High-throughput technology for novel SO2 oxidation catalysts
Loskyll, Jonas; Stoewe, Klaus; Maier, Wilhelm F
2011-01-01
We review the state of the art and explain the need for better SO2 oxidation catalysts for the production of sulfuric acid. A high-throughput technology has been developed for the study of potential catalysts in the oxidation of SO2 to SO3. High-throughput methods are reviewed and the problems encountered with their adaptation to the corrosive conditions of SO2 oxidation are described. We show that while emissivity-corrected infrared thermography (ecIRT) can be used for primary screening, it is prone to errors because of the large variations in the emissivity of the catalyst surface. UV-visible (UV-Vis) spectrometry was selected instead as a reliable analysis method of monitoring the SO2 conversion. Installing plain sugar absorbents at reactor outlets proved valuable for the detection and quantitative removal of SO3 from the product gas before the UV-Vis analysis. We also overview some elements used for prescreening and those remaining after the screening of the first catalyst generations. PMID:27877427
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orsenigo, C.; Lietti, L.; Tronconi, E.
1998-06-01
Transient experiments performed over synthesized and commercial V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} catalysts during catalyst conditioning and during step changes of the operating variables (SO{sub 2} inlet concentration and temperature) show that conditioning of the catalyst is required to attain significant and reproducible steady-state data in both the reduction of NO{sub x} and the oxidation of SO{sub 2}. The response time of conditioning for NO{sub x} reduction is of a few hours and that for SO{sub 2} oxidation is of several hours. Fourier transform infrared spectroscopy temperature programmed decomposition, and thermogravimetric measurements showed that catalyst conditioning is associated with amore » slow process of buildup of sulfates: the different characteristic conditioning times observed in the reduction of NO{sub x} and in the oxidation of SO{sub 2} suggest that the buildup of sulfates occurs first at the vanadyl sites and later on at the exposed titania surface. Formation of sulfates at or near the vanadyl sites increases the reactivity in the de-NO{sub x} reaction, possibly due to the increase in the Broensted and Lewis acidity of the catalyst, whereas the titania surface acts as SO{sub 3} acceptor and affects the outlet SO{sub 3} concentration during catalyst conditioning for the SO{sub 2} oxidation reaction. The response time to step changes in SO{sub 2} concentration and temperature is of a few hours in the case of SO{sub 2} oxidation and much shorter in the case of NO{sub x} reduction. The different time responses associated with conditioning and with step changes in the settings of the operating variables have been rationalized in terms of the different extent of perturbation of the sulfate coverage experienced by the catalyst.« less
Chiu, Chun-Hsiang; Hsi, Hsing-Cheng; Lin, Hong-Ping; Chang, Tien-Chin
2015-06-30
This research investigated the effects of manganese oxide (MnOx) impregnation on the physical/chemical properties and multi pollutant control effectiveness of Hg(0) and NO using a V2O5-WO3/TiO2-SiO2 selective catalytic reduction (SCR) catalyst. Raw and MnOx-treated SCR samples were bean-shaped nanoparticles with sizes within 10-30 nm. Impregnating MnOx of ≤ 5 wt% caused limited changes in physical properties of the catalyst. The decrease in surface area when the impregnated MnOx amount was 10 wt% may stem from the pore blockage and particle growth or aggregation of the catalyst. Mn(4+) was the main valence state of impregnated MnOx. Apparent crystallinity of MnOx was not observed based on X-ray diffraction. MnOx impregnation enhanced the Hg(0) oxidation and NO/SO2 removal of SCR catalyst. The 5 and 10% MnOx-impregnated samples had the greatest multi pollutant control potentials for Hg(0) oxidation and NO removal; however, the increasing SO2 removal that may be mainly due to SO2-SO3 conversion should be cautioned. HCl and O2 greatly promoted Hg(0) oxidation. SO2 enhanced Hg(0) oxidation at ≤ 200 ppm while NO and NH3 consistently inhibited Hg(0) oxidation. Elevating flue gas temperature enhanced Hg(0) oxidation. Overall, MnOx-impregnated catalysts show stable and consistent multi pollutant removal effectiveness under the test conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Microkinetic modeling of H 2SO 4 formation on Pt based diesel oxidation catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hom N.; Sun, Yunwei; Glascoe, Elizabeth A.
The presence of water vapor and sulfur oxides in diesel engine exhaust leads to the formation of sulfuric acid (H 2SO 4), which severely impacts the performance of Pt/Pd based emissions aftertreatment catalysts. In this study, a microkinetic model is developed to investigate the reaction pathways of H 2SO 4 formation on Pt based diesel oxidation catalysts (DOCs). The microkinetic model consists of 14 elementary step reactions (7 reversible pairs) and yields prediction in excellent agreement with data obtained from experiments at practically relevant sulfur oxides environment in engine exhaust. The model simulation utilizing a steady-state plug flow reactor demonstratesmore » that it matches experimental data in both kinetically and thermodynamically controlled regions. Results clearly show the negative impact of SO 3 on the SO 2 oxidation light-off temperature, consistent with experimental observations. A reaction pathway analysis shows that the primary pathway of sulfuric acid formation on Pt surface involves SO 2* oxidation to form SO 3* with the subsequent interaction of SO 3* with H 2O* to form H 2SO 4*.« less
Microkinetic modeling of H 2SO 4 formation on Pt based diesel oxidation catalysts
Sharma, Hom N.; Sun, Yunwei; Glascoe, Elizabeth A.
2017-08-10
The presence of water vapor and sulfur oxides in diesel engine exhaust leads to the formation of sulfuric acid (H 2SO 4), which severely impacts the performance of Pt/Pd based emissions aftertreatment catalysts. In this study, a microkinetic model is developed to investigate the reaction pathways of H 2SO 4 formation on Pt based diesel oxidation catalysts (DOCs). The microkinetic model consists of 14 elementary step reactions (7 reversible pairs) and yields prediction in excellent agreement with data obtained from experiments at practically relevant sulfur oxides environment in engine exhaust. The model simulation utilizing a steady-state plug flow reactor demonstratesmore » that it matches experimental data in both kinetically and thermodynamically controlled regions. Results clearly show the negative impact of SO 3 on the SO 2 oxidation light-off temperature, consistent with experimental observations. A reaction pathway analysis shows that the primary pathway of sulfuric acid formation on Pt surface involves SO 2* oxidation to form SO 3* with the subsequent interaction of SO 3* with H 2O* to form H 2SO 4*.« less
The role of fly-ash particulate material and oxide catalysts in stone degradation
NASA Astrophysics Data System (ADS)
Hutchinson, A. J.; Johnson, J. B.; Thompson, G. E.; Wood, G. C.; Sage, P. W.; Cooke, M. J.
Studies of fly-ash composition identified the presence of calcium and sulphur, indicating their potential role as sources of calcium sulphate. Residual acidity (particularly for oil fly ash) suggested the possibility of enhanced chemical reaction, and the presence of transition metals, probably as oxides, might accelerate the oxidation of SO 2 to SO 42-. Exposure tests in a laboratory-based rig simulating dry deposition on Portland and Monks Park limestone, either seeded or unseeded with fly-ash particulate material or transition metal oxide catalysts, were carried out using an SO 2-containing environment at 95% r.h. Enhanced sulphation of these seeded limestones due to the above factors was minimal; at high loadings of fly ash, there was even evidence of masking the limestone surface, reducing sulphation. However, pure CaCO 3 powder in the exposure rig showed increases in sulphation when seeded with metal oxide catalysts. Thus the limestones examined contained sufficient inherent catalysts for the oxidation of SO 2 to SO 42- to proceed at such a rate that external catalysts were superfluous. This implies that dissolution rate of SO 2 in moisture films controls the availability of species for reaction with these carbonate-based stones and that fly ash deposited from the atmosphere does not enhance the reaction.
Curvature dependence of single-walled carbon nanotubes for SO2 adsorption and oxidation
NASA Astrophysics Data System (ADS)
Chen, Yanqiu; Yin, Shi; Li, Yueli; Cen, Wanglai; Li, Jianjun; Yin, Huaqiang
2017-05-01
Porous carbon-based catalysts showing high catalytic activity for SO2 oxidation to SO3 is often used in flue gas desulfurization. Their catalytic activity has been ascribed in many publications to the microporous structure and the effect of its spatial confinement. First principles method was used to investigate the adsorption and oxidation of SO2 on the inner and outer surface of single-walled carbon nanotubes (SWCNTs) with different diameters. It is interesting to found that there is a direct correlation: the barrier for the oxidation O_SWCNT + SO2 → SO3 + SWCNT monotonically decreases with the increase of SWCNTs' curvature. The oxygen functional located at the inner wall of SWCNTs with small radius is of higher activity for SO2 oxidation, which is extra enhanced by the spatial confinement effects of SWCNTs. These findings can be useful for the development of carbon-based catalysts and provide clues for the optimization and design of porous carbon catalysts.
Catalytic oxidation of Hg(0) by MnOx-CeO2/γ-Al2O3 catalyst at low temperatures.
Wang, Pengying; Su, Sheng; Xiang, Jun; You, Huawei; Cao, Fan; Sun, Lushi; Hu, Song; Zhang, Yun
2014-04-01
MnOx-CeO2/γ-Al2O3 (MnCe) selective catalytic reduction (SCR) catalysts prepared by sol-gel method were employed for low-temperature Hg(0) oxidation on a fixed-bed experimental setup. BET, XRD and XPS were used to characterize the catalysts. MnCe catalysts exhibited high Hg(0) oxidation activity at low temperatures (100-250 °C) under the simulated flue gas (O2, CO2, NO, SO2, HCl, H2O and balanced with N2). Only a small decrease in mercury oxidation was observed in the presence of 1200 ppm SO2, which proved that the addition of Ce helped resist SO2 poisoning. An enhancing effect of NO was observed due to the formation of multi-activity NOx species. The presence of HCl alone had excellent Hg(0) oxidation ability, while 10 ppm HCl plus 5% O2 further increased Hg(0) oxidation efficiency to 100%. Hg(0) oxidation on the MnCe catalyst surface followed the Langmiur-Hinshelwood mechanism, where reactions took place between the adsorbed active species and adsorbed Hg(0) to form Hg(2+). NH3 competed with Hg(0) for active sites on the catalyst surface, hence inhibiting Hg(0) oxidation. This study shows the feasibility of a single-step process integrating low-temperature SCR and Hg(0) oxidation from the coal combustion flue gas. Copyright © 2013 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... stationary RICE complying with the requirement to reduce CO emissions and using an oxidation catalyst; or... concentration of formaldehyde in the stationary RICE exhaust and using an oxidation catalyst; or 4SLB stationary... stationary RICE exhaust and using an oxidation catalyst a. maintain your catalyst so that the pressure drop...
NASA Astrophysics Data System (ADS)
Milawarni; Nurlaili; Sariyadi
2018-05-01
Binderless particleboard is particleboard that can be made of a lignocellulose material which is formed into a board only by heat pressing without the addition of adhesive or resin. The particleboard in this study was made from coffee husk (endocarp) using H2O2 and FeSO4 catalyst to activate lignin coffee husk component by oxidation method. Initial treatment of coffee husk is the variation of steam then Oxidation (S + O) and Oxidation without steaming (O). In this study H2O2 and FeSO4 catalysts were varied, including H2O2 levels of 10,20,30 wt% based on particle dry weight and FeSO4 is 5 and 7.5 wt% based on H2O2 weight. From the results of the study, it can be concluded that the coffee husk particleboard whose raw material is treated oxidation without steam can improve the physical properties of binderless particleboard. Increased wt% of H2O2 and FeSO4 catalysts in the oxidation process of coffee husk particles produce binderless particleboard with good physical characteristics such as density, water content, water absorption and swelling thickness. Therefore, considering the efficient aspects of the use of chemicals, the combination of H2O2 and FeSO4 catalysts that can be made according to JIS A 5908 2003 standard are 20% H2O2 and 7.5% FeSO4. The ester linkages were detected by Fourier transform infrared spectroscopy, indicated that cross-link due to the incorporation of phenoxyl radicals.
Yang, Jianping; Zhao, Yongchun; Chang, Lin; Zhang, Junying; Zheng, Chuguang
2015-07-07
Cobalt oxide loaded magnetospheres catalyst from fly ash (Co-MF catalyst) showed good mercury removal capacity and recyclability under air combustion flue gas in our previous study. In this work, the Hg(0) removal behaviors as well as the involved reactions mechanism were investigated in oxyfuel combustion conditions. Further, the recyclability of Co-MF catalyst in oxyfuel combustion atmosphere was also evaluated. The results showed that the Hg(0) removal efficiency in oxyfuel combustion conditions was relative high compared to that in air combustion conditions. The presence of enriched CO2 (70%) in oxyfuel combustion atmosphere assisted the mercury oxidation due to the oxidation of function group of C-O formed from CO2. Under both atmospheres, the mercury removal efficiency decreased with the addition of SO2, NO, and H2O. However, the enriched CO2 in oxyfuel combustion atmosphere could somewhat weaken the inhibition of SO2, NO, and H2O. The multiple capture-regeneration cycles demonstrated that the Co-MF catalyst also present good regeneration performance in oxyfuel combustion atmosphere.
Chemical engineering design of CO oxidation catalysts
NASA Technical Reports Server (NTRS)
Herz, Richard K.
1987-01-01
How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.
A Kinetic and DRIFTS Study of Supported Pt Catalysts for NO Oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toops, Todd J; Ji, Yaying; Graham, Uschi
NO oxidation was studied over Pt/CeO2 and Pt/SiO2 catalysts. Apparent activation energies (Ea) of 31.4 and 40.6 kJ/mole were determined for Pt/CeO2 and Pt/SiO2, respectively, while reaction orders for NO and O2 were fractional and positive for both catalysts. Pre-treatment of the catalysts with SO2 caused a decrease in the Ea values, while the reaction orders were only slightly changed. In situ DRIFTS measurements indicated that high concentrations of nitrate species were formed on the surface of Pt/CeO2 during NO oxidation, while almost no surface species could be detected on Pt/SiO2. The addition of SO2 resulted in the formation ofmore » a highly stable sulfate at the expense of nitrate species and caused an irreversible loss of catalytic activity for Pt/CeO2.« less
Simultaneous absorption of NO and SO2 into hexamminecobalt(II)/iodide solution.
Long, Xiang-Li; Xiao, Wen-De; Yuan, Wei-kang
2005-05-01
An innovative catalyst system has been developed to simultaneously remove NO and SO2 from combustion flue gas. Such catalyst system may be introduced to the scrubbing solution using ammonia solution to accomplish sequential absorption and catalytic oxidation of both NO and SO2 in the same reactor. When the catalyst system is utilized for removing NO and SO2 from the flue gas, Co(NH3)(6)2+ ions act as the catalyst and I- as the co-catalyst. Dissolved oxygen, in equilibrium with the residual oxygen in the flue gas, is the oxidant. The overall removal process is further enhanced by UV irradiation at 365 nm. More than 95% of NO is removed at a feed concentration of 250-900 ppm, and nearly 100% of SO2 is removed at a feed concentration of 800-2500 ppm. The sulfur dioxide co-existing in the flue gas is beneficial to NO absorption into hexamminecobalt(II)/iodide solution. NO and SO2 can be converted to ammonium sulfate and ammonium nitrate that can be used as fertilizer materials. The process described here demonstrates the feasibility of removing SO2 and NO simultaneously only by retrofitting the existing wet ammonia flue-gas-desulfurization (FGD) scrubbers.
Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3
NASA Astrophysics Data System (ADS)
Liu, Zhiming; Feng, Xu; Zhou, Zizheng; Feng, Yongjun; Li, Junhua
2018-01-01
Ce-Sn binary oxide catalysts prepared by the hydrothermal method have been investigated for the selective catalytic reduction (SCR) of NOx with NH3. Compared with pure CeO2 and SnO2, Ce-Sn binary oxide catalyst showed significantly higher NH3-SCR activity. Moreover, Ce-Sn catalyst showed high resistance against H2O and SO2. The high catalytic performance of Ce-Sn binary oxide is attributed to the synergetic effect between Ce and Sn species, which not only enhances the redox property of the catalyst but also increases the Lewis acidity, thus promoting the adsorption and activation of NH3 species, which contributes to improving the NH3-SCR performance.
Two component-three dimensional catalysis
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2002-01-01
This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.
Investigation of Mixed Oxide Catalysts for NO Oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szanyi, Janos; Karim, Ayman M.; Pederson, Larry R.
2014-12-09
The oxidation of engine-generated NO to NO2 is an important step in the reduction of NOx in lean engine exhaust because NO2 is required for the performance of the LNT technology [2], and it enhances the activities of ammonia selective catalytic reduction (SCR) catalysts [1]. In particular, for SCR catalysts an NO:NO2 ratio of 1:1 is most effective for NOx reduction, whereas for LNT catalysts, NO must be oxidized to NO2 before adsorption on the storage components. However, NO2 typically constitutes less than 10% of NOx in lean exhaust, so catalytic oxidation of NO is essential. Platinum has been foundmore » to be especially active for NO oxidation, and is widely used in DOC and LNT catalysts. However, because of the high cost and poor thermal durability of Pt-based catalysts, there is substantial interest in the development of alternatives. The objective of this project, in collaboration with partner General Motors, is to develop mixed metal oxide catalysts for NO oxidation, enabling lower precious metal usage in emission control systems. [1] M. Koebel, G. Madia, and M. Elsener, Catalysis Today 73, 239 (2002). [2] C. H. Kim, G. S. Qi, K. Dahlberg, and W. Li, Science 327, 1624 (2010).« less
Liu, Zhouyang; Li, Can; Sriram, Vishnu; ...
2016-07-25
Linear combination fitting of the X-ray Absorption Near Edge Spectroscopy (XANES) was used to quantify oxidized mercury species over RuO 2/TiO 2 and Selective Catalytic Reduction (SCR) catalysts under different simulated flue gas conditions. Halogen gases play a major role in mercury oxidation. In the absence of halogen gas, elemental mercury can react with sulfur that is contained in both the RuO2/TiO2 and SCR catalysts to form HgS and HgSO 4. In the presence of HCl or HBr gas, HgCl 2 or HgBr 2 is the main oxidized mercury species. When both HCl and HBr gases are present, HgBr2 ismore » the preferred oxidation product and no HgCl 2 can be found. The formation of HgO and HgS cannot be neglected with or without halogen gas. Other simulated flue gas components such as NO, NH 3, SO 2 and CO 2 do not have significant effect on oxidized mercury speciation when halogen gas is present.« less
Effect of SLP properties of vanadium SO/sub 2/ oxidation on reaction mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, K.C.; Nobile, A. Jr.
The SLP properties of a K/sub 2/SO/sub 4/-V/sub 2/O/sub 5/ catalysts during SO/sub 2/ oxidation and the intrinsic kinetics of the reaction on the SLPC were investigated and measured. The reason for the sudden drop in activation energy in the temperature range 440-470/sup 0/C is explained from the results of an investigation of the thermal and electrical behavior of the catalyst, and the distribution of active melt components. A reaction mechanism and rate equation consistent with the results are proposed and developed.
Pretreatment of Platinum/Tin Oxide-Catalyst
NASA Technical Reports Server (NTRS)
Hess, Robert V.; Paulin, Patricia A.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M.; Upchurch, Billy T.; Brown, Kenneth G.
1987-01-01
Addition of CO to He pretreatment doubles catalytic activity. In sealed, high-energy, pulsed CO2 laser, CO and O2 form as decomposition products of CO2 in laser discharge zone. Products must be recombined, because oxygen concentration of more than few tenths of percent causes rapid deterioration of power, ending in unstable operation. Promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide. New development increases activity of catalyst so less needed for recombination process.
NASA Astrophysics Data System (ADS)
Choi, Sukwon
Sulfur in transportation fuels remains a leading source of SOx emissions from vehicle engines and is a major source of air pollution. The very low levels of sulfur globally mandated for transportation fuels in the near future cannot be achieved by current practices of hydrodesulfurization (HDS) for sulfur removal, which operate under severe conditions (high T, P) and use valuable H2. Novel vapor-phase catalytic oxidesulfurization (ODS) processes of selectively oxidizing various organosulfur compounds (carbonyl sulfide, carbon disulfide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), thiophene, 2,5-dimenthylthiophene) typically found in various industrial streams (e.g., petroleum refining, pulp and paper) into valuable chemical intermediates (H 2CO, CO, H2, maleic anhydride and concentrated SO2) has been extensively studied. This research has primarily focused on establishing the fundamental kinetics and mechanisms of these selective oxidation reactions over well-defined supported metal oxide catalysts. The selective oxidation reactions of COS + O2 → CO + SO2; 2CS2 + 5O2 → 2CO + 4SO2; CH3SH + 2O 2 → H2CO + SO2 + H2O; C4 H4S + 3O2 → C4H2O 3 + H2O + SO2; were studied. Raman spectroscopy revealed that the supported metal oxide phases were 100% dispersed on the oxide substrate. All the catalysts were highly active and selective for the oxidesulfurization of carbonyl sulfide, carbon disulfide, methanethiol, and thiophene between 290--330°C, 230--270°C, 350--400°C, and 250--400°C, respectively and did not deactivate. The TOFs (turnover frequency, normalized activity per active catalytic site) for all ODS reactions over supported vanadia catalysts, only containing molecularly dispersed surface vanadia species, varied within one order of magnitude and revealed the V-O-Support bridging bond was involved in the critical rate-determining kinetic steps. The surface reaction mechanism for each reaction was revealed by in situ IR (infrared) and temperature programmed surface reaction-mass spectroscopy (TPSR-MS). The systematic investigation of vapor-phase oxidesulfurization (ODS) reactions of organosulfur compounds over catalytic supported metal oxides revealed the facile S-O exchange mechanisms allow for the efficient removal of sulfur while producing value-added chemicals and represents the discovery of a new series of catalytic reactions.
Wang, Bo; Zhu, Jianpeng; Ma, Hongzhu
2009-05-15
Thiophene, due to its poison, together with its combustion products which causes air pollution and highly toxic characteristic itself, attracted more and more attention to remove from gasoline and some high concentration systems. As the purpose of achieving the novel method of de-thiophene assisted by SO(4)(2-)/ZrO(2) (SZ), three reactions about thiophene in different atmosphere at room temperature and atmospheric pressure were investigated. SO(4)(2-)/ZrO(2) catalyst were synthesized and characterized by X-ray photoelectron spectroscopy (XPS), Fourier transformation infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The products were detected by gas chromatography-mass spectrometry (GC-MS). XP spectra show that ozone-catalyst system (SZO) have two forms of sulfur element (S(6+) and S(2-)) on the catalyst surface, which distinguished from that of air-catalyst system (SZA) and blank-catalyst system (SZB) (S(6+)). And the results of GC-MS exhibited that some new compounds has been produced under this extremely mild condition. Especially, many kinds of sulfur compounds containing oxygen, that is easier to be extracted by oxidative desulfurization (ODS), have been detected in the SZA-1.5h and SZB-3h system. In addition, some long chain hydrocarbons have also been detected. While in SZO-0.5h system, only long chain hydrocarbons were found. The results show that total efficiency of desulfurization from thiophene with ozone near to 100% can be obtained with the SO(4)(2-)/ZrO(2) catalytic oxidation reaction.
Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H.D.; Ahluwalia, Rajesh K.
2014-08-26
The invention provides a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.
Lilić, Aleksandra; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline
2017-05-09
Oxidative coupling of methanol and ethanol represents a new route to produce acrolein. In this work, the overall reaction was decoupled in two steps, the oxidation and the aldolization, by using two consecutive reactors to investigate the role of the acid/base properties of silica-supported oxide catalysts. The oxidation of a mixture of methanol and ethanol to formaldehyde and acetaldehyde was performed over a FeMoO x catalyst, and then the product mixture was transferred without intermediate separation to a second reactor, in which the aldol condensation and dehydration to acrolein were performed over the supported oxides. The impact of the acid/base properties on the selectivity towards acrolein was investigated under oxidizing conditions for the first time. The acid/base properties of the catalysts were investigated by NH 3 -, SO 2 -, and methanol-adsorption microcalorimetry. A MgO/SiO 2 catalyst was the most active in acrolein production owing to an appropriate ratio of basic to acidic sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chen, Chuanmin; Jia, Wenbo; Liu, Songtao; Cao, Yue
2018-04-01
CuO modified V2O5-WO3/TiO2 based SCR catalysts prepared by improved impregnation method were investigated to evaluate the catalytic activity for elemental mercury (Hg°) oxidation in simulated flue gas at 150-400 °C. Nitrogen adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. It was found that V0.8WTi-Cu3 catalyst exhibited the superior Hg° oxidation activity and wide operating temperature window at the gas hourly space velocity (GHSV) of 3 × 105 h-1. The BET and XRD results showed that CuO was well loaded and highly dispersed on the catalysts surface. The XPS results suggested that the addition of CuO generated abundant chemisorbed oxygen, which was due to the synergistic effect between CuO and V2O5. The existence of the redox cycle of V4+ + Cu2+ ↔ V5+ + Cu+ in V0.8WTi-Cu3 catalyst enhanced Hg° oxidation activity. The effects of flue gas components (O2, NO, SO2 and H2O) on Hg° oxidation over V0.8WTi-Cu3 catalyst were also explored. Moreover, the co-presence of NO and NH3 remarkably inhibited Hg° oxidation, which was due to the competitive adsorption and reduction effect of NH3 at SCR condition. Fortunately, this inhibiting effect was gradually scavenged with the decrease of GHSV. The mechanism of Hg° oxidation was also investigated.
Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H. D.; Ahluwalia, Rajesh K.
2013-01-08
The invention provides a fuel processor comprising a linear flow structure having an upstream portion and a downstream portion; a first catalyst supported at the upstream portion; and a second catalyst supported at the downstream portion, wherein the first catalyst is in fluid communication with the second catalyst. Also provided is a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.
Effect of photocatalytic oxidation technology on GaN CMP
NASA Astrophysics Data System (ADS)
Wang, Jie; Wang, Tongqing; Pan, Guoshun; Lu, Xinchun
2016-01-01
GaN is so hard and so chemically inert that it is difficult to obtain a high material removal rate (MRR) in the chemical mechanical polishing (CMP) process. This paper discusses the application of photocatalytic oxidation technology in GaN planarization. Three N-type semiconductor particles (TiO2, SnO2, and Fe2O3) are used as catalysts and added to the H2O2-SiO2-based slurry. By optical excitation, highly reactive photoinduced holes are produced on the surface of the particles, which can oxidize OH- and H2O absorbed on the surface of the catalysts; therefore, more OH* will be generated. As a result, GaN MRRs in an H2O2-SiO2-based polishing system combined with catalysts are improved significantly, especially when using TiO2, the MRR of which is 122 nm/h. The X-ray photoelectron spectroscopy (XPS) analysis shows the variation trend of chemical composition on the GaN surface after polishing, revealing the planarization process. Besides, the effect of pH on photocatalytic oxidation combined with TiO2 is analyzed deeply. Furthermore, the physical model of GaN CMP combined with photocatalytic oxidation technology is proposed to describe the removal mechanism of GaN.
Reiter, M; Vagin, S; Kronast, A; Jandl, C; Rieger, B
2017-03-01
A β-diiminato-zinc-N(SiMe 3 ) 2 complex ( 1 ) was synthesised and fully characterised, including an X-ray diffraction study. The activity of catalyst 1 towards the coupling reaction of CO 2 and various epoxides, including propylene oxide (PO), cyclohexene oxide (CHO), styrene oxide (SO), limonene oxide (LO), octene oxide (OO) and epichlorohydrin (ECH), was investigated. Terpolymerisation of CO 2 , PO and LO, as well as CO 2 , CHO and PO, was successfully realised, resulting in polymers with adjustable glass transition temperatures and transparencies. Reaction conditions such as temperature, pressure and catalyst concentration were varied to find the optimal reaction values, especially regarding LO/CO 2 . In situ IR experiments hinted that at 60 °C and a critical LO concentration, polymerisation and depolymerisation are in an equilibrium (ceiling effect). Pressurising catalyst 1 with carbon dioxide resulted in a dimeric catalyst ( 2 ) with a OSiMe 3 group as a new initiator. Homopolymerisation of different epoxides was carried out in order to explain the reactivity concerning copolymerisation reaction of CO 2 and epoxides.
Moessbauer spectra of ferrite catalysts used in oxidative dehydrogenation
NASA Technical Reports Server (NTRS)
Cares, W. R.; Hightower, J. W.
1971-01-01
Room temperature Mossbauer spectroscopy was used to examine bulk changes which occur in low surface area CoFe2O4 and CuFe2O4 catalysts as a result of contact with various mixtures of trans-2-butene and O2 during oxidative dehydrogenation reactions at about 420 C. So long as there was at least some O2 in the gas phase, the CoFe2O4 spectrum was essentially unchanged. However, the spectrum changed from a random spinel in the oxidized state to an inverse spinel as it was reduced by oxide ion removal. The steady state catalyst lies very near the fully oxidized state. More dramatic solid state changes occurred as the CuFe2O4 underwent reduction. Under severe reduction, the ferrite was transformed into Cu and Fe3O4, but it could be reversibly recovered by oxidation. An intense doublet located near zero velocity persisted in all spectra of CuFe2O4 regardless of the state of reduction.
[Removal Characteristics of Elemental Mercury by Mn-Ce/molecular Sieve].
Tan, Zeng-qiang; Niu, Guo-ping; Chen, Xiao-wen; An, Zhen
2015-06-01
The impregnation method was used to support molecular sieve with active manganese and cerium components to obtain a composite molecular sieve catalyst. The mercury removal performance of the catalyst was studied with a bench-scale setup. XPS analysis was used to characterize the sample before and after the modification in order to study the changes in the active components of the catalyst prepared. The results showed that the catalyst carrying manganese and cerium components had higher oxidation ability of elemental mercury in the temperature range of 300 degrees C - 450 degrees C, especially at 450 degrees C, the oxidation efficiency of elemental mercury was kept above 80%. The catalyst had more functional groups that were conducive to the oxidation of elemental mercury, and the mercury removal mainly depended on the chemical adsorption. The SO2 and NO in flue gas could inhibit the oxidation of elemental mercury to certain extent.
Process for selected gas oxide removal by radiofrequency catalysts
Cha, Chang Y.
1993-01-01
This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.
NASA Astrophysics Data System (ADS)
Nurhadi, Mukhamad
2017-02-01
Titania supported sulfonated coal was created as heterogeneous catalyst for epoxidation of 1-octene with aqueous hydrogen peroxide as oxidant at room temperature. The catalysts were prepared from coal that was sulfonated with H2SO4 (97%) and impregnated 7.2%wt with titanium(IV) isopropoxide (Ti(PrO)4). All catalysts coal (C), CS, Ti(7.2)-CS and Ti(7.2)-CSC were characterized by FTIR. The catalytic performance was tested for epoxidation of 1-octene with H2O2 aqueous as oxidant. It is found that Ti(7.2)-CS possessed the best catalytic performance and it gave the highest 1,2 epoxyoctene 322 µmol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhouyang; Liu, Xin; Lee, Joo-Youp
2015-09-01
In our previous studies, CuCl2 demonstrated excellent Hg(0) oxidation capability and holds potential for Hg(0) oxidation in coal-fired power plants. In this study, the properties and performances of CuCl2 supported onto gamma-Al2O3 with high surface area were investigated. From various characterization techniques using XPS, XAFS, XRD, TPR, SEM and TGA, the existence of multiple copper species was identified. At low CuCl2 loadings, CuCl2 forms copper aluminate species with gamma-Al2O3 and is inactive for Hg(0) oxidation. At high loadings, amorphous CuCl2 forms onto the gamma-Al2O3 surface, working as a redox catalyst for Hg(0) oxidation by consuming Cl to be converted intomore » CuCl and then being regenerated back into CuCl2 in the presence of O-2 and HCl gases. The 10%(wt) CuCl2/gamma-Al2O3 catalyst showed excellent Hg(0) oxidation performance and SO2 resistance at 140 degrees C under simulated flue gas conditions containing 6%(v) O-2 and 10 ppmv HCl. The oxidized Hg(0) in the form of HgCl2 has a high solubility in water and can be easily captured by other air pollution control systems such as wet scrubbers in coal-fired power plants. The CuCl2/gamma-Al2O3 catalyst can be used as a low temperature Hg(0) oxidation catalyst. (C) 2015 Elsevier B.V. All rights reserved.« less
Platinum/Tin Oxide/Silica Gel Catalyst Oxidizes CO
NASA Technical Reports Server (NTRS)
Upchurch, Billy T.; Davis, Patricia P.; Schryer, David R.; Miller, Irvin M.; Brown, David; Van Norman, John D.; Brown, Kenneth G.
1991-01-01
Heterogeneous catalyst of platinum, tin oxide, and silica gel combines small concentrations of laser dissociation products, CO and O2, to form CO22 during long times at ambient temperature. Developed as means to prevent accumulation of these products in sealed CO2 lasers. Effective at ambient operating temperatures and installs directly in laser envelope. Formulated to have very high surface area and to chemisorb controlled quantities of moisture: chemisorbed water contained within and upon its structure, makes it highly active and very longlived so only small quantity needed for long times.
Carbon catalyzed SO2 oxidation by NO2 and O3
NASA Technical Reports Server (NTRS)
Cofer, W. R., III; Schryer, D. R.; Rogowski, R. S.
1982-01-01
The oxidation of SO2 to sulfate on carbon particles by trace quantities of NO2 and O3 was studied. Particulate carbon black was either: (1) directly exposed on the pan of a microbalance to various humidified mixtures of SO2 and oxidant gas and the resultant weight gains monitored, or (2) the gas mixtures were bubbled through aqueous suspensions of carbon black and pure water blanks. In each set of experiments the run times were varied appropriately and the yields of sulfate were determined analytically. Conversion of SO2 to sulfate was thus characterized as a function of exposure time and of oxidant gas. Carbon black was determined to be an excellent catalyst for SO2 oxidation to sulfate by both NO2 and O3. No saturation effects were observed in either experimental approach. Conversions of SO2 to sulfate did not appear pH dependent.
Process for selected gas oxide removal by radiofrequency catalysts
Cha, C.Y.
1993-09-21
This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.
Jakubikova, Elena; Bernstein, Elliot R
2007-12-27
Thermodynamics of reactions of vanadium oxide clusters with SO2 are studied at the BPW91/LANL2DZ level of theory. BPW91/LANL2DZ is insufficient to properly describe relative V-O and S-O bond strengths of vanadium and sulfur oxides. Calibration of theoretical results with experimental data is necessary to compute reliable enthalpy changes for reactions between VxOy and SO2. Theoretical results indicate SO2 to SO conversion occurs for oxygen-deficient clusters and SO2 to SO3 conversion occurs for oxygen-rich clusters. Stable intermediate structures of VOy (y = 1 - 4) clusters with SO2 are also obtained at the BPW91/TZVP level of theory. Some possible mechanisms for SO3 formation and catalyst regeneration for condensed-phase systems are suggested. These results are in agreement with, and complement, gas-phase experimental studies of neutral vanadium oxide clusters.
Staehle, Robert; Tong, Lianpeng; Wang, Lei; Duan, Lele; Fischer, Andreas; Ahlquist, Mårten S G; Sun, Licheng; Rau, Sven
2014-02-03
A new water oxidation catalyst [Ru(III)(bda)(mmi)(OH2)](CF3SO3) (2, H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; mmi = 1,3-dimethylimidazolium-2-ylidene) containing an axial N-heterocyclic carbene ligand and one aqua ligand was synthesized and fully characterized. The kinetics of catalytic water oxidation by 2 were measured using stopped-flow technique, and key intermediates in the catalytic cycle were probed by density functional theory calculations. While analogous Ru-bda water oxidation catalysts [Ru(bda)L2] (L = pyridyl ligands) are supposed to catalyze water oxidation through a bimolecular coupling pathway, our study points out that 2, surprisingly, undergoes a single-site water nucleophilic attack (acid-base) pathway. The diversion of catalytic mechanisms is mainly ascribed to the different ligand environments, from nonaqua ligands to an aqua ligand. Findings in this work provide some critical proof for our previous hypothesis about how alternation of ancillary ligands of water oxidation catalysts influences their catalytic efficiency.
NASA Astrophysics Data System (ADS)
Zhou, Aiyi; Yu, Danqing; Yang, Liu; Sheng, Zhongyi
2016-08-01
A series of Mn-Ce/TiO2 catalysts were synthesized through an impregnation method and used for low temperature selective catalytic reduction (SCR) of NOx with ammonia (NH3). Na2SO4 was added into the catalyst to simulate the combined effects of alkali metal and SO2 in the flue gas. Experimental results showed that Na2SO4 had strong and fluctuant influence on the activity of Mn-Ce/TiO2, because the effect of Na2SO4 included pore occlusion and sulfation effect simultaneously. When Na2SO4 loading content increased from 0 to 1 wt.%, the SCR activities of Na2SO4-doped catalysts decreased greatly. With further increasing amount of Na2SO4, however, the catalytic activity increased gradually. XRD results showed that Na2SO4 doping could induce the crystallization of MnOx phases, which were also confirmed by TEM and SEM results. BET results showed that the surface areas decreased and a new bimodal mesoporous structure formed gradually with the increasing amount of Na2SO4. XPS results indicated that part of Ce4+ and Mn3+ were transferred to Ce3+ and Mn4+ due to the sulfation after Na2SO4 deposition on the surface of the catalysts. When the doped amounts of Na2SO4 increased, NH3-TPD results showed that the Lewis acid sites decreased and the Brønsted acid sites of Mn-Ce/TiO2 increased quickly, which could be considered as another reason for the observed changes in the catalytic activity. The decreased Mn and Ce atomic concentration, the changes of their oxidative states, and the variation in acidic properties on the surface of Na2SO4-doped catalysts could be the reasons for the fluctuant changes of the catalytic activity.
Wang, Zhaohui; Sun, Linyan; Lou, Xiaoyi; Yang, Fei; Feng, Min; Liu, Jianshe
2017-12-01
The rapidly increasing and widespread use of graphene oxide (GO) as catalyst supports, requires further understanding of its chemical stability in advanced oxidation processes (AOPs). In this study, UV/H 2 O 2 and UV/persulfate (UV/PS) processes were selected to test the chemical instability of GO in terms of their performance in producing highly reactive hydroxyl radicals (OH) and sulfate radicals (SO 4 - ), respectively. The degradation intermediates were characterized using UV-visible absorption spectra (UV-vis), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Experimental data indicate that UV/PS process was more effective in enhancing GO degradation than the UV/H 2 O 2 system. The overall oxygen-containing functionalities (e.g. CO, CO and OCO groups) dramatically declined. After radical attack, sheet-like GO was destructed into lots of flakes and some low-molecular-weight molecules were detected. The results suggest GO is most vulnerable against SO 4 - radical attack, which deserves special attention while GO acts as a catalyst support or even as a catalyst itself. Therefore, stability of GO and its derivatives should be carefully assessed before they are applied to SO 4 - -based AOPs. Copyright © 2017 Elsevier Inc. All rights reserved.
Catalyst for elemental sulfur recovery process
Flytzani-Stephanopoulos, M.; Liu, W.
1995-01-24
A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n
Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air
NASA Astrophysics Data System (ADS)
Sundararaman, Ramanathan
Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk MgO catalysts for decomposition of sulfones showed that these catalysts are effective in decomposing oxidized sulfur compounds such as dibenzothiophene sulfone and 3-methyl benzothiophene sulfone to biphenyl and isopropyl benzene respectively and SO2. Study of catalyst structure-activity relationship revealed that in the range of 40--140 nm of MgO, crystallite size plays a critical role on activity of the catalyst for sulfone decomposition. In testing other alkali oxides, it was demonstrated that CaO was effective as a reagent in decomposing oxidized sulfur compounds in a crude oil at a much lower temperature than used for MgO based catalyst. Preliminary data on potential regeneration scheme of spent CaO is also discussed.
Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang
2014-12-16
To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h.
Methanol-tolerant cathode catalyst composite for direct methanol fuel cells
Zhu, Yimin; Zelenay, Piotr
2006-09-05
A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.
Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells
Zhu, Yimin; Zelenay, Piotr
2006-03-21
A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.
Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah
2016-03-01
Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Hailong; Wu, Chang-Yu; Li, Ying; Li, Liqing; Zhao, Yongchun; Zhang, Junying
2012-12-01
MnO(x)-CeO(2) mixed-oxide supported on TiO(2) (Mn-Ce/Ti) was synthesized by an ultrasound-assisted impregnation method and employed to oxidize elemental mercury (Hg(0)) at 200°C in simulated coal combustion flue gas. Over 90% of Hg(0) oxidation was achieved on the Mn-Ce/Ti catalyst at 200°C under simulated flue gas representing those from burning low-rank coals with a high gas hourly space velocity of 60,000 h(-1). Gas-phase O(2) regenerated the lattice oxygen and replenished the chemisorbed oxygen, which facilitated Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. 10 ppm HCl plus 4% O(2) resulted in 100% Hg(0) oxidation under the experimental conditions. SO(2) competed with Hg(0) for active sites, thus deactivating the catalyst's capability in oxidizing Hg(0). NO covered the active sites and consumed surface oxygen active for Hg(0) oxidation, hence limiting Hg(0) oxidation. Water vapor showed prohibitive effect on Hg(0) oxidation due to its competition with HCl and Hg(0) for active adsorption sites. This study provides information about the promotional or inhibitory effects of individual flue gas components on Hg(0) oxidation over a highly effective Mn-Ce/Ti catalyst. Such knowledge is of fundamental importance for industrial applications of the Mn-Ce/Ti catalyst in coal-fired power plants. Copyright © 2012 Elsevier B.V. All rights reserved.
The Effect of PtRuIr Nanoparticle Crystallinity in Electrocatalytic Methanol Oxidation
Ma, Yanjiao; Wang, Rongfang; Wang, Hui; Liao, Shijun; Key, Julian; Linkov, Vladimir; Ji, Shan
2013-01-01
Two structural forms of a ternary alloy PtRuIr/C catalyst, one amorphous and one highly crystalline, were synthesized and compared to determine the effect of their respective structures on their activity and stability as anodic catalysts in methanol oxidation. Characterization techniques included TEM, XRD, and EDX. Electrochemical analysis using a glassy carbon disk electrode for cyclic voltammogram and chronoamperometry were tested in a solution of 0.5 mol L−1 CH3OH and 0.5 mol L−1 H2SO4. Amorphous PtRuIr/C catalyst was found to have a larger electrochemical surface area, while the crystalline PtRuIr/C catalyst had both a higher activity in methanol oxidation and increased CO poisoning rate. Crystallinity of the active alloy nanoparticles has a big impact on both methanol oxidation activity and in the CO poisoning rate. PMID:28809233
A RhxSy/C Catalyst for the Hydrogen Oxidation and Hydrogen Evolution Reactions in HBr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masud, J; Nguyen, TV; Singh, N
Rhodium sulfide (Rh2S3) on carbon support was synthesized by refluxing rhodium chloride with ammonium thiosulfate. Thermal treatment of Rh2S3 at high temperatures (600 degrees C to 850 degrees C) in presence of argon resulted in the transformation of Rh2S3 into Rh3S4, Rh17S15 and Rh which were characterized by TGA/DTA, XRD, EDX, and deconvolved XPS analyses. The catalyst particle size distribution ranged from 3 to 12 nm. Cyclic voltammetry and rotating disk electrode measurements were used to evaluate the catalytic activity for hydrogen oxidation and evolution reactions in H2SO4 and HBr solutions. The thermally treated catalysts show high activity for themore » hydrogen reactions. The exchange current densities (i(o)) of the synthesized RhxSy catalysts in H-2-saturated 1M H2SO4 and 1M HBr for HER and HOR were 0.9 mA/cm(2) to 1.0 mA/cm(2) and 0.8 to 0.9 mA/cm(2), respectively. The lower i(o) values obtained in 1M HBr solution compared to in H2SO4 might be due to the adsorption of Br- on the active surface. Stable electrochemical active surface area (ECSA) of RhxSy catalyst was obtained for CV scan limits between 0 V and 0.65 V vs. RHE. Scans with upper voltage limit beyond 0.65 V led to decreased and unreproducible ECSA measurements. (C) The Author(s) 2015. Published by ECS. All rights reserved.« less
A Rh xS y/C Catalyst for the Hydrogen Oxidation and Hydrogen Evolution Reactions in HBr
Masud, Jahangir; Nguyena, Trung V.; Singh, Nirala; ...
2015-02-01
Rhodium sulfide (Rh 2S 3) on carbon support was synthesized by refluxing rhodium chloride with ammonium thiosulfate. Thermal treatment of Rh 2S 3 at high temperatures (600°C to 850°C) in presence of argon resulted in the transformation of Rh 2S 3 into Rh 3S 4, Rh 17S 15 and Rh which were characterized by TGA/DTA, XRD, EDX, and deconvolved XPS analyses. The catalyst particle size distribution ranged from 3 to 12 nm. Cyclic voltammetry and rotating disk electrode measurements were used to evaluate the catalytic activity for hydrogen oxidation and evolution reactions in H 2SO 4 and HBr solutions. Themore » thermally treated catalysts show high activity for the hydrogen reactions. The exchange current densities (i o) of the synthesized Rh xS y catalysts in H 2-saturated 1M H 2SO 4 and 1M HBr for HER and HOR were 0.9 mA/cm 2 to 1.0 mA/cm 2 and 0.8 to 0.9 mA/cm 2, respectively. The lower i o values obtained in 1M HBr solution compared to in H 2SO 4 might be due to the adsorption of Br - on the active surface. Stable electrochemical active surface area (ECSA) of Rh xS y catalyst was obtained for CV scan limits between 0 V and 0.65 V vs. RHE. Scans with upper voltage limit beyond 0.65 V led to decreased and unreproducible ECSA measurements.« less
Sato, Katsutoshi; Yagi, Sho; Zaitsu, Shuhei; Kitayama, Godai; Kayada, Yuto; Teramura, Kentaro; Takita, Yusaku; Nagaoka, Katsutoshi
2014-12-01
In polymer electrolyte fuel cell (PEFC) systems, small amounts of ammonia (NH3 ) present in the reformate gas deactivate the supported ruthenium catalysts used for preferential oxidation (PROX) of carbon monoxide (CO). In this study, we investigated how the addition of a small amount of platinum to a Ru/α-Al2 O3 catalyst (Pt/Ru=1:9 w/w) affected the catalyst's PROX activity in both the absence and the presence of NH3 (130 ppm) under conditions mimicking the reformate conditions during steam reforming of natural gas. The activity of undoped Ru/α-Al2 O3 decreased sharply upon addition of NH3 , whereas Pt/Ru/α-Al2 O3 exhibited excellent PROX activity even in the presence of NH3 . Ruthenium K-edge X-ray absorption near-edge structure (XANES) spectra indicated that in the presence of NH3 , some of the ruthenium in the undoped catalyst was oxidized in the presence of NH3 , whereas ruthenium oxidation was not observed with Pt/Ru/α-Al2 O3 . These results suggest that ruthenium oxidation is retarded by the platinum, so that the catalyst shows high activity even in the presence of NH3 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Bing; Jiang, Xin; Guo, Qing; Lei, Tao; Zhang, Li-Ping; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu
2016-05-17
The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O-O bond. However, most of them function in a mixture of organic solvent and water and the O-O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru-bda (H2 bda=2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts (WOCs) of formula [Ru(II) (bda)(4-OTEG-pyridine)2 ] (1, OTEG=OCH2 CH2 OCH2 CH2 OCH3 ) and [Ru(II) (bda)(PySO3 Na)2 ] (2, PySO3 (-) =pyridine-3-sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self-assemble in water and form the O-O bond through different routes even though they have the same bda(2-) backbone. This work illustrates for the first time that the O-O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Yuanchun; Zhang, Qian; Hong, Junming
2017-11-01
A novel iron coupled copper oxidate (Fe2O3@Cu2O) catalyst was synthesized to activate persulfate (PS) for acetaminophen (APAP) degradation. The catalysts were characterized via field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The effects of the catalyst, PS concentration, catalyst dosage, initial pH, dissolved oxygen were analyzed for treatment optimization. Results indicated that Fe2O3@Cu2O achieved higher efficiency in APAP degradation than Fe2O3/PS and Cu2O/PS systems. The optimal removal efficiency of APAP (90%) was achieved within 40 min with 0.6 g/L PS and 0.3 g/L catalyst. To clarify the mechanism for APAP degradation, intermediates were analyzed with gas chromatography-mass spectrometry. Three possible degradation pathways were identified. During reaction, Cu(I) was found to react with Fe(III) to generate Fe(II), which is the most active phase for PS activation. Through the use of methanol and tert-butyl alcohol (TBA) as radical trappers, SO4rad - was identified as the main radical species that is generated during oxidation.
Wen, Xin; Ma, Zhenhua; Zhang, Lei; Sha, Xiangling; He, Huibin; Zeng, Tianyou; Wang, Yusu; Chen, Jihao
2017-01-01
Selective catalytic oxidation (SCO) method is commonly used in wet denitration technology; NO after the catalytic oxidation can be removed with SO2 together by wet method. Among the SCO denitration catalysts, pyrolysis coke is favored by the advantages of low cost and high catalytic activity. In this paper, SCO method combined with pyrolysis coke catalyst was used to remove NO from flue gas. The effects of different SCO operating conditions and different pyrolysis coke catalyst made under different process conditions were studied. Besides, the specific surface area of the catalyst and functional groups were analyzed with surface area analyzer and Beohm titration. The results are: (1) The optimum operating conditions of SCO is as follows: the reaction temperature is 150°C and the oxygen content is 6%. (2) The optimum pyrolysis coke catalyst preparation processes are as follows: the pyrolysis final temperature is 750°C, and the heating rate is 44°C / min. (3) The characterization analysis can be obtained: In the denitration reaction, the basic functional groups and the phenolic hydroxyl groups of the catalyst play a major role while the specific surface area not. PMID:28793346
Chen, Yunnen; Wu, Ye; Liu, Chen; Guo, Lin; Nie, Jinxia; Chen, Yu; Qiu, Tingsheng
2018-04-01
As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co 3 O 4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia (50mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co 3 O 4 molar ratio 8:2, calcined at 500°C for 3hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of 44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO 4 2- and HCO 3 - could inhibit the catalytic activity while CO 3 2- and Br - could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia. Copyright © 2017. Published by Elsevier B.V.
Active sites for CO 2 hydrogenation to methanol on Cu/ZnO catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kattel, Shyam; Ramírez, Pedro J.; Chen, Jingguang G.
The active sites over commercial copper/zinc oxide/aluminum oxide (Cu/ZnO/Al 2O 3) catalysts for carbon dioxide (CO 2) hydrogenation to methanol, the Zn-Cu bimetallic sites or ZnO-Cu interfacial sites, have recently been the subject of intense debate. Here, we report a direct comparison between the activity of ZnCu and ZnO/Cu model catalysts for methanol synthesis. By combining x-ray photoemission spectroscopy, density functional theory, and kinetic Monte Carlo simulations, we can identify and characterize the reactivity of each catalyst. Both experimental and theoretical results agree that ZnCu undergoes surface oxidation under the reaction conditions so that surface Zn transforms into ZnO andmore » allows ZnCu to reach the activity of ZnO/Cu with the same Zn coverage. These results highlight a synergy of Cu and ZnO at the interface that facilitates methanol synthesis via formate intermediates.« less
Active sites for CO 2 hydrogenation to methanol on Cu/ZnO catalysts
Kattel, Shyam; Ramírez, Pedro J.; Chen, Jingguang G.; ...
2017-03-23
The active sites over commercial copper/zinc oxide/aluminum oxide (Cu/ZnO/Al 2O 3) catalysts for carbon dioxide (CO 2) hydrogenation to methanol, the Zn-Cu bimetallic sites or ZnO-Cu interfacial sites, have recently been the subject of intense debate. Here, we report a direct comparison between the activity of ZnCu and ZnO/Cu model catalysts for methanol synthesis. By combining x-ray photoemission spectroscopy, density functional theory, and kinetic Monte Carlo simulations, we can identify and characterize the reactivity of each catalyst. Both experimental and theoretical results agree that ZnCu undergoes surface oxidation under the reaction conditions so that surface Zn transforms into ZnO andmore » allows ZnCu to reach the activity of ZnO/Cu with the same Zn coverage. These results highlight a synergy of Cu and ZnO at the interface that facilitates methanol synthesis via formate intermediates.« less
NASA Astrophysics Data System (ADS)
Zhang, Dengsong; Zhang, Lei; Shi, Liyi; Fang, Cheng; Li, Hongrui; Gao, Ruihua; Huang, Lei; Zhang, Jianping
2013-01-01
The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods.The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods. Electronic supplementary information (ESI) available: SEM images and EDS analysis, TEM images, and XPS spectrum of samples. See DOI: 10.1039/c2nr33006g
A novel binary Pt 3Te x/C nanocatalyst for ethanol electro-oxidation
NASA Astrophysics Data System (ADS)
Huang, Meihua; Wang, Fei; Li, Lirong; Guo, Yonglang
The Pt 3Te x/C nanocatalyst was prepared and its catalytic performance for ethanol oxidation was investigated for the first time. The Pt 3Te/C nanoparticles were characterized by an X-ray diffractometer (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy equipped with TEM (TEM-EDX). The Pt 3Te/C catalyst has a typical fcc structure of platinum alloys with the presence of Te. Its particle size is about 2.8 nm. Among the synthesized catalysts with different atomic ratios, the Pt 3Te/C catalyst has the highest anodic peak current density. The cyclic voltammograms (CV) show that the anodic peak current density for the Pt 3Te/C, commercial PtRu/C and Pt/C catalysts reaches 1002, 832 and 533 A g -1, respectively. On the current-time curve, the anodic current on the Pt 3Te/C catalyst was higher than those for the catalysts reported. So, these findings show that the Pt 3Te/C catalyst has uniform nanoparticles and the best activity among the synthesized catalysts, and it is better than commercial PtRu/C and Pt/C catalysts for ethanol oxidation at room temperature.
Novel Co- or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature
NASA Astrophysics Data System (ADS)
Gao, Fengyu; Tang, Xiaolong; Yi, Honghong; Zhao, Shunzheng; Wang, Jiangen; Shi, Yiran; Meng, Xiaomi
2018-06-01
Novel hydroxyl-containing Me-Mn binary oxides (Me = Co, Ni) were prepared for the selective catalytic reduction of NOx with NH3 by a combined complexation-esterification method. The binary oxides of Co-MnOx and Ni-MnOx with mixed crystal phases of Mn3O4 and Co3O4, Mn2O3 and NiMnO3 were obtained at 550 °C. SCR activity decreased in the order of Mn3O4-Co3O4-OH > Mn2O3-NiMnO3-OH > Mn2O3-OH > Mn3O4-OH, benefiting from the high concentration of chemisorbed oxygen and effective electron transformation of cations. Mn2O3-containing catalysts had better selectivity to N2 than those containing Mn3O4. Higher selectivity to N2O over Mn3O4-containing catalysts was attributed to the depth dehydrogenation of coordinated NH3 by the active oxygen species with lower Mnsbnd O band energy. The typical Eley-Rideal mechanism over Mn3O4-OH and Mn3O4-Co3O4-OH, and the additional formation pathway of NH4NO3 species over Mn2O3-OH and Mn2O3-NiMnO3-OH catalysts were proposed via the in-situ DRIFTS experiments. Although the Co and Ni elements had a good role in delaying the poisoning of SO2, these catalysts were eventually sulfated by SO2 over the postponement, which might due to the metal sulfate and ammonia hydrogensulfite species.
Benipal, Neeva; Qi, Ji; Dalian Univ. of Technology, Dalian; ...
2017-03-10
Electro-oxidation of alcohol is the key reaction occurring at the anode of a direct alcohol fuel cell (DAFC), in which both reaction kinetics (rate) and selectivity (to deep oxidation products) need improvement to obtain higher power density and fuel utilization for a more efficient DAFC. We recently found that a PdAg bimetallic nanoparticle catalyst is more efficient than Pd for alcohol oxidation: Pd can facilitate deprotonation of alcohol in a base electrolyte, while Ag can promote intermediate aldehyde oxidation and cleavage of C-single bondC bond of C 3 species to C 2 species. Furthermore, a combination of the two activemore » sites (Pd and Ag) with two different functions, can simultaneously improve the reaction rates and deeper oxidation products of alcohols. In this continuing work, Pd, Ag mono, and bimetallic nanoparticles supported on carbon nanotubes (Ag/CNT, Pd/CNT, Pd 1Ag 1/CNT, and Pd 1Ag 3/CNT) were prepared using an aqueous-phase reduction method; they served as working catalysts for studying electrocatalytic oxidation of glycerol in an anion-exchange membrane-based direct glycerol fuel cell. Combined XRD, TEM, and HAADF-STEM analyses performed to fully characterize as-prepared catalysts suggested that they have small particle sizes: 2.0 nm for Pd/CNT, 2.3 nm for PdAg/CNT, 2.4 nm for PdAg 3/CNT, and 13.9 nm for Ag/CNT. XPS further shows that alloying with Ag results in more metal state Pd presented on the surface, and this may be related to their higher direct glycerol fuel cell (DGFC) performances. Single DGFC performance and product analysis results show that PdAg bimetallic nanoparticles can not only improve the glycerol reaction rate so that higher power output can be achieved, but also facilitate deep oxidation of glycerol so that a higher faradaic efficiency and fuel utilization can be achieved along with optimal reaction conditions (increased base-to-fuel ratio). Half-cell electrocatalytic activity measurement and single fuel cell product analysis of different glycerol oxidation intermediates, including C 3: glycerate, tartronate, mesoxalate, and lactate; C 2: glycolate and oxalate, over PdAg/CNT catalyst was further conducted and produced deeper insight into the synergistic effects and reaction pathways of bimetallic PdAg catalysts in glycerol electrocatalytic oxidation.« less
Nickel-based anodic electrocatalysts for fuel cells and water splitting
NASA Astrophysics Data System (ADS)
Chen, Dayi
Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel-based catalysts, methanol oxidation suffers from high overpotential and catalyst poisoning by high concentration of substrates, so current nickel-based catalysts are more suitable to be used as oxygen evolution catalysts. A photoanode design that applies nickel oxides to a semiconductor that is incorporated with surface-plasmonic metal electrodes to do solar water oxidation with visible light is proposed.
Peng, Honggen; Rao, Cheng; Zhang, Ning; Wang, Xiang; Liu, Wenming; Mao, Wenting; Han, Lu; Zhang, Pengfei; Dai, Sheng
2018-05-22
An efficient strategy (enhanced metal oxide interaction and core-shell confinement to inhibit the sintering of noble metal) is presented confined ultrathin Pd-CeO x nanowire (2.4 nm) catalysts for methane combustion, which enable CH 4 total oxidation at a low temperature of 350 °C, much lower than that of a commercial Pd/Al 2 O 3 catalyst (425 °C). Importantly, unexpected stability was observed even under harsh conditions (800 °C, water vapor, and SO 2 ), owing to the confinement and shielding effect of the porous silica shell together with the promotion of CeO 2 . Pd-CeO x solid solution nanowires (Pd-Ce NW) as cores and porous silica as shells (Pd-CeNW@SiO 2 ) were rationally prepared by a facile and direct self-assembly strategy for the first time. This strategy is expected to inspire more active and stable catalysts for use under severe conditions (vehicle emissions control, reforming, and water-gas shift reaction). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benipal, Neeva; Qi, Ji; Dalian Univ. of Technology, Dalian
Electro-oxidation of alcohol is the key reaction occurring at the anode of a direct alcohol fuel cell (DAFC), in which both reaction kinetics (rate) and selectivity (to deep oxidation products) need improvement to obtain higher power density and fuel utilization for a more efficient DAFC. We recently found that a PdAg bimetallic nanoparticle catalyst is more efficient than Pd for alcohol oxidation: Pd can facilitate deprotonation of alcohol in a base electrolyte, while Ag can promote intermediate aldehyde oxidation and cleavage of C-single bondC bond of C 3 species to C 2 species. Furthermore, a combination of the two activemore » sites (Pd and Ag) with two different functions, can simultaneously improve the reaction rates and deeper oxidation products of alcohols. In this continuing work, Pd, Ag mono, and bimetallic nanoparticles supported on carbon nanotubes (Ag/CNT, Pd/CNT, Pd 1Ag 1/CNT, and Pd 1Ag 3/CNT) were prepared using an aqueous-phase reduction method; they served as working catalysts for studying electrocatalytic oxidation of glycerol in an anion-exchange membrane-based direct glycerol fuel cell. Combined XRD, TEM, and HAADF-STEM analyses performed to fully characterize as-prepared catalysts suggested that they have small particle sizes: 2.0 nm for Pd/CNT, 2.3 nm for PdAg/CNT, 2.4 nm for PdAg 3/CNT, and 13.9 nm for Ag/CNT. XPS further shows that alloying with Ag results in more metal state Pd presented on the surface, and this may be related to their higher direct glycerol fuel cell (DGFC) performances. Single DGFC performance and product analysis results show that PdAg bimetallic nanoparticles can not only improve the glycerol reaction rate so that higher power output can be achieved, but also facilitate deep oxidation of glycerol so that a higher faradaic efficiency and fuel utilization can be achieved along with optimal reaction conditions (increased base-to-fuel ratio). Half-cell electrocatalytic activity measurement and single fuel cell product analysis of different glycerol oxidation intermediates, including C 3: glycerate, tartronate, mesoxalate, and lactate; C 2: glycolate and oxalate, over PdAg/CNT catalyst was further conducted and produced deeper insight into the synergistic effects and reaction pathways of bimetallic PdAg catalysts in glycerol electrocatalytic oxidation.« less
Catalysts for lean burn engine exhaust abatement
Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.
2006-08-01
The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.
Catalysts For Lean Burn Engine Exhaust Abatement
Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.
2004-04-06
The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.
Catalysts for lean burn engine exhaust abatement
Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.
2003-01-01
The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.
Elemental sulfur recovery process
Flytzani-Stephanopoulos, M.; Zhicheng Hu.
1993-09-07
An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.
Elemental sulfur recovery process
Flytzani-Stephanopoulos, Maria; Hu, Zhicheng
1993-01-01
An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.
Templating Routes to Supported Oxide Catalysts by Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Notestein, Justin M.
2016-09-08
The rational design and understanding of supported oxide catalysts requires at least three advancements, in order of increasing complexity: the ability to quantify the number and nature of active sites in a catalytic material, the ability to place external controls on the number and structure of these active sites, and the ability to assemble these active sites so as to carry out more complex functions in tandem. As part of an individual investigator research program that is integrated with the Northwestern University Institute for Catalysis in Energy Processes (ICEP) as of 2015, significant advances were achieved in these three areas.more » First, phosphonic acids were utilized in the quantitative assessment of the number of active and geometrically-available sites in MO x-SiO 2 catalysts, including nanocrystalline composites, co-condensed materials, and grafted structures, for M=Ti, Zr, Hf, Nb, and Ta. That work built off progress in understanding supported Fe, Cu, and Co oxide catalysts from chelating and/or multinuclear precursors to maximize surface reactivity. Secondly, significant progress was made in the new area of using thin oxide overcoats containing ‘nanocavities’ from organic templates as a method to control the dispersion and thermal stability of subsequently deposited metal nanoparticles or other catalytic domains. Similar methods were used to control surface reactivity in SiO 2-Al 2O 3 acid catalysts and to control reactant selectivity in Al 2O 3-TiO 2 photocatalysts. Finally, knowledge gained from the first two areas has been combined to synthesize a tandem catalyst for hydrotreating reactions and an orthogonal tandem catalyst system where two subsequent reactions in a reaction network are independently controlled by light and heat. Overall, work carried out under this project significantly advanced the knowledge of synthesis-structure-function relationships in supported oxide catalysts for energy applications.« less
Oxidative desulfurization of dibenzothiophene from model oil using ionic liquids as extracting agent
NASA Astrophysics Data System (ADS)
Taha, Mohd F.; Atikah, N.; Chong, F. K.; Shaharun, Maizatul S.
2012-09-01
The oxidative desulfurization of dibenzothiophene (DBT) from model oil (in n-dodecane) was carried out using ionic liquid as the extractant and catalyst, and hydrogen peroxide (H2O2) in combination with acetic acid (CH3COOH) and sulphuric acid (H2SO4) as the oxidant. The ionic liquids used were 1-butyl-3-methylimidazolium octyl sulphate ([Bmim][OcSO4]) and 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]). The effect of the amounts of H2O2 on oxidative desulphurization of model oil was first investigated without the usage of ionic liquids at room temperature. The results indicate that greater amount of H2O2 give higher desulfurization and the maximum desulfurization in this study, i.e. 34 %, was occurred when the molar ratio of H2O2 to sulfur was 5:1. With the usage of ionic liquid and the molar ratio of 5:1 (H2O2:sulfur), the efficiency of DBT removal from model oil was increased significantly in terms of percent removal and removal time. Ionic liquid of [Bmim][OcSO4] performed better than [Bmim][Ac] with 72 % DBT removal. When molar ratio of H2O2 to sulphur was 5:1, volume ratio of ionic liquid to model oil was 1:1 and mixing time was 60 min at room temperature. The results indicate the potential of ionic liquids as the extractant and catalyst for oxidative desulfurization of hydrocarbon fuels.
The black rock series supported SCR catalyst for NO x removal.
Xie, Bin; Luo, Hang; Tang, Qing; Du, Jun; Liu, Zuohua; Tao, Changyuan
2017-09-01
Black rock series (BRS) is of great potential for their plenty of valued oxides which include vanadium, iron, alumina and silica oxides, etc. BRS was used for directly preparing of selective catalytic reduction (SCR) catalyst by modifying its surface texture with SiO 2 -TiO 2 sols and regulating its catalytic active constituents with V 2 O 5 and MoO 3 . Consequently, 90% NO removal ratio was obtained within 300-400 °C over the BRS-based catalyst. The structure and properties of the BRS-based catalyst were characterized by the techniques of N 2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR), and NH 3 -temperature programmed desorption (NH 3 -TPD). The results revealed that the BRS-based catalyst possesses favorable properties for NO x removal, including highly dispersed active components, abundant surface-adsorbed oxygen O α , well redox property, and numerous Brønsted acid sites. Particularly, the BRS-based catalyst exhibited considerable anti-poisoning performance compared with commercial TiO 2 -based catalyst. The former catalyst shows a NO conversion surpassing 80% from 300 to 400 °C for potassium poisoning, and a durability of SO 2 and H 2 O exceeding 85% at temperatures from 300 to 450 °C.
Wet-oxidation waste management system for CELSS
NASA Technical Reports Server (NTRS)
Takahashi, Y.; Ohya, H.
1986-01-01
A wet oxidation system will be useful in the Closed Ecological Life Support System (CELSS) as a facility to treat organic wastes and to redistribute inorganic compounds and elements. However at rather higher temperatures needed in this reaction, for instance, at 260 deg C, only 80% of organic in a raw material can be oxidized, and 20% of it will remain in the liquid mainly as acetic acid, which is virtually noncombustible. Furthermore, nitrogen is transformed to ammonium ions which normally cannot be absorbed by plants. To resolve these problems, it becomes necessary to use catalysts. Noble metals such as Ru, Rh and so on have proved to be partially effective as these catalysts. That is, oxidation does not occur completely, and the unexpected denitrification, instead of the expected nitrification, occurs. So, it is essential to develop the catalysts which are able to realize the complete oxidation and the nitrification.
Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics.
Xiong, Shangchao; Xiao, Xin; Huang, Nan; Dang, Hao; Liao, Yong; Zou, Sijie; Yang, Shijian
2017-01-03
The design of a high-performance catalyst for Hg 0 oxidation and predicting the extent of Hg 0 oxidation are both extremely limited due to the uncertainties of the reaction mechanism and the reaction kinetics. In this work, Fe-Ti-Mn spinel was developed as a high-performance catalyst for Hg 0 oxidation, and the reaction mechanism and the reaction kinetics of Hg 0 oxidation over Fe-Ti-Mn spinel were studied. The reaction orders of Hg 0 oxidation over Fe-Ti-Mn spinel with respect to gaseous Hg 0 concentration and gaseous HCl concentration were approximately 1 and 0, respectively. Therefore, Hg 0 oxidation over Fe-Ti-Mn spinel mainly followed the Eley-Rideal mechanism (i.e., the reaction of gaseous Hg 0 with adsorbed HCl), and the rate of Hg 0 oxidation mainly depended on Cl • concentration on the surface. As H 2 O, SO 2 , and NO not only inhibited Cl • formation on the surface but also interfered with the interface reaction between gaseous Hg 0 and Cl • on the surface, Hg 0 oxidation over Fe-Ti-Mn spinel was obviously inhibited in the presence of H 2 O, SO 2 , and NO. Furthermore, the extent of Hg 0 oxidation over Fe-Ti-Mn spinel can be predicted according to the kinetic parameter k E-R , and the predicted result was consistent with the experimental result.
Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi
2013-01-01
For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 - x SrxFe y Mn1 - y O3 - δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ and the Fe-K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ perovskite oxide.
NASA Astrophysics Data System (ADS)
Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi
2013-10-01
For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1-xSrxFeyMn1-yO3-d(0 ≤ x≤ 1, 0.2 ≤ y≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d and the Fe-K catalysts in aH2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3-d was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d perovskite oxide.
NASA Astrophysics Data System (ADS)
Jakubikova, Elena; He, Sheng-Gui; Xie, Yan; Matsuda, Yoshiyuki; Bernstein, Elliot
2007-03-01
Vanadium oxide is a catalytic system that plays an important role in the conversion of SO2 to SO3. Density functional theory at the BPW91/LANL2DZ level is employed to obtain structures of VOy (y=1,,5), V2Oy (y=2,,7), V3Oy (y=4,,9), V4Oy (y=7,,12) and their complexes with SO2. BPW91/LANL2DZ is insufficient to describe properly relative V-O and S-O bond strengths of vanadium and sulfur oxides. Calibration of theoretical results with experimental data is necessary to compute enthalpies of reactions between VxOy and SO2. Theoretical results indicate SO2 to SO conversion occurs for oxygen-deficient clusters and SO2 to SO3 conversion occurs for oxygen-rich clusters. Subsequent experimental studies confirm the presence of SO in the molecular beam as well as the presence of VxOy complexes with SO2. Some possible mechanisms for SO3 formation and catalyst regeneration for solids are also suggested.
Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheu, Roc; Francàs, Laia; Chernev, Petko
Electrochemical reduction of the dizaonium complex, [Ru II(bda)(NO)(N–N 2) 2] 3+, 2 3+ (N–N 2 2+ is 4-(pyridin-4-yl) benzenediazonium and bda 2– is [2,2'-bipyridine]-6,6'-dicarboxylate), in acetone produces the covalent grafting of this molecular complex onto glassy carbon (GC) electrodes. Multiple cycling voltammetric experiments on the GC electrode generates hybrid materials labeled as GC-4, with the corresponding Ru-aqua complex anchored on the graphite surface. GC-4 has been characterized at pH = 7.0 by electrochemical techniques and X-ray absorption spectroscopy (XAS) and has been shown to act as an active catalyst for the oxidation of water to dioxygen. This new hybrid materialmore » has a lower catalytic performance than its counterpart in homogeneous phase and progressively decomposes to form RuO 2 at the electrode surface. The resulting metal oxide attached at the GC electrode surface, GC-RuO 2, is a very fast and rugged heterogeneous water oxidation catalyst with TOF is of 300 s –1 and TONs >45000. The observed performance is comparable to the best electrocatalysts reported so far, at neutral pH.« less
Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes
Matheu, Roc; Francàs, Laia; Chernev, Petko; ...
2015-05-07
Electrochemical reduction of the dizaonium complex, [Ru II(bda)(NO)(N–N 2) 2] 3+, 2 3+ (N–N 2 2+ is 4-(pyridin-4-yl) benzenediazonium and bda 2– is [2,2'-bipyridine]-6,6'-dicarboxylate), in acetone produces the covalent grafting of this molecular complex onto glassy carbon (GC) electrodes. Multiple cycling voltammetric experiments on the GC electrode generates hybrid materials labeled as GC-4, with the corresponding Ru-aqua complex anchored on the graphite surface. GC-4 has been characterized at pH = 7.0 by electrochemical techniques and X-ray absorption spectroscopy (XAS) and has been shown to act as an active catalyst for the oxidation of water to dioxygen. This new hybrid materialmore » has a lower catalytic performance than its counterpart in homogeneous phase and progressively decomposes to form RuO 2 at the electrode surface. The resulting metal oxide attached at the GC electrode surface, GC-RuO 2, is a very fast and rugged heterogeneous water oxidation catalyst with TOF is of 300 s –1 and TONs >45000. The observed performance is comparable to the best electrocatalysts reported so far, at neutral pH.« less
Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO 2 Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lum, Yanwei; Yue, Binbin; Lobaccaro, Peter
Here, copper electrodes, prepared by reduction of oxidized metallic copper, have been reported to exhibit higher activity for the electrochemical reduction of CO 2 and better selectivity toward C 2 and C 3 (C 2+) products than metallic copper that has not been preoxidized. We report here an investigation of the effects of four different preparations of oxide-derived electrocatalysts on their activity and selectivity for CO 2 reduction, with particular attention given to the selectivity to C 2+ products. All catalysts were tested for CO 2 reduction in 0.1 M KHCO 3 and 0.1 M CsHCO 3 at applied voltagesmore » in the range from –0.7 to –1.0 V vs RHE. The best performing oxide-derived catalysts show up to ~70% selectivity to C 2+ products and only ~3% selectivity to C 1 products at –1.0 V vs RHE when CsHCO 3 is used as the electrolyte. In contrast, the selectivity to C 2+ products decreases to ~56% for the same catalysts tested in KHCO 3. By studying all catalysts under identical conditions, the key factors affecting product selectivity could be discerned. These efforts reveal that the surface area of the oxide-derived layer is a critical parameter affecting selectivity. A high selectivity to C 2+ products is attained at an overpotential of –1 V vs RHE by operating at a current density sufficiently high to achieve a moderately high pH near the catalyst surface but not so high as to cause a significant reduction in the local concentration of CO 2. On the basis of recent theoretical studies, a high pH suppresses the formation of C 1 relative to C 2+ products. At the same time, however, a high local CO 2 concentration is necessary for the formation of C 2+ products.« less
Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO 2 Reduction
Lum, Yanwei; Yue, Binbin; Lobaccaro, Peter; ...
2017-07-06
Here, copper electrodes, prepared by reduction of oxidized metallic copper, have been reported to exhibit higher activity for the electrochemical reduction of CO 2 and better selectivity toward C 2 and C 3 (C 2+) products than metallic copper that has not been preoxidized. We report here an investigation of the effects of four different preparations of oxide-derived electrocatalysts on their activity and selectivity for CO 2 reduction, with particular attention given to the selectivity to C 2+ products. All catalysts were tested for CO 2 reduction in 0.1 M KHCO 3 and 0.1 M CsHCO 3 at applied voltagesmore » in the range from –0.7 to –1.0 V vs RHE. The best performing oxide-derived catalysts show up to ~70% selectivity to C 2+ products and only ~3% selectivity to C 1 products at –1.0 V vs RHE when CsHCO 3 is used as the electrolyte. In contrast, the selectivity to C 2+ products decreases to ~56% for the same catalysts tested in KHCO 3. By studying all catalysts under identical conditions, the key factors affecting product selectivity could be discerned. These efforts reveal that the surface area of the oxide-derived layer is a critical parameter affecting selectivity. A high selectivity to C 2+ products is attained at an overpotential of –1 V vs RHE by operating at a current density sufficiently high to achieve a moderately high pH near the catalyst surface but not so high as to cause a significant reduction in the local concentration of CO 2. On the basis of recent theoretical studies, a high pH suppresses the formation of C 1 relative to C 2+ products. At the same time, however, a high local CO 2 concentration is necessary for the formation of C 2+ products.« less
Novel Au-TiC Catalysts for CO Oxidation and Desulfurization Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, J.A.; Liu, P.; Takahashi, Y.
2011-05-30
Recent articles dealing with the physical and chemical properties of novel Au-TiC catalysts are reviewed. High-resolution photoemission, scanning tunneling microscopy and first-principles periodic density-functional calculations were used to study the deposition of gold on a TiC(0 0 1) surface. Gold grows forming two-dimensional (very low coverage) and three-dimensional (medium and large coverage) islands on the carbide substrate. A positive shift in the binding energy of the C 1s core level is observed after the deposition of Au on TiC(0 0 1). The results of the density-functional calculations corroborate the formation of Au-C bonds. In general, the bond between Au andmore » the TiC(0 0 1) surface exhibits very little ionic character, but there is a substantial polarization of electrons around Au that facilitates bonding of the adatoms with electron-acceptor molecules (CO, O{sub 2}, C{sub 2}H{sub 4}, SO{sub 2}, thiophene, etc.). Experimental measurements indicate that Au/TiC(0 0 1) is a very good catalysts for the oxidation of CO, the destruction of SO{sub 2} and the hydrodesulfurization of thiophene. At temperatures below 200 K, Au/TiC(0 0 1) is able to perform the 2CO + O{sub 2} {yields} 2CO{sub 2} reaction and the full decomposition of SO{sub 2}. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(0 0 1) or Au(1 1 1), a Au/TiC(0 0 1) surface displays a hydrodesulfurization activity higher than that of conventional Ni/MoS{sub x} catalysts. Metal carbides are excellent supports for enhancing the chemical reactivity of gold. The Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces.« less
Novel Au-TiC Catalysts for CO Oxidation and Desulfurization Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Rodriguez; P Liu; Y Takahashi
2011-12-31
Recent articles dealing with the physical and chemical properties of novel Au-TiC catalysts are reviewed. High-resolution photoemission, scanning tunneling microscopy and first-principles periodic density-functional calculations were used to study the deposition of gold on a TiC(0 0 1) surface. Gold grows forming two-dimensional (very low coverage) and three-dimensional (medium and large coverage) islands on the carbide substrate. A positive shift in the binding energy of the C 1s core level is observed after the deposition of Au on TiC(0 0 1). The results of the density-functional calculations corroborate the formation of Au-C bonds. In general, the bond between Au andmore » the TiC(0 0 1) surface exhibits very little ionic character, but there is a substantial polarization of electrons around Au that facilitates bonding of the adatoms with electron-acceptor molecules (CO, O{sub 2}, C{sub 2}H{sub 4}, SO{sub 2}, thiophene, etc.). Experimental measurements indicate that Au/TiC(0 0 1) is a very good catalysts for the oxidation of CO, the destruction of SO{sub 2} and the hydrodesulfurization of thiophene. At temperatures below 200 K, Au/TiC(0 0 1) is able to perform the 2CO + O{sub 2} {yields} 2CO{sub 2} reaction and the full decomposition of SO{sub 2}. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(0 0 1) or Au(1 1 1), a Au/TiC(0 0 1) surface displays a hydrodesulfurization activity higher than that of conventional Ni/MoS{sub x} catalysts. Metal carbides are excellent supports for enhancing the chemical reactivity of gold. The Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces.« less
Supported catalyst systems and method of making biodiesel products using such catalysts
Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon
2015-10-20
A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.
Kruid, Jan; Fogel, Ronen; Limson, Janice Leigh
2017-05-01
Identifying the most efficient oxidation process to achieve maximum removal of a target pollutant compound forms the subject of much research. There exists a need to develop rapid screening tools to support research in this area. In this work we report on the development of a quantitative assay as a means for identifying catalysts capable of decolourising methylene blue through the generation of oxidising species from hydrogen peroxide. Here, a previously described methylene blue test strip method was repurposed as a quantitative, aqueous-based spectrophotometric assay. From amongst a selection of metal salts and metallophthalocyanine complexes, monitoring of the decolourisation of the cationic dye methylene blue (via Fenton-like and non-Fenton oxidation reactions) by the assay identified the following to be suitable oxidation catalysts: CuSO 4 (a Fenton-like catalyst), iron(II)phthalocyanine (a non-Fenton oxidation catalyst), as well as manganese(II) phthalocyanine. The applicability of the method was examined for the removal of bisphenol A (BPA), as measured by HPLC, during parallel oxidation experiments. The order of catalytic activity was identified as FePc > MnPc > CuSO 4 for both BPA and MB. The quantitative MB decolourisation assay may offer a rapid method for screening a wide range of potential catalysts for oxidation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exhaust gas cleaning catalysts and method of producing same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeoka, S.; Inaba, H.; Ichiki, M.
1976-02-17
Exhaust gas cleaning catalysts are produced by alloying copper and aluminum with at least one of the elements, nickel and chromium, and eluting by alkali or acid means aluminum from the cooled alloy surface. Small amounts of other metals from the fourth or fifth period V--VIII groups may be added to the catalysts by alloying, or by impregnation, for enhanced catalytic properties. The catalysts exhibit improved reduction of NO and oxidation of CO in an exhaust gas stream, in the presence of Pb, SO/sub 2/, moisture and hydrocarbons (HC) and at relatively low temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaelos, Thoe K.; Shopov, Dimitar Y.; Sinha, Shashi Bhushan
Here, water-oxidation catalysis is a critical bottleneck in the direct generation of solar fuels by artificial photosynthesis. Catalytic oxidation of difficult substrates such as water requires harsh conditions, so that the ligand must be designed both to stabilize high oxidation states of the metal center and to strenuously resist ligand degradation. Typical ligand choices either lack sufficient electron donor power or fail to stand up to the oxidizing conditions. This research on Ir-based water-oxidation catalysts (WOCs) has led us to identify a ligand, 2-(2'-pyridyl)-2-propanoate or “pyalk” that fulfills these requirements.
Li, Huan; Cao, Lan; Yang, Changjun; Zhang, Zhehui; Zhang, Bingguang; Deng, Kejian
2017-10-01
A novel magnetically recoverable thioporphyrazine catalyst (CoPz(S-Bu) 8 /SiO 2 @Fe 3 O 4 ) was prepared by immobilization of the cobalt octkis(butylthio) porphyrazine complex (CoPz(S-Bu) 8 ) on silica-coated magnetic nanospheres (SiO 2 @Fe 3 O 4 ). The composite CoPz(S-Bu) 8 /SiO 2 @Fe 3 O 4 appeared to be an active catalyst in the oxidation of benzyl alcohol in aqueous solution using hydrogen peroxide (H 2 O 2 ) as oxidant under Xe-lamp irradiation, with 36.4% conversion of benzyl alcohol, about 99% selectivity for benzoic acid and turnover number (TON) of 61.7 at ambient temperature. The biomimetic catalyst CoPz(S-Bu) 8 was supported on the magnetic carrier SiO 2 @Fe 3 O 4 so as to suspend it in aqueous solution to react with substrates, utilizing its lipophilicity. Meanwhile the CoPz(S-Bu) 8 can use its unique advantages to control the selectivity of photocatalytic oxidation without the substrate being subjected to deep oxidation. The influence of various reaction parameters on the conversion rate of benzyl alcohol and selectivity of benzoic acid was investigated in detail. Moreover, photocatalytic oxidation of substituted benzyl alcohols was obtained with high conversion and excellent selectivity, specifically conversion close to 70%, selectivity close to 100% and TON of 113.6 for para-position electron-donating groups. The selectivity and eco-friendliness of the biomimetic photocatalyst give it great potential for practical applications. Copyright © 2017. Published by Elsevier B.V.
Wan, Qi; Yao, Qiang; Duan, Lei; Li, Xinghua; Zhang, Lei; Hao, Jiming
2018-03-06
This paper discussed the field test results of mercury oxidation activities over vanadium and cerium based catalysts in both coal-fired circulating fluidized bed boiler (CFBB) and chain grate boiler (CGB) flue gases. The characterizations of the catalysts and effects of flue gas components, specifically the particulate matter (PM) species, were also discussed. The catalytic performance results indicated that both catalysts exhibited mercury oxidation preference in CGB flue gas rather than in CFBB flue gas. Flue gas component studies before and after dust removal equipment implied that the mercury oxidation was well related to PM, together with gaseous components such as NO, SO 2 , and NH 3 . Further investigations demonstrated a negative PM concentration-induced effect on the mercury oxidation activity in the flue gases before the dust removal, which was attributed to the surface coverage by the large amount of PM. In addition, the PM concentrations in the flue gases after the dust removal failed in determining the mercury oxidation efficiency, wherein the presence of different chemical species in PM, such as elemental carbon (EC), organic carbon (OC) and alkali (earth) metals (Na, Mg, K, and Ca) in the flue gases dominated the catalytic oxidation of mercury.
Lee, Chun W; Serre, Shannon D; Zhao, Yongxin; Lee, Sung Jun; Hastings, Thomas W
2008-04-01
A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury (Hg(o)) oxidation under SCR conditions. A low sulfur Powder River Basin (PRB) subbituminous coal combustion fly ash was injected into the entrained-flow reactor along with sulfur dioxide (SO2), nitrogen oxides (NOx), hydrogen chloride (HCl), and trace Hg(o). Concentrations of Hg(o) and total mercury (Hg) upstream and downstream of the SCR catalyst were measured using a Hg monitor. The effects of HCl concentration, SCR operating temperature, catalyst space velocity, and feed rate of PRB fly ash on Hg(o) oxidation were evaluated. It was observed that HCl provides the source of chlorine for Hg(o) oxidation under simulated PRB coal-fired SCR conditions. The decrease in Hg mass balance closure across the catalyst with decreasing HCl concentration suggests that transient Hg capture on the SCR catalyst occurred during the short test exposure periods and that the outlet speciation observed may not be representative of steady-state operation at longer exposure times. Increasing the space velocity and operating temperature of the SCR led to less Hg(o) oxidized. Introduction of PRB coal fly ash resulted in slightly decreased outlet oxidized mercury (Hg2+) as a percentage of total inlet Hg and correspondingly resulted in an incremental increase in Hg capture. The injection of ammonia (NH3) for NOx reduction by SCR was found to have a strong effect to decrease Hg oxidation. The observations suggest that Hg(o) oxidation may occur near the exit region of commercial SCR reactors. Passage of flue gas through SCR systems without NH3 injection, such as during the low-ozone season, may also impact Hg speciation and capture in the flue gas.
Multi-stage catalyst systems and uses thereof
Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH
2009-02-10
Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O.sub.2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO.sub.2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO.sub.2 to nitrogen (N.sub.2).
Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang
2014-01-01
To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis. PMID:24675779
Li, Xiaoyan; Hao, Zhongkai; Zhang, Fang; Li, Hexing
2016-05-18
A sodium benzenesulfonate (PhSO3Na)-functionalized reduced graphene oxide was synthesized via a two-step aryl diazonium coupling and subsequent NaCl ion-exchange procedure, which was used as a support to immobilize tris(bipyridine)ruthenium(II) complex (Ru(bpy)3Cl2) by coordination reaction. This elaborated Ru(bpy)3-rGO catalyst exhibited excellent catalytic efficiency in visible-light-driven reductive dehalogenation reactions under mild conditions, even for ary chloride. Meanwhile, it showed the comparable reactivity with the corresponding homogeneous Ru(bpy)3Cl2 catalyst. This high catalytic performance could be attributed to the unique two-dimensional sheet-like structure of Ru(bpy)3-rGO, which efficiently diminished diffusion resistance of the reactants. Meanwhile, the nonconjugated PhSO3Na-linkage between Ru(II) complex and the support and the very low electrical conductivity of the catalyst inhibited energy/electron transfer from Ru(II) complex to rGO support, resulting in the decreased support-induced quenching effect. Furthermore, it could be easily recycled at least five times without significant loss of catalytic reactivity.
Optimization of metal atomic ratio of PdxRuyNiz on carbon support for ethanol oxidation
NASA Astrophysics Data System (ADS)
Charoen, Kanin; Warakulwit, Chompunuch; Prapainainar, Chaiwat; Seubsai, Anusorn; Chareonpanich, Metta; Prapainainar, Paweena
2017-11-01
The catalytic activity of palladium (Pd) on an alloy catalyst on carbon supports with regards to ethanol oxidation was enhanced by systematically varying the atomic ratio of Pd, ruthenium (Ru), and nickel (Ni) alloy catalyst. Each atomic ratio catalyst was investigated so as to find the highest current density per mass of palladium. Functionalized carbon black (C) and reduced graphene oxide (rGO) were used as carbon supports. The PdxRuyNiz/carbon catalysts were prepared by impregnation and reduction method with sodium borohydride (NaBH4) being used as the reducing agent. Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were used to characterize the functionalized carbon supports, and the synthesized PdxRuyNiz/carbon catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and inductively coupled plasma (ICP). The electrical properties of catalyst were performed by cyclic voltammetry (CV), chronoamperometry (CA), and CO-stripping to investigate the catalytic activity compared to 20%wt synthesized Pd/C. The results showed that Pd:Ru:Ni = 60:0:40 on rGO (Pd60Ni40/rGO) had the best metal atomic ratio and support for the electro-oxidation of ethanol. The maximum current density and the electrochemical surface area were 11,074 mA cm-2 mg-1Pd and 55.6 m2 g-1Pd, which were 1.7 and 2.67 times the corresponding values of synthesized Pd/C, respectively.
Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi
2013-01-01
For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 − xSrxFeyMn1 − yO3 − δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst with that of an industrial potassium promoted iron (Fe–K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed higher initial activity than the industrial Fe–K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe–K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ and the Fe–K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst while the Fe–K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst had higher potential for activating the steam than the Fe–K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ was superior to that of Fe–K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ perovskite oxide. PMID:24790949
Labiadh, Lazhar; Oturan, Mehmet A; Panizza, Marco; Hamadi, Nawfel Ben; Ammar, Salah
2015-10-30
The mineralization of a new azo dye - the (4-amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid) (AHPS) - has been studied by a novel electrochemical advanced oxidation process (EAOP), consisting in electro-Fenton (EF) oxidation, catalyzed by pyrite as the heterogeneous catalyst - the so-called 'pyrite-EF'. This solid pyrite used as heterogeneous catalyst instead of a soluble iron salt, is the catalyst the system needs for production of hydroxyl radicals. Experiments were performed in an undivided cell equipped with a BDD anode and a commercial carbon felt cathode to electrogenerate in situ H2O2 and regenerate ferrous ions as catalyst. The effects on operating parameters, such as applied current, pyrite concentration and initial dye content, were investigated. AHPS decay and mineralization efficiencies were monitored by HPLC analyses and TOC measurements, respectively. Experimental results showed that AHPS was quickly oxidized by hydroxyl radicals (OH) produced simultaneously both on BDD surface by water discharge and in solution bulk from electrochemically assisted Fenton's reaction with a pseudo-first-order reaction. AHPS solutions with 175 mg L(-1) (100 mg L(-1) initial TOC) content were then almost completely mineralized in 8h. Moreover, the results demonstrated that, under the same conditions, AHPS degradation by pyrite electro-Fenton process was more powerful than the conventional electro-Fenton process. Copyright © 2015 Elsevier B.V. All rights reserved.
Enhanced Oxidation Catalysts for Water Reclamation
NASA Technical Reports Server (NTRS)
Jolly, Clifford D.
1999-01-01
This effort seeks to develop and test high-performance, long operating life, physically stable catalysts for use in spacecraft water reclamation systems. The primary goals are to a) reduce the quantity of expendable water filters used to purify water aboard spacecraft, b) to extend the life of the oxidation catalysts used for eliminating organic contaminants in the water reclamation systems, and c) reduce the weight/volume of the catalytic oxidation systems (e.g. VRA) used. This effort is targeted toward later space station utilization and will consist of developing flight-qualifiable catalysts and long-term ground tests of the catalyst prior to their utilization in flight. Fixed -bed catalytic reactors containing 5% platinum on granular activated carbon have been subjected to long-term dynamic column tests to measure catalyst stability vs throughput. The data generated so far indicate that an order of magnitude improvement can be obtained with the treated catalysts vs the control catalyst, at only a minor loss (approx 10%) in the initial catalytic activity.
Chen, Wei; Wang, Haotian; Li, Yuzhang; ...
2015-07-15
The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt–nickel–iron oxides grown directly on the three-dimensionalmore » carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm –2, small Tafel slope of 37.6 mV dec –1, and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications.« less
[Adsorption and removal of gas-phase Hg(0) over a V2O5/AC catalyst in the presence of SO2].
Wang, Jun-wei; Yang, Jian-li; Liu, Zhen-yu
2009-12-01
The adsorption and removal behaviors of gas-phase Hg(0) over V2O5/AC and AC were studied under a simulated flue gas (containing N2, SO2, O2) in a fixed-bed reactor. The influences of the V2O5, loading, SO2 concentration and adsorption temperature on Hg0 adsorption were investigated. The speciation of mercury adsorbed was determined by X-ray photoelectron spectroscopy (XPS). It was found that the V2O5/AC catalyst has a much higher capability than AC for Hg(0) adsorption and removal, mainly because of the catalytic oxidation activity of V2O5. The Hg(0) adsorption capability depends on the V2O5 content of the V2O5/AC catalyst. The amounts of mercury adsorbed increase from 75.9 microg x g(-1) to 89.6 microg x g(-1) (in the absence of O2) and from 115.9 microg x g(-1) to 185.5 microg x g(-1) (in the presence of O2) as the V2O5 loading increases from 0.5% to 1.0%, which are much higher than those over AC under the same conditions (9.6 microg x g(-1) and 23.3 microg x g(-1)). SO2 in the flue gas enhances Hg(0) adsorption over the V2O5/AC catalyst, which is due to the reaction of SO2 and Hg(0) on V2O3/AC. But as the SO2 concentration increases from 500 x 10(-6) to 2000 x 10(-6), the amount of mercury adsorbed has only a slight increase. The optimal temperature for Hg(0) adsorption over the V2O5/AC catalyst is around 150 degrees C, at which the amounts of mercury adsorbed are up to 98.5 microg x g(-1) (in the absence of O2) and 187.7 microg x g(-1) (in the presence of O2). The XPS results indicate the formation of Hg(0) and HgSO4 on the surface of the V2O5/AC catalyst, which confirms the role of V2O5 and SO2.
The e-beam sustained CO2 laser amplifier
NASA Technical Reports Server (NTRS)
Brown, M. J.; Shaw, S. R.; Evans, M. H.; Smith, I. M.; Holman, W.
1990-01-01
The design features of an e-beam sustained CO2 amplifier are described. The amplifier is designed specifically as a catalyst test-bed to study the performance of room temperature precious metal CO-oxidation catalysts under e-beam sustained operation. The amplifier has been designed to provide pulse durations of 30 microseconds in a discharge volume of 2 litres. With a gas flow velocity of 2 metres per second, operation at repetition rates of 10 Hz is accommodated. The system is designed for sealed-off operation and a catalyst bed is housed in the gas circulation system downstream from the discharge region. CO and oxygen monitors are used for diagnosis of gas composition in the amplifier so that catalyst performance can be monitored in situ during sealed lifetests.
In-situ X-ray diffraction activation study on an Fe/TiO2 pre-catalyst.
Rayner, Matthew K; Billing, David G; Coville, Neil J
2014-06-01
This study focuses on the use of in situ powder X-ray diffraction (PXRD) and quantitative phase analysis using the Rietveld method to monitor the structural properties of a titania-supported iron (10% Fe/TiO2) pre-catalyst during calcination (oxidation) and activation (reduction) in the temperature range 25-900°C. The TiO2 oxidation study revealed an increase in anatase particle size before the anatase to rutile phase transformation, lending credibility to the bridging mechanism proposed by Kim et al. [(2007), Mater. Sci. Forum, 534-536, 65-68]. Pre-catalyst oxidation experiments allowed for the determination of a suitable calcination temperature (450°C) of the pre-catalyst in terms of maximum hematite concentration and appropriate particle size. These experiments also confirmed that the anatase to rutile phase transformation occurred at higher temperatures after Fe addition and that anatase was the sole donor of Ti(4+) ions, which are known to migrate into hematite (Gennari et al., 1998), during the formation of pseudobrookite (Fe2TiO5) at temperatures above 690°C. Using the results from the oxidation experiments, two pre-catalyst samples were calcined at different temperatures; one to represent the preferred case and one to represent a case where the pre-catalyst had been excessively heated. Samples of the excessively heated catalysts were exposed to different reducing gas atmospheres (5, 10 and 100% H2/N2) and heated in the in situ PXRD reactor, so that diffraction data could be collected during the activation process. The results show that reduction with gases containing low concentrations of H2 (5 and 10%) led to the formation of ilmenite (FeTiO3) and we were able to show that both anatase and rutile are consumed in the reaction. Higher concentrations of H2 led to the formation of magnetite (Fe3O4) and metallic iron (Fe(0)). We also noted a decrease in the anatase to rutile transformation temperature under reducing atmospheres when compared with the pre-catalyst heat-treatment experiment. A reduced calcination temperature prior to reduction allowed more facile Fe reduction.
Value recovery from spent alumina-base catalyst
Hyatt, David E.
1987-01-01
A process for the recovery of aluminum and at least one other metal selected from the group consisting of molybdenum, nickel and cobalt from a spent hydrogenation catalyst comprising (1) adding about 1 to 3 parts H.sub.2 SO.sub.4 to each part of spent catalyst in a reaction zone of about 20.degree. to 200.degree. C. under sulfide gas pressure between about 1 and about 35 atmospheres, (2) separating the resultant Al.sub.2 (SO.sub.4).sub.3 solution from the sulfide precipitate in the mixture, (3) oxidizing the remaining sulfide precipitate as an aqueous slurry at about 20.degree. to 200.degree. C. in an oxygen-containing atmosphere at a pressure between about 1 and about 35 atmospheres, (4) separating the slurry to obtain solid molybdic acid and a sulfate liquor containing said at least one metal, and (5) recovering said at least one metal from the sulfate liquor in marketable form.
Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.
Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata
2009-07-30
Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.
Method For Selective Catalytic Reduction Of Nitrogen Oxides
Mowery-Evans, Deborah L.; Gardner, Timothy J.; McLaughlin, Linda I.
2005-02-15
A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.
Method for selective catalytic reduction of nitrogen oxides
Mowery-Evans, Deborah L [Broomfield, CO; Gardner, Timothy J [Albuquerque, NM; McLaughlin, Linda I [Albuquerque, NM
2005-02-15
A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.
Michaelos, Thoe K.; Shopov, Dimitar Y.; Sinha, Shashi Bhushan; ...
2017-03-08
Here, water-oxidation catalysis is a critical bottleneck in the direct generation of solar fuels by artificial photosynthesis. Catalytic oxidation of difficult substrates such as water requires harsh conditions, so that the ligand must be designed both to stabilize high oxidation states of the metal center and to strenuously resist ligand degradation. Typical ligand choices either lack sufficient electron donor power or fail to stand up to the oxidizing conditions. This research on Ir-based water-oxidation catalysts (WOCs) has led us to identify a ligand, 2-(2'-pyridyl)-2-propanoate or “pyalk” that fulfills these requirements.
Enhanced protection of PDMS-embedded palladium catalysts by co-embedding of sulphide-scavengers.
Comandella, Daniele; Ahn, Min Hyung; Kim, Hojeong; Mackenzie, Katrin
2017-12-01
For Pd-containing hydrodechlorination catalysts, coating with poly(dimethyl siloxane) (PDMS) was proposed earlier as promising protection scheme against poisoning. The PDMS coating can effectively repel non-permeating poisons (such as SO 3 2- ) retaining the hydrodechlorination Pd activity. In the present study, the previously achieved protection efficiency was enhanced by incorporation of sulphide scavengers into the polymer. The embedded scavengers were able to bind permeating non-ionic poisons (such as H 2 S) during their passage through PDMS prior to Pd contact which ensured an extended catalyst lifetime. Three scavenger types forming non-permeable sulphur species from H 2 S - alkaline, oxidative or iron-based compounds - were either incorporated into single-layer coats around individual Pd/Al 2 O 3 particles or into a second layer above Pd-containing PDMS films (Pd-PDMS). Hydrodechlorination and hydrogenation were chosen as model reactions, carried out in batch and continuous-flow reactors. Batch tests with all scavenger-containing catalysts showed extended Pd protection compared to scavenger-free catalysts. Solid alkaline compounds (Ca(OH) 2 , NaOH, CaO) and MnO 2 showed the highest instantaneous scavenger efficiencies (retained Pd activity=30-60%), while iron-based catalysts, such as nano zero-valent iron (nZVI) or ferrocene (FeCp 2 ), proved less efficient (1-10%). When stepwise poisoning was applied, the protection efficiency of iron-based and oxidizing compounds was higher in the long term than that of alkaline solids. Long-term experiments in mixed-flow reactors were performed with selected scavengers, revealing the following trend of protection efficiency: CaO 2 >Ca(OH) 2 >FeCp 2 . Under field-simulating conditions using a fixed-bed reactor, the combination of sulphide pre-oxidation in the water phase by H 2 O 2 and local scavenger-enhanced Pd protection was successful. The oxidizing agent H 2 O 2 does not disturb the Pd-catalysed reduction, while the PDMS-incorporated scavenger considerably extends the catalyst life in the presence of H 2 S. This work demonstrates that the scavenger-based protection strategy is an effective means to increase the resistance of PDMS-embedded Pd against permeating poisons. Copyright © 2017. Published by Elsevier B.V.
PM2.5 and ultrafine particulate matter emissions from natural gas-fired turbine for power generation
NASA Astrophysics Data System (ADS)
Brewer, Eli; Li, Yang; Finken, Bob; Quartucy, Greg; Muzio, Lawrence; Baez, Al; Garibay, Mike; Jung, Heejung S.
2016-04-01
The generation of electricity from natural gas-fired turbines has increased more than 200% since 2003. In 2007 the South Coast Air Quality Management District (SCAQMD) funded a project to identify control strategies and technologies for PM2.5 and ultrafine emissions from natural gas-fired turbine power plants and test at pilot scale advanced PM2.5 technologies to reduce emissions from these gas turbine-based power plants. This prompted a study of the exhaust from new facilities to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine located at the Walnut Creek Energy Park in August 2013. These tests included particulate matter less than 2.5 μm in diameter (PM2.5) and wet chemical tests for SO2/SO3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. After turbine exhaust was diluted sevenfold with filtered air, particle concentrations in the 10-300 nm size range were approximately two orders of magnitude higher than those in the ambient air and those in the 2-3 nm size range were up to four orders of magnitude higher. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. While some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings of 3.63E-04 lb/MMBtu based on Methods 5.1/201A and 1.07E-04 lb/MMBtu based on SMPS method, which are similar to those previously measured from turbines in the SCAQMD area (FERCo et al., 2014), however, the turbine exhaust contained orders of magnitude higher particles than ambient air.
Exploring substrate/ionomer interaction under oxidizing and reducing environments
Tesfaye, Meron; MacDonald, Andrew N.; Dudenas, Peter J.; ...
2018-02-09
Local gas transport limitation attributed to the ionomer thin-film in the catalyst layer is a major deterrent to widespread commercialization of polymer-electrolyte fuel cells. So far functionality and limitations of these thin-films have been assumed identical in the anode and cathode. In this study, Nafion ionomer thin-films on platinum(Pt) support were exposed to H 2 and air as model schemes, mimicking anode and cathode catalyst layers. Findings indicate decreased swelling, increased densification of ionomer matrix, and increased humidity-induced aging rates in reducing environment, compared to oxidizing and inert environments. Observed phenomenon could be related to underlying Pt-gas interaction dictating Pt-ionomermore » behavior. Presented results could have significant implications about the disparate behavior of ionomer thin-film in anode and cathode catalyst layers.« less
Comparison of Cu2+ and Zn2+ thermalcatalyst in treating diazo dye
NASA Astrophysics Data System (ADS)
Lau, Y. Y.; Wong, Y. S.; Ong, S. A.; Lutpi, N. A.; Ho, L. N.
2018-05-01
This research demonstrates the comparison between copper (II) sulphate (CuSO4) and zinc oxide (ZnO) as thermalcatalysts in thermolysis process for the treatment of diazo reactive black 5 (RB 5) wastewater. CuSO4 was found to be the most effective thermalcatalyst in comparison to ZnO. The color removal efficiency of RB 5 catalysed by CuSO4 and ZnO were 91.55 % at pH 9.5 and 7.36 % at pH 2, respectively. From the UV-Vis wavelength scan, CuSO4 catalyst is able to cleave the molecular structure bonding more efficiently compared to ZnO. ZnO which only show a slight decay on the main chemical network strands: azo bond, naphthalene and benzene rings whereas CuSO4 catalyst is able to fragment azo bond and naphthalene more effectively. The degradation reactions of CuSO4 and ZnO as thermalcatalysts in thermolysis process were compared.
Jiang, Shujuan; Ma, Yanwen; Tao, Haisheng; Jian, Guoqiang; Wang, Xizhang; Fan, Yining; Zhu, Jianmin; Hu, Zheng
2010-06-01
Binary Pt-Ni alloyed nanoparticles supported on nitrogen-doped carbon nanotubes (NCNTs) have been facilely constructed without pre-modification by making use of the active sites in NCNTs due to the N-participation. So-obtained binary Pt-Ni alloyed nanoparticles have been highly dispersed on the outer surface of the support with the size of about 3-4 nm. The electrochemical properties of the catalysts for methanol oxidation have been systematically evaluated. Binary Pt-Ni alloyed composites with molar ratio (Pt:Ni) of 3:2 and 3:1 present enhanced electrocatalytic activities and improved tolerance to CO poisoning as well as the similar stability, in comparison with the commercial Pt/C catalyst and the monometallic Pt/NCNTs catalysts. These results imply that so-constructed nanocomposite catalysts have the potential for applications in direct methanol fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europemore » on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.« less
Catalysts for the decomposition of hydrazine and its derivatives and a method for its production
NASA Technical Reports Server (NTRS)
Sasse, R.
1986-01-01
Catalysts of various types are used to decompose hydrazine and its derivatives. One type of catalyst is made as follows: the aluminum is dissolved out of an alloy of cobalt or nickel/aluminum so that a structure is produced that is chemically active for the monergol and that has a large active surface. The objective was to avoid difficulties and to create a catalyst that not only has a short start time but that can also be manufactured easily and relatively inexpensively. The solution to this task is to coat the base structure of the catalyst with oxides of copper, cobalt and cerium or oxides of copper, cobalt and cerite earth.
Plasma and catalyst for the oxidation of NOx
NASA Astrophysics Data System (ADS)
Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Raud, Jüri; Stamate, Eugen
2018-03-01
Efficient exhaust gas cleaning from NO x (NO and NO2) by absorption and adsorption based methods requires the oxidation of NO. The application of non-thermal plasma is considered as a promising oxidation method but the oxidation of NO by direct plasma remains limited due to the back-reaction of NO2 to NO mediated by O radicals in plasma. Indirect NO oxidation by plasma produced ozone allows to circumvent the back-reaction and further oxidize NO2 to N2O5 but the slow reaction rate for the latter process limits the efficiency of this process. Present paper gives an overview of the role of metal-oxide catalysts in the improvement of oxidation efficiency for both direct and indirect plasma oxidation of NO x . The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst surfaces while the exact mechanism and extent of the effect were different for direct and indirect oxidation. In the case of direct plasma oxidation, both short and long lifetime oxygen species could reach the catalyst and participate in the oxidation of NO to NO2. The back-reaction in the plasma phase remained still important factor and limited the effect of catalyst. In the case of indirect oxidation, only ozone could reach the catalyst surface and improve the oxidation of NO2 to N2O5. The effect of catalyst at different experimental conditions was quantitatively described with the aid of simple global chemical kinetic models derived for the NO x oxidation either by plasma or ozone. The models allowed to compare the effect of different catalysts and to analyze the limitations for the efficiency improvement by catalyst.
Pt/SnO2-based CO-oxidation catalysts for long-life closed-cycle CO2 lasers
NASA Technical Reports Server (NTRS)
Schryer, David R.; Upchurch, Billy T.; Hess, Robert V.; Wood, George M.; Sidney, Barry D.; Miller, Irvin M.; Brown, Kenneth G.; Vannorman, John D.; Schryer, Jacqueline; Brown, David R.
1990-01-01
Noble-metal/tin-oxide based catalysts such as Pt/SnO2 have been shown to be good catalysts for the efficient oxidation of CO at or near room temperature. These catalysts require a reductive pretreatment and traces of hydrogen or water to exhibit their full activity. Addition of Palladium enhances the activity of these catalysts with about 15 to 20 percent Pt, 4 percent Pd, and the balance SnO2 being an optimum composition. Unfortunately, these catalysts presently exhibit significant decay due in part to CO2 retention, probably as a bicarbonate. Research on minimizing the decay in activity of these catalysts is currently in progress. A proposed mechanism of CO oxidation on Pt/SnO2-based catalysts has been developed and is discussed.
Nano-structured Platinum-based Catalysts for the Complete Oxidation of Ethylene Glycol and Glycerol
NASA Astrophysics Data System (ADS)
Falase, Akinbayowa
Direct alcohol fuel cells are a viable alternative to the traditional hydrogen PEM fuel cell. Fuel versatility, integration with existing distribution networks, and increased safety when handling these fuels increases their appeal for portable power applications. In order to maximize their utility, the liquid fuel must be fully oxidized to CO2 so as to harvest the full amount of energy. Methanol and ethanol are widely researched as potential fuels to power these devices, but methanol is a toxic substance, and ethanol has a much lower energy density than other liquids such as gasoline or glucose. Oxidation of complex fuels is difficult to realize, due to difficulty in breaking carbon-carbon bonding and poisoning of the catalysts by oxidative byproducts. In order to achieve the highest efficiency, an anode needs to be engineered in such a way as to maximize activity while minimizing poisoning effects of reaction byproducts. We have engineered an anode that uses platinum-based catalysts that is capable of completely oxidizing ethylene glycol and glycerol in neutral and alkaline media with little evidence of CO poisoning. We have constructed a hybrid anode consisting of a nano-structured PtRu electrocatayst with an NAD-dependent alcohol dehydrogenase for improved oxidation of complex molecules. A nano-structured PtRu catalyst was used to oxidize ethylene glycol and glycerol in neutral media. In situ infrared spectroscopy was used to verify complete oxidation via CO2 generation. There was no evidence of poisoning by CO species. A pH study was performed to determine the effect of pH on oxidative current. The peak currents did not trend at 60 mV/pH unit as would be expected from the Nernst equation, suggesting that adsorption of fuel to the surface of the electrode is not an electron-transfer step. We synthesized nano-structured PtRu, PtSn, and PtRuSn catalysts for oxidation of ethylene glycol and glycerol in alkaline media. The PtRu electrocatalyst the highest oxidative currents and highest stability compared to a nano-structured platinum, PtSn, and PtRuSn catalyst. In situ infrared spectroscopy showed complete oxidation of each fuel occurred by the presence of CO 2, with very little poisoning CO species present. In order to increase oxidative performance in neutral media, a hybrid anode based on nano-structured PtRu and a NAD-dependent alcohol dehydrogenase for the oxidation of ethanol and ethylene glycol was developed. Steady state polarization showed that the hybrid anode had higher current densities than the enzyme or the PtRu electrocatalyst alone. The hybrid anode had higher current densities at concentrations up to 3 M while oxidizing ethanol and ethylene glycol. The catalyst synthesis, characterization, and experimental results demonstrate the feasibility of fuel cells that can oxidize higher order fuels that platinum based catalysts or enzymes cannot oxidize alone. The cooperative mechanism from co-catalysis using inorganic and organic catalysts will allow for deep oxidation and improved power generation.
Liu, Caixia; Chen, Liang; Li, Junhua; Ma, Lei; Arandiyan, Hamidreza; Du, Yu; Xu, Jiayu; Hao, Jiming
2012-06-05
A series of novel metal-oxide-supported CeO(2) catalysts were prepared via the wet impregnation method, and their NH(3)-SCR activities were investigated. The Ce/TiO(2)-SiO(2) catalyst with a Ti/Si mass ratio of 3/1 exhibited superior NH(3)-SCR activity and high N(2) selectivity in the temperature range of 250-450 °C. The characterization results revealed that the activity enhancement was correlated with the properties of the support material. Cerium was highly dispersed on the TiO(2)-SiO(2) binary metal oxide support, and the interaction of Ti and Si resulted in greater conversion of Ce(4+) to Ce(3+) on the surface of the catalyst compared to that on the single metal oxide supports. As a result of in the increased number of acid sites on Ce/TiO(2)-SiO(2) that resulted from the addition of SiO(2), the NH(3) adsorption capacity was significantly improved. All of these factors played significant roles in the high SCR activity. More importantly, Ce/TiO(2)-SiO(2) exhibited strong resistance to SO(2) and H(2)O poisoning. After the addition of SiO(2), the number of Lewis-acid sites was not decreased, but the number of Brønsted-acid sites on the TiO(2)-SiO(2) carrier was increased. The introduction of SiO(2) further weakened the alkalinity over the surface of the Ce/TiO(2)-SiO(2) catalyst, which resulted in sulfate not easily accumulating on the surface of the Ce/TiO(2)-SiO(2) catalyst in comparison with Ce/TiO(2).
[Catalytic combustion of soot on combined oxide catalysts].
He, Xu-wen; Yu, Jun-jie; Kang, Shou-fang; Hao, Zheng-ping; Hu, Chun
2005-01-01
Combined oxide catalysts are prepared for catalytic combustion of soot and regeneration from diesel emissions. Thermo-gravimetric analysis(TGA) and temperature programmed oxidation(TPO)are used to evaluate the activity of catalysts under the influence of composition,atomic ration, H2O, calcinations temperature and mass ration between catalysts and soot. Results show that Cu-Mo-O had high activity among double metal oxide catalysts. Among multicomponent metal oxide catalysts, Cu-K-Mo-O had high activity when atomic ratio Cu: K: Mo = 1:1:2 and mass ration between catalysts and soot equals 5: 1. Under this condition, soot ignition temperature of Cu-K-Mo-O catalyst was 327 degrees C. H2O addition and calcinations temperature had little influence on it,which is one kind of compatible catalyst for soot control and catalytic regeneration from diesel emissions.
Promoting mechanism of N-doped single-walled carbon nanotubes for O2 dissociation and SO2 oxidation
NASA Astrophysics Data System (ADS)
Chen, Yanqiu; Yin, Shi; Chen, Yang; Cen, Wanglai; Li, Jianjun; Yin, Huaqiang
2018-03-01
Although heteroatom doping in carbon based catalysts have recently received intensive attentions, the role of the intrinsically porous structure of practical carbon materials and their potential synergy with doping atoms are still unclear. To investigate the complex effects, a range of N-doped single-walled carbon nanotubes (SWCNTs) were used to investigate their potential use for O2 dissociation and the subsequent SO2 oxidation using density functional theory. It is found that graphite N doping can synergize with the outer surface of SWCNTs to facilitate the dissociation of O2. The barrier for the dissociation on dual graphite N-doped SWCNT-(8, 8) is as low as 0.3 eV, and the subsequent SO2 oxidation is thermodynamically favorable and kinetically feasible. These results spotlight on developing promising carboncatalyst via utilization of porous gemometry and heteroatom-doping of carbon materials simultaneously.
Kattel, Shyam; Yu, Weiting; Yang, Xiaofang; ...
2016-05-09
By simply changing the oxide support, the selectivity of a metal–oxide catalysts can be tuned. For the CO 2 hydrogenation over PtCo bimetallic catalysts supported on different reducible oxides (CeO 2, ZrO 2, and TiO 2), replacing a TiO 2 support by CeO 2 or ZrO 2 selectively strengthens the binding of C,O-bound and O-bound species at the PtCo–oxide interface, leading to a different product selectivity. Lastly, these results reveal mechanistic insights into how the catalytic performance of metal–oxide catalysts can be fine-tuned.
Adsorption and catalytic properties of sulfated aluminum oxide modified with cobalt ions
NASA Astrophysics Data System (ADS)
Lanin, S. N.; Bannykh, A. A.; Vlasenko, E. V.; Krotova, I. N.; Obrezkov, O. N.; Shilina, M. I.
2017-01-01
The adsorption properties of sulfated aluminum oxide (9% SO 4 2- /γ-Al2O3) and a cobalt-containing composite (0.5%Co/SO 4 2- /γ-Al2O3) based on it are studied via dynamic sorption. The adsorption isotherms of such test adsorbates as n-hydrocarbons (C6-C8), benzene, ethylbenzene, chloroform, and diethyl ether are measured, and their isosteric heats of adsorption are calculated. It is shown that the surface sulfation of aluminum oxide substantially improves its electron-accepting properties, and so the catalytic activity of SO 4 2- /γ-Al2O3 in the liquid-phase alkylation of benzene with octene-1 at temperatures of 25-120°C is one order of magnitude higher than for the initial aluminum oxide. It is established that additional modification of sulfated aluminum oxide with cobalt ions increases the activity of this catalyst by 2-4 times. It is shown that adsorption sites capable of strong specific adsorption with both donating (aromatics, diethyl ether chemosorption) and accepting molecules (chloroform) form on the surface of sulfated γ-Al2O3 promoted by cobalt salt.
NASA Astrophysics Data System (ADS)
Brewer, Eli Henry
We study the PM2.5and ultrafine exhaust emissions from a new natural gas-fired turbine power facility to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine. These tests included PM2.5 and wet chemical tests for SO2/SO 3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. The turbine exhaust had an average particle number concentration that was 2.3x103 times higher than ambient air. The majority of these particles were nanoparticles; at the 100 nm size, stack particle concentrations were about 20 times higher than ambient, and increased to 3.9x104 times higher on average in the 2.5 - 3 nm particle size range. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. Some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings similar to those previously measured from turbines in the SCAQMD area, however, the turbine exhaust contained far more particles than ambient air. The power consumed by an air conditioner accounts for a significant fraction of the total power used by hybrid and electric vehicles especially during summer. This study examined the effect of recirculation of cabin air on power consumption of mobile air conditioners both in-lab and on-road. Real time power consumption and vehicle mileage were recorded by an On Board Diagnostic monitor and carbon balance method. Vehicle mileage improved with increased cabin air recirculation. The recirculation of cabin air also significantly reduced in-cabin particle concentrations. Recirculation of cabin air is an excellent and immediate solution to increase vehicle mileage and improve cabin air quality.
NASA Astrophysics Data System (ADS)
Liu, Lu; Zheng, Chenghang; Wu, Shenghao; Gao, Xiang; Ni, Mingjiang; Cen, Kefa
2017-09-01
Non-thermal plasma with different O2 concentration in discharge atmosphere was applied to synthesize manganese and cerium mixed-oxides catalysts, which were compared in NO oxidation activity. Discharge atmosphere displayed a crucial influence on the performance of the catalysts prepared by plasma. Relatively low O2 concentration in discharge atmosphere allows synthesizing manganese-cerium oxides catalysts in a moderate environment and therefore is favorable for better physicochemical properties which lead to superior catalytic behavior. The best catalyst was obtained by treatment with 10% O2/N2 plasma and presented over 80% NO conversion in the temperature range of 275-325 °C, whereas catalyst prepared in pure O2 discharge atmosphere had the same activity with a catalyst prepared by calcinations. A correlation between the surface properties of the plasma prepared catalysts and its catalytic activity in NO oxidation is proposed. The amount of the surface adsorbed oxygen has an obvious linear correlation with the amount of Ce3+, the H2 consumption at low temperatures and the catalytic performance. The superior catalytic performance is mainly attributed to the stronger interaction between manganese oxides and ceria, and the formation of poorly crystallized Mn-O-Ce phase in the catalyst which resulted from the slow decomposition of nitrates and organics during plasma treatment. Catalysts prepared in relatively low O2 concentration have large specific surface area and is abundant in Ce3+ species and active oxygen species. The study suggests that plasma treatment with proper discharge gas components is a promising method to prepare effective manganese- cerium oxides catalyst for NO oxidation.
Oxidations of alkenes and lignin model compounds in aqueous dispersions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Weiming.
1991-01-01
The objective was to develop methods to oxidize water-immiscible alkenes and lignin model compounds with polymer colloid supported transition metal catalysts. The oxidations of organic compounds were carried out in aqueous phase with several water-soluble oxidants and dioxygen. Cationic polymer latexes were prepared by the emulsion copolymerization of vinylbenzyl chloride, divinylbenzene, and vinyl octadecyl ether, or styrene, or n-decyl methacrylate, and the subsequent quaternization of copolymers with trimethylamine. The latex particles were 44 nm to 71 nm in diameter. The latex bound Mn porphyrin catalysts were formed with MnTSPP [TSPP = meso-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrin], which catalyzed the oxidation of cyclohexene, cycloocetene, allylbenzene,more » and 1-octene by sodium hypochlorite (NaOCl) and potassium peroxymonosulfate (KHSO[sub 5]). The latex bound porphyrin catalysts showed higher activity than MnTSPP in solution. Oxidations of 3,4-dimethoxybenzyl alcohol (DMBA), 4-hydroxy-3-methoxytoluene (HMT), and 3,4-dimethoxytoluene (DMT) were performed with either dioxygen or hydrogen peroxide and CoPcTS (PcTS = tetrasulfonatophthalocyanine), FePcTS, CuPcTS, NiPcTS, FeTCPP [TCPP = meso-tetrakis(4-carboxyphenyl)porphyrin], and MnTSPP. CoPcTS catalyzed the autoxidation of DMBA and HMT at 70-85[degrees]C and pH [ge] 8. All catalysts were active for the oxidation of DMBA, HMT, and DMT with H[sub 2]O[sub 2]. Aqueous solutions of KHSO[sub 5] oxidized water-immiscible alkenes at room temperature in the absence of organic solvent. The acidic pH [le] 1.7 solutions of commercial 2KHSO[sub 5][center dot]K[sub 2]SO[sub 4] in water produced diols from all reactive alkenes except cyclooctene. Adjustment of initial pH to [ge]6.7 with NaHCO[sub 3] enabled selective epoxidations.« less
NASA Astrophysics Data System (ADS)
Wang, Jing; Han, Caiyun; Gao, Xiaoya; Lu, Jichang; Wan, Gengpin; He, Dedong; Chen, Ran; Chen, Kezhen; He, Sufang; Luo, Yongming
2017-03-01
A facile route (urea grind combustion method) is described for the rapid synthesis of Fe-doped Cu-Ce-Zr catalysts within 30 min through simple grinding and combustion. The effects of iron source and Fe/Cu mass ratio on the performances of the catalysts for CO preferential oxidation (CO-PROX) are evaluated. The influences of H2O, CO2, and their mixture on the activity as well as stability of the catalysts are also investigated. The samples are characterized by XRD, N2 adsorption-desorption, H2-TPR, TEM, Raman and XPS. Fe(NO3)3 is found to be superior to FeCl3 and Fe2(SO4)3 as the iron source for Fe-CuCZ catalyst. Among the different synthesized catalysts, 1/10Fe(N)-CuCZ is found to be the most active catalyst, indicating that the optimal Fe/Cu mass ratio is 1/10. The influences of H2O, CO2, and H2O + CO2 on the catalytic performance of 1/10Fe(N)-CuCZ are in the order of CO2 < CO2 + H2O < H2O. 1/10Fe(N)-CuCZ exhibits excellent stability during a 228 h time-on-stream test. 1/10Fe(N)-CuCZ shows the highest catalytic activity and excellent stability even in the presence of H2O and CO2. The excellent catalytic performance can be attributed to the synergy between the highly dispersed copper species and ceria, as well as the formation of more oxygen vacancies and reduced copper species.
NASA Astrophysics Data System (ADS)
Cai, Sixiang; Hu, Hang; Li, Hongrui; Shi, Liyi; Zhang, Dengsong
2016-02-01
Manganese based catalysts are highly active in the NH3-SCR reaction for NOx removal. Unfortunately, manganese oxides can be easily deactivated by sulfur dioxide in the flow gas, which has become the main obstacle for their practical applications. To address this problem, we presented a green and facile method for the synthesis of multi-shell Fe2O3@MnOx@CNTs. The morphology and structural properties of the catalysts were systematically investigated. The results revealed that the MnOx@CNT core-shell structure was formed during the chemical bath deposition, while the outermost MnOx species were transformed to Fe2O3 after the galvanic replacement reaction. The formation of the multi-shell structure induced the enhancement of the active oxygen species, reducible species as well as adsorption of the reactants, which brought about excellent de-NOx performance. Moreover, the Fe2O3 shell could effectively suppress the formation of the surface sulfate species, leading to the desirable SO2 resistance to the multi-shell catalyst. Hence, the synthesis protocol could provide guidance for the preparation and elevation of manganese based catalysts.Manganese based catalysts are highly active in the NH3-SCR reaction for NOx removal. Unfortunately, manganese oxides can be easily deactivated by sulfur dioxide in the flow gas, which has become the main obstacle for their practical applications. To address this problem, we presented a green and facile method for the synthesis of multi-shell Fe2O3@MnOx@CNTs. The morphology and structural properties of the catalysts were systematically investigated. The results revealed that the MnOx@CNT core-shell structure was formed during the chemical bath deposition, while the outermost MnOx species were transformed to Fe2O3 after the galvanic replacement reaction. The formation of the multi-shell structure induced the enhancement of the active oxygen species, reducible species as well as adsorption of the reactants, which brought about excellent de-NOx performance. Moreover, the Fe2O3 shell could effectively suppress the formation of the surface sulfate species, leading to the desirable SO2 resistance to the multi-shell catalyst. Hence, the synthesis protocol could provide guidance for the preparation and elevation of manganese based catalysts. Electronic supplementary information (ESI) available: Experimental details and catalytic performance of the Fe-Mn@CNTs IM, TEM images of Fe@Mn CNTs, stability and H2O resistance studies of the catalysts. See DOI: 10.1039/c5nr08701e
Deng, Jiguang; He, Shengnan; Xie, Shaohua; Yang, Huanggen; Liu, Yuxi; Guo, Guangsheng; Dai, Hongxing
2015-09-15
Using a mixture of NaNO3 and NaF as molten salt and MnSO4 and AgNO3 as metal precursors, 0.13 wt % Ag/Mn2O3 nanowires (0.13Ag/Mn2O3-ms) were fabricated after calcination at 420 °C for 2 h. Compared to the counterparts derived via the impregnation and poly(vinyl alcohol)-protected reduction routes as well as the bulk Mn2O3-supported silver catalyst, 0.13Ag/Mn2O3-ms exhibited a much higher catalytic activity for toluene oxidation. At a toluene/oxygen molar ratio of 1/400 and a space velocity of 40,000 mL/(g h), toluene could be completely oxidized into CO2 and H2O at 220 °C over the 0.13Ag/Mn2O3-ms catalyst. Furthermore, the toluene consumption rate per gram of noble metal over 0.13Ag/Mn2O3-ms was dozens of times as high as that over the supported Au or AuPd alloy catalysts reported in our previous works. It is concluded that the excellent catalytic activity of 0.13Ag/Mn2O3-ms was associated with its high dispersion of silver nanoparticles on the surface of Mn2O3 nanowires and good low-temperature reducibility. Due to high efficiency, good stability, low cost, and convenient preparation, 0.13Ag/Mn2O3-ms is a promising catalyst for the practical removal of volatile organic compounds.
Chang, Huazhen; Ma, Lei; Yang, Shijian; Li, Junhua; Chen, Liang; Wang, Wei; Hao, Jiming
2013-11-15
A series of CeO2 catalysts prepared with sulfate (S) and nitrate (N) precursors by hydrothermal (H) and precipitation (P) methods were investigated in selective catalytic reduction of NOx by NH3 (NH3-SCR). The catalytic activity of CeO2 was significantly affected by the preparation methods and the precursor type. CeO2-SH, which was prepared by hydrothermal method with cerium (IV) sulfate as a precursor, showed excellent SCR activity and high N2 selectivity in the temperature range of 230-450 °C. Based on the results obtained by temperature-programmed reduction (H2-TPR), transmission infrared spectra (IR) and thermal gravimetric analysis (TGA), the excellent performance of CeO2-SH was correlated with the surface sulfate species formed in the hydrothermal reaction. These results indicated that sulfate species bind with Ce(4+) on the CeO2-SH catalyst, and the specific sulfate species, such as Ce(SO4)2 or CeOSO4, were formed. The adsorption of NH3 was promoted by these sulfate species, and the probability of immediate oxidation of NH3 to N2O on Ce(4+) was reduced. Accordingly, the selective oxidation of NH3 was enhanced, which contributed to the high N2 selectivity in the SCR reaction. However, the location of sulfate on the CeO2-SP catalyst was different. Plenty of sulfate species were likely deposited on CeO2-SP surface, covering the active sites for NO oxidation, which resulted in poor SCR activity in the test temperature range. Moreover, the resistance to alkali metals, such as Na and K, was improved over the CeO2-SH catalyst. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Buelna Quijada, Genoveva
2001-07-01
Regenerative, alumina-supported, copper-based sorbent/catalysts provide a promising technique for simultaneous removal of SO2 and NO x from flue gas. These sorbents can remove over 90% of SO2 and 70+% of NOx while generating no wastes, reducing energy consumption, and producing valuable by-products. The lack of a cost-effective sorbent with low attrition rate and good reactivity has been the main hurdle to commercialization of this copper oxide process. Developing such a sorbent is the focus of this dissertation. This work examines using sol-gel techniques rather than traditional processes to produce gamma-alumina and copper coated 7-alumina granular sorbents. Important modifications to the established sol-gel synthesis process were made, which minimized generated wastes and reduced preparation time and sorbent cost. A laboratory scale semi-continuous process providing a basis for large-scale synthesis was developed. The effect of the copper content on the surface area and dispersion of the active species on sol-gel-derived sorbents coated by the one step and wet-impregnation methods was studied. The sol-gel-derived sorbents showed superior sulfation and regeneration properties than the existing commercial sorbents used in the copper oxide process in terms of sulfation capacity, fast regeneration, recovery of sorption capacity, and SO2 concentration in the regenerated effluent. The optimum temperature for NO reduction by NH3 over sol-gel-derived CuO/gamma-Al2O3 was found to be 350°C for both fresh and sulfated catalysts. This was also the optimum operating temperature for simultaneous removal of SO2 and NOx from simulated flue gas. At 350°C, the adsorption capacity of the sol-gel sorbent/catalyst was higher than UOP's sorbent, and very close to the capacity of ALCOA's sorbent, while the catalytic activity for NO reduction of the sol-gel-derived CuO/gamma-Al 2O3 sorbent fell between the commercial sorbents. The new mesoporous sol-gel-derived materials showed larger surface area, better mechanical strength, and more uniform dispersion of the copper species than existing commercially available sorbents. The superior mechanical properties, better cost effectiveness, and comparable efficiency for simultaneous removal of SO2 and NOx of the sol-gel-derived CuO/gamma-Al 2O3 sorbents with respect to the commercial ones make them a good option for use in the copper oxide process for combined removal of SO2 and NOx from flue gas.
Environmentally benign Friedel-Crafts benzylation over nano-TiO2/SO4 2-
NASA Astrophysics Data System (ADS)
Devi, Kalathiparambil RPS; Sreeja, Puthenveetil B.; Sugunan, Sankaran
2013-05-01
During the past decade, much attention has been paid to the replacement of homogeneous catalysts by solid acid catalysts. Friedel-Crafts benzylation of toluene with benzyl chloride (BC) in liquid phase was carried out over highly active, nano-crystalline sulfated titania systems. These catalysts were prepared using the sol gel method. Modification was done by loading 3% of transition metal oxides over sulfated titania. Reaction parameters such as catalyst mass, molar ratio, temperature, and time have been studied. More than 80% conversion of benzyl chloride and 100% selectivity are shown by all the catalysts under optimum conditions. Catalytic activity is correlated with Lewis acidity obtained from perylene adsorption studies. The reaction appears to proceed by an electrophile, which involves the reaction of BC with the acidic titania catalyst. The catalyst was regenerated and reused up to four reaction cycles with equal efficiency as in the first run. The prepared systems are environmentally friendly and are easy to handle.
Lei, M.; Wang, Z. B.; Li, J. S.; Tang, H. L.; Liu, W. J.; Wang, Y. G.
2014-01-01
Rapid degradation of cell performance still remains a significant challenge for proton exchange membrane fuel cell (PEMFC). In this work, we develop novel CeO2 nanocubes-graphene oxide nanocomposites as durable and highly active catalyst support for proton exchange membrane fuel cell. We show that the use of CeO2 as the radical scavenger in the catalysts remarkably improves the durability of the catalyst. The catalytic activity retention of Pt-graphene oxide-8 wt.% CeO2 nanocomposites reaches as high as 69% after 5000 CV-cycles at a high voltage range of 0.8–1.23 V, in contrast to 19% for that of the Pt-graphene oxide composites. The excellent durability of the Pt-CeO2 nanocubes-graphene oxide catalyst is attributed to the free radical scavenging activity of CeO2, which significantly slows down the chemical degradation of Nafion binder in catalytic layers, and then alleviates the decay of Pt catalysts, resulting in the excellent cycle life of Pt-CeO2-graphene oxide nanocomposite catalysts. Additionally, the performance of single cell assembled with Nafion 211 membrane and Pt-CeO2-graphene oxide catalysts with different CeO2 contents in the cathode as well as the Pt-C catalysts in the anode are also recorded and discussed in this study. PMID:25491655
Lei, M; Wang, Z B; Li, J S; Tang, H L; Liu, W J; Wang, Y G
2014-12-10
Rapid degradation of cell performance still remains a significant challenge for proton exchange membrane fuel cell (PEMFC). In this work, we develop novel CeO2 nanocubes-graphene oxide nanocomposites as durable and highly active catalyst support for proton exchange membrane fuel cell. We show that the use of CeO2 as the radical scavenger in the catalysts remarkably improves the durability of the catalyst. The catalytic activity retention of Pt-graphene oxide-8 wt.% CeO2 nanocomposites reaches as high as 69% after 5000 CV-cycles at a high voltage range of 0.8-1.23 V, in contrast to 19% for that of the Pt-graphene oxide composites. The excellent durability of the Pt-CeO2 nanocubes-graphene oxide catalyst is attributed to the free radical scavenging activity of CeO2, which significantly slows down the chemical degradation of Nafion binder in catalytic layers, and then alleviates the decay of Pt catalysts, resulting in the excellent cycle life of Pt-CeO2-graphene oxide nanocomposite catalysts. Additionally, the performance of single cell assembled with Nafion 211 membrane and Pt-CeO2-graphene oxide catalysts with different CeO2 contents in the cathode as well as the Pt-C catalysts in the anode are also recorded and discussed in this study.
NASA Astrophysics Data System (ADS)
Lei, M.; Wang, Z. B.; Li, J. S.; Tang, H. L.; Liu, W. J.; Wang, Y. G.
2014-12-01
Rapid degradation of cell performance still remains a significant challenge for proton exchange membrane fuel cell (PEMFC). In this work, we develop novel CeO2 nanocubes-graphene oxide nanocomposites as durable and highly active catalyst support for proton exchange membrane fuel cell. We show that the use of CeO2 as the radical scavenger in the catalysts remarkably improves the durability of the catalyst. The catalytic activity retention of Pt-graphene oxide-8 wt.% CeO2 nanocomposites reaches as high as 69% after 5000 CV-cycles at a high voltage range of 0.8-1.23 V, in contrast to 19% for that of the Pt-graphene oxide composites. The excellent durability of the Pt-CeO2 nanocubes-graphene oxide catalyst is attributed to the free radical scavenging activity of CeO2, which significantly slows down the chemical degradation of Nafion binder in catalytic layers, and then alleviates the decay of Pt catalysts, resulting in the excellent cycle life of Pt-CeO2-graphene oxide nanocomposite catalysts. Additionally, the performance of single cell assembled with Nafion 211 membrane and Pt-CeO2-graphene oxide catalysts with different CeO2 contents in the cathode as well as the Pt-C catalysts in the anode are also recorded and discussed in this study.
Catalyst for elemental sulfur recovery process
Flytzani-Stephanopoulos, Maria; Liu, Wei
1995-01-01
A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.
Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.
Pradhan, Debabrata; Kim, Dong J; Roychaudhury, Gautam; Lee, Seoung W
2010-01-01
Bioleaching studies of spent petroleum catalyst containing Ni, V and Mo were carried out using iron oxidizing bacteria. Various leaching parameters such as Fe(II) concentration, pulp density, pH, temperature and particle size were studied to evaluate their effects on the leaching efficiency as well as the kinetics of dissolution. The percentage of leaching of Ni and V were higher than Mo. The leaching process followed a diffusion controlled model and the product layer was observed to be impervious due to formation of ammonium jarosite (NH(4))Fe(3)(SO(4))(2)(OH)(6). Apart from this, the lower leaching efficiency of Mo was due to a hydrophobic coating of elemental sulfur over Mo matrix in the spent catalyst. The diffusivities of the attacking species for Ni, V and Mo were also calculated.
Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation
NASA Astrophysics Data System (ADS)
Xiao, Haiping; Chen, Yu; Qi, Cong; Ru, Yu
2018-03-01
This paper aims to study the effect of alkali metal sodium (Na) poisoning on the performance of the Selective Catalytic Reduction (SCR) catalyst. The result showed that Na2SO4 poisoning leads to a reduced denitration rate of the SCR catalyst and an increase in the SO3 generation rate. Na2O poisoning leads to a significant reduction in the denitration rate of the SCR catalyst and marginally improves the formation of SO3. The maximum of the SO3 generation rate for a Na2SO4-poisoned catalyst reached 1.35%, whereas it was only 0.85% for the SCR catalyst. When the SO2 was contained in flue gas, the denitration rate for the Na2O-poisoned catalyst clearly increased by more than 28%. However, the effect of SO2 on the Na2SO4-poisoned catalyst was very slight. The denitration rate of the SCR catalyst decreased with an increase in the Na content. The BET and XRD results showed that Na poisoning of the catalyst decreased the number of acid sites, the reducibility of the catalyst, the surface area, and pore volume. The H2-TPR and NH3-TPD results show that Na decreases the number of acid sites and the reducibility of the catalyst. The FT-IR and XPS results showed that Na2O poisoning led to the decrease of V5+dbnd O bonds and the consumptions of oxygen atoms. Na2SO4 poisoning can improve surface adsorbed oxygen, which was beneficial for the SO2-SO3 conversion reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdavi, Vahid, E-mail: v-mahdavi@araku.ac.ir; Soleimani, Shima
2014-03-01
Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V{sub 2}O{sub 5}/OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V{sub 2}O{sub 5}/OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V{sub 2}O{sub 5}/K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V{sub 2}O{sub 5}/K-OMS-2 catalyst. • V{sub 2}O{sub 5}/K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidationmore » using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V{sub 2}O{sub 5}/K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V{sub 2}O{sub 5} species. Oxidation of various alcohols was studied in the liquid phase over the V{sub 2}O{sub 5}/K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H{sub 2}O{sub 2} as the oxidant. Activity of the V{sub 2}O{sub 5}/K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V{sub 2}O{sub 5}. The kinetic of benzyl alcohol oxidation using excess TBHP over V{sub 2}O{sub 5}/K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential and leaching were investigated.« less
Highly efficient and robust molecular ruthenium catalysts for water oxidation.
Duan, Lele; Araujo, Carlos Moyses; Ahlquist, Mårten S G; Sun, Licheng
2012-09-25
Water oxidation catalysts are essential components of light-driven water splitting systems, which could convert water to H(2) driven by solar radiation (H(2)O + hν → 1/2O(2) + H(2)). The oxidation of water (H(2)O → 1/2O(2) + 2H(+) + 2e(-)) provides protons and electrons for the production of dihydrogen (2H(+) + 2e(-) → H(2)), a clean-burning and high-capacity energy carrier. One of the obstacles now is the lack of effective and robust water oxidation catalysts. Aiming at developing robust molecular Ru-bda (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts, we carried out density functional theory studies, correlated the robustness of catalysts against hydration with the highest occupied molecular orbital levels of a set of ligands, and successfully directed the synthesis of robust Ru-bda water oxidation catalysts. A series of mononuclear ruthenium complexes [Ru(bda)L(2)] (L = pyridazine, pyrimidine, and phthalazine) were subsequently synthesized and shown to effectively catalyze Ce(IV)-driven [Ce(IV) = Ce(NH(4))(2)(NO(3))(6)] water oxidation with high oxygen production rates up to 286 s(-1) and high turnover numbers up to 55,400.
Pt/SnO2-based CO-oxidation catalysts for CO2 lasers
NASA Technical Reports Server (NTRS)
Upchurch, Billy T.; Schryer, David R.; Hess, Robert V.; Brown, Kenneth G.; Van Norman, John D.
1990-01-01
The activity of Pt/SnO2-based CO-oxidation catalysts has been maximized by optimizing pretreatment conditions and catalyst formulation. The role of H2O in activating these catalysts and of CO2 retention in deactivating them has been determined as has the interaction of these catalysts with rare-isotope C(0-18) and (O-18)2.
Lazareva, Svetlana; Ismagilov, Zinfer; Kuznetsov, Vadim; Shikina, Nadezhda; Kerzhentsev, Mikhail
2018-02-05
Huge amounts of nuclear waste, including depleted uranium, significantly contribute to the adverse environmental situation throughout the world. An approach to the effective use of uranium oxides in catalysts for the deep oxidation of chlorine-containing hydrocarbons is suggested. Investigation of the catalytic activity of the synthesized supported uranium oxide catalysts doped with Cr, Mn and Co transition metals in the chlorobenzene oxidation showed that these catalysts are comparable with conventional commercial ones. Physicochemical properties of the catalysts were studied by X-ray diffraction, temperature-programmed reduction with hydrogen (H 2 -TPR), and Fourier transform infrared spectroscopy. The higher activity of Mn- and Co-containing uranium oxide catalysts in the H 2 -TPR and oxidation of chlorobenzene in comparison with non-uranium catalysts may be related to the formation of a new disperse phase represented by uranates. The study of chlorobenzene adsorption revealed that the surface oxygen is involved in the catalytic process.
Schultz, Mitchell J.; Hamilton, Steven S.; Jensen, David R.; Sigman, Matthew S.
2009-01-01
Three catalysts for aerobic oxidation of alcohols are discussed and the effectiveness of each is evaluated for allylic, benzylic, aliphatic, and functionalized alcohols. Additionally, chiral nonracemic substrates as well as chemoselective and diastereoselective oxidations are investigated. In this study, the most convenient system for the Pd-catalyzed aerobic oxidation of alcohols is Pd(OAc)2 in combination with triethylamine. This system functions effectively for the majority of alcohols tested and uses mild conditions (3 to 5 mol % of catalyst, room temperature). Pd(IiPr)(OAc)2(H2O) (1) also successfully oxidizes the majority of alcohols evaluated. This system has the advantage of significantly lowering catalyst loadings but requires higher temperatures (0.1 to 1 mol % of catalyst, 60 °C). A new catalyst is also disclosed, Pd(IiPr)(OPiv)2 (2). This catalyst operates under very mild conditions (1 mol %, room temperature, and air as the O2 source) but with a more limited substrate scope. PMID:15844968
1985-08-19
No 2, Mar-Apr 85) 15 Factors Which Determine Activity of Catalysts of Various Chemical Types in Hydrogen Oxidation Reactions . Part 1: Oxidation ...Factors Which Determine Activity of Catalysts of Various Chemical Types in Hydrogen Oxidation Reactions . Part 2: Oxidation and Isotope Exchange of...FACTORS WHICH DETERMINE ACTIVITY OF CATALYSTS OF VARIOUS CHEMICAL TYPES IN HYDROGEN OXIDATION REACTIONS . PART 1: OXIDATION AND ISOTOPE EXCHANGE OF
Xin, Le; Yang, Fan; Qiu, Yang; ...
2016-08-25
Nanoscale graphenes were used as cathode catalyst supports in proton exchange membrane fuel cells (PEMFCs). Surface-initiated polymerization that covalently bonds polybenzimidazole (PBI) polymer on the surface of graphene supports enables the uniform distribution of the Pt nanoparticles, as well as allows the sealing of the unterminated carbon bonds usually present on the edge of graphene from the chemical reduction of graphene oxide. The nanographene effectively shortens the length of channels and pores for O 2 diffusion/water dissipation and significantly increases the primary pore volume. Further addition of p-phenyl sulfonic functional graphitic carbon particles as spacers, increases the specific volume ofmore » the secondary pores and greatly improves O 2 mass transport within the catalyst layers. The developed composite cathode catalyst of Pt/PBI-nanographene (50 wt%) + SO 3H-graphitic carbon black demonstrates a higher beginning of life (BOL) PEMFC performance as compared to both Pt/PBI-nanographene (50 wt%) and Pt/PBI-graphene (50 wt%) + SO 3H-graphitic carbon black (GCB). Accelerated stress tests show excellent support durability compared to that of traditional Pt/Vulcan XC72 catalysts, when subjected to 10,000 cycles from 1.0 V to 1.5 V. As a result, this study suggests the promise of using PBI-nanographene + SO 3H-GCB hybrid supports in fuel cells to achieve the 2020 DOE targets for transportation applications.« less
NASA Astrophysics Data System (ADS)
Saha, Subrata; Hamid, Sharifah Bee Abd; Ali, Tammar Hussein
2017-02-01
A mesoporous, highly crystalline Cu-Ti composite oxide catalyst was prepared via facile, simple and modified solution method varying Cu and Ti ratio for selective liquid phase oxidation of vanillyl alcohol. Various spectroscopic procedures were employed to systematically characterize the catalyst structural and physicochemical properties. The defect chemistry of the catalyst was confirmed from the presence of surface defects revealed through HRTEM imagery between the TiO2 (101) and Cu3TiO4 (012) planes, complemented by the XRD profiling. Further, presence of oxygen vacancy evidenced by O 1s XPS spectra were observed on the catalyst surface. Moreover, the stoichiometry of Cu and Ti in the catalyst synthesis protocol was notably found to be the vital determinant to alter the redox properties of Cu-Ti composite oxide catalyst supported by H2-TPR. O2-TPD analysis. Moreover, a rational investigation was done using different oxidants such as air and H2O2 with variables reaction conditions. The catalyst was active for liquid phase oxidation of vanillyl alcohol to vanillin with performance of 66% conversion and 71% selectivity using H2O2 in base free condition. And also, catalytic activity was significantly improved by 94% conversion with 86% selectivity to vanillin in liquid phase aerobic oxidation at the optimum reaction conditions. To expand the superiority of the catalyst, three times reusability study was also examined with appreciable catalytic activity.
Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases
Clay, David T.; Lynn, Scott
1976-10-19
A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.
Catalyst systems and uses thereof
Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH
2012-07-24
A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.
Kim, Manhoe; Salley, Steven O.; Ng, K. Y. Simon
2016-09-06
Mixed metal oxide catalysts (ZnO, CeO, La2O3, NiO, Al203, SiO2, TiO2, Nd2O3, Yb2O3, or any combination of these) supported on zirconia (ZrO2) or hydrous zirconia are provided. These mixed metal oxide catalysts can be prepared via coprecipitation, impregnation, or sol-gel methods from metal salt precursors with/without a Zirconium salt precursor. Metal oxides/ZrO2 catalyzes both esterification and transesterification of oil containing free fatty acids in one batch or in single stage. In particular, these mixed metal oxides supported or added on zirconium oxide exhibit good activity and selectivity for esterification and transesterification. The low acid strength of this catalyst can avoid undesirable side reaction such as alcohol dehydration or cracking of fatty acids. Metal oxides/ZrO2 catalysts are not sensitive to any water generated from esterification. Thus, esterification does not require a water free condition or the presence of excess methanol to occur when using the mixed metal oxide catalyst. The FAME yield obtained with metal oxides/ZrO2 is higher than that obtained with homogeneous sulfuric acid catalyst. Metal oxides/ZrO2 catalasts can be prepared as strong pellets and in various shapes for use directly in a flow reactor. Furthermore, the pellet has a strong resistance toward dissolution to aqueous or oil phases.
NASA Astrophysics Data System (ADS)
Wang, Fulong; Xue, Huaiguo; Tian, Zhiqun; Xing, Wei; Feng, Ligang
2018-01-01
Developing catalyst promoter for Pd/C catalyst is significant for the catalytic ability improvement in energy transfer related electrochemical reactions. Herein, we demonstrate Fe2P as an efficient catalyst promoter in Pd/C catalyst system for formic acid electro-oxidation in fuel cells reactions. Adding Fe2P in the Pd/C catalyst system greatly increases the performances for formic acid oxidation by 3-4 times; the CO stripping technique displays two kinds of active sites formation in the Pd-Fe2P/C catalyst system coming from the interaction of Pd, Fe2P and Pd oxide species and both are more efficient for formic acid and CO-species electrooxidation. The smaller charge transfer resistance and Tafel slope for formic acid oxidation indicate the improvements in kinetics by Fe2P in the Pd-Fe2P/C system. The nanostructured hybrid units of Pd, Fe2P and carbon are evidently visible in the high resolution microscopy images and XPS technique confirmes the electronic effect in the catalyst system. The promotion effect of Fe2P in the catalyst system arising from the structure, composition and electronic effect changes is discussed with the help from multiple physical and electrochemical techniques. It is concluded that Fe2P as a significant catalyst promoter will have potential application in energy transfer related electrochemical reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-01
The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japanmore » and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.« less
Shaffer, David W.; Xie, Yan; Szalda, David J.; ...
2016-11-01
In order to gain a deeper mechanistic understanding of water oxidation by [(bda)Ru(L) 2] catalysts (bdaH 2 = [2,2'-bipyridine]-6,6'-dicarboxylic acid; L = pyridine-type ligand), a series of modified catalysts with one and two trifluoromethyl groups in the 4 position of the bda 2– ligand was synthesized and studied using stopped-flow kinetics. The additional $-$CF 3 groups increased the oxidation potentials for the catalysts and enhanced the rate of electrocatalytic water oxidation at low pH. Stopped-flow measurements of cerium(IV)-driven water oxidation at pH 1 revealed two distinct kinetic regimes depending on catalyst concentration. At relatively high catalyst concentration (ca. ≥10 –4more » M), the rate-determining step (RDS) was a proton-coupled oxidation of the catalyst by cerium(IV) with direct kinetic isotope effects (KIE > 1). At low catalyst concentration (ca. ≤10 –6 M), the RDS was a bimolecular step with k H/k D ≈ 0.8. The results support a catalytic mechanism involving coupling of two catalyst molecules. The rate constants for both RDSs were determined for all six catalysts studied. The presence of $-$CF 3 groups had inverse effects on the two steps, with the oxidation step being fastest for the unsubstituted complexes and the bimolecular step being faster for the most electron-deficient complexes. Finally, though the axial ligands studied here did not significantly affect the oxidation potentials of the catalysts, the nature of the ligand was found to be important not only in the bimolecular step but also in facilitating electron transfer from the metal center to the sacrificial oxidant.« less
Thin film hydrous metal oxide catalysts
Dosch, Robert G.; Stephens, Howard P.
1995-01-01
Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.
Partial oxidation of alkanes by dioxiranes formed in situ at low temperature.
Yacob, Sara; Caulfield, Michael J; Barckholtz, Timothy A
2018-01-13
Partial oxidation catalysts capable of efficiently operating at low temperatures may limit the over-oxidation of alkane substrates and thereby improve selectivity. This work focuses on examining alkane oxidation using completely metal-free organocatalysts, dioxiranes. The dioxiranes employed here are synthesized by oxidation of a ketone using a terminal oxidant, such as hydrogen peroxide. Our work generates the dioxirane in situ , so that the process can be catalytic with respect to the ketone. To date, we have demonstrated selective partial oxidation of adamantane using ketone catalysts resulting in yields upwards of 60% towards 1-adamantanol with greater than 99% selectivity. Furthermore, we have demonstrated that changing the electrophilic character of the ketone R groups to contain more electron-donating ligands facilitates the dioxirane ring formation and improves overall oxidation yields. Isotopic labelling studies using H 2 18 O 2 show the preferential incorporation of an 18 O label into the parent ketone, providing evidence for a dioxirane intermediate formed in situ The isotopic labelling studies, along with solvent effect studies, suggest the formation of peracetic acid as a reactive intermediate.This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'. © 2017 The Author(s).
Kakinuma, Katsuyoshi; Kim, In-Tae; Senoo, Yuichi; Yano, Hiroshi; Watanabe, Masahiro; Uchida, Makoto
2014-12-24
We synthesized Pt and PtRu catalysts supported on Nb-doped SnO(2-δ) (Pt/Sn0.99Nb0.01O(2-δ), PtRu/Sn0.99Nb0.01O(2-δ)) for direct oxidation fuel cells (DOFCs) using poly oxymethylene-dimethyl ether (POMMn, n = 2, 3) as a fuel. The onset potential for the oxidation of simulated fuels of POMMn (methanol-formaldehyde mixtures; n = 2, 3) for Pt/Sn0.99Nb0.01O(2-δ) and PtRu/Sn0.99Nb0.01O(2-δ) was less than 0.3 V vs RHE, which was much lower than those of two commercial catalysts (PtRu black and Pt2Ru3/carbon black). In particular, the onset potential of the oxidation reaction of simulated fuels of POMMn (n = 2, 3) for PtRu/Sn0.99Nb0.01O(2-δ) sintered at 800 °C in nitrogen atmosphere was less than 0.1 V vs RHE and is thus considered to be a promising anode catalyst for DOFCs. The mass activity (MA) of PtRu/Sn0.99Nb0.01O(2-δ) sintered at 800 °C was more than five times larger than those of the commercial catalysts in the measurement temperature range from 25 to 80 °C. Even though the MA for the methanol oxidation reaction was of the same order as those of the commercial catalysts, the MA for the formaldehyde oxidation reaction was more than five times larger than those of the commercial catalysts. Sn from the Sn0.99Nb0.01O(2-δ) support was found to have diffused into the Pt catalyst during the sintering process. The Sn on the top surface of the Pt catalyst accelerated the oxidation of carbon monoxide by a bifunctional mechanism, similar to that for Pt-Ru catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez J. A.; Illas, F.
2012-01-01
This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show thatmore » Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O{sub 2}, C{sub 2}H{sub 4}, SO{sub 2}, thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO{sub 2} at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O{sub 2} and perform the 2CO + O{sub 2} {yields} 2CO{sub 2} reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS{sub x} catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are excellent supports for enhancing the chemical reactivity of noble metals.« less
Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.
Guo, Yufang; Liao, Xiaobin; Fu, Mingli; Huang, Haibao; Ye, Daiqi
2015-02-01
Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression. Copyright © 2014. Published by Elsevier B.V.
Optimum Platinum Loading In Pt/SnO2 CO-Oxidizing Catalysts
NASA Technical Reports Server (NTRS)
Schryer, David R.; Upchurch, Billy T.; Davis, Patricia P.; Brown, Kenneth G.; Schryer, Jacqueline
1991-01-01
Platinum on tin oxide (Pt/SnO2) good catalyst for oxidation of carbon monoxide at or near room temperature. Catalytic activity peaks at about 17 weight percent Pt. Catalysts with platinum loadings as high as 46 percent fabricated by technique developed at Langley Research Center. Work conducted to determine optimum platinum loading for this type of catalyst. Major application is removal of unwanted CO and O2 in CO2 lasers.
Influence of surface phenomena in oxidative desulfurization with WOx/ZrO2 catalysts
NASA Astrophysics Data System (ADS)
Torres-García, E.; Canizal, G.; Velumani, S.; Ramírez-Verduzco, L. F.; Murrieta-Guevara, F.; Ascencio, J. A.
2004-12-01
Oil refinery related catalysis, particularly hydro desulfurization is viewed as a mature technology, but still we view that more efforts have to be made to boost the efficiency of the existing catalysts. So in this article we report the use of WOx/ZrO2 catalysts for the oxidation of dibenzothiophene (DBT) as a more effective material in nanometer scales. The WOx/ZrO2 samples were prepared by solid impregnation of ZrO2-x(OH)2x with ammonium metatungstate solution maintaining the pH at 10. Detailed structural and surface morphological analyses were carried out using Raman spectroscopy and Atomic force microscopy. In order to understand the catalytic activity which is largely influenced by the surface morphology, an interpretation based on the experimental results is given. The results showed an important correlation between the catalytic efficiency with the morphology of the surface which is identified as arrays of planes with steps of around 10 nm with the structures showing faceting with a preferential angle of 90°. It was established that when the number of W atoms in the surface increase the catalytic efficiency also increases. Thus we conclude that the material efficiency as a catalyst is directly related with the surface structure.
Investigation of NOx Removal from Small Engine Exhaust
NASA Technical Reports Server (NTRS)
Akyurtlu, Ates; Akyurtlu, Jale F.
1999-01-01
Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of Nitrogen Oxide (NO) can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.
Oughli, Alaa A; Ruff, Adrian; Boralugodage, Nilusha Priyadarshani; Rodríguez-Maciá, Patricia; Plumeré, Nicolas; Lubitz, Wolfgang; Shaw, Wendy J; Schuhmann, Wolfgang; Rüdiger, Olaf
2018-02-28
The Ni(P 2 N 2 ) 2 catalysts are among the most efficient non-noble-metal based molecular catalysts for H 2 cycling. However, these catalysts are O 2 sensitive and lack long term stability under operating conditions. Here, we show that in a redox silent polymer matrix the catalyst is dispersed into two functionally different reaction layers. Close to the electrode surface is the "active" layer where the catalyst oxidizes H 2 and exchanges electrons with the electrode generating a current. At the outer film boundary, insulation of the catalyst from the electrode forms a "protection" layer in which H 2 is used by the catalyst to convert O 2 to H 2 O, thereby providing the "active" layer with a barrier against O 2 . This simple but efficient polymer-based electrode design solves one of the biggest limitations of these otherwise very efficient catalysts enhancing its stability for catalytic H 2 oxidation as well as O 2 tolerance.
NASA Technical Reports Server (NTRS)
2005-01-01
NASA s Langley Research Center scientists developed a family of catalysts for low- temperature oxidation of carbon monoxide and other gases. The catalysts provide oxidation of both carbon monoxide and formaldehyde at room temperature without requiring any energy input, just a suitable flow of gas through them. Originally designed as part of an atmospheric satellite project, where the catalysts were intended to recycle and recapture carbon dioxide to enhance the operational life of carbon dioxide lasers, the entire system was made to be rugged, long-lived, and fail-safe. The low-temperature oxidation catalysts can be produced and coated onto various catalyst supports, including porous ceramic monoliths and beads, which means that they can be integrated into existing designs, made to fit in limited space, and fashioned into a variety of geometrically different products. Although the satellite project was never launched, the resulting catalysts are doing great things here on Earth, with current applications in the high-speed motor sports arena as air purifiers, so professional racecar drivers do not get carbon monoxide poisoning. Future benefits may extend even further.
Ruggeri, Maria Pia; Nova, Isabella; Tronconi, Enrico; ...
2014-11-03
We report a mechanistic DRIFTS in-situ study of NO 2, NO + O 2 and NO adsorption on a commercial Cu-CHA catalyst for NH 3-SCR of NO x. Both pre-reduced and pre-oxidized catalyst samples were investigated with the aim of clarifying mechanistic aspects of the NO oxidation to NO 2 as a preliminary step towards the study of the Standard SCR reaction mechanism at low temperatures. Nitrosonium cations (NO +, N formal oxidation state = +3) were identified as key surface intermediates in the process of NO (+2) oxidation to NO 2 (+4) and nitrates (+5). While NO + andmore » nitrates were formed simultaneously upon catalyst exposure to NO 2, nitrates evolved consecutively to NO + when the catalyst was exposed to NO + O 2, suggesting that nitrite-like species, and not NO 2, are formed as the primary products of the NO oxidative activation over Cu-CHA. Upon catalyst exposure to NO only, i.e. in the absence of gaseous O 2, NO + and then nitrates were formed on a pre-oxidized sample but not on a pre-reduced one, which demonstrates the red-ox nature of the NO oxidation mechanism. The negative effect of H 2O on NO + and nitrates formation was also clearly established. Assuming Cu dimers as the active sites for NO oxidation to NO 2, we propose a mechanism which reconciles all the experimental observations. Specifically, we show that such a mechanism also explains the observed kinetic effects of H 2O, O 2 and NO 2 on the NO oxidation activity of the investigated Cu zeolite catalyst.« less
Rodriguez, José A.; Grinter, David C.; Liu, Zongyuan; ...
2017-02-17
Model metal/ceria and ceria/metal catalysts have been shown to be excellent systems for studying fundamental phenomena linked to the operation of technical catalysts. In the last fifteen years, many combinations of well-defined systems involving different kinds of metals and ceria have been prepared and characterized using the modern techniques of surface science. So far most of the catalytic studies have been centered on a few reactions: CO oxidation, the hydrogenation of CO 2, and the production of hydrogen through the water–gas shift reaction and the reforming of methane or alcohols. By using model catalysts it is been possible to examinemore » in detail correlations between the structural, electronic and catalytic properties of ceria–metal interfaces. In situ techniques (X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, infrared spectroscopy, scanning tunneling microscopy) have been combined to study the morphological changes under reaction conditions and investigate the evolution of active phases involved in the cleavage of C–O, C–H and C–C bonds. Several studies with model ceria catalysts have shown the importance of strong metal–support interactions. Generally, a substantial body of knowledge has been acquired and concepts have been developed for a more rational approach to the design of novel technical catalysts containing ceria.« less
Low-Temperature CO-Oxidation Catalysts for Long-Life CO2 Lasers
NASA Technical Reports Server (NTRS)
Schryer, David R. (Editor); Hoflund, Gar B. (Editor)
1990-01-01
Low-temperature CO-oxidation catalysts are necessary for closed-cycle pulsed CO2 lasers as well as for other applications, including air purification. The papers presented in this volume discuss several such catalysts, including information on catalyst preparation, techniques for enhancing catalyst performance, laboratory and laser test results, and mechanistic considerations.
Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo
2016-02-05
As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pourkhalil, Mahnaz; Moghaddam, Abdolsamad Zarringhalam; Rashidi, Alimorad; Towfighi, Jafar; Mortazavi, Yadollah
2013-08-01
Manganese oxide catalysts (MnOx) supported on functionalized multi-walled carbon nanotubes (FMWNTs) for low temperature selective catalytic reduction (LTSCR) of nitrogen oxides (NOx) with NH3 in the presence of excess O2 were prepared by the incipient wetness impregnation method. These catalysts were characterized by N2 adsorption, Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and H2-temperature programmed reduction (H2-TPR) methods. The effects of reaction temperature, MnOx loading, calcination temperature and calcination time were investigated. The presence of surface nitrate species under moderate calcination conditions may play a favorable role in the LTSCR of NOx with NH3. Under the reaction conditions of 200 °C, 1 bar, NO = NH3 = 900 ppm, O2 = 5 vol%, GHSV = 30,000 h-1 and 12 wt% MnOx, NOx conversion and N2 selectivity were 97% and 99.5%, respectively. The SCR activity was reduced in the presence of 100 ppm SO2 and 2.5 vol% H2O from 97% to 92% within 6 h at 200 °C, however such an effect was shown to be reversible by exposing the catalyst to a helium flow for 2 h at 350 °C due to thermal decomposition of ammonium sulphate salts.
Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium
NASA Astrophysics Data System (ADS)
Abdel Rahim, M. A.; Abdel Hameed, R. M.; Khalil, M. W.
The use of Ni as a catalyst for the electro-oxidation of methanol in alkaline medium was studied by cyclic voltammetry. It was found that only Ni dispersed on graphite shows a catalytic activity towards methanol oxidation but massive Ni does not. Ni was dispersed on graphite by the electro-deposition from acidic NiSO 4 solution using potentiostatic and galvanostatic techniques. The catalytic activity of the C/Ni electrodes towards methanol oxidation was found to vary with the amount of electro-deposited Ni. The dependence of the oxidation current on methanol concentration and scan rate was discussed. It was concluded from the electro-chemical measurements and SEM analysis that methanol oxidation starts as Ni-oxide is formed on the electrode surface.
Aardahl, Christopher L [Richland, WA; Balmer-Miller, Mari Lou [West Richland, WA; Chanda, Ashok [Peoria, IL; Habeger, Craig F [West Richland, WA; Koshkarian, Kent A [Peoria, IL; Park, Paul W [Peoria, IL
2006-07-25
The present disclosure pertains to a system and method for treatment of oxygen rich exhaust and more specifically to a method and system that combines non-thermal plasma with a metal doped .gamma.-alumina catalyst. Current catalyst systems for the treatment of oxygen rich exhaust are capable of achieving only approximately 7 to 12% NO.sub.x reduction as a passive system and only 25 40% reduction when a supplemental hydrocarbon reductant is injected into the exhaust stream. It has been found that treatment of an oxygen rich exhaust initially with a non-thermal plasma and followed by subsequent treatment with a metal doped .gamma.-alumina prepared by the sol gel method is capable of increasing the NO.sub.x reduction to a level of approximately 90% in the absence of SO.sub.2 and 80% in the presence of 20 ppm of SO.sub.2. Especially useful metals have been found to be indium, gallium, and tin.
NASA Astrophysics Data System (ADS)
Li, Lingzhi; Chen, Mingxi; Huang, Guanbo; Yang, Nian; Zhang, Li; Wang, Huan; Liu, Yu; Wang, Wei; Gao, Jianping
2014-10-01
Bimetallic palladium-silver nanoparticles (NPs) supported on reduced oxide graphene (RGO) with different Pd/Ag ratios (Pd-Ag/RGO) were prepared by an easy green method which did not use any additional reducing agents or a dispersing agent. During the process, simultaneous redox reactions between AgNO3, K2PdCl4 and graphene oxide (GO) led to bimetallic Pd-Ag NPs. The morphology and composition of the Pd-Ag/RGO were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis and Raman spectroscopy. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of these Pd-Ag/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. Among the different Pd/Ag ratios, the Pd-Ag (1:1)/RGO had the best catalytic activities and stability. So it is a promising catalyst for direct alcohol fuel cell applications.
Yue, Yanfeng; Zhang, Li; Chen, Jihua; ...
2016-01-01
A series of mesoporous xEr 2O 3·CoTiO 3 composite oxide catalysts have been prepared using template method and tested as a new type of catalyst for the oxidative dehydrogenation of ethylbenzene to styrene by using CO 2 as a soft oxidant. Among the catalysts tested, the 0.25Er 2O 3 CoTiO 3 sample with a ratio of 1:4:4 content and calcined at 600 oC exhibited the highest ethylbenzene conversion (58%) and remarkable styrene selectivity (95%) at low temperature (450 °C).
Critical Surface Parameters for the Oxidative Coupling of Methane over the Mn-Na-W/SiO2 Catalyst.
Hayek, Naseem S; Lucas, Nishita S; Warwar Damouny, Christine; Gazit, Oz M
2017-11-22
The work here presents a thorough evaluation of the effect of Mn-Na-W/SiO 2 catalyst surface parameters on its performance in the oxidative coupling of methane (OCM). To do so, we used microporous dealuminated β-zeolite (Zeo), or mesoporous SBA-15 (SBA), or macroporous fumed silica (Fum) as precursors for catalyst preparation, together with Mn nitrate, Mn acetate and Na 2 WO 4 . Characterizing the catalysts by inductively coupled plasma-optical emission spectroscopy, N 2 physisorption, X-ray diffraction, high-resolution scanning electron microscopy-energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and catalytic testing enabled us to identify critical surface parameters that govern the activity and C 2 selectivity of the Mn-Na-W/SiO 2 catalyst. Although the current paradigm views the phase transition of silica to α-cristobalite as the critical step in obtaining dispersed and stable metal sites, we show that the choice of precursors is equally or even more important with respect to tailoring the right surface properties. Specifically, the SBA-based catalyst, characterized by relatively closed surface porosity, demonstrated low activity and low C 2 selectivity. By contrast, for the same composition, the Zeo-based catalyst showed an open surface pore structure, which translated up to fourfold higher activity and enhanced selectivity. By varying the overall composition of the Zeo catalysts, we show that reducing the overall W concentration reduces the size of the Na 2 WO 4 species and increases the catalytic activity linearly as much as fivefold higher than the SBA catalyst. This linear dependence correlates well to the number of interfaces between the Na 2 WO 4 and Mn 2 O 3 species. Our results combined with prior studies lead us to single out the interface between Na 2 WO 4 and Mn 2 O 3 as the most probable active site for OCM using this catalyst. Synergistic interactions between the various precursors used and the phase transition are discussed in detail, and the conclusions are correlated to surface properties and catalysis.
Xi, Zheng; Lv, Haifeng; Erdosy, Daniel P.; ...
2017-05-07
Here, we report an electrochemical method to deposit atomic scale Pt on a 5 nm Au nanoparticle (NP) surface in N 2-saturated 0.5 M H 2SO 4. Furthermore, Pt is provided by the Pt wire counter electrode via one-step Pt wire oxidation, dissolution, and deposition realized by controlled electrochemical scanning. Scanning from 0.6–1.0 V (vs. RHE) for 10 000 cycles gives Au 98.2Pt 1.8, which serves as an excellent catalyst for the formic acid oxidation reaction, showing 41 times higher specific activity (20.19 mA cm -2) and 25 times higher mass activity (10.80 A mg Pt -1) with much bettermore » CO-tolerance and stability than commercial Pt. This work demonstrates a unique strategy to minimize the use of Pt as a catalyst for electrochemical reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Zheng; Lv, Haifeng; Erdosy, Daniel P.
Here, we report an electrochemical method to deposit atomic scale Pt on a 5 nm Au nanoparticle (NP) surface in N 2-saturated 0.5 M H 2SO 4. Furthermore, Pt is provided by the Pt wire counter electrode via one-step Pt wire oxidation, dissolution, and deposition realized by controlled electrochemical scanning. Scanning from 0.6–1.0 V (vs. RHE) for 10 000 cycles gives Au 98.2Pt 1.8, which serves as an excellent catalyst for the formic acid oxidation reaction, showing 41 times higher specific activity (20.19 mA cm -2) and 25 times higher mass activity (10.80 A mg Pt -1) with much bettermore » CO-tolerance and stability than commercial Pt. This work demonstrates a unique strategy to minimize the use of Pt as a catalyst for electrochemical reactions.« less
The effects of pretreatment conditions on a Pt/SnO2 catalyst for the oxidation of CO in CO2 lasers
NASA Technical Reports Server (NTRS)
Schryer, David R.; Vannorman, John D.; Brown, Kenneth G.; Schryer, Jacqueline
1989-01-01
CO oxidation catalysts with high activity at 25 to 100 C are important for long life, closed cycle operation of pulsed CO2 lasers. A reductive pretreatment with either CO or H2 was shown to significantly enhance the activity of a commercially available platinum on tin (IV) oxide (Pt/SnO2) catalyst relative to an oxidative or inert pretreatment of no pretreatment. Pretreatment at temperatures of 175 C and above causes an initial dip in the observed CO2 yield before the steady state yield is attained. This dip was found to be caused by dehydration of the catalyst during pretreatment and is readily eliminated by humidifying the catalyst or the reaction gas mixture. It is hypothesized that the effect of humidification is to increase the concentration of OH groups on the catalyst surface which play a role in the reaction mechanism.
Catalysts for oxidation of mercury in flue gas
Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA
2010-08-17
Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).
Zhu, Feng-Xia; Wang, Wei; Li, He-Xing
2011-08-03
An operationally simple approach for the preparation of a new class of bifunctional Au nanoparticle-acid catalysts has been developed. In situ reduction of Au(3+) with HS-functionalized periodic mesoporous organosilicas (PMOs) creates robust, fine Au nanoparticles and concomitantly produces a sulfonic acid moiety strongly bonded to PMOs. Characterizations of the nanostructures reveal that Au nanoparticles are formed with uniformed, narrow size distribution around 1-2 nm, which is very critical for essential catalytic activities. Moreover, the Au nanoparticles are mainly attached onto the pore surface rather than onto the outer surface with ordered mesoporous channels, allowing for maximal exposure to reaction substrates while minimizing Au nanoparticle leaching. Their higher S(BET), V(P), and D(P) than either the Au-HS-PMO(Et) or the Au/SO(3)H-PMO(Et) render the catalyst with comparably even higher catalytic efficiency than its homogeneous counterparts. Furthermore, the unique amphiphilic compartment of the Au-HS/SO(3)H-PMO(Et) nanostructures enables organic reactions to proceed efficiently in a pure aqueous solution without using any organic solvents or even without water. As demonstrated experimentally, remarkably, the unique bifunctional Au-HS/SO(3)H-PMO(Et) catalyst displays higher efficiencies in promoting water-medium alkyne hydration, intramolecular hydroamination, styrene oxidation, and three-component coupling reactions and even the solvent-free alkyne hydration process than its homogeneous catalysts. The robust catalyst can be easily recycled and used repetitively at least 10 times without loss of catalytic efficiency. These features render the catalyst particularly attractive in the practice of organic synthesis in an environmentally friendly manner.
Electrochemical oxidation of sulfites by DWCNTs, MWCNTs, higher fullerenes and manganese
NASA Astrophysics Data System (ADS)
Uzun, Dzhamal; Pchelarov, George; Dimitrov, Ognian; Vassilev, Sasho; Obretenov, Willi; Petrov, Konstantin
2018-03-01
Different electrocatalysts were tested for oxidation of sulfites to sulfates, namely, manganese thin films deposited on fullerenes and carbon nanotubes. The results presented clearly show that electrodes containing HFs (higher fullerenes), DWCNTs (double-wall carbon nanotubes) and manganese acetate are effective catalysts in S/O2 fuel cells. HFs and DWCNTs have high catalytic activity and can be employed as standalone catalysts. Manganese was deposited on DWCNTs, HFs and fullerenes C60/C70 by a thermal process. The electrocatalysts were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical testing was carried out by plotting the E/V polarization curve. The polarization curves of the electrodes composed of pristine DWCNTs showed the lowest overpotentials.
NASA Technical Reports Server (NTRS)
Herz, Richard K.
1990-01-01
Oxidation of CO to CO2 is an important reaction technologically and environmentally and a complex and interesting reaction scientifically. In most cases, the reaction is carried out in order to remove CO as an environmental hazard. A major application of heterogeneous catalysts is catalytic oxidation of CO in the exhaust of combustion devices. The reaction over catalysts in exhaust gas is fast and often mass-transfer-limited since exhaust gases are hot and O2/CO ratios are high. The main challenges to catalyst designers are to control thermal sintering and chemical poisoning of the active materials. The effect of the noble metal on the oxide is discussed, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form unique catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Duan, Lele; Araujo, Carlos Moyses; Ahlquist, Mårten S.G.; Sun, Licheng
2012-01-01
Water oxidation catalysts are essential components of light-driven water splitting systems, which could convert water to H2 driven by solar radiation (H2O + hν → 1/2O2 + H2). The oxidation of water (H2O → 1/2O2 + 2H+ + 2e-) provides protons and electrons for the production of dihydrogen (2H+ + 2e- → H2), a clean-burning and high-capacity energy carrier. One of the obstacles now is the lack of effective and robust water oxidation catalysts. Aiming at developing robust molecular Ru-bda (H2bda = 2,2′-bipyridine-6,6′-dicarboxylic acid) water oxidation catalysts, we carried out density functional theory studies, correlated the robustness of catalysts against hydration with the highest occupied molecular orbital levels of a set of ligands, and successfully directed the synthesis of robust Ru-bda water oxidation catalysts. A series of mononuclear ruthenium complexes [Ru(bda)L2] (L = pyridazine, pyrimidine, and phthalazine) were subsequently synthesized and shown to effectively catalyze CeIV-driven [CeIV = Ce(NH4)2(NO3)6] water oxidation with high oxygen production rates up to 286 s-1 and high turnover numbers up to 55,400. PMID:22753518
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, G.; Su, D.; Frenkel, A. I.
Direct ethanol fuel cell (DEFC) is a promising technology for generating electricity via the electro-oxidation of liquid ethanol. Its implementation requires the development of anode catalysts capable of producing CO 2 and yielding 12-electron transfer through breaking C-C bond of ethanol. Here we presented comprehensive studies of electro-kinetics of the CO 2 generation on Pt/Rh/Sn ternary catalysts. Our studies showed that, for the first time, the tri–phase PtRhOx- SnO 2 catalysts with a partially oxidized Pt and Rh core and a SnO 2 shell, validated by X-ray absorption analyses and scanning transmission electron microscope-electron energy loss spectroscopy line scan, coincidedmore » with a 2.5-fold increase in the CO 2 generation rate towards ethanol oxidation reaction, compared with the bi-phase PtRh-SnO 2 catalysts with a metallic PtRh alloy core and commercial Pt. These studies provided insight on the design of a new genre of electro-catalysts with a partially oxidized noble metal.« less
Yang, G.; Su, D.; Frenkel, A. I.; ...
2016-09-04
Direct ethanol fuel cell (DEFC) is a promising technology for generating electricity via the electro-oxidation of liquid ethanol. Its implementation requires the development of anode catalysts capable of producing CO 2 and yielding 12-electron transfer through breaking C-C bond of ethanol. Here we presented comprehensive studies of electro-kinetics of the CO 2 generation on Pt/Rh/Sn ternary catalysts. Our studies showed that, for the first time, the tri–phase PtRhOx- SnO 2 catalysts with a partially oxidized Pt and Rh core and a SnO 2 shell, validated by X-ray absorption analyses and scanning transmission electron microscope-electron energy loss spectroscopy line scan, coincidedmore » with a 2.5-fold increase in the CO 2 generation rate towards ethanol oxidation reaction, compared with the bi-phase PtRh-SnO 2 catalysts with a metallic PtRh alloy core and commercial Pt. These studies provided insight on the design of a new genre of electro-catalysts with a partially oxidized noble metal.« less
Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.
Fortuny, A; Bengoa, C; Font, J; Fabregat, A
1999-01-29
Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, Fe2O3, MnO or ZnO with 10% CuO were supported on gamma-alumina by pore filling, calcined and later tested. The oxidation was carried out in a packed bed reactor operating in trickle flow regime at 140 degrees C and 900 kPa of oxygen partial pressure. Lifetime tests were conducted for 8 days. The pH of the feed solution was also varied. The results show that all the catalysts tested undergo severe deactivation during the first 2 days of operation. Later, the catalysts present steady activity until the end of the test. The highest residual phenol conversion was obtained for the ZnO-CuO, which was significantly higher than that obtained with the 10% CuO catalyst used as reference. The catalyst deactivation is related to the dissolution of the metal oxides from the catalyst surface due to the acidic reaction conditions. Generally, the performance of the catalysts was better when the pH of the feed solution was increased.
Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis
Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah
2014-01-01
The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jinyong; Gao, Feng; Karim, Ayman M.
MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizesmore » Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the stability of nitrates and exposed Pt surface, gives the best NOx trapping capability.« less
Wang, Hui-Long; Dong, Jing; Jiang, Wen-Feng
2010-11-15
The chlorine dioxide (ClO(2)) oxidative degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) in aqueous solution was studied in detail using Al(2)O(3) as a heterogeneous catalyst. The operating parameters such as the ClO(2) concentration, catalyst dosage, initial DNBP concentration, reaction time and pH were evaluated. Compared with the conventional ClO(2) oxidation process without the catalyst, the ClO(2) catalytic oxidation system could significantly enhance the degradation efficiency. Under the optimal condition (DNBP concentration 39 mg L(-1), ClO(2) concentration 0.355 g L(-1), reaction time 60 min, catalyst dosage 10.7 g L(-1) and pH 4.66), degradation efficiency approached 99.1%. The catalyst was used at least 8 cycles without any appreciable loss of activity. The kinetic studies revealed that the ClO(2) catalytic oxidation degradation of DNBP followed pseudo-first-order kinetics with respect to DNBP concentration. The ClO(2) catalytic oxidation process was found to be very effective in the decolorization and COD(Cr) reduction of real wastewater from DNBP manufacturing. Thus, this study showed potential application of ClO(2) catalytic oxidation process in degradation of organic contaminants and industrial effluents. Copyright © 2010 Elsevier B.V. All rights reserved.
Bi, Xiaoyi; Wang, Peng; Jiang, Hong
2008-06-15
In order to develop a catalyst with high activity and stability for microwave assisted ClO2 catalytic oxidation, we prepared CuOn-La2O3/gamma-Al2O3 by impregnation-deposition method, and determined its properties using BET, XRF, XPS and chemical analysis techniques. The test results show that, better thermal ability of gamma-Al2O3 and high loading of Cu in the catalyst can be achieved by adding La2O3. The microwave assisted ClO2 catalytic oxidation process with CuOn-La2O3/gamma-Al2O3 used as catalyst was also investigated, and the results show that the catalyst has an excellent catalytic activity in treating synthetic wastewater containing 100 mg/L phenol, and 91.66% of phenol and 50.35% of total organic carbon (TOC) can be removed under the optimum process conditions. Compared with no catalyst process, CuOn-La2O3/gamma-Al2O3 can effectively degrade contaminants in short reaction time and with low oxidant dosage, extensive pH range. The comparison of phenol removal efficiency in the different process indicates that microwave irradiation and catalyst work together to oxidize phenol effectively. It can therefore be concluded from results and discussion that CuOn-La2O3/gamma-Al2O3 is a suitable catalyst in microwave assisted ClO2 catalytic oxidation process.
The oxidation of copper catalysts during ethylene epoxidation.
Greiner, M T; Jones, T E; Johnson, B E; Rocha, T C R; Wang, Z J; Armbrüster, M; Willinger, M; Knop-Gericke, A; Schlögl, R
2015-10-14
The oxidation of copper catalysts during ethylene epoxidation was characterized using in situ photoemission spectroscopy and electron microscopy. Gas chromatography, proton-transfer reaction mass spectrometry and electron-ionization mass spectrometry were used to characterize the catalytic properties of the oxidized copper. We find that copper corrodes during epoxidation in a 1 : 1 mixture of oxygen and ethylene. The catalyst corrosion passes through several stages, beginning with the formation of an O-terminated surface, followed by the formation of Cu2O scale and eventually a CuO scale. The oxidized catalyst exhibits measurable activity for ethylene epoxidation, but with a low selectivity of <3%. Tests on pure Cu2O and CuO powders confirm that the oxides intrinsically exhibit partial-oxidation activity. Cu2O was found to form acetaldehyde and ethylene epoxide in roughly equal amounts (1.0% and 1.2% respectively), while CuO was found to form much less ethyl aldehyde than ethylene epoxide (0.1% and 1.0%, respectively). Metallic copper catalysts were examined in extreme dilute-O2 epoxidation conditions to try and keep the catalyst from oxidizing during the reaction. It was found that in feed of 1 part O2 to 2500 parts C2H4 (PO2 = 1.2 × 10(-4) mbar) the copper surface becomes O-terminated. The O-terminated surface was found to exhibit partial-oxidation selectivity similar to that of Cu2O. With increasing O2 concentration (>8/2500) Cu2O forms and eventually covers the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D. M.; Keifer, J. R.; Novicky, M.
1989-01-01
Short- and long-term studies of the effect of black carbon and otherparticulates on the oxidation of SO/sub 2/, with an without the presence ofoxygen, water vapor, and simulated solar radiation, have been carriedout. FT-IR studies involving isotopic oxygen-18, sulfur dioxide-18, and D/sub 2/Oin these reactions confirm the requirement of water vapor and oxygen forthis oxidation. Such experiments conducted at 298 K demonstrate only theformation of ionic sulfates, while the reactions conducted under simulatedsolar radiation show the formation of both covalent and ionic sulfate species.These observations have implications for the retention or diminution ofcatalytic activity by the soot. The reaction vesselmore » walls, SiO/sub 2/, andparticulate black carbon, all act as catalysts for the conversion ofS(IV) to S(VI), the amounts depending primarily on the surface area of thesolid.« less
Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji
2015-01-01
The effect of oxide coating on the activity of a copper-zinc oxide–based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO2 conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides. PMID:28793674
NASA Astrophysics Data System (ADS)
Rafiee, Ezzat; Shahebrahimi, Shabnam
2017-07-01
Organic-inorganic hybrid nano porous materials based on poly(ionic liquid)-polyoxometalate (PIL-POM) were reported. These hybrid materials were synthesized by the reaction of 4-vinyl pyridine with 1,3-propanesultone, followed by the polymerization and also sulfonate-functionalized cross-linked poly(4-vinylpyridine) and combining these polymers with H5PMo10V2O40 (PMo10V2). Activity of prepared PIL-PMo10V2 hybrids were investigated as catalysts for oxidation of sulfides with H2O2 as oxidant. For understanding catalytic activities of the PIL-PMo10V2 hybrids in oxidation of sulfides, effect of catalyst composition, substrate, and reaction conditions were studied. The results show that the PIL-PMo10V2 hybrids are active as selective heterogeneous catalysts for oxidation of sulfides and can be recovered and reused. The catalyst was characterized by FT-IR, TGA-DSC, XRD, SEM/EDX, BET, CV and zeta potential measurement. Also, average molecular weight of prepared catalysts were measured.
A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol
Wang, Jijie; Li, Guanna; Li, Zelong; Tang, Chizhou; Feng, Zhaochi; An, Hongyu; Liu, Hailong; Liu, Taifeng; Li, Can
2017-01-01
Although methanol synthesis via CO hydrogenation has been industrialized, CO2 hydrogenation to methanol still confronts great obstacles of low methanol selectivity and poor stability, particularly for supported metal catalysts under industrial conditions. We report a binary metal oxide, ZnO-ZrO2 solid solution catalyst, which can achieve methanol selectivity of up to 86 to 91% with CO2 single-pass conversion of more than 10% under reaction conditions of 5.0 MPa, 24,000 ml/(g hour), H2/CO2 = 3:1 to 4:1, 320° to 315°C. Experimental and theoretical results indicate that the synergetic effect between Zn and Zr sites results in the excellent performance. The ZnO-ZrO2 solid solution catalyst shows high stability for at least 500 hours on stream and is also resistant to sintering at higher temperatures. Moreover, no deactivation is observed in the presence of 50 ppm SO2 or H2S in the reaction stream. PMID:28989964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, V.R.; Mulla, S.A.R.; Uphade, B.S.
1997-06-01
Methane-to-C{sub 2}-hydrocarbon conversion activity and selectivity (or yield) of MgO and La-promoted MgO catalysts in the oxidative coupling of methane and strong basicity of the catalysts are decreased appreciably when these catalysts are deposited on commonly used commercial low surface area porous catalyst carriers containing Al{sub 2}O{sub 3}, SiO{sub 2}, SiC, or ZrO{sub 2} + HfO{sub 2} as the main components. The decrease in the strong basicity and catalytic activity/selectivity or yield is mostly due to strong chemical interactions between the active catalyst component (viz., MgO and La{sub 2}O{sub 3}) and the reactive components of the catalyst support (viz., Al{submore » 2}O{sub 3} and SiO{sub 2}), resulting in the formation of catalytically inactive binary metal oxides on the support surface. However, the influence of support on the activity/selectivity of La{sub 2}O{sub 3} is relatively very small, and also the chemical interactions of La{sub 2}O{sub 3} with the supports (except that containing a high concentration of SiO{sub 2}) are almost absent. The catalyst-support interactions are thus found to be strongly dependent upon the nature (chemical composition) of both catalyst and support. For developing better supported catalysts for the oxidative coupling of methane, supported La{sub 2}O{sub 3} with some promoters shows high promise.« less
Liu, Jiangyong; Wang, Zihao; Jian, Panming; Jian, Ruiqi
2018-05-01
A tailor-made catalyst with cobalt oxide particles encapsulated into ZSM-5 zeolites (Co 3 O 4 @HZSM-5) was prepared via a hydrothermal method with the conventional impregnated Co 3 O 4 /SiO 2 catalyst as the precursor and Si source. Various characterization results show that the Co 3 O 4 @HZSM-5 catalyst has well-organized structure with Co 3 O 4 particles compatibly encapsulated in the zeolite crystals. The Co 3 O 4 @HZSM-5 catalyst was employed as an efficient catalyst for the selective oxidation of styrene to benzaldehyde with hydrogen peroxide as a green and economic oxidant. The effect of various reaction conditions including reaction time, reaction temperature, different kinds of solvents, styrene/H 2 O 2 molar ratio and catalyst dosage on the catalytic performance were systematically investigated. Under the optimized reaction condition, the yield of benzaldehyde can achieve 78.9% with 96.8% styrene conversion and 81.5% benzaldehyde selectivity. Such an excellent catalytic performance can be attributed to the synergistic effect between the confined reaction environment and the proper acidic property. In addition, the reaction mechanism with Co 3 O 4 @HZSM-5 as the catalyst for the selective oxidation of styrene to benzaldehyde was reasonably proposed. Copyright © 2018 Elsevier Inc. All rights reserved.
Technology for advanced liquefaction processes: Coal/waste coprocessing studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V.
1995-12-31
The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandiamore » National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.« less
A Sn-doped hydrotalcite (Sn/HT) catalyst prepared by ion-exchange is found to be an active and selective catalyst for the liquid phase Baeyer-Villiger (BV) oxidation of cyclic ketones in acetonitrile using hydrogen peroxide (H2O2) as oxidant. Different reaction perameters such as...
NASA Astrophysics Data System (ADS)
Ndolomingo, Matumuene Joe; Meijboom, Reinout
2017-03-01
Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al2O3 supported copper and gold nanoparticles. Li2O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of catalyst and oxidant amounts was investigated, with the apparent rate constant, kapp being proportional to the amount of nano catalyst and oxygen present in the system.
Aziz, Abdul; Kim, Kwang Soo
2017-10-15
In this work, the performance of benzene, toluene, ethylbenzene, and xylene (BTEX) removal and degradation from gas, air streams on UV pretreated Fe-ZSM-5 in a batch reactor at room temperature were studied. The Fe-ZSM-5 zeolite catalyst was prepared by hydrothermal reaction method. The influence of UV pre-irradiation time on the removal of BTEX were assessed by varying the time, ranging from 15min to 60smin. Then, sustainability of the activation of the catalyst resulted by UV pretreatment was studied by the four-cycle experiment with one time UV irradiation and after each cycle irradiation followed by BTEX removal after every cycle respectively. The results of BTEX removal depicted that 30min of UV pretreatment was sufficient for complete organics removal. The UV pretreatment effect on the catalytic oxidation and the stability of the catalyst were studied by modern instrumental techniques. The novelty of the process was the sustainable reuse of catalyst with persistent VOC removal, which works on the -adsorption-oxidation-regeneration-adsorption- cycle, which was confirmed by the characterization studies of the catalyst after four runs. The results revealed that the change in the structure, stability, morphology, and removal efficiency of the catalyst during the experiments was negligible. The VOC degradation mechanism studies showed that the oxidation occurs due to the formation of free radicals as well as hydroxyl ions, so named it heterogeneous photo-Fenton oxidation. The residual materials analysis showed the complete mineralization of VOC except small amount of acetone as oxidation product. Lastly, the kinetics of the VOC removal was studied. Copyright © 2017 Elsevier B.V. All rights reserved.
Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts.
Wang, Fagen; Zhang, Haojie; He, Dannong
2014-01-01
The CO catalytic oxidation at ambient temperature and high space velocity was studied over the Pd-Cu/MOx (MOx = TiO2 and AI203) catalysts. The higher Brunauer-Emmett-Teller area surface of the A1203 support facilitates the dispersion of Pd2+ species, and the presence of Cu2Cl(OH)3 accelerates the re-oxidation of Pd0 to Pd2+ over the Pd-Cu/Al203 catalyst, which contributed to better performance of CO catalytic oxidation. The poorer activity of the Pd-Cu/TiO2 catalyst was attributed to the lower dispersion of Pd2+ species because of the less surface area and the non-formation of Cu2CI(OH)3 species. The presence of saturated moisture showed a negative effect on CO conversion over the two catalysts. This might be because of the competitive adsorption, the formation of carbonate species and the transformation of Cu2CI(OH)3 to inactive CuCI over the Pd-Cu/AI2O3 catalyst, which facilitates the aggregation of PdO species over the Pd-Cu/TiO2 catalyst under the moisture condition.
Mechanism of Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation
Hoover, Jessica M.; Ryland, Bradford L.; Stahl, Shannon S.
2013-01-01
Homogeneous Cu/TEMPO catalyst systems (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) have emerged as some of the most versatile and practical catalysts for aerobic alcohol oxidation. Recently, we disclosed a (bpy)CuI/TEMPO/NMI catalyst system (NMI = N-methylimidazole) that exhibits fast rates and high selectivities, even with unactivated aliphatic alcohols. Here, we present a mechanistic investigation of this catalyst system, in which we compare the reactivity of benzylic and aliphatic alcohols. This work includes analysis of catalytic rates by gas-uptake and in situ IR kinetic methods and characterization of the catalyst speciation during the reaction by EPR and UV–visible spectroscopic methods. The data support a two-stage catalytic mechanism consisting of (1) “catalyst oxidation” in which CuI and TEMPO–H are oxidized by O2 via a binuclear Cu2O2 intermediate and (2) “substrate oxidation” mediated by CuII and the nitroxyl radical of TEMPO via a CuII-alkoxide intermediate. Catalytic rate laws, kinetic isotope effects, and spectroscopic data show that reactions of benzylic and aliphatic alcohols have different turnover-limiting steps. Catalyst oxidation by O2 is turnover limiting with benzylic alcohols, while numerous steps contribute to the turnover rate in the oxidation of aliphatic alcohols. PMID:23317450
Activation of surface lattice oxygen in single-atom Pt/CeO 2 for low-temperature CO oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Lei; Mei, Donghai; Xiong, Haifeng
While single-atom catalysts can provide high catalytic activity and selectivity, application in industrial catalysts demands long term performance and the ability to regenerate the catalysts. We have investigated the factors that lead to improved catalytic activity of a Pt/CeO2 catalyst for low temperature CO oxidation. Single-atom Pt/CeO2 becomes active for CO oxidation under lean condition only at elevated temperatures, because CO is strongly bound to ionic Pt sites. Reducing the catalyst, even under mild conditions, leads to onset of CO oxidation activity even at room temperature. This high activity state involves the transformation of mononuclear Pt species to sub-nanometer sizedmore » Pt particles. Under oxidizing conditions, the Pt can be restored to its stable, single-atom state. The key to facile regeneration is the ability to create mobile Pt species and suitable trapping sites on the support, making this a prototypical catalyst system for industrial application of single-atom catalysis.« less
Oughli, Alaa A.; Ruff, Adrian; Boralugodage, Nilusha Priyadarshani; ...
2018-02-28
A bio-inspired O 2 sensitive nickel catalyst dispersed in a hydrophobic and redox-silent polymer matrix shows enhanced stability for catalytic H 2 oxidation as well as O 2 tolerance. A simple but efficient electrode design separates the catalyst into two different reaction layers to promote different reactivity on the catalyst. (1) close to the electrode surface, the catalyst can directly exchange electrons with the electrode and generate current from H 2 oxidation; and (2) at the outer film boundary, the electrolyte exposed layer is electrically isolated from the electrode, which enables the H 2 reduced Ni-complex to convert O 2more » to H 2O and thus provides protection to the O 2-sensitive inner reaction layer. This strategy solves one of the biggest limitations of these otherwise outstanding catalysts and could be used to protect other similar catalysts whose wider application is currently limited by sensitivity towards oxygen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oughli, Alaa A.; Ruff, Adrian; Boralugodage, Nilusha Priyadarshani
A bio-inspired O 2 sensitive nickel catalyst dispersed in a hydrophobic and redox-silent polymer matrix shows enhanced stability for catalytic H 2 oxidation as well as O 2 tolerance. A simple but efficient electrode design separates the catalyst into two different reaction layers to promote different reactivity on the catalyst. (1) close to the electrode surface, the catalyst can directly exchange electrons with the electrode and generate current from H 2 oxidation; and (2) at the outer film boundary, the electrolyte exposed layer is electrically isolated from the electrode, which enables the H 2 reduced Ni-complex to convert O 2more » to H 2O and thus provides protection to the O 2-sensitive inner reaction layer. This strategy solves one of the biggest limitations of these otherwise outstanding catalysts and could be used to protect other similar catalysts whose wider application is currently limited by sensitivity towards oxygen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jernigan, Glenn Geoffrey
1994-10-01
Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu 2O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu 2O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/molmore » < Cu 2O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N 2 and CO 2. At the end of each reaction, the catalyst was found to be Cu 2O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.« less
Exhaust emission control and diagnostics
Mazur, Christopher John; Upadhyay, Devesh
2006-11-14
A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.
Lee, Sang Moon; Park, Kwang Hee; Kim, Sung Su; Kwon, Dong Wook; Hong, Sung Chang
2012-09-01
TiO2-supported manganese oxide catalysts formed using different calcination temperatures were prepared by using the wet-impregnation method and were investigated for their activity in the low-temperature selective catalytic reduction (SCR) of NO by NH3 with respect to the Mn valence and lattice oxygen behavior. The surface and bulk properties of these catalysts were examined using Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and temperature-programmed desorption (TPD). Catalysts prepared using lower calcination temperatures, which contained Mn4+ displayed high SCR activity at low temperatures and possessed several acid sites and active oxygen. The TPD analysis determined that the Brönsted and Lewis acid sites in the Mn/TiO2 catalysts were important for the low-temperature SCR at 80-160 and 200-350 degrees C, respectively. In addition, the available lattice oxygen was important for attaining high NO to NO2 oxidation at low temperatures. Recently, various Mn catalysts have been evaluated as SCR catalysts. However, there have been no studies on the relationship of adsorption and desorption properties and behavior of lattice oxygen according to the valence state for manganese oxides (MnO(x)). Therefore, in this study, the catalysts were prepared by the wet-impregnation method at different calcination temperatures in order to show the difference of manganese oxidation state. These catalysts were then characterized using various physicochemical techniques, including BET, XRD, TPR, and TPD, to understand the structure, oxidation state, redox properties, and adsorption and desorption properties of the Mn/TiO2 catalysts.
NASA Astrophysics Data System (ADS)
Ha, T. M. P.; Luong, N. T.; Le, P. N.
2016-11-01
In Vietnam for recent years, a large amount of hazardous waste containing nickel (Ni) derived from discharged catalyst of fertilizer plants has caused environmental problems in landfill overloading and the risk of soil or surface water sources pollution. Taking advantage of discharged catalyst, recycling Ni components and then synthesizing new catalysts apply for mono-nitrogen oxides (NOx) treatments is an approach to bring about both economic and environmental benefits. This study was carried out with the main objective: Evaluate the performance of modified catalysts (using recovered Ni from the discharged RKS-2-7H catalyst of Phu My Fertilizer Plant) on NOx treatment. The catalysts was synthesized and modified with active phases consist of recovered Ni and commercial Barium oxide (BaO), Manganese dioxide (MnO2) / Cerium (IV) oxide (CeO2) on the support Aluminium oxide (γ-Al2O3). The results show that the modified catalysts with Ni, Ba, Ce was not more beneficial for NOx removal than which with Ni, Ba, Mn. 98% NOx removal at 350°C with the start temperature at 115°C and the T60 value at 307°C can be obtained with 10Ni10Ba10Mn/Al catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornburg, Nicholas E.; Notestein, Justin M.
Supported metal oxide catalysts are versatile materials for liquid-phase oxidations, including alkene epoxidation and thioether sulfoxidation with H2O2. Periodic trends in H2O2 activation was recently demonstrated for alkene epoxidation, highlighting Nb-SiO2 as a more active and selective catalyst than Ti-SiO2. Three representative catalysts are studied consisting of NbV, TiIV, and ZrIV on silica, each made through a molecular precursor approach that yields highly dispersed oxide sites, for thioanisole oxidation by H2O2. Initial rates trend Nb>Ti>>Zr, as for epoxidation, and Nb outperforms Ti for a number of other thioethers. In contrast, selectivity to sulfoxide vs. sulfone trends Ti>Nb>>Zr at all conversions.more » Modifying the Nb-SiO2 catalyst with phenylphosphonic acid does not completely remove sulfoxidation reactivity, as it did for photooxidation and epoxidation, and results in an unusual material active for sulfoxidation but neither epoxidation nor overoxidation to the sulfone.« less
NASA Astrophysics Data System (ADS)
Niu, Mengying; Xu, Wence; Zhu, Shengli; Liang, Yanqin; Cui, Zhenduo; Yang, Xianjin; Inoue, Akihisa
2017-09-01
Nanoporous CuO/TiO2/Pd-NiO-x (x = 0, 1, 3, 5, 7 at%) catalysts have been synthesized by dealloying Cu-Ti-Pd-Ni alloy ribbons in acid solution. The nanoporous structure and chemical composition of the catalysts distribute uniformly. Based on the electrochemical active area (EASA), electrocatalytic activity and stability, the np-CuO/TiO2/Pd-NiO-3 catalyst possesses the best performance for methanol and ethanol electro-oxidation. For methanol and ethanol electro-oxidation, the anodic current densities in forward scan of the np-CuO/TiO2/Pd-NiO-3 catalyst are about 5.6 times and 2.1 times larger than that of the np-CuO/TiO2/Pd catalyst, respectively. The introduction of NiO provides more electrochemical active sites due to the improved geometrical and bifunctional mechanism. NiO promotes the adsorption of oxygen-containing species (OHads) on the catalyst surface, and electron effect between Pd and Ni is favorable for charge transfer. This accelerates the removal of intermediate products during the oxidation process. The electrocatalytic processes of methanol and ethanol oxidation in alkaline solution are controlled by both charge transfer and diffusion.
Enhanced performance of CO oxidation over Pt/CuCrOx catalyst in the presence of CO2 and H2O
NASA Astrophysics Data System (ADS)
Deng, Yun; Wang, Ting; Zhu, Li; Jia, Ai-Pin; Lu, Ji-Qing; Luo, Meng-Fei
2018-06-01
A Pt catalyst supported on CuO-CrOx composite oxide (Pt/CuCrOx) was prepared and tested for CO oxidation in the presence of CO2 and H2O. It was found that the catalyst was stable in the realistic reaction conditions and the catalytic activity was improved in the presence of CO2 and H2O compared to that in dry condition. Kinetic investigation and temperature - programmed desorption of CO results revealed that the addition of CO2 in the feed resulted in the competitive adsorption of CO/CO2 and the formation of surface carbonate species, which consequently deactivated the catalyst. In contrast, although the presence of H2O also inhibited the adsorption of CO, the possible formation of surface hydroxyl groups may trigger a new and more facile reaction route for CO oxidation, which could explain the promoting effect of H2O. Therefore, the current findings makes the catalyst promising in CO oxidation under realistic reaction conditions.
Yu, Xuehua; Zhao, Zhen; Wei, Yuechang; Liu, Jian
2017-01-01
A series of novel oxide catalysts, which contain three-dimensionally ordered macroporous (3DOM) and microporous structure, were firstly designed and successfully synthesized by simple method. In the as-prepared catalysts, 3DOM SiO2 is used as support and microporous K-OMS-2 oxide nanoparticles are supported on the wall of SiO2. 3DOM K-OMS-2/SiO2 oxide catalysts were firstly used in soot particle oxidation reaction and they show very high catalytic activities. The high activities of K-OMS-2/SiO2 oxide catalysts can be assigned to three possible reasons: macroporous effect of 3DOM structure for improving contact between soot and catalyst, microporous effect of K-OMS-2 for adsorption of small gas molecules and interaction of K and Mn for activation of gas molecules. The catalytic activities of catalysts are comparable to or even higher than noble metal catalyst in the medium and high temperature range. For example, the T50 of K-OMS-2/SiO2-50, 328 °C, is much lower than those of Pt/Al2O3 and 3DOM Au/LaFeO3, 464 and 356 °C,respectively. Moreover, catalysts exhibited high catalytic stability. It is attributed to that the K+ ions are introduced into the microporous structure of OMS-2 and stabilized in the catalytic reaction. Meanwhile, the K+ ions play an important role in templating and stabilizing the tunneled framework of OMS-2. PMID:28443610
Wang, Qiu-lin; Huang, Qun-xing; Wu, Hui-fan; Lu, Sheng-yong; Wu, Hai-long; Li, Xiao-dong; Yan, Jian-hua
2016-02-01
Gaseous 1,2-dichlorobenzene (1,2-DCBz) was catalytically decomposed in a fixed-bed catalytic reactor using composite copper-based titanium oxide (CuOx/TiO2) catalysts with different copper ratios. Carbon nanotubes (CNTs) were introduced to produce novel CuOx/TiO2-CNTs catalysts by the sol-gel method. The catalytic performances of CuOx/TiO2 and CuOx/TiO2-CNTs on 1,2-DCBz oxidative destruction under different temperatures (150-350 °C) were experimentally examined and the correlation between catalyst structure and catalytic activity was characterized and the role of oxygen in catalytic reaction was discussed. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) generation during 1,2-DCBz catalytic oxidation by CuOx/TiO2-CNTs composite catalyst was also examined. Results indicate that the 1,2-DCBz destruction/removal efficiencies of CuOx (4 wt%)/TiO2 catalyst at 150 °C and 350 °C with a GHSV of 3400 h(-1) are 59% and 94% respectively and low-temperature (150 °C) catalytic activity of CuOx/TiO2 on 1,2-DCBz oxidation can be improved from 59 to 77% when CNTs are introduced. Furthermore, oxygen either in catalyst or from reaction atmosphere is indispensible in reaction. The former is offered to activate and oxidize the 1,2-DCBz adsorbed on catalyst, thus can be generally consumed during reaction and the oxygen content in catalyst is observed lost from 39.9 to 35.0 wt% after reacting under inert atmosphere; the latter may replenish the vacancy in catalyst created by the consumed oxygen thus extends the catalyst life and raises the destruction/removal efficiency. The introduction of CNTs also increases the Cu(2+)/Cu(+) ratio, chemisorbed oxygen concentration and surface lattice oxygen binding energy which are closely related with catalytic activity. PCDD/Fs is confirmed to be formed when 1,2-DCBz catalytically oxidized by CuOx/TiO2-CNTs composite catalyst with sufficient oxygen (21%), proper temperature (350 °C) and high concentration of 1,2-DCBz feed (120 ppm). Copyright © 2015 Elsevier Ltd. All rights reserved.
Catalysts for the selective oxidation of hydrogen sulfide to sulfur
Srinivas, Girish; Bai, Chuansheng
2000-08-08
This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesfaye, Meron; MacDonald, Andrew N.; Dudenas, Peter J.
Local gas transport limitation attributed to the ionomer thin-film in the catalyst layer is a major deterrent to widespread commercialization of polymer-electrolyte fuel cells. So far functionality and limitations of these thin-films have been assumed identical in the anode and cathode. In this study, Nafion ionomer thin-films on platinum(Pt) support were exposed to H 2 and air as model schemes, mimicking anode and cathode catalyst layers. Findings indicate decreased swelling, increased densification of ionomer matrix, and increased humidity-induced aging rates in reducing environment, compared to oxidizing and inert environments. Observed phenomenon could be related to underlying Pt-gas interaction dictating Pt-ionomermore » behavior. Presented results could have significant implications about the disparate behavior of ionomer thin-film in anode and cathode catalyst layers.« less
Mahmoud, Mohamed; Gad-Allah, Tarek A; El-Khatib, K M; El-Gohary, Fatma
2011-11-01
This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mechanism of Hg(0) oxidation in the presence of HCl over a commercial V2O5-WO3/TiO2 SCR catalyst.
Liu, Ruihui; Xu, Wenqing; Tong, Li; Zhu, Tingyu
2015-10-01
Experiments were conducted in a fixed-bed reactor containing a commercial V2O5/WO3/TiO2 catalyst to investigate mercury oxidation in the presence of HCl and O2. Mercury oxidation was improved significantly in the presence of HCl and O2, and the Hg(0) oxidation efficiencies decreased slowly as the temperature increased from 200 to 400°C. Upon pretreatment with HCl and O2 at 350°C, the catalyst demonstrated higher catalytic activity for Hg(0) oxidation. Notably, the effect of pretreatment with HCl alone was not obvious. For the catalyst treated with HCl and O2, better performance was observed with lower reaction temperatures. The results showed that both HCl and Hg(0) were first adsorbed onto the catalyst and then reacted with O2 following its adsorption, which indicates that the oxidation of Hg(0) over the commercial catalyst followed the Langmuir-Hinshelwood mechanism. Several characterization techniques, including Hg(0) temperature-programmed desorption (Hg-TPD) and X-ray photoelectron spectroscopy (XPS), were employed in this work. Hg-TPD profiles showed that weakly adsorbed mercury species were converted to strongly bound species in the presence of HCl and O2. XPS patterns indicated that new chemisorbed oxygen species were formed by the adsorption of HCl, which consequently facilitated the oxidation of mercury. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-01
The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japanmore » and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.« less
Indra, Arindam; Menezes, Prashanth W; Schuster, Felix; Driess, Matthias
2015-11-01
Development of efficient bio-inspired water oxidation system with transition metal oxide catalyst has been considered as the one of the most challenging task in the recent years. As the oxygen evolving center of photosystem II consists of Mn4CaO5 cluster, most of the water oxidation study was converged to build up manganese oxide based catalysts. Here we report the synthesis of efficient artificial water oxidation catalysts by transferring the inactive manganese monooxide (MnO) under highly oxidizing conditions with ceric ammonium nitrate (CAN) and ozone (O3). MnO was partially oxidized to form mixed-valent manganese oxide (MnOx) with CAN whereas completely oxidized to mineral phase of ε-MnO2 (Akhtenskite) upon treatment of O3 in acidic solution, which we explore first time as a water oxidation catalyst. Chemical water oxidation, as well as the photochemical water oxidation in the presence of sacrificial electron acceptor and photosensitizer with the presented catalysts were carried out that followed the trends: MnOx>MnO2>MnO. Structural and activity correlation reveals that the presence of larger extent of Mn(III) in MnOx is the responsible factor for higher activity compared to MnO2. Mn(III) species in octahedral system with eg(1) configuration furnishes and facilitates the Mn-O and Mn-Mn bond enlargement with required structural flexibility and disorder in the manganese oxide structure which indeed facilitates water oxidation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Xiaoqing; Yang, Yumeng; Yi, Chenxi; Chen, Yu; Cai, Chao; Zhang, Zhao
2017-02-01
The coaxial arrays of AAO-CeO2 NTs have been successfully galvanostatically deposited on an anode, characterized and adopted as a catalyst for removing organic sulfurs from diesel. The influence of the main electrochemical oxidation factors on the efficiency of desulfurization have also been investigated. The results show that the fabrication process of AAO-CeO2 NTs is accompanied by the formation of a new phase, namely Al3Ce, and the main oxidation products of the diesel are soluble inorganic sulphides, especially Ce2(SO4)3. When compared with dibenzothiophene and 4, 6-dimethyldibenzothiophene, benzothiophene is much more easily removed, with a removal efficiency that reaches 87.2%. Finally, a possible electrochemical oxidation desulfurization pathway for diesel is proposed.
Method for generating hydrogen for fuel cells
Ahmed, Shabbir; Lee, Sheldon H. D.; Carter, John David; Krumpelt, Michael
2004-03-30
A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.
Fuel processor and method for generating hydrogen for fuel cells
Ahmed, Shabbir [Naperville, IL; Lee, Sheldon H. D. [Willowbrook, IL; Carter, John David [Bolingbrook, IL; Krumpelt, Michael [Naperville, IL; Myers, Deborah J [Lisle, IL
2009-07-21
A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.
Kim, Manhoe; DiMaggio, Craig; Salley, Steven O; Simon Ng, K Y
2012-08-01
A new class of zirconia supported mixed metal oxides (ZnO-TiO(2)-Nd(2)O(3)/ZrO(2) and ZnO-SiO(2)-Yb(2)O(3)/ZrO(2)) has demonstrated the ability to convert low quality, high free fatty acid (FFA) bio-oils into biodiesel. Pelletized catalysts of ZrO(2) supported metal oxides were prepared via a sol-gel process and tested in continuous flow packed bed reactors for up to 6 months. In a single pass, while operating at mild to moderate reaction conditions, 195 °C and 300 psi, these catalysts can perform simultaneous esterification and transesterification reactions on feedstock of 33% FFA and 67% soybean oil to achieve FAME yields higher than 90%. Catalytic activity of the ZrO(2) supported metal oxide catalysts was highly dependent on the metal oxide composition. These heterogeneous catalysts will enable biodiesel manufacturers to avoid problems inherent in homogeneous processes, such as separation and washing, corrosive conditions, and excessive methanol usage. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yu, B Y; Lee, K H; Kim, K; Byun, D J; Ha, H P; Byun, J Y
2011-07-01
The partial oxidation of dimethyl ether (DME) was investigated using the structured catalyst Rh/Al2O3/Al. The porous Al2O3 layer was synthesized on the aluminum plate through anodic oxidation in an oxalic-acid solution. It was observed that about 20 nm nanopores were well developed in the Al2O3 layer. The thickness of Al2O3 layer can be adjusted by controlling the anodizing time and current density. After pore-widening and hot-water treatment, the Al2O3/Al plate was calcined at 500 degrees C for 3 h. The obtained delta-Al2O3 had a specific surface area of 160 m2/g, making it fit to be used as a catalyst support. A microchannel reactor was designed and fabricated to evaluate the catalytic activity of Rh/Al2O3/Al in the partial oxidation of DME. The structured catalyst showed an 86% maximum hydrogen yield at 450 degrees C. On the other hand, the maximum syngas yield by a pack-bed-type catalyst could be attained by using a more than fivefold Rh amount compared to that used in the structured Rh/Al2O3/Al catalyst.
Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias
2014-08-01
We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1
The effect of H2O and pretreatment on the activity of a Pt/SnO2 catalyst
NASA Technical Reports Server (NTRS)
Vannorman, John D.; Brown, Kenneth G.; Schryer, Jacqueline; Schryer, David R.; Upchurch, Billy T.; Sidney, Barry D.
1990-01-01
CO oxidation catalysts with high activity at 25 C to 100 C are important for long-life, closed-cycle operation of pulsed CO2 lasers. A reductive pretreatment with either CO or H2 has been shown to significantly enhance the activity of a commercially available platinum on tin (IV) oxide (Pt/SnO2) catalyst relative to an oxidative or inert pretreatment or no pretreatment. Pretreatment at temperatures of 175 C and above causes an initial dip in the observed CO2 yield before the steady-state yield is attained. This dip has been found to be caused by dehydration of the catalyst during pretreatment and is readily eliminated by humidifying the catalyst or the reaction gas mixture. It is hypothesized that the effect of humidification is to increase the concentration of OH groups on the catalyst surface which play a role in the reaction mechanism.
Liu, Yingying; Ng, Siu-Mui; Yiu, Shek-Man; Lam, William W Y; Wei, Xi-Guang; Lau, Kai-Chung; Lau, Tai-Chu
2014-12-22
Polypyridyl and related ligands have been widely used for the development of water oxidation catalysts. Supposedly these ligands are oxidation-resistant and can stabilize high-oxidation-state intermediates. In this work a series of ruthenium(II) complexes [Ru(qpy)(L)2 ](2+) (qpy=2,2':6',2'':6'',2'''-quaterpyridine; L=substituted pyridine) have been synthesized and found to catalyze Ce(IV) -driven water oxidation, with turnover numbers of up to 2100. However, these ruthenium complexes are found to function only as precatalysts; first, they have to be oxidized to the qpy-N,N'''-dioxide (ONNO) complexes [Ru(ONNO)(L)2 ](3+) which are the real catalysts for water oxidation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Gui; Chen, Lingjing; Ng, Siu-Mui; Lau, Tai-Chu
2014-01-01
Chemical and visible-light-driven water oxidation catalyzed by a number of Ni complexes and salts have been investigated at pH 7-9 in borate buffer. For chemical oxidation, [Ru(bpy)3](3+) (bpy = 2,2'-bipyridine) was used as the oxidant, with turnover numbers (TONs) >65 and a maximum turnover frequency (TOFmax) >0.9 s(-1). Notably, simple Ni salts such as Ni(NO3 )2 are more active than Ni complexes that bear multidentate N-donor ligands. The Ni complexes and salts are also active catalysts for visible-light-driven water oxidation that uses [Ru(bpy)3](2+) as the photosensitizer and S2 O8 (2-) as the sacrificial oxidant; a TON>1200 was obtained at pH 8.5 by using Ni(NO3)2 as the catalyst. Dynamic light scattering measurements revealed the formation of nanoparticles in chemical and visible-light-driven water oxidation by the Ni catalysts. These nanoparticles aggregated during water oxidation to form submicron particles that were isolated and shown to be partially reduced β-NiOOH by various techniques, which include SEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, XRD, and IR spectroscopy. These results suggest that the Ni complexes and salts act as precatalysts that decompose under oxidative conditions to form an active nickel oxide catalyst. The nature of this active oxide catalyst is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhao, Kun; Han, Weiliang; Lu, Gongxuan; Lu, Jiangyin; Tang, Zhicheng; Zhen, Xinping
2016-08-01
In this study, transition metals Co, Mn, and Cu were introduced into a Ce-W-Ti catalyst to promote low-temperature catalytic activity. Among these metal-modified M/Ce-W-Ti catalysts (M represents Co, Mn, or Cu), the Cu/Ce-W-Ti catalyst with an optimized Cu content of 5 wt.% exhibited more than 90% conversion of nitrogen oxide (NOx) in the selective catalytic reduction by NH3 over a wide temperature range (260-400 °C). This catalyst likewise exhibited higher resistance to SO2 gas and water vapor under severe test conditions. On the basis of the characterization results by powder X-ray diffraction and X-ray photoelectron spectroscopy, we concluded that the superior catalytic properties of the Cu/Ce-W-Ti catalyst could be attributed to the highly dispersed Cu species, which increased the contents of Ce3+ species and adsorbed oxygen species in the catalysts. In addition, the NH3 temperature-programmed desorption results demonstrated that the Cu species doped into the Ce-W-Ti catalysts optimized surface acid content.
Zhou, Xu; Li, Fei; Li, Xiaona; Li, Hua; Wang, Yong; Sun, Licheng
2015-01-14
Photocatalytic oxidation of organic compounds proceeded efficiently in a hybrid system with ruthenium aqua complexes as catalysts, BiVO4 as a light absorber, [Co(NH3)5Cl](2+) as a sacrificial electron acceptor and water as an oxygen source. The photogenerated holes in the semiconductor are used to oxidize molecular catalysts into the high-valent Ru(IV)=O intermediates for 2e(-) oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xinbo; Wang, Danjun; College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an 716000
2014-09-15
Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H{sub 2}O{sub 2}, featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalystmore » is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH{sub 2}) are prepared and characterized by FT-IR, XRD, N{sub 2} adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H{sub 2}O{sub 2} as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H{sub 5}[PV{sub 2}W{sub 10}O{sub 40}] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H{sub 2}O{sub 2}.« less
Hydrogen production by ethanol steam reforming on Ni/oxide catalysts
NASA Astrophysics Data System (ADS)
Lazar, Mihaela D.; Dan, Monica; Mihet, Maria; Borodi, George; Almasan, Valer
2012-02-01
Hydrogen production from bio-fuels such as bio-ethanol provides significant environmental benefits since the resulted CO2 is consumed again for biomass growth, offering a carbon dioxide neutral energy source. In the actual conditions of increasing energy demand and atmosphere pollution, clean produced hydrogen can be an alternative option for a clean energy vector. In this paper we present the results obtained in hydrogen production by steam reforming of ethanol using oxide supported nickel catalysts. Although Ni is not the most active catalyst for this process, economically is the most attractive one, due to the high price and low availability of noble metals. Ni was dispersed on several oxides: ZrO2, Al2O3, Cr2O3, SiO2 with a target metal concentration of 8 wt%. using impregnation method. The catalysts were characterized using several techniques: N2 adsorption desorption isotherms to determine total surface area and porosity, XRD to determine oxide crystallinity and Ni crystallite size. Each catalyst was tested in steam reforming of ethanol at temperatures ranging from 150 to 350°C, at atmospheric pressure and a ethanol: steam ratio of 1:9. The best ethanol conversion and catalyst stability was obtained for Ni/Al2O3. The catalyst selectivity for H2 production depends on the support nature. The best H2 selectivity was obtained for Ni/ZrO2 catalyst.
C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol
NASA Astrophysics Data System (ADS)
Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun
2014-01-01
Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway.
C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol
Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun
2014-01-01
Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway. PMID:24413448
CATALYTIC OXIDATION OF ALCOHOLS AND EPOXIDATION OF OLEFINS WITH HYDROGEN PEROXIDE AS OXIDANT
Hydrogen peroxide (H2O2) is an ideal oxidant of choice for these oxidations due to economic and environmental reasons by giving water as a by-product. Two catalysts used are vanadium phosphorus oxide (VPO) and Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a...
Xie, Jiahan; Huang, Benjamin; Yin, Kehua; ...
2016-05-24
In this study, a series of carbon-supported, Bi-promoted Pt catalysts with various Bi/Pt atomic ratios was prepared by selectively depositing Bi on Pt nanoparticles. The catalysts were evaluated for 1,6-hexanediol oxidation activity in aqueous solvent under different dioxygen pressures. The rate of diol oxidation on the basis of Pt loading over a Bi-promoted catalyst was 3 times faster than that of an unpromoted Pt catalyst under 0.02 MPa of O 2, whereas the unpromoted catalyst was more active than the promoted catalyst under 1 MPa of O 2. After liquid-phase catalyst pretreatment and 1,6-hexanediol oxidation, migration of Bi on themore » carbon support was observed. The reaction order in O 2 was 0 over Bi-promoted Pt/C in comparison to 0.75 over unpromoted Pt/C in the range of 0.02–0.2 MPa of O 2. Under low O 2 pressure, rate measurements in D 2O instead of H 2O solvent revealed a moderate kinetic isotope effect (rate H2O/rate D2O) on 1,6-hexanediol oxidation over Pt/C (KIE = 1.4), whereas a negligible effect was observed on Bi-Pt/C (KIE = 0.9), indicating that the promotional effect of Bi could be related to the formation of surface hydroxyl groups from the reaction of dioxygen and water. No significant change in product distribution or catalyst stability was observed with Bi promotion, regardless of the dioxygen pressure.« less
NASA Astrophysics Data System (ADS)
Li, Yuanchao; Nguyen, Trung Van
2018-04-01
Synthesis and characterization of high electrochemical active surface area (ECSA) core-shell RhxSy catalysts for hydrogen evolution oxidation (HER)/hydrogen oxidation reaction (HOR) in H2-Br2 fuel cell are discussed. Catalysts with RhxSy as shell and different percentages (5%, 10%, and 20%) of platinum on carbon as core materials are synthesized. Cyclic voltammetry is used to evaluate the Pt-equivalent mass specific ECSA and durability of these catalysts. Transmission electron microscopy (TEM), X-ray Photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX) techniques are utilized to characterize the bulk and surface compositions and to confirm the core-shell structure of the catalysts, respectively. Cycling test and polarization curve measurements in the H2-Br2 fuel cell are used to assess the catalyst stability and performance in a fuel cell. The results show that the catalysts with core-shell structure have higher mass specific ECSA (50 m2 gm-Rh-1) compared to a commercial catalyst (RhxSy/C catalyst from BASF, 6.9 m2 gm-Rh-1). It also shows better HOR/HER performance in the fuel cell. Compared to the platinum catalyst, the core-shell catalysts show more stable performance in the fuel cell cycling test.
Akbari, Azam; Omidkhah, Mohammadreza; Darian, Jafar Towfighi
2014-03-01
A new heterogeneous sonocatalytic system consisting of a MoO3/Al2O3 catalyst and H2O2 combined with ultrasonication was studied to improve and accelerate the oxidation of model sulfur compounds of diesel, resulting in a significant enhancement in the process efficiency. The influence of ultrasound on properties, activity and stability of the catalyst was studied in detail by means of GC-FID, PSD, SEM and BET techniques. Above 98% conversion of DBT in model diesel containing 1000 μg/g sulfur was obtained by new ultrasound-assisted desulfurization at H2O2/sulfur molar ratio of 3, temperature of 318 K and catalyst dosage of 30 g/L after 30 min reaction, contrary to the 55% conversion obtained during the silent process. This improvement was considerably affected by operation parameters and catalyst properties. The effects of main process variables were investigated using response surface methodology in silent process compared to ultrasonication. Ultrasound provided a good dispersion of catalyst and oxidant by breakage of hydrogen bonding and deagglomeration of them in the oil phase. Deposition of impurities on the catalyst surface caused a quick deactivation in silent experiments resulting only 5% of DBT oxidation after 6 cycles of silent reaction by recycled catalyst. Above 95% of DBT was oxidized after 6 ultrasound-assisted cycles showing a great improvement in stability by cleaning the surface during ultrasonication. A considerable particle size reduction was also observed after 3 h sonication that could provide more dispersion of catalyst in model fuel.
Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli; ...
2018-02-04
Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli
Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palomino, Robert M.; Gutiérrez, Ramón A.; Liu, Zongyuan
Au(111) does not bind CO and O 2 well. The deposition of small nanoparticles of MgO, CeO 2, and TiO 2 on Au(111) produces excellent catalysts for CO oxidation at room temperature. In an inverse oxide/metal configuration there is a strong enhancement of the oxide–metal interactions, and the inverse catalysts are more active than conventional Au/MgO(001), Au/CeO 2(111), and Au/TiO 2(110) catalysts. An identical trend was seen after comparing the CO oxidation activity of TiO2/Au and Au/TiO 2 powder catalysts. In the model systems, the activity increased following the sequence: MgO/Au(111) < CeO 2/Au(111) < TiO 2/Au(111). Ambient pressure X-raymore » photoelectron spectroscopy (AP-XPS) was used to elucidate the role of the titania–gold interface in inverse TiO 2/Au(111) model catalysts during CO oxidation. Stable surface intermediates such as CO(ads), CO 3 2–(ads), and OH(ads) were identified under reaction conditions. CO 3 2–(ads) and OH(ads) behaved as spectators. The concentration of CO(ad) initially increased and then decreased with increasing TiO 2 coverage, demonstrating a clear role of the Ti–Au interface and the size of the TiO 2 nanostructures in the catalytic process. Overall, our results show an enhancement in the strength of the oxide–metal interactions when working with inverse oxide/metal configurations, a phenomenon that can be utilized for the design of efficient catalysts useful for green and sustainable chemistry.« less
Palomino, Robert M.; Gutiérrez, Ramón A.; Liu, Zongyuan; ...
2017-09-26
Au(111) does not bind CO and O 2 well. The deposition of small nanoparticles of MgO, CeO 2, and TiO 2 on Au(111) produces excellent catalysts for CO oxidation at room temperature. In an inverse oxide/metal configuration there is a strong enhancement of the oxide–metal interactions, and the inverse catalysts are more active than conventional Au/MgO(001), Au/CeO 2(111), and Au/TiO 2(110) catalysts. An identical trend was seen after comparing the CO oxidation activity of TiO2/Au and Au/TiO 2 powder catalysts. In the model systems, the activity increased following the sequence: MgO/Au(111) < CeO 2/Au(111) < TiO 2/Au(111). Ambient pressure X-raymore » photoelectron spectroscopy (AP-XPS) was used to elucidate the role of the titania–gold interface in inverse TiO 2/Au(111) model catalysts during CO oxidation. Stable surface intermediates such as CO(ads), CO 3 2–(ads), and OH(ads) were identified under reaction conditions. CO 3 2–(ads) and OH(ads) behaved as spectators. The concentration of CO(ad) initially increased and then decreased with increasing TiO 2 coverage, demonstrating a clear role of the Ti–Au interface and the size of the TiO 2 nanostructures in the catalytic process. Overall, our results show an enhancement in the strength of the oxide–metal interactions when working with inverse oxide/metal configurations, a phenomenon that can be utilized for the design of efficient catalysts useful for green and sustainable chemistry.« less
THE ROLE OF CATALYST PROPERTIES ON METHANOL OXIDATION OVER V2O5-TIO2 USING OZONE
Oxidation of methanol over V2O5 catalysts supported on anatase TiO2 that were prepared using sol-gel formation and impregnation procedures were investigated. The effects of incorporating Mg in sol-gel to influence the properties of the catalyst w...
A delafossite-based copper catalyst for sustainable Cl2 production by HCl oxidation.
Mondelli, Cecilia; Amrute, Amol P; Schmidt, Timm; Pérez-Ramírez, Javier
2011-07-07
A copper catalyst based on a delafossite precursor (CuAlO(2)) displays high activity and extraordinary lifetime in the gas-phase oxidation of HCl to Cl(2), representing a cost-effective alternative to RuO(2)-based catalysts for chlorine recycling. This journal is © The Royal Society of Chemistry 2011
NASA Astrophysics Data System (ADS)
Habibi, Davood; Faraji, Ali Reza
2013-07-01
The object of this study is to synthesize the heterogeneous Mn-nano-catalyst (MNC) which has been covalently anchored on a modified nanoscaleSiO2/Al2O3, and characterized by FT-IR, UV-Vis, CHN elemental analysis, EDS, TEM, and EDX. The method is efficient for the highly selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol without the need to any solvents, using tert-butyl hydroperoxide (TBHP) as an oxidant. Oxidation of ethylbenzene, cyclohexene, and benzylalcohol gave acetophenone, 2-cyclohexene-1-one and benzaldehyde, respectively, as major products. Reaction conditions have been optimized by considering the effect of various factors such as reaction time, amounts of substrates and oxidant, Mn-nano-catalyst and application of various solvents.
40 CFR Table 2 to Subpart Yyyy of... - Operating Limitations
Code of Federal Regulations, 2013 CFR
2013-07-01
... using an oxidation catalyst maintain the 4-hour rolling average of the catalyst inlet temperature within... required to comply with the emission limitation for formaldehyde and is not using an oxidation catalyst...
40 CFR Table 2 to Subpart Yyyy of... - Operating Limitations
Code of Federal Regulations, 2014 CFR
2014-07-01
... using an oxidation catalyst maintain the 4-hour rolling average of the catalyst inlet temperature within... required to comply with the emission limitation for formaldehyde and is not using an oxidation catalyst...
40 CFR Table 2 to Subpart Yyyy of... - Operating Limitations
Code of Federal Regulations, 2012 CFR
2012-07-01
... using an oxidation catalyst maintain the 4-hour rolling average of the catalyst inlet temperature within... required to comply with the emission limitation for formaldehyde and is not using an oxidation catalyst...
Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde
NASA Technical Reports Server (NTRS)
Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John
2010-01-01
The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.
Pretreatment of CO oxidation catalysts
NASA Technical Reports Server (NTRS)
Vannorman, John D.
1988-01-01
CO oxidation catalysts with high activity in the range of 25 C to 100 C are important for long-life, closed-cycle operation of pulsed carbon dioxide 2 lasers. A reductive pretreatment with either CO or H sub 2 was shown to significantly enhance the activity of a commerically-available platinum on tin (IV) oxide (Pt/SnO2) catalyst relative to an oxidative or inert pretreatment or no pretreatment. Pretreatment at temperatures of 175 C and above caused an initial dip in observed CO or O sub 2 loss or CO sub 2 formation in a test gas mixture of 1 percent CO and 0.5 percent O sub 2 in a He gas matrix before a steady-state yield was obtained. This dip was found to be caused by dehydration of the surface of the catalyst and was readily eliminated by humidifying the catalyst or the test gas mixture. It was also found that too much moisture resulted in a lower overall yield of CO sub 2. Under similar conditions, it is hypothesized that the effect of the humidification is to increase the concentration of OH groups on the surface of the catalyst. The effect of having high concentration of CO sub 2 in the test gas mixture upon the loss of CO and O sub 2 as well as the effect of periods of relaxation of the catalyst under non-test gas conditions was studied. The purpose of these studies was to gain an insight into the mechanism of CO oxidation on this type of catalyst.
NASA Astrophysics Data System (ADS)
Turakulova, A. O.; Kharlanov, A. N.; Levanov, A. V.; Isaikina, O. Ya.; Lunin, V. V.
2017-01-01
Ce0.46Zr0.54O2 solid solution prepared using a cellulose template was employed as a carrier for vanadium catalysts of the oxidative dehydrogenation of propane. The properties of VO x /Ce0.46Zr0.54O2 catalyst (5 wt % vanadium) are compared with the properties of the neat support. The carrier and catalyst are studied by means of BET, SEM, DTA, XRD, and Raman spectroscopy. It is shown that the CeVO4 phase responsible for the ODH process is formed upon interaction between vanadate ions and cerium ions on the surface of the solid solution. The catalytic properties of the catalyst and the support are studied in the propane oxidation reaction at temperatures of 450 and 500°C with pulse feeding of the reagent. It is found that the complete oxidation of propane occurs on the support with formation of CO2 and H2O. Three products (propene, CO2, and H2O) form in the presence of the vanadium catalyst. It is suggested that there are two types of catalytic centers on the catalyst's surface. It is concluded that the centers responsible for the complete oxidation of propane are concentrated mainly on the carrier, while the centers responsible for propane ODH are on the CeVO4.
Electrocatalytic Water Oxidation by a Homogeneous Copper Catalyst Disfavors Single-Site Mechanisms.
Koepke, Sara J; Light, Kenneth M; VanNatta, Peter E; Wiley, Keaton M; Kieber-Emmons, Matthew T
2017-06-28
Deployment of solar fuels derived from water requires robust oxygen-evolving catalysts made from earth abundant materials. Copper has recently received much attention in this regard. Mechanistic parallels between Cu and single-site Ru/Ir/Mn water oxidation catalysts, including intermediacy of terminal Cu oxo/oxyl species, are prevalent in the literature; however, intermediacy of late transition metal oxo species would be remarkable given the high d-electron count would fill antibonding orbitals, making these species high in energy. This may suggest alternate pathways are at work in copper-based water oxidation. This report characterizes a dinuclear copper water oxidation catalyst, {[(L)Cu(II)] 2 -(μ-OH) 2 }(OTf) 2 (L = Me 2 TMPA = bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl)amine) in which water oxidation proceeds with high Faradaic efficiency (>90%) and moderate rates (33 s -1 at ∼1 V overpotential, pH 12.5). A large kinetic isotope effect (k H /k D = 20) suggests proton coupled electron transfer in the initial oxidation as the rate-determining step. This species partially dissociates in aqueous solution at pH 12.5 to generate a mononuclear {[(L)Cu(II)(OH)]} + adduct (K eq = 0.0041). Calculations that reproduce the experimental findings reveal that oxidation of either the mononuclear or dinuclear species results in a common dinuclear intermediate, {[LCu(III)] 2 -(μ-O) 2 } 2+ , which avoids formation of terminal Cu(IV)═O/Cu(III)-O • intermediates. Calculations further reveal that both intermolecular water nucleophilic attack and redox isomerization of {[LCu(III)] 2 -(μ-O) 2 } 2+ are energetically accessible pathways for O-O bond formation. The consequences of these findings are discussed in relation to differences in water oxidation pathways between Cu catalysts and catalysts based on Ru, Ir, and Mn.
Tang, Jijun; Ou, Zhongping; Guo, Rui; Fang, Yuanyuan; Huang, Dong; Zhang, Jing; Zhang, Jiaoxia; Guo, Song; McFarland, Frederick M; Kadish, Karl M
2017-08-07
A cobalt triphenylcorrole (CorCo) was covalently bonded to graphene oxide (GO), and the resulting product, represented as GO-CorCo, was characterized by UV-vis, FT-IR, and micro-Raman spectroscopy as well as by HRTEM, TGA, XRD, XPS, and AFM. The electrocatalytic activity of GO-CorCo toward the oxygen reduction reaction (ORR) was then examined in air-saturated 0.1 M KOH and 0.5 M H 2 SO 4 solutions by cyclic voltammetry and linear sweep voltammetry using a rotating disk electrode and/or a rotating ring-disk electrode. An overall 4-electron reduction of O 2 is obtained in alkaline media while under acidic conditions a 2-electron process is seen. The ORR results thus indicate that covalently bonded GO-CoCor can be used as a selective catalyst for either the 2- or 4-electron reduction of oxygen, the prevailing reaction depending upon the acidity of the solution.
NASA Astrophysics Data System (ADS)
Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.
2011-10-01
A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Melchor, Max; Vilella, Laia; López, Núria
2016-04-29
An attractive strategy to improve the performance of water oxidation catalysts would be to anchor a homogeneous molecular catalyst on a heterogeneous solid surface to create a hybrid catalyst. The idea of this combined system is to take advantage of the individual properties of each of the two catalyst components. We use Density Functional Theory to determine the stability and activity of a model hybrid water oxidation catalyst consisting of a dimeric Ir complex attached on the IrO 2(110) surface through two oxygen atoms. We find that homogeneous catalysts can be bound to its matrix oxide without losing significant activity.more » Hence, designing hybrid systems that benefit from both the high tunability of activity of homogeneous catalysts and the stability of heterogeneous systems seems feasible.« less
NASA Astrophysics Data System (ADS)
Du, Jinpeng; Qu, Zhenping; Dong, Cui; Song, Lixin; Qin, Yuan; Huang, Na
2018-03-01
Mn-Ce oxides catalysts were synthesized by a novel method combining redox-precipitation and hydrothermal approach. The results indicate that the ratio between manganese and cerium plays a crucial role in the formation of catalysts, and the textual properties as well as catalytic activity are remarked affected. Mn0.6Ce0.4O2 possesses a predominant catalytic activity in the oxidation of toluene, over 70% of toluene is converted at 200 °C, and the complete conversion temperature is 210 °C. The formation of Mn-Ce solid solution markedly improves the surface area as well as pore volume of Mn-Ce oxide catalyst, and Mn0.6Ce0.4O2 possesses the largest surface area of 298.5 m2/g. The abundant Ce3+ and Mn3+ on Mn0.6Ce0.4O2 catalyst facilitate the formation of oxygen vacancies, and improve the transfer of oxygen in the catalysts. Meanwhile, it is found that cerium in Mn-Ce oxide plays a key role in the adsorption of toluene, while manganese is proved to be crucial in the oxidation of toluene, the cooperation between manganese and cerium improves the catalytic reaction process. In addition, the reaction process is investigated by in situ DRIFT measurement, and it is found that the adsorbed toluene could be oxidized to benzyl alcohol as temperature rises around 80-120 °C that can be further be oxidized to benzoic acid. Then benzoic acid could be decomposed to formate and/or carbonate species as temperature rises to form CO2 and H2O. In addition, the formed by-product phenol could be further oxidized into CO2 and H2O when the temperature is high enough.
Zhang, Shibo; Zhao, Yongchun; Wang, Zonghua; Zhang, Junying; Wang, Lulu; Zheng, Chuguang
2017-03-01
A catalyst composed of manganese oxides supported on titania (MnO x /TiO 2 ) synthesized by a sol-gel method was selected to remove nitric oxide and mercury jointly at a relatively low temperature in simulated flue gas from coal-fired power plants. The physico-chemical characteristics of catalysts were investigated by X-ray fluorescence (XRF), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses, etc. The effects of Mn loading, reaction temperature and individual flue gas components on denitration and Hg 0 removal were examined. The results indicated that the optimal Mn/Ti molar ratio was 0.8 and the best working temperature was 240°C for NO conversion. O 2 and a proper ratio of [NH 3 ]/[NO] are essential for the denitration reaction. Both NO conversion and Hg 0 removal efficiency could reach more than 80% when NO and Hg 0 were removed simultaneously using Mn0.8Ti at 240°C. Hg 0 removal efficiency slightly declined as the Mn content increased in the catalysts. The reaction temperature had no significant effect on Hg 0 removal efficiency. O 2 and HCl had a promotional effect on Hg 0 removal. SO 2 and NH 3 were observed to weaken Hg 0 removal because of competitive adsorption. NO first facilitated Hg 0 removal and then had an inhibiting effect as NO concentration increased without O 2 , and it exhibited weak inhibition of Hg 0 removal efficiency in the presence of O 2 . The oxidation of Hg 0 on MnO x /TiO 2 follows the Mars-Maessen and Langmuir-Hinshelwood mechanisms. Copyright © 2016. Published by Elsevier B.V.
Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri
2015-01-01
Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption. PMID:26517827
Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri
2015-01-01
Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption.
Cao, Qun; Hughes, N. Louise
2016-01-01
Abstract A homogeneous PdII catalyst, utilizing a simple and inexpensive amine ligand (TMEDA), allows 2‐alkynoates to be prepared in high yields by an oxidative carbonylation of terminal alkynes and alcohols. The catalyst system overcomes many of the limitations of previous palladium carbonylation catalysts. It has an increased substrate scope, avoids large excesses of alcohol substrate and uses a desirable solvent. The catalyst employs oxygen as the terminal oxidant and can be operated under safer gas mixtures. PMID:27305489
Electrocatalyst for alcohol oxidation in fuel cells
Adzic, Radoslav R.; Marinkovic, Nebojsa S.
2001-01-01
Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell. The binary electrocatalyst includes 1) a substrate selected from the group consisting of NiWO.sub.4 or CoWO.sub.4 or a combination thereof, and 2) Group VIII noble metal catalyst supported on the substrate. The ternary electrocatalyst includes 1) a substrate as described above, and 2) a catalyst comprising Group VIII noble metal, and ruthenium oxide or molybdenum oxide or a combination thereof, said catalyst being supported on said substrate.
Reactivation of a tin oxide-containing catalyst
NASA Technical Reports Server (NTRS)
Brown, Kenneth G. (Inventor); Hess, Robert V. (Inventor); Paulin, Patricia A. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Upchurch, Billy T. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor)
1989-01-01
A method for the reactivation of a tin oxide-containing catalyst of a CO.sub.2 laser is provided. First, the catalyst is pretreated by a standard procedure. When the catalyst experiences diminished activity during usage, the heated zone surrounding the catalyst is raised to a temperature which is the operating temperature of the laser and 400.degree. C. for approximately one hour. The catalyst is exposed to the same laser gas mixture during this period. The temperature of the heated zone is then lowered to the operating temperature of the CO.sub.2 laser.
Methanol Oxidation Using Ozone on Titania-Supported Vanadium Catalyst
Ozone-enhanced catalytic oxidation of methanol has been conducted at mild temperatures of 100 to 250NC using V2O5/TiO2 catalyst prepared by the sol-gel method. The catalyst was characterized using XRD, surface area measurements, and temperature-programmed desorption of methanol. ...
Wise, Anna M.; Richardson, Peter W.; Price, Stephen W. T.; ...
2017-12-27
In situ EXAFS and XRD have been used to study the electrochemical formation of hydride phases, H abs, in 0.5 M H 2SO 4 for a Pd/C catalyst and a series of Pd@Pt core-shell catalysts with varying Pt shell thickness, from 0.5 to 4 monolayers. Based on the XRD data a 3% lattice expansion is observed for the Pd/C core catalyst upon hydride formation at 0.0 V. In contrast, the expansion was ≤0.6% for all of the core-shell catalysts. The limited extent of the lattice expansion observed suggests that hydride formation, which may occur during periodic active surface area measurementsmore » conducting during accelerated aging tests or driven by H 2 crossover in PEM fuel cells, is unlikely to contribute significantly to the degradation of Pd@Pt core-shell electrocatalysts in contrast to the effects of oxide formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Anna M.; Richardson, Peter W.; Price, Stephen W. T.
In situ EXAFS and XRD have been used to study the electrochemical formation of hydride phases, H abs, in 0.5 M H 2SO 4 for a Pd/C catalyst and a series of Pd@Pt core-shell catalysts with varying Pt shell thickness, from 0.5 to 4 monolayers. Based on the XRD data a 3% lattice expansion is observed for the Pd/C core catalyst upon hydride formation at 0.0 V. In contrast, the expansion was ≤0.6% for all of the core-shell catalysts. The limited extent of the lattice expansion observed suggests that hydride formation, which may occur during periodic active surface area measurementsmore » conducting during accelerated aging tests or driven by H 2 crossover in PEM fuel cells, is unlikely to contribute significantly to the degradation of Pd@Pt core-shell electrocatalysts in contrast to the effects of oxide formation.« less
Bulk Preparation of Holey Graphene via Controlled Catalytic Oxidation
NASA Technical Reports Server (NTRS)
Connell, John (Inventor); Watson, Kent (Inventor); Ghose, Sayata (Inventor); Lin, Yi (Inventor)
2015-01-01
A scalable method allows preparation of bulk quantities of holey carbon allotropes with holes ranging from a few to over 100 nm in diameter. Carbon oxidation catalyst nanoparticles are first deposited onto a carbon allotrope surface in a facile, controllable, and solvent-free process. The catalyst-loaded carbons are then subjected to thermal treatment in air. The carbons in contact with the carbon oxidation catalyst nanoparticles are selectively oxidized into gaseous byproducts such as CO or CO.sub.2, leaving the surface with holes. The catalyst is then removed via refluxing in diluted nitric acid to obtain the final holey carbon allotropes. The average size of the holes correlates strongly with the size of the catalyst nanoparticles and is controlled by adjusting the catalyst precursor concentration. The temperature and time of the air oxidation step, and the catalyst removal treatment conditions, strongly affect the morphology of the holes.
Novel recirculating loop reactor for studies on model catalysts: CO oxidation on Pt/TiO2(110)
NASA Astrophysics Data System (ADS)
Tenney, Samuel A.; Xie, Kangmin; Monnier, John R.; Rodriguez, Abraham; Galhenage, Randima P.; Duke, Audrey S.; Chen, Donna A.
2013-10-01
A novel recirculating loop microreactor coupled to an ultrahigh vacuum (UHV) chamber has been constructed for the kinetic evaluation of model catalysts, which can be fully characterized by UHV surface science techniques. The challenge for this reactor design is to attain sufficient sensitivity to detect reactions on model single-crystal surfaces, which have a low number of active sites compared to conventional catalysts of equivalent mass. To this end, the total dead volume of the reactor system is minimized (32 cm3), and the system is operated in recirculation mode so that product concentrations build up to detectable levels over time. The injection of gas samples into the gas chromatography column and the refilling of the recirculation loop with fresh feed gas are achieved with computer-controlled, automated switching valves. In this manner, product concentrations can be followed over short time intervals (15 min) for extended periods of time (24 h). A proof of principle study in this reactor for CO oxidation at 145-165 °C on Pt clusters supported on a rutile TiO2(110) single crystal yields kinetic parameters that are comparable to those reported in the literature for CO oxidation on Pt clusters on powdered oxide supports, as well as on Pt(100). The calculated activation energy is 16.4 ± 0.7 kcal/mol, the turnover frequency is 0.03-0.06 molecules/(site.s) over the entire temperature range, and the reaction orders in O2 and CO at 160 °C are 0.9 ± 0.2 and -0.82 ± 0.03, respectively.
NASA Astrophysics Data System (ADS)
Gacutan, E. M.; Climaco, M. I.; Telan, G. J.; Malijan, F.; Hsu, H. Y.; Garcia, J.; Fulo, H.; Tongol, B. J.
2012-12-01
The need to lower the construction cost of fuel cells calls for the development of non-Pt based electrocatalysts. Among others, Pd has emerged as a promising alternative to Pt for fuel cell catalysis. This research aims to investigate the synthesis and characterization of nanostructured Pd-based catalysts dispersed on carbon support as anode materials in direct ethanol fuel cells. For the preparation of the first Pd-based electrocatalyst, palladium nanoparticles (NPs) were synthesized via oleylamine (OAm)-mediated synthesis and precursor method with a mean particle size of 3.63 ± 0.59 nm as revealed by transmission electron microscopy (TEM). Carbon black was used as a supporting matrix for the OAm-capped Pd NPs. Thermal annealing and acetic acid washing were used to remove the OAm capping agent. To evaluate the electrocatalytic activity of the prepared electrocatalyst towards ethanol oxidation, cyclic voltammetry (CV) studies were performed using 1.0 M ethanol in basic medium. The CV data revealed the highest peak current density of 11.05 mA cm-2 for the acetic acid-washed Pd/C electrocatalyst. Meanwhile, the fabrication of the second Pd-based electrocatalyst was done by functionalization of the carbon black support using 3:1 (v/v) H2SO4:HNO3. The metal oxide, NiO, was deposited using precipitation method while polyol method was used for the deposition of Pd NPs. X-ray diffraction (XRD) analysis revealed that the estimated particle size of the synthesized catalysts was at around 9.0-15.0 nm. CV results demonstrated a 36.7% increase in the catalytic activity of Pd-NiO/C (functionalized) catalyst towards ethanol oxidation compared to the non-functionalized catalyst.
Homogeneous and heterogenized iridium water oxidation catalysts
NASA Astrophysics Data System (ADS)
Macchioni, Alceo
2014-10-01
The development of an efficient catalyst for the oxidative splitting of water into molecular oxygen, protons and electrons is of key importance for producing solar fuels through artificial photosynthesis. We are facing the problem by means of a rational approach aimed at understanding how catalytic performance may be optimized by the knowledge of the reaction mechanism of water oxidation and the fate of the catalytic site under the inevitably harsh oxidative conditions. For the purposes of our study we selected iridium water oxidation catalysts, exhibiting remarkable performance (TOF > 5 s-1 and TON > 20000). In particular, we recently focused our attention on [Cp*Ir(N,O)X] (N,O = 2-pyridincarboxylate; X = Cl or NO3) and [IrCl(Hedta)]Na water oxidation catalysts. The former exhibited a remarkable TOF whereas the latter showed a very high TON. Furthermore, [IrCl(Hedta)]Na was heterogenized onto TiO2 taking advantage of the presence of a dandling -COOH functionality. The heterogenized catalyst maintained approximately the same catalytic activity of the homogeneous analogous with the advantage that could be reused many times. Mechanistic studies were performed in order to shed some light on the rate-determining step and the transformation of catalysts when exposed to "oxidative stress". It was found that the last oxidative step, preceding oxygen liberation, is the rate-determining step when a small excess of sacrificial oxidant is used. In addition, several intermediates of the oxidative transformation of the catalyst were intercepted and characterized by NMR, X-Ray diffractometry and ESI-MS.
He, B L; Shen, J S; Tian, Z X
2016-09-21
An Fe-embedded C2N monolayer as a promising single-atom catalyst for CO oxidation by O2 has been investigated based on first-principles calculations. It is found that the single Fe atom can be strongly trapped in the cavity of the C2N monolayer with a large adsorption energy of 4.55 eV and a high diffusion barrier of at least 3.00 eV to leave the cavity, indicating that Fe should exist in the isolated single-atom form. Due to the localized metal 3d orbitals near the Fermi level, the embedded Fe single-atom catalyst has a high chemical activity for the adsorption of CO and O2 molecules. CO oxidation by O2 on the catalyst would proceed via a two-step mechanism. The first step of the CO oxidation reaction has been studied via the Langmuir-Hinshelwood and Eley-Rideal mechanisms with energy barriers of 0.46 and 0.65 eV, respectively. The second step of the CO oxidation reaction follows the Eley-Rideal mechanism with a much smaller energy barrier of 0.24 eV. For both the steps, the CO2 molecules produced are weakly adsorbed on the substrates, suggesting that the proposed catalyst will not be poisoned by the generated CO2. Our results indicate that the Fe-embedded C2N monolayer is a promising single-atom catalyst for CO oxidation by O2 at low temperatures.
Griffin, Michael B.; Baddour, Frederick G.; Habas, Susan E.; ...
2017-06-06
Here, the production of hydrocarbon fuels from biomass pyrolysis requires the development of effective deoxygenation catalysts, and insight into how the properties of the support influence performance is critical for catalyst design. In this report, nanoparticles of Ni and Rh 2P were synthesized using solution-phase techniques and dispersed on high surface area supports. The supports included a relatively inert material (C), an acidic reducible metal-oxide (TiO 2), an acidic irreducible metal-oxide (Al 2O 3), and a basic irreducible metal-oxide (MgO). The eight active phase/support combinations were investigated for the deoxygenation of guaiacol, a pyrolysis vapor model compound, under ex situmore » catalytic fast pyrolysis conditions (350 °C, 0.44 MPa H 2). Compared to the baseline performance of the C-supported catalysts, Ni/TiO 2 and Rh 2P/TiO 2 exhibited higher guaiacol conversion and lower O : C ratios for C 5+ products, highlighting the enhanced activity and greater selectivity to deoxygenated products derived from the use of an acidic reducible metal-oxide support. The Al 2O 3-supported catalysts also exhibited higher conversion than the C-supported catalysts and promoted alkylation reactions, which improve carbon efficiency and increase the carbon number of the C 5+ products. However, Ni/Al 2O 3 and Rh 2P/Al 2O 3 were less selective towards deoxygenated products than the C-supported catalysts. The MgO-supported catalyst exhibited lower conversion and decreased yield of deoxygenated products compared to the C-supported catalysts. The results reported here suggest that basic metal-oxide supports may inhibit deoxygenation of phenolics under CFP conditions. Contrastingly, support acidity and reducibility were demonstrated to promote conversion and selectivity to deoxygenated products, respectively.« less
Shaffer, David W.; Xie, Yan; Szalda, David J.; ...
2017-09-24
Here, a critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s –1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L) 2] (bpH 2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediatesmore » O–O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaffer, David W.; Xie, Yan; Szalda, David J.
Here, a critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s –1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L) 2] (bpH 2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediatesmore » O–O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.« less
Jack G. Calvert
1976-01-01
The mechanisms and rates of conversion of sulfur dioxide to sulfur trioxide, sulfuric acid, and other "sulfate" aerosol precursors are considered in view of current knowledge related to atmospheric reactions and chemical kinetics. Several heterogeneous pathways exist for SO2 oxidation promoted on solid catalyst particles and in aqueous...
Method for removing soot from exhaust gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.
A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine andmore » collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).« less
Pitts, J Roland [Lakewood, CO; Liu, Ping [Irvine, CA; Smith, R Davis [Golden, CO
2009-07-14
Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.
Su, Xiao-Jun; Zheng, Chu; Hu, Qin-Qin; Du, Hao-Yi; Liao, Rong-Zhen; Zhang, Ming-Tian
2018-06-13
The performance of water oxidation catalysis by a Cu-based polypyridyl complex, [CuII(TPA)(OH2)]2+ (1H; TPA = tris-(pyridylmethyl)amine), has been investigated in neutral aqueous solution by electrochemical methods. Compared with our previously reported binuclear catalyst, [(BPMAN)(CuII)2(μ-OH)]3+ (2; BPMAN = 2,7-[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine), mononuclear catalyst 1 has a higher overpotential and lower catalytic activity toward water oxidation under the same conditions. Experimental results revealed that the O-O bond formation occurred via a water nucleophilic attack mechanism in which formal CuIV(O) is proposed as a key intermediate for the mononuclear catalyst 1H. In contrast, for the binuclear catalyst, O-O bond formation was facilitated by bimetallic cooperation between the two CuIII centers.
The Role of Mg(OH)2 in the So-Called "Base-Free" Oxidation of Glycerol with AuPd Catalysts.
Fu, Jile; He, Qian; Miedziak, Peter J; Brett, Gemma L; Huang, Xiaoyang; Pattisson, Samuel; Douthwaite, Mark; Hutchings, Graham J
2018-02-16
Mg(OH) 2 - and Mg(OH) 2 -containing materials can provide excellent performance as supports for AuPd nanoparticles for the oxidation of glycerol in the absence of base, which is considered to be a result of additional basic sites on the surface of the support. However, its influence on the reaction solution is not generally discussed. In this paper, we examine the relationship between the basic Mg(OH) 2 support and AuPd nanoparticles in detail using four types of catalyst. For these reactions, the physical interaction between Mg(OH) 2 and AuPd was adjusted. It was found that the activity of the AuPd nanoparticles increased with the amount of Mg(OH) 2 added under base-free conditions, regardless of its interaction with the noble metals. In order to investigate how Mg(OH) 2 affected the glycerol oxidation, detailed information about the performance of AuPd/Mg(OH) 2 , physically mixed (AuPd/C+Mg(OH) 2 ) and (AuPd/C+NaHCO 3 ) was obtained and compared. Furthermore, NaOH and Mg(OH) 2 were added during the reaction using AuPd/C. All these results indicate that the distinctive and outstanding performance of Mg(OH) 2 supported catalysts in base-free condition is in fact directly related to its ability to affect the pH during the reaction and as such, assists with the initial activation of the primary alcohol, which is considered to be the rate determining step in the reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Limnios, Dimitris; Kokotos, Christoforos G
2014-01-07
A cheap, mild and environmentally friendly oxidation of tertiary amines and azines to the corresponding N-oxides is reported by using polyfluoroalkyl ketones as efficient organocatalysts. 2,2,2-Trifluoroacetophenone was identified as the optimum catalyst for the oxidation of aliphatic tertiary amines and azines. This oxidation is chemoselective and proceeds in high-to-quantitative yields utilizing 10 mol % of the catalyst and H2 O2 as the oxidant. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Emissions of sulfur trioxide from coal-fired power plants.
Srivastava, R K; Miller, C A; Erickson, C; Jambhekar, R
2004-06-01
Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist.
Study on the poisoning effect-of non-vanadium catalysts by potassium
NASA Astrophysics Data System (ADS)
Zeng, Huanmu; Liu, Ying; Yu, Xiaowei; Lin, Yasi
2018-02-01
The poisoning effect of catalyst by alkali metals is one of the problems in the selective catalytic reduction (SCR) of NO by NH3. Serious deactivation by alkali poisoning have been proved to take place in the commercial vanadium catalyst. Recently, non-vanadium catalysts such as copper oxides, manganese oxides, chromium oxides and cerium oxides have attracted special attentions in SCR application. However, their tolerance in the presence of alkali metals is still doubtful. In this paper, copper oxides, manganese oxides, chromium oxides and cerium oxides supported on TiO2 nanoparticle was prepared by impregnating method. Potassium nitrate was chosen as the precursor of poisoner. Catalytic activities of these catalysts were evaluated before and after the addition of potassium. Some characterization methods including X-ray diffraction and temperature programmed desorption was utilized to reveal the main reason of alkali deactivation.
Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng
2015-07-21
The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven-coordinate Ru(IV) species was isolated as a reaction intermediate, shedding light on the reaction mechanisms of Ru-catalyzed water oxidation chemistry. Auxiliary ligands have dramatic effects on the water oxidation catalysis in terms of the reactivity and the reaction mechanism. For instance, Ru-bda (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts catalyze Ce(IV)-driven water oxidation extremely fast via the radical coupling of two Ru(V)═O species, while Ru-pda (H2pda = 1,10-phenanthroline-2,9-dicarboxylic acid) water oxidation catalysts catalyze the same reaction slowly via water nucleophilic attack on a Ru(V)═O species. With a number of active Ru catalysts in hands, light driven water oxidation was accomplished using catalysts with low catalytic onset potentials. The structures of molecular catalysts could be readily tailored to introduce additional functional groups, which favors the fabrication of state-of-the-art Ru-based water oxidation devices, such as electrochemical water oxidation anodes and photo-electrochemical anodes. The development of efficient water oxidation catalysts has led to a step forward in the sustainable energy system.
Design, fabrication, and bench testing of a solar chemical receiver
NASA Technical Reports Server (NTRS)
Summers, W. A.; Pierre, J. F.
1981-01-01
Solar thermal energy can be effectively collected, transported, stored, and utilized by means of a chemical storage and transport system employing the reversible SO2 oxidation reaction. A solar chemical receiver for SO3 thermal decomposition to SO2 and oxygen was analyzed. Bench tests of a ten foot section of a receiver module were conducted with dissociated sulfuric acid (SO3 and H2O) in an electrical furnace. Measured percent conversion of SO3 was 85% of the equilibrium value. Methods were developed to fabricate and assemble a complete receiver module. These methods included applying an aluminide coating to certain exposed surfaces, assembling concentric tubes with a wire spacer, applying a platinum catalyst to the tubing wall, and coiling the entire assembly into the desired configuration.
Abdullah, M; Kamarudin, S K; Shyuan, L K
2016-12-01
In this study, TiO 2 nanotubes (TNTs) were synthesized via a hydrothermal method using highly concentrated NaOH solutions varying from 6 to 12 M at 180 °C for 48 h. The effects of the NaOH concentration and the TNT crystal structure on the performance for methanol oxidation were investigated to determine the best catalyst support for Pt-based catalysts. The results showed that TNTs produced with 10 M NaOH exhibited a length and a diameter of 550 and 70 nm, respectively; these TNTs showed the best nanotube structure and were further used as catalyst supports for a Pt-based catalyst in a direct methanol fuel cell. The synthesized TNT and Pt-based catalysts were analysed by FESEM, TEM, BET, EDX, XRD and FTIR. The electrochemical performance of the catalysts was investigated using cyclic voltammetry (CV) and chronoamperometric (CA) analysis to further understand the methanol oxidation in the direct methanol fuel cell (DMFC). Finally, the result proves that Pt-Ru/TNT-C catalyst shows high performance in methanol oxidation as the highest current density achieved at 3.3 mA/cm 2 (normalised by electrochemically active surface area) and high catalyst tolerance towards poisoning species was established.
Kumar, Suneel; Reddy, Nagappagari Lakshmana; Kushwaha, Himmat Singh; Kumar, Ashish; Shankar, Muthukonda Venkatakrishnan; Bhattacharyya, Kaustava; Halder, Aditi; Krishnan, Venkata
2017-09-22
The development of noble metal-free catalysts for hydrogen evolution is required for energy applications. In this regard, ternary heterojunction nanocomposites consisting of ZnO nanoparticles anchored on MoS 2 -RGO (RGO=reduced graphene oxide) nanosheets as heterogeneous catalysts show highly efficient photocatalytic H 2 evolution. In the photocatalytic process, the catalyst dispersed in an electrolytic solution (S 2- and SO 3 2- ions) exhibits an enhanced rate of H 2 evolution, and optimization experiments reveal that ZnO with 4.0 wt % of MoS 2 -RGO nanosheets gives the highest photocatalytic H 2 production of 28.616 mmol h -1 g cat -1 under sunlight irradiation; approximately 56 times higher than that on bare ZnO and several times higher than those of other ternary photocatalysts. The superior catalytic activity can be attributed to the in situ generation of ZnS, which leads to improved interfacial charge transfer to the MoS 2 cocatalyst and RGO, which has plenty of active sites available for photocatalytic reactions. Recycling experiments also proved the stability of the optimized photocatalyst. In addition, the ternary nanocomposite displayed multifunctional properties for hydrogen evolution activity under electrocatalytic and photoelectrocatalytic conditions owing to the high electrode-electrolyte contact area. Thus, the present work provides very useful insights for the development of inexpensive, multifunctional catalysts without noble metal loading to achieve a high rate of H 2 generation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation of NO(x) Removal from Small Engine Exhaust
NASA Technical Reports Server (NTRS)
Akyurtlu, Ates; Akyurtlu, Jale F.
1999-01-01
Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of NO can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.
Applications of low temperature CO-oxidation catalysts to breathable gases
NASA Technical Reports Server (NTRS)
Noordally, Ehsan; Richmond, John R.
1990-01-01
Modifications of tin oxide/precious metal catalysts described for use in CO2 lasers have also been developed for use in other applications; namely, as low temperature CO oxidation components in fire escape hoods/masks for mines, aircrafts, hotels, and offices and in sealed environments, such as hyperbaric chambers and submarines. Tin oxide/precious metal catalysts have been prepared on a variety of high surface area cloth substrates for application in fire escape hoods. These show high and stable CO oxidation capability (10 to the 4th power ppm CO reduced to 10 to the 1st power ppm CO) at GHSV of 37,000 h(-1) with water saturated inlet gas at body heat (37 C) and below. Water vapor plays an important role in the surface state/performance of tin oxide catalyst. Water-resistant formulations have been produced by the introduction of transition metal promoters. Tin oxide/precious metal catalysts have also been developed for CO oxidation in the North Sea diving environment. These are currently in use in a variety of hyperbaric chambers and diving vehicles. Ambient temperature operation and resistance to atmospheric water vapor have been demonstrated, and as a result, they offer a viable alternative to hopcalite or heated catalyst systems. A new range of non-tin oxide based low temperature CO oxidation catalysts is described. They are based on reducible metal oxides promoted with previous metals. Preliminary data on selected materials in the form of both cloth artifacts and shaped pellets are presented. They are expected to be applicable both to the breathable gas application area and to CO2 lasers.
NASA Astrophysics Data System (ADS)
Rao, Cheng; Shen, Jiating; Wang, Fumin; Peng, Honggen; Xu, Xianglan; Zhan, Hangping; Fang, Xiuzhong; Liu, Jianjun; Liu, Wenming; Wang, Xiang
2018-03-01
In this study, SnO2-based catalysts promoted by different alkali metal oxides with a Sn/M (M = Li, Na, K, Cs) molar ratio of 9/1 have been prepared for soot combustion. In comparison with the un-modified SnO2 support, the activity of the modified catalysts has been evidently enhanced, following the sequence of CsSn1-9 > KSn1-9 > NaSn1-9 > LiSn1-9 > SnO2. As testified by Raman, H2-TPR, soot-TPR-MS, XPS and O2-TPD results, the incorporation of various alkali metal oxides can induce the formation of more abundant and mobile oxygen species on the surface of the catalysts. Moreover, quantified results have proved that the amount of the surface active oxygen species is nearly proportional to the activity of the catalysts. CsSn1-9, the catalyst promoted by cesium oxide, owns the largest amount of surface mobile oxygen species, thus having the highest activity among all the studied catalysts. It is concluded that the amount of surface active and mobile oxygen species is the major factor determining the activity of the catalysts for soot combustion.
Devarajan, Nainamalai; Karthik, Murugan; Suresh, Palaniswamy
2017-11-07
A straightforward and efficient method has been demonstrated for the oxidative coupling of terminal alkynes using a simple Cu 3 (BTC) 2 -metal organic framework as a sustainable heterogeneous copper catalyst. A series of symmetrical 1,3-diynes bearing diverse functional groups have been synthesized in moderate to excellent yields via a Cu 3 (BTC) 2 catalyzed Glaser-Hay reaction. The presence of the coordinatively unsaturated open Cu II sites in Cu 3 (BTC) 2 catalyzes the homocoupling in the presence of air, as an environment friendly oxidant without the use of external oxidants, ligands or any additives. The present methodology avoids stoichiometric reagents and harsher or special reaction conditions, and shows good functional group tolerance. The as-prepared catalyst could be separated easily by simple filtration and reused several times without any notable loss in activity. The hot filtration test has investigated the true heterogeneity of the catalyst. Additionally, the powder X-ray diffraction pattern of the reused catalyst revealed the high stability of the catalyst.
Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O8(2-).
Hong, Dachao; Yamada, Yusuke; Nagatomi, Takaharu; Takai, Yoshizo; Fukuzumi, Shunichi
2012-12-05
Single or mixed oxides of iron and nickel have been examined as catalysts in photocatalytic water oxidation using [Ru(bpy)(3)](2+) as a photosensitizer and S(2)O(8)(2-) as a sacrificial oxidant. The catalytic activity of nickel ferrite (NiFe(2)O(4)) is comparable to that of a catalyst containing Ir, Ru, or Co in terms of O(2) yield and O(2) evolution rate under ambient reaction conditions. NiFe(2)O(4) also possesses robustness and ferromagnetic properties, which are beneficial for easy recovery from the solution after reaction. Water oxidation catalysis achieved by a composite of earth-abundant elements will contribute to a new approach to the design of catalysts for artificial photosynthesis.
Reversible interconversion of carbon dioxide and formate by an electroactive enzyme
Reda, Torsten; Plugge, Caroline M.; Abram, Nerilie J.; Hirst, Judy
2008-01-01
Carbon dioxide (CO2) is a kinetically and thermodynamically stable molecule. It is easily formed by the oxidation of organic molecules, during combustion or respiration, but is difficult to reduce. The production of reduced carbon compounds from CO2 is an attractive proposition, because carbon-neutral energy sources could be used to generate fuel resources and sequester CO2 from the atmosphere. However, available methods for the electrochemical reduction of CO2 require excessive overpotentials (are energetically wasteful) and produce mixtures of products. Here, we show that a tungsten-containing formate dehydrogenase enzyme (FDH1) adsorbed to an electrode surface catalyzes the efficient electrochemical reduction of CO2 to formate. Electrocatalysis by FDH1 is thermodynamically reversible—only small overpotentials are required, and the point of zero net catalytic current defines the reduction potential. It occurs under thoroughly mild conditions, and formate is the only product. Both as a homogeneous catalyst and on the electrode, FDH1 catalyzes CO2 reduction with a rate more than two orders of magnitude faster than that of any known catalyst for the same reaction. Formate oxidation is more than five times faster than CO2 reduction. Thermodynamically, formate and hydrogen are oxidized at similar potentials, so formate is a viable energy source in its own right as well as an industrially important feedstock and a stable intermediate in the conversion of CO2 to methanol and methane. FDH1 demonstrates the feasibility of interconverting CO2 and formate electrochemically, and it is a template for the development of robust synthetic catalysts suitable for practical applications. PMID:18667702
Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa
2012-02-29
Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO(x)/ZrO2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WOx/ZrO2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO2) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO3 and monoclinic ZrO2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WOx/ZrO2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS. Copyright © 2012 Elsevier B.V. All rights reserved.
Wei, Guangtao; Shao, Luhua; Mo, Jihua; Li, Zhongmin; Zhang, Linye
2017-06-01
Using molasses wastewater as partial acidifying agent, a new Fenton-like catalyst (ACRM sm ) was prepared through a simple process of acidification and calcination using red mud as main material. With molasses wastewater, both the free alkali and the chemically bonded alkali in red mud were effectively removed under the action of H 2 SO 4 and molasses wastewater, and the prepared ACRM sm was a near-neutral catalyst. The ACRM sm preparation conditions were as follows: for 3 g of red mud, 9 mL of 0.7 mol/L H 2 SO 4 plus 2 g of molasses wastewater as the acidifying agent, calcination temperature 573 K, and calcination time 1 h. Iron phase of ACRM sm was mainly α-Fe 2 O 3 and trace amount of carbon existed in ACRM sm . The addition of molasses wastewater not only effectively reduced the consumption of H 2 SO 4 in acidification of red mud but also resulted in the generation of carbon and significantly improved the distribution of macropore in prepared ACRM sm . It was found that near-neutral pH of catalyst, generated carbon, and wide distribution of macropore were the main reasons for the high catalytic activity of ACRM sm . The generated carbon and wide distribution of macropore were entirely due to the molasses wastewater added. In degradation of orange II, ACRM sm retained most of its catalytic stability and activity after five recycling times, indicating ACRM sm had an excellent long-term stability in the Fenton-like process. Furthermore, the performance test of settling showed ACRM sm had an excellent settleability. ACRM sm was a safe and green catalytic material used in Fenton-like oxidation for wastewater treatment.
NASA Astrophysics Data System (ADS)
González, J.; Chen, L. F.; Wang, J. A.; Manríquez, Ma.; Limas, R.; Schachat, P.; Navarrete, J.; Contreras, J. L.
2016-08-01
A series of vanadium oxide supported on Ti-MCM-41 catalysts was synthesized via the incipient impregnation method by varying the vanadia loading from 5 wt% to 10, 15, 20 and 25 wt%. These catalysts were characterized by a variety of advanced techniques for investigating their crystalline structure, textural properties, and surface chemistry information including surface acidity, reducibility, vanadium oxidation states, and morphological features. The catalytic activities of the catalysts were evaluated in a biphasic reaction system for oxidative desulfurization (ODS) of a model diesel containing 300 ppm of dibenzothiophene (DBT) where acetonitrile was used as extraction solvent and H2O2 as oxidant. ODS activity was found to be proportional to the V5+/(V4+ + V5+) values of the catalysts, indicating that the surface vanadium pentoxide (V2O5) was the active phase. Reaction temperature would influence significantly the ODS efficiency; high temperature, i.e., 80 °C, would lead to low ODS reaction due to the partial decomposition of oxidant. All the catalysts contained both Lewis and Brønsted acid sites but the former was predominant. The catalysts with low vanadia loading (5 or 10 wt%V2O5) had many Lewis acid sites and could strongly adsorb DBT molecule via the electron donation/acceptance action which resulted in an inhibition for the reaction of DBT with the surface peroxometallic species. The catalyst with high vanadia loading (25wt%V2O5/Ti-MCM-41) showed the highest catalytic activity and could remove 99.9% of DBT at 60 °C within 60 min.
NASA Astrophysics Data System (ADS)
McLagan, David S.; Huang, Haiyong; Lei, Ying D.; Wania, Frank; Mitchell, Carl P. J.
2017-07-01
Analysis of high sulphur-containing samples for total mercury content using automated thermal decomposition, amalgamation, and atomic absorption spectroscopy instruments (USEPA Method 7473) leads to rapid and costly SO2 poisoning of catalysts. In an effort to overcome this issue, we tested whether the addition of powdered sodium carbonate (Na2CO3) to the catalyst and/or directly on top of sample material increases throughput of sulphur-impregnated (8-15 wt%) activated carbon samples per catalyst tube. Adding 5 g of Na2CO3 to the catalyst alone only marginally increases the functional lifetime of the catalyst (31 ± 4 g of activated carbon analyzed per catalyst tube) in relation to unaltered catalyst of the AMA254 total mercury analyzer (17 ± 4 g of activated carbon). Adding ≈ 0.2 g of Na2CO3 to samples substantially increases (81 ± 17 g of activated carbon) catalyst life over the unaltered catalyst. The greatest improvement is achieved by adding Na2CO3 to both catalyst and samples (200 ± 70 g of activated carbon), which significantly increases catalyst performance over all other treatments and enables an order of magnitude greater sample throughput than the unaltered samples and catalyst. It is likely that Na2CO3 efficiently sequesters SO2, even at high furnace temperatures to produce Na2SO4 and CO2, largely negating the poisonous impact of SO2 on the catalyst material. Increased corrosion of nickel sampling boats resulting from this methodological variation is easily resolved by substituting quartz boats. Overall, this variation enables an efficient and significantly more affordable means of employing automated atomic absorption spectrometry instruments for total mercury analysis of high-sulphur matrices.
Hu, Xue-jiao; Bo, Long-li; Liang, Xin-xin; Meng, Hai-long
2015-08-01
Microwave in-situ regeneration of Cu-Mn-Ce/ZSM catalyst adsorbed toluene, distribution of fixed bed temperature, adsorption breakthrough curves of the catalyst after several regenerations and characterizations of the catalyst by BET and SEM were investigated in this study. The research indicated that regeneration effect of the catalyst adsorbed was excellent under conditions of microwave power 117 W, air flow 0.5 m3 x h(-1) and catalyst dosage of 800 g. Toluene desorbed was oxidized onto the surface of the catalyst, and the adsorption capacity of the catalyst was recovered simultaneously. Under microwave irradiation, bed temperature decreased slowly from inside to outside in horizontal level, and increased gradually from down to up in vertical level so that the highest temperature reached 250-350 degrees C at the upper sites of the bed. Sintering and agglomeration occurred on the surface of the catalyst in the course of regeneration so that the special surface area and micropore volume of the catalyst were reduced and breakthrough time was shortened, which was verified by six adsorption breakthrough curves and related characteristics of the catalyst. However, the structure of the catalyst was steady after two regenerations, and adsorption breakthrough time was kept at 70 min. The result showed that the changes of surface morphology and pore structure were positively correlated with the distribution of bed temperature.
Acharyya, Shankha Shubhra; Ghosh, Shilpi; Adak, Shubhadeep; Singh, Raghuvir; Saran, Sandeep; Bal, Rajaram
2015-08-01
Cu (II) nanoclusters supported on nanocrystalline zirconia catalyst (with size ~15 nm), was prepared by using cationic surfactant cetyltrimethylammonium in a hydrothermal synthesis method. The catalyst was characterized by XRD, XPS, TGA, SEM, TEM, FTIR and ICP-AES. The catalyst was found to be efficient in selective oxidation of n-hexane to 2-hexanol. An n-hexane conversion of 55%, with a 2-hexanol selectivity of 70% was achieved over this catalyst in liquid phase, without the use of any solvent. The catalyst can be reused several times without any significant activity loss.
W-Incorporated CoMo/{lambda}-Al{sub 2}O{sub 3} hydrosulfurization catalyst. II. Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, D.K.; Lee, H.T.
1996-03-01
Series of W-incorporated CoMo/{gamma}-Al{sub 2}O{sub 3} catalysts were characterized with TPR, DRS, ESR, and XPS. Two series of catalysts with varying content of tungsten were prepared for characterization by changing the impregnation order of cobalt and tungsten to a base Mo/{gamma}-Al{sub 2}O{sub 3} catalyst. The activity promotion by relatively low content of tungsten arose from the roles of tungsten in changing the Mo-oxide coordination from tetrahedral to octahedral, facilitating the reduction of Mo-oxide species, and increasing the dispersion of MoS{sub 2}. By incorporation of tungsten at a content as much as 0.025 in W/(W + Mo) atomic ratio, the MoS{submore » 2} dispersion of CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst was considered to be maximized without noticeable detriment to the active Co-Mo-O phase, resulting in the maximum activity promotion. The formation of the Co-Mo-O phases was more favored in the catalysts prepared by impregnating W onto CoMo/{gamma}-Al{sub 2}O{sub 3} than in those by impregnating W onto Mo/{gamma}-Al{sub 2}O{sub 3} before impregnation of Co. The effect of tungsten on the dispersion of active phase was not discriminated between the two series of catalysts. The activity decrease observed in the catalysts containing higher content of tungsten originated from the increase in the W-oxide coverage on the surface of Mo-oxides or Co-Mo-O phases, resulting in not only impeding the reduction or sulfidation of the oxidic precursor but facilitating the formation of less active Co-W-O at the sacrifice of more active Co-Mo-O phase. 40 refs., 11 figs., 1 tab.« less
Anode catalysts for direct ethanol fuel cells utilizing directly solar light illumination.
Chu, Daobao; Wang, Shuxi; Zheng, Peng; Wang, Jian; Zha, Longwu; Hou, Yuanyuan; He, Jianguo; Xiao, Ying; Lin, Huashui; Tian, Zhaowu
2009-01-01
Shine a light: A PtNiRu/TiO(2) anode catalyst for direct ethanol fuel cells shows photocatalytic activity. The peak current density for ethanol oxidation under solar light illumination is 2-3 times greater than that in the absence of solar light. Ethanol is oxidized by light-generated holes, and the electrons are collected by the TiO(2) support to generate the oxidation current.Novel PtNiRu/TiO(2) anode catalysts for direct ethanol fuel cells (DEFCs) were prepared from PtNiRu nanoparticles (1:1:1 atomic ratios) and a nanoporous TiO(2) film by a sol-gel and electrodeposition method. The performances of the catalysts for ethanol oxidation were investigated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results indicate a remarkable enhancement of activity for ethanol oxidation under solar light illumination. Under solar light illumination, the generated oxidation peak current density is 24.6 mA cm(-2), which is about 2.5 times higher than that observed without solar light (9.9 mA cm(-2)). The high catalytic activity of the PtNiRu/TiO(2) complex catalyst for the electrooxidation of ethanol may be attributed to the modified metal/nanoporous TiO(2) film, and the enhanced electrooxidation of ethanol under solar light may be due to the photogeneration of holes in the modified nanoporous TiO(2) film.
o-Naphthoquinone-Catalyzed Aerobic Oxidation of Amines to (Ket)imines: A Modular Catalyst Approach.
Goriya, Yogesh; Kim, Hun Young; Oh, Kyungsoo
2016-10-07
A modular aerobic oxidation of amines to imines has been achieved using an ortho-naphthoquinone (o-NQ) catalyst. The cooperative catalyst system of o-NQ and Cu(OAc) 2 enabled the formation of homocoupled imines from benzylamines, while the presence of TFA helped the formation of cross-coupled imines in excellent yields. The current mild aerobic oxidation protocol could also be applied to the oxidation of secondary amines to imines or ketimines with the help of cocatalyst, Ag 2 CO 3 , with excellent yields.
Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma
NASA Astrophysics Data System (ADS)
Glonek, Karolina; Wróblewska, Agnieszka; Makuch, Edyta; Ulejczyk, Bogdan; Krawczyk, Krzysztof; Wróbel, Rafał. J.; Koren, Zvi C.; Michalkiewicz, Beata
2017-10-01
The waste from industrial fruits processing is utilized for the extraction of limonene, a renewable terpene biomass compound obtained from orange peels. This was followed by limonene oxidation, which produces highly useful oxygenated derivatives (carveol, and perillyl alcohol, 1,2-epoxylimonene and its diol). New catalysts were obtained by treating relatively inexpensive commercially available EuroPh and FPV activated carbons with plasma. These catalysts were characterized by the following instrumental methods XRD, sorption of N2 and CO2, SEM, EDS, TEM, XPS, and Raman spectroscopy. The activities of the plasma-treated catalysts were measured in the oxidation of limonene by means of either hydrogen peroxide or t-butyl hydroperoxide as the oxidizing agents. During the oxidation with hydrogen peroxide the new plasma-treated catalysts were more active than their untreated counterparts. This effect was noticeable in the considerable increase in the conversion of limonene. The mechanism explaining this property is proposed, and it takes into account the role of the appropriate functional groups on the surface of the catalysts. This work has shown for the first time that the commercial EuroPh and FPV activated carbons, after having been treated by plasma, are active catalysts for the selective limonene oxidation for the production of value-added industrial products.
Ammonium-tungstate-promoted growth of boron nitride nanotubes
NASA Astrophysics Data System (ADS)
E, Songfeng; Li, Chaowei; Li, Taotao; Geng, Renjie; Li, Qiulong; Lu, Weibang; Yao, Yagang
2018-05-01
Ammonium tungstate ((NH4)10W12O41 · xH2O) is a kind of oxygen-containing ammonium salt. The following study proves that it can be successfully used as a metal oxide alternative to produce boron oxide (B2O2) by oxidizing boron (B) in a traditional boron oxide chemical vapor deposition (BOCVD) process. This special oxidant promotes the simplistic fabrication of boron nitride nanotubes (BNNTs) in a conventional horizontal tube furnace, an outcome which may have resulted from its strong oxidizability. The experimental results demonstrate that the mole ratio of B and (NH4)10W12O41 · xH2O is a key parameter in determining the formation, quality and quantity of BNNTs when stainless steel is employed as a catalyst. We also found that Mg(NO3)2 and MgO nanoparticles (NPs) can be used as catalysts to grow BNNTs with the same precursor. The BNNTs obtained from the Mg(NO3)2 catalyst were straighter than those obtained from the MgO NP catalyst. This could have been due to the different physical forms of the catalysts that were used.
Ammonium-tungstate-promoted growth of boron nitride nanotubes.
E, Songfeng; Li, Chaowei; Li, Taotao; Geng, Renjie; Li, Qiulong; Lu, Weibang; Yao, Yagang
2018-05-11
Ammonium tungstate ((NH 4 ) 10 W 12 O 41 · xH 2 O) is a kind of oxygen-containing ammonium salt. The following study proves that it can be successfully used as a metal oxide alternative to produce boron oxide (B 2 O 2 ) by oxidizing boron (B) in a traditional boron oxide chemical vapor deposition (BOCVD) process. This special oxidant promotes the simplistic fabrication of boron nitride nanotubes (BNNTs) in a conventional horizontal tube furnace, an outcome which may have resulted from its strong oxidizability. The experimental results demonstrate that the mole ratio of B and (NH 4 ) 10 W 12 O 41 · xH 2 O is a key parameter in determining the formation, quality and quantity of BNNTs when stainless steel is employed as a catalyst. We also found that Mg(NO 3 ) 2 and MgO nanoparticles (NPs) can be used as catalysts to grow BNNTs with the same precursor. The BNNTs obtained from the Mg(NO 3 ) 2 catalyst were straighter than those obtained from the MgO NP catalyst. This could have been due to the different physical forms of the catalysts that were used.
Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen
NASA Astrophysics Data System (ADS)
Luo, Si
Abstract of the Dissertation. Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen. by. Si Luo. Doctor of Philosophy. in. Chemistry. Stony Brook University. 2017. The environmental impacts of fossil fuel consumption and the resulting global warming have attracted increasing attention to technologies and fuels that are both sustainable and renewable in the 21st century. To date, hydrogen has been proposed as an encouraging candidate of the next generation of chemical fuels, which meets all demands for carbon free and efficient chemistries that could be produced from a variety of sources. However, despite tremendous efforts, there is a clear need to develop new catalysts for the production of hydrogen through catalytic processes that are sustainable, such as in the photocatalytic splitting of water (PCS: H2O → H2 + 0.5O2) and the water-gas shift process (WGS: CO + H2O → H2 + CO2). This thesis is primarily motivated by this challenge and has focused on the photochemical and thermal production of H2 by the employment of novel TiO2 based catalysts. TiO2 is one of the most widely studied photocatalysts in all history, due to its relatively high activity, robust stability, safety and low cost. In this thesis, several TiO2-based mixed metal oxide nano catalysts (CeOx-TiO2, Ru-TiO2, Ga-TiO2) have been synthesized with carefully controlled morphology/structure and with inclusion of co-catalysts (Pt). These novel materials were comprehensively characterized to better understand their morphology, crystal structure, and electronic properties in an attempt to unravel phenomena responsible for high catalytic performance for the production of H2 from H2O. We have discovered the importance of low-dimensional metal oxide and interfacial stabilized nano-scaled mixed metal oxides for H2 production, while learning how best to tune such structure to optimize both thermal and photochemical conversion. Optimized structure and/or composition have been identified for TiO2 modified in different ways by another metal oxide (CeOx) or with dopants (Ga, Ru). In addition, we have also studied the water gas shift reaction on several TiO2 supported catalysts, where similar concepts can be applied. Advanced In situ characterization enabled the investigation of the catalyst structure, surface chemical intermediates and active species under reaction conditions. The influence of metal-oxide, oxide-oxide interactions has been further revealed for both the water-gas shift and the photocatalytic splitting of water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Tingshun, E-mail: tshjiang@mail.ujs.edu.cn; Cheng, Jinlian; Liu, Wangping
2014-10-15
Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH{sub 3}-TPD and N{sub 2} physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 still have good mesoporous structure and long rangemore » ordering. Compared with the Zr (or Al)–MCM-48 samples, SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO{sub 4}{sup 2−}/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h{sup −1} and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO{sub 4}{sup 2−}/Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO{sub 4}{sup 2−}/Zr-MCM-48-25.« less
Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter
2016-09-28
Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.
Lum, Yanwei; Ager, Joel W
2018-01-08
Oxide-derived (OD) Cu catalysts have high selectivity towards the formation of multi-carbon products (C 2 /C 3 ) for aqueous electrochemical CO 2 reduction (CO 2 R). It has been proposed that a large fraction of the initial oxide can be surprisingly resistant to reduction, and these residual oxides play a crucial catalytic role. The stability of residual oxides was investigated by synthesizing 18 O-enriched OD Cu catalysts and testing them for CO 2 R. These catalysts maintain a high selectivity towards C 2 /C 3 products (ca. 60 %) for up to 5 h in 0.1 m KHCO 3 at -1.0 V vs. RHE. However, secondary-ion mass spectrometry measurements show that only a small fraction (<1 %) of the original 18 O content remains, showing that residual oxides are not present in significant amounts during CO 2 R. Furthermore, we show that OD Cu can reoxidize rapidly, which could compromise the accuracy of ex situ methods for determining the true oxygen content. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ventura, Maria; Aresta, Michele; Dibenedetto, Angela
2016-05-23
A simple, cheap, and selective catalyst based on copper/cerium oxides is described for the oxidation of 5-(hydroxymethyl)furfural (5-HMF) in water. An almost quantitative conversion (99 %) with excellent (90 %) selectivity towards the formation of 5-formyl-2-furancarboxylic acid, a platform molecule for other high value chemicals, is observed. The catalyst does not require any pretreatment or additives, such as bases, to obtain high yield and selectivity in water as solvent and using oxygen as oxidant. When a physical mixture of the oxides is used, low conversion and selectivity are observed. Air can be used instead of oxygen, but a lower conversion rate is observed if the same overall pressure is used, and the selectivity remains high. The catalyst can be recovered almost quantitatively and reused. Deactivation of the catalyst, observed in repeated runs, is due to the deposition of humins on its surface. Upon calcination the catalyst almost completely recovers its activity and selectivity, proving that the catalyst is robust. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cu3(BTC)2: CO oxidation over MOF based catalysts.
Ye, Jing-yun; Liu, Chang-jun
2011-02-21
Crystalline and amorphized MOFs (Cu(3)(BTC)(2)) have been demonstrated to be excellent catalysts for CO oxidation. The catalytic activity can be further improved by loading PdO(2) nanoparticles onto the amorphized Cu(3)(BTC)(2).
Soot oxidation and NO{sub x} reduction over BaAl{sub 2}O{sub 4} catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, He; Li, Yingjie; Shangguan, Wenfeng
2009-11-15
This study addresses soot oxidation and NO{sub x} reduction over a BaAl{sub 2}O{sub 4} catalyst. By XRD analysis, the catalyst was shown to be of spinel structure. Temperature Programmed Oxidation (TPO) and Constant Temperature Oxidation (CTO) at 673 K show that the presence of O{sub 2} decreases the ignition temperature of soot, and it enhances the conversion of NO{sub x} to N{sub 2} and N{sub 2}O. The kinetic features of soot oxidation in the TPO test are similar to that in the TG-DTA analysis. Analysis by Diffuse Reflectance Fourier Infrared Transform Spectroscopy (DRIFTS) indicates that the nitrates formed from NO{submore » x} adsorption and the C(O) intermediates from soot oxidation are the key precursors of the redox process between soot and NO{sub x} over surfaces of the BaAl{sub 2}O{sub 4} catalyst. Moreover, DRIFTS tests suggest that nitrates act as the principal oxidants for C(O) oxidation, through which nitrates are reduced to N{sub 2} and N{sub 2}O. The O{sub 2} in the gas mixture presents a positive effect on the conversion of NO{sub x} to N{sub 2} and N{sub 2}O by promoting the oxidation of nitrites into nitrates species. (author)« less
NASA Astrophysics Data System (ADS)
Mitsudome, Takato; Urayama, Teppei; Kiyohiro, Taizo; Maeno, Zen; Mizugaki, Tomoo; Jitsukawa, Koichiro; Kaneda, Kiyotomi
2016-11-01
An environmentally friendly (“green”), H2-generation system was developed that involved hydrolytic oxidation of inexpensive organosilanes as hydrogen storage materials with newly developed heterogeneous gold nanoparticle catalysts. The gold catalyst functioned well at ambient temperature under aerobic conditions, providing efficient production of pure H2. The newly developed size-selective gold nanoparticle catalysts could be separated easily from the reaction mixture containing organosilanes, allowing an on/off-switchable H2-production by the introduction and removal of the catalyst. This is the first report of an on/off-switchable H2-production system employing hydrolytic oxidation of inexpensive organosilanes without requiring additional energy.
USDA-ARS?s Scientific Manuscript database
This paper discusses the potential use of (Fe3O4@SiO2-SO3H) nanoparticle catalyst for the dehydration of glucose into 5-hydroxymethylfurfural (HMF). A magnetically recoverable (Fe3O4@SiO2-SO3H) nanoparticle catalyst was successfully prepared by supporting sulfonic acid groups (SO3H) on the surface o...
Enhanced oxidation of naphthalene using plasma activation of TiO2/diatomite catalyst.
Wu, Zuliang; Zhu, Zhoubin; Hao, Xiaodong; Zhou, Weili; Han, Jingyi; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming
2018-04-05
Non-thermal plasma technology has great potential in reducing polycyclic aromatic hydrocarbons (PAHs) emission. But in plasma-alone process, various undesired by-products are produced, which causes secondary pollutions. Here, a dielectric barrier discharge (DBD) reactor has been developed for the oxidation of naphthalene over a TiO 2 /diatomite catalyst at low temperature. In comparison to plasma-alone process, the combination of plasma and TiO 2 /diatomite catalyst significantly enhanced naphthalene conversion (up to 40%) and CO x selectivity (up to 92%), and substantially reduced the formation of aerosol (up to 90%) and secondary volatile organic compounds (up to near 100%). The mechanistic study suggested that the presence of the TiO 2 /diatomite catalyst intensified the electron energy in the DBD. Meantime, the energized electrons generated in the discharge activated TiO 2 , while the presence of ozone enhanced the activity of the TiO 2 /diatomite catalyst. This plasma-catalyst interaction led to the synergetic effect resulting from the combination of plasma and TiO 2 /diatomite catalyst, consequently enhanced the oxidation of naphthalene. Importantly, we have demonstrated the effectiveness of plasma to activate the photocatalyst for the deep oxidation of PAH without external heating, which is potentially valuable in the development of cost-effective gas cleaning process for the removal of PAHs in vehicle applications during cold start conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Catalyst for carbon monoxide oxidation
NASA Technical Reports Server (NTRS)
Upchurch, Billy T. (Inventor); Miller, Irvin M. (Inventor); Brown, David R. (Inventor); Davis, Patricia (Inventor); Schryer, David R. (Inventor); Brown, Kenneth G. (Inventor); Vannorman, John D. (Inventor)
1990-01-01
A catalyst is disclosed for the combination of CO and O2 to form CO2, which includes a platinum group metal (e.g., platinum); a reducable metal oxide having multiple valence states (e.g., SnO2); and a compound which can bind water to its structure (e.g., silica gel). This catalyst is ideally suited for application to high-powered pulsed, CO2 lasers operating in a sealed or closed-cycle condition.
Catalyst for carbon monoxide oxidation
NASA Technical Reports Server (NTRS)
Upchurch, Billy T. (Inventor); Miller, Irvin M. (Inventor); Brown, David R. (Inventor); Davis, Patricia P. (Inventor); Schryer, David R. (Inventor); Brown, Kenneth G. (Inventor); Vannorman, John D. (Inventor)
1991-01-01
A catalyst for the combination of CO and O2 to form CO2 which includes a platinum group metal, e.g., platinum; a reducible metal oxide having mulitple valence states, e.g., SnO2; and a compound which can bind water to its structure, e.g., silica gel. This catalyst is ideally suited for application to high powered, pulsed, CO2 lasers operating in a sealed or closed cycle condition.
Monolith catalysts for closed-cycle carbon dioxide lasers
NASA Technical Reports Server (NTRS)
Herz, Richard K.
1994-01-01
The general subject area of the project involved the development of solid catalysts that have high activity at low temperature for the oxidation of gases such as CO. The original application considered was CO oxidation in closed-cycle CO2 lasers. The scope of the project was subsequently extended to include oxidation of gases in addition to CO and applications such as air purification and exhaust gas emission control. The primary objective of the final phase grant was to develop design criteria for the formulation of new low-temperature oxidation catalysts utilizing Monte Carlo simulations of reaction over NASA-developed catalysts.
Potemkin, Dmitriy I.; Maslov, Dmitry K.; Loponov, Konstantin; Snytnikov, Pavel V.; Shubin, Yuri V.; Plyusnin, Pavel E.; Svintsitskiy, Dmitry A.; Sobyanin, Vladimir A.; Lapkin, Alexei A.
2018-01-01
Bimetallic Pd-Au catalysts were prepared on the porous nanocrystalline silicon (PSi) for the first time. The catalysts were tested in the reaction of direct hydrogen peroxide synthesis and characterized by standard structural and chemical techniques. It was shown that the Pd-Au/PSi catalyst prepared from conventional H2[PdCl4] and H[AuCl4] precursors contains monometallic Pd and a range of different Pd-Au alloy nanoparticles over the oxidized PSi surface. The PdAu2/PSi catalyst prepared from the [Pd(NH3)4][AuCl4]2 double complex salt (DCS) single-source precursor predominantly contains bimetallic Pd-Au alloy nanoparticles. For both catalysts the surface of bimetallic nanoparticles is Pd-enriched and contains palladium in Pd0 and Pd2+ states. Among the catalysts studied, the PdAu2/PSi catalyst was the most active and selective in the direct H2O2 synthesis with H2O2 productivity of 0.5 mol gPd-1 h-1 at selectivity of 50% and H2O2 concentration of 0.023 M in 0.03 M H2SO4-methanol solution after 5 h on stream at −10°C and atmospheric pressure. This performance is due to high activity in the H2O2 synthesis reaction and low activities in the undesirable H2O2 decomposition and hydrogenation reactions. Good performance of the PdAu2/PSi catalyst was associated with the major part of Pd in the catalyst being in the form of the bimetallic Pd-Au nanoparticles. Porous silicon was concluded to be a promising catalytic support for direct hydrogen peroxide synthesis due to its inertness with respect to undesirable side reactions, high thermal stability, and conductivity, possibility of safe operation at high temperatures and pressures and a well-established manufacturing process. PMID:29637068
NASA Astrophysics Data System (ADS)
Potemkin, Dmitriy I.; Maslov, Dmitry K.; Loponov, Konstantin; Snytnikov, Pavel V.; Shubin, Yuri V.; Plyusnin, Pavel E.; Svintsitskiy, Dmitry A.; Sobyanin, Vladimir A.; Lapkin, Alexei A.
2018-03-01
Bimetallic Pd-Au catalysts were prepared on the porous nanocrystalline silicon (PSi) for the first time. The catalysts were tested in the reaction of direct hydrogen peroxide synthesis and characterised by standard structural and chemical techniques. It was shown that the Pd-Au/PSi catalyst prepared from conventional H2[PdCl4] and H[AuCl4] precursors contains monometallic Pd and a range of different Pd-Au alloy nanoparticles over the oxidized PSi surface. The PdAu2/PSi catalyst prepared from the [Pd(NH3)4][AuCl4]2 double complex salt single-source precursor predominantly contains bimetallic Pd-Au alloy nanoparticles. For both catalysts the surface of bimetallic nanoparticles is Pd-enriched and contains palladium in Pd0 and Pd2+ states. Among the catalysts studied, the PdAu2/PSi catalyst was the most active and selective in the direct H2O2 synthesis with H2O2 productivity of 0.5 at selectivity of 50 % and H2O2 concentration of 0.023 M in 0.03 M H2SO4-methanol solution after 5 h on stream at -10 °C and atmospheric pressure. This performance is due to high activity in the H2O2 synthesis reaction and low activities in the undesirable H2O2 decomposition and hydrogenation reactions. Good performance of the PdAu2/PSi catalyst was associated with the major part of Pd in the catalyst being in the form of the bimetallic Pd-Au nanoparticles. Porous silicon was concluded to be a promising catalytic support for direct hydrogen peroxide synthesis due to its inertness with respect to undesirable side reactions, high thermal stability and conductivity, possibility of safe operation at high temperatures and pressures and a well-established manufacturing process.
NASA Astrophysics Data System (ADS)
Carnes, Corrie Leigh
The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.
Activity of Highly Dispersed Co/SBA-15 Catalysts (Low Content) in Carbon Black Oxidation
NASA Astrophysics Data System (ADS)
Hassan, Nissrine El; Casale, Sandra; Aouad, Samer; Hanein, Theodor; Jabbour, Karam; Chidiac, Elvis; Khoury, Bilal el; Zakhem, Henri El; Nakat, Hanna El
Cobalt supported on mesoporous silica SBA-15 (0.75, 1.5 and 3 wt% Co) were used as catalysts for the oxidation of carbon black. Catalysts were characterized by N2 sorption, XRD, TEM and TPR. The catalytic activity in CB oxidation was measured. It has been shown that only small cobalt domains (less than 5 nm) are present on all samples. A homogeneous dispersion was obtained for all catalysts. With increasing cobalt loading, crystalline species start to appear. Using an intermediate contact between the CB and the catalyst, the best activity is that of 0.75Co/SBA-15 catalyst where the oxidation reaches the maximum (Tmax) 68 K before the non-catalyzed reaction. On the same catalyst used in tight contact mode with CB, even if Tmax didn't decrease for more than additional 12 K but the Ti decreases by 38K and thus starts 83 K before.
Supramolecular water oxidation with Ru-bda-based catalysts.
Richmond, Craig J; Matheu, Roc; Poater, Albert; Falivene, Laura; Benet-Buchholz, Jordi; Sala, Xavier; Cavallo, Luigi; Llobet, Antoni
2014-12-22
Extremely slow and extremely fast new water oxidation catalysts based on the Ru-bda (bda=2,2'-bipyridine-6,6'-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycles s(-1) , respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system π-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Catalytic wet air oxidation of aniline with nanocasted Mn-Ce-oxide catalyst.
Levi, R; Milman, M; Landau, M V; Brenner, A; Herskowitz, M
2008-07-15
The catalytic wet air oxidation of aqueous solution containing 1000 ppm aniline was conducted in a trickle-bed reactor packed with a novel nanocasted Mn-Ce-oxide catalyst (surface area of 300 m2/g) prepared using SBA-15 silica as a hard template. A range of liquid hourly space velocities (5-20 h(-1)) and temperatures (110-140 degrees C) at 10 bar of oxygen were tested. The experiments were conducted to provide the intrinsic performance of the catalysts. Complete aniline conversion, 90% TOC conversion, and 80% nitrogen mineralization were achieved at 140 degrees C and 5 h(-1). Blank experiments yielded relatively low homogeneous aniline (<35%) and negligible TOC conversions. Fast deactivation of the catalysts was experienced due to leaching caused by complexation with aniline. Acidification of the solution with HCI (molar HCI to aniline ratio of 1.2) was necessary to avoid colloidization and leaching of the nanoparticulate catalyst components. The catalyst displayed stable performance for over 200 h on stream.
NASA Technical Reports Server (NTRS)
Klettlinger, Jennifer Lindsey Suder
2012-01-01
The objective of this study was to evaluate the effect of titanium oxide, lanthanum oxide, and zirconium oxide on alumina supported cobalt catalysts. The hypothesis was that the presence of lanthanum oxide, titanium oxide, and zirconium oxide would reduce the interaction between cobalt and the alumina support. This was of interest because an optimized weakened interaction could lead to the most advantageous cobalt dispersion, particle size, and reducibility. The presence of these oxides on the support were investigated using a wide range of characterization techniques such as SEM, nitrogen adsorption, x-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed reduction after reduction (TPR-AR), and hydrogen chemisorptions/pulse reoxidation. Results indicated that both La2O3 and TiO2 doped supports facilitated the reduction of cobalt oxide species in reference to pure alumina supported cobalt catalysts, however further investigation is needed to determine the effect of ZrO2 on the reduction profile. Results showed an increased corrected cluster size for all three doped supported catalysts in comparison to their reference catalysts. The increase in reduction and an increase in the cluster size led to the conclusion that the support-metal interaction weakened by the addition of TiO2 and La2O3. It is also likely that the interaction decreased upon presence of ZrO2 on the alumina, but further research is necessary. Preliminary results have indicated that the alumina-supported catalysts with titanium oxide and lanthanum oxide present are of interest because of the weakened cobalt support interaction. These catalysts showed an increased extent of reduction, therefore more metallic cobalt is present on the support. However, whether or not there is more cobalt available to participate in the Fischer-Tropsch synthesis reaction (cobalt surface atoms) depends also on the cluster size. On one hand, increasing cluster size alone tends to decrease the active site density; on the other hand, by increasing the size of the cobalt clusters, there is less likelihood of forming oxidized cobalt complexes (cobalt aluminate) during Fischer-Tropsch synthesis. Thus, from the standpoint of stability, improving the extent of reduction while increasing the particle size slightly may be beneficial for maintaining the sites, even if there is a slight decrease in overall initial active site density.
NASA Astrophysics Data System (ADS)
Merati, Zohreh; Basiri Parsa, Jalal
2018-03-01
Catalyst supports play important role in governing overall catalyst activity and durability. In this study metal oxides (SnO2, Sb and Nb doped SnO2) were electrochemically deposited on titanium substrate (Ti) as a new support material for Pt catalyst in order to electro-oxidation of methanol. Afterward platinum nanoparticles were deposited on metal oxide film via electro reduction of platinum salt in an acidic solution. The surface morphology of modified electrodes were evaluated by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX) techniques. The electro-catalytic activities of prepared electrodes for methanol oxidation reaction (MOR) and oxidation of carbon monoxide (CO) absorbed on Pt was considered with cyclic voltammetry. The results showed high catalytic activity for Pt/Nb-SnO2/Ti electrode. The electrochemical surface area (ECSA) of a platinum electro-catalyst was determined by hydrogen adsorption. Pt/Nb-SnO2/Ti electrode has highest ECSA compared to other electrode resulting in high activity toward methanol electro-oxidation and CO stripping experiments. The doping of SnO2 with Sb and Nb improved ECSA and MOR activity, which act as electronic donors to increase electronic conductivity.
Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki
2011-02-01
We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.
Francàs, Laia; Richmond, Craig; Garrido-Barros, Pablo; Planas, Nora; Roeser, Stephan; Benet-Buchholz, Jordi; Escriche, Lluís; Sala, Xavier; Llobet, Antoni
2016-04-04
Three distinct functionalisation strategies have been applied to the in,in-[{Ru(II)(trpy)}2(μ-bpp)(H2O)2](3+) (trpy=2,2':6',2''-terpyridine, bpp=bis(pyridine)pyrazolate) water-oxidation catalyst framework to form new derivatives that can adsorb onto titania substrates. Modifications included the addition of sulfonate, carboxylate, and phosphonate anchoring groups to the terpyridine and bis(pyridyl)pyrazolate ligands. The complexes were characterised in solution by using 1D NMR, 2D NMR, and UV/Vis spectroscopic analysis and electrochemical techniques. The complexes were then anchored on TiO2-coated fluorinated tin oxide (FTO) films, and the reactivity of these new materials as water-oxidation catalysts was tested electrochemically through controlled-potential electrolysis (CPE) with oxygen evolution detected by headspace analysis with a Clark electrode. The results obtained highlight the importance of the catalyst orientation with respect to the titania surface in regard to its capacity to catalytically oxidize water to dioxygen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction
Jung, Suho; McCrory, Charles C. L.; Ferrer, Ivonne M.; ...
2016-11-27
Nanoparticulate metal-oxide catalysts are among the most prevalent systems for alkaline water oxidation. However, comparisons of the electrochemical performance of these materials have been challenging due to the different methods of attachment, catalyst loadings, and electrochemical test conditions reported in the literature. Here in this paper, we have leveraged a conventional drop-casting method that allows for the successful adhesion of a wide range of nanoparticulate catalysts to glassy-carbon electrode surfaces. We have applied this adhesion method to prepare catalyst films from 16 crystalline metal-oxide nanoparticles with a constant loading of 0.8 mg cm -2, and evaluated the resulting nanoparticulate filmsmore » for the oxygen evolution reaction under conditions relevant to an integrated solar fuels device. In general, the activities of the adhered nanoparticulate films are similar to those of thin-film catalysts prepared by electrodeposition or sputtering, achieving 10 mA cm -2 current densities per geometric area at overpotentials of ~0.35–0.5 V.« less
Kinetic and mechanistic study of bimetallic Pt-Pd/Al 2O 3 catalysts for CO and C 3H 6 oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazlett, Melanie J.; Moses-Debusk, Melanie; Parks, III, James E.
2016-09-21
Low temperature combustion (LTC) diesel engines are being developed to meet increased fuel economy demands. However, some LTC engines emit higher levels of CO and hydrocarbons and therefore diesel oxidation catalyst (DOC) efficiency will be critical. Here, CO and propylene oxidation were studied, as representative LTC exhaust components, over model bimetallic Pt-Pd/γ-Al 2O 3 catalysts. During CO oxidation tests, monometallic Pt suffered the most extensive inhibition which was correlated to a greater extent of dicarbonyl species formation. Pd and Pd-rich bimetallics were inhibited by carbonate formation at higher temperatures. The 1:1 and 3:1 Pt:Pd bimetallic catalysts did not form themore » dicarbonyl species to the same extent as the monometallic Pt sample, and therefore did not suffer from the same level of inhibition. Similarly they also did not form carbonates to as large an extent as the Pd-rich samples and were therefore not as inhibited from this intermediate surface species at higher temperature. The Pd-rich samples were relatively poor propylene oxidation catalysts; and partial oxidation product accumulation deactivated these catalysts. Byproducts observed include acetone, ethylene, acetaldehyde, acetic acid, formaldehyde and CO. For CO and propylene co-oxidation, the onset of propylene oxidation was not observed until complete CO oxidation was achieved, and the bimetallics showed higher activity. In conclusion, this was again related to less extensive poisoning, less dicarbonyl species formation and less overall partial oxidation product accumulation.« less
NASA Astrophysics Data System (ADS)
Panizza, Marco
Electrochemical oxidation is a promising method for the treatment of wastewaters containing organic compounds. As a general rule, the electrochemical incineration of organics at a given electrode can take place at satisfactory rates and without electrode deactivation only at high anodic potentials in the region of the water discharge due to the participation of the intermediates of oxygen evolution. The nature of the electrode material strongly influences both the selectivity and the efficiency of the process. In particular, anodes with low oxygen evolution overpotential (i.e., good catalysts for oxygen evolution reactions), such as graphite, IrO2, RuO2, and Pt only permit the partial oxidation of organics, while anodes with high oxygen evolution overpotential (i.e., anodes that are poor catalysts for oxygen evolution reactions), such as SnO2, PbO2, and boron-doped diamond (BDD) favor the complete oxidation of organics to CO2 and so are ideal electrodes for wastewater treatment.However, the application of SnO2 and PbO2 anodes may be limited by their short service life and the risk of lead contamination, while BDD electrodes exhibit good chemical and electrochemical stability, a long life, and a wide potential window for water discharge, and are thus promising anodes for industrial-scale wastewater treatment.
Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
Stacchiola, Darío J
2015-07-21
Studying catalytic processes at the molecular level is extremely challenging, due to the structural and chemical complexity of the materials used as catalysts and the presence of reactants and products in the reactor's environment. The most common materials used on catalysts are transition metals and their oxides. The importance of multifunctional active sites at metal/oxide interfaces has been long recognized, but a molecular picture of them based on experimental observations is only recently emerging. The initial approach to interrogate the surface chemistry of catalysts at the molecular level consisted of studying metal single crystals as models for reactive metal centers, moving later to single crystal or well-defined thin film oxides. The natural next iteration consisted in the deposition of metal nanoparticles on well-defined oxide substrates. Metal nanoparticles contain undercoordinated sites, which are more reactive. It is also possible to create architectures where oxide nanoparticles are deposited on top of metal single crystals, denominated inverse catalysts, leading in this case to a high concentration of reactive cationic sites in direct contact with the underlying fully coordinated metal atoms. Using a second oxide as a support (host), a multifunctional configuration can be built in which both metal and oxide nanoparticles are located in close proximity. Our recent studies on copper-based catalysts are presented here as an example of the application of these complementary model systems, starting from the creation of undercoordinated sites on Cu(111) and Cu2O(111) surfaces, continuing with the formation of mixed-metal copper oxides, the synthesis of ceria nanoparticles on Cu(111) and the codeposition of Cu and ceria nanoparticles on TiO2(110). Catalysts have traditionally been characterized before or after reactions and analyzed based on static representations of surface structures. It is shown here how dynamic changes on a catalyst's chemical state and morphology can be followed during a reaction by a combination of in situ microscopy and spectroscopy. In addition to determining the active phase of a catalyst by in situ methods, the presence of weakly adsorbed surface species or intermediates generated only in the presence of reactants can be detected, allowing in turn the comparison of experimental results with first principle modeling of specific reaction mechanisms. Three reactions are used to exemplify the approach: CO oxidation (CO + 1/2O2 → CO2), water gas shift reaction (WGSR) (CO + H2O → CO2 + H2), and methanol synthesis (CO2 + 3H2 → CH3OH + H2O). During CO oxidation, the full conversion of Cu(0) to Cu(2+) deactivates an initially outstanding catalyst. This can be remedied by the formation of a TiCuOx mixed-oxide that protects the presence of active partially oxidized Cu(+) cations. It is also shown that for the WGSR a switch occurs in the reaction mechanism, going from a redox process on Cu(111) to a more efficient associative pathway at the interface of ceria nanoparticles deposited on Cu(111). Similarly, the activation of CO2 at the ceria/Cu(111) interface allows its facile hydrogenation to methanol. Our combined studies emphasize the need of searching for optimal metal/oxide interfaces, where multifunctional sites can lead to new efficient catalytic reaction pathways.
Effect of Growth Parameters on SnO2 Nanowires Growth by Electron Beam Evaporation Method
NASA Astrophysics Data System (ADS)
Rakesh Kumar, R.; Manjula, Y.; Narasimha Rao, K.
2018-02-01
Tin oxide (SnO2) nanowires were synthesized via catalyst assisted VLS growth mechanism by the electron beam evaporation method at a growth temperature of 450 °C. The effects of growth parameters such as evaporation rate of Tin, catalyst film thickness, and different types of substrates on the growth of SnO2 nanowires were studied. Nanowires (NWs) growth was completely seized at higher tin evaporation rates due to the inability of the catalyst particle to initiate the NWs growth. Nanowires diameters were able to tune with catalyst film thickness. Nanowires growth was completely absent at higher catalyst film thickness due to agglomeration of the catalyst film. Optimum growth parameters for SnO2 NWs were presented. Nanocomposites such as Zinc oxide - SnO2, Graphene oxide sheets- SnO2 and Graphene nanosheets-SnO2 were able to synthesize at a lower substrate temperature of 450 °C. These nanocompsoites will be useful in enhancing the capacity of Li-ion batteries, the gas sensing response and also useful in increasing the photo catalytic activity.
MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.
Zhou, Chunmei; Wang, Hongjuan; Peng, Feng; Liang, Jiahua; Yu, Hao; Yang, Jian
2009-07-07
Pt/MnO2/carbon nanotube (CNT) and PtRu/MnO2/CNT nanocomposites were synthesized by successively loading hydrous MnO2 and Pt (or PtRu alloy) nanoparticles on CNTs and were used as anodic catalysts for direct methanol fuel cells (DMFCs). The existence of MnO2 on the surface of CNTs effectively increases the proton conductivity of the catalyst, which then could remarkably improve the performance of the catalyst in methanol electro-oxidation. As a result, Pt/MnO2/CNTs show higher electrochemical active surface area and better methanol electro-oxidation activity, compared with Pt/CNTs. As PtRu alloy nanoparticles were deposited on the surface of MnO2/CNTs instead of Pt, the PtRu/MnO2/CNT catalyst shows not only excellent electro-oxidation activity to methanol with forward anodic peak current density of 901 A/gPt but also good CO oxidation ability with lower preadsorbed CO oxidation onset potential (0.33 V vs Ag/AgCl) and peak potential (0.49 V vs Ag/AgCl) at room temperature.
Modeling of carbon monoxide oxidation kinetics over NASA carbon dioxide laser catalysts
NASA Technical Reports Server (NTRS)
Herz, Richard K.
1989-01-01
The recombination of CO and O2 formed by the dissociation of CO2 in a sealed CO2 laser discharge zone is examined. Conventional base-metal-oxide catalysts and conventional noble-metal catalysts are not effective in recombining the low O2/CO ratio at the low temperatures used by the lasers. The use of Pt/SnO2 as the noble-metal reducible-oxide (NMRO), or other related materials from Group VIIIA and IB and SnO2 interact synergistically to produce a catalytic activity that is substantially higher than either componet separately. The Pt/SnO2 and Pd/SnO2 were reported to have significant reaction rates at temperatures as low as -27 C, conditions under which conventional catalysts are inactive. The gas temperature range of lasers is 0 + or - 40 C. There are three general ways in which the NMRO composite materials can interact synergistically: one component altering the properties of another component; the two components each providing independent catalytic functions in a complex reaction mechanism; and the formation of catalytic sites through the combination of two components at the atomic level. All three of these interactions may be important in low temperature CO oxidation over NMRO catalysts. The effect of the noble metal on the oxide is discussed first, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.
NASA Astrophysics Data System (ADS)
Esumike, Sunday Azubike
The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps. The alumina supported catalysts were dominated by gamma-alumina PXRD peaks in alumina catalysts while amorphous alumino-silicate phase was the bulk of hybrid alumina-silica catalysts. The presence of cobalt oxides (CoO, Co3O4) and iron oxides (FeO, Fe2O3) phases are confirmed in the catalysts prepared by method-1 and method-2. The PXRD analysis indicated weak peak intensities in catalysts with 5 wt. % total metal loading. PXRD pattern confirmed alloy formation in the bimetallic catalysts (CoFe2O4) on alumina support phase gamma-A12 O3. The surface area and pore diameter of hybrid alumina-silica granules (301 - 372 m2/g and 7.3 nm) showed better values than the alumina granules (251 - 256 m2/g and 6.5 nm). The support pore diameter of both types of granules is within the mesoporous range (1 - 50 nm). The morphology of all the catalysts is preserved upon metal loading and heat treatments. The surface characteristics of the sol-gel-oil-drop method prepared catalysts indicate there was no significant pore blockage of the support below 10 wt % total metal loading. The CO conversion of the FT catalysts was measured to screen catalytic active metals and determine the optimum temperatures of the FT reaction for the alumina catalysts. The alumina FT catalysts showed an optimum reaction temperature of 250 °C. Hydrocarbon production and CO conversion of alumina and hybrid alumina-silica FT catalysts were investigated. Among monometallic alumina catalysts, Co(5%) showed a higher CO conversion. The incorporation of Fe to Co increased CO conversion and hydrocarbon production. Increased Fe content in the bimetallic catalysts prepared by combined method-1&2, decreased CO conversion and hydrocarbon production, and increased CO 2 production. The bimetallic nano-Co(2.5%)nano-Fe(2.5%) prepared by method-2 alone showed higher CO conversion comparable to the Co(4%)nano-Fe(l %). Hybrid alumina-silica FT catalysts showed a higher CO conversion than the alumina FT catalysts due to better surface characteristics. The monometallic catalysts showed higher selectivity to C1-C4 hydrocarbon than bimetallic. The bimetallic alumina FT catalysts prepared by method-2 showed slightly higher C5+ selectivity compared to the higher Co catalysts prepared by combined method- I &2. The Ru promotion showed a significant effect on the CO conversion and 11 product distribution of the monometallic catalysts. There was no significant effect on the CO conversion on the (Co-Fe) bimetallic catalysts, but hydrocarbon production slightly increased when promoted by 0.5 wt.% Ru.
Calcium and lanthanum solid base catalysts for transesterification
Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.
2015-07-28
In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.
Catalytic performance of V2O5-MoO3/γ-Al2O3 catalysts for partial oxidation of n-hexane1
NASA Astrophysics Data System (ADS)
Mahmoudian, R.; Khodadadi, Z.; Mahdavi, Vahid; Salehi, Mohammed
2016-01-01
In the current study, a series of V2O5-MoO3 catalyst supported on γ-Al2O3 with various V2O5 and MoO3 loadings was prepared by wet impregnation technique. The characterization of prepared catalysts includes BET surface area, powder X-ray diffraction (XRD), and oxygen chemisorptions. The partial oxidation of n-hexane by air over V2O5-MoO3/γ-Al2O3 catalysts was carried out under flow condition in a fixed bed glass reactor. The effect of V2O5 loading, temperature, MoO3 loading, and n-hexane LHSV on the n-hexane conversion and the product selectivity were investigated. The partial oxygenated products of n-hexane oxidation were ethanol, acetic anhydride, acetic acid, and acetaldehyde. The 10% V2O5-1%MoO3/γ-Al2O3 was found in most active and selective catalyst during partial oxidation of n-hexane. The results indicated that by increasing the temperature, the n-hexane conversion increases as well, although the selectivity of the products passes through a maximum by increasing the temperature.
Modifying ceria (111) with a TiO2 nanocluster for enhanced reactivity.
Nolan, Michael
2013-11-14
Modification of ceria catalysts is of great interest for oxidation reactions such as oxidative dehydrogenation of alcohols. Improving the reactivity of ceria based catalysts for these reactions means that they can be run at lower temperatures and density functional theory (DFT) simulations of new structures and compositions are proving valuable in the development of these catalysts. In this paper, we have used DFT+U (DFT corrected for on-site Coulomb interactions) to examine the reactivity of a novel modification of ceria, namely, modifying with TiO2, using the example of a Ti2O4 species adsorbed on the ceria (111) surface. The oxygen vacancy formation energy in the Ti2O4-CeO2 system is significantly reduced over the bare ceria surfaces, which together with previous work on ceria-titania indicates that the presence of the interface favours oxygen vacancy formation. The energy gain upon hydrogenation of the catalyst, which is the rate determining step in oxidative dehydrogenation, further points to the improved oxidation power of this catalyst structure.
NASA Astrophysics Data System (ADS)
Blasco-Ahicart, Marta; Soriano-López, Joaquín; Carbó, Jorge J.; Poblet, Josep M.; Galan-Mascaros, J. R.
2018-01-01
Water splitting is a promising approach to the efficient and cost-effective production of renewable fuels, but water oxidation remains a bottleneck in its technological development because it largely relies on noble-metal catalysts. Although inexpensive transition-metal oxides are competitive water oxidation catalysts in alkaline media, they cannot compete with noble metals in acidic media, in which hydrogen production is easier and faster. Here, we report a water oxidation catalyst based on earth-abundant metals that performs well in acidic conditions. Specifically, we report the enhanced catalytic activity of insoluble salts of polyoxometalates with caesium or barium counter-cations for oxygen evolution. In particular, the barium salt of a cobalt-phosphotungstate polyanion outperforms the state-of-the-art IrO2 catalyst even at pH < 1, with an overpotential of 189 mV at 1 mA cm-2. In addition, we find that a carbon-paste conducting support with a hydrocarbon binder can improve the stability of metal-oxide catalysts in acidic media by providing a hydrophobic environment.
NASA Technical Reports Server (NTRS)
Selbach, H. J.
1984-01-01
The controlled oxidation in air of Raney nickel electrocatalysts was studied, with special attention paid to the quantitative analysis of nickel hydroxide. The content of the latter was determined through X-ray studies, thermogravimetric measurements, and spectral photometric examinations. The dependence of the content on the drying of activated catalyst is determined. The influence of nickel hydroxide on the electrochemical parameters of the catalyst, such as diffusion polarization, is studied, including a measurement of the exchange current density using the potential drop method. Conservation by oxidation in air with ancillary stabilization of the oxide in an H2 flow at 300 C is explored, including reduction by H2, the influence of tempering time, and structural studies on conserved and stabilized catalyst, long term research on the catalyst, including the influence of aging on the reduced catalyst, and the results of impedance measurements are presented.
Electrochemical catalyst recovery method
Silva, L.J.; Bray, L.A.
1995-05-30
A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.
Electrochemical catalyst recovery method
Silva, Laura J.; Bray, Lane A.
1995-01-01
A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.
Kramarz, Kurt W.; Bloom, Ira D.; Kumar, Romesh; Ahmed, Shabbir; Wilkenhoener, Rolf; Krumpelt, Michael
2001-01-01
A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.
Yuan, Ruixia; Hu, Lin; Yu, Peng; Wang, Huaiyuan; Wang, Zhaohui; Fang, Jingyun
2018-05-01
Cobalt-based heterogeneous catalyst has been recognized as one of most efficient activators for peroxymonosulfate (PMS) decomposition, but usually suffers from the poor stability and difficulty to recover and reuse. Here easily recyclable cobalt oxide (Co 3 O 4 ) nanowires and nanoflowers grown on nickel foam (NF) are fabricated by a hydrothermal and calcination method. The prepared 3D Co 3 O 4 /NF catalyst is characterized and applied as a heterogeneous catalyst for PMS activation to generate sulfate radicals for decomposition of Acid Orange 7 (AO7). The results show that the AO7 degradation rate increases with cobalt loading and PMS dosage, but decreases with the increase of solution pH. The Co 3 O 4 /NF catalyst using 2 mM Co(NO 3 ) 2 ·6H 2 O as cobalt source exhibits highest activity, and almost complete decolorization could be achieved within 30 min. The diverse effects of coexisting anions (SO 4 2- , HCO 3 - , NO 3 - and Cl - ) on AO7 degradation are observed and explained. After 10 consecutive runs, excellent catalytic reactivity of the catalyst remains while the level of leached cobalt during the catalyst usage is much lower than the maximum allowable concentration in drinking and natural water. More importantly, the macroscopic Co 3 O 4 /NF catalyst shows advantage of easy recycling after application compared to traditional catalysts. It is believed that the as-prepared Co 3 O 4 /NF is promising to be an effective and green heterogeneous catalyst for PMS activation to degrade organic pollutants for environmental application. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kim, Mi -Young; Kyriakidou, Eleni A.; Choi, Jae -Soon; ...
2016-01-18
In this study, we investigated the impact of ZrO 2 on the performance of palladium-based oxidation catalysts with respect to low-temperature activity, hydrothermal stability, and sulfur tolerance. Pd supported on ZrO 2 and SiO 2 were synthesized for a comparative study. Additionally, in an attempt to maximize the ZrO 2 surface area and improve sulfur tolerance, a Pd support with ZrO 2-dispersed onto SiO 2 was studied. The physicochemical properties of the catalysts were examined using ICP, N 2 sorption, XRD, SEM, TEM, and NH 3-, CO 2-, and NO x-TPD. The activity of the Pd catalysts were measured frommore » 60 to 600 °C in a flow of 4000 ppm CO, 500 ppm NO, 1000 ppm C 3H 6, 4% O 2, 5% H 2O, and Ar balance. The Pd catalysts were evaluated in fresh, sulfated, and hydrothermally aged states. Overall, the ZrO 2-containing catalysts showed considerably higher CO and C 3H 6 oxidation activity than Pd/SiO 2 under the reaction conditions studied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strempel, Verena E.; Naumann d'Alnoncourt, Raoul, E-mail: r.naumann@bascat.tu-berlin.de; Löffler, Daniel
2016-01-15
Atomic layer deposition is mainly used to deposit thin films on flat substrates. Here, the authors deposit a submonolayer of phosphorus on V{sub 2}O{sub 5} in the form of catalyst powder. The goal is to prepare a model catalyst related to the vanadyl pyrophosphate catalyst (VO){sub 2}P{sub 2}O{sub 7} industrially used for the oxidation of n-butane to maleic anhydride. The oxidation state of vanadium in vanadyl pyrophosphate is 4+. In literature, it was shown that the surface of vanadyl pyrophosphate contains V{sup 5+} and is enriched in phosphorus under reaction conditions. On account of this, V{sub 2}O{sub 5} with themore » oxidation state of 5+ for vanadium partially covered with phosphorus can be regarded as a suitable model catalyst. The catalytic performance of the model catalyst prepared via atomic layer deposition was measured and compared to the performance of catalysts prepared via incipient wetness impregnation and the original V{sub 2}O{sub 5} substrate. It could be clearly shown that the dedicated deposition of phosphorus by atomic layer deposition enhances the catalytic performance of V{sub 2}O{sub 5} by suppression of total oxidation reactions, thereby increasing the selectivity to maleic anhydride.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumta, Prashant
2014-10-03
Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it wasmore » demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would potentially be preferred as OER electro-catalysts for PEM electrolysis. The excellent performance of the catalysts coupled with its robustness would make them great candidates for contributing to significant reduction in the overall capital costs of PEM based water electrolyzers. This s.thesis provides a detailed fundamental study of the synthesis, materials, characterization, theoretical studies and detailed electrochemical response and potential mechanisms of these novel electro-catalysts for OER processes.« less
Massachusetts Lowell low speed wind tunnel (LSWT) test section
NASA Astrophysics Data System (ADS)
Anderson, Erik William
The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps. The alumina supported catalysts were dominated by gamma-alumina PXRD peaks in alumina catalysts while amorphous alumino-silicate phase was the bulk of hybrid alumina-silica catalysts. The presence of cobalt oxides (CoO, Co3O4) and iron oxides (FeO, Fe2O3) phases are confirmed in the catalysts prepared by method-1 and method-2. The PXRD analysis indicated weak peak intensities in catalysts with 5 wt. % total metal loading. PXRD pattern confirmed alloy formation in the bimetallic catalysts (CoFe2O4) on alumina support phase gamma-A12 O3. The surface area and pore diameter of hybrid alumina-silica granules (301 - 372 m2/g and 7.3 nm) showed better values than the alumina granules (251 - 256 m2/g and 6.5 nm). The support pore diameter of both types of granules is within the mesoporous range (1 - 50 nm). The morphology of all the catalysts is preserved upon metal loading and heat treatments. The surface characteristics of the sol-gel-oil-drop method prepared catalysts indicate there was no significant pore blockage of the support below 10 wt % total metal loading. The CO conversion of the FT catalysts was measured to screen catalytic active metals and determine the optimum temperatures of the FT reaction for the alumina catalysts. The alumina FT catalysts showed an optimum reaction temperature of 250 °C. Hydrocarbon production and CO conversion of alumina and hybrid alumina-silica FT catalysts were investigated. Among monometallic alumina catalysts, Co(5%) showed a higher CO conversion. The incorporation of Fe to Co increased CO conversion and hydrocarbon production. Increased Fe content in the bimetallic catalysts prepared by combined method-1&2, decreased CO conversion and hydrocarbon production, and increased CO 2 production. The bimetallic nano-Co(2.5%)nano-Fe(2.5%) prepared by method-2 alone showed higher CO conversion comparable to the Co(4%)nano-Fe(l %). Hybrid alumina-silica FT catalysts showed a higher CO conversion than the alumina FT catalysts due to better surface characteristics. The monometallic catalysts showed higher selectivity to C1-C4 hydrocarbon than bimetallic. The bimetallic alumina FT catalysts prepared by method-2 showed slightly higher C5+ selectivity compared to the higher Co catalysts prepared by combined method- I &2. The Ru promotion showed a significant effect on the CO conversion and 11 product distribution of the monometallic catalysts. There was no significant effect on the CO conversion on the (Co-Fe) bimetallic catalysts, but hydrocarbon production slightly increased when promoted by 0.5 wt.% Ru.
Yang, Yi; Zhang, Huiping; Yan, Ying
2018-03-01
Fe 2 O 3 -ZSM-5 catalysts (0.6 wt% Fe load) prepared by metal-organic chemical vapour deposition (MOCVD) method were evaluated in the catalytic wet peroxide oxidation (CWPO) of m -cresol in a batch reactor. The catalysts have a good iron dispersion and small iron crystalline size, and exhibit high stability during reaction. In addition, the kinetics of the reaction were studied and the initial oxidation rate equation was given. Catalysts were first characterized by N 2 adsorption-desorption isotherms, scanning electronic microscopy, energy-dispersive spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Results show that extra-framework Fe 3+ species (presenting in the form of Fe 2 O 3 ) are successfully loaded on ZSM-5 supports by MOCVD method. Performances of catalysts were tested and effects of different temperature, stirring rate, catalyst amount on hydrogen peroxide, m -cresol, total organic carbon (TOC) conversion and Fe leaching concentration were studied. Results reveal that catalytic activity increased with higher temperature, faster stirring rate and larger catalyst amount. In all circumstances, m -cresol conversion could reach 99% in 0.5-2.5 h, and the highest TOC removal (80.5%) is obtained after 3 h under conditions of 60°C, 400 r.p.m. and catalyst amount of 2.5 g l -1 . The iron-leaching concentrations are less than 1.1 mg l -1 under all conditions. The initial oxidation rate equation [Formula: see text] is obtained for m -cresol degradation with Fe 2 O 3 -ZSM-5 catalysts.
Catalytic destruction of PCDD/Fs over vanadium oxide-based catalysts.
Yu, Ming-Feng; Lin, Xiao-Qing; Li, Xiao-Dong; Yan, Mi; Prabowo, Bayu; Li, Wen-Wei; Chen, Tong; Yan, Jian-Hua
2016-08-01
Vanadium oxide-based catalysts were developed for the destruction of vapour phase PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans). A vapour phase PCDD/Fs generating system was designed to supply stable PCDD/Fs steam with initial concentration of 3.2 ng I-TEQ Nm(-3). Two kinds of titania (nano-TiO2 and conventional TiO2) and alumina were used as catalyst supports. For vanadium-based catalysts supported on nano-TiO2, catalyst activity is enhanced with operating temperature increasing from 160 to 300 °C and then reduces with temperature rising further to 350 °C. It is mainly due to the fact that high volatility of organic compounds at 350 °C suppresses adsorption of PCDD/Fs on catalysts surface and then further inhibits the reaction between catalyst and PCDD/Fs. The optimum loading of vanadium on nano-TiO2 support is 5 wt.% where vanadium oxide presents highly dispersed amorphous state according to the Raman spectra and XRD patterns. Excessive vanadium will block the pore space and form microcrystalline V2O5 on the support surface. At the vanadium loading of 5 wt.%, nano-TiO2-supported catalyst performs best on PCDD/Fs destruction compared to Al2O3 and conventional TiO2. Chemical states of vanadium in the fresh, used and reoxidized VOx(5 %)/TiO2 catalysts at different operating temperature are also analysed by XPS.
Visible light-induced degradation of acetone over SO42-/MoOx/MgF2 catalysts.
He, Yiming; Sheng, Tianlu; Wu, Ying; Chen, Jianshan; Fu, Ruibiao; Hu, Shengming; Wu, Xintao
2009-08-30
A visible light active photodegration catalyst was prepared by doping MoO(3) into MgF(2) matrix. The addition of SO(4)(2-) into MoO(x)/MgF(2) could improve the catalytic activity greatly and an acetone conversion of 96.1% under visible light was obtained on the SO(4)(2-)/5%MoO(x)/MgF(2) (SMM) catalyst. By BET, XRD, Raman, FT-IR, XPS, UV-vis technology the specific area, structure and photoadsorption ability of the catalysts were characterized. The high photocatlaytic activity of the SMM catalyst is attributed to its large specific area, the high dispersal of MoO(3) domains in MgF(2) and the inhibiting effect of MgF(2) matrix on the electron-hole pair recombination.
Equilenin acetate and dihydroequilenin acetate were oxidized with iodosobenzene and a rhodium(III) porphyrin catalyst. The selectivity of the reactions differs from that with the corresponding Mn(III) catalyst, or from that of free radical chain oxidation.
LIQUID PHASE SELECTIVE OXIDATION OF ETHYLBENZENE OVER ACTIVATED AL2O3 SUPPORTED V2O5 CATALYST
Acetophenone, a very useful industrial chemical for fragrance and flavoring agent and a solvent for plastics and resins, is usually produced as a byproduct of phenol production from cumeme. Aluminia supported vandium oxide catalyst is now explored for the selective oxidation of e...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Do Heui; Kwak, Ja Hun; Szanyi, Janos
2008-02-28
The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied (Al2O3, BaO/Al2O3, Pt/Al2O3 and Pt-BaO/Al2O3) were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas phase oxygen. In the platinum-containing samples, the presence of Pt-O species plays an important role in the formation of sulfate species. Even if bariummore » and aluminum sites are available for SO2 to form sulfate, for the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, S XANES spectroscopy results show that barium sulfates are preferentially produced over aluminum sulfates . When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the redox nature of the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g. SO2+H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g. SO2+O2) continue to show the presence of Pt-O bonds. In addition, the former condition was found to give rise to a higher degree of Pt sintering than the latter one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g. sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, B.K.; Campbell, K.D.
Methane oxidative coupling studies were carried out in an atmospheric quartz reactor at temperatures between 700 and 800/degree/C. New catalysts prepared and studied included doped alkaline earth catalysts, lanthanide oxides, and proprietary catalysts. Neodymium oxide, Nd/sub 2/O/sub 3/, was found to be as active and selective as samarium oxide, Sm/sub 2/O/sub 3/, in contrast to literature reports. Proprietary Union Carbide catalysts (UCC-S:1) showed initial methane conversions and C/sub 2/ selectivities comparable to literature catalysts. Atypically low carbon dioxide to carbon monoxide ratios (typically ten times lower than those seen in the literature or other catalysts tested) and high ethylene tomore » ethane ratios (3 to 6 compared to typical literature ratios below 1) were obtained. These results are interesting because ethylene is more valuable than ethane and carbon monoxide is more valuable than carbon dioxide. With these UCC-S:1 catalysts, rapid deactivation was coupled with an observed shift in product ratios toward those more typical in the literature. Initial cases for process conceptualization studies were selected. The Comparison Case will consist of the conversion sequence from methane to synthesis gas to methanol to olefins to liquid hydrocarbon fuels. Case 1 will consist of the conversion of methane to ethylene and ethane. Case 2 will be the direct conversion of methane to C/sub 2/'s followed by conversion to liquid hydrocarbon fuels. 7 figs., 18 tabs.« less
NASA Astrophysics Data System (ADS)
Kermani, Majid; Mohammadi, Farzad; Kakavandi, Babak; Esrafili, Ali; Rostamifasih, Zeinab
2018-06-01
Herein, a sulfate radical (SO4rad -)-based oxidation process was utilized for simultaneous degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) herbicides using mesoporous hematite-based natural semi-conductor minerals (HM-NSMs) as efficient activators of persulfate (PS). The features of the catalyst were characterized using field emission scanning electron microscopy (FESEM); Brunauer, Emmett and Teller (BET) analysis; X-ray diffraction (XRD); and energy-dispersive X-ray spectroscopy (EDS). The effect of some operational parameters, including solution pH, catalyst loading, PS dosage and temperature, on the performance system of PS/HM-NSMs was examined. A plausible oxidation mechanism for degradation of both pollutants was also proposed. Increasing the removal efficiency of herbicides follows the order of PS/HM-NSM > HM-NSM > PS. In all experiments, the 2,4-D removal rates were slightly lower than those for MCPA, indicating that 2,4-D has a more recalcitrant nature than MCPA. Under optimized conditions, degradation rates of 68.1% and 74.5% were achieved for 2,4-D and MCPA, respectively, during a 120-min reaction. HM-NSM displays a highly synergistic effect on the degradation of herbicides in the presence of PS. The trapping experiments demonstrated that both OHrad and SO4rad - radicals contribute significantly during the degradation of 2,4-D and MCPA and that sulfate radicals were the dominant species. A mineralization degree of 36% was obtained under optimum conditions. In conclusion, the coupling of PS and HM-NSM is a promising and effective technique to degrade organic matter for the treatment of herbicide-contaminated waters and wastewaters under real conditions.
Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun
2018-01-31
The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.
Angeles-Wedler, Dalia; Mackenzie, Katrin; Kopinke, Frank-Dieter
2008-08-01
The practical application of Pd-catalyzed water treatment processes is impeded by catalyst poisoning by reduced sulfur compounds (RSCs). In this study, the potential of permanganate as a selective oxidant for the removal of microbially generated RSCs in water and as a regeneration agent for S-poisoned catalysts was evaluated. Hydrodechlorination using Pd/Al2O3 was carried out as a probe reaction in permanganate-pretreated water. The activity of the Pd catalysts in the successfully pretreated reaction medium was similar to that in deionized water. The catalyst showed no deactivation behavior in the presence of permanganate at a concentration level < or = 0.07 mM. With a residual oxidant concentration of > or = 0.08 mM, a significant but temporary inhibition of the catalytic dechlorination was observed. Unprotected Pd/Al2O3, which had been completely poisoned by sulfide, was reactivated by a combined treatment with permanganate and hydrazine. However, the anthropogenic water pollutants thiophene and carbon disulfide were resistant against permanganate. Together with the preoxidation of catalyst poisons, hydrophobic protection of the catalysts was studied. Pd/zeolite and various hydrophobically coated catalysts showed a higher stability against ionic poisons and permanganate than the uncoated catalyst. By means of a combination of oxidative water pretreatment and hydrophobic catalyst protection, we provide a new tool to harness the potential of Pd-catalyzed hydrodehalogenation for the treatment of real waters.
Hybrid NiCoOx adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation
NASA Astrophysics Data System (ADS)
Wang, Wei; Yang, Yan; Liu, Yanqin; Zhang, Zhe; Dong, Wenkui; Lei, Ziqiang
2015-01-01
To improve the electrocatalytic activity of Pd for ethanol oxidation, hybrid NiCoOx adjacent to Pd catalyst (Pd-NiCoOx/C) is successfully synthesized. Physical characterization shows NiCoOx is closely adjacent to Pd nanoparticles in Pd-NiCoOx/C catalyst, which leads to Strong Metal-Support Interactions (SMSI) between the NiCoOx and Pd nanoparticles, in favor of the electrocatalytic properties. The Pd-NiCoOx/C catalyst is estimated to own larger electrochemically active surface area than Pd/C and Pd-NiO/C catalysts. Moreover, compared to Pd/C catalyst, the onset potential of Pd-NiCoOx/C catalyst is negative 40 mV for ethanol oxidation. Noticeably, the current density of Pd-NiCoOx/C catalyst is 2.05 and 1.43 times higher contrasted to Pd/C and Pd-NiO/C catalysts accordingly. Importantly, the Pd-NiCoOx/C catalyst exhibits better stability during ethanol oxidation, which is a promising electrocatalyst for application in direct alkaline alcohol fuel cells.
Removal of ammonia solutions used in catalytic wet oxidation processes.
Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua
2003-08-01
Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.
Garrido-Barros, Pablo; Gimbert-Suriñach, Carolina; Moonshiram, Dooshaye; Picón, Antonio; Monge, Pere; Batista, Victor S; Llobet, Antoni
2017-09-20
A molecular water oxidation catalyst based on the copper complex of general formula [(L py )Cu II ] 2- , 2 2- , (L py is 4-pyrenyl-1,2-phenylenebis(oxamidate) ligand) has been rationally designed and prepared to support a more extended π-conjugation through its structure in contrast with its homologue, the [(L)Cu II ] 2- water oxidation catalyst, 1 2- (L is o-phenylenebis(oxamidate)). The catalytic performance of both catalysts has been comparatively studied in homogeneous phase and in heterogeneous phase by π-stacking anchorage to graphene-based electrodes. In the homogeneous system, the electronic perturbation provided by the pyrene functionality translates into a 150 mV lower overpotential for 2 2- with respect to 1 2- and an impressive increase in the k cat from 6 to 128 s -1 . Upon anchorage, π-stacking interactions with the graphene sheets provide further π-delocalization that improves the catalytic performance of both catalysts. In this sense, 2 2- turned out to be the most active catalyst due to the double influence of both the pyrene and the graphene, displaying an overpotential of 538 mV, a k cat of 540 s -1 and producing more than 5300 TONs.
NASA Astrophysics Data System (ADS)
Zhang, Yongli; Zhou, Yanbo; Peng, Chao; Shi, Junjun; Wang, Qingyu; He, Lingfeng; Shi, Liang
2018-04-01
By successive impregnation method, the Ce-modified Cu-O/γ-Al2O3 catalyst was prepared and characterized using nitrogen adsorption-desorption, scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, and H2-Temperature programming reduction (H2-TPR). In catalytic wet-air oxidation (CWAO) process for the printing and dyeing wastewater (PDW), the effects of Ce addition on performance, mechanism and kinetics of the catalyst were investigated. The Ce addition increases the Brunauer-Emmett-Teller (BET) surface area and pore volume of the catalyst and makes the active components uniformly distributed on the catalyst surface. Formation of a stable CuAl2O4 solid solution by anchoring Cu onto the γ-Al2O3 crystal lattice leads to a significant decrease in metal leaching of the Ce-modified catalyst. The proportion of lattice oxygen in the catalyst substantially increases and the apparent activation energy of Cu-O/γ-Al2O3 catalyst decreases owing to Ce addition. Therefore, the catalytic activity and stability of the Ce-modified catalyst are considerably improved. The scavengers experiments identify the active species existed in the CWAO reaction system, with the order of reactivity: h+ > O2•- > H2O2 > HO•. This novel Cu-Ce-O/γ-Al2O3 catalyst has great potential in applications for treatment of concentrated organic wastewater due to its superior catalytic activity and improved stability.
Kirner, Joel T; Finke, Richard G
2017-08-23
A planar organic thin film composed of a perylene diimide dye (N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide, PMPDI) with photoelectrochemically deposited cobalt oxide (CoO x ) catalyst was previously shown to photoelectrochemically oxidize water (DOI: 10.1021/am405598w). Herein, the same PMPDI dye is studied for the sensitization of different nanostructured metal oxide (nano-MO x ) films in a dye-sensitized photoelectrochemical cell architecture. Dye adsorption kinetics and saturation decreases in the order TiO 2 > SnO 2 ≫ WO 3 . Despite highest initial dye loading on TiO 2 films, photocurrent with hydroquinone (H 2 Q) sacrificial reductant in pH 7 aqueous solution is much higher on SnO 2 films, likely due to a higher driving force for charge injection into the more positive conduction band energy of SnO 2 . Dyeing conditions and SnO 2 film thickness were subsequently optimized to achieve light-harvesting efficiency >99% at the λ max of the dye, and absorbed photon-to-current efficiency of 13% with H 2 Q, a 2-fold improvement over the previous thin-film architecture. A CoO x water-oxidation catalyst was photoelectrochemically deposited, allowing for photoelectrochemical water oxidation with a faradaic efficiency of 31 ± 7%, thus demonstrating the second example of a water-oxidizing, dye-sensitized photoelectrolysis cell composed entirely of earth-abundant materials. However, deposition of CoO x always results in lower photocurrent due to enhanced recombination between catalyst and photoinjected electrons in SnO 2 , as confirmed by open-circuit photovoltage measurements. Possible future studies to enhance photoanode performance are discussed, including alternative catalyst deposition strategies or structural derivatization of the perylene dye.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirner, Joel T.; Finke, Richard G.
A planar organic thin film composed of a perylene diimide dye (N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide, PMPDI) with photoelectrochemically deposited cobalt oxide (CoO x) catalyst was previously shown to photoelectrochemically oxidize water (DOI: 10.1021/am405598w). Herein, the same PMPDI dye is studied for the sensitization of different nanostructured metal oxide (nano-MO x) films in a dye-sensitized photoelectrochemical cell architecture. Dye adsorption kinetics and saturation decreases in the order TiO 2 > SnO 2 >> WO 3. Despite highest initial dye loading on TiO 2 films, photocurrent with hydroquinone (H 2Q) sacrificial reductant in pH 7 aqueous solution is much higher on SnO 2 films, likelymore » due to a higher driving force for charge injection into the more positive conduction band energy of SnO 2. Dyeing conditions and SnO 2 film thickness were subsequently optimized to achieve light-harvesting efficiency >99% at the λmax of the dye, and absorbed photon-to-current efficiency of 13% with H 2Q, a 2-fold improvement over the previous thin-film architecture. A CoO x water-oxidation catalyst was photoelectrochemically deposited, allowing for photoelectrochemical water oxidation with a faradaic efficiency of 31 ± 7%, thus demonstrating the second example of a water-oxidizing, dye-sensitized photoelectrolysis cell composed entirely of earth-abundant materials. However, deposition of CoO x always results in lower photocurrent due to enhanced recombination between catalyst and photoinjected electrons in SnO 2, as confirmed by open-circuit photovoltage measurements. Possible future studies to enhance photoanode performance are also discussed, including alternative catalyst deposition strategies or structural derivatization of the perylene dye.« less
Kirner, Joel T.; Finke, Richard G.
2017-07-20
A planar organic thin film composed of a perylene diimide dye (N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide, PMPDI) with photoelectrochemically deposited cobalt oxide (CoO x) catalyst was previously shown to photoelectrochemically oxidize water (DOI: 10.1021/am405598w). Herein, the same PMPDI dye is studied for the sensitization of different nanostructured metal oxide (nano-MO x) films in a dye-sensitized photoelectrochemical cell architecture. Dye adsorption kinetics and saturation decreases in the order TiO 2 > SnO 2 >> WO 3. Despite highest initial dye loading on TiO 2 films, photocurrent with hydroquinone (H 2Q) sacrificial reductant in pH 7 aqueous solution is much higher on SnO 2 films, likelymore » due to a higher driving force for charge injection into the more positive conduction band energy of SnO 2. Dyeing conditions and SnO 2 film thickness were subsequently optimized to achieve light-harvesting efficiency >99% at the λmax of the dye, and absorbed photon-to-current efficiency of 13% with H 2Q, a 2-fold improvement over the previous thin-film architecture. A CoO x water-oxidation catalyst was photoelectrochemically deposited, allowing for photoelectrochemical water oxidation with a faradaic efficiency of 31 ± 7%, thus demonstrating the second example of a water-oxidizing, dye-sensitized photoelectrolysis cell composed entirely of earth-abundant materials. However, deposition of CoO x always results in lower photocurrent due to enhanced recombination between catalyst and photoinjected electrons in SnO 2, as confirmed by open-circuit photovoltage measurements. Possible future studies to enhance photoanode performance are also discussed, including alternative catalyst deposition strategies or structural derivatization of the perylene dye.« less
The effect of ZnO addition on H2O activation over Co/ZrO2 catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Stephen D.; Sun, Junming; Wang, Yong
The effect of ZnO addition on the dissociation of H2O and subsequent effects on cobalt oxidation state and ethanol reaction pathway were investigated over Co/ZrO2 catalyst during ethanol steam reforming (ESR). Catalyst physical properties were characterized by BET, XRD, and TEM. To characterize the catalysts ability to dissociate H2O, Raman spectroscopy, H2O-TPO, and pulsed H2O oxidation coupled with H2-TPR were used. It was found that the addition of ZnO to cobalt supported on ZrO2 decreased the activity for H2O dissociation, leading to a lower degree of cobalt oxidation. The decreased H2O dissociation was also found to affect the reaction pathway,more » evidenced by a shift in liquid product selectivity away from acetone and towards acetaldehyde.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keturakis, Christopher J.; Zhu, Minghui; Gibson, Emma K.
2016-06-13
A series of supported CrO 3/Fe 2O 3 catalysts were investigated for the high-temperature water-gas shift (WGS) and reverse-WGS reactions and extensively characterized using in situ and operando IR, Raman, and XAS spectroscopy during the high-temperature WGS/RWGS reactions. The in situ spectroscopy examinations reveal that the initial oxidized catalysts contain surface dioxo (O=) 2Cr 6+O 2 species and a bulk Fe 2O 3 phase containing some Cr 3+ substituted into the iron oxide bulk lattice. Operando spectroscopy studies during the high-temperature WGS/RWGS reactions show that the catalyst transforms during the reaction. The crystalline Fe 2O 3 bulk phase becomes Femore » 3O 4 ,and surface dioxo (O=) 2Cr 6+O 2 species are reduced and mostly dissolve into the iron oxide bulk lattice. Consequently, the chromium–iron oxide catalyst surface is dominated by FeO x sites, but some minor reduced surface chromia sites are also retained. The Fe 3–-xCr xO 4 solid solution stabilizes the iron oxide phase from reducing to metallic Fe0 and imparts an enhanced surface area to the catalyst. Isotopic exchange studies with C 16O 2/H 2 → C 18O 2/H 2 isotopic switch directly show that the RWGS reaction proceeds via the redox mechanism and only O* sites from the surface region of the chromium–iron oxide catalysts are involved in the RWGS reaction. The number of redox O* sites was quantitatively determined with the isotope exchange measurements under appropriate WGS conditions and demonstrated that previous methods have undercounted the number of sites by nearly 1 order of magnitude. The TOF values suggest that only the redox O* sites affiliated with iron oxide are catalytic active sites for WGS/RWGS, though a carbonate oxygen exchange mechanism was demonstrated to exist, and that chromia is only a textural promoter that increases the number of catalytic active sites without any chemical promotion effect.« less
Pang, H L; Zhang, X H; Zhong, X X; Liu, B; Wei, X G; Kuang, Y F; Chen, J H
2008-03-01
Ru-doped SnO2 nanoparticles were prepared by chemical precipitation and calcinations at 823 K. Due to high stability in diluted acidic solution, Ru-doped SnO2 nanoparticles were selected as the catalyst support and second catalyst for methanol electrooxidation. The micrograph, elemental composition, and structure of the Ru-doped SnO2 nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. The electrocatalytic properties of the Ru-doped SnO2-supported Pt catalyst (Pt/Ru-doped SnO2) for methanol oxidation have been investigated by cyclic voltammetry. Under the same loading mass of Pt, the Pt/Ru-doped SnO2 catalyst shows better electrocatalytic performance than the Pt/SnO2 catalyst and the best atomic ratio of Ru to Sn in Ru-doped SnO2 is 1/75. Additionally, the Pt/Ru-doped SnO2 catalyst possesses good long-term cycle stability.
NASA Astrophysics Data System (ADS)
Song, Yang; Mayes, Howard G.; Queensen, Matthew J.; Bauer, Eike B.; Dupureur, Cynthia M.
2017-03-01
The growing interest in green chemistry has fueled attention to the development and characterization of effective iron complex oxidation catalysts. A number of iron complexes are known to catalyze the oxidation of organic substrates utilizing peroxides as the oxidant. Their development is complicated by a lack of direct comparison of the reactivities of the iron complexes. To begin to correlate reactivity with structural elements, we compare the reactivities of a series of iron pyridyl complexes toward a single dye substrate, malachite green (MG), for which colorless oxidation products are established. Complexes with tetradentate, nitrogen-based ligands with cis open coordination sites were found to be the most reactive. While some complexes reflect sensitivity to different peroxides, others are similarly reactive with either H2O2 or tBuOOH, which suggests some mechanistic distinctions. [Fe(S,S-PDP)(CH3CN)2](SbF6)2 and [Fe(OTf)2(tpa)] transition under the oxidative reaction conditions to a single intermediate at a rate that exceeds dye degradation (PDP = bis(pyridin-2-ylmethyl) bipyrrolidine; tpa = tris(2-pyridylmethyl)amine). For the less reactive [Fe(OTf)2(dpa)] (dpa = dipicolylamine), this reaction occurs on a timescale similar to that of MG oxidation. Thus, the spectroscopic method presented herein provides information about the efficiency and mechanism of iron catalyzed oxidation reactions as well as about potential oxidative catalyst decomposition and chemical changes of the catalyst before or during the oxidation reaction.
NASA Astrophysics Data System (ADS)
Naeem, Rabia; Ahmed, Riaz; Shahid Ansari, Muhammad
2014-06-01
Carbon corrosion and platinum dissolution are the two major catalyst layer degradation problems in polymer electrolyte membrane fuel cells (PEMFC). Ceramic addition can reduce the corrosion of carbon and increase the stability of catalysts. Pt/TiO2, Pt/TiO2-C, Pt/Al2O3 and Pt/Al2O3-C catalysts were synthesized and characterized. Electrochemical surface area of Pt/TiO2-C and Pt/Al2O3-C nanocomposite catalysts was much higher than the Pt/TiO2 and Pt/Al2O3 catalysts. Peak current, specific activity and mass activity of the catalysts was also determined by cyclic voltammetry and were much higher for the carbon nanocomposites. Exchange current densities were determined from Tafel plots. Heterogeneous rates of reaction of electro oxidation of methanol were determined for all the catalysts and were substantially higher for titania catalysts as compared to alumina added catalysts. Mass activity of Pt/TiO2-C was much higher than mass activity of Pt/Al2O3-C. Stability studies showed that addition of ceramics have increased the catalytic activity and durability of the catalysts considerably.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silversmith, Geert; Poelman, Hilde; Poelman, Dirk
2007-02-02
A CuOx-CeOx/Al2O3 catalyst was studied with in-situ transmission Cu K XAS for the total oxidation of propane as model reaction for the catalytic elimination of volatile organic compounds. The local Cu structure was determined for the catalyst as such, after pre-oxidation and after reduction with propane. The catalyst as such has a local CuO structure. No structural effect was observed upon heating in He up to 600 deg. C or after pre-oxidation at 150 deg. C. A full reduction of the Cu2+ towards metallic Cu0 occurred, when propane was fed to the catalyst. The change in local Cu structure duringmore » propane reduction was followed with a time resolution of 1 min. The {chi}(k) scans appeared as linear combinations of start and end spectra, CuO and Cu structure, respectively. However, careful examination of the XANES edge spectra indicates the presence of a small amount of additional Cu1+ species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Ruiz, Juan A.; Cooper, Alan R.; Li, Guosheng
Common ketonization catalysts such as ZrO2, CeO2, CexZryOz, and TiO2-based catalysts have been reported to lose surface area, undergo phase-transformation, and lose catalytic activity when utilized in the condensed aqueous phase. In this work, we synthesized and tested a series of LaxZryOz mixed metal oxides with different La:Zr atomic ratios with the goal of enhancing the catalytic activity and stability for the ketonization of acetic acid in condensed aqueous media at 568 K. We synthesized a hydrothermally stable LaxZryOz mixed-metal oxide catalyst with enhanced ketonization activities 360 and 40 times more active than La2O3 and ZrO2, respectively. Catalyst characterization techniquesmore » suggest that the formation of a hydrothermally stable catalyst which is isomorphic with tetragonal-ZrO2 under hydrothermal reaction conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhen; Overbury, Steven; Dai, Sheng
Au/TiO2 catalysts are active for CO oxidation, but they suffer from high-temperature sintering of the gold particles, and few attempts have been made to promote or stabilize Au/TiO2. Our recent communication addressed these issues by loading gold onto Al2O3/TiO2 prepared via surface-sol-gel processing of Al(sec-OC4H9)3 on TiO2. In our current full paper, Au/Al2O3/TiO2 catalysts were prepared alternatively by thermal decomposition of Al(NO3)3 on TiO2 followed by loading gold, and the influences of the decomposition temperature and Al2O3 content were systematically surveyed. This facile method was subsequently extended to the preparation of a battery of metal oxide-modified Au/TiO2 catalysts virtually notmore » reported. It was found that Au/TiO2 modified by CaO, NiO, ZnO, Ga2O3, Y2O3, ZrO2, La2O3, Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Dy2O3, Ho2O3, Er2O3, or Yb2O3 could retain significant activity at ambient temperature even after aging in O2-He at 500 C, whereas unmodified Au/TiO2 lost its activity. Moreover, some 200 C-calcined promoted catalysts showed high activity even at about -100 C. The deactivation and regeneration of some of these new catalysts were studied. This work furnished novel catalysts for further fundamental and applied research.« less
Palladium-tin catalysts for the direct synthesis of H 2O 2 with high selectivity
Freakley, Simon J.; He, Qian; Harrhy, Jonathan H.; ...
2016-02-25
The direct synthesis of hydrogen peroxide (H 2O 2 ) from H 2 and O 2 represents a potentially atom-efficient alternative to the current industrial indirect process. We show that the addition of tin to palladium catalysts coupled with an appropriate heat treatment cycle switches off the sequential hydrogenation and decomposition reactions, enabling selectivities of >95% toward H 2O 2 . This effect arises from a tin oxide surface layer that encapsulates small Pd-rich particles while leaving larger Pd-Sn alloy particles exposed. In conclusion, we show that this effect is a general feature for oxide-supported Pd catalysts containing an appropriatemore » second metal oxide component, and we set out the design principles for producing high-selectivity Pd-based catalysts for direct H 2O 2 production that do not contain gold.« less
Stable metal–organic framework-supported niobium catalysts
Ahn, Sol; Thornburg, Nicholas E.; Li, Zhanyong; ...
2016-10-31
In this study by developing structurally well-defined, supported oxide catalysts remains a significant challenge. Here, we report the grafting of Nb(V) oxide sites onto the nodes of the Zr-based metal organic framework (MOF) NU-1000 as a stable, well-defined catalyst support. Nb(V) oxide was deposited with loadings up to 1.6 mmol/g via two post-synthetic methods: atomic layer deposition in a MOF (AIM), and solution-phase grafting in a MOF (SIM). Difference envelope density (DED) measurements indicated that the two synthetic methods resulted in different local structures of the Nb(V) ions within NU-1000. Despite their high Nb(V) loadings, which were equivalent to >60%more » surface coverage, nearly all Nb(V) sites of the MOF-supported catalysts were active sites for alkene epoxidation, as confirmed by phenylphosphonic acid titration. The MOF-supported catalysts were more selective than the control Nb-ZrO 2 catalyst for cyclohexene epoxidation with aqueous H 2O 2, and were far more active on a gravimetric basis.« less
Hoover, Jessica M.; Stahl, Shannon S.
2011-01-01
Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O2 as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)CuI/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups. PMID:21861488
Zhao, Yixin; Swierk, John R.; Megiatto, Jackson D.; Sherman, Benjamin; Youngblood, W. Justin; Qin, Dongdong; Lentz, Deanna M.; Moore, Ana L.; Moore, Thomas A.; Gust, Devens; Mallouk, Thomas E.
2012-01-01
Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light. PMID:22547794
Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi
2013-08-19
Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bano, Mustri; Ahirwar, Devendra; Thomas, Molly
An elegant method is used to prepare silver monoliths with Pluronic F-127(F-127) as sacrificial template by modified sol-gel method. Si nanoparticles (SiNPs) and graphene oxide (GO) are added in situ to Ag/F-127 hydrogel for the reduction of ο-nitroaniline (ο-NA) to 1, 2-benzenediamine. Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric analysis (TGA), Raman Spectroscopy, Powder X-Ray Diffraction (PXRD) analysis and Brunauer-Emmett-Teller (BET) Nitrogen adsorption techniques were used for characterization of monoliths. An epoch-making catalytic activity of Ag/F-127/GO monoliths is observed in the reduction of ο-NA to 1, 2-benzenediamine in presence of NaBH{sub 4} inmore » aqueous media. The catalyst Ag/F-127/GO took only 2 min which is the minimum time reported so far with significant rate constant claimed itself a leading catalyst for the reduction of ο-NA to 1,2-benzenediamine. Pseudo first order rate constant (k) and Turn over frequency (TOF) values are 0.231 min{sup −1} and 30.053×10{sup 19} molecules min{sup −1} respectively suggest that the catalyst has industrial importance. Recyclability and stability of Ag/F-127/GO catalyst are studied successfully up to 10 cycles. Energy of activation (E{sub a}), and thermodynamic parameters viz. activation enthalpy (ΔH{sup ≠}), activation Gibbs free energy (ΔG{sup ≠}), and entropy of activation (ΔS{sup ≠}) were also ascertained. Catalytic activities of Ag/F-127, Ag/F-127/Dextran, Ag/F-127/Trimethylbenzene (TMB), Ag/F-127/SiNPs, and Ag/F-127/Si/GO monoliths were also studied. - Graphical abstract: Significant catalytic activities of silver monoliths against the reduction of ο-NA to 1,2 benzenediamine. - Highlights: • A new catalyst synthesized Ag/F-127/GO for the reduction of ο- NA to 1, 2- benzenediamine took only 2 min. • Turn over frequency of as synthesized catalyst was 30.053×10{sup 19} molecules min{sup −1} claimed itself a leading catalyst. • Recyclability of the catalyst was up to 10 cycles. • The synthesis is non toxic, economically viable and environmentally benign.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Jinlei; Wu, Jinghe; Zhao, Xingju
Transitional metal nanoparticles or atoms deposited on appropriate substrates can lead to highly economical, efficient, and selective catalysis. One of the greatest challenges is to control the electronic metal–support interactions (EMSI) between the supported metal atoms and the substrate so as to optimize their catalytic performance. Here, from first-principles calculations, we show that an otherwise inactive Pd single adatom on TiO 2(110) can be tuned into a highly effective catalyst, e.g. for O 2 adsorption and CO oxidation, by purposefully selected metal–nonmetal co-dopant pairs in the substrate. Such an effect is proved here to result unambiguously from a significantly enhancedmore » EMSI. A nearly linear correlation is noted between the strength of the EMSI and the activation of the adsorbed O 2 molecule, as well as the energy barrier for CO oxidation. Particularly, the enhanced EMSI shifts the frontier orbital of the deposited Pd atom upward and largely enhances the hybridization and charge transfer between the O 2 molecule and the Pd atom. Upon co-doping, the activation barrier for CO oxidation on the Pd monomer is also reduced to a level comparable to that on the Pd dimer which was experimentally reported to be highly efficient for CO oxidation. The present findings provide new insights into the understanding of the EMSI in heterogeneous catalysis and can open new avenues to design and fabricate cost-effective single-atom-sized and/or nanometer-sized catalysts.« less
Kilic, Hamdullah; Adam, Waldemar; Alsters, Paul L
2009-02-06
The catalytic oxidations of chiral allylic alcohols 2 by manganese complexes of the cyclic triamine 1,4,7-trimethyl-1,4,7-triazacyclononane (tmtacn) 1 and hydrogen peroxide as oxygen donor in the presence of co-catalyst are investigated to understand the factors that affect the catalyst selectivity. Chemoselectivity and diastereoselectivity of catalyst 1 are significantly affected by the structure of the allylic alcohol and the nature and amount of co-catalyst. More pronounced is the influence of the amount of added molar equivalents of H(2)O(2) (20-110 mol % with respect to the substrate). Our present results reflect the complex redox chemistry of the Mn catalyst 1/H(2)O(2)/co-catalyst system in the early phase of the alkene oxidation.
Catalytic dehydration of ethanol using transition metal oxide catalysts.
Zaki, T
2005-04-15
The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, E.E.
1996-09-30
The objective of this project is to use transient techniques to study gas surface interactions during the oxidative conversion of methane. Two groups of catalysts were studied: a double oxide of vanadium and phosphate or VPO, and double oxides of Ni, Co and Rh and lanthana. The objective of the studies involving the VPO catalyst was to understand gas-surface interactions leading to the formation of formaldehyde. In the second group of catalysts, involving metallo-oxides, the main objective was to study the gas-surface interactions that determine the selectivity to C{sub 2} hydrocarbons or synthesis gas. Transient techniques were used to studymore » the methane-surface interactions and the role of lattice oxygen. The selection of the double oxides was made on the hypothesis that the metal oxide would provide an increase interaction with methane whereas the phosphate or lanthanide would provide the sites for oxygen adsorption. The hypothesis behind this selection of catalysts was that increasing the methane interaction with the catalysts would lower the reaction temperature and thus increase the selectivity to the desired products over the total oxidation reaction. In both groups of catalysts the role of Li as a modifier of the selectivity was also studied in detail.« less
Barman, Sudip; Kundu, Manas; Bhowmik, Tanmay; Mishra, Ranjit
2018-06-04
Design and synthesis of active catalyst for HER/HOR are important for the development of hydrogen based renewable technologies. We report synthesis of Pt nanostructures-N-doped carbon hybrid (Pt-(PtO2)-NSs/C) for HER/HOR applications. The HER activity of this Pt-(PtOx)-NSs/C catalyst is 4 and 6.5 times better than commercial Pt/C in acid and base. The catalyst exhibits a current density of 10 mA/cm2 at overpotentials of 5 and 51 mV with tafel slopes of 29 and 64mV/dec in in 0.5 M H2SO4 and 0.5 M KOH. This catalyst also showed superior HOR activity at all pH values. The HER/HOR activity of Pt-(PtOx)-NSs/C and PtOx-free Pt-Nanostructures/C (PtNSs/C) catalysts are comparable in acid. The presence of PtOx in Pt-(PtOx)-NSs/C makes this Pt-catalyst more HER/HOR active in base media. The activity of Pt-(PtOx)NSs/C catalyst is 5 fold higher than that of PtNSs/C catalyst in basic medium although their activity is comparable in acid. Hydrogen binding energy and oxophilicity are the two equivalent descriptors for HER/HOR in basic media. We propose a bi-functional mechanism for the enhanced alkaline HER/HOR activity of Pt(PtOx)-NSs/C catalyst. In bi-functional Pt-(PtOx)-NSs/C catalyst, PtOx provide an active site for OH- adsorption to form OHads which reacts with hydrogen intermediate (Hads), present at neighbouring Pt sites to form H2O leading to enhancement of HOR activity in basic medium This work may provide opportunity to develop catalysts for various renewable energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Silica-Supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values
Pham, Anh Le-Tuan; Lee, Changha; Doyle, Fiona M.; Sedlak, David L.
2009-01-01
Iron oxides catalyze the conversion of hydrogen peroxide (H2O2) into oxidants capable of transforming recalcitrant contaminants. Unfortunately, the process is relatively inefficient at circumneutral pH values due to competing reactions that decompose H2O2 without producing oxidants. Silica- and alumina-containing iron oxides prepared by sol-gel processing of aqueous solutions containing Fe(ClO4)3, AlCl3 and tetraethyl orthosilicate efficiently catalyzed the decomposition of H2O2 into oxidants capable of transforming phenol at circumneutral pH values. Relative to hematite, goethite and amorphous FeOOH, the silica-iron oxide catalyst exhibited a stoichiometric efficiency, defined as the number of moles of phenol transformed per mole of H2O2 consumed, that was 10 to 40 times higher than that of the iron oxides. The silica-alumina-iron oxide catalyst had a stoichiometric efficiency that was 50 to 80 times higher than that of the iron oxides. The significant enhancement in oxidant production is attributable to the interaction of Fe with Al and Si in the mixed oxides, which alters the surface redox processes, favoring the production of strong oxidants during H2O2 decomposition. PMID:19943668
Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces
NASA Astrophysics Data System (ADS)
McBriarty, Martin E.
Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.
Study of removal of ammonia from urine vapor by dual catalyst
NASA Technical Reports Server (NTRS)
Budininkas, P.
1976-01-01
The feasibility of ammonia removal from urine vapor by a low temperature dual-catalyst system was investigated. The process is based on the initial catalytic oxidation of ammonia present in urine vapor to nitrogen and nitrous oxide, followed by a catalytic decomposition of the nitrous oxide formed into its elements. The most active catalysts for the oxidation of ammonia and for the decomposition of N2O, identified in screening tests, were then combined into dual catalyst systems and tested to establish their overall efficiencies for the removal of ammonia from artificial gas mixtures. Dual catalyst systems capable of ammonia removal from the artificial gas mixtures were then tested with the actual urine vapor produced by boiling untreated urine. A suitable dual catalyst bed arrangement was found that achieved the removal of ammonia and organic carbon, and recovered water of good quality from urine vapor.
Photoelectrochemical Performance of the Ag(III)-Based Oxygen-Evolving Catalyst.
Sordello, Fabrizio; Ghibaudo, Manuel; Minero, Claudio
2017-07-19
We report the electrosynthesis of a water oxidation catalyst based on Ag oxides (AgCat). The deposited AgCat is composed of mixed valence crystalline Ag oxides with the presence of particle aggregates whose size is ∼1 μm. This catalyst, coupled with TiO 2 and hematite, and under photoelectrochemical conditions, substantially increases photocurrents in a wide range of applied potentials compared with bare and Co-Pi-modified photocatalysts. AgCat can sustain current densities comparable with other water oxidation catalysts. Dark bulk electrolysis demonstrated that AgCat is stable and can sustain high turnover number in operative conditions. Oxygen evolution from water occurs in mild conditions: pH = 2-13, room temperature and pressure, and moderate overpotentials (600 mV) compatible with the coupling with semiconducting oxides as sensitizers. Using hematite in sustained electrolysis O 2 production is significant, both in the dark and under irradiation, after an initial slow induction time in which modification of surface species occurs.
Highly efficient Cu-decorated iron oxide nanocatalyst for low pressure CO 2 conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halder, Avik; Kilianová, Martina; Yang, Bing
We report a nanoparticulate iron oxide based catalyst for CO2 conversion with high efficiency at low pressures and on the effect of the presence of copper on the catalyst's restructuring and its catalytic performance. In situ X-ray scattering reveals the restructuring of the catalyst at the nanometer scale. In situ X-ray absorption near edge structure (XANES) shows the evolution of the composition and oxidation state of the iron and copper components under reaction conditions along with the promotional effect of copper on the chemical transformation of the iron component. X-ray diffraction (XRD), XANES and Raman spectroscopy proved that the startingmore » nano catalyst is composed of iron oxides differing in chemical nature (alpha-Fe2O3, Fe3O4, FeO(OH)) and dimensionality, while the catalyst after CO2 conversion was identified as a mixture of alpha-Fe, Fe3C, and traces of Fe5C2. The significant increase of the rate CO2 is turned over in the presence of copper nanoparticles indicates that Cu nanoparticles activate hydrogen, which after spilling over to the neighbouring iron sites, facilitate a more efficient conversion of carbon dioxide.« less
Julião, Diana; Gomes, Ana C; Pillinger, Martyn; Valença, Rita; Ribeiro, Jorge C; Gonçalves, Isabel S; Balula, Salete S
2016-10-14
The oxidative desulfurization of model and real diesel has been studied using the complex [MoO2Cl2(4,4'-di-tert-butyl-2,2'-bipyridine)] as (pre)catalyst, aq. H2O2 as oxidant, and an ionic liquid as extraction solvent. Under moderate conditions (50 °C) and short reaction times (<3 h), dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene could be completely removed from the model diesel. The (pre)catalyst 1 was transformed in situ to the active catalyst [MoO(O2)2(di-tBu-bipy)]. By sequentially performing extractive desulfurization and ECODS steps, 76% sulfur removal was achieved for a real diesel (Sinitial = 2300 ppm). For both the model and real diesels, the catalyst/IL phase could be easily recycled and reused with no loss of desulfurization efficiency.
Xu, Liwen; Wang, Chizhong; Chang, Huazhen; Wu, Qingru; Zhang, Tao; Li, Junhua
2018-06-19
In this study, the poisoning effects of SO 2 on the V 2 O 5 -WO 3 /TiO 2 (1%VWTi) and CeO 2 -WO 3 /TiO 2 (5%CeWTi) selective catalytic reduction (SCR) catalysts were investigated in the presence of steam, and also the regeneration of deactivated catalysts was studied. After pretreating the catalysts in a flow of NH 3 + SO 2 + H 2 O + O 2 at 200 °C for 24 h, it was observed that the low-temperature SCR (LT-SCR) activity decreased significantly over the 1%VWTi and 5%CeWTi catalysts. For 1%VWTi, NH 4 HSO 4 (ABS) was the main product detected after the poisoning process. Both of NH 4 HSO 4 and cerium sulfate species were formed on the poisoned 5%CeWTi catalyst, indicating that SO 2 reacted with Ce 3+ /Ce 4+ , even in the presence of high concentration of NH 3 . The decrease of BET specific surface area, NO x adsorption capacity, the ratio of chemisorbed oxygen, and reducibility were responsible for the irreversible deactivation of the poisoned 5%CeWTi catalyst. Meanwhile, the LT-SCR activity could be recovered over the poisoned 1%VWTi after regeneration at 400 °C, but not for the 5%CeWTi catalyst. For industrial application, it is suggested that the regeneration process can be utilized for 1%VWTi catalysts after a period of time after NH 4 HSO 4 accumulated on the catalysts.
Lwin, Soe; Diao, Weijian; Baroi, Chinmoy; ...
2017-04-08
The domestic fossil feedstock in recent years is shifting towards light hydrocarbons due to abundance of shale gas from hydraulic fracturing. This shift induces a need for greater flexibility in both new and existing processing plants to produce consumer products (polymers, paints, lubricants, etc.) from new feedstocks. The oxidative catalytic reactions operate at milder conditions than the processing of feedstocks through steam cracking. The conversion of light feedstocks (C3 and shorter hydrocarbons) to high value chemicals through highly selective catalysts in the presence of oxygen plays a crucial role in eliminating wastes, reducing greenhouse gas emissions and lowering market prices.more » Among all catalysts for light hydrocarbon processing through oxidation reactions, bulk mixed metal oxides such as MoVTe(Sb)NbO x catalysts are the most promising due to their performance under favorable reaction conditions (temperature, pressure, etc). Here, state-of-the-art in situ/operando techniques along with transient kinetics can revolutionize the development of catalysts by providing information about the nature of active sites, intermediates and kinetics under realistic industrial conditions. Only through detailed understanding of these catalyst behaviors can new synthesis methods be developed that will improve reactivity, selectivity and lifetimes of these catalysts. In this review, dynamic changes of this mixed oxide catalyst during the reaction (such as changes in surface composition, oxidation states, acidity, etc) are discussed mainly from knowledge and insights obtained from these in situ/operando approaches. The most common oxidation reactions driven by the MoVTeNbO x catalysts and studied under operando/in situ conditions to be discussed here are: (1) oxidative dehydrogenation of light alkanes (ethane and propane), (2) propane ammoxidation to acrylonitrile and (3) selective oxidation of propane to acrylic acid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lwin, Soe; Diao, Weijian; Baroi, Chinmoy
The domestic fossil feedstock in recent years is shifting towards light hydrocarbons due to abundance of shale gas from hydraulic fracturing. This shift induces a need for greater flexibility in both new and existing processing plants to produce consumer products (polymers, paints, lubricants, etc.) from new feedstocks. The oxidative catalytic reactions operate at milder conditions than the processing of feedstocks through steam cracking. The conversion of light feedstocks (C3 and shorter hydrocarbons) to high value chemicals through highly selective catalysts in the presence of oxygen plays a crucial role in eliminating wastes, reducing greenhouse gas emissions and lowering market prices.more » Among all catalysts for light hydrocarbon processing through oxidation reactions, bulk mixed metal oxides such as MoVTe(Sb)NbO x catalysts are the most promising due to their performance under favorable reaction conditions (temperature, pressure, etc). Here, state-of-the-art in situ/operando techniques along with transient kinetics can revolutionize the development of catalysts by providing information about the nature of active sites, intermediates and kinetics under realistic industrial conditions. Only through detailed understanding of these catalyst behaviors can new synthesis methods be developed that will improve reactivity, selectivity and lifetimes of these catalysts. In this review, dynamic changes of this mixed oxide catalyst during the reaction (such as changes in surface composition, oxidation states, acidity, etc) are discussed mainly from knowledge and insights obtained from these in situ/operando approaches. The most common oxidation reactions driven by the MoVTeNbO x catalysts and studied under operando/in situ conditions to be discussed here are: (1) oxidative dehydrogenation of light alkanes (ethane and propane), (2) propane ammoxidation to acrylonitrile and (3) selective oxidation of propane to acrylic acid.« less
Yahya, N; Kamarudin, S K; Karim, N A; Masdar, M S; Loh, K S
2017-11-25
This study presents a novel anodic PdAu/VGCNF catalyst for electro-oxidation in a glycerol fuel cell. The reaction conditions are critical issues affecting the glycerol electro-oxidation performance. This study presents the effects of catalyst loading, temperature, and electrolyte concentration. The glycerol oxidation performance of the PdAu/VGCNF catalyst on the anode side is tested via cyclic voltammetry with a 3 mm 2 active area. The morphology and physical properties of the catalyst are examined using X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Then, optimization is carried out using the response surface method with central composite experimental design. The current density is experimentally obtained as a response variable from a set of experimental laboratory tests. The catalyst loading, temperature, and NaOH concentration are taken as independent parameters, which were evaluated previously in the screening experiments. The highest current density of 158.34 mAcm -2 is obtained under the optimal conditions of 3.0 M NaOH concentration, 60 °C temperature and 12 wt.% catalyst loading. These results prove that PdAu-VGCNF is a potential anodic catalyst for glycerol fuel cells.
Oxidation of methane over palladium catalysts: effect of the support.
Escandón, Lara S; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V
2005-01-01
This work is focused on the deep catalytic oxidation of methane over supported palladium catalysts. The influences of the metal loading, oxidation state of palladium, nature of supports, presence of promoters in the supports (for zirconia-based supports), and thermal stability have been studied experimentally. Catalysts were prepared by incipient wetness of commercially available supports with aqueous solutions of palladium nitrate. For gamma-alumina support, it was observed that the optimal amount of palladium is between 0.5% and 2%, with higher amounts leading to a loss in specific activity. Concerning the oxidation state of the catalyst, it is concluded that for all the supports tested in the present work, a reduction of the catalyst is not needed, yielding the same conversion at steady state catalysts reduced and oxidised. The thermal stability of various supported catalysts were also studied, zirconia supports being the most active. These supports, specially Y-modified zirconia support, do not suffer appreciable deactivation below 500 degrees C.
Complex catalysts from self-repairing ensembles to highly reactive air-based oxidation systems
Craig L. Hill; Laurent Delannoy; Dean C. Duncan; Ira A. Weinstock; Roman F. Renneke; Richard S. Reiner; Rajai H. Atalla; Jong Woo Han; Daniel A. Hillesheim; Rui Cao; Travis M. Anderson; Nelya M. Okun; Djamaladdin G. Musaev; Yurii V. Geletii
2007-01-01
Progress in four interrelated catalysis research efforts in our laboratory are summarized: (1) catalytic photochemical functionalization of unactivated CeH bonds by polyoxometalates (POMs); (2) self-repairing catalysts; (3) catalysts for air-based oxidations under ambient conditions; and (4) terminal oxo complexes of the late-transition metal elements and their...
Combining CO 2 reduction with propane oxidative dehydrogenation over bimetallic catalysts
Gomez, Elaine; Kattel, Shyam; Yan, Binhang; ...
2018-04-11
In this paper, the inherent variability and insufficiencies in the co-production of propylene from steam crackers has raised concerns regarding the global propylene production gap and has directed industry to develop more on-purpose propylene technologies. The oxidative dehydrogenation of propane by CO 2 (CO 2-ODHP) can potentially fill this gap while consuming a greenhouse gas. Non-precious FeNi and precious NiPt catalysts supported on CeO 2 have been identified as promising catalysts for CO 2-ODHP and dry reforming, respectively, in flow reactor studies conducted at 823 K. In-situ X-ray absorption spectroscopy measurements revealed the oxidation states of metals under reaction conditionsmore » and density functional theory calculations were utilized to identify the most favorable reaction pathways over the two types of catalysts.« less
Weng, Xiaole; Sun, Pengfei; Long, Yu; Meng, Qingjie; Wu, Zhongbiao
2017-07-18
Industrial-use catalysts usually encounter severe deactivation after long-term operation for catalytic oxidation of chlorinate volatile organic compounds (CVOCs), which becomes a "bottleneck" for large-scale application of catalytic combustion technology. In this work, typical acidic solid-supported catalysts of Mn x Ce 1-x O 2 /HZSM-5 were investigated for the catalytic oxidation of chlorobenzene (CB). The activation energy (E a ), Brønsted and Lewis acidities, CB adsorption and activation behaviors, long-term stabilities, and surficial accumulation compounds (after aging) were studied using a range of analytical techniques, including XPS, H 2 -TPR, pyridine-IR, DRIFT, and O 2 -TP-Ms. Experimental results revealed that the Brønsted/Lewis (B/L) ratio of Mn x Ce 1-x O 2 /HZSM-5 catalysts could be adjusted by ion exchange of H• (in HZSM-5) with Mn n+ (where the exchange with Ce 4+ did not distinctly affect the acidity); the long-term aged catalysts could accumulate ca. 14 organic compounds at surface, including highly toxic tetrachloromethane, trichloroethylene, tetrachloroethylene, o-dichlorobenzene, etc.; high humid operational environment could ensure a stable performance for Mn x Ce 1-x O 2 /HZSM-5 catalysts; this was due to the effective removal of Cl• and coke accumulations by H 2 O washing, and the distinct increase of Lewis acidity by the interaction of H 2 O with HZSM-5. This work gives an in-depth view into the CB oxidation over acidic solid-supported catalysts and could provide practical guidelines for the rational design of reliable catalysts for industrial applications.
Myint, MyatNoeZin; Yan, Binhang; Wan, Jie; ...
2016-02-26
An efficient mitigation of abundantly available CO 2 is critical for sustainable environmental impact as well as for novel industrial applications. Using ethane, CO 2 can be catalytically converted into a useful feedstock (synthesis gas) and a value-added monomer (ethylene) via the dry reforming pathway through the C–C bond scission and the oxidative dehydrogenation pathway through the C–H bond scission, respectively. Results from the current flow-reactor study show that the precious metal bimetallic CoPt/CeO 2 catalyst undergoes the reforming reaction to produce syngas with enhanced activity and stability compared to the parent monometallic catalysts. In this paper, in order tomore » replace Pt, the activities of non-precious CoMo/CeO 2 and NiMo/CeO 2 are investigated and the results indicate that NiMo/CeO 2 is nearly as active as CoPt/CeO 2 for the reforming pathway. Furthermore, FeNi/CeO 2 is identified as a promising catalyst for the oxidative dehydrogenation to produce ethylene. Finally, density functional theory (DFT) calculations are performed to further understand the different pathways of the CoPt/CeO 2 and FeNi/CeO 2 catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myint, MyatNoeZin; Yan, Binhang; Wan, Jie
An efficient mitigation of abundantly available CO 2 is critical for sustainable environmental impact as well as for novel industrial applications. Using ethane, CO 2 can be catalytically converted into a useful feedstock (synthesis gas) and a value-added monomer (ethylene) via the dry reforming pathway through the C–C bond scission and the oxidative dehydrogenation pathway through the C–H bond scission, respectively. Results from the current flow-reactor study show that the precious metal bimetallic CoPt/CeO 2 catalyst undergoes the reforming reaction to produce syngas with enhanced activity and stability compared to the parent monometallic catalysts. In this paper, in order tomore » replace Pt, the activities of non-precious CoMo/CeO 2 and NiMo/CeO 2 are investigated and the results indicate that NiMo/CeO 2 is nearly as active as CoPt/CeO 2 for the reforming pathway. Furthermore, FeNi/CeO 2 is identified as a promising catalyst for the oxidative dehydrogenation to produce ethylene. Finally, density functional theory (DFT) calculations are performed to further understand the different pathways of the CoPt/CeO 2 and FeNi/CeO 2 catalysts.« less
Optimization of transesterification of rubber seed oil using heterogeneous catalyst calcium oxide
NASA Astrophysics Data System (ADS)
Inggrid, Maria; Kristanto, Aldi; Santoso, Herry
2015-12-01
Biodiesel is an alternative fuel manufactured with the help of alkali hydroxide catalyst through transesterification reaction of vegetable oil. This study aims to examine methods and the most suitable conditions for transesterification reaction producing biodiesel from crude rubber seed oil by varying process parameters such as the molar ratio of alcohol, CaO amount as the alkaline catalyst, and reaction time. The rubber seed oil has a high level of free fatty acid content, which means the use of homogenous alkaline catalyst gives some technological problems such as soap formation which leaded in difficulty in the separation and purification of the product. Calcium oxide (CaO) is one of the most favorable heterogeneous base catalysts because it's reusable, noncorrosive, and low cost. Pre-treatment was performed by acid esterification with H2SO4 as the catalyst to decrease the content of free fatty acid in the rubber seed oil, in this pretreatment process the 12% FFA of crude oil could be reduced to below 3% FFA. The product after esterification process was then transesterified by alkaline transesterification by varying process parameters to convert triglyceride into biodiesel. The study found that maximum curvature for biodiesel yield occurred at 9:1 molar ratio of alcohol, 5%w catalyst loading, and 3 hours reaction time. Design expert software is used to determine the optimum point from experimental data. The result showed that the optimum yield of methyl ester from transesterification was 73.5 % by mass with 0.69 degree of desirability. The yielded methyl ester was tested for its density, viscosity, acid number, and solubility to meet SNI requirement standards.
Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi
2010-08-01
This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.
Surface Characterization of Mesoporous CoOx/SBA-15 Catalyst upon 1,2-Dichloropropane Oxidation.
Finocchio, Elisabetta; Gonzalez-Prior, Jonatan; Gutierrez-Ortiz, Jose Ignacio; Lopez-Fonseca, Ruben; Busca, Guido; de Rivas, Beatriz
2018-05-29
The active combustion catalyst that is based on 30 wt % cobalt oxide on mesoporous SBA-15 has been tested in 1,2-dichloropropane oxidation and is characterized by means of FT-IR (Fourier transform infrared spectroscopy) and ammonia-TPD (temperature-programmed desorption). In this work, we report the spectroscopic evidence for the role of surface acidity in chloroalkane conversion. Both Lewis acidity and weakly acidic silanol groups from SBA support are involved in the adsorption and initial conversion steps. Moreover, total oxidation reaction results in the formation of new Bronsted acidic sites, which are likely associated with the generation of HCl at high temperature and its adsorption at the catalyst surface. Highly dispersed Co oxide on the mesoporous support and Co-chloride or oxychloride particles, together with the presence of several families of acidic sites originated from the conditioning effect of reaction products may explain the good activity of this catalyst in the oxidation of Chlorinated Volatile Organic Compounds.
NASA Astrophysics Data System (ADS)
Kübler, Markus; Jurzinsky, Tilman; Ziegenbalg, Dirk; Cremers, Carsten
2018-01-01
In this work the relationship between structural composition and electrochemical characteristics of Palladium(Pd)-Ruthenium(Ru) nanoparticles during alkaline methanol oxidation reaction is investigated. The comparative study of a standard alloyed and a precisely Ru-core-Pd-shell structured catalyst allows for a distinct investigation of the electronic effect and the bifunctional mechanism. Core-shell catalysts benefit from a strong electronic effect and an efficient Pd utilization. It is found that core-shell nanoparticles are highly active towards methanol oxidation reaction for potentials ≥0.6 V, whereas alloyed catalysts show higher current outputs in the lower potential range. However, differential electrochemical mass spectrometry (DEMS) experiments reveal that the methanol oxidation reaction on core-shell structured catalysts proceeds via the incomplete oxidation pathway yielding formaldehyde, formic acid or methyl formate. Contrary, the alloyed catalyst benefits from the Ru atoms at its surface. Those are found to be responsible for high methanol oxidation activity at lower potentials as well as for complete oxidation of CH3OH to CO2 via the bifunctional mechanism. Based on these findings a new Ru-core-Pd-shell-Ru-terrace catalyst was synthesized, which combines the advantages of the core-shell structure and the alloy. This novel catalyst shows high methanol electrooxidation activity as well as excellent selectivity for the complete oxidation pathway.
Cyclic Catalytic Upgrading of Chemical Species Using Metal Oxide Materials
NASA Technical Reports Server (NTRS)
White, James H. (Inventor); Rolfe, Sara L. (Inventor); Schutte, Erick J. (Inventor)
2013-01-01
Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce(sub x)B(sub y)B'(sub z)B''O(sub gamma; wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01
Cyclic catalytic upgrading of chemical species using metal oxide materials
White, James H; Schutte, Erick J; Rolfe, Sara L
2013-05-07
Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01
PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells
NASA Astrophysics Data System (ADS)
Ma, Liang; He, Hui; Hsu, Andrew; Chen, Rongrong
2013-11-01
Carbon supported PdRu catalysts with various Pd:Ru atomic ratios were synthesized by impregnation method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), electrochemical half-cell tests, and the anion-exchange membrane direct ethanol fuel cell (AEM-DEFC) tests. XRD results suggest that the PdRu metal exists on carbon support in an alloy form. TEM study shows that the bimetallic PdRu/C catalysts have slightly smaller average particle size than the single metal Pd/C catalyst. Lower onset potential and peak potential and much higher steady state current for ethanol oxidation in alkaline media were observed on the bimetallic catalysts (PdxRuy/C) than on the Pd/C, while the activity for ethanol oxidation on the pure Ru/C was not noticeable. By using Pd/C anode catalysts and MnO2 cathode catalysts, AEM-DEFCs free from the expensive Pt catalyst were assembled. The AEM DEFC using the bimetallic Pd3Ru/C anode catalyst showed a peak power density as high as 176 mW cm-2 at 80 °C, about 1.8 times higher than that using the single metal Pd/C catalyst. The role of Ru for enhancing the EOR activity of Pd/C catalysts is discussed.
Zhou, Haiqing; Yu, Fang; Sun, Jingying; He, Ran; Chen, Shuo; Chu, Ching-Wu; Ren, Zhifeng
2017-01-01
Commercial hydrogen production by electrocatalytic water splitting will benefit from the realization of more efficient and less expensive catalysts compared with noble metal catalysts, especially for the oxygen evolution reaction, which requires a current density of 500 mA/cm2 at an overpotential below 300 mV with long-term stability. Here we report a robust oxygen-evolving electrocatalyst consisting of ferrous metaphosphate on self-supported conductive nickel foam that is commercially available in large scale. We find that this catalyst, which may be associated with the in situ generated nickel–iron oxide/hydroxide and iron oxyhydroxide catalysts at the surface, yields current densities of 10 mA/cm2 at an overpotential of 177 mV, 500 mA/cm2 at only 265 mV, and 1,705 mA/cm2 at 300 mV, with high durability in alkaline electrolyte of 1 M KOH even after 10,000 cycles, representing activity enhancement by a factor of 49 in boosting water oxidation at 300 mV relative to the state-of-the-art IrO2 catalyst. PMID:28507120
Oxidation Catalysts in the Dark and the Light
2010-01-01
TiO2 with added silver, chromium, vanadium, manganese, carbon, and/or sulfur (selected transition metal ions and selected non- metals ) are very...Ranjit, Koodali T.; Klabunde, Kenneth J.; “ Catalysis by Metal Oxides,” Surface and Nanomolecular Catalysis , ed. Ryan Richards, CRC Press, NY, Ch. 2, pgs...REPORT Oxidation Catalysts in the Dark and the Light--Final Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Extensive research on mixed metal oxide
Senanayake, S. D.; Pappoe, N. A.; Nguyen-Phan, T. -D.; ...
2016-10-01
We have studied the catalytic carbon monoxide (CO) oxidation (CO+0.5O2 → CO2) reaction using a powder catalyst composed of both copper (5wt% loading) and titania (CuOx-TiO2). Our study was focused on revealing the role of Cu, and the interaction between Cu and TiO2, by systematic comparison between two nanocatalysts, CuOx-TiO2 and pure CuOx. We interrogated these catalysts under in situ conditions using X-ray Diffraction (XRD), X-ray Absorption Fine Structure (XAFS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) to probe the structure and electronic properties of the catalyst at all stages of the reaction and simultaneously probe the surface statesmore » or intermediates of this reaction. With the aid of several ex situ characterization techniques including Transmission Electron Microscopy (TEM), the local catalyst morphology and structure was also studied. Our results show that a CuOx-TiO2 system is more active than bulk CuOx for the CO oxidation reaction due to its lower onset temperature and better stability at higher temperatures. Our results also suggests that a surface Cu+ species observed in the CuOx-TiO2 interface are likely to be a key player in the CO oxidation mechanism, while implicating that the stabilization of this species is probably associated with the oxide-oxide interface. Both in situ DRIFTS and XAFS measurements reveal that there is likely to be a Cu(Ti)-O mixed oxide at this interface. We discuss the nature of this Cu(Ti)-O interface and interpret its role on the CO oxidation reaction.« less
Du, Shoucheng; Tang, Wenxiang; Guo, Yanbing; ...
2016-12-30
Monolithic catalysts have been widely used in automotive, chemical, and energy relevant industries. Nano-array based monolithic catalysts have been developed, demonstrating high catalyst utilization efficiency and good thermal/mechanical robustness. Compared with the conventional wash-coat based monolithic catalysts, they have shown advances in precise and optimum microstructure control and feasibility in correlating materials structure with properties. Recently, the nano-array based monolithic catalysts have been studied for low temperature oxidation of automotive engine exhaust and exhibited interesting and promising catalytic activities. Here, this review focuses on discussing the key catalyst structural parameters that affect the catalytic performance from the following aspects, (1)more » geometric shape and crystal planes, (2) guest atom doping and defects, (3) array size and size-assisted active species loading, and (4) the synergy effect of metal oxide in composite nano-arrays. Prior to the discussion, an overview of the current status of synthesis and development of the nano-array based monolithic catalysts is introduced. The performance of these materials in low temperature simulated engine exhaust oxidation is also demonstrated. Finally, we hope this review will elucidate the science and chemistry behind the good oxidation performance of the nanoarray- based monolithic catalysts, and serve as a timely and useful research guide for rational design and further improvement of the nano-array based monolithic catalysts for automobile emission control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Shoucheng; Tang, Wenxiang; Guo, Yanbing
Monolithic catalysts have been widely used in automotive, chemical, and energy relevant industries. Nano-array based monolithic catalysts have been developed, demonstrating high catalyst utilization efficiency and good thermal/mechanical robustness. Compared with the conventional wash-coat based monolithic catalysts, they have shown advances in precise and optimum microstructure control and feasibility in correlating materials structure with properties. Recently, the nano-array based monolithic catalysts have been studied for low temperature oxidation of automotive engine exhaust and exhibited interesting and promising catalytic activities. Here, this review focuses on discussing the key catalyst structural parameters that affect the catalytic performance from the following aspects, (1)more » geometric shape and crystal planes, (2) guest atom doping and defects, (3) array size and size-assisted active species loading, and (4) the synergy effect of metal oxide in composite nano-arrays. Prior to the discussion, an overview of the current status of synthesis and development of the nano-array based monolithic catalysts is introduced. The performance of these materials in low temperature simulated engine exhaust oxidation is also demonstrated. Finally, we hope this review will elucidate the science and chemistry behind the good oxidation performance of the nanoarray- based monolithic catalysts, and serve as a timely and useful research guide for rational design and further improvement of the nano-array based monolithic catalysts for automobile emission control.« less
A chameleon catalyst for nonheme iron-promoted olefin oxidation.
Iyer, Shyam R; Javadi, Maedeh Moshref; Feng, Yan; Hyun, Min Young; Oloo, Williamson N; Kim, Cheal; Que, Lawrence
2014-11-18
We report the chameleonic reactivity of two nonheme iron catalysts for olefin oxidation with H2O2 that switch from nearly exclusive cis-dihydroxylation of electron-poor olefins to the exclusive epoxidation of electron-rich olefins upon addition of acetic acid. This switching suggests a common precursor to the nucleophilic oxidant proposed to Fe(III)-η(2)-OOH and electrophilic oxidant proposed to Fe(V)(O)(OAc), and reversible coordination of acetic acid as a switching pathway.
NASA Astrophysics Data System (ADS)
Ertan, Salih; Şen, Fatih; Şen, Selda; Gökağaç, Gülsün
2012-06-01
In this study, platinum nanoparticle catalysts have been prepared using PtCl4 as a starting material and 1-octanethiol, 1-decanethiol, 1-dodecanethiol, and 1-hexadecanethiol as surfactants for methanol, ethanol, and 2-propanol oxidation reactions. The structure, particle sizes, and surface morphologies of the catalysts were characterized by X-ray diffraction (XRD), atomic force microscopy and transmission electron microscopy (TEM). XRD and TEM results indicate that all prepared catalysts have a face-centered cubic structure and are homogeneously dispersed on the carbon support with a narrow size distribution (2.0-1.3 nm). X-ray photoelectron spectra of the catalysts were examined and it is found that platinum has two different oxidation states, Pt (0) and Pt(IV), oxygen and sulfur compounds are H2Oads and OHads, bound and unbound thiols. The electrochemical and electrocatalytic properties of these catalysts were investigated with respect to C1-C3 alcohol oxidations by cyclic voltammetry and chronoamperometry. The highest electrocatalytic activity was obtained from catalyst I which was prepared with 1-octanethiol. This may be attributed to a decrease in the ratio of bound to unbound thiol species increase in Pt (0)/Pt(IV), H2Oads/OHads ratios, electrochemical surface area, CO tolerance and percent platinum utility.
Nakagaki, Shirley; Mantovani, Karen Mary; Machado, Guilherme Sippel; Castro, Kelly Aparecida Dias de Freitas; Wypych, Fernando
2016-02-29
Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic). These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs) and Layered Hydroxide Salts (LHSs), published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP) immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1) and intercalated with different anions (CO₃(2-) or NO₃(-)). The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.
Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering.
Liu, Zhen; Huang, Zhongyuan; Cheng, Feifei; Guo, Zhanhu; Wang, Guangdi; Chen, Xu; Wang, Zhe
2016-09-21
Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal-air batteries. Herein, we report the novel system of nickel-aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone. Bis (trifluoromethylsulfonyl)imide (NTf2) anion of ionic liquid electrolyte was selected to enhance the CO/O2 adsorption and to facilitate electro-catalyzed oxidation of Ni (OH)2 to NiOOH by increasing the electrophilicity of catalytic interface. The resulting neutral catalytic system exhibited ultra-high electrocatalytic activity and stability for CO electrooxidation than commercial and other reported precious metal catalysts. The turnover frequency (TOF) of the LDH-Au/CNTs COE catalyst was much higher than the previous reported other similar electrocatalysts, even close to the activity of solid-gas chemical catalysts at high temperature. Moreover, in the long-term durability testing, the negligible variation of current density remains exsisting after 1000 electrochemistry cycles.
Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering
Liu, Zhen; Huang, Zhongyuan; Cheng, Feifei; Guo, Zhanhu; Wang, Guangdi; Chen, Xu; Wang, Zhe
2016-01-01
Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal−air batteries. Herein, we report the novel system of nickel−aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone. Bis (trifluoromethylsulfonyl)imide (NTf2) anion of ionic liquid electrolyte was selected to enhance the CO/O2 adsorption and to facilitate electro-catalyzed oxidation of Ni (OH)2 to NiOOH by increasing the electrophilicity of catalytic interface. The resulting neutral catalytic system exhibited ultra-high electrocatalytic activity and stability for CO electrooxidation than commercial and other reported precious metal catalysts. The turnover frequency (TOF) of the LDH-Au/CNTs COE catalyst was much higher than the previous reported other similar electrocatalysts, even close to the activity of solid-gas chemical catalysts at high temperature. Moreover, in the long-term durability testing, the negligible variation of current density remains exsisting after 1000 electrochemistry cycles. PMID:27650532
Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering
NASA Astrophysics Data System (ADS)
Liu, Zhen; Huang, Zhongyuan; Cheng, Feifei; Guo, Zhanhu; Wang, Guangdi; Chen, Xu; Wang, Zhe
2016-09-01
Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal-air batteries. Herein, we report the novel system of nickel-aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone. Bis (trifluoromethylsulfonyl)imide (NTf2) anion of ionic liquid electrolyte was selected to enhance the CO/O2 adsorption and to facilitate electro-catalyzed oxidation of Ni (OH)2 to NiOOH by increasing the electrophilicity of catalytic interface. The resulting neutral catalytic system exhibited ultra-high electrocatalytic activity and stability for CO electrooxidation than commercial and other reported precious metal catalysts. The turnover frequency (TOF) of the LDH-Au/CNTs COE catalyst was much higher than the previous reported other similar electrocatalysts, even close to the activity of solid-gas chemical catalysts at high temperature. Moreover, in the long-term durability testing, the negligible variation of current density remains exsisting after 1000 electrochemistry cycles.
Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J
2014-01-01
The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.
Wang, Hongjuan; Wang, Xiaohui; Zheng, Jiadao; Peng, Feng; Yu, Hao
2015-05-01
Pt-SnO2/IrO2/CNTs anode catalyst for direct methanol fuel cell was designed and prepared with IrO2/CNTs as support for the subsequent immobilization of Pt and SnO2 at the same time. The structure of the catalysts and their catalytic performance in methanol electrooxidation were investigated and the roles of IrO2 and SnO2 in methanol electrooxidation were discussed as well. Results show that Pt-SnO2/IrO2/CNTs catalyst exhibits the best activity and durability for methanol electrooxidation when compared with Pt/CNTs, Pt/IrO2/CNTs and Pt-SnO2/CNTs. According to the results of electrochemical tests and physicochemical characterizations, the enhancements of Pt-SnO2/IrO2/CNTs were attributed to the special properties of IrO2 and SnO2, in which IrO2 mainly increases the methanol oxidation activity and SnO2 mainly improves the CO oxidation ability and durability. Therefore, Pt-SnO2/IrO2/CNTs exhibits excellent performance for methanol oxidation with higher electrocatalytic activity (I(f) of 1054 A g(Pt(-1)) and powerful anti-poisoning ability (the onset potential for CO oxidation of 0.3 V) and outstanding durability (the sustained time t in CP of 617 s), revealing a suitable anode catalyst for DMFCs.
NASA Astrophysics Data System (ADS)
Chhina, H.; Campbell, S.; Kesler, O.
The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.
NASA Astrophysics Data System (ADS)
Kong, Wenpeng; Li, Jing; Chen, Yao; Ren, Yuqing; Guo, Yonghua; Niu, Shengli; Yang, Yanzhao
2018-04-01
Constructing non-precious hybrid metal oxides with specific morphology as cost-effective and highly efficient catalysts is a promising way for the automotive exhaust purification. In this work, we report a facile strategy for the fabrication of a unique hollow Co-Ni layered double oxides (HLDO) nanocages by using zeolitic imidazole frameworks (ZIFs) as template. The synthesis of intermediate core-shell and hollow Co-Ni layered double hydroxides (HLDH) nanoflakes as well as the corresponding Co-Ni oxides products were successfully controlled, and the formation process was also explained. Among ZIF-67-derived oxides, HLDO exhibits excellent catalytic activities (complete conversion of CO into CO2 at 118 °C) and long-term stability for CO oxidation. The remarkable catalytic activities of HLDO can be attributed to high surface area (258 m2 g-1) inherited from the HLDH, which could provide more active sites for CO oxidation. In addition, active oxygen species indicated by the O 1 s XPS spectrum and improved synergistic effect between NiO and Co3O4 reflected by H2-TPR, further explain the enhanced performance of the HLDO catalysts. The presented strategy for controlled design and synthesis of hollow multicomponent metal oxides will provide prospects in developing highly effective catalysts.
Effect of pretreatment on pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature.
Huang, Shaoyong; Zhang, Changbin; He, Hong
2013-06-01
The effect of pretreatment on Pd/Al2O3 catalysts for the catalytic oxidation of o-xylene at low temperature was studied by changing the pretreatment and testing conditions. The fresh and pretreated Pd/Al2O3 catalysts were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The results showed that the pretreatment dramatically changed the Pd/PdO ratio and then significantly affected the Pd/Al2O3 activity; while the pretreatment had not much influence on Pd particle size. The Pd/Al2O3 pre-reduced at 300 degrees C/400 degrees C, which has fully reduced Pd species, showed the highest activity; while the fresh Pd/Al2O3, which has fully oxidized Pd species, presented the worst performance, indicating the Pd chemical state plays an important role in the catalytic activity for the o-xylene oxidation. It is concluded that metallic Pd is the active species on the Pd/Al2O3 catalyst for the catalytic oxidation of o-xylene at low temperature.
Zhu, Hongjian; Xu, Jing; Yichuan, Yuge; Wang, Zhongpeng; Gao, Yibo; Liu, Wei; Yin, Henan
2017-12-15
Mesoporous ceria and transition metal-doped ceria (M 0.1 Ce 0.9 O 2 (M=Mn, Fe, Co, Cu)) catalysts were synthesized via CTAB-assisted method. The physicochemical properties of the prepared catalysts were characterized by XRD, DLS analysis, SEM, BET, Raman, H 2 -TPR and in situ DRIFT techniques. The catalytic activity tests for soot oxidation were performed under tight contact of soot/catalyst mixtures in the presence of O 2 and NO+O 2 , respectively. The obtained results show that mesoporous ceria-based solid solutions can be formed with large surface areas and small crystallite size. Transition metals doping enhances the oxygen vacancies and improves redox properties of the solids, resulting in the increased NO oxidation capacity and NO x adsorption capacity. The soot oxidation activity in the presence of O 2 is enhanced by doping transition metal, which may be related to their high surface area, increased oxygen vacancies and improved redox properties. The soot combustion is accelerated by the NO 2 -assisted mechanism under NO+O 2 atmosphere, facilitating an intimate contact between the soot and the catalyst. Copyright © 2017 Elsevier Inc. All rights reserved.
Nanostructured manganese oxide on silica aerogel: a new catalyst toward water oxidation.
Najafpour, Mohammad Mahdi; Salimi, Saeideh; Madadkhani, Sepideh; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I
2016-12-01
Herein we report on the synthesis and characterization of nano-sized Mn oxide/silica aerogel with low density as a good catalyst toward water oxidation. The composite was synthesized by a simple and low-cost hydrothermal procedure. In the next step, we studied the composite in the presence of cerium(IV) ammonium nitrate and photo-produced Ru(bpy) 3 3+ as a water-oxidizing catalyst. The low-density composite is a good Mn-based catalyst with turnover frequencies of ~0.3 and 0.5 (mmol O 2 /(mol Mn·s)) in the presence of Ru(bpy) 3 3+ and cerium(IV) ammonium nitrate, respectively. In addition to the water-oxidizing activities of the composite under different conditions, its self-healing reaction in the presence of cerium(IV) ammonium nitrate was also studied.
Cai, Chun; Zhang, Hui; Zhong, Xin; Hou, Liwei
2014-12-01
Mesoporous silica SBA-15 supported iron and cobalt catalysts (Fe-Co/SBA-15) were prepared and used in the electrochemical (EC) enhanced heterogeneous activation of peroxydisulfate (PDS, S2O8(2-)) process for the removal of Orange II. The effects of some important reaction parameters such as initial pH, current density, PDS concentration and dosage of Fe-Co/SBA-15 catalysts were investigated. The results showed that the decolorization efficiency was not significantly affected by the initial pH value, and it did increase with the higher PDS concentration, current density and Fe-Co/SBA-15 dosage. Both the sulfate radical (SO4(·-)) and the hydroxyl radical (OH) are considered as the primary reactive oxidants for the Orange II decolorization. The Fe-Co/SBA-15 catalyst maintained its high activity during repeated batch experiments. The intermediate products were identified by GC-MS analysis and a plausible degradation pathway is proposed accordingly. The removal efficiencies of chemical oxygen demand (COD) and total organic carbon (TOC) were 52.1% and 31.9%, respectively after 60 min of reaction time but reached 82.9% and 51.5%, respectively when the reaction time was extended to 24 h. Toxicity tests with activated sludge indicated that the toxicity of the solution increased during the first 30 min and then decreased as the oxidation proceeded. Copyright © 2014 Elsevier Ltd. All rights reserved.
PCDD/F-isomers signature - Effect of metal chlorides and oxides.
Zhang, Mengmei; Buekens, Alfons; Olie, Kees; Li, Xiaodong
2017-10-01
A recent paper presented the results from de novo tests, involving 11 distinct catalytic systems (oxides and chlorides of Cd, Cr, Cu, Ni, and Zn, as well as a blank sample). Their PCDD and PCDF formation activity was shown. This paper further assesses their isomer signature, with special emphasis on those congeners associated with chlorophenol precursor routes, and on 2,3,7,8- and 1,9-substituted congeners. Each metal catalyst generates a significantly different signature, also affected by the presence or absence of oxygen in the reaction atmosphere. Oxide and chloride catalysts supply distinctive signatures, suggesting singly weighted pathways. Quite a large number of data was handled, so that throughout this analysis special attention was given to testing and developing an appropriate methodology, allowing appropriate correlation analysis and statistical data treatment. The large tables resulting relate to the 11 catalytic systems, studied at 3 levels of oxygen concentration, with 94 PCDD/F-congeners considered individually. They constitute an extensive reference data bank for confronting novel experimental data with this vast data set. Copyright © 2017. Published by Elsevier Ltd.
Trivedi, Suverna; Prasad, Ram
2018-03-01
Compressed natural gas (CNG) is most appropriate an alternative of conventional fuel for automobiles. However, emissions of carbon-monoxide and methane from such vehicles adversely affect human health and environment. Consequently, to abate emissions from CNG vehicles, development of highly efficient and inexpensive catalysts is necessary. Thus, the present work attempts to scan the effects of precipitants (Na 2 CO 3 , KOH and urea) for nickel cobaltite (NiCo 2 O 4 ) catalysts prepared by co-precipitation from nitrate solutions and calcined in a lean CO-air mixture at 400°C. The catalysts were used for oxidation of a mixture of CO and CH 4 (1:1). The catalysts were characterized by X-ray diffractometer, Brunauer-Emmett-Teller surface-area, X-ray photoelectron spectroscopy; temperature programmed reduction and Scanning electron microscopy coupled with Energy-Dispersive X-Ray Spectroscopy. The Na 2 CO 3 was adjudged as the best precipitant for production of catalyst, which completely oxidized CO-CH 4 mixture at the lowest temperature (T 100 =350°C). Whereas, for catalyst prepared using urea, T 100 =362°C. On the other hand the conversion of CO-CH 4 mixture over the catalyst synthesized by KOH limited to 97% even beyond 400°C. Further, the effect of higher calcination temperatures of 500 and 600°C was examined for the best catalyst. The total oxidation of the mixture was attained at higher temperatures of 375 and 410°C over catalysts calcined at 500 and 600°C respectively. Thus, the best precipitant established was Na 2 CO 3 and the optimum calcination temperature of 400°C was found to synthesize the NiCo 2 O 4 catalyst for the best performance in CO-CH 4 oxidation. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abney, Carter W.; Patterson, Jacob T.; Gilhula, James C.
Precise control over the chemical structure of hard-matter materials is a grand challenge of basic science and a prerequisite for the development of advanced catalyst systems. In this work we report the application of a sacrificial metal-organic framework (MOF) template for the synthesis of a porous supported metal oxide catalyst, demonstrating proof-of-concept for a highly generalizable approach to the preparation new catalyst materials. Application of 2,2’-bipyridine-5,5’-dicarboxylic acid as the organic strut in the Ce MOF precursor results in chelation of Cu 2+ and affords isolation of the metal oxide precursor. Following pyrolysis of the template, homogeneously dispersed CuO nanoparticles aremore » formed in the resulting porous CeO 2 support. By partially substituting non-chelating 1,1’-biphenyl-4,4’-dicarboxylic acid, the Cu 2+ loading and dispersion can be finely tuned, allowing precise control over the CuO/CeO 2 interface in the final catalyst system. Characterization by x-ray diffraction, x-ray absorption fine structure spectroscopy, and in situ IR spectroscopy/mass spectrometry confirm control over interface formation to be a function of template composition, constituting the first report of a MOF template being used to control interfacial properties in a supported metal oxide. Using CO oxidation as a model reaction, the system with the greatest number of interfaces possessed the lowest activation energy and better activity under differential conditions, but required higher temperature for catalytic onset and displayed inferior efficiency at 100 °C than systems with higher Cu-loading. This finding is attributable to greater CO adsorption in the more heavily-loaded systems, and indicates catalyst performance for these supported oxide systems to be a function of at least two parameters: size of adsorption site and extent of interface. In conclusion, optimization of catalyst materials thus requires precise control over synthesis parameters, such as is demonstrated by this MOF-templating method.« less
Tan, Qiang; Zhu, Haiyan; Guo, Shengwu; Chen, Yuanzhen; Jiang, Tao; Shu, Chengyong; Chong, Shaokun; Hultman, Benjamin; Liu, Yongning; Wu, Gang
2017-08-31
Deactivation of an anode catalyst resulting from the poisoning of CO ad -like intermediates is one of the major problems for methanol and ethanol electro-oxidation reactions (MOR & EOR), and remains a grand challenge towards achieving high performance for direct alcohol fuel cells (DAFCs). Herein, we report a new approach for the preparation of ultrafine cobalt-doped CeO 2 dots (Co-CeO 2 , d = 3.6 nm), which can be an effective anti-poisoning promoter for Pd catalysts towards MOR and EOR in alkaline media. Compared to Pd/CeO 2 and pure Pd, the hybrid Pd/Co-CeO 2 nanocomposite catalyst exhibited a much enhanced activity and remarkable anti-poisoning ability for both MOR and EOR. The nanocomposite catalyst showed much higher mass activity (4×) than a state-of-the-art PtRu catalyst. The promotional mechanism was elucidated using extensive characterization and density-functional theory (DFT). A bifunctional effect of the Co-CeO 2 dots was discovered to be due to (i) an enhanced electronic interaction between Co-CeO 2 and Pd dots and (ii) the increased oxygen storage capacity of Co-CeO 2 dots to facilitate the oxidation of CO ad . Therefore, the Pd/Co-CeO 2 nanocomposite appears to be a promising catalyst for advanced DAFCs with low cost and high performance.
Hung, Chang-Mao
2009-04-15
Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.
Zhuang, Haifeng; Han, Hongjun; Ma, Wencheng; Hou, Baolin; Jia, Shengyong; Zhao, Qian
2015-07-01
Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl2 as activation agent, which was used as a support for ferric oxides to form a catalyst (FeOx/SBAC) by a simple impregnation method. The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater (CGW). The results indicated that the prepared FeOx/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide pH range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1g/L of catalyst, and the treated effluent concentrations of COD, total phenols, BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated FeOx/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, FeOx/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by FeOx/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application. Copyright © 2015. Published by Elsevier B.V.
Willkomm, Janina; Muresan, Nicoleta M.
2015-01-01
The catalyst [CoIIIBr((DO)(DOH)(4-BnPO3H2)(2-CH2py)pn)]Br, CoP3, has been synthesised to improve the stability and activity of cobalt catalysts immobilised on metal oxide surfaces. The CoP3 catalyst contains an equatorial diimine–dioxime ligand, (DOH)2pn = N2,N2′-propanediyl-bis(2,3-butanedione-2-imine-3-oxime), with a benzylphosphonic acid (4-BnPO3H2) group and a methylpyridine (2-CH2py) ligand covalently linked to the bridgehead of the pseudo-macrocyclic diimine–dioxime ligand. The phosphonic acid functionality provides a robust anchoring group for immobilisation on metal oxides, whereas the pyridine is coordinated to the Co ion to enhance the catalytic activity of the catalyst. Electrochemical investigations in solution confirm that CoP3 shows electrocatalytic activity for the reduction of aqueous protons between pH 3 and 7. The metal oxide anchor provides the catalyst with a high affinity for mesostructured Sn-doped In2O3 electrodes (mesoITO; loading of approximately 22 nmol cm–2) and the electrostability of the attached CoP3 was confirmed by cyclic voltammetry. Finally, immobilisation of the catalyst on ruthenium-dye sensitised TiO2 nanoparticles in aqueous solutions in the presence of a hole scavenger establishes the activity of the catalyst in this photocatalytic scheme. The advantages of the elaborate catalyst design in CoP3 in terms of stability and catalytic activity are shown by direct comparison with previously reported phosphonated Co catalysts. We therefore demonstrate that rational ligand design is a viable route for improving the performance of immobilised molecular catalysts. PMID:29142677
NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.
Xu, Chi; Liu, Jian; Zhao, Zhen; Yu, Fei; Cheng, Kai; Wei, Yuechang; Duan, Aijun; Jiang, Guiyuan
2015-05-01
Selective catalytic reduction technology using NH3 as a reducing agent (NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction (H2-TPR). The catalytic activities of V5CexSby/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5CexSby/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400°C, the V5CexSby/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210°C, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased. Copyright © 2015. Published by Elsevier B.V.
Oxidation of benzyl alcohol by K2FeO4 to benzaldehyde over zeolites
NASA Astrophysics Data System (ADS)
Wang, Yuan-Yuan; Song, Hua; Song, Hua-Lin; Jin, Zai-Shun
2016-10-01
A novel and green procedure for benzaldehyde synthesis by potassium ferrate oxidation of benzyl alcohol employing zeolite catalysts was studied. The prepared oxidant was characterized by SEM and XRD. The catalytic activity of various solid catalysts was studied using benzyl alcohol as a model compound. USY was found to be a very efficient catalyst for this particular oxidation process. Benzaldehyde yields up to 96.0% could be obtained at the following optimal conditions: 0.2 mL of benzyl alcohol, 4 mmol of K2FeO4, 0.5 g of USY zeolite; 20 mL of cyclohexene, 0.3 mL of acetic acid (36 wt %), 30°C temperature, 4 h reaction time.
Cat cracking technology with reduced discharge of harmful substances to the atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elshin, A.I.; Aliev, R.R.; Solyar, B.Z.
1995-11-01
The operation of cat crackers creates a number of ecological problems involving pollution of the atmosphere. In the regeneration of coked catalyst, up to 10 tonnes/day of sulfur oxides are discharged to the atmosphere, along with catalyst dust in amounts up to 2 tonnes/day and carbon monoxide up to 120 tonnes/day. With increasingly severe requirements for environmental protection, the problem of reducing harmful discharges to the atmosphere has become more acute, necessitating either preliminary hydrotreating of the feed or scrubber cleanup of the stack gas to remove sulfur oxides. The high cost of these processes has provided the impetus formore » proposing various types of bifunctional cracking catalysts and effective catalyst additives to bind sulfur oxides directly in the regenerator. Basic oxides (of aluminum, magnesium, calcium, etc.) react with sulfur oxides to form stable sulfates that are then reduced to hydrogen sulfide in the reactor, while re-forming the basic oxide. Binding sulfur oxides in the regenerator is favored by the presence of an oxidizing agent or by the introduction of a promoter for afterburning carbon monoxide to dioxide. Compositions consisting mainly of aluminum oxide ({>=}90% by weight) have been patented as catalyst additives for binding sulfur oxides; other compositions that have been patented consist of Group II metal oxides and other oxides that have oxidizing properties. The additives are introduced into the catalyst charge in amounts of 5-10% by weight. On the basis of research, an aluminium oxide additive, PS-17, has been developed for binding sulfur oxides in the course of cracking.« less
Corradini, Patricia Gon; Antolini, Ermete; Perez, Joelma
2013-07-28
Pt-Pr/C electrocatalysts were prepared using a modified formic acid method, and their activity for carbon monoxide and ethanol oxidation was compared to Pt/C. No appreciable alloy formation was detected by XRD analysis. By TEM measurements it was found that Pt particle size increases with an increasing Pr content in the catalysts and with decreasing metal precursor addition time. XPS measurements indicated Pt segregation on the catalyst surface and the presence of Pr2O3 and PrO2 oxides. The addition of Pr increased the electro-catalytic activity of Pt for both CO and CH3CH2OH oxidation. The enhanced activity of Pt-Pr/C catalysts was ascribed to both an electronic effect, caused by the presence of Pr2O3, and the bi-functional mechanism, caused by the presence of PrO2.
NASA Technical Reports Server (NTRS)
Akyurtlu, Ates; Akyurtlu, Jale F.; Ammons, Vaughnery; Battle, Taikelia; Gay, Amy; Bray, Kyle; Washington, Boe; Schryer, David (Technical Monitor); Jordan, Jeff (Technical Monitor)
2002-01-01
The Noble Metal Reducible Oxide (NMRO) catalysts for the low temperature oxidation of carbon monoxide were developed by NASA for the reoxidation of carbon monoxide which forms by the dissociation of carbon dioxide during the operation of sealed carbon dioxide lasers. The NMRO catalyst, which consists of a noble metal in conjunction with a reducible metal oxide, was evaluated under conditions that will be encountered in a CO2 laser operation, namely temperatures in the range 298 to 373 K and no significant reaction gas components other than CO, CO2 and O2. The NMRO catalysts may have significant potential for spin-off applications such as the prevention of carbon monoxide build-up in closed spaces as in space vehicle cabins or submarines, and the elimination of the cold start-up problem of automobile exhaust catalysts. The most significant difference in the conditions of these possible future applications is the high moisture content of the gases to be processed. Lack of understanding of the effects of water vapor and high temperature on catalyst activity and operation for extended periods are currently the main stumbling blocks for the transfer of this NASA technology to be used for commercial purposes. In the original proposal the following objectives were stated: To obtain experimental data on the adsorption, desorption and reaction characteristics of CO and CO2 the catalysts under high moisture conditions; to collect evidence on the presence of carbonate and hydroxyl surface species and their involvement in the CO oxidation mechanism; and to model the reaction system using a Monte-Carlo simulation to gain insight on the various steps involved. After the work has commenced the NASA technical monitor Mr. David Scheyer informed us that there was increased interest in the possible use of the NMRO catalysts as automobile exhaust catalysts and therefore NASA wanted to know whether the catalysts can operate at high temperatures as well as with high moisture gases. At that meeting it was decided that investigation of the high temperature performance of the NMRO catalysts should be given priority and replace the Monte-Carlo simulation objective. As a result, the modified objectives of the investigation were taken as the investigation of the high-temperature activity of the NMRO catalysts, and the effect of water vapor on the performance of these catalysts.
Electrochemical water splitting using nano-zeolite Y supported tungsten oxide electrocatalysts
NASA Astrophysics Data System (ADS)
Anis, Shaheen Fatima; Hashaikeh, Raed
2018-02-01
Zeolites are often used as supports for metals and metal oxides because of their well-defined microporous structure and high surface area. In this study, nano-zeolite Y (50-150 nm range) and micro-zeolite Y (500-800 nm range) were loaded with WO3, by impregnating the zeolite support with ammonium metatungstate and thermally decomposing the salt thereafter. Two different loadings of WO3 were studied, 3 wt.% and 5 wt.% with respect to the overall catalyst. The prepared catalysts were characterized for their morphology, structure, and surface areas through scanning electron microscope (SEM), XRD, and BET. They were further compared for their electrocatalytic activity for hydrogen evolution reaction (HER) in 0.5 M H2SO4. On comparing the bare micro-zeolite particles with the nano-form, the nano-zeolite Y showed higher currents with comparable overpotentials and lower Tafel slope of 62.36 mV/dec. WO3 loading brought about a change in the electrocatalytic properties of the catalyst. The overpotentials and Tafel slopes were observed to decrease with zeolite-3 wt.% WO3. The smallest overpotential of 60 mV and Tafel slope of 31.9 mV/dec was registered for nano-zeolite with 3 wt.% WO3, while the micro-zeolite gave an overpotential of 370 mV and a Tafel slope of 98.1 mV/dec. It was concluded that even with the same metal oxide loading, nano-zeolite showed superior performance, which is attributed to its size and hence easier escape of hydrogen bubbles from the catalyst.
Li, Fusheng; Li, Lin; Tong, Lianpeng; Daniel, Quentin; Göthelid, Mats; Sun, Licheng
2014-11-21
Electrochemically driven water oxidation has been performed using a molecular water oxidation catalyst immobilized on hybrid carbon nanotubes and nano-material electrodes. A high turnover frequency (TOF) of 7.6 s(-1) together with a high catalytic current density of 2.2 mA cm(-2) was successfully obtained at an overpotential of 480 mV after 1 h of bulk electrolysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Franklin
Two main categories of heterogeneous catalysts are metal and metal oxide which catalyze 80% chemical reactions at solid-gas and solid-liquid interfaces. Metal oxide catalysts are much more complicated than metal catalysts. The reason is that the cations of the metal atoms could exhibit a few different oxidation states on surface of the same catalyst particle such as Co 3O 4 or change of their oxidation states under different reactive environments. For a metal catalyst, there is only one oxidation state typically. In addition, surface of a metal oxide can be terminated with multiple surface functionalities including O atoms with differentmore » binding configurations and OH group. For metal, only metal atoms are exposed typically. Obviously, the complication of surface chemistry and structure of a metal oxide makes studies of surface of an oxide catalyst very challenging. Due to the complication of surface of a meal oxide, the electronic and geometric structures of surface of a metal oxide and the exposed species have received enormous attention since oxide catalysts catalyze at least 1/3 chemical reactions in chemical and energy industries. Understanding of catalytic reactions on early transition metal oxide-based catalysts is fundamentally intriguing and of great practical interest in energy- and environment-related catalysis. Exploration of surface chemistry of oxide-based catalysts at molecular level during catalysis has remained challenging though it is critical in deeply understanding catalysis on oxide-based catalysts and developing oxide-based catalysts with high activity and selectivity. Thus, the overall objective of this project is to explore surface chemistry and structure of early transition metal oxide-based catalysts through in-situ characterization of surface of catalysts, measurements of catalytic performances, and then build an intrinsic correlation of surface chemistry and structure with their catalytic performances in a few important catalytic reactions, and essentially fundamentally understand catalytic mechanism. Furthermore, this correlation will guide the design of catalysts with high activity and selectivity.« less
Kazemnejadi, Milad; Nikookar, Mahsa; Mohammadi, Mohammad; Shakeri, Alireza; Esmaeilpour, Mohsen
2018-05-18
Efficient and selective oxidation of alcohol to the corresponding carbonyl and/or nitrile was carried out by a new water-soluble melamine-based dendritic Mn(III) complex (Melamine-Mn (III)-Schiff base complex) in the presence of 2,4,6-trichloro-1,3,5-triazine (TCT) and O 2 at room temperature. Also, the oxidation of amine to the corresponding nitrile with high selectivity and conversion was performed at room temperature using the current method and high amounts of turnover frequencies (TOFs) were obtained for reactions. This system was also applicable for direct preparation of oxime through oxidation of alcohol. The catalyst was characterized by Fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis), thermogravimetric analysis (TGA), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), CHN and inductively coupled plasma (ICP) analyses. Also, oxidation/reduction behavior of the catalyst was studied by cyclic voltammetry (CV). Moreover, chemoselectivity of the catalyst was discussed with various combinations. The water-soluble catalyst could be recycled from the reaction mixture and reused for several times with a very low losing in efficiency. The recovered catalyst was also investigated with various analyses. Finally, gram scale preparation of nitrile was evaluated by present method. Copyright © 2018 Elsevier Inc. All rights reserved.
Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping
2008-01-01
This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.
Chen, Sheng-Yu; Song, Wenqiao; Lin, Hui-Jan; ...
2016-03-08
In this work, a generic one-pot hydrothermal synthesis route has been successfully designed and utilized to in situ grow uniform manganese oxide nanorods and nanowires onto the cordierite honeycomb monolithic substrates, forming a series of nanoarray-based monolithic catalysts. During the synthesis process, three types of potassium salt oxidants have been used with different reduction potentials, i.e., K 2Cr 2O 7, KClO 3, and K 2S 2O 8, denoted as HM-DCM, HM-PCR, and HM-PSF, respectively. The different reduction potentials of the manganese source (Mn 2+) and oxidants induced the formation of manganese oxide nanoarrays with different morphology, surface area, and reactivitymore » of carbon monoxide (CO) oxidation. K 2Cr 2O 7 and KClO 3 can induce sharp and long nanowires with slow growth rates due to their low reduction potentials. In comparison, the nanoarrays of HM-PSF presented shorter nanorods but displayed an efficient 90% CO oxidation conversion at 200 °C (T90) without noble-metal loading. Reducibility tests for the three monolithic catalysts by hydrogen temperature-programmed reduction revealed an activation energy order of HM-PSF > HM-DCM > HM-PCR for CO oxidation. The characterizations of oxygen temperature-programmed desorption and X-ray photoelectron spectroscopy indicated the abundant surface-adsorbed oxygen and lattice oxygen contributing to the superior reactivity of HM-PSF. Finally, the straightforward synthetic process showed a scalable, low-cost, and template-free method to fabricate manganese oxide nanoarray monolithic catalysts for exhaust treatment.« less
Perovskite catalysts for oxidative coupling
Campbell, K.D.
1991-06-25
Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.
Perovskite catalysts for oxidative coupling
Campbell, Kenneth D.
1991-01-01
Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.
40 CFR Table 2 to Subpart Yyyy of... - Operating Limitations
Code of Federal Regulations, 2010 CFR
2010-07-01
... catalyst maintain the 4-hour rolling average of the catalyst inlet temperature within the range suggested by the catalyst manufacturer. 2. each stationary combustion turbine that is required to comply with the emission limitation for formaldehyde and is not using an oxidation catalyst maintain any operating...
A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition.
Ge, Huibin; Zhang, Bin; Gu, Xiaomin; Liang, Haojie; Yang, Huimin; Gao, Zhe; Wang, Jianguo; Qin, Yong
2016-06-13
Ideal heterogeneous tandem catalysts necessitate the rational design and integration of collaborative active sites. Herein, we report on the synthesis of a new tandem catalyst with multiple metal-oxide interfaces based on a tube-in-tube nanostructure using template-assisted atomic layer deposition, in which Ni nanoparticles are supported on the outer surface of the inner Al2 O3 nanotube (Ni/Al2 O3 interface) and Pt nanoparticles are attached to the inner surface of the outer TiO2 nanotube (Pt/TiO2 interface). The tandem catalyst shows remarkably high catalytic efficiency in nitrobenzene hydrogenation over Pt/TiO2 interface with hydrogen formed in situ by the decomposition of hydrazine hydrate over Ni/Al2 O3 interface. This can be ascribed to the synergy effect of the two interfaces and the confined nanospace favoring the instant transfer of intermediates. The tube-in-tube tandem catalyst with multiple metal-oxide interfaces represents a new concept for the design of highly efficient and multifunctional nanocatalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution
NASA Technical Reports Server (NTRS)
Valdez, Thomas I.; Narayan, Sri R.; Billings, Keith J.
2011-01-01
NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to preferentially react with oxygen from the ruthenium oxide, and not oxygen from the environment. Nanoparticulate iridium black and anhydrous ruthenium oxide are weighed out and mixed to 5 18 atomic percent. They are then heat treated at 300 C under flowing argon (in order to create an inert environment) for a minimum of 14 hours. This temperature was chosen because it is approximately the creep temperature of ruthenium oxide, and is below the sintering temperature of both materials. In general, the temperature should always be below the sintering temperature of both materials. The iridium- doped ruthenium oxide catalyst is then fabricated into a PEM-based membrane- electrode assembly (MEA), and then mounted into test cells. The result is an electrolyzer system that can sustain electrolysis at twice the current density, and at the same efficiency as commercial catalysts in the range of 100-200 mA/sq cm. At 200 mA/sq cm, this new system operates at an efficiency of 85 percent, which is 2 percent greater than commercially available catalysts. Testing has shown that this material is as stable as commercially available oxygen evolution catalysts. This means that this new catalyst can be used to regenerate fuel cell systems in space, and as a hydrogen generator on Earth.
Mössbauer study of modified iron-molybdenum catalysts for methanol oxidation
NASA Astrophysics Data System (ADS)
Ivanov, K. I.; Mitov, I. G.; Krustev, St. V.; Boyanov, B. S.
2010-03-01
The preparation and catalytic properties of mixed Fe-Mo-W catalysts toward methanol oxidation are investigated. Mössbauer spectroscopy, X-ray diffraction and chemical studies revealed the formation of two types of solid solutions with compositions Fe2(MoxW1-xO4)3 and (MoxW1-x)O3. The solid solutions formed are characterized by high activity and selectivity upon methanol oxidation and are of interest in view of their practical application. Sodium-doped iron-molybdenum catalysts are also investigated and the NaFe(MoO4)2 formation was established.
Tuteja, Jaya; Nishimura, Shun; Choudhary, Hemant; Ebitani, Kohki
2015-06-08
Selective oxidation of 1,6-hexanediol into 6-hydroxycaproic acid was achieved over hydrotalcite-supported Au-Pd bimetallic nanoparticles as heterogeneous catalyst using aqueous H2 O2 . N,N-dimethyldodecylamine N-oxide (DDAO) was used as an efficient capping agent. Spectroscopic analyses by UV/Vis, TEM, XPS, and X-ray absorption spectroscopy suggested that interactions between gold and palladium atoms are responsible for the high activity of the reusable Au40 Pd60 -DDAO/HT catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bano, Mustri; Ahirwar, Devendra; Thomas, Molly; Sheikh, Mehraj Ud Din; Khan, Farid
2017-04-01
An elegant method is used to prepare silver monoliths with Pluronic F-127(F-127) as sacrificial template by modified sol-gel method. Si nanoparticles (SiNPs) and graphene oxide (GO) are added in situ to Ag/F-127 hydrogel for the reduction of ο-nitroaniline (ο-NA) to 1, 2-benzenediamine. Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric analysis (TGA), Raman Spectroscopy, Powder X-Ray Diffraction (PXRD) analysis and Brunauer-Emmett-Teller (BET) Nitrogen adsorption techniques were used for characterization of monoliths. An epoch-making catalytic activity of Ag/F-127/GO monoliths is observed in the reduction of ο-NA to 1, 2-benzenediamine in presence of NaBH4 in aqueous media. The catalyst Ag/F-127/GO took only 2 min which is the minimum time reported so far with significant rate constant claimed itself a leading catalyst for the reduction of ο-NA to 1,2-benzenediamine. Pseudo first order rate constant (k) and Turn over frequency (TOF) values are 0.231 min-1 and 30.053×1019 molecules min-1 respectively suggest that the catalyst has industrial importance. Recyclability and stability of Ag/F-127/GO catalyst are studied successfully up to 10 cycles. Energy of activation (Ea), and thermodynamic parameters viz. activation enthalpy (ΔH≠), activation Gibbs free energy (ΔG≠), and entropy of activation (ΔS≠) were also ascertained. Catalytic activities of Ag/F-127, Ag/F-127/Dextran, Ag/F-127/Trimethylbenzene (TMB), Ag/F-127/SiNPs, and Ag/F-127/Si/GO monoliths were also studied.
Selective Aerobic Oxidation of Alcohols over Atomically-Dispersed Non-Precious Metal Catalysts
Xie, Jiahan; Yin, Kehua; Serov, Alexey; ...
2016-12-15
Catalytic oxidation of alcohols often requires the presence of expensive transition metals. We show that earth-abundant Fe atoms dispersed throughout a nitrogen-containing carbon matrix catalyze the oxidation of benzyl alcohol and 5-hydroxymethylfurfural by O 2 in the aqueous phase. Furthermore, the activity of the catalyst can be regenerated by a mild treatment in H 2. An observed kinetic isotope effect indicates that β-H elimination from the alcohol is the kinetically relevant step in the mechanism, which can be accelerated by substituting Fe with Cu. Dispersed Cr, Co, and Ni also convert alcohols, demonstrating the general utility of metal–nitrogen–carbon materials formore » alcohol oxidation catalysis. Oxidation of aliphatic alcohols is substantially slower than that of aromatic alcohols, but adding 2,2,6,6-tetramethyl-1-piperidinyloxy as a co-catalyst with Fe can significantly improve the reaction rate.« less
Two Catalysts for Selective Oxidation of Contaminant Gases
NASA Technical Reports Server (NTRS)
Wright, John D.
2011-01-01
Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to nitrogen at temperatures up to 400 C, without producing nitrogen oxides. This catalyst converts ammonia completely to nitrogen, even when the concentration of ammonia is very low. No other catalyst is known to oxidize ammonia selectively at such a high temperature and low concentration. Both the metal oxide and the support contribute to the activity and selectivity of this catalyst.
NASA Astrophysics Data System (ADS)
Navarro, M. V.; López, J. M.; García, T.; Grasa, G.; Murillo, R.
2017-09-01
The operational limits of a commercial nickel-based catalyst under the conditions of a sorption-enhanced steam-methane reforming process coupled to a Ca/Cu chemical loop are investigated for high-purity H2 production in a cyclic operation. The performance of the reforming catalyst is tested by means of a high number of oxidation-reduction-reforming cycles. After 100 oxidation-reduction cycles, this catalyst retains its exceptional reforming activity. The methane conversion values are close to the thermodynamic equilibrium under very demanding conditions: temperature between 500 °C - 700 °C and mass hourly space velocity of 8.8 kgCH4 h-1 kgcat-1. After 200 cycles, the sample shows reduction in its reforming activity in line with a lower dispersion of the Ni species. Sintering of Ni nanocrystals is evidenced during the oxidation-reduction multi-cycles. The performance of the catalyst after 200 oxidation-reduction cycles mixed with a CaO-based CO2 sorbent is studied under optimal conditions calculated for the sorption-enhanced reforming process coupled to a Ca/Cu cycle (temperature of 650 °C, steam/methane ratio of 4, sorbent/catalyst ratio of 4 and space velocity of 0.75 kgCH4 h-1 kgcat-1). Remarkably, an equilibrium value over 92 vol.% H2 concentration is achieved, highlighting this catalyst as a promising candidate for the next steps of the process development.
Natali, Mirco; Berardi, Serena; Sartorel, Andrea; Bonchio, Marcella; Campagna, Sebastiano; Scandola, Franco
2012-09-11
Water oxidation catalysts: evolution of [Co(4)(H(2)O)(2)(α-PW(9)O(34))(2)](10-) to catalytically active species is assessed by laser flash photolysis in sacrificial photocatalytic cycles with Ru(bpy)(3)(2+) as a photosensitizer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, V.R.; Mulla, S.A.R.; Uphade, B.S.
1998-06-01
The influence of catalyst carrier or support (with different chemical compositions and surface properties), catalyst deposition method (viz., impregnation and coating), precursor for strontium oxide (SrO; Sr-nitrate, acetate, hydroxide, and carbonate), and loading of SrO and lanthanum oxide (La{sub 2}O{sub 3}; 0--25 wt%) on the surface properties and performance of catalyst in oxidative coupling of methane (OCM; at 850 C, gas hourly space velocity = 1.02 {times} 10{sup 5} cm{sup 3}/g{center_dot}h and CH{sub 4}/O{sub 2} = 4 or 16) was thoroughly investigated. The basicity, acidity, and O{sub 2} chemisorption of the catalysts were studied by the temperature programmed desorption (TPD)more » of CO{sub 2}, NH{sub 3}, and O{sub 2}, respectively, from 50 to 950 C. The total and strong basic sites, acidity, and OCM activity of the supported catalyst were strongly influenced by the support used and also by the La{sub 2}O{sub 3} loading on the support. The catalyst with a sintered low surface area porous silica-Alumina support and high (20 wt%) La{sub 2}O{sub 3} and SrO loadings showed the best performance in the OCM process. The OCM activity was influenced by SrO loading, but to a smaller extent, and also by the method of SrO deposition. The OCM activity of the supported catalysts could be related to their strong basic sites (measured in terms of the CO{sub 2} desorbed between 500 and 950 C).« less
Fallis, Ian A; Griffiths, Peter C; Cosgrove, Terence; Dreiss, Cecile A; Govan, Norman; Heenan, Richard K; Holden, Ian; Jenkins, Robert L; Mitchell, Stephen J; Notman, Stuart; Platts, Jamie A; Riches, James; Tatchell, Thomas
2009-07-22
The rates of catalytic oxidative decontamination of the chemical warfare agent (CWA) sulfur mustard (HD, bis(2-chlororethyl) sulfide) and a range (chloroethyl) sulfide simulants of variable lipophilicity have been examined using a hydrogen peroxide-based microemulsion system. SANS (small-angle neutron scattering), SAXS (small-angle X-ray scattering), PGSE-NMR (pulsed-gradient spin-echo NMR), fluorescence quenching, and electrospray mass spectroscopy (ESI-MS) were implemented to examine the distribution of HD, its simulants, and their oxidation/hydrolysis products in a model oil-in-water microemulsion. These measurements not only present a means of interpreting decontamination rates but also a rationale for the design of oxidation catalysts for these toxic materials. Here we show that by localizing manganese-Schiff base catalysts at the oil droplet-water interface or within the droplet core, a range of (chloroethyl) sulfides, including HD, spanning some 7 orders of octanol-water partition coefficient (K(ow)), may be oxidized with equal efficacy using dilute (5 wt. % of aqueous phase) hydrogen peroxide as a noncorrosive, environmentally benign oxidant (e.g., t(1/2) (HD) approximately 18 s, (2-chloroethyl phenyl sulfide, C(6)H(5)SCH(2)CH(2)Cl) approximately 15 s, (thiodiglycol, S(CH(2)CH(2)OH)(2)) approximately 19 s {20 degrees C}). Our observations demonstrate that by programming catalyst lipophilicity to colocalize catalyst and substrate, the inherent compartmentalization of the microemulsion can be exploited to achieve enhanced rates of reaction or to exert control over product selectivity. A combination of SANS, ESI-MS and fluorescence quenching measurements indicate that the enhanced catalytic activity is due to the locus of the catalyst and not a result of partial hydrolysis of the substrate.
Kinetic studies of the stability of Pt for No oxidation: effect of sulfur and long-term aging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pazmino, J. H.; Miller, J. T.; Mulla, S. S.
2011-01-01
The stability of Pt catalysts for NO oxidation was analyzed by observing the effect of pre-adsorbed sulfur on the reaction kinetics using a series of Pt/SBA-15 catalysts with varying Pt particle sizes (ca 2-9 nm). Our results indicate that sulfur addition did not influence catalyst deactivation of any of the Pt catalysts, resulting in unchanged turnover rates (TOR) and reaction kinetics. The presence of sulfur on Pt was confirmed by X-ray absorption fine structure spectroscopy (EXAFS) under reducing environments. However, exposure of the catalyst to NO oxidation conditions displaced sulfur from the first coordination shell of Pt, yielding Pt-O bondsmore » instead. Re-reduction fully recovered the Pt-S backscattering, implying that sulfur remained near the Pt under oxidizing conditions. X-ray photoelectron spectroscopy (XPS) and chemisorption measurements confirmed the presence of sulfur near platinum. The invariance of the NO oxidation reaction to sulfur poisoning is explained by sulfur displacement to interfacial sites and/or sulfur binding on kinetically irrelevant sites. Formation of Pt oxides remains as the main source of catalyst deactivation as observed by kinetic and X-ray absorption spectroscopy (XAS) measurements.« less
Yang, Tao; Fukuda, Ryoichi; Hosokawa, Saburo; Tanaka, Tsunehiro; Sakaki, Shigeyoshi; Ehara, Masahiro
2017-04-07
Single-atom catalysts have attracted much interest recently because of their excellent stability, high catalytic activity, and remarkable atom efficiency. Inspired by the recent experimental discovery of a highly efficient single-atom catalyst Pd 1 /γ-Al 2 O 3 , we conducted a comprehensive DFT study on geometries, stabilities and CO oxidation catalytic activities of M 1 /γ-Al 2 O 3 (M=Pd, Fe, Co, and Ni) by using slab-model. One of the most important results here is that Ni 1 /Al 2 O 3 catalyst exhibits higher activity in CO oxidation than Pd 1 /Al 2 O 3 . The CO oxidation occurs through the Mars van Krevelen mechanism, the rate-determining step of which is the generation of CO 2 from CO through abstraction of surface oxygen. The projected density of states (PDOS) of 2 p orbitals of the surface O, the structure of CO-adsorbed surface, charge polarization of CO and charge transfer from CO to surface are important factors for these catalysts. Although the binding energies of Fe and Co with Al 2 O 3 are very large, those of Pd and Ni are small, indicating that the neighboring O atom is not strongly bound to Pd and Ni, which leads to an enhancement of the reactivity of the O atom toward CO. The metal oxidation state is suggested to be one of the crucial factors for the observed catalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagstaff, N.; Prins, R.
1979-10-15
Catalysts resembling reforming catalysts were prepared to contain finely dispersed 0.75% Pt, 0.7% Re, or 0.35% Pt plus 0.1-2% Re on chlorided ..gamma..-alumina. The catalysts were dried in an oxidizing atmosphere and studied by temperature-programed reduction. Up to a Re/Pt ratio of 0.6:1 the metals were completely reduced in hydrogen below 255/sup 0/C, i.e., the platinum catalyzed rhenium reduction. A small amount of added water (< 50 ppm) also promoted rhenium reduction. Segregation of the metals occurred in oxygen above 200/sup 0/C, but at 100/sup 0/C, the rate of segregation was slow. These results suggested that under reforming conditions, Pt-Remore » catalysts are completely reduced bimetallic clusters. The mechanisms of reduction, cluster formation, and oxidative segregation are discussed.« less
Hartl, Monika; Gillis, Robert Chad; Daemen, Luke; Olds, Daniel P; Page, Katherine; Carlson, Stefan; Cheng, Yongqiang; Hügle, Thomas; Iverson, Erik B; Ramirez-Cuesta, A J; Lee, Yongjoong; Muhrer, Günter
2016-06-29
Molecular hydrogen exists in two spin-rotation coupled states: parahydrogen and orthohydrogen. Due to the variation of energy with rotational level, the occupation of ortho- and parahydrogen states is temperature dependent, with parahydrogen being the dominant species at low temperatures. The equilibrium at 20 K (99.8% parahydrogen) can be reached by natural conversion only after a lengthy process. With the use of a suitable catalyst, this process can be shortened significantly. Two types of commercial catalysts currently being used for ortho- to parahydrogen conversion are: iron(iii) oxide (Fe2O3, IONEX®), and chromium(ii) oxide doped silica catalyst (CrO·SiO2, OXISORB®). We investigate the interaction of ortho- and parahydrogen with the surfaces of these ortho-para conversion catalysts using neutron vibrational spectroscopy. The catalytic surfaces have been characterized using X-ray absorption fine structure (XAFS) and X-ray/neutron pair distribution function measurements.
Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji
2015-11-16
The effect of oxide coating on the activity of a copper-zinc oxide-based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO₂ conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides.
Xu, Lingshun; Wu, Zongfang; Jin, Yuekang; Ma, Yunsheng; Huang, Weixin
2013-08-07
We have employed XPS and TDS to study the adsorption and surface reactions of H2O, CO and HCOOH on an FeO(111)/Pt(111) inverse model catalyst. The FeO(111)-Pt(111) interface of the FeO(111)/Pt(111) inverse model catalyst exposes coordination-unsaturated Fe(II) cations (Fe(II)CUS) and the Fe(II)CUS cations are capable of modifying the reactivity of neighbouring Pt sites. Water facilely dissociates on the Fe(II)CUS cations at the FeO(111)-Pt(111) interface to form hydroxyls that react to form both water and H2 upon heating. Hydroxyls on the Fe(II)CUS cations can react with CO(a) on the neighbouring Pt(111) sites to produce CO2 at low temperatures. Hydroxyls act as the co-catalyst in the CO oxidation by hydroxyls to CO2 (PROX reaction), while they act as one of the reactants in the CO oxidation by hydroxyls to CO2 and H2 (WGS reaction), and the recombinative reaction of hydroxyls to produce H2 is the rate-limiting step in the WGS reaction. A comparison of reaction behaviors between the interfacial CO(a) + OH reaction and the formate decomposition reaction suggest that formate is the likely surface intermediate of the CO(a) + OH reaction. These results provide some solid experimental evidence for the associative reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts.
Effect of H2O2 injection patterns on catalyst bed characteristics
NASA Astrophysics Data System (ADS)
Kang, Hongjae; Lee, Dahae; Kang, Shinjae; Kwon, Sejin
2017-01-01
The decomposition process of hydrogen peroxide can be applied to a bipropellant thruster, as well as to monopropellant thruster. To provide a framework for the optimal design of the injector and catalyst bed depending on a type of thruster, this research scrutinizes the effect of injection patterns of the propellant on the performance of the catalyst bed. A showerhead injector and impinging jet injector were tested with a 50 N monopropellant thruster. Manganese oxide/γ-alumina catalyst and manganese oxide/lanthanum-doped alumina catalyst were prepared and tested. The showerhead injector provided a fast response time, suitable for pulse mode operation. The impinging jet injector mitigated the performance instability and catalyst attrition that is favorable for large scale bipropellant thrusters. The design of a dual catalyst bed was conceptually proposed based on the data obtained from firing tests.
ZnO nanoparticle catalysts for use in biodiesel production and method of making
Yan, Shuli; Salley, Steven O; Ng, K. Y. Simon
2014-11-25
A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system is comprised of a mixture of zinc oxide and a second metal oxide. The zinc oxide includes a mixture of amorphous zinc oxide and zinc oxide nanocrystals, the zinc nanocrystals having a mean grain size between about 20 and 80 nanometers with at least one of the nanocrystals including a mesopore having a diameter of about 5 to 15 nanometers. Preferably, the second metal oxide is a lanthanum oxide, the lanthanum oxide being selected as one from the group of La.sub.2CO.sub.5, LaOOH, and combinations or mixtures thereof.
Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons
Kung, H.H.; Chaar, M.A.
1988-10-11
Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.
Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons
Kung, Harold H.; Chaar, Mohamed A.
1988-01-01
Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M.sub.3 (VO.sub.4).sub.2 and MV.sub.2 O.sub.6, M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.
Electrochemical oxidation of methanol using dppm-bridged Ru/Pd, Ru/Pt and Ru/Au catalysts.
Yang, Ying; McElwee-White, Lisa
2004-08-07
The electrochemical oxidation of methanol was carried out using a series of dppm-bridged Ru/Pd, Ru/Pt and Ru/Au heterobimetallic complexes as catalysts. The major oxidation products were formaldehyde dimethyl acetal (dimethoxymethane, DMM) and methyl formate (MF). The Ru/Pd and Ru/Pt bimetallic catalysts generally afforded lower product ratios of DMM/MF and higher current efficiencies than the Ru/Au catalysts. The Ru/Au bimetallics exhibited product ratios and current efficiencies similar to those obtained from the Ru mononuclear compound CpRu(PPh(3))(2)Cl. Increasing the methanol concentration afforded higher current efficiencies, while the addition of water to the samples shifted the product distribution toward the more highly oxidized product, MF.
Pre-converted nitric oxide gas in catalytic reduction system
Hsiao, Mark C.; Merritt, Bernard T.; Penetrante, Bernardino M.; Vogtlin, George E.
1999-01-01
A two-stage catalyst comprises an oxidative first stage and a reductive second stage. The first stage is intended to convert NO to NO.sub.2 in the presence of O.sub.2. The second stage serves to convert NO.sub.2 to environmentally benign gases that include N2, CO2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber. An oxidizing first catalyst converts NO to NO.sub.2 in the presence of O.sub.2 and includes platinum/alumina, e.g., Pt/Al.sub.2 O.sub.3 catalyst. A flow of hydrocarbons (C.sub.x H.sub.y) is input from a pipe into a second chamber. For example, propene can be used as a source of hydrocarbons. The NO.sub.2 from the first catalyst mixes with the hydrocarbons in the second chamber. The mixture proceeds to a second reduction catalyst that converts NO.sub.2 to N2, CO2, and H.sub.2 O, and includes a gamma-alumina .gamma.-Al.sub.2 O.sub.3. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the second catalyst.
Pre-converted nitric oxide gas in catalytic reduction system
Hsiao, M.C.; Merritt, B.T.; Penetrante, B.M.; Vogtlin, G.E.
1999-04-06
A two-stage catalyst comprises an oxidative first stage and a reductive second stage. The first stage is intended to convert NO to NO{sub 2} in the presence of O{sub 2}. The second stage serves to convert NO{sub 2} to environmentally benign gases that include N{sub 2}, CO{sub 2}, and H{sub 2}O. By preconverting NO to NO{sub 2} in the first stage, the efficiency of the second stage for NO{sub x} reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber. An oxidizing first catalyst converts NO to NO{sub 2} in the presence of O{sub 2} and includes platinum/alumina, e.g., Pt/Al{sub 2}O{sub 3} catalyst. A flow of hydrocarbons (C{sub x}H{sub y}) is input from a pipe into a second chamber. For example, propene can be used as a source of hydrocarbons. The NO{sub 2} from the first catalyst mixes with the hydrocarbons in the second chamber. The mixture proceeds to a second reduction catalyst that converts NO{sub 2} to N{sub 2}, CO{sub 2}, and H{sub 2}O, and includes a {gamma}-Al{sub 2}O{sub 3}. The hydrocarbons and NO{sub x} are simultaneously reduced while passing through the second catalyst. 9 figs.
A highly active and stable IrO x/SrIrO 3 catalyst for the oxygen evolution reaction
Seitz, Linsey C.; Dickens, Colin F.; Nishio, Kazunori; ...
2016-09-02
Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrO x/SrIrO 3) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO 3. This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidicmore » electrolyte. Here, density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO 3 or anatase IrO 2 motifs. The IrO x/SrIrO 3 catalyst outperforms known IrO x and ruthenium oxide (RuO x) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte.« less
A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.
Seitz, Linsey C; Dickens, Colin F; Nishio, Kazunori; Hikita, Yasuyuki; Montoya, Joseph; Doyle, Andrew; Kirk, Charlotte; Vojvodic, Aleksandra; Hwang, Harold Y; Norskov, Jens K; Jaramillo, Thomas F
2016-09-02
Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrO x /SrIrO 3 ) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO 3 This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidic electrolyte. Density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO 3 or anatase IrO 2 motifs. The IrO x /SrIrO 3 catalyst outperforms known IrO x and ruthenium oxide (RuO x ) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte. Copyright © 2016, American Association for the Advancement of Science.
Production of biodiesel from Coelastrella sp. microalgae
NASA Astrophysics Data System (ADS)
Mansur, Dieni; Fitriady, Muhammad Arifuddin; Susilaningsih, Dwi; Simanungkalit, Sabar Pangihutan
2017-11-01
Microalgae have a wide area of usage and one of them it can be used for biodiesel production. In biodiesel production, lipids containing triglyceride or free fatty acid are converted into methyl ester through trans/esterification reactions. Lipids from microalgae can be extracted by acetone and dimethyl carbonate using homogenizer. Esterification of the lipids was investigated using various catalysts and source of methyl group. Activity of homogeneous catalyst such as HCl and H2SO4 and heterogeneous catalysts such as montmorillonit K-10 and ledgestone was investigated. Moreover, methanol and dimethyl carbonate as source of methyl group were also studied. Among of catalysts with methanol as source of methyl group, it was found that yield of crude biodiesel derived from Choelestrella Sp. microalgae was high over H2SO4 catalyst. On the other hand, over H2SO4 catalyst using dimethyl carbonate as source of methyl group, yield of crude biodiesel significant increase. However, FAME composition of crude biodiesel was high over HCl catalyst.
Ye, Weichun; Shi, Xuezhao; Zhang, Yane; Hong, Chenghui; Wang, Chunming; Budzianowski, Wojciech M; Xue, Desheng
2016-02-10
Palladium-cobalt alloy nanoparticles were synthesized and dispersed on carbon black support, aiming to have a less expensive catalyst. Catalytic behaviors of PdCo/C catalyst for the oxidation of hydroquinone (HQ) with H2O2 in aqueous solution were evaluated using high-performance liquid chromatography (HPLC). The results revealed that PdCo/C catalyst had better catalytic activity than an equal amount of commercial Pd/C and Co/C catalysts because of the d-band hybridization between Pd and Co. The effects of pH value, solvent, and various interferents including inorganic and organic compounds on the efficiency of HQ oxidation were further investigated. Furthermore, on the basis of mixed potential theory, comprehensive electrochemical measurements such as the open-circuit potential-time (OCP-t) technique and Tafel plot were efficient to assess the catalytic activity of the catalyst, and the results obtained were consistent with those of HPLC measurements. The efficient HQ oxidation was closely associated with the catalytic activity of PdCo nanoparticles because they accelerated the electron-transfer process and facilitated the generation of OH radicals.
Hurtado, Paloma; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V
2004-05-01
The performance of different commercially available catalysts (supported Pd, Pt, Rh, bimetallic Pd-Pt, and Cr-Cu-Ti oxide catalyst) for the oxidation of methane, alone and in presence of ammonia and hydrogen sulphide is studied in this work. Catalysts performance was evaluated both in terms of activity and resistance to poisoning. The main conclusions are that supported Pd and Rh, present the highest activities for methane oxidation, both alone and in presence of ammonia, whereas they are severely poisoned in presence of H2S. Pt and Cr-Cu-Ti are less active but more sulphur resistant, but their activity is lower than the residual activity of sulphur-deactivated Pd and Rh catalysts. The Pd-Pt catalyst exhibits low activity and it is quickly deactivated in presence of hydrogen sulphide.
Eilert, André; Roberts, F. Sloan; Friebel, Daniel; ...
2016-04-04
Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO 2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO 2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)–carbonate/hydroxide is also reported. In conclusion, this study highlights the importance of using oxidized copper precursors formore » constructing selective CO 2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Sol; Thornburg, Nicholas E.; Li, Zhanyong
In this study by developing structurally well-defined, supported oxide catalysts remains a significant challenge. Here, we report the grafting of Nb(V) oxide sites onto the nodes of the Zr-based metal organic framework (MOF) NU-1000 as a stable, well-defined catalyst support. Nb(V) oxide was deposited with loadings up to 1.6 mmol/g via two post-synthetic methods: atomic layer deposition in a MOF (AIM), and solution-phase grafting in a MOF (SIM). Difference envelope density (DED) measurements indicated that the two synthetic methods resulted in different local structures of the Nb(V) ions within NU-1000. Despite their high Nb(V) loadings, which were equivalent to >60%more » surface coverage, nearly all Nb(V) sites of the MOF-supported catalysts were active sites for alkene epoxidation, as confirmed by phenylphosphonic acid titration. The MOF-supported catalysts were more selective than the control Nb-ZrO 2 catalyst for cyclohexene epoxidation with aqueous H 2O 2, and were far more active on a gravimetric basis.« less
Fathima, Nishtar Nishad; Aravindhan, Rathinam; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni
2008-01-01
Catalytic wet hydrogen peroxide oxidation of an anionic dye has been explored in this study. Copper(II) complex of NN'-ethylene bis(salicylidene-aminato) (salenH2) has been encapsulated in super cages of zeolite-Y by flexible ligand method. The catalyst has been characterized by Fourier transforms infra red spectroscopy, X-ray powder diffractograms, Thermo-gravimetric and differential thermal analysis and nitrogen adsorption studies. The effects of various parameters such as pH, catalyst and hydrogen peroxide concentration on the oxidation of dye were studied. The results indicate that complete removal of color has been obtained after a period of less than 1h at 60 degrees C, 0.175M H2O2 and 0.3g l(-1) catalyst. More than 95% dye removal has been achieved using this catalyst for commercial effluent. These studies indicate that copper salen complex encapsulated in zeolite framework is a potential heterogeneous catalyst for removal of color from wastewaters.
Vukmirovic, Miomir B.; Kuttiyiel, Kurian A.; Meng, Hui; ...
2016-09-13
Reducing the amount of Pt, the most costly component of both anode and cathode fuel cell catalysts, has attracted considerable attention from the research community. An approach is reported herein to deposit sub-monolayer to multilayer amounts of Pt and other noble metals on metal oxides and oxidized carbon materials. The process is exemplified by Pt deposition on RuO 2(110). The Pt deposit consists of Pt atoms arranged in a c(2×2) array, that is, a 0.25 monolayer (ML). The deposit has lower catalytic activity for the oxygen reduction reaction (ORR) and similar activity for the hydrogen oxidation reaction compared to Pt(111).more » These activities are explained by a large calculated upshift of the d-band center of Pt atoms and larger Pt–Pt interatomic distances than those of Pt(111). A catalyst with Pt coverage larger than 0.25 ML on oxide surfaces and oxidized carbon materials is shown to be active for the ORR as well as for other electrocatalytic reactions. A PtRhSnO 2/C catalyst shows high activity for ethanol oxidation as a result of its ability to effectively cleave the C–C bond in ethanol. Furthermore, Pt deposited on reduced graphene oxide shows high Pt mass ORR activity and good stability.« less
Yang, Huawei; Jiang, Bin; Sun, Yongli; Zhang, Luhong; Huang, Zhaohe; Sun, Zhaoning; Yang, Na
2017-07-05
In this work, the simple preparation of novel polymer supported polyoxometallates (POMs) catalysts has been reported. Soluble task-specific cross-linked poly (ionic liquid) (PIL) was prepared with N,N-dimethyl-dodecyl-(4-vinylbenzyl) ammonium chloride and divinylbenzene as co-monomers. The as-prepared cationic PILs were assembled with different commercial POMs to form the interlinked mesoporous catalysts, and the formation mechanism was provided. The catalytic oxidation activities of the catalysts were closely related to the formation pathway of their corresponding peroxide active species. The catalyst with H 2 W 12 O 42 10- as counterion, which exhibited the best activity in the oxidation of benzothiophene (BT) and dibenzothiophene (DBT) to sulfones in model oil with hydrogen peroxide (H 2 O 2 , 30wt%) as oxidant, was characterized by different techniques and systematically studied for its sulfur removal performance. As for the oxidative desulfurization of a real diesel, it was observed that almost all of the original sulfur compounds could be completely converted, and the catalyst could be reused for at least eight cycles without noticeable changes in both catalytic activity and chemical structure. In the end, a catalytic mechanism was put forward with the assistant of Raman analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Baitao, E-mail: btli@scut.edu.cn; Zhu, Yanrun; Jin, Xiaojing
2015-01-15
Cobalt-containing SBA-15 and MCM-41 (Co-SBA-15 and Co-MCM-41) mesoporous catalysts were prepared via ultrasonic-assisted “pH-adjusting” technique in this study. Their physiochemical structures were comprehensively characterized and correlated with catalytic activity in oxidation of styrene. The nature of cobalt species depended on the type of mesoporous silica as well as pH values. The different catalytic performance between Co-SBA-15 and Co-MCM-41 catalysts originated from cobalt species. Cobalt species were homogenously incorporated into the siliceous framework of Co-SBA-15 in single-site Co(II) state, while Co{sub 3}O{sub 4} particles were loaded on Co-MCM-41 catalysts. The styrene oxidation tests showed that the single-site Co(II) state was moremore » beneficial to the catalytic oxidation of styrene. The higher styrene conversion and benzaldehyde selectivity over Co-SBA-15 catalysts were mainly attributed to single-site Co(II) state incorporated into the framework of SBA-15. The highest conversion of styrene (34.7%) with benzaldehyde selectivity of 88.2% was obtained over Co-SBA-15 catalyst prepared at pH of 7.5, at the mole ratio of 1:1 (styrene to H{sub 2}O{sub 2}) at 70 °C. - Graphical abstract: Cobalt-containing mesoporous silica catalysts were developed via ultrasonic-assisted “pH-adjusting” technique. Compared with Co{sub 3}O{sub 4} in Co-MCM-41, the single-site Co(II) state in Co-SBA-15 was more efficient for the styrene oxidation. - Highlights: • Fast and cost-effective ultrasonic technique for preparing mesoporous materials. • Incorporation of Co via ultrasonic irradiation and “pH-adjusting”. • Physicochemical comparison between Co-SBA-15 and Co-MCM-41. • Correlation of styrene oxidation activity and catalyst structural property.« less
Huynh, Michael; Ozel, Tuncay; Liu, Chong; Lau, Eric C.
2017-01-01
Oxygen evolution reaction (OER) catalysts that are earth-abundant and are active and stable in acid are unknown. Active catalysts derived from Co and Ni oxides dissolve at low pH, whereas acid stable systems such as Mn oxides (MnOx) display poor OER activity. We now demonstrate a rational approach for the design of earth-abundant catalysts that are stable and active in acid by treating activity and stability as decoupled elements of mixed metal oxides. Manganese serves as a stabilizing structural element for catalytically active Co centers in CoMnOx films. In acidic solutions (pH 2.5), CoMnOx exhibits the OER activity of electrodeposited Co oxide (CoOx) with a Tafel slope of 70–80 mV per decade while also retaining the long-term acid stability of MnOx films for OER at 0.1 mA cm–2. Driving OER at greater current densities in this system is not viable because at high anodic potentials, Mn oxides convert to and dissolve as permanganate. However, by exploiting the decoupled design of the catalyst, the stabilizing structural element may be optimized independently of the Co active sites. By screening potential–pH diagrams, we replaced Mn with Pb to prepare CoFePbOx films that maintained the high OER activity of CoOx at pH 2.5 while exhibiting long-term acid stability at higher current densities (at 1 mA cm–2 for over 50 h at pH 2.0). Under these acidic conditions, CoFePbOx exhibits OER activity that approaches noble metal oxides, thus establishing the viability of decoupling functionality in mixed metal catalysts for designing active, acid-stable, and earth-abundant OER catalysts. PMID:29163926
NASA Technical Reports Server (NTRS)
Poziomek, Edward J.
1990-01-01
Results from research on catalytic recombination of CO-O2 for stable closed-cycle operation of CO2 lasers hold much promise for a variety of technology transfer. Expansion of CO2 laser remote sensing applications toward chemical detection and pollution monitoring would certainly be expected. However, the catalysts themselves may be especially effective in low-temperature oxidation of a number of chemicals in addition to CO. It is therefore of interest to compare the CO-O2 catalysts with chemical systems designed for chemical sensing, air purification and process catalysis. Success in understanding the catalytic mechanisms of the recombination of CO-O2 could help to shed light on how catalyst systems operate. New directions in low-temperature oxidation catalysts, coatings for chemical sensors and sorbents for air purification could well emerge.
Ambient-temperature co-oxidation catalysts
NASA Technical Reports Server (NTRS)
Upchurch, Billy T.; Schryer, David R.; Brown, Kenneth G.; Kielin, Erik J.
1991-01-01
Oxidation catalysts which operate at ambient temperature were developed for the recombination of carbon monoxide (CO) and oxygen (O2) dissociation products which are formed during carbon dioxide (CO2) laser operation. Recombination of these products to regenerate CO2 allows continuous operation of CO2 lasers in a closed cycle mode. Development of these catalyst materials provides enabling technology for the operation of such lasers from space platforms or in ground based facilities without constant gas consumption required for continuous open cycle operation. Such catalysts also have other applications in various areas outside the laser community for removal of CO from other closed environments such as indoor air and as an ambient temperature catalytic converter for control of auto emissions.
NASA Technical Reports Server (NTRS)
Kolts, J. H.; Elliott, D. J.; Pennella, F.
1990-01-01
Four different catalysts have been developed specifically for use in sealed carbon dioxide lasers. The catalysts have been designed to be low dusting, stable to shock and vibration, have high activity at low temperatures and have long active lifetimes. Measured global CO oxidation rates range from 1.4 to 2.2 cc CO converted per minute per gram of catalyst at ambient temperature. The catalysts also retain substantial activity at temperatures as low as -35 C. The Phillips laser catalysts are prepared in a variety of different shapes to meet the different pressure drop and gas flow profiles present in the many different styles of lasers. Each catalyst has been tested in sealed TEA lasers and has been shown to substantially increase the sealed life of the laser. Activity measurements made on the precious metal catalysts which were prepared with and without activity promoters showed that the promoter materials increase catalyst CO oxidation activity at least an order of magnitude at ambient temperature. Initial studies using H2 and CO chemisorption, X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS) have shown that the activity promoters do not significantly affect the precious metal crystallite size or the electronic structure around the precious metal. In addition, the formation or lack of formation of solid solutions between the precious metal and promoters has also been shown not to affect the activity of the promoted catalyst.
Solvent free oxidation of primary alcohols and diols using thymine iron(III) catalyst.
Al-Hunaiti, Afnan; Niemi, Teemu; Sibaouih, Ahlam; Pihko, Petri; Leskelä, Markku; Repo, Timo
2010-12-28
In this study, we developed an efficient and selective iron-based catalyst system for the synthesis of ketones from secondary alcohols and carboxylic acids from primary alcohol. In situ generated iron catalyst of thymine-1-acetate (THA) and FeCl(3) under solvent-free condition exhibits high activity. As an example, 1-octanol and 2-octanol were oxidized to 1-octanoic acid and 2-octanone with 89% and 98% yields respectively.
Jothiramalingam, R; Wang, M K
2007-08-17
The present study describes the photocatalytic degradation of toluene in gas phase on different porous manganese oxide doped titanium dioxide. As synthesized birnessite and cryptomelane type porous manganese oxide were doped with titania and tested for photocatalytic decomposition of toluene in gas phase. The effects of the inlet concentration of toluene, flow rate (retention time) were examined and the relative humidity was maintained constantly. Thermal and textural characterization of manganese oxide doped titania materials were characterized by X-ray diffraction (XRD), thermogravemetry (TG), BET and TEM-EDAX studies. The aim of the present study is to synthesize the porous manganese oxide doped titania and to study its photocatalytic activity for toluene degradation in gas phase. Cryptomelane doped titania catalyst prepared in water medium [K-OMS-2 (W)] is shown the good toluene degradation with lower catalysts loading compared to commercial bulk titania in annular type photo reactor. The higher photocatalytic activity due to various factors such as catalyst preparation method, experimental conditions, catalyst loading, surface area, etc. In the present study manganese oxide OMS doped titania materials prepared by both aqueous and non-aqueous medium, aqueous medium prepared catalyst shows the good efficiency due to the presence of OH bonded groups on the surface of catalyst. The linear forms of different kinetic equations were applied to the adsorption data and their goodness of fit was evaluated based on the R2 and standard error. The goodness to the linear fit was observed for Elovich model with high R2 (>or=0.9477) value.
Zhang, Jing; Sun, Bo; Huang, Yuying; Guan, Xiaohong
2015-12-01
This study developed a heterogeneous catalytic permanganate oxidation system with three molecular sieves, i.e., nanosized ZSM-5 (ZSM-5A), microsized ZSM-5 (ZSM-5B) and MCM-41, supported ruthenium nanoparticles as catalyst, denoted as Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41, respectively. The presence of 0.5gL(-1) Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41 increased the oxidation rate of sulfamethoxazole (SMX) by permanganate at pH 7.0 by 27-1144 times. The catalytic performance of Ru catalysts toward SMX oxidation by permanganate was strongly dependent on Ru loading on the catalysts. The X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses confirmed that Ru catalyst acted as an electron shuttle in catalytic permanganate oxidation process. Ru(III) deposited on the surface of catalysts was oxidized by permanganate to its higher oxidation state Ru(VII), which could work as a co-oxidant with permanganate to decompose SMX and was then reduced to its initial tri-valence. During the successive runs, Ru/ZSM-5A could not maintain its catalytic activity due to the deposition of MnO2, which was the reductive product of permanganate, onto the surface of Ru/ZSM-5A. Thus, the regeneration of partially deactivated Ru catalysts by reductant NH2OH⋅HCl or ascorbic acid was proposed. Ru/ZSM-5A regenerated by NH2OH⋅HCl displayed comparable catalytic ability to its virgin counterpart, while ascorbic acid could not completely remove the deposited MnO2. A trace amount of leaching of Ru into the reaction solution was also observed, which would be ameliorated by improving the preparation conditions in the future study. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhao, De-Zhi; Shi, Chuan; Li, Xiao-Song; Zhu, Ai-Min; Jang, Ben W-L
2012-11-15
At room temperature, the enhanced effect of water vapor on ozone catalytic oxidation (OZCO) of formaldehyde to CO2 over MnOx catalysts and the reaction stability was reported. In a dry air stream, only below 20% of formaldehyde could be oxidized into CO2 by O3. In humid air streams (RH≥55%), ∼100% of formaldehyde were oxidized into CO2 by O3 and the reaction stability was significantly enhanced. Meanwhile, in situ Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectra of OZCO of HCHO demonstrate that the amount of both monodentate and bidentate carbonate species on MnOx, in the dry stream, increased gradually with time on stream (TOS). However, in the humid stream, almost no accumulation of carbonate species on the catalysts was observed. To clarify the enhanced mechanism, formaldehyde surface reactions and CO2 adsorption/desorption on the fresh, O3 and O3+H2O treated MnOx catalysts were examined comparatively. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Liting; Chen, Lin; Yang, Dawen; Yu, Xu; Xue, Huaiguo; Feng, Ligang
2018-07-01
High valence transition metal oxide is significant for anode catalyst of proton membrane water electrolysis technique. Herein, we demonstrate NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires hierarchical nanocomposite catalyst with surface rich high valence metal oxide as an efficient catalyst for oxygen evolution reaction. A low overpotential of 310 mV is needed to drive a 10 mA cm-2 with a Tafel slope of 99 mV dec-1, and a remarkable stability during 8 h is demonstrated in a chronoamperometry test. Theoretical calculation displays the change in the rate-determining step on the nanocomposite electrode in comparison to NiCo2O4 nanowires alone. It is found high valence Ni and Mn oxide in the catalyst system can efficiently facilitate the charge transport across the electrode/electrolyte interface. The enhanced electrical conductivity, more accessible active sites and synergistic effects between NiMn layered double hydroxide nanosheets and NiCo2O4 nanowires can account for the excellent oxygen evolution reaction. The catalytic performance is comparable to most of the best non-noble catalysts and IrO2 noble catalyst, indicating the promising applications in water-splitting technology. It is an important step in the development of hierarchical nanocomposites by surface valence state tuning as an alternative to noble metals for oxygen evolution reaction.
Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.
1981-09-14
Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim,D.; Kwak, J.; Szanyi, J.
2008-01-01
The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied [Al2O3, BaO(x; x = 8 or 20 wt %)/Al2O3, Pt(2.5 wt %)/Al2O3, and Pt(2 wt %)-BaO(x; x = 8 or 20 wt %)/Al2O3] were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas-phase oxygen. In the platinum-containing samples, themore » presence of Pt-O species plays an important role in the formation of sulfate species. For the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, both baria and alumina phases are available for sulfation. S XANES results show that barium sulfates are formed preferentially over aluminum sulfates. When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g., SO2/H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g., SO2/O2) continue to show the presence of Pt-O bonds. In addition, a reducing environment was found to cause Pt sintering in greater extent than an oxidizing one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g., sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less
Lee, Chun W; Srivastava, Ravi K; Ghorishi, S Behrooz; Hastings, Thomas W; Stevens, Frank M
2004-12-01
Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+). The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.
Enhancement of Pt/SnO2 Catalysts by Addition of H2O
NASA Technical Reports Server (NTRS)
Schryer, David R.; Sidney, Barry D.; Van Norman, John D.; Brown, Kenneth G.; Schryer, Jacqueline; Upchurch, Billy T.
1990-01-01
Water vapor in pretreatment gas restores essential hydroxyl groups. Platinum on tin oxide (Pt/SnO2) is good catalyst for oxidation of carbon monoxide (CO) at temperatures from about 25 degrees C to 100 degress C. Activity of Pt/SnO2 for CO oxidation significantly enhanced by pretreating it at approximately 225 degrees C with reducing gas such as CO. Technique useful in manufacture of high-power CO2 lasers for industrial and scientific uses.
NASA Astrophysics Data System (ADS)
Moretti, Elisa; Molina, Antonia Infantes; Sponchia, Gabriele; Talon, Aldo; Frattini, Romana; Rodriguez-Castellon, Enrique; Storaro, Loretta
2017-05-01
A study was conducted to investigate the effect of the preparation route of ZrO2 in CuO-CeO2/ZrO2 catalysts for the oxidation of carbon monoxide at low temperature (COX). Four ZrO2 supports were synthetized via either type sol-gel methodology or precipitation. The final Cu-Ce-Zr oxide catalysts were prepared by incipient wetness co-impregnation with copper and cerium solutions (with a loading of 6 wt% of CuO and 20 wt% of CeO2). The catalyst crystalline phases, texture and active species reducibility were determined by XRD, N2 physisorption at -196 °C and H2-TPR, respectively; meanwhile the surface composition and copper-cerium electronic states were studied by XPS. The catalytic activity was evaluated in the oxidation of CO to CO2, in the 40-215 °C temperature range. Catalytic results evidenced that the samples prepared by a sol-gel methodology showed, after the impregnation, a severe decrease of specific surface area and pore volume attributable to a wide degree of pore blockage caused by the presence of metal oxide particles and a collapse of the structure partially burying the active sites. A simple co-impregnation of a zirconia support, obtained through facile and fast precipitation, provided instead a catalyst with very good redox properties and high dispersion of the active phases, which completely oxidizes CO in the range 115-215 °C with T50 of 65 °C. This higher observed activity was ascribed to the formation of a larger fraction of highly dispersed and easily reducible Cu species and ceria nanocrystallites, mainly present as Ce(IV), with an average size of 5 nm.
Study of catalysis for solid oxide fuel cells and direct methanol fuel cells
NASA Astrophysics Data System (ADS)
Jiang, Xirong
Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a typical solid oxide electrolyte, with patterned (octadecyltrichlorosilane) ODTS self-assembled monolayers (SAMs), Pt thin films were grown selectively on the SAM-free surface regions. Features with sizes as small as 2 mum were deposited by this combined ALD-muCP method. The micro-patterned Pt structure deposited by area selective ALD was applied to SOFCs as a current collector grid/patterned catalyst. An improvement in the fuel cell performance by a factor of 10 was observed using the Pt current collector grids/patterned catalyst integrated onto cathodic La0.6Sr 0.4Co0.2Fe0.8O3-delta. For possible catalytic anodes in DMFCs employing a 1:1 stoichiometric methanol-water reforming mixture, two strategies were employed in this thesis. One approach is to fabricate skin catalysts, where ALD Pt films of various thicknesses were used to coat sputtered Ru films forming Pt skin catalysts for study of methanol oxidation. Another strategy is to replace or alloy Pt with Ru; for this effort, both dc-sputtering and atomic layer deposition were employed to fabricate Pt-Ru catalysts of various Ru contents. The electrochemical behavior of all of the Pt skin catalysts, the DC co-sputtered Pt-Ru catalysts and the ALD co-deposited Pt-Ru catalysts were evaluated at room temperature for methanol oxidation using cyclic voltammetry and chronoamperometry in highly concentrated 16.6 M MeOH, which corresponds to the stoichiometric fuel that will be employed in next generation DMFCs that are designed to minimize or eliminate methanol crossover. The catalytic activity of sputtered Ru catalysts toward methanol oxidation is strongly enhanced by the ALD Pt overlayer, with such skin layer catalysts displaying superior catalytic activity over pure Pt. For both the DC co-sputtered catalysts and ALD co-deposited catalysts, the electrochemical studies illustrate that the optimal stoichiometry ratio for Pt to Ru is approximately 1:1, which is in good agreement with most literature.
NASA Astrophysics Data System (ADS)
Takano, Hiroyuki; Izumiya, Koichi; Kumagai, Naokazu; Hashimoto, Koji
2011-07-01
The active catalysts for methane formation from the gas mixture of CO 2 + 4H 2 with almost 100% methane selectivity were prepared by reduction of the oxide mixture of NiO and ZrO 2 prepared by calcination of aqueous ZrO 2 sol with Sm(NO 3) 3 and Ni(NO 3) 2. The 50 at%Ni-50 at%(Zr-Sm oxide) catalyst consisting of 50 at%Ni-50 at%(Zr + Sm) with Zr/Sm = 5 calcined at 650 or 800 °C showed the highest activity for methanation. The active catalysts were Ni supported on tetragonal ZrO 2, and the activity for methanation increased by an increase in inclusion of Sm 3+ ions substituting Zr 4+ ions in the tetragonal ZrO 2 lattice as a result of an increase in calcination temperature. However, the increase in calcination temperature decreased BET surface area, metal dispersion and hydrogen uptake due to grain growth. Thus, the optimum calcination temperature existed.
NASA Astrophysics Data System (ADS)
Azhariyah, A. S.; Pradyasti, A.; Dianty, A. G.; Bismo, S.
2018-03-01
This research was based on ozone decomposition in industrial environment. Ozone is harmful to human. Therefore, catalysts were made as a mask filter to decompose ozone. Comparison studies of catalyst supports were done using Granular Activated Carbon (GAC), Natural Zeolite (NZ), and Green Sand (GS). GAC showed the highest catalytic activity compared to other supports with conversion of 98%. Meanwhile, the conversion using NZ was only 77% and GS had been just 27%. GAC had the highest catalytic activity because it had the largest pore volume, which is 0.478 cm3/g. So GAC was used as catalyst supports. To have a higher conversion in ozone decomposition, GAC was impregnated with metal oxide as the active site of the catalyst. Active site comparison was made using CuOX and ZnO as the active site. Morphology, composition, and crystal phase were analyzed using SEM-EDX, XRF, and XRD methods. Mask filter, which contained catalysts for ozone decomposition, was tested using a fixed bed reactor at room temperature and atmospheric pressure. The result of conversion was analyzed using iodometric method. CuOX/GAC and ZnO/GAC 2%-w showed the highest catalytic activity and conversion reached 100%. From the durability test, CuOX/GAC 2%-w was better than ZnO/GAC 2%-w because the conversion of ozone to oxygen reached 100% with the lowest conversion was 70% for over eight hours.
Water Oxidation Catalysis for NiOOH by a Metropolis Monte Carlo Algorithm.
Hareli, Chen; Caspary Toroker, Maytal
2018-05-08
Understanding catalytic mechanisms is important for discovering better catalysts, particularly for water splitting reactions that are of great interest to the renewable energy field. One of the best performing catalysts for water oxidation is nickel oxyhydroxide (NiOOH). However, only one mechanism has been adopted so far for modeling catalysis of the active plane: β-NiOOH(01̅5). In order to understand how a second reaction mechanism affects catalysis, we perform Density Functional Theory + U (DFT+U) calculations of a second mechanism for water oxidation reaction of NiOOH. Then, we use a Metropolis Monte Carlo algorithm to calculate how many catalytic cycles are completed when two reaction mechanisms are competing. We find that within the Metropolis algorithm, the second mechanism has a higher overpotential and is therefore not active even for large applied biases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Na; Li, Siwen; Wang, Jinyi
2015-05-15
M{sub 2}(PcAN){sub 2} (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M{sub 2}(PcAN){sub 2}–W-HZSM-5) or the M{sub 2}(PcTN){sub 2} doping W-HZSM-5 (M{sub 2}(PcTN){sub 2}/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 and Cu{sub 2}(PcTN){sub 2}/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV–Vis and calcination temperature was obtained by TG-DSC for Cu{sub 2}(PcTN){sub 2}/W-HZSM-5. Catalysts weremore » characterized by EA, IR, XRD, SEM, TEM, ICP, and N{sub 2} adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. - Graphical abstract: The ODS reaction schematic shows the reaction mechanism of ultra-deep desulfurization. The sulfur compounds are oxidized to their corresponding sulfoxides or sulfones through the use of oxygen and catalysts. The reaction process of ultra-deep desulfurization. - Highlights: • A kind of novel catalyst for deep desulfurization was synthesized. • Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 exhibits excellent catalytic performance for desulfurization. • The reaction conditions that affect desulfurization efficiency are investigated. • The reaction process of model sulfur compounds is proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farooq, Muhammad; Ramli, Anita; Subbarao, Duvvuri
2012-09-26
The physical and chemical properties of a catalyst play a vital role in various industrial applications. Molybdenum catalysts supported on {gamma}-Al{sub 2}O{sub 3} and {gamma}-Al{sub 2}O{sub 3}-CeO{sub 2} mixed oxides with varying loading of CeO{sub 2} (5, 10, 15, 20 wt% with respect to {gamma}-Al{sub 2}O{sub 3}) were prepared by wet impregnation method. The physiochemical properties of these synthesized Mo catalysts were studied with various characterization techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX) and X-ray fluorescence spectrometer (XRF). The results showed that the addition of CeO{submore » 2} into the support affected the binding energies of the elements and reducibility of the metal oxides formed after calcination of catalyst samples due to the change in metal-support interaction. Further, the characterization techniques showed that the active metal was well dispersed on the surface of support material.« less
Amada, Yasushi; Ota, Nobuhiko; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi
2014-08-01
Hydrodeoxygenation of cyclic vicinal diols such as 1,4-anhydroerythritol was conducted over catalysts containing both a noble metal and a group 5-7 transition-metal oxide. The combination of Pd and WOx allowed the removal of one of the two OH groups selectively. 3-Hydroxytetrahydrofuran was obtained from 1,4-anhydroerythritol in 72 and 74% yield over WOx -Pd/C and WOx -Pd/ZrO2 , respectively. The WOx -Pd/ZrO2 catalyst was reusable without significant loss of activity if the catalyst was calcined as a method of regeneration. Characterization of WOx -Pd/C with temperature-programmed reduction, X-ray diffraction, and transmission electron microscopy/energy-dispersive X-ray spectroscopy suggested that Pd metal particles approximately 9 nm in size were formed on amorphous tungsten oxide particles. A reaction mechanism was proposed on the basis of kinetics, reaction results with tungsten oxides under an atmosphere of Ar, and density functional theory calculations. A tetravalent tungsten center (W(IV) ) was formed by reduction of WO3 with the Pd catalyst and H2 , and this center served as the reductant for partial hydrodeoxygenation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shi, Jinlei; Wu, Jinghe; Zhao, Xingju; ...
2016-10-07
Transitional metal nanoparticles or atoms deposited on appropriate substrates can lead to highly economical, efficient, and selective catalysis. One of the greatest challenges is to control the electronic metal–support interactions (EMSI) between the supported metal atoms and the substrate so as to optimize their catalytic performance. Here, from first-principles calculations, we show that an otherwise inactive Pd single adatom on TiO 2(110) can be tuned into a highly effective catalyst, e.g. for O 2 adsorption and CO oxidation, by purposefully selected metal–nonmetal co-dopant pairs in the substrate. Such an effect is proved here to result unambiguously from a significantly enhancedmore » EMSI. A nearly linear correlation is noted between the strength of the EMSI and the activation of the adsorbed O 2 molecule, as well as the energy barrier for CO oxidation. Particularly, the enhanced EMSI shifts the frontier orbital of the deposited Pd atom upward and largely enhances the hybridization and charge transfer between the O 2 molecule and the Pd atom. Upon co-doping, the activation barrier for CO oxidation on the Pd monomer is also reduced to a level comparable to that on the Pd dimer which was experimentally reported to be highly efficient for CO oxidation. The present findings provide new insights into the understanding of the EMSI in heterogeneous catalysis and can open new avenues to design and fabricate cost-effective single-atom-sized and/or nanometer-sized catalysts.« less