notably, kmer spectrum analysis of the re-sequenced samples indicated that Pacific lice exhibit a large within-individual heterozygosity rate (average of 1 in every 72 bases) that is markedly higher than that of Atlantic individuals (1 in every 173 bases). The SNP chip was used to produce a high-density map for Atlantic sea louse linkage group 5 that was previously shown to be associated with EMB tolerance in Atlantic lice. Additionally, 478 Pacific louse samples from farmed and wild hosts obtained between 2005 and 2014 were also genotyped on the array. Clustering analysis allowed us to detect the apparent emergence of an otherwise rare genotype at a high frequency among the lice collected from two farms in 2013 that had reported elevated EMB tolerance. This genotype was not observed in louse samples collected from the same farm in 2010, nor in any lice sampled from other locations prior to 2013. However, this genotype was detected at low frequencies in louse samples from farms in two locations reporting elevated EMB tolerance in 2014. These results suggest that a rare genotype present in Pacific lice may be locally expanded in farms after EMB treatment. Supporting this hypothesis, 437 SNPs associated with this genotype were found to be in a region of linkage group 5 that overlaps the region associated with EMB resistance in Atlantic lice. Finally, five of the top diagnostic SNPs within this region were used to screen lice that had been subjected to an EMB survival assay, revealing a significant association between these SNPs and EMB treatment outcome. To our knowledge this work is the first report to identify a genetic link to altered EMB efficacy in L. salmonis in the Pacific Ocean. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. A new approach to chromosome-wide analysis of X-linked markers identifies new associations in Asian and European case-parent triads of orofacial clefts

    PubMed Central

    Gjerdevik, Miriam; Haaland, Øystein A.; Romanowska, Julia; Lie, Rolv T.

    2017-01-01

    Background GWAS discoveries on the X-chromosome are underrepresented in the literature primarily because the analytical tools that have been applied were originally designed for autosomal markers. Our objective here is to employ a new robust and flexible tool for chromosome-wide analysis of X-linked markers in complex traits. Orofacial clefts are good candidates for such analysis because of the consistently observed excess of females with cleft palate only (CPO) and excess of males with cleft lip with or without cleft palate (CL/P). Methods Genotypes for 14,486 X-chromosome SNPs in 1,291 Asian and 1,118 European isolated cleft triads were available from a previously published GWAS. The R-package HAPLIN enables genome-wide–level analyses as well as statistical power simulations for a range of biologic scenarios. We analyzed isolated CL/P and isolated CPO for each ethnicity in HAPLIN, using a sliding-window approach to haplotype analysis and two different statistical models, with and without X-inactivation in females. Results There was a larger number of associations in the Asian versus the European sample, and similar to previous reports that have analyzed the same GWAS dataset using different methods, we identified associations with EFNB1/PJA1 and DMD. In addition, new associations were detected with several other genes, among which KLHL4, TBX22, CPXCR1 and BCOR were noteworthy because of their roles in clefting syndromes. A few of the associations were only detected by one particular X-inactivation model, whereas a few others were only detected in one sex. Discussion/Conclusion We found new support for the involvement of X-linked variants in isolated clefts. The associations were specific for ethnicity, sex and model parameterization, highlighting the need for flexible tools that are capable of detecting and estimating such effects. Further efforts are needed to verify and elucidate the potential roles of EFNB1/PJA1, KLHL4, TBX22, CPXCR1 and BCOR in isolated clefts. PMID:28877219

  15. Development of a single nucleotide polymorphism DNA microarray for the detection and genotyping of the SARS coronavirus.

    PubMed

    Guo, Xi; Geng, Peng; Wang, Quan; Cao, Boyang; Liu, Bin

    2014-10-01

    Severe acute respiratory syndrome (SARS), a disease that spread widely in the world during late 2002 to 2004, severely threatened public health. Although there have been no reported infections since 2004, the extremely pathogenic SARS coronavirus (SARS-CoV), as the causative agent of SARS, has recently been identified in animals, showing the potential for the re-emergence of this disease. Previous studies showed that 27 single nucleotide polymorphism (SNP) mutations among the spike (S) gene of this virus are correlated closely with the SARS pathogenicity and epidemicity. We have developed a SNP DNA microarray in order to detect and genotype these SNPs, and to obtain related information on the pathogenicity and epidemicity of a given strain. The microarray was hybridized with PCR products amplified from cDNAs obtained from different SARS-CoV strains. We were able to detect 24 SNPs and determine the type of a given strain. The hybridization profile showed that 19 samples were detected and genotyped correctly by using our microarray, with 100% accuracy. Our microarray provides a novel method for the detection and epidemiological surveillance of SARS-CoV.

  16. Next generation sequencing of SNPs for non-invasive prenatal diagnosis: challenges and feasibility as illustrated by an application to β-thalassaemia

    PubMed Central

    Papasavva, Thessalia; van IJcken, Wilfred F J; Kockx, Christel E M; van den Hout, Mirjam C G N; Kountouris, Petros; Kythreotis, Loukas; Kalogirou, Eleni; Grosveld, Frank G; Kleanthous, Marina

    2013-01-01

    β-Thalassaemia is one of the most common autosomal recessive single-gene disorder worldwide, with a carrier frequency of 12% in Cyprus. Prenatal tests for at risk pregnancies use invasive methods and development of a non-invasive prenatal diagnostic (NIPD) method is of paramount importance to prevent unnecessary risks inherent to invasive methods. Here, we describe such a method by assessing a modified version of next generation sequencing (NGS) using the Illumina platform, called ‘targeted sequencing', based on the detection of paternally inherited fetal alleles in maternal plasma. We selected four single-nucleotide polymorphisms (SNPs) located in the β-globin locus with a high degree of heterozygosity in the Cypriot population. Spiked genomic samples were used to determine the specificity of the platform. We could detect the minor alleles in the expected ratio, showing the specificity of the platform. We then developed a multiplexed format for the selected SNPs and analysed ten maternal plasma samples from pregnancies at risk. The presence or absence of the paternal mutant allele was correctly determined in 27 out of 34 samples analysed. With haplotype analysis, NIPD was possible on eight out of ten families. This is the first study carried out for the NIPD of β-thalassaemia using targeted NGS and haplotype analysis. Preliminary results show that NGS is effective in detecting paternally inherited alleles in the maternal plasma. PMID:23572027

  17. [Identification of single nucleotide polymorphisms related to frailty].

    PubMed

    Inglés, Marta; Gimeno-Mallench, Lucia; Mas-Bargues, Cristina; Dromant, Mar; Cruz-Guerrero, Raquel; García-García, Francisco José; Rodríguez-Mañas, Leocadio; Gambini, Juan; Borrás, Consuelo; Viña, José

    2018-04-07

    The search for biomarkers that can lead to the early diagnosis and thus, early treatment of frailty, has become one of the main challenges facing the geriatric scientific community. The aim of the present study was to identify single nucleotide polymorphisms (SNPs) related to frailty. The study was conducted on 152 subjects from the Toledo Study for Healthy Aging (65 to 95 years of age), and classified as frail (n=78), and non-frail (n=74), according to Fried's criteria. After blood collection, DNA was isolated and amplified for the analysis of SNPs using Axiom TM Genotyping technology (Affymetrix). Statistical analyses were performed using the Plink program and library SNPassoc. The results of the study showed 15 SNPs with a P<.001. Those SNPs involved in processes related to frailty, such as energy metabolism, regulation of biological processes, cell motility and integrity, and cognition are highlighted. These results suggest that the genetic variations identified in frail individuals that are involved in biological processes related to frailty may be considered as biomarkers for the early detection of frailty. Copyright © 2018 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Association study of IL10, IL1beta, and IL1RN and schizophrenia using tag SNPs from a comprehensive database: suggestive association with rs16944 at IL1beta.

    PubMed

    Shirts, Brian H; Wood, Joel; Yolken, Robert H; Nimgaonkar, Vishwajit L

    2006-12-01

    Genetic association studies of several candidate cytokine genes have been motivated by evidence of immune dysfunction among patients with schizophrenia. Intriguing but inconsistent associations have been reported with polymorphisms of three positional candidate genes, namely IL1beta, IL1RN, and IL10. We used comprehensive sequencing data from the Seattle SNPs database to select tag SNPs that represent all common polymorphisms in the Caucasian population at these loci. Associations with 28 tag SNPs were evaluated in 478 cases and 501 unscreened control individuals, while accounting for population sub-structure using the genomic control method. The samples were also stratified by gender, diagnostic category, and exposure to infectious agents. Significant association was not detected after correcting for multiple comparisons. However, meta-analysis of our data combined with previously published association studies of rs16944 (IL1beta -511) suggests that the C allele confers modest risk for schizophrenia among individuals reporting Caucasian ancestry, but not Asians (Caucasians, n=819 cases, 1292 controls; p=0.0013, OR=1.24, 95% CI 1.09, 1.41).

  19. Pervasive sharing of genetic effects in autoimmune disease.

    PubMed

    Cotsapas, Chris; Voight, Benjamin F; Rossin, Elizabeth; Lage, Kasper; Neale, Benjamin M; Wallace, Chris; Abecasis, Gonçalo R; Barrett, Jeffrey C; Behrens, Timothy; Cho, Judy; De Jager, Philip L; Elder, James T; Graham, Robert R; Gregersen, Peter; Klareskog, Lars; Siminovitch, Katherine A; van Heel, David A; Wijmenga, Cisca; Worthington, Jane; Todd, John A; Hafler, David A; Rich, Stephen S; Daly, Mark J

    2011-08-01

    Genome-wide association (GWA) studies have identified numerous, replicable, genetic associations between common single nucleotide polymorphisms (SNPs) and risk of common autoimmune and inflammatory (immune-mediated) diseases, some of which are shared between two diseases. Along with epidemiological and clinical evidence, this suggests that some genetic risk factors may be shared across diseases-as is the case with alleles in the Major Histocompatibility Locus. In this work we evaluate the extent of this sharing for 107 immune disease-risk SNPs in seven diseases: celiac disease, Crohn's disease, multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, and type 1 diabetes. We have developed a novel statistic for Cross Phenotype Meta-Analysis (CPMA) which detects association of a SNP to multiple, but not necessarily all, phenotypes. With it, we find evidence that 47/107 (44%) immune-mediated disease risk SNPs are associated to multiple-but not all-immune-mediated diseases (SNP-wise P(CPMA)<0.01). We also show that distinct groups of interacting proteins are encoded near SNPs which predispose to the same subsets of diseases; we propose these as the mechanistic basis of shared disease risk. We are thus able to leverage genetic data across diseases to construct biological hypotheses about the underlying mechanism of pathogenesis.

  20. Effects of DGAT1 gene on meat and carcass fatness quality in Chinese commercial cattle.

    PubMed

    Yuan, Zhengrong; Li, Junya; Li, Jiao; Gao, Xue; Gao, Huijiang; Xu, Shangzhong

    2013-02-01

    This study was designed to investigate the candidate single nucleotide polymorphisms (SNPs) in the exon's region of bovine diacylglycerol O-acyltransferase (DGAT1) gene using bioinformatics and experimental methods. A total of 17 SNPs were screened from public data resources and DNA sequencing. Three SNPs (c.572A>G, c.1241C>T and c.1416T>G) of these candidate SNPs were genotyped by created restriction site-polymerase chain reaction (CRS-PCR) methods. The gene-specific SNP markers and their effects on meat and carcass fatness quality traits were evaluated in Chinese commercial cattle. The c.572A>G and c.1416T>G significantly effected on backfat thickness, longissimus muscle area, marbling score, fat color and Warner-Bratzler shear force. No significant association was detected between the c.1241C>T and measured traits. Results from this study suggested that the SNP markers may be effective for the marker-assisted selection of meat and carcass fatness quality traits, and added new evidence that DGAT1 gene is an important candidate gene for the improvement of meat and carcass fatness quality in beef cattle industry.

  1. WASP: a Web-based Allele-Specific PCR assay designing tool for detecting SNPs and mutations

    PubMed Central

    Wangkumhang, Pongsakorn; Chaichoompu, Kridsadakorn; Ngamphiw, Chumpol; Ruangrit, Uttapong; Chanprasert, Juntima; Assawamakin, Anunchai; Tongsima, Sissades

    2007-01-01

    Background Allele-specific (AS) Polymerase Chain Reaction is a convenient and inexpensive method for genotyping Single Nucleotide Polymorphisms (SNPs) and mutations. It is applied in many recent studies including population genetics, molecular genetics and pharmacogenomics. Using known AS primer design tools to create primers leads to cumbersome process to inexperience users since information about SNP/mutation must be acquired from public databases prior to the design. Furthermore, most of these tools do not offer the mismatch enhancement to designed primers. The available web applications do not provide user-friendly graphical input interface and intuitive visualization of their primer results. Results This work presents a web-based AS primer design application called WASP. This tool can efficiently design AS primers for human SNPs as well as mutations. To assist scientists with collecting necessary information about target polymorphisms, this tool provides a local SNP database containing over 10 million SNPs of various populations from public domain databases, namely NCBI dbSNP, HapMap and JSNP respectively. This database is tightly integrated with the tool so that users can perform the design for existing SNPs without going off the site. To guarantee specificity of AS primers, the proposed system incorporates a primer specificity enhancement technique widely used in experiment protocol. In particular, WASP makes use of different destabilizing effects by introducing one deliberate 'mismatch' at the penultimate (second to last of the 3'-end) base of AS primers to improve the resulting AS primers. Furthermore, WASP offers graphical user interface through scalable vector graphic (SVG) draw that allow users to select SNPs and graphically visualize designed primers and their conditions. Conclusion WASP offers a tool for designing AS primers for both SNPs and mutations. By integrating the database for known SNPs (using gene ID or rs number), this tool facilitates the awkward process of getting flanking sequences and other related information from public SNP databases. It takes into account the underlying destabilizing effect to ensure the effectiveness of designed primers. With user-friendly SVG interface, WASP intuitively presents resulting designed primers, which assist users to export or to make further adjustment to the design. This software can be freely accessed at . PMID:17697334

  2. Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo)

    PubMed Central

    2012-01-01

    Background The turkey (Meleagris gallopavo) is an important agricultural species and the second largest contributor to the world’s poultry meat production. Genetic improvement is attributed largely to selective breeding programs that rely on highly heritable phenotypic traits, such as body size and breast muscle development. Commercial breeding with small effective population sizes and epistasis can result in loss of genetic diversity, which in turn can lead to reduced individual fitness and reduced response to selection. The presence of genomic diversity in domestic livestock species therefore, is of great importance and a prerequisite for rapid and accurate genetic improvement of selected breeds in various environments, as well as to facilitate rapid adaptation to potential changes in breeding goals. Genomic selection requires a large number of genetic markers such as e.g. single nucleotide polymorphisms (SNPs) the most abundant source of genetic variation within the genome. Results Alignment of next generation sequencing data of 32 individual turkeys from different populations was used for the discovery of 5.49 million SNPs, which subsequently were used for the analysis of genetic diversity among the different populations. All of the commercial lines branched from a single node relative to the heritage varieties and the South Mexican turkey population. Heterozygosity of all individuals from the different turkey populations ranged from 0.17-2.73 SNPs/Kb, while heterozygosity of populations ranged from 0.73-1.64 SNPs/Kb. The average frequency of heterozygous SNPs in individual turkeys was 1.07 SNPs/Kb. Five genomic regions with very low nucleotide variation were identified in domestic turkeys that showed state of fixation towards alleles different than wild alleles. Conclusion The turkey genome is much less diverse with a relatively low frequency of heterozygous SNPs as compared to other livestock species like chicken and pig. The whole genome SNP discovery study in turkey resulted in the detection of 5.49 million putative SNPs compared to the reference genome. All commercial lines appear to share a common origin. Presence of different alleles/haplotypes in the SM population highlights that specific haplotypes have been selected in the modern domesticated turkey. PMID:22891612

  3. The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce

    PubMed Central

    2013-01-01

    Background The genomic architecture of adaptive traits remains poorly understood in non-model plants. Various approaches can be used to bridge this gap, including the mapping of quantitative trait loci (QTL) in pedigrees, and genetic association studies in non-structured populations. Here we present results on the genomic architecture of adaptive traits in black spruce, which is a widely distributed conifer of the North American boreal forest. As an alternative to the usual candidate gene approach, a candidate SNP approach was developed for association testing. Results A genetic map containing 231 gene loci was used to identify QTL that were related to budset timing and to tree height assessed over multiple years and sites. Twenty-two unique genomic regions were identified, including 20 that were related to budset timing and 6 that were related to tree height. From results of outlier detection and bulk segregant analysis for adaptive traits using DNA pool sequencing of 434 genes, 52 candidate SNPs were identified and subsequently tested in genetic association studies for budset timing and tree height assessed over multiple years and sites. A total of 34 (65%) SNPs were significantly associated with budset timing, or tree height, or both. Although the percentages of explained variance (PVE) by individual SNPs were small, several significant SNPs were shared between sites and among years. Conclusions The sharing of genomic regions and significant SNPs between budset timing and tree height indicates pleiotropic effects. Significant QTLs and SNPs differed quite greatly among years, suggesting that different sets of genes for the same characters are involved at different stages in the tree’s life history. The functional diversity of genes carrying significant SNPs and low observed PVE further indicated that a large number of polymorphisms are involved in adaptive genetic variation. Accordingly, for undomesticated species such as black spruce with natural populations of large effective size and low linkage disequilibrium, efficient marker systems that are predictive of adaptation should require the survey of large numbers of SNPs. Candidate SNP approaches like the one developed in the present study could contribute to reducing these numbers. PMID:23724860

  4. Genetic modifiers of menopausal hormone replacement therapy and breast cancer risk: A genome-wide interaction study

    PubMed Central

    Rudolph, Anja; Hein, Rebecca; Lindström, Sara; Beckmann, Lars; Behrens, Sabine; Liu, Jianjun; Aschard, Hugues; Bolla, Manjeet K.; Wang, Jean; Truong, Thérèse; Cordina-Duverger, Emilie; Menegaux, Florence; Brüning, Thomas; Harth, Volker; Severi, Gianluca; Baglietto, Laura; Southey, Melissa; Chanock, Stephen J.; Lissowska, Jolanta; Figueroa, Jonine D.; Eriksson, Mikael; Humpreys, Keith; Darabi, Hatef; Olson, Janet E.; Stevens, Kristen N.; Vachon, Celine M.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Ashworth, Alan; Orr, Nicholas; Schoemaker, Minouk; Webb, Penny M.; Guénel, Pascal; Brauch, Hiltrud; Giles, Graham; García-Closas, Montserrat; Czene, Kamila; Chenevix-Trench, Georgia; Couch, Fergus J.; Andrulis, Irene L.; Swerdlow, Anthony; Hunter, David J.; Flesch-Janys, Dieter; Easton, Douglas F.; Hall, Per; Nevanlinna, Heli; Kraft, Peter; Chang-Claude, Jenny

    2013-01-01

    Women using menopausal hormone therapy (MHT) are at increased risk to develop breast cancer (BC). To detect genetic modifiers of the association between current use of MHT and BC risk, we conducted a meta-analysis of four genome-wide case-only studies followed by replication in eleven case-control studies. We used a case-only design to assess interactions between single nucleotide polymorphisms (SNPs) and current MHT use on risk of overall and lobular BC. The discovery stage included 2,920 cases (541 lobular) from four genome-wide association studies. The top 1,391 SNPs showing P-values for interaction (Pint) <3.0×10−03 were selected for replication using pooled case-control data from eleven studies of the Breast Cancer Association Consortium, including 7,689 cases (676 lobular) and 9,266 controls. Fixed effects meta-analysis was used to derive combined Pint. No SNP reached genome-wide significance in either the discovery or combined stage. We observed effect modification of current MHT use on overall BC risk by two SNPs on chr13 near POMP (combined Pint≤8.9×10−06), two SNPs in SLC25A21 (combined Pint≤4.8×10−05), and three SNPs in PLCG2 (combined Pint≤4.5×10−05). The association between lobular BC risk was potentially modified by one SNP in TMEFF2 (combined Pint≤2.7×10−05), one SNP in CD80 (combined Pint≤8.2×10−06), three SNPs on chr17 near TMEM132E (combined Pint≤2.2×10−06), and two SNPs on chr18 near SLC25A52 (combined Pint≤4.6×10−05). In conclusion, polymorphisms in genes related to solute transportation in mitochondria, transmembrane signaling and immune cell activation are potentially modifying BC risk associated with current use of MHT. These findings warrant replication in independent studies. PMID:24080446

  5. In search of causal variants: refining disease association signals using cross-population contrasts.

    PubMed

    Saccone, Nancy L; Saccone, Scott F; Goate, Alison M; Grucza, Richard A; Hinrichs, Anthony L; Rice, John P; Bierut, Laura J

    2008-08-29

    Genome-wide association (GWA) using large numbers of single nucleotide polymorphisms (SNPs) is now a powerful, state-of-the-art approach to mapping human disease genes. When a GWA study detects association between a SNP and the disease, this signal usually represents association with a set of several highly correlated SNPs in strong linkage disequilibrium. The challenge we address is to distinguish among these correlated loci to highlight potential functional variants and prioritize them for follow-up. We implemented a systematic method for testing association across diverse population samples having differing histories and LD patterns, using a logistic regression framework. The hypothesis is that important underlying biological mechanisms are shared across human populations, and we can filter correlated variants by testing for heterogeneity of genetic effects in different population samples. This approach formalizes the descriptive comparison of p-values that has typified similar cross-population fine-mapping studies to date. We applied this method to correlated SNPs in the cholinergic nicotinic receptor gene cluster CHRNA5-CHRNA3-CHRNB4, in a case-control study of cocaine dependence composed of 504 European-American and 583 African-American samples. Of the 10 SNPs genotyped in the r2 > or = 0.8 bin for rs16969968, three demonstrated significant cross-population heterogeneity and are filtered from priority follow-up; the remaining SNPs include rs16969968 (heterogeneity p = 0.75). Though the power to filter out rs16969968 is reduced due to the difference in allele frequency in the two groups, the results nevertheless focus attention on a smaller group of SNPs that includes the non-synonymous SNP rs16969968, which retains a similar effect size (odds ratio) across both population samples. Filtering out SNPs that demonstrate cross-population heterogeneity enriches for variants more likely to be important and causative. Our approach provides an important and effective tool to help interpret results from the many GWA studies now underway.

  6. Association of Single-Nucleotide Polymorphisms of the Tau Gene With Late-Onset Parkinson Disease

    PubMed Central

    Martin, Eden R.; Scott, William K.; Nance, Martha A.; Watts, Ray L.; Hubble, Jean P.; Koller, William C.; Lyons, Kelly; Pahwa, Rajesh; Stern, Matthew B.; Colcher, Amy; Hiner, Bradley C.; Jankovic, Joseph; Ondo, William G.; Allen, Fred H.; Goetz, Christopher G.; Small, Gary W.; Masterman, Donna; Mastaglia, Frank; Laing, Nigel G.; Stajich, Jeffrey M.; Ribble, Robert C.; Booze, Michael W.; Rogala, Allison; Hauser, Michael A.; Zhang, Fengyu; Gibson, Rachel A.; Middleton, Lefkos T.; Roses, Allen D.; Haines, Jonathan L.; Scott, Burton L.; Pericak-Vance, Margaret A.; Vance, Jeffery M.

    2013-01-01

    Context The human tau gene, which promotes assembly of neuronal microtubules, has been associated with several rare neurologic diseases that clinically include parkinsonian features. We recently observed linkage in idiopathic Parkinson disease (PD) to a region on chromosome 17q21 that contains the tau gene. These factors make tau a good candidate for investigation as a susceptibility gene for idiopathic PD, the most common form of the disease. Objective To investigate whether the tau gene is involved in idiopathic PD. Design, Setting, and Participants Among a sample of 1056 individuals from 235 families selected from 13 clinical centers in the United States and Australia and from a family ascertainment core center, we tested 5 single-nucleotide polymorphisms (SNPs) within the tau gene for association with PD, using family-based tests of association. Both affected (n = 426) and unaffected (n = 579) family members were included; 51 individuals had unclear PD status. Analyses were conducted to test individual SNPs and SNP haplotypes within the tau gene. Main Outcome Measure Family-based tests of association, calculated using asymptotic distributions. Results Analysis of association between the SNPs and PD yielded significant evidence of association for 3 of the 5 SNPs tested: SNP 3, P = .03; SNP 9i, P = .04; and SNP 11, P = .04. The 2 other SNPs did not show evidence of significant association (SNP 9ii, P = .11, and SNP 9iii, P = .87). Strong evidence of association was found with haplotype analysis, with a positive association with one haplotype (P = .009) and a negative association with another haplotype (P = .007). Substantial linkage disequilibrium (P<.001) was detected between 4 of the 5 SNPs (SNPs 3,9i, 9ii, and 11). Conclusions This integrated approach of genetic linkage and positional association analyses implicates tau as a susceptibility gene for idiopathic PD. PMID:11710889

  7. High-resolution melting analysis of the single nucleotide polymorphism hot-spot region in the rpoB gene as an indicator of reduced susceptibility to rifaximin in Clostridium difficile.

    PubMed

    Pecavar, Verena; Blaschitz, Marion; Hufnagl, Peter; Zeinzinger, Josef; Fiedler, Anita; Allerberger, Franz; Maass, Matthias; Indra, Alexander

    2012-06-01

    Clostridium difficile, a Gram-positive, spore-forming, anaerobic bacterium, is the main causative agent of hospital-acquired diarrhoea worldwide. In addition to metronidazole and vancomycin, rifaximin, a rifamycin derivative, is a promising antibiotic for the treatment of recurring C. difficile infections (CDI). However, exposure of C. difficile to this antibiotic has led to the development of rifaximin-resistance due to point mutations in the β-subunit of the RNA polymerase (rpoB) gene. In the present study, 348 C. difficile strains with known PCR-ribotypes were investigated for respective single nucleotide polymorphisms (SNPs) within the proposed rpoB hot-spot region by using high-resolution melting (HRM) analysis. This method allows the detection of SNPs by comparing the altered melting behaviour of dsDNA with that of wild-type DNA. Discrimination between wild-type and mutant strains was enhanced by creating heteroduplexes by mixing sample DNA with wild-type DNA, leading to characteristic melting curve shapes from samples containing SNPs in the respective rpoB section. In the present study, we were able to identify 16 different rpoB sequence-types (ST) by sequencing analysis of a 325 bp fragment. The 16 PCR STs displayed a total of 24 different SNPs. Fifteen of these 24 SNPs were located within the proposed 151 bp SNP hot-spot region, resulting in 11 different HRM curve profiles (CP). Eleven SNPs (seven of which were within the proposed hot-spot region) led to amino acid substitutions associated with reduced susceptibility to rifaximin and 13 SNPs (eight of which were within the hot-spot region) were synonymous. This investigation clearly demonstrates that HRM analysis of the proposed SNP hot-spot region in the rpoB gene of C. difficile is a fast and cost-effective method for the identification of C. difficile samples with reduced susceptibility to rifaximin and even allows simultaneous SNP subtyping of the respective C. difficile isolates.

  8. Dissecting the genetics of the human transcriptome identifies novel trait-related trans-eQTLs and corroborates the regulatory relevance of non-protein coding loci†.

    PubMed

    Kirsten, Holger; Al-Hasani, Hoor; Holdt, Lesca; Gross, Arnd; Beutner, Frank; Krohn, Knut; Horn, Katrin; Ahnert, Peter; Burkhardt, Ralph; Reiche, Kristin; Hackermüller, Jörg; Löffler, Markus; Teupser, Daniel; Thiery, Joachim; Scholz, Markus

    2015-08-15

    Genetics of gene expression (eQTLs or expression QTLs) has proved an indispensable tool for understanding biological pathways and pathomechanisms of trait-associated SNPs. However, power of most genome-wide eQTL studies is still limited. We performed a large eQTL study in peripheral blood mononuclear cells of 2112 individuals increasing the power to detect trans-effects genome-wide. Going beyond univariate SNP-transcript associations, we analyse relations of eQTLs to biological pathways, polygenetic effects of expression regulation, trans-clusters and enrichment of co-localized functional elements. We found eQTLs for about 85% of analysed genes, and 18% of genes were trans-regulated. Local eSNPs were enriched up to a distance of 5 Mb to the transcript challenging typically implemented ranges of cis-regulations. Pathway enrichment within regulated genes of GWAS-related eSNPs supported functional relevance of identified eQTLs. We demonstrate that nearest genes of GWAS-SNPs might frequently be misleading functional candidates. We identified novel trans-clusters of potential functional relevance for GWAS-SNPs of several phenotypes including obesity-related traits, HDL-cholesterol levels and haematological phenotypes. We used chromatin immunoprecipitation data for demonstrating biological effects. Yet, we show for strongly heritable transcripts that still little trans-chromosomal heritability is explained by all identified trans-eSNPs; however, our data suggest that most cis-heritability of these transcripts seems explained. Dissection of co-localized functional elements indicated a prominent role of SNPs in loci of pseudogenes and non-coding RNAs for the regulation of coding genes. In summary, our study substantially increases the catalogue of human eQTLs and improves our understanding of the complex genetic regulation of gene expression, pathways and disease-related processes. © The Author 2015. Published by Oxford University Press.

  9. An investigation of causes of false positive single nucleotide polymorphisms using simulated reads from a small eukaryote genome.

    PubMed

    Ribeiro, Antonio; Golicz, Agnieszka; Hackett, Christine Anne; Milne, Iain; Stephen, Gordon; Marshall, David; Flavell, Andrew J; Bayer, Micha

    2015-11-11

    Single Nucleotide Polymorphisms (SNPs) are widely used molecular markers, and their use has increased massively since the inception of Next Generation Sequencing (NGS) technologies, which allow detection of large numbers of SNPs at low cost. However, both NGS data and their analysis are error-prone, which can lead to the generation of false positive (FP) SNPs. We explored the relationship between FP SNPs and seven factors involved in mapping-based variant calling - quality of the reference sequence, read length, choice of mapper and variant caller, mapping stringency and filtering of SNPs by read mapping quality and read depth. This resulted in 576 possible factor level combinations. We used error- and variant-free simulated reads to ensure that every SNP found was indeed a false positive. The variation in the number of FP SNPs generated ranged from 0 to 36,621 for the 120 million base pairs (Mbp) genome. All of the experimental factors tested had statistically significant effects on the number of FP SNPs generated and there was a considerable amount of interaction between the different factors. Using a fragmented reference sequence led to a dramatic increase in the number of FP SNPs generated, as did relaxed read mapping and a lack of SNP filtering. The choice of reference assembler, mapper and variant caller also significantly affected the outcome. The effect of read length was more complex and suggests a possible interaction between mapping specificity and the potential for contributing more false positives as read length increases. The choice of tools and parameters involved in variant calling can have a dramatic effect on the number of FP SNPs produced, with particularly poor combinations of software and/or parameter settings yielding tens of thousands in this experiment. Between-factor interactions make simple recommendations difficult for a SNP discovery pipeline but the quality of the reference sequence is clearly of paramount importance. Our findings are also a stark reminder that it can be unwise to use the relaxed mismatch settings provided as defaults by some read mappers when reads are being mapped to a relatively unfinished reference sequence from e.g. a non-model organism in its early stages of genomic exploration.

  10. Exfoliation syndrome and exfoliation glaucoma-associated LOXL1 variations are not involved in pigment dispersion syndrome and pigmentary glaucoma.

    PubMed

    Rao, Kollu Nageswara; Ritch, Robert; Dorairaj, Syril K; Kaur, Inderjeet; Liebmann, Jeffrey M; Thomas, Ravi; Chakrabarti, Subhabrata

    2008-07-09

    Single nucleotide polymorphisms (SNPs) in the LOXL1 gene have been implicated in exfoliation syndrome (XFS) and exfoliation glaucoma (XFG). We have shown that these SNPs are not associated with the primary glaucomas such as primary open-angle (POAG) glaucoma and primary angle-closure glaucoma (PACG). To further establish the specificity of LOXL1 SNPs for XFS and XFG, we determined whether these SNPs were involved in pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG). Three SNPs of LOXL1 (rs1048661, rs3825942, and rs2165241) were screened in a cohort of 78 unrelated and clinically well characterized glaucoma cases comprising of PG (n=44) and PDS (n=34) patients as well as 108 ethnically matched normal controls of Caucasian origin. The criteria for diagnosis of PDS/PG were Krukenberg spindle, hyperpigmentation of the trabecular meshwork, and wide open angle. Transillumination defects were detected by infrared pupillography, and the presence of a Zentmayer ring was considered as a confirmatory sign. All three SNPs were genotyped in cases and controls by resequencing the genomic region of LOXL1 harboring these variants and were further confirmed by polymerase chain reaction (PCR)-based restriction digestions. Haplotypes were generated from the genotype data, and the linkage disequilibrium (LD) and haplotype analysis were done with Haploview software that uses the expectation maximization (EM) algorithm. The LOXL1 SNPs showed no significant association with PDS or PG. There was no significant difference in the frequencies of the risk alleles of rs1048661 ('G' allele; p=0.309), rs3825942 ('G' allele' p=0.461), and rs2165241 ('T' allele; p=0.432) between PG/PDS cases and controls. Similarly, there was no involvement of the XFS/XFG-associated haplotypes, 'G-G' (p=0.643; [OR=1.08, 95%CI, 0.59-1.97]) and 'T-G' (p=0.266; [OR=1.35, 95%CI, 0.70-2.60]), with the PDS/PG phenotypes. The risk haplotype 'G-G' was observed in ~55% of the normal controls. There was no involvement of the LOXL1 SNPs in patients with PDS and PG. The results further indicate that the associations of these SNPs are specific to XFS/XFG.

  11. Increasing the discrimination power of ancestry- and identity-informative SNP loci within the ForenSeq™ DNA Signature Prep Kit.

    PubMed

    King, Jonathan L; Churchill, Jennifer D; Novroski, Nicole M M; Zeng, Xiangpei; Warshauer, David H; Seah, Lay-Hong; Budowle, Bruce

    2018-06-06

    The use of single nucleotide polymorphisms (SNPs) in forensic genetics has been limited to challenged samples with low template and/or degraded DNA. The recent introduction of massively parallel sequencing (MPS) technologies has expanded the potential applications of these markers and increased the discrimination power of well-established loci by considering variation in the flanking regions of target loci. The ForenSeq Signature Preparation Kit contains 165 SNP amplicons for ancestry- (aiSNPs), identity- (iiSNPs), and phenotype-inference (piSNPs). In this study, 714 individuals from four major populations (African American, AFA; East Asian, ASN; US Caucasian, CAU; and Southwest US Hispanic, HIS) previously reported by Churchill et al. [Forensic Sci Int Genet. 30 (2017) 81-92; DOI: https://doi.org/10.1016/j.fsigen.2017.06.004] were assessed using STRait Razor v2s to determine the level of diversity in the flanking regions of these amplicons. The results show that nearly 70% of loci showed some level of flanking region variation with 22 iiSNPs and 8 aiSNPs categorized as microhaplotypes in this study. The heterozygosities of these microhaplotypes approached, and in one instance surpassed, those of some core STR loci. Also, the impact of the flanking region on other forensic parameters (e.g., power of exclusion and power of discrimination) was examined. Sixteen of the 94 iiSNPs had an effective allele number greater than 2.00 across the four populations. To assess what effect the flanking region information had on the ancestry inference, genotype probabilities and likelihood ratios were determined. Additionally, concordance with the ForenSeq UAS and Nextera Rapid Capture was evaluated, and patterns of heterozygote imbalance were identified. Pairwise comparison of the iiSNP diplotypes determined the probability of detecting a mixture (i.e., observing ≥ 3 haplotypes) using these loci alone was 0.9952. The improvement in random match probabilities for the full regions over the target iiSNPs was found to be significant. When combining the iiSNPs with the autosomal STRs, the combined match probabilities ranged from 6.40 × 10 -73 (ASN) to 1.02 × 10 -79 (AFA). Copyright © 2018 Elsevier B.V. All rights reserved.

  12. [Genetic polymorphisms of ARL15 and HLA-DMA are associated with rheumatoid arthritis in Han population from northwest China].

    PubMed

    Wang, Jiao; Qi, Xiaoming; Zhang, Xiaozhen; Yan, Wen; You, Chongge

    2017-12-01

    Objective To establish the methods for detecting single nucleotide polymorphisms (SNPs) of ADP-ribosylation factor-like GTPase 15 (ARL15), major histocompatibility complex class II-DM alpha (HLA-DMA ) and nuclear factor kappa B subunit 2 (NFKB2) genes using high resolution melting (HRM) technology, and to explore the association of those SNPs with the susceptibility of rheumatoid arthritis (RA) in northwestern Han Chinese population. Methods The PCR-HRM detection system for four SNPs (rs255758, rs1063478, rs397514331 and rs397514332) was established for genotyping, and gene sequencing was performed to validate the genotyping ability of the system. 588 RA cases and 200 controls were enrolled in a case-control study to analyze the associations of ARL15 and HLA-DMA gene polymorphisms with RA risk. Results The direct sequencing validated that the established PCR-HRM detection system could be used for genotyping clinical samples correctly. The mutated genotype of rs397514331 and rs397514332 from NFKB2 gene are not found in this study. The genotype frequencies of rs255758 and rs1063478 had statistical difference between the cases and controls, but no statistical difference in allelic frequencies. Under the dominant model (AA vs AC/CC), the AA genotype of rs255758 decreases the RA risk (OR=0.666, 95%CI=0.478-0.927, P=0.016). Conclusion The method of PCR-HRM we established can be applied to the routine detection of rs255758, rs1063478, rs397514331 and rs397514332. The ARL15 and HLA-DMA gene polymorphisms are associated with RA risk in Northwestern Han Chinese population.

  13. Detection of virulent Escherichia coli O157 strains using multiplex PCR and single base sequencing for SNP characterization.

    PubMed

    Haugum, K; Brandal, L T; Løbersli, I; Kapperud, G; Lindstedt, B-A

    2011-06-01

    To compare 167 Norwegian human and nonhuman Escherichia coli O157:H7/NM (nonmotile) isolates with respect to an A/T single nucleotide polymorphism (SNP) in the tir gene and to detect specific SNPs that differentiate STEC O157 into distinct virulence clades (1-3 and 8). We developed a multiplex PCR followed by single base sequencing for detection of the SNPs, and examined the association among SNP genotype, virulence profile (stx and eae status), multilocus variable number of tandem repeats analysis (MLVA) profile and clinical outcome. We found an over-representation of the T allele among human strains compared to nonhuman strains, including 5/6 haemolytic-uraemic syndrome cases. Fourteen strains belonged to clade 8, followed by two clade 2 strains. No clade 1 nor 3 isolates were observed. stx1 in combination with either stx2(EDL933) or stx2c were frequently observed among human strains, whereas stx2c was dominating in nonhuman strains. MLVA indicated that only single cases or small outbreaks with E. coli O157 have been observed in Norway through the years 1993-2008. We observed that the tir-255 A/T SNP and the stx status were different between human and nonhuman O157 strains. No major outbreaks were observed, and only a few strains were differentiated into the virulence clades 2 and 8. The detection of virulence clade-specific SNPs enables the rapid designation of virulent E. coli O157 strains, especially in outbreak situations. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  14. Common genetic variants associated with disease from genome-wide association studies are mutually exclusive in prostate cancer and rheumatoid arthritis.

    PubMed

    Orozco, Gisela; Goh, Chee L; Al Olama, Ali Amin; Benlloch-Garcia, Sara; Govindasami, Koveela; Guy, Michelle; Muir, Kenneth R; Giles, Graham G; Severi, Gianluca; Neal, David E; Hamdy, Freddie C; Donovan, Jenny L; Kote-Jarai, Zsofia; Easton, Douglas F; Eyre, Steve; Eeles, Rosalind A

    2013-06-01

    WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: The link between inflammation and cancer has long been reported and inflammation is thought to play a role in the pathogenesis of many cancers, including prostate cancer (PrCa). Over the last 5 years, genome-wide association studies (GWAS) have reported numerous susceptibility loci that predispose individuals to many different traits. The present study aims to ascertain if there are common genetic risk profiles that might predispose individuals to both PrCa and the autoimmune inflammatory condition, rheumatoid arthritis. These results could have potential public heath impact in terms of screening and chemoprevention. To investigate if potential common pathways exist for the pathogenesis of autoimmune disease and prostate cancer (PrCa). To ascertain if the single nucleotide polymorphisms (SNPs) reported by genome-wide association studies (GWAS) as being associated with susceptibility to PrCa are also associated with susceptibility to the autoimmune disease rheumatoid arthritis (RA). The original Wellcome Trust Case Control Consortium (WTCCC) UK RA GWAS study was expanded to include a total of 3221 cases and 5272 controls. In all, 37 germline autosomal SNPs at genome-wide significance associated with PrCa risk were identified from a UK/Australian PrCa GWAS. Allele frequencies were compared for these 37 SNPs between RA cases and controls using a chi-squared trend test and corrected for multiple testing (Bonferroni). In all, 33 SNPs were able to be analysed in the RA dataset. Proxies could not be located for the SNPs in 3q26, 5p15 and for two SNPs in 17q12. After applying a Bonferroni correction for the number of SNPs tested, the SNP mapping to CCHCR1 (rs130067) retained statistically significant evidence for association (P = 6 × 10(-4) ; odds ratio [OR] = 1.15, 95% CI: 1.06-1.24); this has also been associated with psoriasis. However, further analyses showed that the association of this allele was due to confounding by RA-associated HLA-DRB1 alleles. There is currently no evidence that SNPs associated with PrCa at genome-wide significance are associated with the development of RA. Studies like this are important in determining if common genetic risk profiles might predispose individuals to many diseases, which could have implications for public health in terms of screening and chemoprevention. © 2012 BJU International.

  15. Single Nucleotide Polymorphisms Can Create Alternative Polyadenylation Signals and Affect Gene Expression through Loss of MicroRNA-Regulation

    PubMed Central

    Thomas, Laurent F.; Sætrom, Pål

    2012-01-01

    Alternative polyadenylation (APA) can for example occur when a protein-coding gene has several polyadenylation (polyA) signals in its last exon, resulting in messenger RNAs (mRNAs) with different 3′ untranslated region (UTR) lengths. Different 3′UTR lengths can give different microRNA (miRNA) regulation such that shortened transcripts have increased expression. The APA process is part of human cells' natural regulatory processes, but APA also seems to play an important role in many human diseases. Although altered APA in disease can have many causes, we reasoned that mutations in DNA elements that are important for the polyA process, such as the polyA signal and the downstream GU-rich region, can be one important mechanism. To test this hypothesis, we identified single nucleotide polymorphisms (SNPs) that can create or disrupt APA signals (APA-SNPs). By using a data-integrative approach, we show that APA-SNPs can affect 3′UTR length, miRNA regulation, and mRNA expression—both between homozygote individuals and within heterozygote individuals. Furthermore, we show that a significant fraction of the alleles that cause APA are strongly and positively linked with alleles found by genome-wide studies to be associated with disease. Our results confirm that APA-SNPs can give altered gene regulation and that APA alleles that give shortened transcripts and increased gene expression can be important hereditary causes for disease. PMID:22915998

  16. Genome-wide Association Study of Dermatomyositis Reveals Genetic Overlap with other Autoimmune Disorders

    PubMed Central

    Miller, Frederick W.; Cooper, Robert G.; Vencovsky, Jiri; Rider, Lisa G.; Danko, Katalin; Wedderburn, Lucy R.; Lundberg, Ingrid E.; Pachman, Lauren M.; Reed, Ann M.; Ytterberg, Steven R.; Padyukov, Leonid; Selva-O’Callaghan, Albert; Radstake, Timothy; Isenberg, David A.; Chinoy, Hector; Ollier, William E. R.; O’Hanlon, Terrance P.; Peng, Bo; Lee, Annette; Lamb, Janine A.; Chen, Wei; Amos, Christopher I.; Gregersen, Peter K.

    2014-01-01

    Objective To identify new genetic associations with juvenile and adult dermatomyositis (DM). Methods We performed a genome-wide association study (GWAS) of adult and juvenile DM patients of European ancestry (n = 1178) and controls (n = 4724). To assess genetic overlap with other autoimmune disorders, we examined whether 141 single nucleotide polymorphisms (SNPs) outside the major histocompatibility complex (MHC) locus, and previously associated with autoimmune diseases, predispose to DM. Results Compared to controls, patients with DM had a strong signal in the MHC region consisting of GWAS-level significance (P < 5x10−8) at 80 genotyped SNPs. An analysis of 141 non-MHC SNPs previously associated with autoimmune diseases showed that three SNPs linked with three genes were associated with DM, with a false discovery rate (FDR) < 0.05. These genes were phospholipase C like 1 (PLCL1, rs6738825, FDR=0.00089), B lymphoid tyrosine kinase (BLK, rs2736340, FDR=0.00031), and chemokine (C-C motif) ligand 21 (CCL21, rs951005, FDR=0.0076). None of these genes was previously reported to be associated with DM. Conclusion Our findings confirm the MHC as the major genetic region associated with DM and indicate that DM shares non-MHC genetic features with other autoimmune diseases, suggesting the presence of additional novel risk loci. This first identification of autoimmune disease genetic predispositions shared with DM may lead to enhanced understanding of pathogenesis and novel diagnostic and therapeutic approaches. PMID:23983088

  17. Novel SNPs of the bovine NUCB2 gene and their association with growth traits in three native Chinese cattle breeds.

    PubMed

    Li, F; Chen, H; Lei, C Z; Ren, G; Wang, J; Li, Z J; Wang, J Q

    2010-01-01

    In this study, polymorphism in the exon 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 of bovine NUCB2 gene was detected by PCR-SSCP and DNA sequencing methods in 686 individuals from three Chinese cattle breeds. Two haplotypes (M and N), three observed genotypes (MM, MN and NN) and two SNPs (NC_007313: g. 27451G>A, NC_007313: g. 27472T>C) were detected. The frequencies of haplotypes M and N in inland Chinese three breeds were 0.531-0.721 and 0.279-0.469 respectively. The studied showed that Nanyang, Jiaxian Red and Qinchuan cattle populations were in Hardy-Weinberg equilibrium at SNPs locus of NUCB2 gene (P > 0.05). Polymorphism of the NUCB2 gene was shown to be associated with growth traits in Qingchuan and Nanyang cattle breed. The linkage of two mutant sites in the bovine NUCB2 gene had significant effects on body length, body weight, heart girth, and average daily gain at 24 months (P < 0.05). Results of this study suggested that the NUCB2-gene-specific SNP may be a useful marker for growth traits in future marker-assisted selection programmes in inland Chinese cattle.

  18. Fast Identification of Biological Pathways Associated with a Quantitative Trait Using Group Lasso with Overlaps

    PubMed Central

    Silver, Matt; Montana, Giovanni

    2012-01-01

    Where causal SNPs (single nucleotide polymorphisms) tend to accumulate within biological pathways, the incorporation of prior pathways information into a statistical model is expected to increase the power to detect true associations in a genetic association study. Most existing pathways-based methods rely on marginal SNP statistics and do not fully exploit the dependence patterns among SNPs within pathways. We use a sparse regression model, with SNPs grouped into pathways, to identify causal pathways associated with a quantitative trait. Notable features of our “pathways group lasso with adaptive weights” (P-GLAW) algorithm include the incorporation of all pathways in a single regression model, an adaptive pathway weighting procedure that accounts for factors biasing pathway selection, and the use of a bootstrap sampling procedure for the ranking of important pathways. P-GLAW takes account of the presence of overlapping pathways and uses a novel combination of techniques to optimise model estimation, making it fast to run, even on whole genome datasets. In a comparison study with an alternative pathways method based on univariate SNP statistics, our method demonstrates high sensitivity and specificity for the detection of important pathways, showing the greatest relative gains in performance where marginal SNP effect sizes are small. PMID:22499682

  19. Genome-wide single-nucleotide polymorphism arrays demonstrate high fidelity of multiple displacement-based whole-genome amplification.

    PubMed

    Tzvetkov, Mladen V; Becker, Christian; Kulle, Bettina; Nürnberg, Peter; Brockmöller, Jürgen; Wojnowski, Leszek

    2005-02-01

    Whole-genome DNA amplification by multiple displacement (MD-WGA) is a promising tool to obtain sufficient DNA amounts from samples of limited quantity. Using Affymetrix' GeneChip Human Mapping 10K Arrays, we investigated the accuracy and allele amplification bias in DNA samples subjected to MD-WGA. We observed an excellent concordance (99.95%) between single-nucleotide polymorphisms (SNPs) called both in the nonamplified and the corresponding amplified DNA. This concordance was only 0.01% lower than the intra-assay reproducibility of the genotyping technique used. However, MD-WGA failed to amplify an estimated 7% of polymorphic loci. Due to the algorithm used to call genotypes, this was detected only for heterozygous loci. We achieved a 4.3-fold reduction of noncalled SNPs by combining the results from two independent MD-WGA reactions. This indicated that inter-reaction variations rather than specific chromosomal loci reduced the efficiency of MD-WGA. Consistently, we detected no regions of reduced amplification, with the exception of several SNPs located near chromosomal ends. Altogether, despite a substantial loss of polymorphic sites, MD-WGA appears to be the current method of choice to amplify genomic DNA for array-based SNP analyses. The number of nonamplified loci can be substantially reduced by amplifying each DNA sample in duplicate.

  20. Complement component 3: characterization and association with mastitis resistance in Egyptian water buffalo and cattle.

    PubMed

    El-Halawany, Nermin; Abd-El-Monsif, Shawky A; Al-Tohamy Ahmed, F M; Hegazy, Lamees; Abdel-Shafy, Hamdy; Abdel-Latif, Magdy A; Ghazi, Yasser A; Neuhoff, Christiane; Salilew-Wondim, Dessie; Schellander, Karl

    2017-03-01

    Mastitis is an infectious disease of the mammary gland that leads to reduced milk production and change in milk composition. Complement component C3 plays a major role as a central molecule of the complement cascade involving in killing of microorganisms, either directly or in cooperation with phagocytic cells. C3 cDNA were isolated, from Egyptian buffalo and cattle, sequenced and characterized. The C3 cDNA sequences of buffalo and cattle consist of 5025 and 5019 bp, respectively. Buffalo and cattle C3 cDNAs share 99% of sequence identity with each other. The 4986 bp open reading frame in buffalo encodes a putative protein of 1661 amino acids-as in cattle-and includes all the functional domains. Further, analysis of the C3 cDNA sequences detected six novel single-nucleotide polymorphisms (SNPs) in buffalo and three novel SNPs in cattle. The association analysis of the detected SNPs with milk somatic cell score as an indicator of mastitis revealed that the most significant association in buffalo was found in the C>A substitution (ss: 1752816097) in exon 27, whereas in cattle it was in the C>T substitution (ss: 1752816085) in exon 12. Our findings provide preliminary information about the contribution of C3 polymorphisms to mastitis resistance in buffalo and cattle.

  1. Genome-wide association analysis identifies loci governing mercury accumulation in maize.

    PubMed

    Zhao, Zhan; Fu, Zhongjun; Lin, Yanan; Chen, Hao; Liu, Kun; Xing, Xiaolong; Liu, Zonghua; Li, Weihua; Tang, Jihua

    2017-03-21

    Owing to the rapid development of urbanisation and industrialisation, heavy metal pollution has become a widespread environmental problem. Maize planted on mercury (Hg)-polluted soil can absorb and accumulate Hg in its edible parts, posing a potential threat to human health. To understand the genetic mechanism of Hg accumulation in maize, we performed a genome-wide association study using a mixed linear model on an association population consisting of 230 maize inbred lines with abundant genetic variation. The order of relative Hg concentrations in different maize tissues was as follows: leaves > bracts > stems > axes > kernels. Combined two locations, a total of 37 significant single-nucleotide polymorphisms (SNPs) associated with kernels, 12 with axes, 13 with stems, 27 with bracts and 23 with leaves were detected with p < 0.0001. Each significant SNP was calculated and the SNPs significant associated with kernels, axes, stems, bracts and leaves explained 6.96%-10.56%, 7.19%-15.87%, 7.11%-10.19%, 7.16%-8.71% and 6.91%-9.17% of the phenotypic variation, respectively. Among the significant SNPs, nine co-localised with previously detected quantitative trait loci. This study will aid in the selection of Hg-accumulation inbred lines that satisfy the needs for pollution-safe cultivars and maintaining maize production.

  2. Free and Reduced-Price Meal Application and Income Verification Practices in School Nutrition Programs in the United States

    ERIC Educational Resources Information Center

    Kwon, Junehee; Lee, Yee Ming; Park, Eunhye; Wang, Yujia; Rushing, Keith

    2017-01-01

    Purpose/Objectives: This study assessed current practices and attitudes of school nutrition program (SNP) management staff regarding free and reduced-price (F-RP) meal application and verification in SNPs. Methods: Stratified, randomly selected 1,500 SNP management staff in 14 states received a link to an online questionnaire and/or a printed…

  3. Suggestive evidence for association between L-type voltage-gated calcium channel (CACNA1C) gene haplotypes and bipolar disorder in Latinos: a family-based association study

    PubMed Central

    Gonzalez, Suzanne; Xu, Chun; Ramirez, Mercedes; Zavala, Juan; Armas, Regina; Contreras, Salvador A; Contreras, Javier; Dassori, Albana; Leach, Robin J; Flores, Deborah; Jerez, Alvaro; Raventós, Henriette; Ontiveros, Alfonso; Nicolini, Humberto; Escamilla, Michael

    2013-01-01

    Objectives Through recent genome-wide association studies (GWAS), several groups have reported significant association between variants in the alpha 1C subunit of the L-type voltage-gated calcium channel (CACNA1C) and bipolar disorder (BP) in European and European-American cohorts. We performed a family-based association study to determine whether CACNA1C is associated with BP in the Latino population. Methods This study consisted of 913 individuals from 215 Latino pedigrees recruited from the United States, Mexico, Guatemala, and Costa Rica. The Illumina GoldenGate Genotyping Assay was used to genotype 58 single-nucleotide polymorphisms (SNPs) that spanned a 602.9 kb region encompassing the CACNA1C gene including two SNPs (rs7297582 and rs1006737) previously shown to associate with BP. Individual SNP and haplotype association analyses were performed using Family-Based Association Test (version 2.0.3) and Haploview (version 4.2) software. Results An eight-locus haplotype block that included these two markers showed significant association with BP (global marker permuted p = 0.0018) in the Latino population. For individual SNPs, this sample had insufficient power (10%) to detect associations with SNPs with minor effect (odds ratio = 1.15). Conclusions Although we were not able to replicate findings of association between individual CACNA1C SNPs rs7297582 and rs1006737 and BP, we were able to replicate the GWAS signal reported for CACNA1C through a haplotype analysis that encompassed these previously reported significant SNPs. These results provide additional evidence that CACNA1C is associated with BP and provides the first evidence that variations in this gene might play a role in the pathogenesis of this disorder in the Latino population. PMID:23437964

  4. A novel Markov Blanket-based repeated-fishing strategy for capturing phenotype-related biomarkers in big omics data.

    PubMed

    Li, Hongkai; Yuan, Zhongshang; Ji, Jiadong; Xu, Jing; Zhang, Tao; Zhang, Xiaoshuai; Xue, Fuzhong

    2016-03-09

    We propose a novel Markov Blanket-based repeated-fishing strategy (MBRFS) in attempt to increase the power of existing Markov Blanket method (DASSO-MB) and maintain its advantages in omic data analysis. Both simulation and real data analysis were conducted to assess its performances by comparing with other methods including χ(2) test with Bonferroni and B-H adjustment, least absolute shrinkage and selection operator (LASSO) and DASSO-MB. A serious of simulation studies showed that the true discovery rate (TDR) of proposed MBRFS was always close to zero under null hypothesis (odds ratio = 1 for each SNPs) with excellent stability in all three scenarios of independent phenotype-related SNPs without linkage disequilibrium (LD) around them, correlated phenotype-related SNPs without LD around them, and phenotype-related SNPs with strong LD around them. As expected, under different odds ratio and minor allel frequency (MAFs), MBRFS always had the best performances in capturing the true phenotype-related biomarkers with higher matthews correlation coefficience (MCC) for all three scenarios above. More importantly, since proposed MBRFS using the repeated fishing strategy, it still captures more phenotype-related SNPs with minor effects when non-significant phenotype-related SNPs emerged under χ(2) test after Bonferroni multiple correction. The various real omics data analysis, including GWAS data, DNA methylation data, gene expression data and metabolites data, indicated that the proposed MBRFS always detected relatively reasonable biomarkers. Our proposed MBRFS can exactly capture the true phenotype-related biomarkers with the reduction of false negative rate when the phenotype-related biomarkers are independent or correlated, as well as the circumstance that phenotype-related biomarkers are associated with non-phenotype-related ones.

  5. Pneumocystis jirovecii multilocus genotyping in pooled DNA samples: a new approach for clinical and epidemiological studies.

    PubMed

    Esteves, F; Gaspar, J; de Sousa, B; Antunes, F; Mansinho, K; Matos, O

    2012-06-01

    Specific single-nucleotide polymorphisms (SNPs) are recognized as important DNA sequence variations influencing the pathogenesis of Pneumocystis jirovecii and the clinical outcome of Pneumocystis pneumonia, which is a major worldwide cause of illness among immunocompromised patients. Genotyping platforms for pooled DNA samples are promising methodologies for genetic characterization of infectious organisms. We have developed a new typing strategy for P. jirovecii, which consisted of DNA pools prepared according to clinical data (HIV diagnosis, microscopic and molecular detection of P. jirovecii, parasite burden, clinical diagnosis and follow-up of infection) from individual samples using quantitative real-time PCR followed by multiplex-PCR/single base extension (MPCR/SBE). The frequencies of multiple P. jirovecii SNPs (DHFR312, mt85, SOD215 and SOD110) encoded at three distinct loci, the dihydrofolate reductase (DHFR), the mitochondrial large-subunit rRNA (mtLSU rRNA) and the superoxide dismutase (SOD) loci, were estimated in seven DNA pooled samples, representing a total of 100 individual samples. The studied SNPs were confirmed to be associated with distinct clinical parameters of infection such as parasite burden and follow-up. The MPCR/SBE-DNA pooling methodology, described in the present study, was demonstrated to be a useful high-throughput procedure for large-scale P. jirovecii SNPs screening and a powerful tool for evaluation of clinically relevant SNPs potentially related to parasite burden, clinical diagnosis and follow-up of P. jirovecii infection. In further studies, the candidate SNPs mt85, SOD215 and SOD110 may be used as molecular markers in association with MPCR/SBE-DNA pooling to generate useful information for understanding the patterns and causes of Pneumocystis pneumonia. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  6. Is really endogenous ghrelin a hunger signal in chickens? Association of GHSR SNPs with increase appetite, growth traits, expression and serum level of GHRL, and GH.

    PubMed

    El-Magd, Mohammed Abu; Saleh, Ayman A; Abdel-Hamid, Tamer M; Saleh, Rasha M; Afifi, Mohammed A

    2016-10-01

    Chicken growth hormone secretagogue receptor (GHSR) is a receptor for ghrelin (GHRL), a peptide hormone produced by chicken proventriculus, which stimulates growth hormone (GH) release and food intake. The purpose of this study was to search for single nucleotide polymorphisms (SNPs) in exon 2 of GHSR gene and to analyze their effect on the appetite, growth traits and expression levels of GHSR, GHRL, and GH genes as well as serum levels of GH and GHRL in Mandara chicken. Two adjacent SNPs, A239G and G244A, were detected in exon 2 of GHSR gene. G244A SNP was non-synonymous mutation and led to replacement of lysine amino acid (aa) by arginine aa, while A239G SNP was synonymous mutation. The combined genotypes of A239G and G244A SNPs produced three haplotypes; GG/GG, GG/AG, AG/AG, which associated significantly (P<0.05) with growth traits (body weight, average daily gain, shank length, keel length, chest circumference) at age from >4 to 16w. Chickens with the homozygous GG/GG haplotype showed higher growth performance than other chickens. The two SNPs were also correlated with mRNA levels of GHSR and GH (in pituitary gland), and GHRL (in proventriculus and hypothalamus) as well as with serum level of GH and GHRL. Also, chickens with GG/GG haplotype showed higher mRNA and serum levels. This is the first study to demonstrate that SNPs in GHSR can increase appetite, growth traits, expression and level of GHRL, suggesting a hunger signal role for endogenous GHRL. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants

    PubMed Central

    Gala, Manish; Abecasis, Goncalo; Bezieau, Stephane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Casey, Graham; Chang-Claude, Jenny; Conti, David V.; Curtis, Keith R.; Duggan, David; Gallinger, Steven; Haile, Robert W.; Harrison, Tabitha A.; Hayes, Richard B.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jenkins, Mark A.; Küry, Sébastien; Le Marchand, Loic; Leal, Suzanne M.; Newcomb, Polly A.; Nickerson, Deborah A.; Potter, John D.; Schoen, Robert E.; Schumacher, Fredrick R.; Seminara, Daniela; Slattery, Martha L.; Hsu, Li; Chan, Andrew T.; White, Emily; Berndt, Sonja I.; Peters, Ulrike

    2016-01-01

    Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs). We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33). We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s). PMID:27379672

  8. Developmental validation of the MiSeq FGx Forensic Genomics System for Targeted Next Generation Sequencing in Forensic DNA Casework and Database Laboratories.

    PubMed

    Jäger, Anne C; Alvarez, Michelle L; Davis, Carey P; Guzmán, Ernesto; Han, Yonmee; Way, Lisa; Walichiewicz, Paulina; Silva, David; Pham, Nguyen; Caves, Glorianna; Bruand, Jocelyne; Schlesinger, Felix; Pond, Stephanie J K; Varlaro, Joe; Stephens, Kathryn M; Holt, Cydne L

    2017-05-01

    Human DNA profiling using PCR at polymorphic short tandem repeat (STR) loci followed by capillary electrophoresis (CE) size separation and length-based allele typing has been the standard in the forensic community for over 20 years. Over the last decade, Next-Generation Sequencing (NGS) matured rapidly, bringing modern advantages to forensic DNA analysis. The MiSeq FGx™ Forensic Genomics System, comprised of the ForenSeq™ DNA Signature Prep Kit, MiSeq FGx™ Reagent Kit, MiSeq FGx™ instrument and ForenSeq™ Universal Analysis Software, uses PCR to simultaneously amplify up to 231 forensic loci in a single multiplex reaction. Targeted loci include Amelogenin, 27 common, forensic autosomal STRs, 24 Y-STRs, 7 X-STRs and three classes of single nucleotide polymorphisms (SNPs). The ForenSeq™ kit includes two primer sets: Amelogenin, 58 STRs and 94 identity informative SNPs (iiSNPs) are amplified using DNA Primer Set A (DPMA; 153 loci); if a laboratory chooses to generate investigative leads using DNA Primer Set B, amplification is targeted to the 153 loci in DPMA plus 22 phenotypic informative (piSNPs) and 56 biogeographical ancestry SNPs (aiSNPs). High-resolution genotypes, including detection of intra-STR sequence variants, are semi-automatically generated with the ForenSeq™ software. This system was subjected to developmental validation studies according to the 2012 Revised SWGDAM Validation Guidelines. A two-step PCR first amplifies the target forensic STR and SNP loci (PCR1); unique, sample-specific indexed adapters or "barcodes" are attached in PCR2. Approximately 1736 ForenSeq™ reactions were analyzed. Studies include DNA substrate testing (cotton swabs, FTA cards, filter paper), species studies from a range of nonhuman organisms, DNA input sensitivity studies from 1ng down to 7.8pg, two-person human DNA mixture testing with three genotype combinations, stability analysis of partially degraded DNA, and effects of five commonly encountered PCR inhibitors. Calculations from ForenSeq™ STR and SNP repeatability and reproducibility studies (1ng template) indicate 100.0% accuracy of the MiSeq FGx™ System in allele calling relative to CE for STRs (1260 samples), and >99.1% accuracy relative to bead array typing for SNPs (1260 samples for iiSNPs, 310 samples for aiSNPs and piSNPs), with >99.0% and >97.8% precision, respectively. Call rates of >99.0% were observed for all STRs and SNPs amplified with both ForenSeq™ primer mixes. Limitations of the MiSeq FGx™ System are discussed. Results described here demonstrate that the MiSeq FGx™ System meets forensic DNA quality assurance guidelines with robust, reliable, and reproducible performance on samples of various quantities and qualities. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice

    PubMed Central

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Wei, Haibin; Feng, Fangjun; Wang, Pei; Xia, Hui; Li, Tiemei; Luo, Lijun

    2015-01-01

    Deep rooting is a very important trait for plants’ drought avoidance, and it is usually represented by the ratio of deep rooting (RDR). Three sets of rice populations were used to determine the genetic base for RDR. A linkage mapping population with 180 recombinant inbred lines and an association mapping population containing 237 rice varieties were used to identify genes linked to RDR. Six quantitative trait loci (QTLs) of RDR were identified as being located on chromosomes 1, 2, 4, 7, and 10. Using 1 019 883 single-nucleotide polymorphisms (SNPs), a genome-wide association study of the RDR was performed. Forty-eight significant SNPs of the RDR were identified and formed a clear peak on the short arm of chromosome 1 in a Manhattan plot. Compared with the shallow-rooting group and the whole collection, the deep-rooting group had selective sweep regions on chromosomes 1 and 2, especially in the major QTL region on chromosome 2. Seven of the nine candidate SNPs identified by association mapping were verified in two RDR extreme groups. The findings from this study will be beneficial to rice drought-resistance research and breeding. PMID:26022253

  10. Genetic association of APOA5 and APOE with metabolic syndrome and their interaction with health-related behavior in Korean men.

    PubMed

    Son, Ki Young; Son, Ho-Young; Chae, Jeesoo; Hwang, Jinha; Jang, SeSong; Yun, Jae Moon; Cho, BeLong; Park, Jin Ho; Kim, Jong-Il

    2015-09-13

    Genome-wide association studies have been used extensively to identify genetic variants linked to metabolic syndrome (MetS), but most of them have been conducted in non-Asian populations. This study aimed to evaluate the association between MetS and previously studied single nucleotide polymorphisms (SNPs), and their interaction with health-related behavior in Korean men. Seventeen SNPs were genotyped and their association with MetS and its components was tested in 1193 men who enrolled in the study at Seoul National University Hospital. We found that rs662799 near APOA5 and rs769450 in APOE had significant association with MetS and its components. The SNP rs662799 was associated with increased risk of MetS, elevated triglyceride (TG) and low levels of high-density lipoprotein, while rs769450 was associated with a decreased risk of TG. The SNPs showed interactions between alcohol drinking and physical activity, and TG levels in Korean men. We have identified the genetic association and environmental interaction for MetS in Korean men. These results suggest that a strategy of prevention and treatment should be tailored to personal genotype and the population.

  11. Physiogenomic analysis of localized FMRI brain activity in schizophrenia.

    PubMed

    Windemuth, Andreas; Calhoun, Vince D; Pearlson, Godfrey D; Kocherla, Mohan; Jagannathan, Kanchana; Ruaño, Gualberto

    2008-06-01

    The search for genetic factors associated with disease is complicated by the complexity of the biological pathways linking genotype and phenotype. This analytical complexity is particularly concerning in diseases historically lacking reliable diagnostic biological markers, such as schizophrenia and other mental disorders. We investigate the use of functional magnetic resonance imaging (fMRI) as an intermediate phenotype (endophenotype) to identify physiogenomic associations to schizophrenia. We screened 99 subjects, 30 subjects diagnosed with schizophrenia, 13 unaffected relatives of schizophrenia patients, and 56 unrelated controls, for gene polymorphisms associated with fMRI activation patterns at two locations in temporal and frontal lobes previously implied in schizophrenia. A total of 22 single nucleotide polymorphisms (SNPs) in 15 genes from the dopamine and serotonin neurotransmission pathways were genotyped in all subjects. We identified three SNPs in genes that are significantly associated with fMRI activity. SNPs of the dopamine beta-hydroxylase (DBH) gene and of the dopamine receptor D4 (DRD4) were associated with activity in the temporal and frontal lobes, respectively. One SNP of serotonin-3A receptor (HTR3A) was associated with temporal lobe activity. The results of this study support the physiogenomic analysis of neuroimaging data to discover associations between genotype and disease-related phenotypes.

  12. Genetic and epigenetic regulation of YKL-40 in childhood.

    PubMed

    Guerra, Stefano; Melén, Erik; Sunyer, Jordi; Xu, Cheng-Jian; Lavi, Iris; Benet, Marta; Bustamante, Mariona; Carsin, Anne-Elie; Dobaño, Carlota; Guxens, Mònica; Tischer, Christina; Vrijheid, Martine; Kull, Inger; Bergström, Anna; Kumar, Ashish; Söderhäll, Cilla; Gehring, Ulrike; Dijkstra, Dorieke J; van der Vlies, Pieter; Wickman, Magnus; Bousquet, Jean; Postma, Dirkje S; Anto, Josep M; Koppelman, Gerard H

    2018-03-01

    Circulating levels of the chitinase-like protein YKL-40 are influenced by genetic variation in its encoding gene (chitinase 3-like 1 [CHI3L1]) and are increased in patients with several diseases, including asthma. Epigenetic regulation of circulating YKL-40 early in life is unknown. We sought to determine (1) whether methylation levels at CHI3L1 CpG sites mediate the association of CHI3L1 single nucleotide polymorphisms (SNPs) with YKL-40 levels in the blood and (2) whether these biomarkers (CHI3L1 SNPs, methylation profiles, and YKL-40 levels) are associated with asthma in early childhood. We used data from up to 2405 participants from the Spanish Infancia y Medio Ambiente; the Swedish Barn/Children, Allergy, Milieu, Stockholm, Epidemiological survey; and the Dutch Prevention and Incidence of Asthma and Mite Allergy birth cohorts. Associations between 68 CHI3L1 SNPs, methylation levels at 14 CHI3L1 CpG sites in whole-blood DNA, and circulating YKL-40 levels at 4 years of age were tested by using correlation analysis, multivariable regression, and mediation analysis. Each of these biomarkers was also tested for association with asthma at 4 years of age by using multivariable logistic regression. YKL-40 levels were significantly associated with 7 SNPs and with methylation at 5 CpG sites. Consistent associations between these 7 SNPs (particularly rs10399931 and rs4950928) and 5 CpG sites were observed. Alleles linked to lower YKL-40 levels were associated with higher methylation levels. Participants with high YKL-40 levels (defined as the highest YKL-40 tertile) had increased odds for asthma compared with subjects with low YKL-40 levels (meta-analyzed adjusted odds ratio, 1.90 [95% CI, 1.08-3.36]). In contrast, neither SNPs nor methylation levels at CpG sites in CHI3L1 were associated with asthma. The effects of CHI3L1 genetic variation on circulating YKL-40 levels are partly mediated by methylation profiles. In our study YKL-40 levels, but not CHI3L1 SNPs or methylation levels, were associated with childhood asthma. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Key genes involved in the immune response are generally not associated with intraprostatic inflammation in men without a prostate cancer diagnosis: Results from the prostate cancer prevention trial.

    PubMed

    Winchester, Danyelle A; Gurel, Bora; Till, Cathee; Goodman, Phyllis J; Tangen, Catherine M; Santella, Regina M; Johnson-Pais, Teresa L; Leach, Robin J; Thompson, Ian M; Xu, Jianfeng; Zheng, S Lilly; Lucia, M Scott; Lippman, Scott M; Parnes, Howard L; Isaacs, William B; Drake, Charles G; De Marzo, Angelo M; Platz, Elizabeth A

    2016-05-01

    We previously reported that both intraprostatic inflammation and SNPs in genes involved in the immune response are associated with prostate cancer risk and disease grade. In the present study, we evaluated the association between these SNPs and intraprostatic inflammation in men without a prostate cancer diagnosis. Included in this cross-sectional study were 205 white controls from a case-control study nested in the placebo arm of the Prostate Cancer Prevention Trial. We analyzed inflammation data from the review of H&E-stained prostate tissue sections from biopsies performed per protocol at the end of the trial irrespective of clinical indication, and data for 16 SNPs in key genes involved in the immune response (IL1β, IL2, IL4, IL6, IL8, IL10, IL12(p40), IFNG, MSR1, RNASEL, TLR4, TNFA; 7 tagSNPs in IL10). Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) for the association between carrying at least one minor allele and having at least one biopsy core (of a mean of three reviewed) with inflammation. None of the SNPs evaluated was statistically significantly associated with having at least one core with inflammation. However, possible inverse associations were present for carrying the minor allele of rs2069762 (G) in IL2 (OR = 0.51, 95%CI 0.25-1.02); carrying two copies of the minor allele of rs1800871 (T) of IL10 (OR = 0.29, 95%CI 0.08-1.00); and carrying the minor allele of rs486907 (A) in RNASEL (OR = 0.52, 95%CI 0.26-1.06). After creating a genetic risk score from the three SNPs possibly associated with inflammation, the odds of inflammation increased with increasing number of risk alleles (P-trend = 0.008). While our findings do not generally support a cross-sectional link between individual SNPs in key genes involved in the immune response and intraprostatic inflammation in men without a prostate cancer diagnosis, they do suggest that some of these variants when in combination may be associated with intraprostatic inflammation in benign tissue. © 2016 Wiley Periodicals, Inc.

  14. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology

    PubMed Central

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N.; Kumar, Dibyendu

    2017-01-01

    Background RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. Results The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive QTL/CG analysis of 110 QTL/CG with RNA-seq data identified 20 monomorphic SNP hit loci (CARTPT, GAD1, GDF5, GHRH, GHRL, GRB10, IGFBPL1, IGFL1, LEP, LHX4, MC4R, MSTN, NKAIN1, PLAG1, POU1F1, SDR16C5, SH2B2, TOX, UCP3 and WNT10B) in all three cattle breeds. However, six SNP loci (CCSER1, GHR, KCNIP4, MTSS1, EGFR and NSMCE2) were identified as highly polymorphic among the cattle breeds. Conclusions This study identified breed-specific SNPs with greater SNP ratio and excellent mapping coverage, as well as monomorphic and highly polymorphic putative SNP loci within QTL/CGs of bovine liver tissue. A breed-specific SNP-db constructed for bovine liver yielded nearly six million SNPs. In addition, a KASPTM SNP genotyping assay, as a reliable cost-effective method, successfully validated the breed-specific putative SNPs originating from the RNA-seq experiments. PMID:28234981

  15. A Predominant Variable-Number Tandem-Repeat Cluster of Mycobacterium tuberculosis Isolates among Asylum Seekers in the Netherlands and Denmark, Deciphered by Whole-Genome Sequencing

    PubMed Central

    de Neeling, Albert; Rasmussen, Erik Michael; Norman, Anders; Mulder, Arnout; van Hunen, Rianne; de Vries, Gerard; Haddad, Walid; Anthony, Richard; Lillebaek, Troels; van der Hoek, Wim; van Soolingen, Dick

    2017-01-01

    ABSTRACT In many countries, Mycobacterium tuberculosis isolates are routinely subjected to variable-number tandem-repeat (VNTR) typing to investigate M. tuberculosis transmission. Unexpectedly, cross-border clusters were identified among African refugees in the Netherlands and Denmark, although transmission in those countries was unlikely. Whole-genome sequencing (WGS) was applied to analyze transmission in depth and to assess the precision of VNTR typing. WGS was applied to 40 M. tuberculosis isolates from refugees in the Netherlands and Denmark (most of whom were from the Horn of Africa) that shared the exact same VNTR profile. Cluster investigations were undertaken to identify in-country epidemiological links. Combining WGS results for the isolates (all members of the central Asian strain [CAS]/Delhi genotype), from both European countries, an average genetic distance of 80 single-nucleotide polymorphisms (SNPs) (maximum, 153 SNPs) was observed. The few pairs of isolates with confirmed epidemiological links, except for one pair, had a maximum distance of 12 SNPs. WGS divided this refugee cluster into several subclusters of patients from the same country of origin. Although the M. tuberculosis cases, mainly originating from African countries, shared the exact same VNTR profile, most were clearly distinguished by WGS. The average genetic distance in this specific VNTR cluster was 2 times greater than that in other VNTR clusters. Thus, identical VNTR profiles did not represent recent direct M. tuberculosis transmission for this group of patients. It appears that either these strains from Africa are extremely conserved genetically or there is ongoing transmission of this genotype among refugees on their long migration routes from Africa to Europe. PMID:29167288

  16. A Predominant Variable-Number Tandem-Repeat Cluster of Mycobacterium tuberculosis Isolates among Asylum Seekers in the Netherlands and Denmark, Deciphered by Whole-Genome Sequencing.

    PubMed

    Jajou, Rana; de Neeling, Albert; Rasmussen, Erik Michael; Norman, Anders; Mulder, Arnout; van Hunen, Rianne; de Vries, Gerard; Haddad, Walid; Anthony, Richard; Lillebaek, Troels; van der Hoek, Wim; van Soolingen, Dick

    2018-02-01

    In many countries, Mycobacterium tuberculosis isolates are routinely subjected to variable-number tandem-repeat (VNTR) typing to investigate M. tuberculosis transmission. Unexpectedly, cross-border clusters were identified among African refugees in the Netherlands and Denmark, although transmission in those countries was unlikely. Whole-genome sequencing (WGS) was applied to analyze transmission in depth and to assess the precision of VNTR typing. WGS was applied to 40 M. tuberculosis isolates from refugees in the Netherlands and Denmark (most of whom were from the Horn of Africa) that shared the exact same VNTR profile. Cluster investigations were undertaken to identify in-country epidemiological links. Combining WGS results for the isolates (all members of the central Asian strain [CAS]/Delhi genotype), from both European countries, an average genetic distance of 80 single-nucleotide polymorphisms (SNPs) (maximum, 153 SNPs) was observed. The few pairs of isolates with confirmed epidemiological links, except for one pair, had a maximum distance of 12 SNPs. WGS divided this refugee cluster into several subclusters of patients from the same country of origin. Although the M. tuberculosis cases, mainly originating from African countries, shared the exact same VNTR profile, most were clearly distinguished by WGS. The average genetic distance in this specific VNTR cluster was 2 times greater than that in other VNTR clusters. Thus, identical VNTR profiles did not represent recent direct M. tuberculosis transmission for this group of patients. It appears that either these strains from Africa are extremely conserved genetically or there is ongoing transmission of this genotype among refugees on their long migration routes from Africa to Europe. Copyright © 2018 Jajou et al.

  17. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation

    PubMed Central

    Morales, Norma B.; Moskwa, Sam; Clingeleffer, Peter R.; Thomas, Mark R.

    2018-01-01

    Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine. PMID:29462210

  18. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation.

    PubMed

    Smith, Harley M; Smith, Brady P; Morales, Norma B; Moskwa, Sam; Clingeleffer, Peter R; Thomas, Mark R

    2018-01-01

    Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine.

  19. Variants of the FADS1 FADS2 Gene Cluster, Blood Levels of Polyunsaturated Fatty Acids and Eczema in Children within the First 2 Years of Life

    PubMed Central

    Rzehak, Peter; Thijs, Carel; Standl, Marie; Mommers, Monique; Glaser, Claudia; Jansen, Eugène; Klopp, Norman; Koppelman, Gerard H.; Singmann, Paula; Postma, Dirkje S.; Sausenthaler, Stefanie; Dagnelie, Pieter C.; van den Brandt, Piet A.; Koletzko, Berthold; Heinrich, Joachim

    2010-01-01

    Background Association of genetic-variants in the FADS1-FADS2-gene-cluster with fatty-acid-composition in blood of adult-populations is well established. We analyze this genetic-association in two children-cohort-studies. In addition, the association between variants in the FADS-gene-cluster and blood-fatty-acid-composition with eczema was studied. Methods and Principal Findings Data of two population-based-birth-cohorts in the Netherlands and Germany (KOALA, LISA) were pooled (n = 879) and analyzed by (logistic) regression regarding the mutual influence of single-nucleotide-polymorphisms (SNPs) in the FADS-gene-cluster (rs174545, rs174546, rs174556, rs174561, rs3834458), on polyunsaturated fatty acids (PUFA) in blood and parent-reported eczema until the age of 2 years. All SNPs were highly significantly associated with all PUFAs except for alpha-linolenic-acid and eicosapentaenoic-acid, also after correction for multiple-testing. All tested SNPs showed associations with eczema in the LISA-study, but not in the KOALA-study. None of the PUFAs was significantly associated with eczema neither in the pooled nor in the analyses stratified by study-cohort. Conclusions and Significance PUFA-composition in young children's blood is under strong control of the FADS-gene-cluster. Inconsistent results were found for a link between these genetic-variants with eczema. PUFA in blood was not associated with eczema. Thus the hypothesis of an inflammatory-link between PUFA and eczema by the metabolic-pathway of LC-PUFAs as precursors for inflammatory prostaglandins and leukotrienes could not be confirmed by these data. PMID:20948998

  20. Genetic susceptibility to bone and soft tissue sarcomas: a field synopsis and meta-analysis.

    PubMed

    Benna, Clara; Simioni, Andrea; Pasquali, Sandro; De Boni, Davide; Rajendran, Senthilkumar; Spiro, Giovanna; Colombo, Chiara; Virgone, Calogero; DuBois, Steven G; Gronchi, Alessandro; Rossi, Carlo Riccardo; Mocellin, Simone

    2018-04-06

    The genetic architecture of bone and soft tissue sarcomas susceptibility is yet to be elucidated. We aimed to comprehensively collect and meta-analyze the current knowledge on genetic susceptibility in these rare tumors. We conducted a systematic review and meta-analysis of the evidence on the association between DNA variation and risk of developing sarcomas through searching PubMed, The Cochrane Library, Scopus and Web of Science databases. To evaluate result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Integrative analysis of genetic and eQTL (expression quantitative trait locus) data was coupled with network and pathway analysis to explore the hypothesis that specific cell functions are involved in sarcoma predisposition. We retrieved 90 eligible studies comprising 47,796 subjects (cases: 14,358, 30%) and investigating 1,126 polymorphisms involving 320 distinct genes. Meta-analysis identified 55 single nucleotide polymorphisms (SNPs) significantly associated with disease risk with a high (N=9), moderate (N=38) and low (N=8) level of evidence, findings being classified as noteworthy basically only when the level of evidence was high. The estimated joint population attributable risk for three independent SNPs (rs11599754 of ZNF365/EGR2 , rs231775 of CTLA4 , and rs454006 of PRKCG ) was 37.2%. We also identified 53 SNPs significantly associated with sarcoma risk based on single studies.Pathway analysis enabled us to propose that sarcoma predisposition might be linked especially to germline variation of genes whose products are involved in the function of the DNA repair machinery. We built the first knowledgebase on the evidence linking DNA variation to sarcomas susceptibility, which can be used to generate mechanistic hypotheses and inform future studies in this field of oncology.

  1. A Brassica rapa Linkage Map of EST-based SNP Markers for Identification of Candidate Genes Controlling Flowering Time and Leaf Morphological Traits

    PubMed Central

    Li, Feng; Kitashiba, Hiroyasu; Inaba, Kiyofumi; Nishio, Takeshi

    2009-01-01

    For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits. PMID:19884167

  2. The genetics of alcoholism: identifying specific genes through family studies.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2006-09-01

    Alcoholism is a complex disorder with both genetic and environmental risk factors. Studies in humans have begun to elucidate the genetic underpinnings of the risk for alcoholism. Here we briefly review strategies for identifying individual genes in which variations affect the risk for alcoholism and related phenotypes, in the context of one large study that has successfully identified such genes. The Collaborative Study on the Genetics of Alcoholism (COGA) is a family-based study that has collected detailed phenotypic data on individuals in families with multiple alcoholic members. A genome-wide linkage approach led to the identification of chromosomal regions containing genes that influenced alcoholism risk and related phenotypes. Subsequently, single nucleotide polymorphisms (SNPs) were genotyped in positional candidate genes located within the linked chromosomal regions, and analyzed for association with these phenotypes. Using this sequential approach, COGA has detected association with GABRA2, CHRM2 and ADH4; these associations have all been replicated by other researchers. COGA has detected association to additional genes including GABRG3, TAS2R16, SNCA, OPRK1 and PDYN, results that are awaiting confirmation. These successes demonstrate that genes contributing to the risk for alcoholism can be reliably identified using human subjects.

  3. HLA-A SNPs and amino acid variants are associated with nasopharyngeal carcinoma in Malaysian Chinese.

    PubMed

    Chin, Yoon-Ming; Mushiroda, Taisei; Takahashi, Atsushi; Kubo, Michiaki; Krishnan, Gopala; Yap, Lee-Fah; Teo, Soo-Hwang; Lim, Paul Vey-Hong; Yap, Yoke-Yeow; Pua, Kin-Choo; Kamatani, Naoyuki; Nakamura, Yusuke; Sam, Choon-Kook; Khoo, Alan Soo-Beng; Ng, Ching-Ching

    2015-02-01

    Nasopharyngeal carcinoma (NPC) arises from the mucosal epithelium of the nasopharynx and is constantly associated with Epstein-Barr virus type 1 (EBV-1) infection. We carried out a genome-wide association study (GWAS) of 575,247 autosomal SNPs in 184 NPC patients and 236 healthy controls of Malaysian Chinese ethnicity. Potential association signals were replicated in a separate cohort of 260 NPC patients and 245 healthy controls. We confirmed the association of HLA-A to NPC with the strongest signal detected in rs3869062 (p = 1.73 × 10(-9)). HLA-A fine mapping revealed associations in the amino acid variants as well as its corresponding SNPs in the antigen peptide binding groove (p(HLA-A-aa-site-99) = 3.79 × 10(-8), p(rs1136697) = 3.79 × 10(-8)) and T-cell receptor binding site (p(HLA-A-aa-site-145) = 1.41 × 10(-4), p(rs1059520) = 1.41 × 10(-4)) of the HLA-A. We also detected strong association signals in the 5'-UTR region with predicted active promoter states (p(rs41545520) = 7.91 × 10(-8)). SNP rs41545520 is a potential binding site for repressor ATF3, with increased binding affinity for rs41545520-G correlated with reduced HLA-A expression. Multivariate logistic regression diminished the effects of HLA-A amino acid variants and SNPs, indicating a correlation with the effects of HLA-A*11:01, and to a lesser extent HLA-A*02:07. We report the strong genetic influence of HLA-A on NPC susceptibility in the Malaysian Chinese. © 2014 UICC.

  4. Mutation Scanning in Wheat by Exon Capture and Next-Generation Sequencing.

    PubMed

    King, Robert; Bird, Nicholas; Ramirez-Gonzalez, Ricardo; Coghill, Jane A; Patil, Archana; Hassani-Pak, Keywan; Uauy, Cristobal; Phillips, Andrew L

    2015-01-01

    Targeted Induced Local Lesions in Genomes (TILLING) is a reverse genetics approach to identify novel sequence variation in genomes, with the aims of investigating gene function and/or developing useful alleles for breeding. Despite recent advances in wheat genomics, most current TILLING methods are low to medium in throughput, being based on PCR amplification of the target genes. We performed a pilot-scale evaluation of TILLING in wheat by next-generation sequencing through exon capture. An oligonucleotide-based enrichment array covering ~2 Mbp of wheat coding sequence was used to carry out exon capture and sequencing on three mutagenised lines of wheat containing previously-identified mutations in the TaGA20ox1 homoeologous genes. After testing different mapping algorithms and settings, candidate SNPs were identified by mapping to the IWGSC wheat Chromosome Survey Sequences. Where sequence data for all three homoeologues were found in the reference, mutant calls were unambiguous; however, where the reference lacked one or two of the homoeologues, captured reads from these genes were mis-mapped to other homoeologues, resulting either in dilution of the variant allele frequency or assignment of mutations to the wrong homoeologue. Competitive PCR assays were used to validate the putative SNPs and estimate cut-off levels for SNP filtering. At least 464 high-confidence SNPs were detected across the three mutagenized lines, including the three known alleles in TaGA20ox1, indicating a mutation rate of ~35 SNPs per Mb, similar to that estimated by PCR-based TILLING. This demonstrates the feasibility of using exon capture for genome re-sequencing as a method of mutation detection in polyploid wheat, but accurate mutation calling will require an improved genomic reference with more comprehensive coverage of homoeologues.

  5. How immunogenetically different are domestic pigs from wild boars: a perspective from single-nucleotide polymorphisms of 19 immunity-related candidate genes.

    PubMed

    Chen, Shanyuan; Gomes, Rui; Costa, Vânia; Santos, Pedro; Charneca, Rui; Zhang, Ya-ping; Liu, Xue-hong; Wang, Shao-qing; Bento, Pedro; Nunes, Jose-Luis; Buzgó, József; Varga, Gyula; Anton, István; Zsolnai, Attila; Beja-Pereira, Albano

    2013-10-01

    The coexistence of wild boars and domestic pigs across Eurasia makes it feasible to conduct comparative genetic or genomic analyses for addressing how genetically different a domestic species is from its wild ancestor. To test whether there are differences in patterns of genetic variability between wild and domestic pigs at immunity-related genes and to detect outlier loci putatively under selection that may underlie differences in immune responses, here we analyzed 54 single-nucleotide polymorphisms (SNPs) of 19 immunity-related candidate genes on 11 autosomes in three pairs of wild boar and domestic pig populations from China, Iberian Peninsula, and Hungary. Our results showed no statistically significant differences in allele frequency and heterozygosity across SNPs between three pairs of wild and domestic populations. This observation was more likely due to the widespread and long-lasting gene flow between wild boars and domestic pigs across Eurasia. In addition, we detected eight coding SNPs from six genes as outliers being under selection consistently by three outlier tests (BayeScan2.1, FDIST2, and Arlequin3.5). Among four non-synonymous outlier SNPs, one from TLR4 gene was identified as being subject to positive (diversifying) selection and three each from CD36, IFNW1, and IL1B genes were suggested as under balancing selection. All of these four non-synonymous variants were predicted as being benign by PolyPhen-2. Our results were supported by other independent lines of evidence for positive selection or balancing selection acting on these four immune genes (CD36, IFNW1, IL1B, and TLR4). Our study showed an example applying a candidate gene approach to identify functionally important mutations (i.e., outlier loci) in wild and domestic pigs for subsequent functional experiments.

  6. MADD-FOLH1 Polymorphisms and Their Haplotypes with Serum Lipid Levels and the Risk of Coronary Heart Disease and Ischemic Stroke in a Chinese Han Population.

    PubMed

    Wu, Dong-Feng; Yin, Rui-Xing; Cao, Xiao-Li; Huang, Feng; Wu, Jin-Zhen; Chen, Wu-Xian

    2016-04-08

    This study aimed to detect the association of the MADD-FOLH1 single nucleotide polymorphisms (SNPs) and their haplotypes with the risk of coronary heart disease (CHD) and ischemic stroke (IS) in a Chinese Han population. Six SNPs of rs7395662, rs326214, rs326217, rs1051006, rs3736101, and rs7120118 were genotyped in 584 CHD and 555 IS patients, and 596 healthy controls. The genotypic and allelic frequencies of the rs7395662 SNP were different between controls and patients, and the genotypes of the rs7395662 SNP were associated with the risk of CHD and IS in different genetic models. Six main haplotypes among the rs1051006, rs326214, rs326217, rs3736101, and rs7120118 SNPs were detected in our study population, the haplotypes of G-G-T-G-C and G-A-T-G-T were associated with an increased risk of CHD and IS, respectively. The subjects with rs7395662GG genotype in controls had higher triglyceride (TG) and lower high-density lipoprotein cholesterol (HDL-C) levels than the subjects with AA/AG genotypes. Several SNPs interacted with alcohol consumption to influence serum TG (rs326214, rs326217, and rs7120118) and HDL-C (rs7395662) levels. The SNP of rs3736101 interacted with cigarette smoking to modify serum HDL-C levels. The SNP of rs1051006 interacted with body mass index ≥24 kg/m² to modulate serum low-density lipoprotein cholesterol levels. The interactions of several haplotypes and alcohol consumption on the risk of CHD and IS were also observed.

  7. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating complex traits and conditions. PMID:25617623

  8. High prevalence of dengue antibodies and the arginine variant of the FcγRIIa polymorphism in asymptomatic individuals in a population of Minas Gerais State, Southeast Brazil.

    PubMed

    Pereira, Anna Carolina Toledo da Cunha; de Siqueira, Tatiane Ribeiro; de Oliveira Prado, Andressa Anunciação; da Silva, Camila Almeida Veiga; de Fátima Silva Moraes, Thaís; Aleixo, Alan Alex; de Magalhaes, José Carlos; de Souza, Gabriel Augusto Pires; Drumond, Betânia Paiva; Ferreira, Gustavo Portela; de Mello Silva, Breno; de Brito Magalhães, Cintia Lopes; Santos, Luciana Lara; Ferreira, Jaqueline Maria Siqueira; Malaquias, Luiz Cosme Cotta; Coelho, Luiz Felipe Leomil

    2018-06-01

    Dengue is the most prevalent arthropod-borne viral illness in humans worldwide. Single-nucleotide polymorphisms (SNPs) in genes involved in the immune response, such as dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), IgG Fc receptor II-A (FcγRIIa), vitamin D receptor (VDR), and tumor necrosis factor alpha (TNF-α), were previously reported to be associated with susceptibility to dengue disease in different human populations. Therefore, due to the relevant association of host immune and genetic status with disease susceptibility/severity of dengue, this work aims to verify the frequency of anti-dengue virus antibodies and some dengue-associated risk SNPs in a population in Minas Gerais State, Southeast Brazil. A total of 1560 individuals were genotyped for polymorphisms in DC-SIGN (rs4804803), FcγRIIa (rs1801274), VDR (rs7975232), and TNF-α (rs1800629). The presence of anti-dengue antibodies (IgM and/or IgG) in these samples was also assayed. Anti-dengue antibodies were detected at an overall frequency of 16.86%, indicating a virus infection in asymptomatic individuals. The genotypic frequencies of all SNPs studied did not differ between the asymptomatic and control groups. Regarding the allelic frequencies of the four SNPs analyzed, a higher frequency was detected of the G allele of FcγRIIa/rs1801274 in the asymptomatic individuals when compared to that in the control group (p = 0.03). Therefore, the results showed a high prevalence of asymptomatic individuals in Minas Gerais State, with a potential association between the presence of the G allele of FcγRIIa/rs1801274 and protection against symptomatic disease.

  9. Catalog of MicroRNA Seed Polymorphisms in Vertebrates

    PubMed Central

    Calin, George Adrian; Horvat, Simon; Jiang, Zhihua; Dovc, Peter; Kunej, Tanja

    2012-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNA that plays an important role in posttranscriptional regulation of mRNA. Evidence has shown that miRNA gene variability might interfere with its function resulting in phenotypic variation and disease susceptibility. A major role in miRNA target recognition is ascribed to complementarity with the miRNA seed region that can be affected by polymorphisms. In the present study, we developed an online tool for the detection of miRNA polymorphisms (miRNA SNiPer) in vertebrates (http://www.integratomics-time.com/miRNA-SNiPer) and generated a catalog of miRNA seed region polymorphisms (miR-seed-SNPs) consisting of 149 SNPs in six species. Although a majority of detected polymorphisms were due to point mutations, two consecutive nucleotide substitutions (double nucleotide polymorphisms, DNPs) were also identified in nine miRNAs. We determined that miR-SNPs are frequently located within the quantitative trait loci (QTL), chromosome fragile sites, and cancer susceptibility loci, indicating their potential role in the genetic control of various complex traits. To test this further, we performed an association analysis between the mmu-miR-717 seed SNP rs30372501, which is polymorphic in a large number of standard inbred strains, and all phenotypic traits in these strains deposited in the Mouse Phenome Database. Analysis showed a significant association between the mmu-miR-717 seed SNP and a diverse array of traits including behavior, blood-clinical chemistry, body weight size and growth, and immune system suggesting that seed SNPs can indeed have major pleiotropic effects. The bioinformatics analyses, data and tools developed in the present study can serve researchers as a starting point in testing more targeted hypotheses and designing experiments using optimal species or strains for further mechanistic studies. PMID:22303453

  10. Sequence variants at CYP1A1–CYP1A2 and AHR associate with coffee consumption

    PubMed Central

    Sulem, Patrick; Gudbjartsson, Daniel F.; Geller, Frank; Prokopenko, Inga; Feenstra, Bjarke; Aben, Katja K.H.; Franke, Barbara; den Heijer, Martin; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Yanek, Lisa R.; Becker, Lewis C.; Boyd, Heather A.; Stacey, Simon N.; Walters, G. Bragi; Jonasdottir, Adalbjorg; Thorleifsson, Gudmar; Holm, Hilma; Gudjonsson, Sigurjon A.; Rafnar, Thorunn; Björnsdottir, Gyda; Becker, Diane M.; Melbye, Mads; Kong, Augustine; Tönjes, Anke; Thorgeirsson, Thorgeir; Thorsteinsdottir, Unnur; Kiemeney, Lambertus A.; Stefansson, Kari

    2011-01-01

    Coffee is the most commonly used stimulant and caffeine is its main psychoactive ingredient. The heritability of coffee consumption has been estimated at around 50%. We performed a meta-analysis of four genome-wide association studies of coffee consumption among coffee drinkers from Iceland (n = 2680), the Netherlands (n = 2791), the Sorbs Slavonic population isolate in Germany (n = 771) and the USA (n = 369) using both directly genotyped and imputed single nucleotide polymorphisms (SNPs) (2.5 million SNPs). SNPs at the two most significant loci were also genotyped in a sample set from Iceland (n = 2430) and a Danish sample set consisting of pregnant women (n = 1620). Combining all data, two sequence variants significantly associated with increased coffee consumption: rs2472297-T located between CYP1A1 and CYP1A2 at 15q24 (P = 5.4 · 10−14) and rs6968865-T near aryl hydrocarbon receptor (AHR) at 7p21 (P = 2.3 · 10−11). An effect of ∼0.2 cups a day per allele was observed for both SNPs. CYP1A2 is the main caffeine metabolizing enzyme and is also involved in drug metabolism. AHR detects xenobiotics, such as polycyclic aryl hydrocarbons found in roasted coffee, and induces transcription of CYP1A1 and CYP1A2. The association of these SNPs with coffee consumption was present in both smokers and non-smokers. PMID:21357676

  11. Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea

    PubMed Central

    Bajaj, Deepak; Das, Shouvik; Badoni, Saurabh; Kumar, Vinod; Singh, Mohar; Bansal, Kailash C.; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    We identified 82489 high-quality genome-wide SNPs from 93 wild and cultivated Cicer accessions through integrated reference genome- and de novo-based GBS assays. High intra- and inter-specific polymorphic potential (66–85%) and broader natural allelic diversity (6–64%) detected by genome-wide SNPs among accessions signify their efficacy for monitoring introgression and transferring target trait-regulating genomic (gene) regions/allelic variants from wild to cultivated Cicer gene pools for genetic improvement. The population-specific assignment of wild Cicer accessions pertaining to the primary gene pool are more influenced by geographical origin/phenotypic characteristics than species/gene-pools of origination. The functional significance of allelic variants (non-synonymous and regulatory SNPs) scanned from transcription factors and stress-responsive genes in differentiating wild accessions (with potential known sources of yield-contributing and stress tolerance traits) from cultivated desi and kabuli accessions, fine-mapping/map-based cloning of QTLs and determination of LD patterns across wild and cultivated gene-pools are suitably elucidated. The correlation between phenotypic (agromorphological traits) and molecular diversity-based admixed domestication patterns within six structured populations of wild and cultivated accessions via genome-wide SNPs was apparent. This suggests utility of whole genome SNPs as a potential resource for identifying naturally selected trait-regulating genomic targets/functional allelic variants adaptive to diverse agroclimatic regions for genetic enhancement of cultivated gene-pools. PMID:26208313

  12. Analysis of TLR2, TLR4, and TLR9 single nucleotide polymorphisms in children with bacterial meningitis and their healthy family members.

    PubMed

    Gowin, Ewelina; Świątek-Kościelna, Bogna; Kałużna, Ewelina; Nowak, Jerzy; Michalak, Michał; Wysocki, Jacek; Januszkiewicz-Lewandowska, Danuta

    2017-07-01

    The aim was to analyse TLR2 rs5743708, TLR2 rs4696480, TLR4 rs4986790, TLR9 rs5743836, and TLR9 rs352140 single nucleotide polymorphisms (SNPs) in children with pneumococcal and meningococcal meningitis and their family members. The study group consisted of 39 children with bacterial meningitis (25 with meningococcal meningitis and 14 with pneumococcal meningitis) and 49 family members. Laboratory test results and the course of the diseases were analyzed. Genomic DNA was extracted from 1.2ml of peripheral blood in order to analyze the five SNPs. Patients with pneumococcal and meningococcal meningitis showed a similar male/female ratio, mean age, and duration of symptoms. There were no statistically significant differences in biochemical markers between the two groups. All patients possessed at least one polymorphic variant of the analyzed SNPs. The most common SNP was TLR9 rs352140, detected in 89.7% of patients. No significant differences in SNP frequency were found between patients, family members, and the general population. The allele frequencies in the population studied are in accordance with the literature data. The study did not find an association between the analyzed SNPs and susceptibility to bacterial meningitis. The role of SNPs in genes coding toll-like receptors and the interactions between them in controlling inflammation in the central nervous system needs further evaluation. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Polymorphisms in the bovine CIDEC gene are associated with body measurement traits and meat quality traits in Qinchuan cattle.

    PubMed

    Mei, C G; Gui, L S; Fu, C Z; Wang, H C; Wang, J L; Cheng, G; Zan, L S

    2015-08-07

    Previous studies have shown that the cell death-inducing DFF45-like effector-C (CIDEC) gene is involved in lipid storage and energy metabolism, suggesting that it is a potential candidate gene that affects body measurement traits (BMTs) and meat quality traits (MQTs). The aim of this study was to identify polymorphisms of the bovine CIDEC gene and analyze their possible associations with BMTs and MQTs in 531 randomly selected Qinchuan cattle aged between 18 and 24 months. DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism were employed to detect CIDEC single nucleotide polymorphisms (SNPs). We found five SNPs: two in exon 5 (SNP1, g.9815G>A and SNP2, g.9924C>T) and three in the 3'-untranslated region (SNP3, g.13281C>T; SNP4, g.13297A>G; and SNP5, g.13307G>A). SNP1 was a missense mutation that resulted in an arginine to glutamine amino acid change, and exhibited two genotypes (GG and AG). SNP2 was a synonymous mutation that exhibited three genotypes (CC, CT, and TT). SNP3, 4, and 5 were completely linked, and only exhibited two genotypes (CC-AA-GG and CT-AG-GA). We found significant associations between these polymorphisms and BMTs and MQTs (P < 0.05); GG, CT, and CT-AG-GA appeared to be the most beneficial genotypes. Therefore, CIDEC may affect BMTs and MQTs in Qinchuan cattle, and could be used in marker-assisted selection.

  14. Evaluation of candidate genes associated with hepatitis A and E virus infection in Chinese Han population.

    PubMed

    Gu, Maolin; Qiu, Jing; Guo, Daoxia; Xu, Yunfang; Liu, Xingxiang; Shen, Chong; Dong, Chen

    2018-03-20

    Recent GWAS-associated studies reported that single nucleotide polymorphisms (SNPs) in ABCB1, TGFβ1, XRCC1 genes were associated with hepatitis A virus (HAV) infection, and variants of APOA4 and APOE genes were associated with and hepatitis E virus (HEV) infection in US population. However, the associations of these loci with HAV or HEV infection in Chinese Han population remain unclear. A total of 3082 Chinese Han persons were included in this study. Anti-HAV IgG and anti-HEV IgG were detected by enzyme-linked immunosorbent assay (ELISA). Genotypes in ABCB1, TGFβ1, XRCC1, APOA4 and APOE SNPs were determined by TaqMan MGB technology. In Chinese Han population, rs1045642 C to T variation in ABCB1 was significantly associated with the decreased risk of HAV infection (P < 0.05). However, the effect direction was different with the previous US study. Rs1001581 A to G variation in XRCC1, which was not identified in US population, was significantly associated with the protection against HAV infection in our samples (P < 0.05). In addition, our results suggested that rs7412 C to T variation in APOE was significantly associated with lower risk of HEV infection in males (adjusted OR < 1.0, P < 0.05) but not in females. ABCB1 and XRCC1 genes variants are significantly associated with the protection against HAV infection. Additionally, Chinese Han males with rs7412 C to T variation in APOE gene are less prone to be infected by HEV.

  15. The autoimmune regulator gene (AIRE) is strongly associated with vitiligo.

    PubMed

    Tazi-Ahnini, R; McDonagh, A J G; Wengraf, D A; Lovewell, T R J; Vasilopoulos, Y; Messenger, A G; Cork, M J; Gawkrodger, D J

    2008-09-01

    Vitiligo is an autoimmune disorder that occurs with greatly increased frequency in the rare recessive autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) caused by mutations of the autoimmune regulator (AIRE) gene on chromosome 21q22.3. We have previously detected an association between alopecia areata and single nucleotide polymorphisms (SNPs) in the AIRE gene. To report the findings of an extended study including haplotype analysis on six AIRE polymorphisms (AIRE C-103T, C4144G, T5238C, G6528A, T7215C and T11787C) in vitiligo, another APECED-associated disease. A case-control analysis was performed. Results showed a strong association between AIRE 7215C and vitiligo [P = 1.36 x 10(-5), odds ratio (OR) 3.12, 95% confidence interval (CI) 1.87-5.46]. We found no significant association with the other polymorphisms individually. However, haplotype analysis revealed that the AIRE haplotype CCTGCC showed a highly significant association with vitiligo (P = 4.14 x 10(-4), OR 3.00, 95% CI 1.70-5.28). To select the most informative minimal haplotypes, we tagged the polymorphisms using SNP tag software. Using AIRE C-103T, G6528A, T7215C and T11787C as tag SNPs, the haplotype AIRE CGCC was associated with vitiligo (P = 0.003, OR 2.49, 95% CI 1.45-4.26). The link between vitiligo and AIRE raises the possibility that defective skin peripheral antigen selection in the thymus is involved in the changes that result in melanocyte destruction in this disorder.

  16. Farm-to-fork investigation of an outbreak of Shiga toxin-producing Escherichia coli O157

    PubMed Central

    Wilson, Deborah; Dolan, Gayle; Aird, Heather; Sorrell, Shirley; Dallman, Timothy J.; Jenkins, Claire; Robertson, Lucy; Gorton, Russell

    2018-01-01

    Fifteen cases of Shiga toxin-producing Escherichia coli (STEC) O157 infection were associated with the consumption of contaminated food from two related butchers’ premises in the north-east of England. Ten cases were admitted to hospital and seven cases developed haemolytic uraemic syndrome. A case control study found a statistically significant association with the purchase of raw and/or ready-to-eat (RTE) food supplied by the implicated butchers’ shops. Isolates of STEC O157 were detected in two raw lamb burgers taken from one of the butchers’ premises. Subsequent environmental sampling identified STEC O157 in bovine faecal samples on the farm supplying cattle to the implicated butchers for slaughter. Whole genome sequencing (WGS) was performed on the Illumina HiSeq 2500 platform on all cultures isolated from humans, food and cattle during the investigation. Quality trimmed Illumina reads were mapped to the STEC O157 reference genome Sakai using bwa-mem, and single nucleotide polymorphisms (SNPs) were identified using gatk2. Analysis of the core genome SNP positions (>90 % consensus, minimum depth 10×, mapping quality (MQ)≥30) revealed that all isolates from humans, food and cattle differed by two SNPs. WGS analysis provided forensic-level microbiological evidence to support the epidemiological links between the farm, the butchers’ premises and the clinical cases. Cross-contamination from raw meat to RTE foods at the butchers’ premises was the most plausible transmission route. The evidence presented here highlights the importance of taking measures to mitigate the risks of cross-contamination in this setting. PMID:29488865

  17. Common Variants in the MKL1 Gene Confer Risk of Schizophrenia

    PubMed Central

    Luo, Xiong-jian; Huang, Liang; van den Oord, Edwin J.; Aberg, Karolina A.; Gan, Lin; Zhao, Zhongming; Yao, Yong-Gang

    2015-01-01

    Genome-wide association studies (GWAS) of schizophrenia have identified multiple risk variants with robust association signals for schizophrenia. However, these variants could explain only a small proportion of schizophrenia heritability. Furthermore, the effect size of these risk variants is relatively small (eg, most of them had an OR less than 1.2), suggesting that additional risk variants may be detected when increasing sample size in analysis. Here, we report the identification of a genome-wide significant schizophrenia risk locus at 22q13.1 by combining 2 large-scale schizophrenia cohort studies. Our meta-analysis revealed that 7 single nucleotide polymorphism (SNPs) on chromosome 22q13.1 reached the genome-wide significance level (P < 5.0×10–8) in the combined samples (a total of 38441 individuals). Among them, SNP rs6001946 had the most significant association with schizophrenia (P = 2.04×10–8). Interestingly, all 7 SNPs are in high linkage disequilibrium and located in the MKL1 gene. Expression analysis showed that MKL1 is highly expressed in human and mouse brains. We further investigated functional links between MKL1 and proteins encoded by other schizophrenia susceptibility genes in the whole human protein interaction network. We found that MKL1 physically interacts with GSK3B, a protein encoded by a well-characterized schizophrenia susceptibility gene. Collectively, our results revealed that genetic variants in MKL1 might confer risk to schizophrenia. Further investigation of the roles of MKL1 in the pathogenesis of schizophrenia is warranted. PMID:25380769

  18. 1-CMDb: A Curated Database of Genomic Variations of the One-Carbon Metabolism Pathway.

    PubMed

    Bhat, Manoj K; Gadekar, Veerendra P; Jain, Aditya; Paul, Bobby; Rai, Padmalatha S; Satyamoorthy, Kapaettu

    2017-01-01

    The one-carbon metabolism pathway is vital in maintaining tissue homeostasis by driving the critical reactions of folate and methionine cycles. A myriad of genetic and epigenetic events mark the rate of reactions in a tissue-specific manner. Integration of these to predict and provide personalized health management requires robust computational tools that can process multiomics data. The DNA sequences that may determine the chain of biological events and the endpoint reactions within one-carbon metabolism genes remain to be comprehensively recorded. Hence, we designed the one-carbon metabolism database (1-CMDb) as a platform to interrogate its association with a host of human disorders. DNA sequence and network information of a total of 48 genes were extracted from a literature survey and KEGG pathway that are involved in the one-carbon folate-mediated pathway. The information generated, collected, and compiled for all these genes from the UCSC genome browser included the single nucleotide polymorphisms (SNPs), CpGs, copy number variations (CNVs), and miRNAs, and a comprehensive database was created. Furthermore, a significant correlation analysis was performed for SNPs in the pathway genes. Detailed data of SNPs, CNVs, CpG islands, and miRNAs for 48 folate pathway genes were compiled. The SNPs in CNVs (9670), CpGs (984), and miRNAs (14) were also compiled for all pathway genes. The SIFT score, the prediction and PolyPhen score, as well as the prediction for each of the SNPs were tabulated and represented for folate pathway genes. Also included in the database for folate pathway genes were the links to 124 various phenotypes and disease associations as reported in the literature and from publicly available information. A comprehensive database was generated consisting of genomic elements within and among SNPs, CNVs, CpGs, and miRNAs of one-carbon metabolism pathways to facilitate (a) single source of information and (b) integration into large-genome scale network analysis to be developed in the future by the scientific community. The database can be accessed at http://slsdb.manipal.edu/ocm/. © 2017 S. Karger AG, Basel.

  19. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology

    PubMed Central

    Pareek, Chandra Shekhar; Smoczyński, Rafał; Kadarmideen, Haja N.; Dziuba, Piotr; Błaszczyk, Paweł; Sikora, Marcin; Walendzik, Paulina; Grzybowski, Tomasz; Pierzchała, Mariusz; Horbańczuk, Jarosław; Szostak, Agnieszka; Ogluszka, Magdalena; Zwierzchowski, Lech; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Wąsowicz, Krzysztof; Gelfand, Brian; Feng, Yaping; Kumar, Dibyendu

    2016-01-01

    Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs/CGs with RNA-seq data identified KCNIP4, CCSER1, DPP6, MAP3K5 and GHR CGs with highest SNPs hit loci in all three breeds and developmental ages. However, CAST CG with more than 100 SNPs hits were observed only in Polish HF and Hereford breeds.These findings are important for identification and construction of novel tissue specific SNP-db and breed specific SNP-db dataset by screening of putative SNPs according to QTL db and candidate genes for bovine growth and reproduction traits, one can develop genomic selection strategies for growth and reproductive traits. PMID:27606429

  20. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology.

    PubMed

    Pareek, Chandra Shekhar; Smoczyński, Rafał; Kadarmideen, Haja N; Dziuba, Piotr; Błaszczyk, Paweł; Sikora, Marcin; Walendzik, Paulina; Grzybowski, Tomasz; Pierzchała, Mariusz; Horbańczuk, Jarosław; Szostak, Agnieszka; Ogluszka, Magdalena; Zwierzchowski, Lech; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Wąsowicz, Krzysztof; Gelfand, Brian; Feng, Yaping; Kumar, Dibyendu

    2016-01-01

    Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs/CGs with RNA-seq data identified KCNIP4, CCSER1, DPP6, MAP3K5 and GHR CGs with highest SNPs hit loci in all three breeds and developmental ages. However, CAST CG with more than 100 SNPs hits were observed only in Polish HF and Hereford breeds.These findings are important for identification and construction of novel tissue specific SNP-db and breed specific SNP-db dataset by screening of putative SNPs according to QTL db and candidate genes for bovine growth and reproduction traits, one can develop genomic selection strategies for growth and reproductive traits.

  1. Revealing phenotype-associated functional differences by genome-wide scan of ancient haplotype blocks

    PubMed Central

    Onuki, Ritsuko; Yamaguchi, Rui; Shibuya, Tetsuo; Kanehisa, Minoru; Goto, Susumu

    2017-01-01

    Genome-wide scans for positive selection have become important for genomic medicine, and many studies aim to find genomic regions affected by positive selection that are associated with risk allele variations among populations. Most such studies are designed to detect recent positive selection. However, we hypothesize that ancient positive selection is also important for adaptation to pathogens, and has affected current immune-mediated common diseases. Based on this hypothesis, we developed a novel linkage disequilibrium-based pipeline, which aims to detect regions associated with ancient positive selection across populations from single nucleotide polymorphism (SNP) data. By applying this pipeline to the genotypes in the International HapMap project database, we show that genes in the detected regions are enriched in pathways related to the immune system and infectious diseases. The detected regions also contain SNPs reported to be associated with cancers and metabolic diseases, obesity-related traits, type 2 diabetes, and allergic sensitization. These SNPs were further mapped to biological pathways to determine the associations between phenotypes and molecular functions. Assessments of candidate regions to identify functions associated with variations in incidence rates of these diseases are needed in the future. PMID:28445522

  2. Association of autism with polymorphisms in the paired-like homeodomain transcription factor 1 (PITX1) on chromosome 5q31: a candidate gene analysis

    PubMed Central

    Philippi, Anne; Tores, Frédéric; Carayol, Jérome; Rousseau, Francis; Letexier, Mélanie; Roschmann, Elke; Lindenbaum, Pierre; Benajjou, Abdel; Fontaine, Karine; Vazart, Céline; Gesnouin, Philippe; Brooks, Peter; Hager, Jörg

    2007-01-01

    Background Autism is a complex, heterogeneous, behaviorally-defined disorder characterized by disruptions of the nervous system and of other systems such as the pituitary-hypothalamic axis. In a previous genome wide screen, we reported linkage of autism with a 1.2 Megabase interval on chromosome 5q31. For the current study, we hypothesized that 3 of the genes in this region could be involved in the development of autism: 1) paired-like homeodomain transcription factor 1 (PITX1), which is a key regulator of hormones within the pituitary-hypothalamic axis, 2) neurogenin 1, a transcription factor involved in neurogenesis, and 3) histone family member Y (H2AFY), which is involved in X-chromosome inactivation in females and could explain the 4:1 male:female gender distortion present in autism. Methods A total of 276 families from the Autism Genetic Resource Exchange (AGRE) repository composed of 1086 individuals including 530 affected children were included in the study. Single nucleotide polymorphisms tagging the three candidate genes were genotyped on the initial linkage sample of 116 families. A second step of analysis was performed using tightly linked SNPs covering the PITX1 gene. Association was evaluated using the FBAT software version 1.7.3 for single SNP analysis and the HBAT command from the same package for haplotype analysis respectively. Results Association between SNPs and autism was only detected for PITX1. Haplotype analysis within PITX1 showed evidence for overtransmission of the A-C haplotype of markers rs11959298 – rs6596189 (p = 0.0004). Individuals homozygous or heterozygous for the A-C haplotype risk allele were 2.54 and 1.59 fold more likely to be autistic than individuals who were not carrying the allele, respectively. Conclusion Strong and consistent association was observed between a 2 SNPs within PITX1 and autism. Our data suggest that PITX1, a key regulator of hormones within the pituitary-hypothalamic axis, may be implicated in the etiology of autism. PMID:18053270

  3. Association of autism with polymorphisms in the paired-like homeodomain transcription factor 1 (PITX1) on chromosome 5q31: a candidate gene analysis.

    PubMed

    Philippi, Anne; Tores, Frédéric; Carayol, Jérome; Rousseau, Francis; Letexier, Mélanie; Roschmann, Elke; Lindenbaum, Pierre; Benajjou, Abdel; Fontaine, Karine; Vazart, Céline; Gesnouin, Philippe; Brooks, Peter; Hager, Jörg

    2007-12-06

    Autism is a complex, heterogeneous, behaviorally-defined disorder characterized by disruptions of the nervous system and of other systems such as the pituitary-hypothalamic axis. In a previous genome wide screen, we reported linkage of autism with a 1.2 Megabase interval on chromosome 5q31. For the current study, we hypothesized that 3 of the genes in this region could be involved in the development of autism: 1) paired-like homeodomain transcription factor 1 (PITX1), which is a key regulator of hormones within the pituitary-hypothalamic axis, 2) neurogenin 1, a transcription factor involved in neurogenesis, and 3) histone family member Y (H2AFY), which is involved in X-chromosome inactivation in females and could explain the 4:1 male:female gender distortion present in autism. A total of 276 families from the Autism Genetic Resource Exchange (AGRE) repository composed of 1086 individuals including 530 affected children were included in the study. Single nucleotide polymorphisms tagging the three candidate genes were genotyped on the initial linkage sample of 116 families. A second step of analysis was performed using tightly linked SNPs covering the PITX1 gene. Association was evaluated using the FBAT software version 1.7.3 for single SNP analysis and the HBAT command from the same package for haplotype analysis respectively. Association between SNPs and autism was only detected for PITX1. Haplotype analysis within PITX1 showed evidence for overtransmission of the A-C haplotype of markers rs11959298 - rs6596189 (p = 0.0004). Individuals homozygous or heterozygous for the A-C haplotype risk allele were 2.54 and 1.59 fold more likely to be autistic than individuals who were not carrying the allele, respectively. Strong and consistent association was observed between a 2 SNPs within PITX1 and autism. Our data suggest that PITX1, a key regulator of hormones within the pituitary-hypothalamic axis, may be implicated in the etiology of autism.

  4. No association between catechol-O-methyltransferase polymorphisms and neurotic disorders among mainland Chinese university students.

    PubMed

    Kou, Changgui; Meng, Xiangfei; Xie, Bing; Shi, Jieping; Yu, Qiong; Yu, Yaqin; D'Arcy, Carl

    2012-07-30

    This study investigates the genetic association between catechol-O-methyltransferase (COMT) gene polymorphisms and neurotic disorders. Data were derived from a case-control association study of 255 undergraduates affected by neurotic disorders and 269 matched healthy undergraduate controls. The polymorphisms of eight tag single nucleotide polymorphisms (SNPs) on the COMT gene were tested using polymerase chain reaction (PCR)-based Ligase Detection Reaction (PCR-LDR). The eight tag SNPs on the COMT gene assessed were not associated with neurotic disorders. Our finding suggests that the COMT gene may not be a susceptibility gene for neurotic disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti.

    PubMed

    Rašić, Gordana; Filipović, Igor; Weeks, Andrew R; Hoffmann, Ary A

    2014-04-11

    Genetic markers are widely used to understand the biology and population dynamics of disease vectors, but often markers are limited in the resolution they provide. In particular, the delineation of population structure, fine scale movement and patterns of relatedness are often obscured unless numerous markers are available. To address this issue in the major arbovirus vector, the yellow fever mosquito (Aedes aegypti), we used double digest Restriction-site Associated DNA (ddRAD) sequencing for the discovery of genome-wide single nucleotide polymorphisms (SNPs). We aimed to characterize the new SNP set and to test the resolution against previously described microsatellite markers in detecting broad and fine-scale genetic patterns in Ae. aegypti. We developed bioinformatics tools that support the customization of restriction enzyme-based protocols for SNP discovery. We showed that our approach for RAD library construction achieves unbiased genome representation that reflects true evolutionary processes. In Ae. aegypti samples from three continents we identified more than 18,000 putative SNPs. They were widely distributed across the three Ae. aegypti chromosomes, with 47.9% found in intergenic regions and 17.8% in exons of over 2,300 genes. Pattern of their imputed effects in ORFs and UTRs were consistent with those found in a recent transcriptome study. We demonstrated that individual mosquitoes from Indonesia, Australia, Vietnam and Brazil can be assigned with a very high degree of confidence to their region of origin using a large SNP panel. We also showed that familial relatedness of samples from a 0.4 km2 area could be confidently established with a subset of SNPs. Using a cost-effective customized RAD sequencing approach supported by our bioinformatics tools, we characterized over 18,000 SNPs in field samples of the dengue fever mosquito Ae. aegypti. The variants were annotated and positioned onto the three Ae. aegypti chromosomes. The new SNP set provided much greater resolution in detecting population structure and estimating fine-scale relatedness than a set of polymorphic microsatellites. RAD-based markers demonstrate great potential to advance our understanding of mosquito population processes, critical for implementing new control measures against this major disease vector.

  6. Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans

    PubMed Central

    Bassi, Denis; Briñez, Boris; Rosa, Juliana Santa; Oblessuc, Paula Rodrigues; de Almeida, Caléo Panhoca; Nucci, Stella Maris; da Silva, Larissa Chariel Domingos; Chiorato, Alisson Fernando; Vianello, Rosana Pereira; Camargo, Luis Eduardo Aranha; Blair, Matthew Wohlgemuth; Benchimol-Reis, Luciana Lasry

    2017-01-01

    Abstract Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases causing significant yield losses in common beans. In this study, a new genetic linkage map was constructed using single sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277 x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were performed in the greenhouse to identify quantitative trait loci (QTLs) associated with resistance by means of the composite interval mapping analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS, linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect (R2 = 26.5%) on ALS phenotypic variance. For PWM resistance, two QTLs were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining 7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped on the same genomic region, suggesting that it is a pleiotropic region. The present study resulted in the identification of new markers closely linked to ALS and PWM QTLs, which can be used for marker-assisted selection, fine mapping and positional cloning. PMID:28222201

  7. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility.

    PubMed

    Moore, Jason H; Gilbert, Joshua C; Tsai, Chia-Ti; Chiang, Fu-Tien; Holden, Todd; Barney, Nate; White, Bill C

    2006-07-21

    Detecting, characterizing, and interpreting gene-gene interactions or epistasis in studies of human disease susceptibility is both a mathematical and a computational challenge. To address this problem, we have previously developed a multifactor dimensionality reduction (MDR) method for collapsing high-dimensional genetic data into a single dimension (i.e. constructive induction) thus permitting interactions to be detected in relatively small sample sizes. In this paper, we describe a comprehensive and flexible framework for detecting and interpreting gene-gene interactions that utilizes advances in information theory for selecting interesting single-nucleotide polymorphisms (SNPs), MDR for constructive induction, machine learning methods for classification, and finally graphical models for interpretation. We illustrate the usefulness of this strategy using artificial datasets simulated from several different two-locus and three-locus epistasis models. We show that the accuracy, sensitivity, specificity, and precision of a naïve Bayes classifier are significantly improved when SNPs are selected based on their information gain (i.e. class entropy removed) and reduced to a single attribute using MDR. We then apply this strategy to detecting, characterizing, and interpreting epistatic models in a genetic study (n = 500) of atrial fibrillation and show that both classification and model interpretation are significantly improved.

  8. Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing.

    PubMed

    Miyao, Akio; Nakagome, Mariko; Ohnuma, Takako; Yamagata, Harumi; Kanamori, Hiroyuki; Katayose, Yuichi; Takahashi, Akira; Matsumoto, Takashi; Hirochika, Hirohiko

    2012-01-01

    Somaclonal variation is a phenomenon that results in the phenotypic variation of plants regenerated from cell culture. One of the causes of somaclonal variation in rice is the transposition of retrotransposons. However, many aspects of the mechanisms that result in somaclonal variation remain undefined. To detect genome-wide changes in regenerated rice, we analyzed the whole-genome sequences of three plants independently regenerated from cultured cells originating from a single seed stock. Many single-nucleotide polymorphisms (SNPs) and insertions and deletions (indels) were detected in the genomes of the regenerated plants. The transposition of only Tos17 among 43 transposons examined was detected in the regenerated plants. Therefore, the SNPs and indels contribute to the somaclonal variation in regenerated rice in addition to the transposition of Tos17. The observed molecular spectrum was similar to that of the spontaneous mutations in Arabidopsis thaliana. However, the base change ratio was estimated to be 1.74 × 10(-6) base substitutions per site per regeneration, which is 248-fold greater than the spontaneous mutation rate of A. thaliana.

  9. Precise Estimation of Allele Frequencies of Single-Nucleotide Polymorphisms by a Quantitative SSCP Analysis of Pooled DNA

    PubMed Central

    Sasaki, Tomonari; Tahira, Tomoko; Suzuki, Akari; Higasa, Koichiro; Kukita, Yoji; Baba, Shingo; Hayashi, Kenshi

    2001-01-01

    We show that single-nucleotide polymorphisms (SNPs) of moderate to high heterozygosity (minor allele frequencies >10%) can be efficiently detected, and their allele frequencies accurately estimated, by pooling the DNA samples and applying a capillary-based SSCP analysis. In this method, alleles are separated into peaks, and their frequencies can be reliably and accurately quantified from their peak heights (SD <1.8%). We found that as many as 40% of publicly available SNPs that were analyzed by this method have widely differing allele frequency distributions among groups of different ethnicity (parents of Centre d'Etude Polymorphisme Humaine families vs. Japanese individuals). These results demonstrate the effectiveness of the present pooling method in the reevaluation of candidate SNPs that have been collected by examination of limited numbers of individuals. The method should also serve as a robust quantitative technique for studies in which a precise estimate of SNP allele frequencies is essential—for example, in linkage disequilibrium analysis. PMID:11083945

  10. Heritability and molecular-genetic basis of the P3 event-related brain potential: A genome-wide association study

    PubMed Central

    MALONE, STEPHEN M.; VAIDYANATHAN, UMA; BASU, SAONLI; MILLER, MICHAEL B.; MCGUE, MATT; IACONO, WILLIAM G.

    2014-01-01

    P3 amplitude is a candidate endophenotype for disinhibitory psychopathology, psychosis, and other disorders. The present study is a comprehensive analysis of the behavioral- and molecular-genetic basis of P3 amplitude and a P3 genetic factor score in a large community sample (N = 4,211) of adolescent twins and their parents, genotyped for 527,829 single nucleotide polymorphisms (SNPs). Biometric models indicated that as much as 65% of the variance in each measure was due to additive genes. All SNPs in aggregate accounted for approximately 40% to 50% of the heritable variance. However, analyses of individual SNPs did not yield any significant associations. Analyses of individual genes did not confirm previous associations between P3 amplitude and candidate genes but did yield a novel association with myelin expression factor 2 (MYEF2). Main effects of individual variants may be too small to be detected by GWAS without larger samples. PMID:25387705

  11. A Comprehensive Systems Biology Approach to Studying Zika Virus.

    PubMed

    May, Meghan; Relich, Ryan F

    2016-01-01

    Zika virus (ZIKV) is responsible for an ongoing and intensifying epidemic in the Western Hemisphere. We examined the complete predicted proteomes, glycomes, and selectomes of 33 ZIKV strains representing temporally diverse members of the African lineage, the Asian lineage, and the current outbreak in the Americas. Derivation of the complete selectome is an 'omics' approach to identify distinct evolutionary pressures acting on different features of an organism. Employment of the M8 model did not show evidence of global diversifying selection acting on the ZIKV polyprotein; however, a mixed effect model of evolution showed strong evidence (P<0.05) for episodic diversifying selection acting on specific sites. Single nucleotide polymorphisms (SNPs) were predictably frequent across strains relative to the derived consensus sequence. None of the 9 published detection procedures utilize targets that share 100% identity across the 33 strains examined, indicating that ZIKV escape from molecular detection is predictable. The predicted O-linked glycome showed marked diversity across strains; however, the N-linked glycome was highly stable. All Asian and American strains examined were predicted to include glycosylation of E protein ASN154, a modification proposed to mediate neurotropism, whereas the modification was not predicted for African strains. SNP diversity, episodic diversifying selection, and differential glycosylation, particularly of ASN154, may have major biological implications for ZIKV disease. Taken together, the systems biology perspective of ZIKV indicates: a.) The recently emergent Asian/American N-glycotype is mediating the new and emerging neuropathogenic potential of ZIKV; and b.) further divergence at specific sites is predictable as endemnicity is established in the Americas.

  12. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications.

    PubMed

    Otero, José Manuel; Vongsangnak, Wanwipa; Asadollahi, Mohammad A; Olivares-Hernandes, Roberto; Maury, Jérôme; Farinelli, Laurent; Barlocher, Loïc; Osterås, Magne; Schalk, Michel; Clark, Anthony; Nielsen, Jens

    2010-12-22

    The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. In this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between Saccharomyces cerevisiae strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the Saccharomyces Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,596 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e.g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (GAL1, GAL10) and ergosterol biosynthetic pathway (ERG8, ERG9). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function. With an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at http://www.sysbio.se/cenpk.

  13. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications

    PubMed Central

    2010-01-01

    Background The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. Results In this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between Saccharomyces cerevisiae strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the Saccharomyces Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,596 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e.g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (GAL1, GAL10) and ergosterol biosynthetic pathway (ERG8, ERG9). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function. Conclusions With an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at http://www.sysbio.se/cenpk. PMID:21176163

  14. Novel variants in human and monkey CETP.

    PubMed

    Lloyd, David B; Reynolds, Jennifer M; Cronan, Melissa T; Williams, Suzanne P; Lira, Maruja E; Wood, Linda S; Knight, Delvin R; Thompson, John F

    2005-10-15

    Variation in CETP has been shown to play an important role in HDL-C levels and cardiovascular disease. To better characterize this variation, the promoter and exonic DNA for CETP was resequenced in 189 individuals with extreme HDL-C or age. Two novel amino acid variants were found in humans (V-12D and Y361C) and an additional variant (R137W) not previously studied in vitro were expressed. D-12 was not secreted and had no detectable activity in cells. C361 and W137 retained near normal amounts of cholesteryl ester transfer activity when purified but were less well secreted than wild type. Torcetrapib, a CETP inhibitor in clinical development with atorvastatin, was found to have a uniform effect on inhibition of wild type CETP versus W137 or C361. In addition, the level of variation in other species was assessed by resequencing DNA from nine cynomolgus monkeys. Numerous intronic and silent SNPs were found as well as two variable amino acids. The amino acid altering SNPs were genotyped in 29 monkeys and not found to be significantly associated with HDL-C levels. Three SNPs found in monkeys were identical to three found in humans with these SNPs all occurring at CpG sites.

  15. Routine Discovery of Complex Genetic Models using Genetic Algorithms

    PubMed Central

    Moore, Jason H.; Hahn, Lance W.; Ritchie, Marylyn D.; Thornton, Tricia A.; White, Bill C.

    2010-01-01

    Simulation studies are useful in various disciplines for a number of reasons including the development and evaluation of new computational and statistical methods. This is particularly true in human genetics and genetic epidemiology where new analytical methods are needed for the detection and characterization of disease susceptibility genes whose effects are complex, nonlinear, and partially or solely dependent on the effects of other genes (i.e. epistasis or gene-gene interaction). Despite this need, the development of complex genetic models that can be used to simulate data is not always intuitive. In fact, only a few such models have been published. We have previously developed a genetic algorithm approach to discovering complex genetic models in which two single nucleotide polymorphisms (SNPs) influence disease risk solely through nonlinear interactions. In this paper, we extend this approach for the discovery of high-order epistasis models involving three to five SNPs. We demonstrate that the genetic algorithm is capable of routinely discovering interesting high-order epistasis models in which each SNP influences risk of disease only through interactions with the other SNPs in the model. This study opens the door for routine simulation of complex gene-gene interactions among SNPs for the development and evaluation of new statistical and computational approaches for identifying common, complex multifactorial disease susceptibility genes. PMID:20948983

  16. A high-density SNP genetic map consisting of a complete set of homologous groups in autohexaploid sweetpotato (Ipomoea batatas)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirasawa, Kenta; Tanaka, Masaru; Takahata, Yasuhiro

    Sweetpotato (Ipomoea batatas) is an autohexaploid species with 90 chromosomes (2n = 6x = 90) and a basic chromosome number of 15, and is therefore regarded as one of the most challenging species for high-density genetic map construction. Here, we used single nucleotide polymorphisms (SNPs) identified by double-digest restriction site-associated DNA sequencing based on next-generation sequencing technology to construct a map for sweetpotato. We then aligned the sequence reads onto the reference genome sequence of I. trifida, a likely diploid ancestor of sweetpotato, to detect SNPs. In addition, to simplify analysis of the complex genetic mode of autohexaploidy, we usedmore » an S1 mapping population derived from self-pollination of a single parent. As a result, 28,087 double-simplex SNPs showing a Mendelian segregation ratio in the S1 progeny could be mapped onto 96 linkage groups (LGs), covering a total distance of 33,020.4 cM. Based on the positions of the SNPs on the I. trifida genome, the LGs were classified into 15 groups, each with roughly six LGs and six small extra groups. The molecular genetic techniques used in this study are applicable to high-density mapping of other polyploid plant species, including important crops.« less

  17. SNPs of melanocortin 4 receptor (MC4R) associated with body weight in Beagle dogs.

    PubMed

    Zeng, Ruixia; Zhang, Yibo; Du, Peng

    2014-01-01

    Melanocortin 4 receptor (MC4R), which is associated with inherited human obesity, is involoved in food intake and body weight of mammals. To study the relationships between MC4R gene polymorphism and body weight in Beagle dogs, we detected and compared the nucleotide sequence of the whole coding region and 3'- and 5'- flanking regions of the dog MC4R gene (1214 bp). In 120 Beagle dogs, two SNPs (A420C, C895T) were identified and their relation with body weight was analyzed with RFLP-PCR method. The results showed that the SNP at A420C was significantly associated with canine body weight trait when it changed amino acid 101 of the MC4R protein from asparagine to threonine, while canine body weight variations were significant in female dogs when MC4R nonsense mutation at C895T. It suggested that the two SNPs might affect the MC4R gene's function which was relative to body weight in Beagle dogs. Therefore, MC4R was a candidate gene for selecting different size dogs with the MC4R SNPs (A420C, C895T) being potentially valuable as a genetic marker.

  18. A high-density SNP genetic map consisting of a complete set of homologous groups in autohexaploid sweetpotato (Ipomoea batatas)

    DOE PAGES

    Shirasawa, Kenta; Tanaka, Masaru; Takahata, Yasuhiro; ...

    2017-03-10

    Sweetpotato (Ipomoea batatas) is an autohexaploid species with 90 chromosomes (2n = 6x = 90) and a basic chromosome number of 15, and is therefore regarded as one of the most challenging species for high-density genetic map construction. Here, we used single nucleotide polymorphisms (SNPs) identified by double-digest restriction site-associated DNA sequencing based on next-generation sequencing technology to construct a map for sweetpotato. We then aligned the sequence reads onto the reference genome sequence of I. trifida, a likely diploid ancestor of sweetpotato, to detect SNPs. In addition, to simplify analysis of the complex genetic mode of autohexaploidy, we usedmore » an S1 mapping population derived from self-pollination of a single parent. As a result, 28,087 double-simplex SNPs showing a Mendelian segregation ratio in the S1 progeny could be mapped onto 96 linkage groups (LGs), covering a total distance of 33,020.4 cM. Based on the positions of the SNPs on the I. trifida genome, the LGs were classified into 15 groups, each with roughly six LGs and six small extra groups. The molecular genetic techniques used in this study are applicable to high-density mapping of other polyploid plant species, including important crops.« less

  19. Identification of SNPs involved in regulating a novel alternative transcript of P450 CYP6ER1 in the brown planthopper.

    PubMed

    Liang, Zhi-Kun; Pang, Rui; Dong, Yi; Sun, Zhong-Xiang; Ling, Yan; Zhang, Wen-Qing

    2017-04-29

    Cytochrome P450-mediated metabolic resistance is one of the major mechanisms involved in insecticide resistance. Although the up-regulation of cytochrome P450 plays a vital role in insecticide metabolism, the molecular basis for the transcriptional regulation of cytochrome P450 remains largely unknown. The P450 gene CYP6ER1, has been reported to confer imidacloprid resistance to the brown planthopper, Nilaparvata lugens. Here, we identified a novel alternative transcript of CYP6ER1 (transcript A2) that had different expression patterns between resistant and susceptible populations, and was more stable after insecticide induction. The promoter of this transcript was sequenced and multiple single nucleotide polymorphisms (SNPs) were detected in individuals from susceptible and resistant field-collected populations. Resistant alleles of four SNPs were found to significantly enhance the promoter activity of the CYP6ER1 transcript A2. Electrophoretic mobility shift assays (EMSAs) revealed that these SNPs might regulate the binding of transcription factors to the promoter. Our findings provide novel evidence regarding the transcriptional regulation of a metabolic resistance-related gene and may be useful to understand the resistance mechanism of N. lugens in the field. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  20. Genome-wide association study of dermatomyositis reveals genetic overlap with other autoimmune disorders.

    PubMed

    Miller, Frederick W; Cooper, Robert G; Vencovský, Jiří; Rider, Lisa G; Danko, Katalin; Wedderburn, Lucy R; Lundberg, Ingrid E; Pachman, Lauren M; Reed, Ann M; Ytterberg, Steven R; Padyukov, Leonid; Selva-O'Callaghan, Albert; Radstake, Timothy R D J; Isenberg, David A; Chinoy, Hector; Ollier, William E R; O'Hanlon, Terrance P; Peng, Bo; Lee, Annette; Lamb, Janine A; Chen, Wei; Amos, Christopher I; Gregersen, Peter K

    2013-12-01

    To identify new genetic associations with juvenile and adult dermatomyositis (DM). We performed a genome-wide association study (GWAS) of adult and juvenile DM patients of European ancestry (n = 1,178) and controls (n = 4,724). To assess genetic overlap with other autoimmune disorders, we examined whether 141 single-nucleotide polymorphisms (SNPs) outside the major histocompatibility complex (MHC) locus, and previously associated with autoimmune diseases, predispose to DM. Compared to controls, patients with DM had a strong signal in the MHC region consisting of GWAS-level significance (P < 5 × 10(-8)) at 80 genotyped SNPs. An analysis of 141 non-MHC SNPs previously associated with autoimmune diseases showed that 3 SNPs linked with 3 genes were associated with DM, with a false discovery rate (FDR) of <0.05. These genes were phospholipase C-like 1 (PLCL1; rs6738825, FDR = 0.00089), B lymphoid tyrosine kinase (BLK; rs2736340, FDR = 0.0031), and chemokine (C-C motif) ligand 21 (CCL21; rs951005, FDR = 0.0076). None of these genes was previously reported to be associated with DM. Our findings confirm the MHC as the major genetic region associated with DM and indicate that DM shares non-MHC genetic features with other autoimmune diseases, suggesting the presence of additional novel risk loci. This first identification of autoimmune disease genetic predispositions shared with DM may lead to enhanced understanding of pathogenesis and novel diagnostic and therapeutic approaches. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  1. Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species.

    PubMed

    Hess, Jon E; Campbell, Nathan R; Close, David A; Docker, Margaret F; Narum, Shawn R

    2013-06-01

    Unlike most anadromous fishes that have evolved strict homing behaviour, Pacific lamprey (Entosphenus tridentatus) seem to lack philopatry as evidenced by minimal population structure across the species range. Yet unexplained findings of within-region population genetic heterogeneity coupled with the morphological and behavioural diversity described for the species suggest that adaptive genetic variation underlying fitness traits may be responsible. We employed restriction site-associated DNA sequencing to genotype 4439 quality filtered single nucleotide polymorphism (SNP) loci for 518 individuals collected across a broad geographical area including British Columbia, Washington, Oregon and California. A subset of putatively neutral markers (N = 4068) identified a significant amount of variation among three broad populations: northern British Columbia, Columbia River/southern coast and 'dwarf' adults (F(CT) = 0.02, P ≪ 0.001). Additionally, 162 SNPs were identified as adaptive through outlier tests, and inclusion of these markers revealed a signal of adaptive variation related to geography and life history. The majority of the 162 adaptive SNPs were not independent and formed four groups of linked loci. Analyses with matsam software found that 42 of these outlier SNPs were significantly associated with geography, run timing and dwarf life history, and 27 of these 42 SNPs aligned with known genes or highly conserved genomic regions using the genome browser available for sea lamprey. This study provides both neutral and adaptive context for observed genetic divergence among collections and thus reconciles previous findings of population genetic heterogeneity within a species that displays extensive gene flow. © 2012 John Wiley & Sons Ltd.

  2. Pharmacogenetics and Pharmacotherapy of Military Personnel Suffering from Post-traumatic Stress Disorder

    PubMed Central

    Naß, Janine; Efferth, Thomas

    2017-01-01

    Background: Posttraumatic stress disorder (PTSD) is a severe problem among soldiers with combating experience difficult to treat. The pathogenesis is still not fully understood at the psychological level. Therefore, genetic research became a focus of interest. The identification of single nucleotide polymorphisms (SNPs) may help to predict, which persons are at high risk to develop PTSD as a starting point to develop novel targeted drugs for treatment. Methods: We conducted a systematic review on SNPs in genes related to PTSD pathology and development of targeted pharmacological treatment options based on PubMed database searches. We focused on clinical trials with military personnel. Results: SNPs in 22 human genes have been linked to PTSD. These genes encode proteins acting as neurotransmitters and receptors, downstream signal transducers and metabolizing enzymes. Pharmacological inhibitors may serve as drug candidates for PTSD treatment, e.g. β2 adrenoreceptor antagonists, dopamine antagonists, partial dopamine D2 receptor agonists, dopamine β hydroxylase inhibitors, fatty acid amid hydrolase antagonists, glucocorticoid receptor agonists, tropomyosin receptor kinase B agonists, selective serotonin reuptake inhibitors, catechol-O-methyltransferase inhibitors, gamma-amino butyric acid receptor agonists, glutamate receptor inhibitors, monoaminoxidase B inhibitors, N-methyl-d-aspartate receptor antagonists. Conclusion: The combination of genetic and pharmacological research may lead to novel target-based drug developments with improved specificity and efficacy to treat PTSD. Specific SNPs may be identified as reliable biomarkers to assess individual disease risk. Focusing on soldiers suffering from PTSD will not only help to improve treatment options for this specific group, but for all PTSD patients and the general population. PMID:27834145

  3. Oceanographic variation influences spatial genomic structure in the sea scallop, Placopecten magellanicus.

    PubMed

    Van Wyngaarden, Mallory; Snelgrove, Paul V R; DiBacco, Claudio; Hamilton, Lorraine C; Rodríguez-Ezpeleta, Naiara; Zhan, Luyao; Beiko, Robert G; Bradbury, Ian R

    2018-03-01

    Environmental factors can influence diversity and population structure in marine species and accurate understanding of this influence can both improve fisheries management and help predict responses to environmental change. We used 7163 SNPs derived from restriction site-associated DNA sequencing genotyped in 245 individuals of the economically important sea scallop, Placopecten magellanicus , to evaluate the correlations between oceanographic variation and a previously identified latitudinal genomic cline. Sea scallops span a broad latitudinal area (>10 degrees), and we hypothesized that climatic variation significantly drives clinal trends in allele frequency. Using a large environmental dataset, including temperature, salinity, chlorophyll a, and nutrient concentrations, we identified a suite of SNPs (285-621, depending on analysis and environmental dataset) potentially under selection through correlations with environmental variation. Principal components analysis of different outlier SNPs and environmental datasets revealed similar northern and southern clusters, with significant associations between the first axes of each ( R 2 adj  = .66-.79). Multivariate redundancy analysis of outlier SNPs and the environmental principal components indicated that environmental factors explained more than 32% of the variance. Similarly, multiple linear regressions and random-forest analysis identified winter average and minimum ocean temperatures as significant parameters in the link between genetic and environmental variation. This work indicates that oceanographic variation is associated with the observed genomic cline in this species and that seasonal periods of extreme cold may restrict gene flow along a latitudinal gradient in this marine benthic bivalve. Incorporating this finding into management may improve accuracy of management strategies and future predictions.

  4. Longevity candidate genes and their association with personality traits in the elderly

    PubMed Central

    Luciano, Michelle; Lopez, Lorna M.; de Moor, Marleen H.M.; Harris, Sarah E.; Davies, Gail; Nutile, Teresa; Krueger, Robert F.; Esko, Tõnu; Schlessinger, David; Toshiko, Tanaka; Derringer, Jaime L.; Realo, Anu; Hansell, Narelle K.; Pergadia, Michele L.; Pesonen, Anu-Katriina; Sanna, Serena; Terracciano, Antonio; Madden, Pamela A.F.; Penninx, Brenda; Spinhoven, Philip; Hartman, Catherine; Oostra, Ben A.; Janssens, A. Cecile J.W.; Eriksson, Johan G; Starr, John M.; Cannas, Alessandra; Ferrucci, Luigi; Metspalu, Andres; Wright, Margeret J.; Heath, Andrew C.; van Duijn, Cornelia M.; Bierut, Laura J.; Raikkonen, Katri; Martin, Nicholas G.; Ciullo, Marina; Rujescu, Dan; Boomsma, Dorret I.; Deary, Ian J.

    2013-01-01

    Human longevity and personality traits are both heritable and are consistently linked at the phenotypic level. We test the hypothesis that candidate genes influencing longevity in lower organisms are associated with variance in the five major dimensions of human personality (measured by the NEO-FFI and IPIP inventories) plus related mood states of anxiety and depression. Seventy single nucleotide polymorphisms (SNPs) in six brain expressed, longevity candidate genes (AFG3L2, FRAP1, MAT1A, MAT2A, SYNJ1 and SYNJ2) were typed in over one thousand 70-year old participants from the Lothian Birth Cohort of 1936 (LBC1936). No SNPs were associated with the personality and psychological distress traits at a Bonferroni corrected level of significance (p < 0.0002), but there was an over-representation of nominally significant (p < 0.05) SNPs in the synaptojanin-2 (SYNJ2) gene associated with agreeableness and symptoms of depression. Eight SNPs which showed nominally significant association across personality measurement instruments were tested in an extremely large replication sample of 17 106 participants. SNP rs350292, in SYNJ2, was significant: the minor allele was associated with an average decrease in NEO agreeableness scale scores of 0.25 points, and 0.67 points in the restricted analysis of elderly cohorts (most aged > 60 years). Because we selected a specific set of longevity genes based on functional genomics findings, further research on other longevity gene candidates is warranted to discover whether they are relevant candidates for personality and psychological distress traits. PMID:22213687

  5. Domestication Genomics of the Open-Pollinated Scarlet Runner Bean (Phaseolus coccineus L.)

    PubMed Central

    Guerra-García, Azalea; Suárez-Atilano, Marco; Mastretta-Yanes, Alicia; Delgado-Salinas, Alfonso; Piñero, Daniel

    2017-01-01

    The runner bean is a legume species from Mesoamerica closely related to common bean (Phaseolus vulgaris). It is a perennial species, but it is usually cultivated in small-scale agriculture as an annual crop for its dry seeds and edible immature pods. Unlike the common bean, P. coccineus has received little attention from a genetic standpoint. In this work we aim to (1) provide information about the domestication history and domestication events of P. coccineus; (2) examine the distribution and level of genetic diversity in wild and cultivated Mexican populations of this species; and, (3) identify candidate loci to natural and artificial selection. For this, we generated genotyping by sequencing data (42,548 SNPs) from 242 individuals of P. coccineus and the domesticated forms of the closely related species P. vulgaris (20) and P. dumosus (35). Eight genetic clusters were detected, of which half corresponds to wild populations and the rest to domesticated plants. The cultivated populations conform a monophyletic clade, suggesting that only one domestication event occurred in Mexico, and that it took place around populations of the Trans-Mexican Volcanic Belt. No difference between wild and domesticated levels of genetic diversity was detected and effective population sizes are relatively high, supporting a weak genetic bottleneck during domestication. Most populations presented an excess of heterozygotes, probably due to inbreeding depression. One population of P. coccineus subsp. striatus had the greatest excess and seems to be genetically isolated despite being geographically close to other wild populations. Contrasting with previous studies, we did not find evidence of recent gene flow between wild and cultivated populations. Based on outlier detection methods, we identified 24 domestication-related SNPs, 13 related to cultivar diversification and eight under natural selection. Few of these SNPs fell within annotated loci, but the annotated domestication-related SNPs are highly expressed in flowers and pods. Our results contribute to the understanding of the domestication history of P. coccineus, and highlight how the genetic signatures of domestication can be substantially different between closely related species. PMID:29187858

  6. Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata)

    PubMed Central

    2011-01-01

    Background Big sagebrush (Artemisia tridentata) is one of the most widely distributed and ecologically important shrub species in western North America. This species serves as a critical habitat and food resource for many animals and invertebrates. Habitat loss due to a combination of disturbances followed by establishment of invasive plant species is a serious threat to big sagebrush ecosystem sustainability. Lack of genomic data has limited our understanding of the evolutionary history and ecological adaptation in this species. Here, we report on the sequencing of expressed sequence tags (ESTs) and detection of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers in subspecies of big sagebrush. Results cDNA of A. tridentata sspp. tridentata and vaseyana were normalized and sequenced using the 454 GS FLX Titanium pyrosequencing technology. Assembly of the reads resulted in 20,357 contig consensus sequences in ssp. tridentata and 20,250 contigs in ssp. vaseyana. A BLASTx search against the non-redundant (NR) protein database using 29,541 consensus sequences obtained from a combined assembly resulted in 21,436 sequences with significant blast alignments (≤ 1e-15). A total of 20,952 SNPs and 119 polymorphic SSRs were detected between the two subspecies. SNPs were validated through various methods including sequence capture. Validation of SNPs in different individuals uncovered a high level of nucleotide variation in EST sequences. EST sequences of a third, tetraploid subspecies (ssp. wyomingensis) obtained by Illumina sequencing were mapped to the consensus sequences of the combined 454 EST assembly. Approximately one-third of the SNPs between sspp. tridentata and vaseyana identified in the combined assembly were also polymorphic within the two geographically distant ssp. wyomingensis samples. Conclusion We have produced a large EST dataset for Artemisia tridentata, which contains a large sample of the big sagebrush leaf transcriptome. SNP mapping among the three subspecies suggest the origin of ssp. wyomingensis via mixed ancestry. A large number of SNP and SSR markers provide the foundation for future research to address questions in big sagebrush evolution, ecological genetics, and conservation using genomic approaches. PMID:21767398

  7. ALPK1 genetic regulation and risk in relation to gout.

    PubMed

    Ko, Albert Min-Shan; Tu, Hung-Pin; Liu, Tze-Tze; Chang, Jan-Gowth; Yuo, Chung-Yee; Chiang, Shang-Lun; Chang, Shun-Jen; Liu, Yu-Fan; Ko, Allen Min-Jen; Lee, Chien-Hung; Lee, Chi-Pin; Chang, Chung-Ming; Tsai, Shih-Feng; Ko, Ying-Chin

    2013-04-01

    The present study investigated whether single nucleotide polymorphisms (SNPs) in the alpha-protein kinase 1 (ALPK1) gene are associated with gout in aboriginal and Han Chinese Taiwanese. A total of 1351 aborigines from the community (511 cases and 840 controls) and 511 Han people from hospital (104 cases and 407 controls) were recruited. SNPs in potentially functional regions of the 38 genes within 4q25 were identified and genotypes determined by direct sequencing. Quantitation of blood ALPK1 mRNA expression levels and luciferase assay of gout-associated rs231253 pGL3-SNP constructs cotransfected with hsa-miR-519e were examined. We found that ALPK1 gene was the most determinant of gout. Three SNPs of rs11726117 M861T [C], rs231247 [G] and rs231253 [G] were most associated with gout risk [odd ratios (OR) ≥1.44, P ≤ 3.78 × 10(-6)) in aborigines. A replication set using Han people had risk at rs11726117 and rs231247 (OR ≥1.72, P ≤ 4.08 × 10(-3)). From pooled analysis (Breslow-Day test, P > 0.33) assuming an additive model, each increasing copy of the risk allele of rs11726117 [C], rs231247 [G] and rs231253 [G] showed significantly elevated OR for gout ≥1.42 (P ≥ 1.53 × 10(-6)). Consistently, the composite homozygous of linked 3 SNPs (versus wild-type, OR = 1.83, P = 8.21 × 10(-4)) had strong associations with ALPK1 mRNA expression. Luciferase showed reduced hybridization between hsa-miR-519e and construct carrying gout-associated rs231253 [G] than the wild-type [C] (P = 6.19 × 10(-4)). Our study found that a newly identified ALPK1 gene can effectively interfere with microRNA target recognition and modulates the mRNA expression; and the varying distribution of the implicated SNPs among cases and controls in the two studied populations suggests a significant role in gout susceptibility.

  8. Breast cancer resistance protein (ABCG2) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe

    PubMed Central

    Urquhart, Bradley L.; Ware, Joseph A.; Tirona, Rommel G.; Ho, Richard H.; Leake, Brenda F.; Schwarz, Ute I.; Zaher, Hani; Palandra, Joe; Gregor, Jamie C.; Dresser, George K.; Kim, Richard B.

    2014-01-01

    Breast cancer resistance protein (BCRP) is an efflux transporter expressed in tissues that act as barriers to drug entry. Given that single nucleotide polymorphisms (SNPs) in the ABCG2 gene encoding BCRP are common, the possibility exists that these genetic variants may be a determinant of interindividual variability in drug response. The objective of this study is to confirm the human BCRP-mediated transport of sulfasalazine in vitro, evaluate interindividual variation in BCRP expression in human intestine and to determine the role of ABCG2 SNPs to drug disposition in healthy patients using sulfasalazine as a novel in vivo probe. To evaluate these objectives, pinch biopsies were obtained from 18 patients undergoing esophagogastro–duodenoscopy or colonoscopy for determination of BCRP expression in relation to genotype. Wild-type and variant BCRP were expressed in a heterologous expression system to evaluate the effect of SNPs on cell-surface trafficking. A total of 17 healthy individuals participated in a clinical investigation to determine the effect of BCRP SNPs on sulfasalazine pharmacokinetics. In vitro, the cell surface protein expression of the common BCRP 421 C>A variant was reduced in comparison with the wild-type control. Intestinal biopsy samples revealed that BCRP protein and mRNA expression did not significantly differ between patients with 34GG/421CC versus patients with 34GG/421CA genotypes. Remarkably, in subjects with 34GG/421CA genotype, sulfasalazine area under the concentration-time curve was 2.4-fold greater compared with 34GG/421CC subjects (P<0.05). This study links commonly occurring SNPs in BCRP with significantly increased oral sulfasalazine plasma exposure in humans. Accordingly, sulfasalazine may prove to have utility as in vivo probe for assessing the clinical impact of BCRP for the disposition and efficacy of drugs. PMID:18408567

  9. Polymorphisms in inflammation pathway genes and endometrial cancer risk

    PubMed Central

    Delahanty, Ryan J.; Xiang, Yong-Bing; Spurdle, Amanda; Beeghly-Fadiel, Alicia; Long, Jirong; Thompson, Deborah; Tomlinson, Ian; Yu, Herbert; Lambrechts, Diether; Dörk, Thilo; Goodman, Marc T.; Zheng, Ying; Salvesen, Helga B.; Bao, Ping-Ping; Amant, Frederic; Beckmann, Matthias W.; Coenegrachts, Lieve; Coosemans, An; Dubrowinskaja, Natalia; Dunning, Alison; Runnebaum, Ingo B.; Easton, Douglas; Ekici, Arif B.; Fasching, Peter A.; Halle, Mari K.; Hein, Alexander; Howarth, Kimberly; Gorman, Maggie; Kaydarova, Dylyara; Krakstad, Camilla; Lose, Felicity; Lu, Lingeng; Lurie, Galina; O’Mara, Tracy; Matsuno, Rayna K.; Pharoah, Paul; Risch, Harvey; Corssen, Madeleine; Trovik, Jone; Turmanov, Nurzhan; Wen, Wanqing; Lu, Wei; Cai, Qiuyin; Zheng, Wei; Shu, Xiao-Ou

    2013-01-01

    Background Experimental and epidemiological evidence have suggested that chronic inflammation may play a critical role in endometrial carcinogenesis. Methods To investigate this hypothesis, a two-stage study was carried out to evaluate single nucleotide polymorphisms (SNPs) in inflammatory pathway genes in association with endometrial cancer risk. In stage 1, 64 candidate pathway genes were identified and 4,542 directly genotyped or imputed SNPs were analyzed among 832 endometrial cancer cases and 2,049 controls, using data from the Shanghai Endometrial Cancer Genetics Study. Linkage disequilibrium of stage 1 SNPs significantly associated with endometrial cancer (P<0.05) indicated that the majority of associations could be linked to one of 24 distinct loci. One SNP from each of the 24 loci was then selected for follow-up genotyping. Of these, 21 SNPs were successfully designed and genotyped in stage 2, which consisted of ten additional studies including 6,604 endometrial cancer cases and 8,511 controls. Results Five of the 21 SNPs had significant allelic odds ratios and 95% confidence intervals as follows: FABP1, 0.92 (0.85-0.99); CXCL3, 1.16 (1.05-1.29); IL6, 1.08 (1.00-1.17); MSR1, 0.90 (0.82-0.98); and MMP9, 0.91 (0.87-0.97). Two of these polymorphisms were independently significant in the replication sample (rs352038 in CXCL3 and rs3918249 in MMP9). The association for the MMP9 polymorphism remained significant after Bonferroni correction and showed a significant association with endometrial cancer in both Asian- and European-ancestry samples. Conclusions These findings lend support to the hypothesis that genetic polymorphisms in genes involved in the inflammatory pathway may contribute to genetic susceptibility to endometrial cancer. Impact Statement This study adds to the growing evidence that inflammation plays an important role in endometrial carcinogenesis. PMID:23221126

  10. miRNA-Mediated Relationships between Cis-SNP Genotypes and Transcript Intensities in Lymphocyte Cell Lines

    PubMed Central

    Zhang, Wensheng; Edwards, Andrea; Zhu, Dongxiao; Flemington, Erik K.; Deininger, Prescott; Zhang, Kun

    2012-01-01

    In metazoans, miRNAs regulate gene expression primarily through binding to target sites in the 3′ UTRs (untranslated regions) of messenger RNAs (mRNAs). Cis-acting variants within, or close to, a gene are crucial in explaining the variability of gene expression measures. Single nucleotide polymorphisms (SNPs) in the 3′ UTRs of genes can affect the base-pairing between miRNAs and mRNAs, and hence disrupt existing target sites (in the reference sequence) or create novel target sites, suggesting a possible mechanism for cis regulation of gene expression. Moreover, because the alleles of different SNPs within a DNA sequence of limited length tend to be in strong linkage disequilibrium (LD), we hypothesize the variants of miRNA target sites caused by SNPs potentially function as bridges linking the documented cis-SNP markers to the expression of the associated genes. A large-scale analysis was herein performed to test this hypothesis. By systematically integrating multiple latest information sources, we found 21 significant gene-level SNP-involved miRNA-mediated post-transcriptional regulation modules (SNP-MPRMs) in the form of SNP-miRNA-mRNA triplets in lymphocyte cell lines for the CEU and YRI populations. Among the cognate genes, six including ALG8, DGKE, GNA12, KLF11, LRPAP1, and MMAB are related to multiple genetic diseases such as depressive disorder and Type-II diabetes. Furthermore, we found that ∼35% of the documented transcript intensity-related cis-SNPs (∼950) in a recent publication are identical to, or in significant linkage disequilibrium (LD) (p<0.01) with, one or multiple SNPs located in miRNA target sites. Based on these associations (or identities), 69 significant exon-level SNP-MPRMs and 12 disease genes were further determined for two populations. These results provide concrete in silico evidence for the proposed hypothesis. The discovered modules warrant additional follow-up in independent laboratory studies. PMID:22348086

  11. Study of the Electrocatalytic Activity of Cerium Oxide and Gold-Studded Cerium Oxide Nanoparticles Using a Sonogel-Carbon Material as Supporting Electrode: Electroanalytical Study in Apple Juice for Babies

    PubMed Central

    Abdelrahim, M. Yahia M.; Benjamin, Stephen R.; Cubillana-Aguilera, Laura Ma; Naranjo-Rodríguez, Ignacio; Hidalgo-Hidalgo de Cisneros, Josè L.; Delgado, Juan Josè; Palacios-Santander, Josè Ma

    2013-01-01

    The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.0 mg·mL−1)- and AuSNPs/CeO2 (3.25% w/w)-modified SNGC electrodes, were 1.59 × 10−6 and 5.32 × 10−6 M, and 2.93 × 10−6 and 9.77 × 10−6 M, respectively, with reproducibility values of 5.78% and 6.24%, respectively, for a linear concentration range from 1.5 μM to 4.0 mM of AA. The electrochemical devices were tested for the determination of AA in commercial apple juice for babies. The results were compared with those obtained by applying high performance liquid chromatography (HPLC) as a reference method. Recovery errors below 5% were obtained in most cases, with standard deviations lower than 3% for all the modified SNGC electrodes. Bare, CeO2- and AuSNPs/CeO2-modified SNGC electrodes were structurally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). AuSNPs and AuSNPs/CeO2 nanocomposite were characterized by UV-vis spectroscopy and X-ray diffraction (XRD), and information about their size distribution and shape was obtained by transmission electron microscopy (TEM;. The advantages of employing CeO2 nanoparticles and AuSNPs/CeO2 nanocomposite in SNGC supporting material are also described. This research suggests that the modified electrode can be a very promising voltammetric sensor for the determination of electroactive species of interest in real samples. PMID:23584124

  12. Type 2 Diabetes Risk Allele Loci in the Qatari Population

    PubMed Central

    Abi Khalil, Charbel; Fakhro, Khalid A.; Robay, Amal; Ramstetter, Monica D.; Al-Azwani, Iman K.; Malek, Joel A.; Zirie, Mahmoud; Jayyousi, Amin; Badii, Ramin; Al-Nabet Al-Marri, Ajayeb; Chiuchiolo, Maria J.; Al-Shakaki, Alya; Chidiac, Omar; Gharbiah, Maey; Bener, Abdulbari; Stadler, Dora; Hackett, Neil R.; Mezey, Jason G.; Crystal, Ronald G.

    2016-01-01

    Background The prevalence of type 2 diabetes (T2D) is increasing in the Middle East. However, the genetic risk factors for T2D in the Middle Eastern populations are not known, as the majority of studies of genetic risk for T2D are in Europeans and Asians. Methods All subjects were ≥3 generation Qataris. Cases with T2D (n = 1,124) and controls (n = 590) were randomly recruited and assigned to the 3 known Qatari genetic subpopulations [Bedouin (Q1), Persian/South Asian (Q2) and African (Q3)]. Subjects underwent genotyping for 37 single nucleotide polymorphisms (SNPs) in 29 genes known to be associated with T2D in Europeans and/or Asian populations, and an additional 27 tag SNPs related to these susceptibility loci. Pre-study power analysis suggested that with the known incidence of T2D in adult Qataris (22%), the study population size would be sufficient to detect significant differences if the SNPs were risk factors among Qataris, assuming that the odds ratio (OR) for T2D SNPs in Qatari’s is greater than or equal to the SNP with highest known OR in other populations. Results Haplotype analysis demonstrated that Qatari haplotypes in the region of known T2D risk alleles in Q1 and Q2 genetic subpopulations were similar to European haplotypes. After Benjamini-Hochberg adjustment for multiple testing, only two SNPs (rs7903146 and rs4506565), both associated with transcription factor 7-like 2 (TCF7L2), achieved statistical significance in the whole study population. When T2D subjects and control subjects were assigned to the known 3 Qatari subpopulations, and analyzed individually and with the Q1 and Q2 genetic subpopulations combined, one of these SNPs (rs4506565) was also significant in the admixed group. No other SNPs associated with T2D in all Qataris or individual genetic subpopulations. Conclusions With the caveats of the power analysis, the European/Asian T2D SNPs do not contribute significantly to the high prevalence of T2D in the Qatari population, suggesting that the genetic risks for T2D are likely different in Qataris compared to Europeans and Asians. PMID:27383215

  13. Study of the electrocatalytic activity of cerium oxide and gold-studded cerium oxide nanoparticles using a Sonogel-Carbon material as supporting electrode: electroanalytical study in apple juice for babies.

    PubMed

    Abdelrahim, M Yahia M; Benjamin, Stephen R; Cubillana-Aguilera, Laura Ma; Naranjo-Rodríguez, Ignacio; de Cisneros, José L Hidalgo-Hidalgo; Delgado, Juan José; Palacios-Santander, José Ma

    2013-04-12

    The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.0 mg·mL(-1))- and AuSNPs/CeO2 (3.25% w/w)-modified SNGC electrodes, were 1.59 × 10(-6) and 5.32 × 10(-6) M, and 2.93 × 10(-6) and 9.77 × 10(-6) M, respectively, with reproducibility values of 5.78% and 6.24%, respectively, for a linear concentration range from 1.5 µM to 4.0 mM of AA. The electrochemical devices were tested for the determination of AA in commercial apple juice for babies. The results were compared with those obtained by applying high performance liquid chromatography (HPLC) as a reference method. Recovery errors below 5% were obtained in most cases, with standard deviations lower than 3% for all the modified SNGC electrodes. Bare, CeO2- and AuSNPs/CeO2-modified SNGC electrodes were structurally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). AuSNPs and AuSNPs/CeO2 nanocomposite were characterized by UV-vis spectroscopy and X-ray diffraction (XRD), and information about their size distribution and shape was obtained by transmission electron microscopy (TEM). The advantages of employing CeO2 nanoparticles and AuSNPs/CeO2 nanocomposite in SNGC supporting material are also described. This research suggests that the modified electrode can be a very promising voltammetric sensor for the determination of electroactive species of interest in real samples.

  14. Genomic dissection of a ‘Fuji’ apple cultivar: re-sequencing, SNP marker development, definition of haplotypes, and QTL detection

    PubMed Central

    Kunihisa, Miyuki; Moriya, Shigeki; Abe, Kazuyuki; Okada, Kazuma; Haji, Takashi; Hayashi, Takeshi; Kawahara, Yoshihiro; Itoh, Ryutaro; Itoh, Takeshi; Katayose, Yuichi; Kanamori, Hiroyuki; Matsumoto, Toshimi; Mori, Satomi; Sasaki, Harumi; Matsumoto, Takashi; Nishitani, Chikako; Terakami, Shingo; Yamamoto, Toshiya

    2016-01-01

    ‘Fuji’ is one of the most popular and highly-produced apple cultivars worldwide, and has been frequently used in breeding programs. The development of genotypic markers for the preferable phenotypes of ‘Fuji’ is required. Here, we aimed to define the haplotypes of ‘Fuji’ and find associations between haplotypes and phenotypes of five traits (harvest day, fruit weight, acidity, degree of watercore, and flesh mealiness) by using 115 accessions related to ‘Fuji’. Through the re-sequencing of ‘Fuji’ genome, total of 2,820,759 variants, including single nucleotide polymorphisms (SNPs) and insertions or deletions (indels) were detected between ‘Fuji’ and ‘Golden Delicious’ reference genome. We selected mapping-validated 1,014 SNPs, most of which were heterozygous in ‘Fuji’ and capable of distinguishing alleles inherited from the parents of ‘Fuji’ (i.e., ‘Ralls Janet’ and ‘Delicious’). We used these SNPs to define the haplotypes of ‘Fuji’ and trace their inheritance in relatives, which were shown to have an average of 27% of ‘Fuji’ genome. Analysis of variance (ANOVA) based on ‘Fuji’ haplotypes identified one quantitative trait loci (QTL) each for harvest time, acidity, degree of watercore, and mealiness. A haplotype from ‘Delicious’ chr14 was considered to dominantly cause watercore, and one from ‘Ralls Janet’ chr1 was related to low-mealiness. PMID:27795675

  15. Investigating the genetics of Bti resistance using mRNA tag sequencing: application on laboratory strains and natural populations of the dengue vector Aedes aegypti

    PubMed Central

    Paris, Margot; Marcombe, Sebastien; Coissac, Eric; Corbel, Vincent; David, Jean-Philippe; Després, Laurence

    2013-01-01

    Mosquito control is often the main method used to reduce mosquito-transmitted diseases. In order to investigate the genetic basis of resistance to the bio-insecticide Bacillus thuringiensis subsp. israelensis (Bti), we used information on polymorphism obtained from cDNA tag sequences from pooled larvae of laboratory Bti-resistant and susceptible Aedes aegypti mosquito strains to identify and analyse 1520 single nucleotide polymorphisms (SNPs). Of the 372 SNPs tested, 99.2% were validated using DNA Illumina GoldenGate® array, with a strong correlation between the allelic frequencies inferred from the pooled and individual data (r = 0.85). A total of 11 genomic regions and five candidate genes were detected using a genome scan approach. One of these candidate genes showed significant departures from neutrality in the resistant strain at sequence level. Six natural populations from Martinique Island were sequenced for the 372 tested SNPs with a high transferability (87%), and association mapping analyses detected 14 loci associated with Bti resistance, including one located in a putative receptor for Cry11 toxins. Three of these loci were also significantly differentiated between the laboratory strains, suggesting that most of the genes associated with resistance might differ between the two environments. It also suggests that common selected regions might harbour key genes for Bti resistance. PMID:24187584

  16. Multiple-strand displacement and identification of single nucleotide polymorphisms as markers of genotypic variation of Pasteuria penetrans biotypes infecting root-knot nematodes.

    PubMed

    Nong, Guang; Chow, Virginia; Schmidt, Liesbeth M; Dickson, Don W; Preston, James F

    2007-08-01

    Pasteuria species are endospore-forming obligate bacterial parasites of soil-inhabiting nematodes and water-inhabiting cladocerans, e.g. water fleas, and are closely related to Bacillus spp. by 16S rRNA gene sequence. As naturally occurring bacteria, biotypes of Pasteuria penetrans are attractive candidates for the biocontrol of various Meloidogyne spp. (root-knot nematodes). Failure to culture these bacteria outside their hosts has prevented isolation of genomic DNA in quantities sufficient for identification of genes associated with host recognition and virulence. We have applied multiple-strand displacement amplification (MDA) to generate DNA for comparative genomics of biotypes exhibiting different host preferences. Using the genome of Bacillus subtilis as a paradigm, MDA allowed quantitative detection and sequencing of 12 marker genes from 2000 cells. Meloidogyne spp. infected with P. penetrans P20 or B4 contained single nucleotide polymorphisms (SNPs) in the spoIIAB gene that did not change the amino acid sequence, or that substituted amino acids with similar chemical properties. Individual nematodes infected with P. penetrans P20 or B4 contained SNPs in the spoIIAB gene sequenced in MDA-generated products. Detection of SNPs in the spoIIAB gene in a nematode indicates infection by more than one genotype, supporting the need to sequence genomes of Pasteuria spp. derived from single spore isolates.

  17. Genome-Wide Association Study Dissects the Genetic Architecture of Seed Weight and Seed Quality in Rapeseed (Brassica napus L.)

    PubMed Central

    Li, Feng; Chen, Biyun; Xu, Kun; Wu, Jinfeng; Song, Weilin; Bancroft, Ian; Harper, Andrea L.; Trick, Martin; Liu, Shengyi; Gao, Guizhen; Wang, Nian; Yan, Guixin; Qiao, Jiangwei; Li, Jun; Li, Hao; Xiao, Xin; Zhang, Tianyao; Wu, Xiaoming

    2014-01-01

    Association mapping can quickly and efficiently dissect complex agronomic traits. Rapeseed is one of the most economically important polyploid oil crops, although its genome sequence is not yet published. In this study, a recently developed 60K Brassica Infinium® SNP array was used to analyse an association panel with 472 accessions. The single-nucleotide polymorphisms (SNPs) of the array were in silico mapped using ‘pseudomolecules’ representative of the genome of rapeseed to establish their hypothetical order and to perform association mapping of seed weight and seed quality. As a result, two significant associations on A8 and C3 of Brassica napus were detected for erucic acid content, and the peak SNPs were found to be only 233 and 128 kb away from the key genes BnaA.FAE1 and BnaC.FAE1. BnaA.FAE1 was also identified to be significantly associated with the oil content. Orthologues of Arabidopsis thaliana HAG1 were identified close to four clusters of SNPs associated with glucosinolate content on A9, C2, C7 and C9. For seed weight, we detected two association signals on A7 and A9, which were consistent with previous studies of quantitative trait loci mapping. The results indicate that our association mapping approach is suitable for fine mapping of the complex traits in rapeseed. PMID:24510440

  18. Novel Single Nucleotide Polymorphism-Based Assay for Genotyping Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Goldstone, Robert J.; McLuckie, Joyce; Smith, David G. E.

    2015-01-01

    Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. PMID:26677250

  19. Bacterial Genetic Architecture of Ecological Interactions in Co-culture by GWAS-Taking Escherichia coli and Staphylococcus aureus as an Example.

    PubMed

    He, Xiaoqing; Jin, Yi; Ye, Meixia; Chen, Nan; Zhu, Jing; Wang, Jingqi; Jiang, Libo; Wu, Rongling

    2017-01-01

    How a species responds to such a biotic environment in the community, ultimately leading to its evolution, has been a topic of intense interest to ecological evolutionary biologists. Until recently, limited knowledge was available regarding the genotypic changes that underlie phenotypic changes. Our study implemented GWAS (Genome-Wide Association Studies) to illustrate the genetic architecture of ecological interactions that take place in microbial populations. By choosing 45 such interspecific pairs of Escherichia coli and Staphylococcus aureus strains that were all genotyped throughout the entire genome, we employed Q-ROADTRIPS to analyze the association between single SNPs and microbial abundance measured at each time point for bacterial populations reared in monoculture and co-culture, respectively. We identified a large number of SNPs and indels across the genomes (35.69 G clean data of E. coli and 50.41 G of S. aureus ). We reported 66 and 111 SNPs that were associated with interaction in E. coli and S. aureus , respectively. 23 out of 66 polymorphic changes resulted in amino acid alterations.12 significant genes, such as murE, treA, argS , and relA , which were also identified in previous evolutionary studies. In S. aureus , 111 SNPs detected in coding sequences could be divided into 35 non-synonymous and 76 synonymous SNPs. Our study illustrated the potential of genome-wide association methods for studying rapidly evolving traits in bacteria. Genetic association study methods will facilitate the identification of genetic elements likely to cause phenotypes of interest and provide targets for further laboratory investigation.

  20. Genotyping analysis and ¹⁸FDG uptake in breast cancer patients: a preliminary research.

    PubMed

    Bravatà, Valentina; Stefano, Alessandro; Cammarata, Francesco P; Minafra, Luigi; Russo, Giorgio; Nicolosi, Stefania; Pulizzi, Sabina; Gelfi, Cecilia; Gilardi, Maria C; Messa, Cristina

    2013-04-30

    Diagnostic imaging plays a relevant role in the care of patients with breast cancer (BC). Positron Emission Tomography (PET) with 18F-fluoro-2-deoxy-D-glucose (FDG) has been widely proven to be a clinical tool suitable for BC detection and staging in which the glucose analog supplies metabolic information about the tumor. A limited number of studies, sometimes controversial, describe possible associations between FDG uptake and single nucleotide polymorphisms (SNPs). For this reason this field has to be explored and clarified. We investigated the association of SNPs in GLUT1, HIF-1a, EPAS1, APEX1, VEGFA and MTHFR genes with the FDG uptake in BC. In 26 caucasian individuals with primary BC, whole-body PET-CT scans were obtained and quantitative analysis was performed by calculating the maximum Standardized Uptake Value normalized to body-weight (SUVmax) and the mean SUV normalized to body-weight corrected for partial volume effect (SUVpvc). Human Gene Mutation Database and dbSNP Short Genetic Variations database were used to analyze gene regions containing the selected SNPs. Patient genotypes were obtained using Sanger DNA sequencing analysis performed by Capillary Electrophoresis. BC patients were genotyped for the following nine SNPs: GLUT1: rs841853 and rs710218; HIF-1a: rs11549465 and rs11549467; EPAS1: rs137853037 and rs137853036; APEX1: rs1130409; VEGFA: rs3025039 and MTHFR: rs1801133. In this work correlations between the nine potentially useful polymorphisms selected and previously suggested with tracer uptake (using both SUVmax and SUVpvc) were not found. The possible functional influence of specific SNPs on FDG uptake needs further studies in human cancer. In summary, this is the first pilot study, to our knowledge, which investigates the association between a large panel of SNPs and FDG uptake specifically in BC patients. This work represents a multidisciplinary and translational medicine approach to study BC where, the possible correlation between SNPs and tracer uptake, may be considered to improve personalized cancer treatment and care.

  1. Natural variation in genes potentially involved in plant architecture and adaptation in switchgrass (Panicum virgatum L.).

    PubMed

    Bahri, Bochra A; Daverdin, Guillaume; Xu, Xiangyang; Cheng, Jan-Fang; Barry, Kerrie W; Brummer, E Charles; Devos, Katrien M

    2018-06-14

    Advances in genomic technologies have expanded our ability to accurately and exhaustively detect natural genomic variants that can be applied in crop improvement and to increase our knowledge of plant evolution and adaptation. Switchgrass (Panicum virgatum L.), an allotetraploid (2n = 4× = 36) perennial C4 grass (Poaceae family) native to North America and a feedstock crop for cellulosic biofuel production, has a large potential for genetic improvement due to its high genotypic and phenotypic variation. In this study, we analyzed single nucleotide polymorphism (SNP) variation in 372 switchgrass genotypes belonging to 36 accessions for 12 genes putatively involved in biomass production to investigate signatures of selection that could have led to ecotype differentiation and to population adaptation to geographic zones. A total of 11,682 SNPs were mined from ~ 15 Gb of sequence data, out of which 251 SNPs were retained after filtering. Population structure analysis largely grouped upland accessions into one subpopulation and lowland accessions into two additional subpopulations. The most frequent SNPs were in homozygous state within accessions. Sixty percent of the exonic SNPs were non-synonymous and, of these, 45% led to non-conservative amino acid changes. The non-conservative SNPs were largely in linkage disequilibrium with one haplotype being predominantly present in upland accessions while the other haplotype was commonly present in lowland accessions. Tajima's test of neutrality indicated that PHYB, a gene involved in photoperiod response, was under positive selection in the switchgrass population. PHYB carried a SNP leading to a non-conservative amino acid change in the PAS domain, a region that acts as a sensor for light and oxygen in signal transduction. Several non-conservative SNPs in genes potentially involved in plant architecture and adaptation have been identified and led to population structure and genetic differentiation of ecotypes in switchgrass. We suggest here that PHYB is a key gene involved in switchgrass natural selection. Further analyses are needed to determine whether any of the non-conservative SNPs identified play a role in the differential adaptation of upland and lowland switchgrass.

  2. Developmental validation of a custom panel including 273 SNPs for forensic application using Ion Torrent PGM.

    PubMed

    Zhang, Suhua; Bian, Yingnan; Chen, Anqi; Zheng, Hancheng; Gao, Yuzhen; Hou, Yiping; Li, Chengtao

    2017-03-01

    Utilizing massively parallel sequencing (MPS) technology for SNP testing in forensic genetics is becoming attractive because of the shortcomings of STR markers, such as their high mutation rates and disadvantages associated with the current PCR-CE method as well as its limitations regarding multiplex capabilities. MPS offers the potential to genotype hundreds to thousands of SNPs from multiple samples in a single experimental run. In this study, we designed a customized SNP panel that includes 273 forensically relevant identity SNPs chosen from SNPforID, IISNP, and the HapMap database as well as previously related studies and evaluated the levels of genotyping precision, sequence coverage, sensitivity and SNP performance using the Ion Torrent PGM. In a concordant study of the custom MPS-SNP panel, only four MPS callings were missing due to coverage reads that were too low (<20), whereas the others were fully concordant with Sanger's sequencing results across the two control samples, that is, 9947A and 9948. The analyses indicated a balanced coverage among the included loci, with the exception of the 16 SNPs that were used to detect an inconsistent allele balance and/or lower coverage reads among 50 tested individuals from the Chinese HAN population and the above controls. With the exception of the 16 poorly performing SNPs, the sequence coverage obtained was extensive for the bulk of the SNPs, and only three Y-SNPs (rs16980601, rs11096432, rs3900) showed a mean coverage below 1000. Analyses of the dilution series of control DNA 9948 yielded reproducible results down to 1ng of DNA input. In addition, we provide an analysis tool for automated data quality control and genotyping checks, and we conclude that the SNP targets are polymorphic and independent in the Chinese HAN population. In summary, the evaluation of the sensitivity, accuracy and genotyping performance provides strong support for the application of MPS technology in forensic SNP analysis, and the assay offers a straightforward sample-to-genotype workflow that could be beneficial in forensic casework with respect to both individual identification and complex kinship issues. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. RTEL1 tagging SNPs and haplotypes were associated with glioma development.

    PubMed

    Li, Gang; Jin, Tianbo; Liang, Hongjuan; Zhang, Zhiguo; He, Shiming; Tu, Yanyang; Yang, Haixia; Geng, Tingting; Cui, Guangbin; Chen, Chao; Gao, Guodong

    2013-05-17

    As glioma ranks as the first most prevalent solid tumors in primary central nervous system, certain single-nucleotide polymorphisms (SNPs) may be related to increased glioma risk, and have implications in carcinogenesis. The present case-control study was carried out to elucidate how common variants contribute to glioma susceptibility. Ten candidate tagging SNPs (tSNPs) were selected from seven genes whose polymorphisms have been proven by classical literatures and reliable databases to be tended to relate with gliomas, and with the minor allele frequency (MAF)>5% in the HapMap Asian population. The selected tSNPs were genotyped in 629 glioma patients and 645 controls from a Han Chinese population using the multiplexed SNP MassEXTEND assay calibrated. Two significant tSNPs in RTEL1 gene were observed to be associated with glioma risk (rs6010620, P=0.0016, OR: 1.32, 95% CI: 1.11-1.56; rs2297440, P=0.001, OR: 1.33, 95% CI: 1.12-1.58) by χ2 test. It was identified the genotype "GG" of rs6010620 acted as the protective genotype for glioma (OR, 0.46; 95% CI, 0.31-0.7; P=0.0002), while the genotype "CC" of rs2297440 as the protective genotype in glioma (OR, 0.47; 95% CI, 0.31-0.71; P=0.0003). Furthermore, haplotype "GCT" in RTEL1 gene was found to be associated with risk of glioma (OR, 0.7; 95% CI, 0.57-0.86; Fisher's P=0.0005; Pearson's P=0.0005), and haplotype "ATT" was detected to be associated with risk of glioma (OR, 1.32; 95% CI, 1.12-1.57; Fisher's P=0.0013; Pearson's P=0.0013). Two single variants, the genotypes of "GG" of rs6010620 and "CC" of rs2297440 (rs6010620 and rs2297440) in the RTEL1 gene, together with two haplotypes of GCT and ATT, were identified to be associated with glioma development. And it might be used to evaluate the glioma development risks to screen the above RTEL1 tagging SNPs and haplotypes. The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1993021136961998.

  4. Effects of rs6234/rs6235 and rs6232/rs6234/rs6235 PCSK1 single-nucleotide polymorphism clusters on proprotein convertase 1/3 biosynthesis and activity.

    PubMed

    Mbikay, Majambu; Sirois, Francine; Nkongolo, Kabwe K; Basak, Ajoy; Chrétien, Michel

    2011-12-01

    Proprotein convertase 1/3 (PC1/3) is one of the endoproteases initiating the proteolytic activation of prohormones and proneuropeptides in the secretory pathway. It is produced as a zymogen that is subsequently modified by activity-determining cleavages at the amino and the carboxyl termini. In human, it is encoded by the PCSK1 locus on chromosome 5. Spontaneous inactivating mutations in its gene have been linked to obesity. Minor alleles of the common non-synonymous single-nucleotide polymorphisms (SNPs) rs6232 (T>C, N221D), rs6234 (G>C, Q665E) and rs6235 (C>G, S690T) have been associated with increased risk of obesity. We have shown that the variations associated with these SNPs are linked on minor PCSK1 alleles. In this study, we examined the impact of amino acid substitutions specified by the minor PCSK1 alleles on PC1/3 biosynthesis and prohormone processing activity in cultured cells. The common and variant isoforms of PC1/3 were expressed in transfected rat pituitary GH4C1 cells with or without proopiomelanocortin (POMC) as a substrate. Secreted PC1/3- or POMC-related proteins and peptides were analyzed by immunoblotting and immunoprecipitation. When expressed in GH4C1 cells, the triple-variant PC1/3 underwent significantly more proteolytic processing at the amino and carboxyl termini than the common and double-variant isoforms. However, there was no detectable difference among these isoforms in their ability to process POMC in the transfected cells. Since truncation of PC1/3 in its C-terminal region reportedly renders the enzyme unstable, we speculate that the accentuated processing of the triple variant in this region may, in vivo, create a subtle deficit of PC1/3 enzymatic activity in endocrine and neuroendocrine cells, causing impaired processing of prohormones and proneuropeptides to their bioactive forms. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Detection of pleiotropy through a Phenome-wide association study (PheWAS) of epidemiologic data as part of the Environmental Architecture for Genes Linked to Environment (EAGLE) study.

    PubMed

    Hall, Molly A; Verma, Anurag; Brown-Gentry, Kristin D; Goodloe, Robert; Boston, Jonathan; Wilson, Sarah; McClellan, Bob; Sutcliffe, Cara; Dilks, Holly H; Gillani, Nila B; Jin, Hailing; Mayo, Ping; Allen, Melissa; Schnetz-Boutaud, Nathalie; Crawford, Dana C; Ritchie, Marylyn D; Pendergrass, Sarah A

    2014-12-01

    We performed a Phenome-wide association study (PheWAS) utilizing diverse genotypic and phenotypic data existing across multiple populations in the National Health and Nutrition Examination Surveys (NHANES), conducted by the Centers for Disease Control and Prevention (CDC), and accessed by the Epidemiological Architecture for Genes Linked to Environment (EAGLE) study. We calculated comprehensive tests of association in Genetic NHANES using 80 SNPs and 1,008 phenotypes (grouped into 184 phenotype classes), stratified by race-ethnicity. Genetic NHANES includes three surveys (NHANES III, 1999-2000, and 2001-2002) and three race-ethnicities: non-Hispanic whites (n = 6,634), non-Hispanic blacks (n = 3,458), and Mexican Americans (n = 3,950). We identified 69 PheWAS associations replicating across surveys for the same SNP, phenotype-class, direction of effect, and race-ethnicity at p<0.01, allele frequency >0.01, and sample size >200. Of these 69 PheWAS associations, 39 replicated previously reported SNP-phenotype associations, 9 were related to previously reported associations, and 21 were novel associations. Fourteen results had the same direction of effect across more than one race-ethnicity: one result was novel, 11 replicated previously reported associations, and two were related to previously reported results. Thirteen SNPs showed evidence of pleiotropy. We further explored results with gene-based biological networks, contrasting the direction of effect for pleiotropic associations across phenotypes. One PheWAS result was ABCG2 missense SNP rs2231142, associated with uric acid levels in both non-Hispanic whites and Mexican Americans, protoporphyrin levels in non-Hispanic whites and Mexican Americans, and blood pressure levels in Mexican Americans. Another example was SNP rs1800588 near LIPC, significantly associated with the novel phenotypes of folate levels (Mexican Americans), vitamin E levels (non-Hispanic whites) and triglyceride levels (non-Hispanic whites), and replication for cholesterol levels. The results of this PheWAS show the utility of this approach for exposing more of the complex genetic architecture underlying multiple traits, through generating novel hypotheses for future research.

  6. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms

    PubMed Central

    Tapper, William; Jones, Amy V.; Kralovics, Robert; Harutyunyan, Ashot S.; Zoi, Katerina; Leung, William; Godfrey, Anna L.; Guglielmelli, Paola; Callaway, Alison; Ward, Daniel; Aranaz, Paula; White, Helen E.; Waghorn, Katherine; Lin, Feng; Chase, Andrew; Joanna Baxter, E.; Maclean, Cathy; Nangalia, Jyoti; Chen, Edwin; Evans, Paul; Short, Michael; Jack, Andrew; Wallis, Louise; Oscier, David; Duncombe, Andrew S.; Schuh, Anna; Mead, Adam J.; Griffiths, Michael; Ewing, Joanne; Gale, Rosemary E.; Schnittger, Susanne; Haferlach, Torsten; Stegelmann, Frank; Döhner, Konstanze; Grallert, Harald; Strauch, Konstantin; Tanaka, Toshiko; Bandinelli, Stefania; Giannopoulos, Andreas; Pieri, Lisa; Mannarelli, Carmela; Gisslinger, Heinz; Barosi, Giovanni; Cazzola, Mario; Reiter, Andreas; Harrison, Claire; Campbell, Peter; Green, Anthony R.; Vannucchi, Alessandro; Cross, Nicholas C.P.

    2015-01-01

    Clonal proliferation in myeloproliferative neoplasms (MPN) is driven by somatic mutations in JAK2, CALR or MPL, but the contribution of inherited factors is poorly characterized. Using a three-stage genome-wide association study of 3,437 MPN cases and 10,083 controls, we identify two SNPs with genome-wide significance in JAK2V617F-negative MPN: rs12339666 (JAK2; meta-analysis P=1.27 × 10−10) and rs2201862 (MECOM; meta-analysis P=1.96 × 10−9). Two additional SNPs, rs2736100 (TERT) and rs9376092 (HBS1L/MYB), achieve genome-wide significance when including JAK2V617F-positive cases. rs9376092 has a stronger effect in JAK2V617F-negative cases with CALR and/or MPL mutations (Breslow–Day P=4.5 × 10−7), whereas in JAK2V617F-positive cases rs9376092 associates with essential thrombocythemia (ET) rather than polycythemia vera (allelic χ2 P=7.3 × 10−7). Reduced MYB expression, previously linked to development of an ET-like disease in model systems, associates with rs9376092 in normal myeloid cells. These findings demonstrate that multiple germline variants predispose to MPN and link constitutional differences in MYB expression to disease phenotype. PMID:25849990

  7. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice.

    PubMed

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Wei, Haibin; Feng, Fangjun; Wang, Pei; Xia, Hui; Li, Tiemei; Luo, Lijun

    2015-08-01

    Deep rooting is a very important trait for plants' drought avoidance, and it is usually represented by the ratio of deep rooting (RDR). Three sets of rice populations were used to determine the genetic base for RDR. A linkage mapping population with 180 recombinant inbred lines and an association mapping population containing 237 rice varieties were used to identify genes linked to RDR. Six quantitative trait loci (QTLs) of RDR were identified as being located on chromosomes 1, 2, 4, 7, and 10. Using 1 019 883 single-nucleotide polymorphisms (SNPs), a genome-wide association study of the RDR was performed. Forty-eight significant SNPs of the RDR were identified and formed a clear peak on the short arm of chromosome 1 in a Manhattan plot. Compared with the shallow-rooting group and the whole collection, the deep-rooting group had selective sweep regions on chromosomes 1 and 2, especially in the major QTL region on chromosome 2. Seven of the nine candidate SNPs identified by association mapping were verified in two RDR extreme groups. The findings from this study will be beneficial to rice drought-resistance research and breeding. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8.  PARK2 polymorphisms predict disease progression in patients infected with hepatitis C virus.

    PubMed

    Al-Qahtani, Ahmed A; Al-Anazi, Mashael R; Al-Zoghaibi, Fahad A; Abdo, Ayman A; Sanai, Faisal M; Al-Hamoudi, Waleed K; Alswat, Khalid A; Al-Ashgar, Hamad I; Khan, Mohammed Q; Albenmousa, Ali; Khalak, Hanif; Al-Ahdal, Mohammed N

     Background. The protein encoded by PARK2 gene is a component of the ubiquitin-proteasome system that mediates targeting of proteins for the degradation pathway. Genetic variations at PARK2 gene were linked to various diseases including leprosy, typhoid and cancer. The present study investigated the association of single nucleotide polymorphisms (SNPs) in the PARK2 gene with the development of hepatitis C virus (HCV) infection and its progression to severe liver diseases. A total of 800 subjects, including 400 normal healthy subjects and 400 HCV-infected patients, were analyzed in this study. The patients were classified as chronic HCV patients (group I), patients with cirrhosis (group II) and patients with hepatocellular carcinoma (HCC) in the context of cirrhosis (group III). DNA was extracted and was genotyped for the SNPs rs10945859, rs2803085, rs2276201 and rs1931223. Among these SNPs, CT genotype of rs10945859 was found to have a significant association towards the clinical progression of chronic HCV infection to cirrhosis alone (OR = 1.850; 95% C. I. 1.115-3.069; p = 0.016) or cirrhosis and HCC (OR = 1.768; 95% C. I. 1.090-2.867; p value = 0.020). SNP rs10945859 in the PARK2 gene could prove useful in predicting the clinical outcome in HCV-infected patients.

  9. Brief Overview of a Decade of Genome-Wide Association Studies on Primary Hypertension.

    PubMed

    Azam, Afifah Binti; Azizan, Elena Aisha Binti

    2018-01-01

    Primary hypertension is widely believed to be a complex polygenic disorder with the manifestation influenced by the interactions of genomic and environmental factors making identification of susceptibility genes a major challenge. With major advancement in high-throughput genotyping technology, genome-wide association study (GWAS) has become a powerful tool for researchers studying genetically complex diseases. GWASs work through revealing links between DNA sequence variation and a disease or trait with biomedical importance. The human genome is a very long DNA sequence which consists of billions of nucleotides arranged in a unique way. A single base-pair change in the DNA sequence is known as a single nucleotide polymorphism (SNP). With the help of modern genotyping techniques such as chip-based genotyping arrays, thousands of SNPs can be genotyped easily. Large-scale GWASs, in which more than half a million of common SNPs are genotyped and analyzed for disease association in hundreds of thousands of cases and controls, have been broadly successful in identifying SNPs associated with heart diseases, diabetes, autoimmune diseases, and psychiatric disorders. It is however still debatable whether GWAS is the best approach for hypertension. The following is a brief overview on the outcomes of a decade of GWASs on primary hypertension.

  10. Lack of association of CFD polymorphisms with advanced age-related macular degeneration.

    PubMed

    Zeng, Jiexi; Chen, Yuhong; Tong, Zongzhong; Zhou, Xinrong; Zhao, Chao; Wang, Kevin; Hughes, Guy; Kasuga, Daniel; Bedell, Matthew; Lee, Clara; Ferreyra, Henry; Kozak, Igor; Haw, Weldon; Guan, Jean; Shaw, Robert; Stevenson, William; Weishaar, Paul D; Nelson, Mark H; Tang, Luosheng; Zhang, Kang

    2010-11-03

    Age-related macular degeneration (AMD) is the most common cause of irreversible central vision loss worldwide. Research has linked AMD susceptibility with dysregulation of the complement cascade. Typically, complement factor H (CFH), complement factor B (CFB), complement component 2 (C2), and complement component 3 (C3) are associated with AMD. In this paper, we investigated the association between complement factor D (CFD), another factor of the complement system, and advanced AMD in a Caucasian population. Six single nucleotide polymorphisms (SNPs), rs1683564, rs35186399, rs1683563, rs3826945, rs34337649, and rs1651896, across the region covering CFD, were chosen for this study. One hundred and seventy-eight patients with advanced AMD and 161 age-matched normal controls were genotyped. Potential positive signals were further tested in another independent 445 advanced AMD patients and 190 controls. χ2 tests were performed to compare the allele frequencies between case and control groups. None of the six SNPs of CFD was found to be significantly associated with advanced AMD in our study. Our findings suggest that CFD may not play a major role in the genetic susceptibility to AMD because no association was found between the six SNPs analyzed in the CFD region and advanced AMD.

  11. Identification of Mycobacterium chimaera in heater-cooler units in China.

    PubMed

    Zhang, Xiaoxia; Lin, Ji; Feng, Yu; Wang, Xiaohui; McNally, Alan; Zong, Zhiyong

    2018-05-18

    A global outbreak of infections due to Mycobacterium chimaera has been linked to the LivaNova (formerly Sorin) 3 T heater-cooler units (HCUs). We performed a study to investigate M. chimaera from HCUs in China. Water samples were collected from all 3 T HCUs (n = 5) at our hospital in May 2017. Mycobacteria isolates were subjected to genome sequencing using the HiSeq X10 Sequencer. Species were identified based on average nucleotide identity with M. chimaera type strain DSM 44623 T . Paired-end reads of all M. chimaera genomes were retrieved from the SRA database and, together with our isolates, were mapped against the chromosome of M. chimaera reference strain ZUERICH-1 to call SNPs. Mycobacteria grew from three HCUs manufactured in 2009 but not from the two in 2016. The three isolates were identified as M. chimaera and differed from each other by 4 to 6 SNPs, and from ZUERICH-1 by 7 to 10 SNPs. The three isolates belonged to the subgroup 1.1 and were most closely related to strains of the subgroup 1.1 from HCUs or patients in Europe, Australia/New Zealand and USA, suggesting the same common source. This is the first report of M. chimaera from HCUs in China.

  12. TP53 and MDM2 single nucleotide polymorphisms influence survival in non-del(5q) myelodysplastic syndromes

    PubMed Central

    Sallman, David A.; Basiorka, Ashley A.; Irvine, Brittany A.; Zhang, Ling; Epling-Burnette, P.K.; Rollison, Dana E.; Mallo, Mar; Sokol, Lubomir; Solé, Francesc; Maciejewski, Jaroslaw; List, Alan F.

    2015-01-01

    P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to −2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome. PMID:26416416

  13. ABCA1 gene variants regulate postprandial lipid metabolism in healthy men

    PubMed Central

    Delgado-Lista, Javier; Perez-Martinez, Pablo; Perez-Jimenez, Francisco; Garcia-Rios, Antonio; Fuentes, Francisco; Marin, Carmen; Gómez-Luna, Purificación; Camargo, Antonio; Parnell, Laurence D; Ordovas, Jose Maria; Lopez-Miranda, Jose

    2010-01-01

    Objective Genetic variants of ABCA1, an ATP-binding cassette (ABC) transporter, have been linked to altered atherosclerosis progression and fasting lipid concentration, mainly high density lipoproteins (HDL) and Apolipoprotein A1 (APOA1), but results from different studies have been inconsistent. Methods and results In order to further characterize the effects of ABCA1 variants in human postprandial lipid metabolism, we studied the influence of three single nucleotide polymorphisms (SNPs) [i27943 (rs2575875); i48168 (rs4149272); R219K (rs2230806)] in the postprandial lipemia of 88 normolipidemic young men, who were given a fatty meal. For i27943 and i48168 SNPs, fasting and postprandial values of APOA1 were higher, and postprandial lipemia was much lower in homozygotes for the major alleles, for total triglycerides in plasma, and large-triglyceride rich lipoproteins (TRL) triglycerides. These persons also showed higher APOA1/APOB ratio. Major allele homozygotes for i48168 and i27943 showed additionally higher HDL and lower postprandial Apolipoprotein B (ApoB). Conclusions Our work shows that major allele homozygotes for ABCA1 SNPs i27943 and i48168 have a lower postprandial response as compared to minor allele carriers. This finding may further characterize the role of ABCA1 in lipid metabolism. PMID:20185793

  14. Association analysis of 528 intra-genic SNPs in a region of chromosome 10 linked to late onset Alzheimer's disease.

    PubMed

    Morgan, A R; Hamilton, G; Turic, D; Jehu, L; Harold, D; Abraham, R; Hollingworth, P; Moskvina, V; Brayne, C; Rubinsztein, D C; Lynch, A; Lawlor, B; Gill, M; O'Donovan, M; Powell, J; Lovestone, S; Williams, J; Owen, M J

    2008-09-05

    Late-onset Alzheimer's disease (LOAD) is a genetically complex neurodegenerative disorder. Currently, only the epsilon4 allele of the Apolipoprotein E gene has been identified unequivocally as a genetic susceptibility factor for LOAD. Others remain to be found. In 2002 we observed genome-wide significant evidence of linkage to a region on chromosome 10q11.23-q21.3 [Myers et al. (2002) Am J Med Genet 114:235-244]. Our objective in this study was to test every gene within the maximum LOD-1 linkage region, for association with LOAD. We obtained results for 528 SNPs from 67 genes, with an average density of 1 SNP every 10 kb within the genes. We demonstrated nominally significant association with LOAD for 4 SNPs: rs1881747 near DKK1 (P = 0.011, OR = 1.24), rs2279420 in ANK3 (P = 0.022, OR = 0.79), rs2306402 in CTNNA3 (P = 0.024, OR = 1.18), and rs5030882 in CXXC6 (P = 0.046, OR = 1.29) in 1,160 cases and 1,389 controls. These results would not survive correction for multiple testing but warrant attempts at confirmation in independent samples. 2007 Wiley-Liss, Inc.

  15. Physiogenomic Analysis of Localized fMRI Brain Activity in Schizophrenia

    PubMed Central

    Windemuth, Andreas; Calhoun, Vince D.; Pearlson, Godfrey D.; Kocherla, Mohan; Jagannathan, Kanchana; Ruaño, Gualberto

    2009-01-01

    The search for genetic factors associated with disease is complicated by the complexity of the biological pathways linking genotype and phenotype. This analytical complexity is particularly concerning in diseases historically lacking reliable diagnostic biological markers, such as schizophrenia and other mental disorders. We investigate the use of functional magnetic resonance imaging (fMRI) as an intermediate phenotype (endophenotype) to identify physiogenomic associations to schizophrenia. We screened 99 subjects, 30 subjects diagnosed with schizophrenia, 13 unaffected relatives of schizophrenia patients, and 56 unrelated controls, for gene polymorphisms associated with fMRI activation patterns at two locations in temporal and frontal lobes previously implied in schizophrenia. A total of 22 single nucleotide polymorphisms (SNPs) in 15 genes from the dopamine and serotonin neurotransmission pathways were genotyped in all subjects. We identified three SNPs in genes that are significantly associated with fMRI activity. SNPs of the dopamine beta-hydroxylase (DBH) gene and of the dopamine receptor D4 (DRD4) were associated with activity in the temporal and frontal lobes, respectively. One SNP of serotonin-3A receptor (HTR3A) was associated with temporal lobe activity. The results of this study support the physiogenomic analysis of neuroimaging data to discover associations between genotype and disease-related phenotypes. PMID:18330705

  16. The bigger picture of FTO – the first GWAS-identified obesity gene

    PubMed Central

    Loos, Ruth J.F.; Yeo, Giles S.H.

    2014-01-01

    In 2007, SNPs that cluster in the first intron of FTO showed highly significant association in the first two genome-wide association studies for obesity traits of which the minor allele increases body mass index (BMI) by 0.39 kg/m2 (or 1,130 g in body weight) and risk of obesity by 1.20 fold. Subsequent studies convincingly confirmed this association across populations of diverse ancestry and throughout the life course, with the largest effect seen in young adulthood. The effect of FTO SNPs on obesity traits in African and Asian ancestry populations is similar or somewhat smaller than in European ancestry populations, but the BMI-increasing allele is substantially less prevalent in non-European ancestry populations. FTO SNPs do not influence physical activity levels, yet, in physically active individuals, FTO’s effect on obesity susceptibility is attenuated by ~30%. Growing evidence from epidemiological and functional studies suggests that FTO confers an increased risk of obesity through subtle changes in food intake and preference. In addition, recent emerging data now points to a role for FTO in the sensing of nutrients and the regulation of translation and growth. In this review, we explore the genetic epidemiology of FTO and discuss how its complex biology might link to the regulation of body weight. PMID:24247219

  17. Bivariate genome-wide association analyses identified genetic pleiotropic effects for bone mineral density and alcohol drinking in Caucasians

    PubMed Central

    Lu, Shan; Zhao, Lan-Juan; Chen, Xiang-Ding; Papasian, Christopher J.; Wu, Ke-Hao; Tan, Li-Jun; Wang, Zhuo-Er; Pei, Yu-Fang; Tian, Qing

    2018-01-01

    Several studies indicated bone mineral density (BMD) and alcohol intake might share common genetic factors. The study aimed to explore potential SNPs/genes related to both phenotypes in US Caucasians at the genome-wide level. A bivariate genome-wide association study (GWAS) was performed in 2069 unrelated participants. Regular drinking was graded as 1, 2, 3, 4, 5, or 6, representing drinking alcohol never, less than once, once or twice, three to six times, seven to ten times, or more than ten times per week respectively. Hip, spine, and whole body BMDs were measured. The bivariate GWAS was conducted on the basis of a bivariate linear regression model. Sex-stratified association analyses were performed in the male and female subgroups. In males, the most significant association signal was detected in SNP rs685395 in DYNC2H1 with bivariate spine BMD and alcohol drinking (P = 1.94 × 10−8). SNP rs685395 and five other SNPs, rs657752, rs614902, rs682851, rs626330, and rs689295, located in the same haplotype block in DYNC2H1 were the top ten most significant SNPs in the bivariate GWAS in males. Additionally, two SNPs in GRIK4 in males and three SNPs in OPRM1 in females were suggestively associated with BMDs (of the hip, spine, and whole body) and alcohol drinking. Nine SNPs in IL1RN were only suggestively associated with female whole body BMD and alcohol drinking. Our study indicated that DYNC2H1 may contribute to the genetic mechanisms of both spine BMD and alcohol drinking in male Caucasians. Moreover, our study suggested potential pleiotropic roles of OPRM1 and IL1RN in females and GRIK4 in males underlying variation of both BMD and alcohol drinking. PMID:28012008

  18. Penetrance of Polygenic Obesity Susceptibility Loci across the Body Mass Index Distribution.

    PubMed

    Abadi, Arkan; Alyass, Akram; Robiou du Pont, Sebastien; Bolker, Ben; Singh, Pardeep; Mohan, Viswanathan; Diaz, Rafael; Engert, James C; Yusuf, Salim; Gerstein, Hertzel C; Anand, Sonia S; Meyre, David

    2017-12-07

    A growing number of single-nucleotide polymorphisms (SNPs) have been associated with body mass index (BMI) and obesity, but whether the effects of these obesity-susceptibility loci are uniform across the BMI distribution remains unclear. We studied the effects of 37 BMI-associated SNPs in 75,230 adults of European ancestry across BMI percentiles by using conditional quantile regression (CQR) and meta-regression (MR) models. The effects of nine SNPs (24%)-rs1421085 (FTO; p = 8.69 × 10 -15 ), rs6235 (PCSK1; p = 7.11 × 10 -6 ), rs7903146 (TCF7L2; p = 9.60 × 10 -6 ), rs11873305 (MC4R; p = 5.08 × 10 -5 ), rs12617233 (FANCL; p = 5.30 × 10 -5 ), rs11672660 (GIPR; p = 1.64 × 10 -4 ), rs997295 (MAP2K5; p = 3.25 × 10 -4 ), rs6499653 (FTO; p = 6.23 × 10 -4 ), and rs3824755 (NT5C2; p = 7.90 × 10 -4 )-increased significantly across the sample BMI distribution. We showed that such increases stemmed from unadjusted gene interactions that enhanced the effects of SNPs in persons with a high BMI. When 125 height-associated SNPs were analyzed for comparison, only one (<1%), rs6219 (IGF1, p = 1.80 × 10 -4 ), showed effects that varied significantly across height percentiles. Cumulative gene scores of these SNPs (GS-BMI and GS-height) showed that only GS-BMI had effects that increased significantly across the sample distribution (BMI: p = 7.03 × 10 -37 ; height: p = 0.499). Overall, these findings underscore the importance of gene-gene and gene-environment interactions in shaping the genetic architecture of BMI and advance a method for detecting such interactions by using only the sample outcome distribution. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Controversial opinion: evaluation of EGR1 and LAMA2 loci for high myopia in Chinese populations.

    PubMed

    Lin, Fang-yu; Huang, Zhu; Lu, Ning; Chen, Wei; Fang, Hui; Han, Wei

    2016-03-01

    Functional studies have suggested the important role of early growth response 1 (EGR1) and Laminin α2-chain (LAMA2) in human eye development. Genetic studies have reported a significant association of the single nucleotide polymorphism (SNP) in the LAMA2 gene with myopia. This study aimed to evaluate the association of the tagging SNPs (tSNPs) in the EGR1 and LAMA2 genes with high myopia in two independent Han Chinese populations. Four tSNPs (rs11743810 in the EGR1 gene; rs2571575, rs9321170, and rs1889891 in the LAMA2 gene) were selected, according to the HapMap database (http://hapmap.ncbi.nlm.nih.gov), and were genotyped using the ligase detection reaction (LDR) approach for 167 Han Chinese nuclear families with extremely highly myopic offspring (<-10.0 diopters) and an independent group with 485 extremely highly myopic cases (<-10.0 diopters) and 499 controls. Direct sequencing was used to confirm the LDR results in twenty randomly selected subjects. Family-based association analysis was performed using the family-based association test (FBAT) software package (Version 1.5.5). Population-based association analysis was performed using the Chi-square test. The association analysis power was estimated using online software (http://design.cs.ucla.edu). The FBAT demonstrated that all four tSNPs tested did not show association with high myopia (P>0.05). Haplotype analysis of tSNPs in the LAMA2 genes also did not show a significant association (P>0.05). Meanwhile, population-based association analysis also showed no significant association results with high myopia (P>0.05). On the basis of our family- and population-based analyses for the Han Chinese population, we did not find positive association signals of the four SNPs in the LAMA2 and EGR1 genes with high myopia.

  20. [Association between aryl hydrocarbon receptor gene polymorphisms and chromosomal damage in coke-oven workers].

    PubMed

    Bin, Ping; Leng, Shuguang; Liang, Xuemiao; Cheng, Juan

    2007-11-01

    To investigate the association of single nucleotide polymorphisms (SNPs) or haplotypes of aryl hydrocarbon receptor (AHR) gene and chromosomal damage in peripheral blood lymphocytes among coke-oven workers. Eighty-nine coke-oven workers exposed to a high level of polycyclic aromatic hydrocarbons (PAHs) and sixty non-exposed workers were selected as the study subjects. Urinary 1-hydroxypyrene (1-OHPyr) levels were measured as the internal dose of PAHs exposure. The chromosomal damage in peripheral lymphocyte was measured by the cytokinesis-block micronucleus (CBMN) assay. Two SNPs in AHR gene, including rs6960165, rs2282885 were detected by PCR-RFLP. The AHR haplotypes were estimated by Bayesian statistical method with the software of PHASE Version 2.1. The associations between SNPs or haplotypes pairs and CBMN were assessed by analysis of covariance in the coke-oven workers and non-exposed workers. The level of 1-OHPyr among coke-oven workers was significantly higher than that among non-exposed workers (P < 0.01). The CBMN among coke-oven workers was significantly higher than that among non-exposed workers (P < 0.01). After adjusting the age and the level of 1-OHPyr, the different SNPs of AHR gene rs6960165 in coke-oven workers were related to the CBMN frequencies (P = 0.014), but no association between the different SNPs of AHR gene rs2282885 and the rates of CBMN was observed in coke-oven workers (P = 0.586), either in the controls (P = 0.308 and P = 0.415, respectively), the haplotypes in coke-oven workers were significantly related to the rates of CBMN (P = 0.007), while there was no significant association in non-exposed workers (P = 0.768). Our results suggested that SNPs rs6960165 or haplotypes of AHR were associated with the CBMN frequencies in coke-oven workers.

  1. Performance of gout definitions for genetic epidemiological studies: analysis of UK Biobank.

    PubMed

    Cadzow, Murray; Merriman, Tony R; Dalbeth, Nicola

    2017-08-09

    Many different combinations of available data have been used to identify gout cases in large genetic studies. The aim of this study was to determine the performance of case definitions of gout using the limited items available in multipurpose cohorts for population-based genetic studies. This research was conducted using the UK Biobank Resource. Data, including genome-wide genotypes, were available for 105,421 European participants aged 40-69 years without kidney disease. Gout definitions and combinations of these definitions were identified from previous epidemiological studies. These definitions were tested for association with 30 urate-associated single-nucleotide polymorphisms (SNPs) by logistic regression, adjusted for age, sex, waist circumference, and ratio of waist circumference to height. Heritability estimates under an additive model were generated using GCTA version 1.26.0 and PLINK version 1.90b3.32 by partitioning the genome. There were 2066 (1.96%) cases defined by self-report of gout, 1652 (1.57%) defined by urate-lowering therapy (ULT) use, 382 (0.36%) defined by hospital diagnosis, 1861 (1.76%) defined by hospital diagnosis or gout-specific medications and 2295 (2.18%) defined by self-report of gout or ULT use. Association with gout at experiment-wide significance (P < 0.0017) was observed for 13 SNPs with gout using the self-report of gout or ULT use definition, 12 SNPs using the self-report of gout definition, 11 SNPs using the hospital diagnosis or gout-specific medication definition, 10 SNPs using ULT use definition and 3 SNPs using hospital diagnosis definition. Heritability estimates ranged from 0.282 to 0.308 for all definitions except hospital diagnosis (0.236). Of the limited items available in multipurpose cohorts, the case definition of self-report of gout or ULT use has high sensitivity and precision for detecting association in genetic epidemiological studies of gout.

  2. Cytochrome P450 2E1 gene polymorphisms/haplotypes and anti-tuberculosis drug-induced hepatitis in a Chinese cohort.

    PubMed

    Tang, Shaowen; Lv, Xiaozhen; Zhang, Yuan; Wu, Shanshan; Yang, Zhirong; Xia, Yinyin; Tu, Dehua; Deng, Peiyuan; Ma, Yu; Chen, Dafang; Zhan, Siyan

    2013-01-01

    The pathogenic mechanism of anti-tuberculosis (anti-TB) drug-induced hepatitis is associated with drug metabolizing enzymes. No tagging single-nucleotide polymorphisms (tSNPs) of cytochrome P450 2E1(CYP2E1) in the risk of anti-TB drug-induced hepatitis have been reported. The present study was aimed at exploring the role of tSNPs in CYP2E1 gene in a population-based anti-TB treatment cohort. A nested case-control study was designed. Each hepatitis case was 14 matched with controls by age, gender, treatment history, disease severity and drug dosage. The tSNPs were selected by using Haploview 4.2 based on the HapMap database of Han Chinese in Beijing, and detected by using TaqMan allelic discrimination technology. Eighty-nine anti-TB drug-induced hepatitis cases and 356 controls were included in this study. 6 tSNPs (rs2031920, rs2070672, rs915908, rs8192775, rs2515641, rs2515644) were genotyped and minor allele frequencies of these tSNPs were 21.9%, 23.0%, 19.1%, 23.6%, 20.8% and 44.4% in the cases and 20.9%, 22.7%, 18.9%, 23.2%, 18.2% and 43.2% in the controls, respectively. No significant difference was observed in genotypes or allele frequencies of the 6 tSNPs between case group and control group, and neither of haplotypes in block 1 nor in block 2 was significantly associated with the development of hepatitis. Based on the Chinese anti-TB treatment cohort, we did not find a statistically significant association between genetic polymorphisms of CYP2E1 and the risk of anti-TB drug-induced hepatitis. None of the haplotypes showed a significant association with the development of hepatitis in Chinese TB population.

  3. Genetic variations in genes involved in testosterone metabolism are associated with prostate cancer progression: A Spanish multicenter study.

    PubMed

    Henríquez-Hernández, Luis Alberto; Valenciano, Almudena; Foro-Arnalot, Palmira; Álvarez-Cubero, María Jesús; Cozar, José Manuel; Suárez-Novo, José Francisco; Castells-Esteve, Manel; Fernández-Gonzalo, Pablo; De-Paula-Carranza, Belén; Ferrer, Montse; Guedea, Ferrán; Sancho-Pardo, Gemma; Craven-Bartle, Jordi; Ortiz-Gordillo, María José; Cabrera-Roldán, Patricia; Rodríguez-Melcón, Juan Ignacio; Herrera-Ramos, Estefanía; Rodríguez-Gallego, Carlos; Lara, Pedro C

    2015-07-01

    Prostate cancer (PCa) is an androgen-dependent disease. Nonetheless, the role of single nucleotide polymorphisms (SNPs) in genes encoding androgen metabolism remains an unexplored area. To investigate the role of germline variations in cytochrome P450 17A1 (CYP17A1) and steroid-5α-reductase, α-polypeptides 1 and 2 (SRD5A1 and SRD5A2) genes in PCa. In total, 494 consecutive Spanish patients diagnosed with nonmetastatic localized PCa were included in this multicenter study and were genotyped for 32 SNPs in SRD5A1, SRD5A2, and CYP17A1 genes using a Biotrove OpenArray NT Cycler. Clinical data were available. Genotypic and allelic frequencies, as well as haplotype analyses, were determined using the web-based environment SNPator. All additional statistical analyses comparing clinical data and SNPs were performed using PASW Statistics 15. The call rate obtained (determined as the percentage of successful determinations) was 97.3% of detection. A total of 2 SNPs in SRD5A1-rs3822430 and rs1691053-were associated with prostate-specific antigen level at diagnosis. Moreover, G carriers for both SNPs were at higher risk of presenting initial prostate-specific antigen levels>20ng/ml (Exp(B) = 2.812, 95% CI: 1.397-5.657, P = 0.004) than those who are AA-AA carriers. Haplotype analyses showed that patients with PCa nonhomozygous for the haplotype GCTTGTAGTA were at an elevated risk of presenting bigger clinical tumor size (Exp(B) = 3.823, 95% CI: 1.280-11.416, P = 0.016), and higher Gleason score (Exp(B) = 2.808, 95% CI: 1.134-6.953, P = 0.026). SNPs in SRD5A1 seem to affect the clinical characteristics of Spanish patients with PCa. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Development of a Medium Density Combined-Species SNP Array for Pacific and European Oysters (Crassostrea gigas and Ostrea edulis).

    PubMed

    Gutierrez, Alejandro P; Turner, Frances; Gharbi, Karim; Talbot, Richard; Lowe, Natalie R; Peñaloza, Carolina; McCullough, Mark; Prodöhl, Paulo A; Bean, Tim P; Houston, Ross D

    2017-07-05

    SNP arrays are enabling tools for high-resolution studies of the genetic basis of complex traits in farmed and wild animals. Oysters are of critical importance in many regions from both an ecological and economic perspective, and oyster aquaculture forms a key component of global food security. The aim of our study was to design a combined-species, medium density SNP array for Pacific oyster ( Crassostrea gigas ) and European flat oyster ( Ostrea edulis ), and to test the performance of this array on farmed and wild populations from multiple locations, with a focus on European populations. SNP discovery was carried out by whole-genome sequencing (WGS) of pooled genomic DNA samples from eight C. gigas populations, and restriction site-associated DNA sequencing (RAD-Seq) of 11 geographically diverse O. edulis populations. Nearly 12 million candidate SNPs were discovered and filtered based on several criteria, including preference for SNPs segregating in multiple populations and SNPs with monomorphic flanking regions. An Affymetrix Axiom Custom Array was created and tested on a diverse set of samples ( n = 219) showing ∼27 K high quality SNPs for C. gigas and ∼11 K high quality SNPs for O. edulis segregating in these populations. A high proportion of SNPs were segregating in each of the populations, and the array was used to detect population structure and levels of linkage disequilibrium (LD). Further testing of the array on three C. gigas nuclear families ( n = 165) revealed that the array can be used to clearly distinguish between both families based on identity-by-state (IBS) clustering parental assignment software. This medium density, combined-species array will be publicly available through Affymetrix, and will be applied for genome-wide association and evolutionary genetic studies, and for genomic selection in oyster breeding programs. Copyright © 2017 Gutierrez et al.

  5. Genome-Wide Association Mapping of Flowering and Ripening Periods in Apple.

    PubMed

    Urrestarazu, Jorge; Muranty, Hélène; Denancé, Caroline; Leforestier, Diane; Ravon, Elisa; Guyader, Arnaud; Guisnel, Rémi; Feugey, Laurence; Aubourg, Sébastien; Celton, Jean-Marc; Daccord, Nicolas; Dondini, Luca; Gregori, Roberto; Lateur, Marc; Houben, Patrick; Ordidge, Matthew; Paprstein, Frantisek; Sedlak, Jiri; Nybom, Hilde; Garkava-Gustavsson, Larisa; Troggio, Michela; Bianco, Luca; Velasco, Riccardo; Poncet, Charles; Théron, Anthony; Moriya, Shigeki; Bink, Marco C A M; Laurens, François; Tartarini, Stefano; Durel, Charles-Eric

    2017-01-01

    Deciphering the genetic control of flowering and ripening periods in apple is essential for breeding cultivars adapted to their growing environments. We implemented a large Genome-Wide Association Study (GWAS) at the European level using an association panel of 1,168 different apple genotypes distributed over six locations and phenotyped for these phenological traits. The panel was genotyped at a high-density of SNPs using the Axiom®Apple 480 K SNP array. We ran GWAS with a multi-locus mixed model (MLMM), which handles the putatively confounding effect of significant SNPs elsewhere on the genome. Genomic regions were further investigated to reveal candidate genes responsible for the phenotypic variation. At the whole population level, GWAS retained two SNPs as cofactors on chromosome 9 for flowering period, and six for ripening period (four on chromosome 3, one on chromosome 10 and one on chromosome 16) which, together accounted for 8.9 and 17.2% of the phenotypic variance, respectively. For both traits, SNPs in weak linkage disequilibrium were detected nearby, thus suggesting the existence of allelic heterogeneity. The geographic origins and relationships of apple cultivars accounted for large parts of the phenotypic variation. Variation in genotypic frequency of the SNPs associated with the two traits was connected to the geographic origin of the genotypes (grouped as North+East, West and South Europe), and indicated differential selection in different growing environments. Genes encoding transcription factors containing either NAC or MADS domains were identified as major candidates within the small confidence intervals computed for the associated genomic regions. A strong microsynteny between apple and peach was revealed in all the four confidence interval regions. This study shows how association genetics can unravel the genetic control of important horticultural traits in apple, as well as reduce the confidence intervals of the associated regions identified by linkage mapping approaches. Our findings can be used for the improvement of apple through marker-assisted breeding strategies that take advantage of the accumulating additive effects of the identified SNPs.

  6. Genetic diversity of bitter taste receptor gene family in Sichuan domestic and Tibetan chicken populations.

    PubMed

    Su, Yuan; Li, Diyan; Gaur, Uma; Wang, Yan; Wu, Nan; Chen, Binlong; Xu, Zhongxian; Yin, Huadong; Hu, Yaodong; Zhu, Qing

    2016-09-01

    The sense of bitter taste plays a critical role in animals as it can help them to avoid intake of toxic and harmful substances. Previous research had revealed that chicken has only three bitter taste receptor genes (Tas2r1, Tas2r2 and Tas2r7). To better understand the genetic polymorphisms and importance of bitter taste receptor genes (Tas2rs) in chicken, here, we sequenced Tas2rs of 30 Sichuan domestic chickens and 30 Tibetan chickens. Thirteen single-nucleotide polymorphisms (SNPs) including three nonsynonymous mutations (m.359G>C, m.503C>A and m.583A>G) were detected in Tas2r1 (m. is the abbreviation for mutation); three SNPs were detected in Tas2r2, but none of them were missense mutation; eight SNPs were detected in Tas2r7 including six nonsynonymous substitutions (m.178G>A, m.421A>C, m.787C>T, m.832G>T, m.907A>T and m.943G>A). Tajima's D neutral test indicates that there is no population expansion in both populations, and the size of the population is relatively stable. All the three networks indicate that red jungle fowls share haplotypes with domestic chickens. In addition, we found that haplotypes H1 and HE1 were positively associated with high-altitude adaptation, whereas haplotypes H4 and HE4 showed a negative correlation with high-altitude adaptation in Tas2rs. Although, chicken has only three Tas2rs, our results showed that both Sichuan domestic chickens and Tibetan chickens have abundant haplotypes in Tas2rs, especially in Tas2r7, which might help chickens to recognize a wide variety of bitter-tasting compounds.

  7. Proteasome modulator 9 gene SNPs, responsible for anti-depressant response, are in linkage with generalized anxiety disorder.

    PubMed

    Gragnoli, Claudia

    2014-09-01

    Proteasome modulator 9 (PSMD9) gene single nucleotide polymorphism (SNP) rs1043307/rs2514259 (E197G) is associated with significant clinical response to the anti-depressant desipramine. PSMD9 SNP rs74421874 [intervening sequence (IVS) 3 + nt460 G>A], rs3825172 (IVS3 + nt437 C>T) and rs1043307/rs2514259 (E197G A>G) are all linked to type 2 diabetes (T2D), maturity-onset-diabetes-of the young 3 (MODY3), obesity and waist circumference, hypertension, hypercholesterolemia, T2D-macrovascular and T2D-microvascular disease, T2D-neuropathy, T2D-carpal tunnel syndrome, T2D-nephropathy, T2D-retinopathy, non-diabetic retinopathy and depression. PSMD9 rs149556654 rare SNP (N166S A>G) and the variant S143G A>G also contribute to T2D. PSMD9 is located in the chromosome 12q24 locus, which per se is in linkage with depression, bipolar disorder and anxiety. In the present study, we wanted to determine whether PSMD9 is linked to general anxiety disorder in Italian T2D families. Two-hundred Italian T2D families were phenotyped for generalized anxiety disorder, using the diagnostic criteria of DSM-IV. When the diagnosis was unavailable or unclear, the trait was reported as unknown. The 200 Italians families were tested for the PSMD9 T2D risk SNPs rs74421874 (IVS3 + nt460 G>A), rs3825172 (IVS3 +nt437 T>C) and for the T2D risk and anti-depressant response SNP rs1043307/rs2514259 (E197G A>G) for evidence of linkage with generalized anxiety disorder. Non-parametric linkage analysis was executed via Merlin software. One-thousand simulation tests were performed to exclude results due to random chance. In our study, the PSMD9 gene SNPs rs74421874, rs3825172, and rs1043307/rs2514259 result in linkage to generalized anxiety disorder. This is the first report describing PSMD9 gene SNPs in linkage to generalized anxiety disorder in T2D families. © 2014 Wiley Periodicals, Inc.

  8. Genomic relationships based on X chromosome markers and accuracy of genomic predictions with and without X chromosome markers

    PubMed Central

    2014-01-01

    Background Although the X chromosome is the second largest bovine chromosome, markers on the X chromosome are not used for genomic prediction in some countries and populations. In this study, we presented a method for computing genomic relationships using X chromosome markers, investigated the accuracy of imputation from a low density (7K) to the 54K SNP (single nucleotide polymorphism) panel, and compared the accuracy of genomic prediction with and without using X chromosome markers. Methods The impact of considering X chromosome markers on prediction accuracy was assessed using data from Nordic Holstein bulls and different sets of SNPs: (a) the 54K SNPs for reference and test animals, (b) SNPs imputed from the 7K to the 54K SNP panel for test animals, (c) SNPs imputed from the 7K to the 54K panel for half of the reference animals, and (d) the 7K SNP panel for all animals. Beagle and Findhap were used for imputation. GBLUP (genomic best linear unbiased prediction) models with or without X chromosome markers and with or without a residual polygenic effect were used to predict genomic breeding values for 15 traits. Results Averaged over the two imputation datasets, correlation coefficients between imputed and true genotypes for autosomal markers, pseudo-autosomal markers, and X-specific markers were 0.971, 0.831 and 0.935 when using Findhap, and 0.983, 0.856 and 0.937 when using Beagle. Estimated reliabilities of genomic predictions based on the imputed datasets using Findhap or Beagle were very close to those using the real 54K data. Genomic prediction using all markers gave slightly higher reliabilities than predictions without X chromosome markers. Based on our data which included only bulls, using a G matrix that accounted for sex-linked relationships did not improve prediction, compared with a G matrix that did not account for sex-linked relationships. A model that included a polygenic effect did not recover the loss of prediction accuracy from exclusion of X chromosome markers. Conclusions The results from this study suggest that markers on the X chromosome contribute to accuracy of genomic predictions and should be used for routine genomic evaluation. PMID:25080199

  9. Development of Molecular Markers Linked to Powdery Mildew Resistance Gene Pm4b by Combining SNP Discovery from Transcriptome Sequencing Data with Bulked Segregant Analysis (BSR-Seq) in Wheat.

    PubMed

    Wu, Peipei; Xie, Jingzhong; Hu, Jinghuang; Qiu, Dan; Liu, Zhiyong; Li, Jingting; Li, Miaomiao; Zhang, Hongjun; Yang, Li; Liu, Hongwei; Zhou, Yang; Zhang, Zhongjun; Li, Hongjie

    2018-01-01

    Powdery mildew resistance gene Pm4b , originating from Triticum persicum , is effective against the prevalent Blumeria graminis f. sp. tritici ( Bgt ) isolates from certain regions of wheat production in China. The lack of tightly linked molecular markers with the target gene prevents the precise identification of Pm4b during the application of molecular marker-assisted selection (MAS). The strategy that combines the RNA-Seq technique and the bulked segregant analysis (BSR-Seq) was applied in an F 2:3 mapping population (237 families) derived from a pair of isogenic lines VPM1/7 ∗ Bainong 3217 F 4 (carrying Pm4b ) and Bainong 3217 to develop more closely linked molecular markers. RNA-Seq analysis of the two phenotypically contrasting RNA bulks prepared from the representative F 2:3 families generated 20,745,939 and 25,867,480 high-quality read pairs, and 82.8 and 80.2% of them were uniquely mapped to the wheat whole genome draft assembly for the resistant and susceptible RNA bulks, respectively. Variant calling identified 283,866 raw single nucleotide polymorphisms (SNPs) and InDels between the two bulks. The SNPs that were closely associated with the powdery mildew resistance were concentrated on chromosome 2AL. Among the 84 variants that were potentially associated with the disease resistance trait, 46 variants were enriched in an about 25 Mb region at the distal end of chromosome arm 2AL. Four Pm4b -linked SNP markers were developed from these variants. Based on the sequences of Chinese Spring where these polymorphic SNPs were located, 98 SSR primer pairs were designed to develop distal markers flanking the Pm4b gene. Three SSR markers, Xics13 , Xics43 , and Xics76 , were incorporated in the new genetic linkage map, which located Pm4b in a 3.0 cM genetic interval spanning a 6.7 Mb physical genomic region. This region had a collinear relationship with Brachypodium distachyon chromosome 5, rice chromosome 4, and sorghum chromosome 6. Seven genes associated with disease resistance were predicted in this collinear genomic region, which included C2 domain protein, peroxidase activity protein, protein kinases of PKc_like super family, Mlo family protein, and catalytic domain of the serine/threonine kinases (STKc_IRAK like super family). The markers developed in the present study facilitate identification of Pm4b during its MAS practice.

  10. Development of Molecular Markers Linked to Powdery Mildew Resistance Gene Pm4b by Combining SNP Discovery from Transcriptome Sequencing Data with Bulked Segregant Analysis (BSR-Seq) in Wheat

    PubMed Central

    Wu, Peipei; Xie, Jingzhong; Hu, Jinghuang; Qiu, Dan; Liu, Zhiyong; Li, Jingting; Li, Miaomiao; Zhang, Hongjun; Yang, Li; Liu, Hongwei; Zhou, Yang; Zhang, Zhongjun; Li, Hongjie

    2018-01-01

    Powdery mildew resistance gene Pm4b, originating from Triticum persicum, is effective against the prevalent Blumeria graminis f. sp. tritici (Bgt) isolates from certain regions of wheat production in China. The lack of tightly linked molecular markers with the target gene prevents the precise identification of Pm4b during the application of molecular marker-assisted selection (MAS). The strategy that combines the RNA-Seq technique and the bulked segregant analysis (BSR-Seq) was applied in an F2:3 mapping population (237 families) derived from a pair of isogenic lines VPM1/7∗Bainong 3217 F4 (carrying Pm4b) and Bainong 3217 to develop more closely linked molecular markers. RNA-Seq analysis of the two phenotypically contrasting RNA bulks prepared from the representative F2:3 families generated 20,745,939 and 25,867,480 high-quality read pairs, and 82.8 and 80.2% of them were uniquely mapped to the wheat whole genome draft assembly for the resistant and susceptible RNA bulks, respectively. Variant calling identified 283,866 raw single nucleotide polymorphisms (SNPs) and InDels between the two bulks. The SNPs that were closely associated with the powdery mildew resistance were concentrated on chromosome 2AL. Among the 84 variants that were potentially associated with the disease resistance trait, 46 variants were enriched in an about 25 Mb region at the distal end of chromosome arm 2AL. Four Pm4b-linked SNP markers were developed from these variants. Based on the sequences of Chinese Spring where these polymorphic SNPs were located, 98 SSR primer pairs were designed to develop distal markers flanking the Pm4b gene. Three SSR markers, Xics13, Xics43, and Xics76, were incorporated in the new genetic linkage map, which located Pm4b in a 3.0 cM genetic interval spanning a 6.7 Mb physical genomic region. This region had a collinear relationship with Brachypodium distachyon chromosome 5, rice chromosome 4, and sorghum chromosome 6. Seven genes associated with disease resistance were predicted in this collinear genomic region, which included C2 domain protein, peroxidase activity protein, protein kinases of PKc_like super family, Mlo family protein, and catalytic domain of the serine/threonine kinases (STKc_IRAK like super family). The markers developed in the present study facilitate identification of Pm4b during its MAS practice. PMID:29491869

  11. Alternative SNP detection platforms, HRM and biosensors, for varietal identification in Vitis vinifera L. using F3H and LDOX genes.

    PubMed

    Gomes, Sónia; Castro, Cláudia; Barrias, Sara; Pereira, Leonor; Jorge, Pedro; Fernandes, José R; Martins-Lopes, Paula

    2018-04-11

    The wine sector requires quick and reliable methods for Vitis vinifera L. varietal identification. The number of V. vinifera varieties is estimated in about 5,000 worldwide. Single Nucleotide Polymorphisms (SNPs) represent the most basic and abundant form of genetic sequence variation, being adequate for varietal discrimination. The aim of this work was to develop DNA-based assays suitable to detect SNP variation in V. vinifera, allowing varietal discrimination. Genotyping by sequencing allowed the detection of eleven SNPs on two genes of the anthocyanin pathway, the flavanone 3-hydroxylase (F3H, EC: 1.14.11.9), and the leucoanthocyanidin dioxygenase (LDOX, EC 1.14.11.19; synonym anthocyanidin synthase, ANS) in twenty V. vinifera varieties. Three High Resolution Melting (HRM) assays were designed based on the sequencing information, discriminating five of the 20 varieties: Alicante Bouschet, Donzelinho Tinto, Merlot, Moscatel Galego and Tinta Roriz. Sanger sequencing of the HRM assay products confirmed the HRM profiles. Three probes, with different lengths and sequences, were used as bio-recognition elements in an optical biosensor platform based on a long period grating (LPG) fiber optic sensor. The label free platform detected a difference of a single SNP using genomic DNA samples. The two different platforms were successfully applied for grapevine varietal identification.

  12. Genetic dissection of agronomically important traits in closely related temperate japonica rice cultivars

    PubMed Central

    Hori, Kiyosumi; Yamamoto, Toshio; Yano, Masahiro

    2017-01-01

    Many quantitative trait loci (QTLs) for agronomically important traits such as grain yield, disease resistance, and stress tolerance of rice (Oryza sativa L.) have been detected by using segregating populations derived from crosses between indica and japonica subspecies or with wild relatives. However, the QTLs involved in the control of natural variation in agronomic traits among closely related cultivars are still unclear. Decoding the whole genome sequences of Nipponbare and other temperate japonica rice cultivars has accelerated the collection of a huge number of single nucleotide polymorphisms (SNPs). These SNPs are good resource for developing polymorphic DNA markers and for detecting QTLs distributed across all rice chromosomes. The temperate japonica rice cultivar Koshihikari has remained the top cultivar for about 40 years since 1979 in Japan. Unraveling the genetic factors in Koshihikari will provide important insights into improving agronomic traits in temperate japonica rice cultivars. Here we describe recent progress in our studies as an example of genetic analysis in closely related cultivars. PMID:29398936

  13. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield.

    PubMed

    Ma, Zhiying; He, Shoupu; Wang, Xingfen; Sun, Junling; Zhang, Yan; Zhang, Guiyin; Wu, Liqiang; Li, Zhikun; Liu, Zhihao; Sun, Gaofei; Yan, Yuanyuan; Jia, Yinhua; Yang, Jun; Pan, Zhaoe; Gu, Qishen; Li, Xueyuan; Sun, Zhengwen; Dai, Panhong; Liu, Zhengwen; Gong, Wenfang; Wu, Jinhua; Wang, Mi; Liu, Hengwei; Feng, Keyun; Ke, Huifeng; Wang, Junduo; Lan, Hongyu; Wang, Guoning; Peng, Jun; Wang, Nan; Wang, Liru; Pang, Baoyin; Peng, Zhen; Li, Ruiqiang; Tian, Shilin; Du, Xiongming

    2018-05-07

    Upland cotton is the most important natural-fiber crop. The genomic variation of diverse germplasms and alleles underpinning fiber quality and yield should be extensively explored. Here, we resequenced a core collection comprising 419 accessions with 6.55-fold coverage depth and identified approximately 3.66 million SNPs for evaluating the genomic variation. We performed phenotyping across 12 environments and conducted genome-wide association study of 13 fiber-related traits. 7,383 unique SNPs were significantly associated with these traits and were located within or near 4,820 genes; more associated loci were detected for fiber quality than fiber yield, and more fiber genes were detected in the D than the A subgenome. Several previously undescribed causal genes for days to flowering, fiber length, and fiber strength were identified. Phenotypic selection for these traits increased the frequency of elite alleles during domestication and breeding. These results provide targets for molecular selection and genetic manipulation in cotton improvement.

  14. FamLBL: detecting rare haplotype disease association based on common SNPs using case-parent triads.

    PubMed

    Wang, Meng; Lin, Shili

    2014-09-15

    In recent years, there has been an increasing interest in using common single-nucleotide polymorphisms (SNPs) amassed in genome-wide association studies to investigate rare haplotype effects on complex diseases. Evidence has suggested that rare haplotypes may tag rare causal single-nucleotide variants, making SNP-based rare haplotype analysis not only cost effective, but also more valuable for detecting causal variants. Although a number of methods for detecting rare haplotype association have been proposed in recent years, they are population based and thus susceptible to population stratification. We propose family-triad-based logistic Bayesian Lasso (famLBL) for estimating effects of haplotypes on complex diseases using SNP data. By choosing appropriate prior distribution, effect sizes of unassociated haplotypes can be shrunk toward zero, allowing for more precise estimation of associated haplotypes, especially those that are rare, thereby achieving greater detection power. We evaluate famLBL using simulation to gauge its type I error and power. Compared with its population counterpart, LBL, highlights famLBL's robustness property in the presence of population substructure. Further investigation by comparing famLBL with Family-Based Association Test (FBAT) reveals its advantage for detecting rare haplotype association. famLBL is implemented as an R-package available at http://www.stat.osu.edu/∼statgen/SOFTWARE/LBL/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Genome-Wide Association Mapping for Seedling and Adult Plant Resistance to Stripe Rust in Synthetic Hexaploid Wheat

    PubMed Central

    Makdis, Farid; Badebo, Ayele; Ogbonnaya, Francis C.

    2014-01-01

    Use of genetic diversity from related wild and domesticated species has made a significant contribution to improving wheat productivity. Synthetic hexaploid wheats (SHWs) exhibit natural genetic variation for resistance and/or tolerance to biotic and abiotic stresses. Stripe rust caused by (Puccinia striiformis f. sp. tritici; Pst), is an important disease of wheat worldwide. To characterise loci conferring resistance to stripe rust in SHWs, we conducted a genome-wide association study (GWAS) with a panel of 181 SHWs using the wheat 9K SNP iSelect array. The SHWs were evaluated for their response to the prevailing races of Pst at the seedling and adult plant stages, the latter in replicated field trials at two sites in Ethiopia in 2011. About 28% of the SHWs exhibited immunity at the seedling stage while 56% and 83% were resistant to Pst at the adult plant stage at Meraro and Arsi Robe, respectively. A total of 27 SNPs in nine genomic regions (1BS, 2AS, 2BL, 3BL, 3DL, 5A, 5BL, 6DS and 7A) were linked with resistance to Pst at the seedling stage, while 38 SNPs on 18 genomic regions were associated with resistance at the adult plant stage. Six genomic regions were commonly detected at both locations using a mixed linear model corrected for population structure, kinship relatedness and adjusted for false discovery rate (FDR). The loci on chromosome regions 1AS, 3DL, 6DS and 7AL appeared to be novel QTL; our results confirm that resynthesized wheat involving its progenitor species is a rich source of new stripe (yellow) rust resistance that may be useful in choosing SHWs and incorporating diverse yellow rust (YR) resistance loci into locally adapted wheat cultivars. PMID:25153126

  16. Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.).

    PubMed

    Schönhals, E M; Ortega, F; Barandalla, L; Aragones, A; Ruiz de Galarreta, J I; Liao, J-C; Sanetomo, R; Walkemeier, B; Tacke, E; Ritter, E; Gebhardt, C

    2016-04-01

    SNPs in candidate genes Pain - 1, InvCD141 (invertases), SSIV (starch synthase), StCDF1 (transcription factor), LapN (leucine aminopeptidase), and cytoplasm type are associated with potato tuber yield, starch content and/or starch yield. Tuber yield (TY), starch content (TSC), and starch yield (TSY) are complex characters of high importance for the potato crop in general and for industrial starch production in particular. DNA markers associated with superior alleles of genes that control the natural variation of TY, TSC, and TSY could increase precision and speed of breeding new cultivars optimized for potato starch production. Diagnostic DNA markers are identified by association mapping in populations of tetraploid potato varieties and advanced breeding clones. A novel association mapping population of 282 genotypes including varieties, breeding clones and Andean landraces was assembled and field evaluated in Northern Spain for TY, TSC, TSY, tuber number (TN) and tuber weight (TW). The landraces had lower mean values of TY, TW, TN, and TSY. The population was genotyped for 183 microsatellite alleles, 221 single nucleotide polymorphisms (SNPs) in fourteen candidate genes and eight known diagnostic markers for TSC and TSY. Association test statistics including kinship and population structure reproduced five known marker-trait associations of candidate genes and discovered new ones, particularly for tuber yield and starch yield. The inclusion of landraces increased the number of detected marker-trait associations. Integration of the present association mapping results with previous QTL linkage mapping studies for TY, TSC, TSY, TW, TN, and tuberization revealed some hot spots of QTL for these traits in the potato genome. The genomic positions of markers linked or associated with QTL for complex tuber traits suggest high multiplicity and genome wide distribution of the underlying genes.

  17. Vascular Smooth Muscle Cells From Hypertensive Patient-Derived Induced Pluripotent Stem Cells to Advance Hypertension Pharmacogenomics.

    PubMed

    Biel, Nikolett M; Santostefano, Katherine E; DiVita, Bayli B; El Rouby, Nihal; Carrasquilla, Santiago D; Simmons, Chelsey; Nakanishi, Mahito; Cooper-DeHoff, Rhonda M; Johnson, Julie A; Terada, Naohiro

    2015-12-01

    Studies in hypertension (HTN) pharmacogenomics seek to identify genetic sources of variable antihypertensive drug response. Genetic association studies have detected single-nucleotide polymorphisms (SNPs) that link to drug responses; however, to understand mechanisms underlying how genetic traits alter drug responses, a biological interface is needed. Patient-derived induced pluripotent stem cells (iPSCs) provide a potential source for studying otherwise inaccessible tissues that may be important to antihypertensive drug response. The present study established multiple iPSC lines from an HTN pharmacogenomics cohort. We demonstrated that established HTN iPSCs can robustly and reproducibly differentiate into functional vascular smooth muscle cells (VSMCs), a cell type most relevant to vasculature tone control. Moreover, a sensitive traction force microscopy assay demonstrated that iPSC-derived VSMCs show a quantitative contractile response on physiological stimulus of endothelin-1. Furthermore, the inflammatory chemokine tumor necrosis factor α induced a typical VSMC response in iPSC-derived VSMCs. These studies pave the way for a large research initiative to decode biological significance of identified SNPs in hypertension pharmacogenomics. Treatment of hypertension remains suboptimal, and a pharmacogenomics approach seeks to identify genetic biomarkers that could be used to guide treatment decisions; however, it is important to understand the biological underpinnings of genetic associations. Mouse models do not accurately recapitulate individual patient responses based on their genetics, and hypertension-relevant cells are difficult to obtain from patients. Induced pluripotent stem cell (iPSC) technology provides a great interface to bring patient cells with their genomic data into the laboratory and to study hypertensive responses. As an initial step, the present study established an iPSC bank from patients with primary hypertension and demonstrated an effective and reproducible method of generating functional vascular smooth muscle cells. ©AlphaMed Press.

  18. High-resolution genetic linkage mapping, high-temperature tolerance and growth-related quantitative trait locus (QTL) identification in Marsupenaeus japonicus.

    PubMed

    Lu, Xia; Luan, Sheng; Hu, Long Yang; Mao, Yong; Tao, Ye; Zhong, Sheng Ping; Kong, Jie

    2016-06-01

    The Kuruma prawn, Marsupenaeus japonicus, is one of the most promising marine invertebrates in the industry in Asia, Europe and Australia. However, the increasing global temperatures result in considerable economic losses in M. japonicus farming. In the present study, to select genetically improved animals for the sustainable development of the Kuruma prawn industry, a high-resolution genetic linkage map and quantitative trait locus (QTL) identification were performed using the RAD technology. The maternal map contained 5849 SNP markers and spanned 3127.23 cM, with an average marker interval of 0.535 cM. Instead, the paternal map contained 3927 SNP markers and spanned 3326.19 cM, with an average marker interval of 0.847 cM. The consensus map contained 9289 SNP markers and spanned 3610.90 cM, with an average marker interval of 0.388 cM and coverage of 99.06 % of the genome. The markers were grouped into 41 linkage groups in the maps. Significantly, negative correlation was detected between high-temperature tolerance (UTT) and body weight (BW). The QTL mapping revealed 129 significant QTL loci for UTT and four significant QTL loci for BW at the genome-wide significance threshold. Among these QTLs, 129 overlapped with linked SNPs, and the remaining four were located in regions between contiguous SNPs. They explained the total phenotypic variance ranging from 8.9 to 12.4 %. Because of a significantly negative correlation between growth and high-temperature tolerance, we demonstrate that this high-resolution linkage map and QTLs would be useful for further marker-assisted selection in the genetic improvement of M. japonicus.

  19. Evidence HDAC9 genetic variant associated with ischaemic stroke increases risk via promoting carotid atherosclerosis

    PubMed Central

    Markus, Hugh S; Mäkelä, Kari-Matti; Bevan, Steve; Raitoharju, Emma; Oksala, Niku; Bis, Joshua C.; O’Donnell, Chris; Hainsworth, Atticus; Lehtimäki, Terho

    2014-01-01

    Background and purpose A novel association between a single nucleotide polymorphism (SNP) on chromosome 7p21.1 and large vessel ischaemic stroke, was recently identified. The most likely underlying gene is histone deacetylase 9 (HDAC9). The mechanism by which HDAC9 increases stroke risk is not clear; both vascular and neuronal mechanisms have been proposed. Methods We determined whether the lead SNPs were associated with asymptomatic carotid plaque (N=25179) and carotid intima-media thickness (N=31210) detected by carotid ultrasound in a meta-analysis of population based and community cohorts. Immunohistochemistry was used to determine whether HDAC9 was expressed in healthy human cerebral and systemic arteries. In the Tampere Vascular Study we determined whether HDAC9 mRNA expression was altered in carotid (N=29), abdominal aortic (N=15) and femoral (N=24) atherosclerotic plaques compared with control (left internal thoracic, N=28) arteries. Results Both SNPs (rs11984041 and rs2107595) were associated with common carotid IMT (rs2107595 p=0.0018) and with presence of carotid plaque (rs2107595 p=0.0022). In both cerebral and systemic arteries, HDAC9 labelling was seen in nuclei and cytoplasm of vascular smooth muscle cells, and in endothelial cells. HDAC9 expression was upregulated in carotid plaques compared to left internal thoracic controls (p=0.00000103). It was also up-regulated in aortic and femoral plaques compared to controls, with mRNA expression increased in carotid compared with femoral plaques (p=0.0038). Conclusions Our results are consistent with the 7p21.1 association acting via promoting atherosclerosis, and consistent with alterations in HDAC9 expression mediating this increased risk. Further studies in experimental models are required to confirm this link. PMID:23449258

  20. Wound healing genes and susceptibility to cutaneous leishmaniasis in Brazil

    PubMed Central

    Castellucci, Léa; Jamieson, Sarra E; Almeida, Lucas; Oliveira, Joyce; Guimarães, Luiz Henrique; Lessa, Marcus; Fakiola, Michaela; de Jesus, Amélia Ribeiro; Miller, E. Nancy; Carvalho, Edgar M

    2012-01-01

    Leishmania braziliensis causes cutaneous (CL) and mucosal (ML) leishmaniasis. In the mouse, Fli1 was identified as a gene influencing enhanced wound healing and resistance to CL caused by L. major. Polymorphism at FLI1 is associated with CL caused by L. braziliensis in humans, with an inverse association observed for ML disease. Here we extend the analysis to look at other wound healing genes, including CTGF, TGFB1, TGFBR1/2, SMADS 2/3/4/7 and FLII, all functionally linked along with FLI1 in the TGF beta pathway. Haplotype tagging single nucleotide polymorphisms (tag-SNPs) were genotyped using Taqman technology in 325 nuclear families (652 CL cases; 126 ML cases) from Brazil. Robust case-pseudocontrol (CPC) conditional logistic regression analysis showed associations between CL and SNPs at CTGF (SNP rs6918698; CC genotype; OR 1.67; 95%CI 1.10–2.54; P=0.016), TGFBR2 (rs1962859; OR 1.50; 95%CI 1.12–1.99; P=0.005), SMAD2 (rs1792658; OR 1.57; 95%CI 1.04–2.38; P=0.03), SMAD7 (rs4464148; AA genotype; OR 2.80; 95%CI 1.00–7.87; P=0.05) and FLII (rs2071242; OR 1.60; 95%CI 1.14–2.24; P=0.005), and between ML and SNPs at SMAD3 (rs1465841; OR 2.15; 95%CI 1.13–4.07; P=0.018) and SMAD7 (rs2337107; TT genotype; OR 3.70; 95%CI 1.27–10.7; P=0.016). Stepwise logistic regression analysis showed that all SNPs associated with CL at FLI1, CTGF, TGFBR2, and FLII showed independent effects from each other, but SNPs at SMAD2 and SMAD7 did not add independent effects to SNPs from other genes. These results suggest that TGFβ signalling via SMAD2 is important in directing events that contribute to CL, whereas signalling via SMAD3 is important in ML. Both are modulated by the inhibitory SMAD7 that acts upstream of SMAD2 and SMAD3 in this signalling pathway. Along with the published FLI1 association, these data further contribute to the hypothesis that wound healing processes are important determinants of pathology associated with cutaneous forms of leishmaniasis. PMID:22554650

  1. Investigating highly replicated asthma genes as candidate genes for allergic rhinitis.

    PubMed

    Andiappan, Anand Kumar; Nilsson, Daniel; Halldén, Christer; Yun, Wang De; Säll, Torbjörn; Cardell, Lars Olaf; Tim, Chew Fook

    2013-05-10

    Asthma genetics has been extensively studied and many genes have been associated with the development or severity of this disease. In contrast, the genetic basis of allergic rhinitis (AR) has not been evaluated as extensively. It is well known that asthma is closely related with AR since a large proportion of individuals with asthma also present symptoms of AR, and patients with AR have a 5-6 fold increased risk of developing asthma. Thus, the relevance of asthma candidate genes as predisposing factors for AR is worth investigating. The present study was designed to investigate if SNPs in highly replicated asthma genes are associated with the occurrence of AR. A total of 192 SNPs from 21 asthma candidate genes reported to be associated with asthma in 6 or more unrelated studies were genotyped in a Swedish population with 246 AR patients and 431 controls. Genotypes for 429 SNPs from the same set of genes were also extracted from a Singapore Chinese genome-wide dataset which consisted of 456 AR cases and 486 controls. All SNPs were subsequently analyzed for association with AR and their influence on allergic sensitization to common allergens. A limited number of potential associations were observed and the overall pattern of P-values corresponds well to the expectations in the absence of an effect. However, in the tests of allele effects in the Chinese population the number of significant P-values exceeds the expectations. The strongest signals were found for SNPs in NPSR1 and CTLA4. In these genes, a total of nine SNPs showed P-values <0.001 with corresponding Q-values <0.05. In the NPSR1 gene some P-values were lower than the Bonferroni correction level. Reanalysis after elimination of all patients with asthmatic symptoms excluded asthma as a confounding factor in our results. Weaker indications were found for IL13 and GSTP1 with respect to sensitization to birch pollen in the Swedish population. Genetic variation in the majority of the highly replicated asthma genes were not associated to AR in our populations which suggest that asthma and AR could have less in common than previously anticipated. However, NPSR1 and CTLA4 can be genetic links between AR and asthma and associations of polymorphisms in NPSR1 with AR have not been reported previously.

  2. [Association of single nucleotide polymorphisms of susceptibility genes of type 2 diabetes mellitus with liability to gout among ethnic Han Chinese males from coastal region of Shandong].

    PubMed

    Han, Lin; Xin, Ruosai; Sun, Jian; Hou, Feng; Li, Changgui; Hu, Xinlin; Liu, Zhen; Wang, Yao; Li, Xinde; Ren, Wei; Wang, Xuefeng; Jia, Zhaotong

    2015-10-01

    OBJECTIVE To assess the association of single nucleotide polymorphisms (SNPs) of susceptibility genes of type 2 diabetes mellitus (T2DM) with liability to gout among ethnic Han Chinese males from coastal region of Shandong province. METHODS Seven SNPs within the susceptibility genes of T2DM, including rs10773971(G/C) and rs4766398(G/C) of WNT5B gene, rs10225163(G/C) of JAZF1 gene, rs2069590(T/A) of BDKRB2 gene, rs5745709(G/A) of HGF gene, rs1991914(C/A) of OTOP1 gene and rs2236479(G/A) of COL18A1 gene, were typed with a custom-made Illumina GoldenGate Genotyping assay in 480 male patients with gout and 480 male controls. Potential association was assessed with the chi-square test. RESULTS No significant difference was detected for the 7 selected SNPs in terms of genotypic and allelic frequencies (P > 0.05). When age and body mass index (BMI) were adjusted, the 7 genetic variants still showed no significant association with gout. CONCLUSION The genotypes of the 7 selected SNPs are not associated with gout in ethnic Han Chinese male patients from the coastal region of Shandong province. However, the results need to be replicated in larger sets of patients collected from other regions and populations.

  3. Psychological impact of providing women with personalised 10-year breast cancer risk estimates.

    PubMed

    French, David P; Southworth, Jake; Howell, Anthony; Harvie, Michelle; Stavrinos, Paula; Watterson, Donna; Sampson, Sarah; Evans, D Gareth; Donnelly, Louise S

    2018-05-08

    The Predicting Risk of Cancer at Screening (PROCAS) study estimated 10-year breast cancer risk for 53,596 women attending NHS Breast Screening Programme. The present study, nested within the PROCAS study, aimed to assess the psychological impact of receiving breast cancer risk estimates, based on: (a) the Tyrer-Cuzick (T-C) algorithm including breast density or (b) T-C including breast density plus single-nucleotide polymorphisms (SNPs), versus (c) comparison women awaiting results. A sample of 2138 women from the PROCAS study was stratified by testing groups: T-C only, T-C(+SNPs) and comparison women; and by 10-year risk estimates received: 'moderate' (5-7.99%), 'average' (2-4.99%) or 'below average' (<1.99%) risk. Postal questionnaires were returned by 765 (36%) women. Overall state anxiety and cancer worry were low, and similar for women in T-C only and T-C(+SNPs) groups. Women in both T-C only and T-C(+SNPs) groups showed lower-state anxiety but slightly higher cancer worry than comparison women awaiting results. Risk information had no consistent effects on intentions to change behaviour. Most women were satisfied with information provided. There was considerable variation in understanding. No major harms of providing women with 10-year breast cancer risk estimates were detected. Research to establish the feasibility of risk-stratified breast screening is warranted.

  4. Single-nucleotide polymorphisms and haplotypes of non-coding area in the CP gene are correlated with Parkinson's disease.

    PubMed

    Zhao, Na; Xiao, Jianqiu; Zheng, Zhiyong; Fei, Guoqiang; Zhang, Feng; Jin, Lirong; Zhong, Chunjiu

    2015-04-01

    Our previous studies have demonstrated that ceruloplasmin (CP) dysmetabolism is correlated with Parkinson's disease (PD). However, the causes of decreased serum CP levels in PD patients remain to be clarified. This study aimed to explore the potential association between genetic variants of the CP gene and PD. Clinical features, serum CP levels, and the CP gene (both promoter and coding regions) were analyzed in 60 PD patients and 50 controls. A luciferase reporter system was used to investigate the function of promoter single-nucleotide polymorphisms (SNPs). High-density comparative genomic hybridization microarrays were also used to detect large-scale copy-number variations in CP and an additional 47 genes involved in PD and/or copper/iron metabolism. The frequencies of eight SNPs (one intronic SNP and seven promoter SNPs of the CP gene) and their haplotypes were significantly different between PD patients, especially those with lowered serum CP levels, and controls. However, the luciferase reporter system revealed no significant effect of the risk haplotype on promoter activity of the CP gene. Neither these SNPs nor their haplotypes were correlated with the Hoehn and Yahr staging of PD. The results of this study suggest that common genetic variants of CP are associated with PD and further investigation is needed to explore their functions in PD.

  5. Genetic Divergence between Camellia sinensis and Its Wild Relatives Revealed via Genome-Wide SNPs from RAD Sequencing.

    PubMed

    Yang, Hua; Wei, Chao-Ling; Liu, Hong-Wei; Wu, Jun-Lan; Li, Zheng-Guo; Zhang, Liang; Jian, Jian-Bo; Li, Ye-Yun; Tai, Yu-Ling; Zhang, Jing; Zhang, Zheng-Zhu; Jiang, Chang-Jun; Xia, Tao; Wan, Xiao-Chun

    2016-01-01

    Tea is one of the most popular beverages across the world and is made exclusively from cultivars of Camellia sinensis. Many wild relatives of the genus Camellia that are closely related to C. sinensis are native to Southwest China. In this study, we first identified the distinct genetic divergence between C. sinensis and its wild relatives and provided a glimpse into the artificial selection of tea plants at a genome-wide level by analyzing 15,444 genomic SNPs that were identified from 18 cultivated and wild tea accessions using a high-throughput genome-wide restriction site-associated DNA sequencing (RAD-Seq) approach. Six distinct clusters were detected by phylogeny inferrence and principal component and genetic structural analyses, and these clusters corresponded to six Camellia species/varieties. Genetic divergence apparently indicated that C. taliensis var. bangwei is a semi-wild or transient landrace occupying a phylogenetic position between those wild and cultivated tea plants. Cultivated accessions exhibited greater heterozygosity than wild accessions, with the exception of C. taliensis var. bangwei. Thirteen genes with non-synonymous SNPs exhibited strong selective signals that were suggestive of putative artificial selective footprints for tea plants during domestication. The genome-wide SNPs provide a fundamental data resource for assessing genetic relationships, characterizing complex traits, comparing heterozygosity and analyzing putatitve artificial selection in tea plants.

  6. Shared polymorphisms and modifiable behavior factors for myocardial infarction and high cholesterol in a retrospective population study

    PubMed Central

    Liang, Yulan; Kelemen, Arpad

    2017-01-01

    Abstract Genetic and environmental (behavior, clinical, and demographic) factors are associated with increased risks of both myocardial infarction (MI) and high cholesterol (HC). It is known that HC is major risk factor that may cause MI. However, whether there are common single nucleotide polymorphism (SNPs) associated with both MI and HC is not firmly established, and whether there are modulate and modified effects (interactions of genetic and known environmental factors) on either HC or MI, and whether these joint effects improve the predictions of MI, is understudied. The purpose of this study is to identify novel shared SNPs and modifiable environmental factors on MI and HC. We assess whether SNPs from a metabolic pathway related to MI may relate to HC; whether there are moderate effects among SNPs, lifestyle (smoke and drinking), HC, and MI after controlling other factors [gender, body mass index (BMI), and hypertension (HTN)]; and evaluate prediction power of the joint and modulate genetic and environmental factors influencing the MI and HC. This is a retrospective study with residents of Erie and Niagara counties in New York with a history of MI or with no history of MI. The data set includes environmental variables (demographic, clinical, lifestyle). Thirty-one tagSNPs from a metabolic pathway related to MI are genotyped. Generalized linear models (GLMs) with imputation-based analysis are conducted for examining the common effects of tagSNPs and environmental exposures and their interactions on having a history of HC or MI. MI, BMI, and HTN are significant risk factors for HC. HC shows the strongest effect on risk of MI in addition to HTN; gender and smoking status while drinking status shows protective effect on MI. rs16944 (gene IL-1β) and rs17222772 (gene ALOX) increase the risks of HC, while rs17231896 (gene CETP) has protective effects on HC either with or without the clinical, behavioral, demographic factors with different effect sizes that may indicate the existence of moderate or modifiable effects. Further analysis with the inclusions of gene–gene and gene–environmental interactions shows interactions between rs17231896 (CETP) and rs17222772 (ALOX); rs17231896 (CETP) and gender. rs17237890 (CETP) and rs2070744 (NOS3) are found to be significantly associated with risks of MI adjusted by both SNPs and environmental factors. After multiple testing adjustments, these effects diminished as expected. In addition, an interaction between drinking and smoking status is significant. Overall, the prediction power in successfully classifying MI status is increased to 80% with inclusions of all significant tagSNPs and environmental factors and their interactions compared with environmental factors only (72%). Having a history of either HC or MI has significant effects on each other in both directions, in addition to HTN and gender. Genes/SNPs identified from this analysis that are associated with HC may be potentially linked to MI, which could be further examined and validated through haplotype-pairs analysis with appropriate population stratification corrections, and function/pathway regulation analysis to eliminate the limitations of the current analysis. PMID:28906356

  7. Shared polymorphisms and modifiable behavior factors for myocardial infarction and high cholesterol in a retrospective population study.

    PubMed

    Liang, Yulan; Kelemen, Arpad

    2017-09-01

    Genetic and environmental (behavior, clinical, and demographic) factors are associated with increased risks of both myocardial infarction (MI) and high cholesterol (HC). It is known that HC is major risk factor that may cause MI. However, whether there are common single nucleotide polymorphism (SNPs) associated with both MI and HC is not firmly established, and whether there are modulate and modified effects (interactions of genetic and known environmental factors) on either HC or MI, and whether these joint effects improve the predictions of MI, is understudied.The purpose of this study is to identify novel shared SNPs and modifiable environmental factors on MI and HC. We assess whether SNPs from a metabolic pathway related to MI may relate to HC; whether there are moderate effects among SNPs, lifestyle (smoke and drinking), HC, and MI after controlling other factors [gender, body mass index (BMI), and hypertension (HTN)]; and evaluate prediction power of the joint and modulate genetic and environmental factors influencing the MI and HC.This is a retrospective study with residents of Erie and Niagara counties in New York with a history of MI or with no history of MI. The data set includes environmental variables (demographic, clinical, lifestyle). Thirty-one tagSNPs from a metabolic pathway related to MI are genotyped. Generalized linear models (GLMs) with imputation-based analysis are conducted for examining the common effects of tagSNPs and environmental exposures and their interactions on having a history of HC or MI.MI, BMI, and HTN are significant risk factors for HC. HC shows the strongest effect on risk of MI in addition to HTN; gender and smoking status while drinking status shows protective effect on MI. rs16944 (gene IL-1β) and rs17222772 (gene ALOX) increase the risks of HC, while rs17231896 (gene CETP) has protective effects on HC either with or without the clinical, behavioral, demographic factors with different effect sizes that may indicate the existence of moderate or modifiable effects. Further analysis with the inclusions of gene-gene and gene-environmental interactions shows interactions between rs17231896 (CETP) and rs17222772 (ALOX); rs17231896 (CETP) and gender. rs17237890 (CETP) and rs2070744 (NOS3) are found to be significantly associated with risks of MI adjusted by both SNPs and environmental factors. After multiple testing adjustments, these effects diminished as expected. In addition, an interaction between drinking and smoking status is significant. Overall, the prediction power in successfully classifying MI status is increased to 80% with inclusions of all significant tagSNPs and environmental factors and their interactions compared with environmental factors only (72%).Having a history of either HC or MI has significant effects on each other in both directions, in addition to HTN and gender. Genes/SNPs identified from this analysis that are associated with HC may be potentially linked to MI, which could be further examined and validated through haplotype-pairs analysis with appropriate population stratification corrections, and function/pathway regulation analysis to eliminate the limitations of the current analysis.

  8. Functional Consequences of a Novel Variant of PCSK1

    PubMed Central

    Pickett, Lindsay A.; Yourshaw, Michael; Albornoz, Valeria; Chen, Zijun; Solorzano-Vargas, R. Sergio; Nelson, Stanley F.; Martín, Martín G.; Lindberg, Iris

    2013-01-01

    Background Common single nucleotide polymorphisms (SNPs) in proprotein convertase subtilisin/kexin type 1 with modest effects on PC1/3 in vitro have been associated with obesity in five genome-wide association studies and with diabetes in one genome-wide association study. We here present a novel SNP and compare its biosynthesis, secretion and catalytic activity to wild-type enzyme and to SNPs that have been linked to obesity. Methodology/Principal Findings A novel PC1/3 variant introducing an Arg to Gln amino acid substitution at residue 80 (within the secondary cleavage site of the prodomain) (rs1799904) was studied. This novel variant was selected for analysis from the 1000 Genomes sequencing project based on its predicted deleterious effect on enzyme function and its comparatively more frequent allele frequency. The actual existence of the R80Q (rs1799904) variant was verified by Sanger sequencing. The effects of this novel variant on the biosynthesis, secretion, and catalytic activity were determined; the previously-described obesity risk SNPs N221D (rs6232), Q665E/S690T (rs6234/rs6235), and the Q665E and S690T SNPs (analyzed separately) were included for comparative purposes. The novel R80Q (rs1799904) variant described in this study resulted in significantly detrimental effects on both the maturation and in vitro catalytic activity of PC1/3. Conclusion/Significance Our findings that this novel R80Q (rs1799904) variant both exhibits adverse effects on PC1/3 activity and is prevalent in the population suggests that further biochemical and genetic analysis to assess its contribution to the risk of metabolic disease within the general population is warranted. PMID:23383060

  9. Functional consequences of a novel variant of PCSK1.

    PubMed

    Pickett, Lindsay A; Yourshaw, Michael; Albornoz, Valeria; Chen, Zijun; Solorzano-Vargas, R Sergio; Nelson, Stanley F; Martín, Martín G; Lindberg, Iris

    2013-01-01

    Common single nucleotide polymorphisms (SNPs) in proprotein convertase subtilisin/kexin type 1 with modest effects on PC1/3 in vitro have been associated with obesity in five genome-wide association studies and with diabetes in one genome-wide association study. We here present a novel SNP and compare its biosynthesis, secretion and catalytic activity to wild-type enzyme and to SNPs that have been linked to obesity. A novel PC1/3 variant introducing an Arg to Gln amino acid substitution at residue 80 (within the secondary cleavage site of the prodomain) (rs1799904) was studied. This novel variant was selected for analysis from the 1000 Genomes sequencing project based on its predicted deleterious effect on enzyme function and its comparatively more frequent allele frequency. The actual existence of the R80Q (rs1799904) variant was verified by Sanger sequencing. The effects of this novel variant on the biosynthesis, secretion, and catalytic activity were determined; the previously-described obesity risk SNPs N221D (rs6232), Q665E/S690T (rs6234/rs6235), and the Q665E and S690T SNPs (analyzed separately) were included for comparative purposes. The novel R80Q (rs1799904) variant described in this study resulted in significantly detrimental effects on both the maturation and in vitro catalytic activity of PC1/3. Our findings that this novel R80Q (rs1799904) variant both exhibits adverse effects on PC1/3 activity and is prevalent in the population suggests that further biochemical and genetic analysis to assess its contribution to the risk of metabolic disease within the general population is warranted.

  10. Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes

    PubMed Central

    Sharma, Swarkar; Gao, Xiaochong; Londono, Douglas; Devroy, Shonn E.; Mauldin, Kristen N.; Frankel, Jessica T.; Brandon, January M.; Zhang, Dongping; Li, Quan-Zhen; Dobbs, Matthew B.; Gurnett, Christina A.; Grant, Struan F.A.; Hakonarson, Hakon; Dormans, John P.; Herring, John A.; Gordon, Derek; Wise, Carol A.

    2011-01-01

    Adolescent idiopathic scoliosis (AIS) is an unexplained and common spinal deformity seen in otherwise healthy children. Its pathophysiology is poorly understood despite intensive investigation. Although genetic underpinnings are clear, replicated susceptibility loci that could provide insight into etiology have not been forthcoming. To address these issues, we performed genome-wide association studies (GWAS) of ∼327 000 single nucleotide polymorphisms (SNPs) in 419 AIS families. We found strongest evidence of association with chromosome 3p26.3 SNPs in the proximity of the CHL1 gene (P < 8 × 10−8 for rs1400180). We genotyped additional chromosome 3p26.3 SNPs and tested replication in two follow-up case–control cohorts, obtaining strongest results when all three cohorts were combined (rs10510181 odds ratio = 1.49, 95% confidence interval = 1.29–1.73, P = 2.58 × 10−8), but these were not confirmed in a separate GWAS. CHL1 is of interest, as it encodes an axon guidance protein related to Robo3. Mutations in the Robo3 protein cause horizontal gaze palsy with progressive scoliosis (HGPPS), a rare disease marked by severe scoliosis. Other top associations in our GWAS were with SNPs in the DSCAM gene encoding an axon guidance protein in the same structural class with Chl1 and Robo3. We additionally found AIS associations with loci in CNTNAP2, supporting a previous study linking this gene with AIS. Cntnap2 is also of functional interest, as it interacts directly with L1 and Robo class proteins and participates in axon pathfinding. Our results suggest the relevance of axon guidance pathways in AIS susceptibility, although these findings require further study, particularly given the apparent genetic heterogeneity in this disease. PMID:21216876

  11. Pharmacogenetics and Pharmacotherapy of Military Personnel Suffering from Post-traumatic Stress Disorder.

    PubMed

    Naß, Janine; Efferth, Thomas

    2017-01-01

    Posttraumatic stress disorder (PTSD) is a severe problem among soldiers with combating experience difficult to treat. The pathogenesis is still not fully understood at the psychological level. Therefore, genetic research became a focus of interest. The identification of single nucleotide polymorphisms (SNPs) may help to predict, which persons are at high risk to develop PTSD as a starting point to develop novel targeted drugs for treatment. We conducted a systematic review on SNPs in genes related to PTSD pathology and development of targeted pharmacological treatment options based on PubMed database searches. We focused on clinical trials with military personnel. SNPs in 22 human genes have been linked to PTSD. These genes encode proteins acting as neurotransmitters and receptors, downstream signal transducers and metabolizing enzymes. Pharmacological inhibitors may serve as drug candidates for PTSD treatment, e.g. β2 adrenoreceptor antagonists, dopamine antagonists, partial dopamine D2 receptor agonists, dopamine β hydroxylase inhibitors, fatty acid amid hydrolase antagonists, glucocorticoid receptor agonists, tropomyosin receptor kinase B agonists, selective serotonin reuptake inhibitors, catechol-O-methyltransferase inhibitors, gamma-amino butyric acid receptor agonists, glutamate receptor inhibitors, monoaminoxidase B inhibitors, N-methyl-d-aspartate receptor antagonists. The combination of genetic and pharmacological research may lead to novel targetbased drug developments with improved specificity and efficacy to treat PTSD. Specific SNPs may be identified as reliable biomarkers to assess individual disease risk. Focusing on soldiers suffering from PTSD will not only help to improve treatment options for this specific group, but for all PTSD patients and the general population. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Effect of statins on sirtuin 1 and endothelial nitric oxide synthase expression in young patients with a history of premature myocardial infarction.

    PubMed

    Yamaç, Aylin Hatice; Kılıç, Ülkan

    2018-04-01

    The present study was an investigation of the effect of statins on the expression of circulating sirtuin 1 (SIRT1) and endothelial nitric oxide synthase (eNOS) proteins, and on the distribution of single nucleotide polymorphisms (SNPs) of the SIRT1 gene in patients with a history of premature myocardial infarction (PMI). A total of 108 patients who had suffered from a premature ST-elevation myocardial infarction (STEMI) under the age of 45 years were enrolled in this study. While 79 patients had been taking statins since the index event, 29 patients had discontinued statin treatment after hospital discharge due to noncompliance or insufficient information about the importance of continuous statin therapy in post-MI patients. The control group consisted of 91 healthy patients without a previous cardiovascular event. The levels of SIRT1 and eNOS protein; oxidative stress markers, like total antioxidant status (TAS), total oxidant status (TOS), and the oxidative stress index (OSI); as well as the distribution of the SNPs rs7069102 and rs2273773 were measured and analyzed. A significant increase in the SIRT1 level (p<0.001) and a significant decrease in the eNOS level (p=0.001) was observed in all genotypes and alleles for both SNPs in patients who received statin therapy compared with the control group. Both SNPs were distributed in a similar frequency in the 2 MI groups, irrespective of statin treatment. Statins induce SIRT1 protein, which might have a cardioprotective role after PMI. In addition, the eNOS protein level was low in all of the MI patients, suggesting that impairment of eNOS expression is disease-specific without a causal link to SIRT1.

  13. A brain-derived neurotrophic factor polymorphism Val66Met identifies fibromyalgia syndrome subgroup with higher body mass index and C-reactive protein.

    PubMed

    Xiao, Yangming; Russell, I Jon; Liu, Ya-Guang

    2012-08-01

    A common single nucleotide polymorphism (SNP) in the gene of brain-derived neurotrophic factor (BDNF) results from a substitution at position 66 from valine (Val) to methionine (Met) and may predispose to human neuropsychiatric disorders. We proposed to determine whether these BDNF gene SNPs were associated with fibromyalgia syndrome (FMS) and/or any of its typical phenotypes. Patients with FMS (N = 95) and healthy normal controls (HNC, N = 58) were studied. Serum high-sensitivity C-reactive protein (hsCRP) levels were measured using an enzyme-linked immunosorbent assay (ELISA). The BDNF SNPs were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).The BDNF SNP distribution was 65 (68%) Val/Val, 28 (30%) Val/Met, and 2 (2%) Met/Met for FMS and 40 (69%), 17(29%), and 1 (2%) for HNC, respectively. The serum high-sensitivity C-reactive protein (hsCRP)and body mass index (BMI) in FMS were higher than in HNC. The FMS with BDNF Val66Val had significantly higher mean BMI (P = 0.0001) and hsCRP (P = 0.02) than did FMS carrying the Val66Met genotype. This pattern was not found in HNC. Phenotypic measures of subjective pain, pain threshold, depression, or insomnia did not relate to either of the BDNF SNPs in FMS. The relative distribution BDNF SNPs did not differ between FMS and HNC. The BDNF Val66Met polymorphism is not selective for FMS. The BDNF Val66Val SNP identifies a subgroup of FMS with elevated hsCRP and higher BMI. This is the first study to associate a BDNF polymorphism with a FMS subgroup phenotype.

  14. LINGO1 rs9652490 and rs11856808 polymorphisms are not associated with risk for multiple sclerosis

    PubMed Central

    2013-01-01

    Background Some recent experimental data suggest a possible role of LINGO-1 in the pathogenesis of multiple sclerosis (MS). In an attempt to identify genetic biomarkers related to MS susceptibility, we genotyped two common SNPs in the LINGO1 gene which have been associated to other neurological conditions, in patients with MS and in healthy subjects. These SNPs are linked to several SNPs within the LINGO1 gene, especially in individuals of Oriental or Caucasian descent. Methods We analyzed the allelic and genotype frequency of two LINGO1 variants (rs9652490 and rs11856808) in 293 patients with MS and 318 healthy controls, using KASPar assays. Results LINGO1 rs9652490 and rs11856808 allelic and genotype frequencies did not differ significantly between MS patients and controls. The minor allele frequencies for rs9652490 were 0.171 (95% CI = 0.140-0.201) and 0.167 (95% CI = 0.138-0.196 for cases and controls respectively (p = 0.853). For rs11856808 the minor allele frequencies were 0.317 (95% CI = 0.280-0.355) and 0.310 (95% CI = 0.274-0.346) for cases and controls, respectively (p = 0.773). Allele and genotype frequencies were unrelated with the age of onset of MS, gender, and clinical course of MS. In addition, haplotype analyses did not reveal any putative risk related to haplotypes. Conclusions These results suggest that LINGO1 rs9652490 and rs11856808 polymorphisms are not related with risk for MS. This study adds to other published evidence indicating that, to date, the LINGO1 SNPs studied here could be useful risk biomarkers of developing essential tremor, but not other movement disorders. PMID:23574883

  15. Evaluation of Candidate Genes for Cholinesterase Activity in Farmworkers Exposed to Organophosphorus Pesticides: Association of Single Nucleotide Polymorphisms in BCHE

    PubMed Central

    Howard, Timothy D.; Hsu, Fang-Chi; Grzywacz, Joseph G.; Chen, Haiying; Quandt, Sara A.; Vallejos, Quirina M.; Whalley, Lara E.; Cui, Wei; Padilla, Stephanie; Arcury, Thomas A.

    2010-01-01

    Background Organophosphate pesticides act as cholinesterase inhibitors. For those with agricultural exposure to these chemicals, risk of potential exposure-related health effects may be modified by genetic variability in cholinesterase metabolism. Cholinesterase activity is a useful, indirect measurement of pesticide exposure, especially in high-risk individuals such as farmworkers. To understand fully the links between pesticide exposure and potential human disease, analyses must be able to consider genetic variability in pesticide metabolism. Objectives We studied participants in the Community Participatory Approach to Measuring Farmworker Pesticide Exposure (PACE3) study to determine whether cholinesterase levels are associated with single-nucleotide polymorphisms (SNPs) involved in pesticide metabolism. Methods Cholinesterase levels were measured from blood samples taken from 287 PACE3 participants at up to four time points during the 2007 growing season. We performed association tests of cholinesterase levels and 256 SNPs in 30 candidate genes potentially involved in pesticide metabolism. A false discovery rate (FDR) p-value was used to account for multiple testing. Results Thirty-five SNPs were associated (unadjusted p < 0.05) based on at least one of the genetic models tested (general, additive, dominant, and recessive). The strongest evidence of association with cholinesterase levels was observed with two SNPs, rs2668207 and rs2048493, in the butyrylcholinesterase (BCHE) gene (FDR adjusted p = 0.15 for both; unadjusted p = 0.00098 and 0.00068, respectively). In participants with at least one minor allele, cholinesterase levels were lower by 4.3–9.5% at all time points, consistent with an effect that is independent of pesticide exposure. Conclusions Common genetic variation in the BCHE gene may contribute to subtle changes in cholinesterase levels. PMID:20529763

  16. Genome-wide polymorphisms and development of a microarray platform to detect genetic variations in Plasmodium yoelii.

    PubMed

    Nair, Sethu C; Pattaradilokrat, Sittiporn; Zilversmit, Martine M; Dommer, Jennifer; Nagarajan, Vijayaraj; Stephens, Melissa T; Xiao, Wenming; Tan, John C; Su, Xin-Zhuan

    2014-01-01

    The rodent malaria parasite Plasmodium yoelii is an important model for studying malaria immunity and pathogenesis. One approach for studying malaria disease phenotypes is genetic mapping, which requires typing a large number of genetic markers from multiple parasite strains and/or progeny from genetic crosses. Hundreds of microsatellite (MS) markers have been developed to genotype the P. yoelii genome; however, typing a large number of MS markers can be labor intensive, time consuming, and expensive. Thus, development of high-throughput genotyping tools such as DNA microarrays that enable rapid and accurate large-scale genotyping of the malaria parasite will be highly desirable. In this study, we sequenced the genomes of two P. yoelii strains (33X and N67) and obtained a large number of single nucleotide polymorphisms (SNPs). Based on the SNPs obtained, we designed sets of oligonucleotide probes to develop a microarray that could interrogate ∼11,000 SNPs across the 14 chromosomes of the parasite in a single hybridization. Results from hybridizations of DNA samples of five P. yoelii strains or cloned lines (17XNL, YM, 33X, N67 and N67C) and two progeny from a genetic cross (N67×17XNL) to the microarray showed that the array had a high call rate (∼97%) and accuracy (99.9%) in calling SNPs, providing a simple and reliable tool for typing the P. yoelii genome. Our data show that the P. yoelii genome is highly polymorphic, although isogenic pairs of parasites were also detected. Additionally, our results indicate that the 33X parasite is a progeny of 17XNL (or YM) and an unknown parasite. The highly accurate and reliable microarray developed in this study will greatly facilitate our ability to study the genetic basis of important traits and the disease it causes. Published by Elsevier B.V.

  17. A pleiotropy-informed Bayesian false discovery rate adapted to a shared control design finds new disease associations from GWAS summary statistics.

    PubMed

    Liley, James; Wallace, Chris

    2015-02-01

    Genome-wide association studies (GWAS) have been successful in identifying single nucleotide polymorphisms (SNPs) associated with many traits and diseases. However, at existing sample sizes, these variants explain only part of the estimated heritability. Leverage of GWAS results from related phenotypes may improve detection without the need for larger datasets. The Bayesian conditional false discovery rate (cFDR) constitutes an upper bound on the expected false discovery rate (FDR) across a set of SNPs whose p values for two diseases are both less than two disease-specific thresholds. Calculation of the cFDR requires only summary statistics and have several advantages over traditional GWAS analysis. However, existing methods require distinct control samples between studies. Here, we extend the technique to allow for some or all controls to be shared, increasing applicability. Several different SNP sets can be defined with the same cFDR value, and we show that the expected FDR across the union of these sets may exceed expected FDR in any single set. We describe a procedure to establish an upper bound for the expected FDR among the union of such sets of SNPs. We apply our technique to pairwise analysis of p values from ten autoimmune diseases with variable sharing of controls, enabling discovery of 59 SNP-disease associations which do not reach GWAS significance after genomic control in individual datasets. Most of the SNPs we highlight have previously been confirmed using replication studies or larger GWAS, a useful validation of our technique; we report eight SNP-disease associations across five diseases not previously declared. Our technique extends and strengthens the previous algorithm, and establishes robust limits on the expected FDR. This approach can improve SNP detection in GWAS, and give insight into shared aetiology between phenotypically related conditions.

  18. Multiple SNP Markers Reveal Fine-Scale Population and Deep Phylogeographic Structure in European Anchovy (Engraulis encrasicolus L.)

    PubMed Central

    Zarraonaindia, Iratxe; Iriondo, Mikel; Albaina, Aitor; Pardo, Miguel Angel; Manzano, Carmen; Grant, W. Stewart; Irigoien, Xabier; Estonba, Andone

    2012-01-01

    Geographic surveys of allozymes, microsatellites, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) have detected several genetic subdivisions among European anchovy populations. However, these studies have been limited in their power to detect some aspects of population structure by the use of a single or a few molecular markers, or by limited geographic sampling. We use a multi-marker approach, 47 nDNA and 15 mtDNA single nucleotide polymorphisms (SNPs), to analyze 626 European anchovies from the whole range of the species to resolve shallow and deep levels of population structure. Nuclear SNPs define 10 genetic entities within two larger genetically distinctive groups associated with oceanic variables and different life-history traits. MtDNA SNPs define two deep phylogroups that reflect ancient dispersals and colonizations. These markers define two ecological groups. One major group of Iberian-Atlantic populations is associated with upwelling areas on narrow continental shelves and includes populations spawning and overwintering in coastal areas. A second major group includes northern populations in the North East (NE) Atlantic (including the Bay of Biscay) and the Mediterranean and is associated with wide continental shelves with local larval retention currents. This group tends to spawn and overwinter in oceanic areas. These two groups encompass ten populations that differ from previously defined management stocks in the Alboran Sea, Iberian-Atlantic and Bay of Biscay regions. In addition, a new North Sea-English Channel stock is defined. SNPs indicate that some populations in the Bay of Biscay are genetically closer to North Western (NW) Mediterranean populations than to other populations in the NE Atlantic, likely due to colonizations of the Bay of Biscay and NW Mediterranean by migrants from a common ancestral population. Northern NE Atlantic populations were subsequently established by migrants from the Bay of Biscay. Populations along the Iberian-Atlantic coast appear to have been founded by secondary waves of migrants from a southern refuge. PMID:22860082

  19. Fine-Scale Variation and Genetic Determinants of Alternative Splicing across Individuals

    PubMed Central

    Coulombe-Huntington, Jasmin; Lam, Kevin C. L.; Dias, Christel; Majewski, Jacek

    2009-01-01

    Recently, thanks to the increasing throughput of new technologies, we have begun to explore the full extent of alternative pre–mRNA splicing (AS) in the human transcriptome. This is unveiling a vast layer of complexity in isoform-level expression differences between individuals. We used previously published splicing sensitive microarray data from lymphoblastoid cell lines to conduct an in-depth analysis on splicing efficiency of known and predicted exons. By combining publicly available AS annotation with a novel algorithm designed to search for AS, we show that many real AS events can be detected within the usually unexploited, speculative majority of the array and at significance levels much below standard multiple-testing thresholds, demonstrating that the extent of cis-regulated differential splicing between individuals is potentially far greater than previously reported. Specifically, many genes show subtle but significant genetically controlled differences in splice-site usage. PCR validation shows that 42 out of 58 (72%) candidate gene regions undergo detectable AS, amounting to the largest scale validation of isoform eQTLs to date. Targeted sequencing revealed a likely causative SNP in most validated cases. In all 17 incidences where a SNP affected a splice-site region, in silico splice-site strength modeling correctly predicted the direction of the micro-array and PCR results. In 13 other cases, we identified likely causative SNPs disrupting predicted splicing enhancers. Using Fst and REHH analysis, we uncovered significant evidence that 2 putative causative SNPs have undergone recent positive selection. We verified the effect of five SNPs using in vivo minigene assays. This study shows that splicing differences between individuals, including quantitative differences in isoform ratios, are frequent in human populations and that causative SNPs can be identified using in silico predictions. Several cases affected disease-relevant genes and it is likely some of these differences are involved in phenotypic diversity and susceptibility to complex diseases. PMID:20011102

  20. Genetic Variation in the Transforming Growth Factor-β Signaling Pathway and Survival After Diagnosis With Colon and Rectal Cancer

    PubMed Central

    Slattery, Martha L.; Lundgreen, Abbie; Herrick, Jennifer S.; Wolff, Roger K.; Caan, Bette J.

    2012-01-01

    BACKGROUND The transforming growth factor-β (TGF-β) signaling pathway is involved in many aspects of tumori-genesis, including angiogenesis and metastasis. The authors evaluated this pathway in association with survival after a diagnosis of colon or rectal cancer. METHODS The study included 1553 patients with colon cancer and 754 patients with rectal cancer who had incident first primary disease and were followed for a minimum of 7 years after diagnosis. Genetic variations were evaluated in the genes TGF-β1 (2 single nucleotide polymorphisms [SNPs]), TGF-β receptor 1 (TGF-βR1) (3 SNPs), smooth muscle actin/mothers against decapentaplegic homolog 1 (Smad1) (5 SNPs), Smad2 (4 SNPs), Smad3 (37 SNPs), Smad4 (2 SNPs), Smad7 (11 SNPs), bone morphogenetic protein 1 (BMP1) (11 SNPs), BMP2 (5 SNPs), BMP4 (3 SNPs), bone morphogenetic protein receptor 1A (BMPR1A) (9 SNPs), BMPR1B (21 SNPs), BMPR2 (11 SNPs), growth differentiation factor 10 (GDF10) (7 SNPs), Runt-related transcription factor 1 (RUNX1) (40 SNPs), RUNX2 (19 SNPs), RUNX3 (9 SNPs), eukaryotic translation initiation factor 4E (eiF4E) (3 SNPs), eukaryotic translation initiation factor 4E-binding protein 3 (eiF4EBP2) (2 SNPs), eiF4EBP3 (2 SNPs), and mitogen-activated protein kinase 1 (MAPK1) (6 SNPs). RESULTS After adjusting for American Joint Committee on Cancer stage and tumor molecular phenotype, 12 genes and 18 SNPs were associated with survival in patients with colon cancer, and 7 genes and 15 tagSNPs were associated with survival after a diagnosis of rectal cancer. A summary score based on “at-risk” genotypes revealed a hazard rate ratio of 5.10 (95% confidence interval, 2.56-10.15) for the group with the greatest number of “at-risk” genotypes; for rectal cancer, the hazard rate ratio was 6.03 (95% confidence interval, 2.83-12.75). CONCLUSIONS The current findings suggest that the presence of several higher risk alleles in the TGF-β signaling pathway increase the likelihood of dying after a diagnosis of colon or rectal cancer. PMID:21365634

  1. Genetic and Environmental Pathways in Type 1 Diabetes Complications

    DTIC Science & Technology

    2008-09-01

    the “Limit By Function Type” heading opens a new browser window to the online user guide describing the use of this filter when selecting SNPs for...T1D. The juxtaglomerular apparatus comprises different structures in functional and structural link: cells of the extraglomerular mesangium, which fill...27 Aug 2007-26 Aug 2008 4. TITLE AND SUBTITLE Genetic and Environmental Pathways in Type 1 Diabetes Complications New Advanced Technology to

  2. SIRT1 Polymorphisms and Serum-Induced SIRT1 Protein Expression in Aging and Frailty: The CHAMP Study.

    PubMed

    Razi, Shajjia; Cogger, Victoria C; Kennerson, Marina; Benson, Vicky L; McMahon, Aisling C; Blyth, Fiona M; Handelsman, David J; Seibel, Markus J; Hirani, Vasant; Naganathan, Vasikaran; Waite, Louise; de Cabo, Rafael; Cumming, Robert G; Le Couteur, David G

    2017-07-01

    The nutrient sensing protein, SIRT1 influences aging and nutritional interventions such as caloric restriction in animals, however, the role of SIRT1 in human aging remains unclear. Here, the role of SIRT1 single-nucleotide polymorphisms (SNPs) and serum-induced SIRT1 protein expression (a novel assay that detects circulating factors that influence SIRT1 expression in vitro) were studied in the Concord Health and Ageing in Men Project (CHAMP), a prospective cohort of community dwelling men aged 70 years and older. Serum-induced SIRT1 expression was not associated with age or mortality, however participants within the lowest quintile were less likely to be frail (odds ratio (OR) 0.34, 95% confidence interval (CI) 0.17-0.69, N = 1,309). Serum-induced SIRT1 expression was associated with some markers of body composition and nutrition (height, weight, body fat and lean % mass, albumin, and cholesterol) but not disease. SIRT1 SNPs rs2273773, rs3740051, and rs3758391 showed no association with age, frailty, or mortality but were associated with weight, height, body fat and lean, and albumin levels. There were some weak associations between SIRT1 SNPs and arthritis, heart attack, deafness, and cognitive impairment. There was no association between SIRT1 SNPs and the serum-induced SIRT1 assay. SIRT1 SNPs and serum-induced SIRT1 expression in older men may be more closely associated with nutrition and body composition than aging and age-related conditions. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Type 2 diabetes (T2D) associated polymorphisms regulate expression of adjacent transcripts in transformed lymphocytes, adipose, and muscle from Caucasian and African-American subjects.

    PubMed

    Sharma, Neeraj K; Langberg, Kurt A; Mondal, Ashis K; Elbein, Steven C; Das, Swapan K

    2011-02-01

    Genome-wide association scans (GWAS) have identified novel single nucleotide polymorphisms (SNPs) that increase T2D susceptibility and indicated the role of nearby genes in T2D pathogenesis. We hypothesized that T2D-associated SNPs act as cis-regulators of nearby genes in human tissues and that expression of these transcripts may correlate with metabolic traits, including insulin sensitivity (S(I)). Association of SNPs with the expression of their nearest transcripts was tested in adipose and muscle from 168 healthy individuals who spanned a broad range of S(I) and body mass index (BMI) and in transformed lymphocytes (TLs). We tested correlations between the expression of these transcripts in adipose and muscle with metabolic traits. Utilizing allelic expression imbalance (AEI) analysis we examined the presence of other cis-regulators for those transcripts in TLs. SNP rs9472138 was significantly (P = 0.037) associated with the expression of VEGFA in TLs while rs6698181 was detected as a cis-regulator for the PKN2 in muscle (P = 0.00027) and adipose (P = 0.018). Significant association was also observed for rs17036101 (P = 0.001) with expression of SYN2 in adipose of Caucasians. Among 19 GWAS-implicated transcripts, expression of VEGFA in adipose was correlated with BMI (r = -0.305) and S(I) (r = 0.230). Although only a minority of the T2D-associated SNPs were validated as cis-eQTLs for nearby transcripts, AEI analysis indicated presence of other cis-regulatory polymorphisms in 54% of these transcripts. Our study suggests that a small subset of GWAS-identified SNPs may increase T2D susceptibility by modulating expression of nearby transcripts in adipose or muscle.

  4. Resequencing of Capsicum annuum parental lines (YCM334 and Taean) for the genetic analysis of bacterial wilt resistance.

    PubMed

    Kang, Yang Jae; Ahn, Yul-Kyun; Kim, Ki-Taek; Jun, Tae-Hwan

    2016-10-28

    Bacterial wilt (BW) is a widespread plant disease that affects a broad range of dicot and monocot hosts and is particularly harmful for solanaceous plants, such as pepper, tomato, and eggplant. The pathogen responsible for BW is the soil-borne bacterium, Ralstonia solanacearum, which can adapt to diverse temperature conditions and is found in climates ranging from tropical to temperate. Resistance to BW has been detected in some pepper plant lines; however, the genomic loci and alleles that mediate this are poorly studied in this species. We resequenced the pepper cultivars YCM344 and Taean, which are parental recombinant inbred lines (RIL) that display differential resistance phenotypes against BW, with YCM344 being highly resistant to infection with this pathogen. We identified novel single nucleotide polymorphisms (SNPs) and insertions/deletions (Indels) that are only present in both parental lines, as compared to the reference genome and further determined variations that distinguish these two cultivars from one another. We then identified potentially informative SNPs that were found in genes related to those that have been previously associated with disease resistance, such as the R genes and stress response genes. Moreover, via comparative analysis, we identified SNPs located in genomic regions that have homology to known resistance genes in the tomato genomes. From our SNP profiling in both parental lines, we could identify SNPs that are potentially responsible for BW resistance, and practically, these may be used as markers for assisted breeding schemes using these populations. We predict that our analyses will be valuable for both better understanding the YCM334/Taean-derived populations, as well as for enhancing our knowledge of critical SNPs present in the pepper genome.

  5. Genome-wide association for heifer reproduction and calf performance traits in beef cattle.

    PubMed

    Akanno, Everestus C; Plastow, Graham; Fitzsimmons, Carolyn; Miller, Stephen P; Baron, Vern; Ominski, Kimberly; Basarab, John A

    2015-12-01

    The aim of this study was to identify SNP markers that associate with variation in beef heifer reproduction and performance of their calves. A genome-wide association study was performed by means of the generalized quasi-likelihood score (GQLS) method using heifer genotypes from the BovineSNP50 BeadChip and estimated breeding values for pre-breeding body weight (PBW), pregnancy rate (PR), calving difficulty (CD), age at first calving (AFC), calf birth weight (BWT), calf weaning weight (WWT), and calf pre-weaning average daily gain (ADG). Data consisted of 785 replacement heifers from three Canadian research herds, namely Brandon Research Centre, Brandon, Manitoba, University of Alberta Roy Berg Kinsella Ranch, Kinsella, Alberta, and Lacombe Research Centre, Lacombe, Alberta. After applying a false discovery rate correction at a 5% significance level, a total of 4, 3, 3, 9, 6, 2, and 1 SNPs were significantly associated with PBW, PR, CD, AFC, BWT, WWT, and ADG, respectively. These SNPs were located on chromosomes 1, 5-7, 9, 13-16, 19-21, 24, 25, and 27-29. Chromosomes 1, 5, and 24 had SNPs with pleiotropic effects. New significant SNPs that impact functional traits were detected, many of which have not been previously reported. The results of this study support quantitative genetic studies related to the inheritance of these traits, and provides new knowledge regarding beef cattle quantitative trait loci effects. The identification of these SNPs provides a starting point to identify genes affecting heifer reproduction traits and performance of their calves (BWT, WWT, and ADG). They also contribute to a better understanding of the biology underlying these traits and will be potentially useful in marker- and genome-assisted selection and management.

  6. Adaptations to Climate in Candidate Genes for Common Metabolic Disorders

    PubMed Central

    Hancock, Angela M; Witonsky, David B; Gordon, Adam S; Eshel, Gidon; Pritchard, Jonathan K; Coop, Graham; Di Rienzo, Anna

    2008-01-01

    Evolutionary pressures due to variation in climate play an important role in shaping phenotypic variation among and within species and have been shown to influence variation in phenotypes such as body shape and size among humans. Genes involved in energy metabolism are likely to be central to heat and cold tolerance. To test the hypothesis that climate shaped variation in metabolism genes in humans, we used a bioinformatics approach based on network theory to select 82 candidate genes for common metabolic disorders. We genotyped 873 tag SNPs in these genes in 54 worldwide populations (including the 52 in the Human Genome Diversity Project panel) and found correlations with climate variables using rank correlation analysis and a newly developed method termed Bayesian geographic analysis. In addition, we genotyped 210 carefully matched control SNPs to provide an empirical null distribution for spatial patterns of allele frequency due to population history alone. For nearly all climate variables, we found an excess of genic SNPs in the tail of the distributions of the test statistics compared to the control SNPs, implying that metabolic genes as a group show signals of spatially varying selection. Among our strongest signals were several SNPs (e.g., LEPR R109K, FABP2 A54T) that had previously been associated with phenotypes directly related to cold tolerance. Since variation in climate may be correlated with other aspects of environmental variation, it is possible that some of the signals that we detected reflect selective pressures other than climate. Nevertheless, our results are consistent with the idea that climate has been an important selective pressure acting on candidate genes for common metabolic disorders. PMID:18282109

  7. Identification of genetic variants predictive of early onset pancreatic cancer through a population science analysis of functional genomic datasets

    PubMed Central

    Chen, Jinyun; Wu, Xifeng; Huang, Yujing; Chen, Wei; Brand, Randall E.; Killary, Ann M.; Sen, Subrata; Frazier, Marsha L.

    2016-01-01

    Biomarkers are critically needed for the early detection of pancreatic cancer (PC) are urgently needed. Our purpose was to identify a panel of genetic variants that, combined, can predict increased risk for early-onset PC and thereby identify individuals who should begin screening at an early age. Previously, we identified genes using a functional genomic approach that were aberrantly expressed in early pathways to PC tumorigenesis. We now report the discovery of single nucleotide polymorphisms (SNPs) in these genes associated with early age at diagnosis of PC using a two-phase study design. In silico and bioinformatics tools were used to examine functional relevance of the identified SNPs. Eight SNPs were consistently associated with age at diagnosis in the discovery phase, validation phase and pooled analysis. Further analysis of the joint effects of these 8 SNPs showed that, compared to participants carrying none of these unfavorable genotypes (median age at PC diagnosis 70 years), those carrying 1–2, 3–4, or 5 or more unfavorable genotypes had median ages at diagnosis of 64, 63, and 62 years, respectively (P = 3.0E–04). A gene-dosage effect was observed, with age at diagnosis inversely related to number of unfavorable genotypes (Ptrend = 1.0E–04). Using bioinformatics tools, we found that all of the 8 SNPs were predicted to play functional roles in the disruption of transcription factor and/or enhancer binding sites and most of them were expression quantitative trait loci (eQTL) of the target genes. The panel of genetic markers identified may serve as susceptibility markers for earlier PC diagnosis. PMID:27486767

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Zhongli; Department of Etiology and Carcinogenesis; Zhang, Wencheng

    Purpose: To investigate whether single nucleotide polymorphisms (SNPs) in the ataxia telangiectasia mutated (ATM) gene are associated with survival in patients with esophageal squamous cell carcinoma (ESCC) receiving radiation therapy or chemoradiation therapy or surgery only. Methods and Materials: Four tagSNPs of ATM were genotyped in 412 individuals with clinical stage III or IV ESCC receiving radiation therapy or chemoradiation therapy, and in 388 individuals with stage I, II, or III ESCC treated with surgery only. Overall survival time of ESCC among different genotypes was estimated by Kaplan-Meier plot, and the significance was examined by log-rank test. The hazard ratios (HRs)more » and 95% confidence intervals (CIs) for death from ESCC among different genotypes were computed by a Cox proportional regression model. Results: We found 2 SNPs, rs664143 and rs664677, associated with survival time of ESCC patients receiving radiation therapy. Individuals with the rs664143A allele had poorer median survival time compared with the rs664143G allele (14.0 vs 20.0 months), with the HR for death being 1.45 (95% CI 1.12-1.89). Individuals with the rs664677C allele also had worse median survival time than those with the rs664677T allele (14.0 vs 23.5 months), with the HR of 1.57 (95% CI 1.18-2.08). Stratified analysis showed that these associations were present in both stage III and IV cancer and different radiation therapy techniques. Significant associations were also found between the SNPs and locosregional progression or progression-free survival. No association between these SNPs and survival time was detected in ESCC patients treated with surgery only. Conclusion: These results suggest that the ATM polymorphisms might serve as independent biomarkers for predicting prognosis in ESCC patients receiving radiation therapy.« less

  9. Identification of Novel Single Nucleotide Polymorphisms Associated with Acute Respiratory Distress Syndrome by Exome-Seq

    PubMed Central

    Shortt, Katherine; Chaudhary, Suman; Grigoryev, Dmitry; Heruth, Daniel P.; Venkitachalam, Lakshmi; Zhang, Li Q.; Ye, Shui Q.

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a lung condition characterized by impaired gas exchange with systemic release of inflammatory mediators, causing pulmonary inflammation, vascular leak and hypoxemia. Existing biomarkers have limited effectiveness as diagnostic and therapeutic targets. To identify disease-associating variants in ARDS patients, whole-exome sequencing was performed on 96 ARDS patients, detecting 1,382,399 SNPs. By comparing these exome data to those of the 1000 Genomes Project, we identified a number of single nucleotide polymorphisms (SNP) which are potentially associated with ARDS. 50,190SNPs were found in all case subgroups and controls, of which89 SNPs were associated with susceptibility. We validated three SNPs (rs78142040, rs9605146 and rs3848719) in additional ARDS patients to substantiate their associations with susceptibility, severity and outcome of ARDS. rs78142040 (C>T) occurs within a histone mark (intron 6) of the Arylsulfatase D gene. rs9605146 (G>A) causes a deleterious coding change (proline to leucine) in the XK, Kell blood group complex subunit-related family, member 3 gene. rs3848719 (G>A) is a synonymous SNP in the Zinc-Finger/Leucine-Zipper Co-Transducer NIF1 gene. rs78142040, rs9605146, and rs3848719 are associated significantly with susceptibility to ARDS. rs3848719 is associated with APACHE II score quartile. rs78142040 is associated with 60-day mortality in the overall ARDS patient population. Exome-seq is a powerful tool to identify potential new biomarkers for ARDS. We selectively validated three SNPs which have not been previously associated with ARDS and represent potential new genetic biomarkers for ARDS. Additional validation in larger patient populations and further exploration of underlying molecular mechanisms are warranted. PMID:25372662

  10. Genome Features of “Dark-Fly”, a Drosophila Line Reared Long-Term in a Dark Environment

    PubMed Central

    Zhou, Jun; Sugiyama, Yuzo; Nishimura, Osamu; Aizu, Tomoyuki; Toyoda, Atsushi; Fujiyama, Asao; Agata, Kiyokazu

    2012-01-01

    Organisms are remarkably adapted to diverse environments by specialized metabolisms, morphology, or behaviors. To address the molecular mechanisms underlying environmental adaptation, we have utilized a Drosophila melanogaster line, termed “Dark-fly”, which has been maintained in constant dark conditions for 57 years (1400 generations). We found that Dark-fly exhibited higher fecundity in dark than in light conditions, indicating that Dark-fly possesses some traits advantageous in darkness. Using next-generation sequencing technology, we determined the whole genome sequence of Dark-fly and identified approximately 220,000 single nucleotide polymorphisms (SNPs) and 4,700 insertions or deletions (InDels) in the Dark-fly genome compared to the genome of the Oregon-R-S strain, a control strain. 1.8% of SNPs were classified as non-synonymous SNPs (nsSNPs: i.e., they alter the amino acid sequence of gene products). Among them, we detected 28 nonsense mutations (i.e., they produce a stop codon in the protein sequence) in the Dark-fly genome. These included genes encoding an olfactory receptor and a light receptor. We also searched runs of homozygosity (ROH) regions as putative regions selected during the population history, and found 21 ROH regions in the Dark-fly genome. We identified 241 genes carrying nsSNPs or InDels in the ROH regions. These include a cluster of alpha-esterase genes that are involved in detoxification processes. Furthermore, analysis of structural variants in the Dark-fly genome showed the deletion of a gene related to fatty acid metabolism. Our results revealed unique features of the Dark-fly genome and provided a list of potential candidate genes involved in environmental adaptation. PMID:22432011

  11. Metabolomic and Functional Genomic Analyses Reveal Varietal Differences in Bioactive Compounds of Cooked Rice

    PubMed Central

    Heuberger, Adam L.; Lewis, Matthew R.; Chen, Ming-Hsuan; Brick, Mark A.; Leach, Jan E.; Ryan, Elizabeth P.

    2010-01-01

    Emerging evidence supports that cooked rice (Oryza sativa L.) contains metabolites with biomedical activities, yet little is known about the genetic diversity that is responsible for metabolite variation and differences in health traits. Metabolites from ten diverse varieties of cooked rice were detected using ultra performance liquid chromatography coupled to mass spectrometry. A total of 3,097 compounds were detected, of which 25% differed among the ten varieties. Multivariate analyses of the metabolite profiles showed that the chemical diversity among the varieties cluster according to their defined subspecies classifications: indica, japonica, and aus. Metabolite-specific genetic diversity in rice was investigated by analyzing a collection of single nucleotide polymorphisms (SNPs) in genes from biochemical pathways of nutritional importance. Two classes of bioactive compounds, phenolics and vitamin E, contained nonsynonymous SNPs and SNPs in the 5′ and 3′ untranslated regions for genes in their biosynthesis pathways. Total phenolics and tocopherol concentrations were determined to examine the effect of the genetic diversity among the ten varieties. Per gram of cooked rice, total phenolics ranged from 113.7 to 392.6 µg (gallic acid equivalents), and total tocopherols ranged between 7.2 and 20.9 µg. The variation in the cooked rice metabolome and quantities of bioactive components supports that the SNP-based genetic diversity influenced nutritional components in rice, and that this approach may guide rice improvement strategies for plant and human health. PMID:20886119

  12. Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia

    PubMed Central

    Mansour, Hader A; Talkowski, Michael E; Wood, Joel; Chowdari, Kodavali V; McClain, Lora; Prasad, Konasale; Montrose, Debra; Fagiolini, Andrea; Friedman, Edward S; Allen, Michael H; Bowden, Charles L; Calabrese, Joseph; El-Mallakh, Rif S; Escamilla, Michael; Faraone, Stephen V; Fossey, Mark D; Gyulai, Laszlo; Loftis, Jennifer M; Hauser, Peter; Ketter, Terence A; Marangell, Lauren B; Miklowitz, David J; Nierenberg, Andrew A; Patel, Jayendra; Sachs, Gary S; Sklar, Pamela; Smoller, Jordan W; Laird, Nan; Keshavan, Matcheri; Thase, Michael E; Axelson, David; Birmaher, Boris; Lewis, David; Monk, Tim; Frank, Ellen; Kupfer, David J; Devlin, Bernie; Nimgaonkar, Vishwajit L

    2012-01-01

    Objective Published studies suggest associations between circadian gene polymorphisms and bipolar I disorder (BPI), as well as schizoaffective disorder (SZA) and schizophrenia (SZ). The results are plausible, based on prior studies of circadian abnormalities. As replications have not been attempted uniformly, we evaluated representative, common polymorphisms in all three disorders. Methods We assayed 276 publicly available ‘tag’ single nucleotide polymorphisms (SNPs) at 21 circadian genes among 523 patients with BPI, 527 patients with SZ/SZA, and 477 screened adult controls. Detected associations were evaluated in relation to two published genome-wide association studies (GWAS). Results Using gene-based tests, suggestive associations were noted between EGR3 and BPI (p = 0.017), and between NPAS2 and SZ/SZA (p = 0.034). Three SNPs were associated with both sets of disorders (NPAS2: rs13025524 and rs11123857; RORB: rs10491929; p < 0.05). None of the associations remained significant following corrections for multiple comparisons. Approximately 15% of the analyzed SNPs overlapped with an independent study that conducted GWAS for BPI; suggestive overlap between the GWAS analyses and ours was noted at ARNTL. Conclusions Several suggestive, novel associations were detected with circadian genes and BPI and SZ/SZA, but the present analyses do not support associations with common polymorphisms that confer risk with odds ratios greater than 1.5. Additional analyses using adequately powered samples are warranted to further evaluate these results. PMID:19839995

  13. Genome-wide association study of preeclampsia detects novel maternal single nucleotide polymorphisms and copy-number variants in subsets of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study cohort

    PubMed Central

    Zhao, Linlu; Bracken, Michael B.; DeWan, Andrew T.

    2013-01-01

    Summary A genome-wide association study was undertaken to identify maternal single nucleotide polymorphisms (SNPs) and copy-number variants (CNVs) associated with preeclampsia. Case-control analysis was performed on 1070 Afro-Caribbean (n=21 cases and 1049 controls) and 723 Hispanic (n=62 cases and 661 controls) mothers and 1257 mothers of European ancestry (n=50 cases and 1207 controls) from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study. European ancestry subjects were genotyped on Illumina Human610-Quad and Afro-Caribbean and Hispanic subjects were genotyped on Illumina Human1M-Duo BeadChip microarrays. Genome-wide SNP data were analyzed using PLINK. CNVs were called using three detection algorithms (GNOSIS, PennCNV, and QuantiSNP), merged using CNVision, and then screened using stringent criteria. SNP and CNV findings were compared to those of the Study of Pregnancy Hypertension in Iowa (SOPHIA), an independent preeclampsia case-control dataset of Caucasian mothers (n=177 cases and 116 controls). A list of top SNPs were identified for each of the HAPO ethnic groups, but none reached Bonferroni-corrected significance. Novel candidate CNVs showing enrichment among preeclampsia cases were also identified in each of the three ethnic groups. Several variants were suggestively replicated in SOPHIA. The discovered SNPs and copy-number variable regions present interesting candidate genetic variants for preeclampsia that warrant further replication and investigation. PMID:23551011

  14. Phenotypic Characterization and Genetic Dissection of Growth Period Traits in Soybean (Glycine max) Using Association Mapping

    PubMed Central

    Huang, Wen; Yang, Jiyu; Li, Candong; Wen, Zixiang; Li, Yinghui; Guan, Rongxia; Guo, Yong; Chang, Ruzhen; Wang, Dechun; Wang, Shuming; Qiu, Li-Juan

    2016-01-01

    The growth period traits are important traits that affect soybean yield. The insights into the genetic basis of growth period traits can provide theoretical basis for cultivated area division, rational distribution, and molecular breeding for soybean varieties. In this study, genome-wide association analysis (GWAS) was exploited to detect the quantitative trait loci (QTL) for number of days to flowering (ETF), number of days from flowering to maturity (FTM), and number of days to maturity (ETM) using 4032 single nucleotide polymorphism (SNP) markers with 146 cultivars mainly from Northeast China. Results showed that abundant phenotypic variation was presented in the population, and variation explained by genotype, environment, and genotype by environment interaction were all significant for each trait. The whole accessions could be clearly clustered into two subpopulations based on their genetic relatedness, and accessions in the same group were almost from the same province. GWAS based on the unified mixed model identified 19 significant SNPs distributed on 11 soybean chromosomes, 12 of which can be consistently detected in both planting densities, and 5 of which were pleotropic QTL. Of 19 SNPs, 7 SNPs located in or close to the previously reported QTL or genes controlling growth period traits. The QTL identified with high resolution in this study will enrich our genomic understanding of growth period traits and could then be explored as genetic markers to be used in genomic applications in soybean breeding. PMID:27367048

  15. Association of yield-related traits in founder genotypes and derivatives of common wheat (Triticum aestivum L.).

    PubMed

    Guo, Jie; Shi, Weiping; Zhang, Zheng; Cheng, Jingye; Sun, Daizhen; Yu, Jin; Li, Xinlei; Guo, Pingyi; Hao, Chenyang

    2018-02-20

    Yield improvement is an ever-important objective of wheat breeding. Studying and understanding the phenotypes and genotypes of yield-related traits has potential for genetic improvement of crops. The genotypes of 215 wheat cultivars including 11 founder parents and 106 derivatives were analyzed by the 9 K wheat SNP iSelect assay. A total of 4138 polymorphic single nucleotide polymorphism (SNP) loci were detected on 21 chromosomes, of which 3792 were mapped to single chromosome locations. All genotypes were phenotyped for six yield-related traits including plant height (PH), spike length (SL), spikelet number per spike (SNPS), kernel number per spike (KNPS), kernel weight per spike (KWPS), and thousand kernel weight (TKW) in six irrigated environments. Genome-wide association analysis detected 117 significant associations of 76 SNPs on 15 chromosomes with phenotypic explanation rates (R 2 ) ranging from 2.03 to 12.76%. In comparing allelic variation between founder parents and their derivatives (106) and other cultivars (98) using the 76 associated SNPs, we found that the region 116.0-133.2 cM on chromosome 5A in founder parents and derivatives carried alleles positively influencing kernel weight per spike (KWPS), rarely found in other cultivars. The identified favorable alleles could mark important chromosome regions in derivatives that were inherited from founder parents. Our results unravel the genetic of yield in founder genotypes, and provide tools for marker-assisted selection for yield improvement.

  16. Evaluation of Fanconi anaemia genes FANCA, FANCC and FANCL in cervical cancer susceptibility.

    PubMed

    Juko-Pecirep, Ivana; Ivansson, Emma L; Gyllensten, Ulf B

    2011-08-01

    Disrupting the function of any of the 13 Fanconi anaemia (FA) genes causes a DNA repair deficiency disorder, with patients being susceptible to a number of cancer types. Variation in the family of FA genes has been suggested to affect risk of cervical cancer. The current study evaluates the influence of three genes in the FA pathway on cervical cancer risk in Swedish women. TagSNPs in FANCA, FANCC and FANCL were selected using the Tagger algorithm in Haploview. A total of 81 tagSNPs were genotyped in 782 cases (CIN3 or ICC) and 775 controls using the Illumina GoldenGate Assay and statistically analyzed for association with cervical cancer. 72 SNPs were successfully genotyped in >98% of the samples. Nominal associations were detected for FANCA rs11649196 (p=0.05) and rs4128763 in FANCC (p=0.02). The associations did not withstand correction for multiple testing. The current study does not support that genetic variation in FANCA, FANCC or FANCL genes affects susceptibility to cervical cancer in the Swedish population. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Associations between polymorphisms in the NICD domain of bovine NOTCH1 gene and growth traits in Chinese Qinchuan cattle.

    PubMed

    Liu, Mei; Zhang, Chenge; Lai, Xinsheng; Xue, Jing; Lan, Xianyong; Lei, Chuzhao; Jia, Yutang; Chen, Hong

    2017-05-01

    NOTCH1 is one of the four mammalian Notch receptors, which is involved in the Notch signaling pathway. Specifically, NOTCH1 promotes the proliferation of myogenic precursor cells, and the NICD domain of NOTCH1 can impair regeneration of skeletal muscles. However, similar research on the bovine NOTCH1 gene is lacking. In this study, we detected the polymorphisms of the bovine NOTCH1 gene in a total of 448 individuals from Chinese Qinchuan cattle with DNA pooling, forced PCR-RFLP, and DNA sequencing methods. Five novel SNPs were identified within the NICD domain, and eight haplotypes comprising combinations of these five SNPs were studied as well. The association analysis of SNPs' effects with growth traits revealed that g.A48250G was significantly associated with body height, body weight, and height at hip cross, and that g.A49239C only showed significant associations with body height. This suggests that the NOTCH1 gene is a strong candidate gene that could be utilized as a promising marker in beef cattle breeding programs.

  18. Genetic loci associated with heart rate variability and their effects on cardiac disease risk

    PubMed Central

    Nolte, Ilja M.; Munoz, M. Loretto; Tragante, Vinicius; Amare, Azmeraw T.; Jansen, Rick; Vaez, Ahmad; von der Heyde, Benedikt; Avery, Christy L.; Bis, Joshua C.; Dierckx, Bram; van Dongen, Jenny; Gogarten, Stephanie M.; Goyette, Philippe; Hernesniemi, Jussi; Huikari, Ville; Hwang, Shih-Jen; Jaju, Deepali; Kerr, Kathleen F.; Kluttig, Alexander; Krijthe, Bouwe P.; Kumar, Jitender; van der Laan, Sander W.; Lyytikäinen, Leo-Pekka; Maihofer, Adam X.; Minassian, Arpi; van der Most, Peter J.; Müller-Nurasyid, Martina; Nivard, Michel; Salvi, Erika; Stewart, James D.; Thayer, Julian F.; Verweij, Niek; Wong, Andrew; Zabaneh, Delilah; Zafarmand, Mohammad H.; Abdellaoui, Abdel; Albarwani, Sulayma; Albert, Christine; Alonso, Alvaro; Ashar, Foram; Auvinen, Juha; Axelsson, Tomas; Baker, Dewleen G.; de Bakker, Paul I. W.; Barcella, Matteo; Bayoumi, Riad; Bieringa, Rob J.; Boomsma, Dorret; Boucher, Gabrielle; Britton, Annie R.; Christophersen, Ingrid; Dietrich, Andrea; Ehret, George B.; Ellinor, Patrick T.; Eskola, Markku; Felix, Janine F.; Floras, John S.; Franco, Oscar H.; Friberg, Peter; Gademan, Maaike G. J.; Geyer, Mark A.; Giedraitis, Vilmantas; Hartman, Catharina A.; Hemerich, Daiane; Hofman, Albert; Hottenga, Jouke-Jan; Huikuri, Heikki; Hutri-Kähönen, Nina; Jouven, Xavier; Junttila, Juhani; Juonala, Markus; Kiviniemi, Antti M.; Kors, Jan A.; Kumari, Meena; Kuznetsova, Tatiana; Laurie, Cathy C.; Lefrandt, Joop D.; Li, Yong; Li, Yun; Liao, Duanping; Limacher, Marian C.; Lin, Henry J.; Lindgren, Cecilia M.; Lubitz, Steven A.; Mahajan, Anubha; McKnight, Barbara; zu Schwabedissen, Henriette Meyer; Milaneschi, Yuri; Mononen, Nina; Morris, Andrew P.; Nalls, Mike A.; Navis, Gerjan; Neijts, Melanie; Nikus, Kjell; North, Kari E.; O'Connor, Daniel T.; Ormel, Johan; Perz, Siegfried; Peters, Annette; Psaty, Bruce M.; Raitakari, Olli T.; Risbrough, Victoria B.; Sinner, Moritz F.; Siscovick, David; Smit, Johannes H.; Smith, Nicholas L.; Soliman, Elsayed Z.; Sotoodehnia, Nona; Staessen, Jan A.; Stein, Phyllis K.; Stilp, Adrienne M.; Stolarz-Skrzypek, Katarzyna; Strauch, Konstantin; Sundström, Johan; Swenne, Cees A.; Syvänen, Ann-Christine; Tardif, Jean-Claude; Taylor, Kent D.; Teumer, Alexander; Thornton, Timothy A.; Tinker, Lesley E.; Uitterlinden, André G.; van Setten, Jessica; Voss, Andreas; Waldenberger, Melanie; Wilhelmsen, Kirk C.; Willemsen, Gonneke; Wong, Quenna; Zhang, Zhu-Ming; Zonderman, Alan B.; Cusi, Daniele; Evans, Michele K.; Greiser, Halina K.; van der Harst, Pim; Hassan, Mohammad; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kääb, Stefan; Kähönen, Mika; Kivimaki, Mika; Kooperberg, Charles; Kuh, Diana; Lehtimäki, Terho; Lind, Lars; Nievergelt, Caroline M.; O'Donnell, Chris J.; Oldehinkel, Albertine J.; Penninx, Brenda; Reiner, Alexander P.; Riese, Harriëtte; van Roon, Arie M.; Rioux, John D.; Rotter, Jerome I.; Sofer, Tamar; Stricker, Bruno H.; Tiemeier, Henning; Vrijkotte, Tanja G. M.; Asselbergs, Folkert W.; Brundel, Bianca J. J. M.; Heckbert, Susan R.; Whitsel, Eric A.; den Hoed, Marcel; Snieder, Harold; de Geus, Eco J. C.

    2017-01-01

    Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (−0.74

  19. SNP rs403212791 in exon 2 of the MTNR1A gene is associated with reproductive seasonality in the Rasa aragonesa sheep breed.

    PubMed

    Calvo, J H; Serrano, M; Martinez-Royo, A; Lahoz, B; Sarto, P; Ibañez-Deler, A; Folch, J; Alabart, J L

    2018-06-01

    The aim of this study was to characterize and identify causative SNPs in the MTNR1A gene responsible for the reproductive seasonality traits in the Rasa aragonesa sheep breed. A total of 290 ewes (155, 84 and 51 mature, young and ewe lambs, respectively) from one flock were controlled from January to August. The following three reproductive seasonality traits were considered: the total days of anoestrus (TDA) and the progesterone cycling months (P4CM); both ovarian function seasonality traits based on blood progesterone levels; and the oestrus cycling months (OCM) based on oestrous detection, which indicate behavioural signs of oestrous. We have sequenced the total coding region plus 733 and 251 bp from the promoter and 3'-UTR regions, respectively, from the gene in 268 ewes. We found 9 and 4 SNPs associated with seasonality traits in the promoter (for TDA and P4CM) and exon 2 (for the three traits), respectively. The SNPs located in the gene promoter modify the putative binding sites for various trans-acting factors. In exon 2, two synonymous SNPs affect RFLP sites, rs406779174/RsaI (for the three traits) and rs430181568/MnlI (for OCM), and they have been related with seasonal reproductive activity in previous association studies with other breeds. SNP rs400830807, which is located in the 3'-UTR, was associated with the three traits, but this did not modify the putative target sites for ovine miRNAs according to in silico predictions. Finally, the SNP rs403212791 (NW_014639035.1: g.15099004G > A), which is also associated with the three seasonality phenotypes, was the most significant SNP detected in this study and was a non-synonymous polymorphism, leading a change from an Arginine to a Cysteine (R336C). Haplotype analyses confirmed the association results and showed that the effects found for the seasonality traits were caused by the SNPs located in exon 2. We have demonstrated that the T allele in the SNP rs403212791 in the MNTR1A gene is associated with a lower TDA and higher P4CM and OCM values in the Rasa Aragonesa breed. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A survey of copy number variation in the porcine genome detected from whole-genome sequence

    USDA-ARS?s Scientific Manuscript database

    An important challenge to post-genomic biology is relating observed phenotypic variation to the underlying genotypic variation. Genome-wide association studies (GWAS) have made thousands of connections between single nucleotide polymorphisms (SNPs) and phenotypes, implicating regions of the genome t...

Top