Sample records for so2 vertical column

  1. SO2 plume height retrieval from direct fitting of GOME-2 backscattered radiance measurements

    NASA Astrophysics Data System (ADS)

    van Gent, J.; Spurr, R.; Theys, N.; Lerot, C.; Brenot, H.; Van Roozendael, M.

    2012-04-01

    The use of satellite measurements for SO2 monitoring has become an important aspect in the support of aviation control. Satellite measurements are sometimes the only information available on SO2 concentrations from volcanic eruption events. The detection of SO2 can furthermore serve as a proxy for the presence of volcanic ash that poses a possible hazard to air traffic. In that respect, knowledge of both the total vertical column amount and the effective altitude of the volcanic SO2 plume is valuable information to air traffic control. The Belgian Institute for Space Aeronomy (BIRA-IASB) hosts the ESA-funded Support to Aviation Control Service (SACS). This system provides Volcanic Ash Advisory Centers (VAACs) worldwide with near real-time SO2 and volcanic ash data, derived from measurements from space. We present results from our algorithm for the simultaneous retrieval of total vertical columns of O3 and SO2 and effective SO2 plume height from GOME-2 backscattered radiance measurements. The algorithm is an extension to the GODFIT direct fitting algorithm, initially developed at BIRA-IASB for the derivation of improved total ozone columns from satellite data. The algorithm uses parameterized vertical SO2 profiles which allow for the derivation of the peak height of the SO2 plume, along with the trace gas total column amounts. To illustrate the applicability of the method, we present three case studies on recent volcanic eruptions: Merapi (2010), Grímsvotn (2011), and Nabro (2011). The derived SO2 plume altitude values are validated with the trajectory model FLEXPART and with aerosol altitude estimations from the CALIOP instrument on-board the NASA A-train CALIPSO platform. We find that the effective plume height can be obtained with a precision as fine as 1 km for moderate and strong volcanic events. Since this is valuable information for air traffic, we aim at incorporating the plume height information in the SACS system.

  2. DSCOVR_EPIC_L2_O3SO2AI_01

    Atmospheric Science Data Center

    2018-06-29

    ... dioxide (SO2) from volcanic plumes, scene reflectivity, and aerosol index (AI), retrieved from the ultraviolet (UV) measurements of DSCOVR ... Access:   Order Data Parameters:  Aerosol Index (AI) Reflectivity at 340 nm Vertical Column of Ozone (O3) ...

  3. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling

    NASA Astrophysics Data System (ADS)

    Eckhardt, S.; Prata, A. J.; Seibert, P.; Stebel, K.; Stohl, A.

    2008-07-01

    An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair, Yemen, on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (a.s.l.), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude agrees with CALIPSO aerosol observations to within 1 2 km. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.

  4. Investigations of temporal and spatial distribution of precursors SO2 and NO2 vertical columns in the North China Plain using mobile DOAS

    NASA Astrophysics Data System (ADS)

    Wu, Fengcheng; Xie, Pinhua; Li, Ang; Mou, Fusheng; Chen, Hao; Zhu, Yi; Zhu, Tong; Liu, Jianguo; Liu, Wenqing

    2018-02-01

    Recently, Chinese cities have suffered severe events of haze air pollution, particularly in the North China Plain (NCP). Investigating the temporal and spatial distribution of pollutants, emissions, and pollution transport is necessary to better understand the effect of various sources on air quality. We report on mobile differential optical absorption spectroscopy (mobile DOAS) observations of precursors SO2 and NO2 vertical columns in the NCP in the summer of 2013 (from 11 June to 7 July) in this study. The different temporal and spatial distributions of SO2 and NO2 vertical column density (VCD) over this area are characterized under various wind fields. The results show that transport from the southern NCP strongly affects air quality in Beijing, and the transport route, particularly SO2 transport on the route of Shijiazhuang-Baoding-Beijing, is identified. In addition, the major contributors to SO2 along the route of Shijiazhuang-Baoding-Beijing are elevated sources compared to low area sources for the route of Dezhou-Cangzhou-Tianjin-Beijing; this is found using the interrelated analysis between in situ and mobile DOAS observations during the measurement periods. Furthermore, the discussions on hot spots near the city of JiNan show that average observed width of polluted air mass is 11.83 and 17.23 km associated with air mass diffusion, which is approximately 60 km away from emission sources based on geometrical estimation. Finally, a reasonable agreement exists between the Ozone Monitoring Instrument (OMI) and mobile DOAS observations, with a correlation coefficient (R2) of 0.65 for NO2 VCDs. Both datasets also have a similar spatial pattern. The fitted slope of 0.55 is significantly less than unity, which can reflect the contamination of local sources, and OMI observations are needed to improve the sensitivities to the near-surface emission sources through improvements of the retrieval algorithm or the resolution of satellites.

  5. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling

    NASA Astrophysics Data System (ADS)

    Eckhardt, S.; Prata, A. J.; Seibert, P.; Stebel, K.; Stohl, A.

    2008-02-01

    An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude - thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (asl), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude and width agree mostly within 1-2 km with CALIPSO observations of stratospheric aerosol produced from the SO2. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.

  6. Influence of ground level SO2 on the diffuse to direct irradiance ratio in the middle ultraviolet

    NASA Technical Reports Server (NTRS)

    Klenk, K. F.; Green, A. E. S.

    1977-01-01

    The dependence of the ratio of the diffuse to direct irradiances at the ground were examined for a wavelength of 315.1 nm. A passive remote sensing method based on ratio measurements for obtaining the optical thickness of SO2 in the vertical column was proposed. If, in addition to the ratio measurements, the SO2 density at the ground is determining using an appropriate point-sampling technique then some inference on the vertical extent of SO2 can be drawn. An analytic representation is presented of the ratio for a wide range of SO2 and aerosol optical thicknesses and solar zenith angles which can be inverted algebraically to give the SO2 optical thickness in terms of the measured ratio, aerosol optical thickness and solar zenith angle.

  7. Glyoxal Vertical Column Retrievals from the GOME-2/METOP-A European Spaceborne Sensor and Comparisons with the IMAGESv2 CT Model

    NASA Astrophysics Data System (ADS)

    Lerot, C.; Stavrakou, T.; de Smedt, I.; Muller, J. J.; van Roozendael, M.

    2010-12-01

    Glyoxal is mostly formed in our atmosphere as an intermediate product in the oxidation of non-methane volatile organic compounds (NMVOC). To a lesser extent, it is also directly emitted from biomass burning events and from fossil- and bio-fuel combustion processes. Several studies have estimated its atmospheric lifetime to 2-3 hours, which makes of glyoxal a good indicator for short-lived NMVOC emissions. Glyoxal is also known to be a precursor for secondary organic aerosols and could help to reduce the gap between observations and models for organic aerosol abundances. The three absorption bands of glyoxal in the visible region allow applying the DOAS (Differential Optical Absorption Spectroscopy) technique to retrieve its vertical column densities from the nadir backscattered light measurements performed by the GOME-2 satellite sensor. This instrument has been launched in October 2006 on board of the METOP-A platform and is characterized by a spatial resolution of 80 km x 40 km and by a large scan-width (1920 km) leading to a global coverage reached in 1.5 day. The GOME-2 glyoxal retrieval algorithm developed at BIRA-IASB accounts for the liquid water absorption and provides geophysically sound column measurements not only over lands but also over oceanic regions where spectral interferences between glyoxal and liquid water have been shown to be significant. The a-priori glyoxal vertical distribution required for the slant to vertical column conversion is provided by the global chemical transport model IMAGESv2. The highest glyoxal vertical column densities are mainly observed in continental tropical regions, while the mid-latitude columns strongly depend on the season with maximum values during warm months. An anthropogenic signature is also observed in highly populated regions of Asia. Comparisons with glyoxal columns simulated with IMAGESv2 in different regions of the world generally point to a missing glyoxal source in current models. As already reported from previous analysis with the SCIAMACHY instrument, significant glyoxal columns are also observed over tropical oceans, which remains unexplained so far.

  8. Impact of NO2 horizontal heterogeneity on tropospheric NO2 vertical columns retrieved from satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements

    NASA Astrophysics Data System (ADS)

    Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.

    2013-01-01

    Tropospheric NO2 vertical column densities were retrieved for the first time in Toronto, Canada using three methods of differing spatial scales. Remotely-sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities derived using a pair of chemiluminescence monitors situated 0.01 and 0.5 km above ground level. The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson R ranging from 0.68 to 0.79), but the in situ vertical column densities were 27% to 55% greater than the remotely-sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely-sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely-sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each of the methods.

  9. 50 CFR 229.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Navy personnel trained in whale identification, scientific research survey personnel, whale watch..., designed or configured so that the webbing (meshes) or nets are placed in the water column, usually held approximately vertically, and are designed to capture fish by entanglement, gilling, or wedging. The term...

  10. 50 CFR 229.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Navy personnel trained in whale identification, scientific research survey personnel, whale watch..., designed or configured so that the webbing (meshes) or nets are placed in the water column, usually held approximately vertically, and are designed to capture fish by entanglement, gilling, or wedging. The term...

  11. Improved Satellite Retrievals of NO2 and SO2 over the Canadian Oil Sands and Comparisons with Surface Measurements

    NASA Technical Reports Server (NTRS)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Kharol, S. K.; Krotkov, N.; Lamsal, L.; Makar, P. A.; Martin, R. V.; Veefkind, J. P.; Yang, K.

    2014-01-01

    Satellite remote sensing is increasingly being used to monitor air quality over localized sources such as the Canadian oil sands. Following an initial study, significantly low biases have been identified in current NO2 and SO2 retrieval products from the Ozone Monitoring Instrument (OMI) satellite sensor over this location resulting from a combination of its rapid development and small spatial scale. Air mass factors (AMFs) used to convert line-of-sight "slant" columns to vertical columns were re-calculated for this region based on updated and higher resolution input information including absorber profiles from a regional-scale (15 km × 15 km resolution) air quality model, higher spatial and temporal resolution surface reflectivity, and an improved treatment of snow. The overall impact of these new Environment Canada (EC) AMFs led to substantial increases in the peak NO2 and SO2 average vertical column density (VCD), occurring over an area of intensive surface mining, by factors of 2 and 1.4, respectively, relative to estimates made with previous AMFs. Comparisons are made with long-term averages of NO2 and SO2 (2005-2011) from in situ surface monitors by using the air quality model to map the OMI VCDs to surface concentrations. This new OMI-EC product is able to capture the spatial distribution of the in situ instruments (slopes of 0.65 to 1.0, correlation coefficients of greater than 0.9). The concentration absolute values from surface network observations were in reasonable agreement, with OMI-EC NO2 and SO2 biased low by roughly 30%. Several complications were addressed including correction for the interference effect in the surface NO2 instruments and smoothing and clear-sky biases in the OMI measurements. Overall these results highlight the importance of using input information that accounts for the spatial and temporal variability of the location of interest when performing retrievals.

  12. Comparison of tropospheric NO2 vertical columns in an urban environment using satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements

    NASA Astrophysics Data System (ADS)

    Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.

    2013-10-01

    Tropospheric NO2 vertical column densities have been retrieved and compared for the first time in Toronto, Canada, using three methods of differing spatial scales. Remotely sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities estimated using a pair of chemiluminescence monitors situated 0.01 and 0.5 km a.g.l. (above ground level). The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by an average of 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. The monthly averaged ratio of the NO2 concentration at 0.5 to 0.01 km varied seasonally, and exhibited a negative linear dependence on the monthly average temperature, with Pearson's R = 0.83. During the coldest month, February, this ratio was 0.52 ± 0.04, while during the warmest month, July, this ratio was 0.34 ± 0.04, illustrating that NO2 is not well mixed within 0.5 km above ground level. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson's R value ranging from 0.72 to 0.81), but the in situ vertical column densities were 52 to 58% greater than the remotely sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each measurement technique.

  13. A New Freshwater Naked Lobose Amoeba Korotnevella venosa n. sp. (Amoebozoa, Discosea).

    PubMed

    Udalov, Ilya A; Zlatogursky, Vasily V; Smirnov, Alexey V

    2016-11-01

    A new freshwater species of naked lobose amoebae Korotnevella venosa n. sp. isolated from freshwater pond in St. Petersburg, Russia was studied with light and transmission electron microscopy. Basket scales of this species have six vertical columns supporting perforated rim. The latter has tongue-like broadening with membranous region. Vertical columns bifurcate at both ends so that neighboring columns are connected by their bifurcations forming combined structure. Basket scales of K. venosa are similar to those of Korotnevella hemistylolepis in having six full-length vertical columns and perforated rim. At the same time, they are different in having tongue-like broadening of perforated rim with membranous region and absence of six half-length columns and an intermediate crosspiece. Phylogenetic trees based on 18S rDNA gene placed K. venosa either at the base of the whole Korotnevella clade, next to K. hemistylolepis, or as a sister to the clade comprising Korotnevella species with latticework basket in large scales. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  14. OMI measurements of SO2 pollution over Eastern China in 2005-2008

    NASA Astrophysics Data System (ADS)

    Krotkov, N.; Pickering, K.; Witte, J.; Carn, S.; Yang, K.; Carmichael, G.; Streets, D.; Zhang, Q.; Wei, C.

    2009-05-01

    The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. OMI seasonal to multi-year average images clearly show the world-highest consistent SO2 pollution in northeast China. China is the world's largest SO2 emitter, mostly due to the burning of high-sulfur coal in its many coal-fired power plants, which lack the technology used in many other countries to remove sulfur from smoke stack emissions. China's government has instituted nationwide measures to control SO2 emissions through the adoption of flue-gas desulfurization technology on new power plants; and even greater measures were adopted in the Beijing area in anticipation of the Olympic Games. To study the environmental effects of the emission controls we compared OMI SO2 time series over eastern China for 2005 through 2008. The time series have been done as 7-day running means of the cloud-free daily observations. By mid-March we started to see substantial periods of lower SO2 values in 2008 compared to 2007, and by mid June the 2008 values were consistently lower than 2007 and prior years. The decline is widespread with highest SO2 typically located to the south and southwest of Beijing in regions with large clusters of power plants and also around Shanghai. The decline also lasted beyond the Olympic season. We do not yet know to what extent the economic downturn in China (and reduced industrial production) contributed to lower SO2 levels in the fall of 2008. We have also compared the observed and modeled fields using University of Iowa STEM model for the period June - September 2008. The model provided SO2 vertical distributions as well as aerosol vertical profiles that were used to correct OMI operational SO2 retrievals and improve the comparisons. The OMI SO2 changes in 2008 have also been compared with the estimated changes in SO2 emissions derived from a bottom-up analysis of the SO2 reduction measures put into place for the Olympics. Finally we present our plans to use the OMI SO2 columns to provide a top-down constraint on SO2 regional emissions.

  15. Satellite-observed NO2, SO2, and HCHO Vertical Column Densities in East Asia: Recent Changes and Comparisons with Regional Model

    NASA Astrophysics Data System (ADS)

    Kim, H. C.; Lee, P.; Kim, S.; Mok, J.; Yoo, H. L.; Bae, C.; Kim, B. U.; Lim, Y. K.; Woo, J. H.; Park, R.

    2015-12-01

    This study reports the recent changes in tropospheric NO2, SO2, and HCHO vertical column densities (VCD) in East Asia observed from multiple satellites, highlighting especially the annual trend changes of NO2 and SO2 over Beijing-Tianjin-Hebei (BTH) region of China since 2010. Tropospheric VCD data from Global Ozone Monitoring Experiment (GOME), SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), Ozone Monitoring Instrument (OMI) and GOME-2, retrieved from the Royal Netherlands Meteorological Institute (KNMI) and OMI National Aeronautics and Space Administration (NASA) standard products, are utilized to investigate the annual trends of NO2, SO2, and HCHO VCDs from 2001 to 2015. They are also compared with simulations from Community Multi-scale Air Quality Model (CMAQ) based forecast system by the Integrated Multi-scale Air Quality System for Korea (IMAQS-K) of Ajou University. Until 2011, the changes in NO2 VCD over East Asian countries agree well with the findings of previous research, including the impact of the economic downturn during 2008-2009 and the subsequent quick recovery in China. After peaking in 2011, the NO2 VCD observations from active instruments (OMI and GOME-2) over China started to show a slower decreasing trend, mostly led by the rapid changes in the BTH region in northern China. On the other hand, SO2 started to decline earlier, from 2007, but inclined back from 2010 to 2012, and then back to declining trend since 2012. While satellite observations show dramatic recent changes, the model could not reproduce those changes mostly due to its use of fixed emission inventory. We conclude that rapid update of latest emission inventory is necessary for an accurate forecast of regional air quality in east Asia, especially for upcoming international sports events in PyeongChang (Korea), Tokyo (Japan) and Beijing (China) in 2018, 2020 and 2022, respectively.

  16. A search for thermospheric composition perturbations due to vertical winds

    NASA Astrophysics Data System (ADS)

    Krynicki, Matthew P.

    The thermosphere is generally in hydrostatic equilibrium, with winds blowing horizontally along stratified constant-pressure surfaces, driven by the dayside-to-nightside pressure gradient. A marked change in this paradigm resulted after Spencer et al. [1976] reported vertical wind measurements of 80 m·s-1 from analyses of AE-C satellite data. It is now established that the thermosphere routinely supports large-magnitude (˜30-150 m·s-1) vertical winds at auroral latitudes. These vertical winds represent significant departure from hydrostatic and diffusive equilibrium, altering locally---and potentially globally---the thermosphere's and ionosphere's composition, chemistry, thermodynamics and energy budget. Because of their localized nature, large-magnitude vertical wind effects are not entirely known. This thesis presents ground-based Fabry-Perot Spectrometer OI(630.0)-nm observations of upper-thermospheric vertical winds obtained at Inuvik, NT, Canada and Poker Flat, AK. The wind measurements are compared with vertical displacement estimates at ˜104 km2 horizontal spatial scales determined from a new modification to the electron transport code of Lummerzheim and Lilensten [1994] as applied to FUV-wavelength observations by POLAR spacecraft's Ultraviolet Imager [Torr et al. , 1995]. The modification, referred to as the column shift, simulates vertical wind effects such as neutral transport and disruption of diffusive equilibrium by vertically displacing the Hedin [1991] MSIS-90 [O2]/[N2] and [O]/([N2]+[O2]) mixing ratios and subsequently redistributing the O, O2, and N 2 densities used in the transport code. Column shift estimates are inferred from comparisons of UVI OI(135.6)-nm auroral observations to their corresponding modeled emission. The modeled OI(135.6)-nm brightness is determined from the modeled thermospheric response to electron precipitation and estimations of the energy flux and characteristic energy of the precipitation, which are inferred from UVI-observed Lyman-Birge-Hopfield N2 emissions in two wavelength ranges. Two-dimensional column shift maps identify the spatial morphology of thermospheric composition perturbations associated with auroral forms relative to the model thermosphere. Case-study examples and statistical analyses of the column shift data sets indicate that column shifts can be attributed to vertical winds. Unanticipated limitations associated with modeling of the OI(135.6)-nm auroral emission make absolute column shift estimates indeterminate. Insufficient knowledge of thermospheric air-parcel time histories hinders interpretations of point-to-point time series comparisons between column shifts and vertical winds.

  17. Direct Retrieval of Sulfur Dioxide Amount and Altitude from Spaceborne Hyperspectral UV Measurements: Theory and Application

    NASA Technical Reports Server (NTRS)

    Yang, Kau; Liu, Xiong; Bhartia, Pawan K.; Krotkov, Nickolay A.; Carn, Simon A.; Hughes, Eric J.; Krueger, Arlin J.; Spurr, Robert D.; Trahan, Samuel G.

    2010-01-01

    We describe the physical processes by which a vertically localized absorber perturbs the top-of-atmosphere solar backscattered ultraviolet (UV) radiance. The distinct spectral responses to perturbations of an absorber in its column amount and layer altitude provide the basis for a practical satellite retrieval technique, the Extended Iterative Spectral Fitting (EISF) algorithm, for the simultaneous retrieval of these quantities of a SO2 plume. In addition, the EISF retrieval provides an improved UV aerosol index for quantifying the spectral contrast of apparent scene reflectance at the bottom of atmosphere bounded by the surface and/or cloud; hence it can be used for detection of the presence or absence of UV absorbing aerosols. We study the performance and characterize the uncertainties of the EISF algorithm using synthetic backscattered UV radiances, retrievals from which can be compared with those used in the simulation. Our findings indicate that the presence of aerosols (both absorbing and nonabsorbing) does not cause large errors in EISF retrievals under most observing conditions when they are located below the SO2 plume. The EISF retrievals assuming a homogeneous field of view can provide accurate column amounts for inhomogeneous scenes, but they always underestimate the plume altitudes. The EISF algorithm reduces systematic errors present in existing linear retrieval algorithms that use prescribed SO2 plume heights. Applying the EISF algorithm to Ozone Monitoring Instrument satellite observations of the recent Kasatochi volcanic eruption, we demonstrate the successful retrieval of effective plume altitude of volcanic SO2, and we also show the improvement in accuracy in the corresponding SO2 columns.

  18. Novel Technique for Making Measurements of SO2 with a Standalone Sonde

    NASA Astrophysics Data System (ADS)

    Flynn, J. H., III; Morris, G. A.; Kotsakis, A.; Alvarez, S. L.

    2017-12-01

    A novel technique has been developed to measure SO2 using the existing electrochemical concentration cell (ECC) ozonesonde technology. An interference in the ozone measurement occurs when SO2 is introduced to the iodide redox reaction causing the signal to decrease and go to zero when [O3] < [SO2]. The original method of measuring SO2 with ozonesondes involves launching two ozonesondes together with one ozonesonde unmodified and one with an SO2 filter [Morris et al, 2010]. By taking the difference between these profiles, the SO2 profile could be determined as long as [O3] > [SO2]. A new method allows for making a direct measurement of SO2 without the need for the dual payload by modifying the existing design. The ultimate goal is to be able to measure SO2 vertical profiles in the atmosphere, such as in plumes from anthropogenic or natural sources (i.e. volcanic eruptions). The benefits of an SO2 sonde include the ability to make measurements where aircraft cannot safely fly, such as in volcanic plumes, and to provide validation of SO2 columns from satellites.

  19. Anthropogenic and Volcanic Contributions to the Decadal Variations of Aerosols in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Bian, Huisheng; Aquila, Valentina; Colarco, Peter R.; Tan, Qian; Burrows, John P.; Krotov, Nickolay A.; Vernier, Jean P.; Lu, Zifeng; hide

    2014-01-01

    We investigated the anthropogenic and volcanic contributions to sulfate aerosol in the stratosphere through modeling and analysis of satellite data. We use a global model GOCART to simulate SO2 and sulfate aerosol in the period of 2000 to 2010, during which numerous volcanic eruptions occurred although nothing like the magnitudes of El Chichon or Pinatubo. We compared the model results with the column SO2 data from OMI and stratospheric SO2 data from MLS instrument on Aura satellite and the aerosol vertical profiles from the SCIAMACHY instrument on Envisat and the CALIOP instrument on CALIPSO satellites. Finally, we assessed the relative contributions of volcanic aerosols vs. anthropogenic aerosols to the observed decadal stratospheric aerosol trends.

  20. The effect of Si nano-columns in 2-D and 3-D on cellular behaviour: nanotopography-induced CaP deposition from differentiating mesenchymal stem cells.

    PubMed

    Guvendik, S; Trabzon, L; Ramazanoglu, M

    2011-10-01

    Si nano-columns were deposited in 2-D and 3-D in the form of well-defined geometries by physical vapor deposition. The films were grown by e-beam evaporation with an angle between source and substrate. The Si nano-columns were deposited in the shape of spiral with two different incoming atomic flux angle so that the manipulation of nano-columns in 3-D (out-of-plane) was obtained. The Si nano-columns were also grown as vertical stick with square, triangle and linear cross sections in 2D (in-plane). Rat bone marrow mesenchymal stem cells (MSCs) were cultured on these different Si nanosurfaces. MTS assay was carried out to determine the cell proliferation and viability based on different nanotopographies. For the evaluation of cell distribution and morphology, a SEM (Scanning Electron Microscopy) analysis was performed. Any CaP deposition on Si nanosurfaces was observed using energy dispersive X-Ray spectroscopy in SEM (SEM-EDX). After 4 days of culture, there was a higher value of cell proliferation on square columns and spiral Si nano-columns grown with 85 degrees of incoming atomic flux. The cell attachment and spreading was also affected by the geometry of Si nano-columns. While there were still cells showing round/spherical morphology with minimal spreading on conventional Si surfaces, most of the cells cultured on different Si nanotopographies attached on the surface and displayed flattened morphology, especially on the square columns surface. Moreover, CaP deposition was discovered on square columns and spiral films with 85 degrees substrate angle. So, it can be concluded that there is a clear correlation between cell responses and nano-sized geometry on Si surface and it is possible to induce cellular differentiation and CaP formation in certain geometrical constraints.

  1. A-Train Observations of Young Volcanic Eruption Clouds

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Prata, F.; Yang, K.; Rose, W. I.

    2011-12-01

    NASA's A-Train satellite constellation (including Aqua, CloudSat, CALIPSO, and Aura) has been flying in formation since 2006, providing unprecedented synergistic observations of numerous volcanic eruption clouds in various stages of development. Measurements made by A-Train sensors include total column SO2 by the Ozone Monitoring Instrument (OMI) on Aura, upper tropospheric and stratospheric (UTLS) SO2 column by the Atmospheric Infrared Sounder (AIRS) on Aqua and Microwave Limb Sounder (MLS) on Aura, ash mass loading from AIRS and the Moderate resolution Imaging Spectroradiometer (MODIS) on Aqua, UTLS HCl columns and ice water content (IWC) from MLS, aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO, and hydrometeor profiles from the Cloud Profiling Radar (CPR) on CloudSat. The active vertical profiling capability of CALIPSO, CloudSat and MLS sychronized with synoptic passive sensing of trace gases and aerosols by OMI, AIRS and MODIS provides a unique perspective on the structure and composition of volcanic clouds. A-Train observations during the first hours of atmospheric residence are particularly valuable, as the fallout, segregation and stratification of material in this period determines the concentration and altitude of constituents that remain to be advected downwind. This represents the eruption 'source term' essential for dispersion modeling, and hence for aviation hazard mitigation. In this presentation we show examples of A-Train data collected during recent eruptions including Chaitén (May 2008), Kasatochi (August 2008), Redoubt (March 2009), Eyjafjallajökull (April 2010) and Cordón Caulle (June 2011). We interpret the observations using the canonical three-stage view of volcanic cloud development [e.g., Rose et al., 2000] from initial rapid ash fallout to far-field dispersion of fine ash, gas and aerosol, and results from numerical modeling of volcanic plumes [e.g., Textor et al., 2003] and discuss the degree to which the observations validate existing theory and models. We also describe plans for advanced SO2 and ash retrieval algorithms that will exploit the synergy between UV and IR sensors in the A-Train for improved quantification of ash and SO2 loading by volcanic eruptions.

  2. Nitrogen oxides in the global upper troposphere interpreted with cloud-sliced NO2 from the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Marais, Eloise A.; Jacob, Daniel J.; Choi, Sungyeon; Joiner, Joanna; Belmonte-Rivas, Maria; Cohen, Ronald C.; Ryerson, Thomas B.; Weinheimer, Andrew J.; Volz-Thomas, Andreas

    2017-04-01

    Nitrogen oxides (NOx ≡ NO + NO2) are long lived in the upper troposphere (UT), and so have a large impact on ozone formation where ozone is a powerful greenhouse gas. Measurements of UT NOx are limited to summertime aircraft campaigns predominantly in North America. There are year-round NOx measurements from instruments onboard commercial aircraft, but NO2 measurements are susceptible to large interferences. Satellites provide global coverage, but traditional space-based NO2 observations only provide one piece of vertical information in the troposphere. New cloud-sliced satellite NO2 products offer additional vertical information by retrieving partial NO2 columns above clouds and further exploit differences in cloud heights to calculate UT NO2 mixing ratios. Two new cloud-sliced NO2 products from the Ozone Monitoring Instrument (OMI; 2004 launch) provide seasonal UT NO2 data centered at 350 hPa for 2005-2007 (NASA product) and 380 hPa for 2006 only (KNMI). Differences between the products include spectral fitting to obtain NO2 along the viewing path (slant column), the air mass factor calculation to convert slant columns to true vertical columns, treatment of the stratospheric NO2 component, and the choice of cloud products. The resultant NASA NO2 mixing ratios are 30% higher than KNMI NO2 and are consistent with summertime aircraft NO2 observations over North America. Comparison between NASA NO2 and the GEOS-Chem chemical transport model exposes glaring inadequacies in the model. In summer in the eastern US lightning NOx emissions are overestimated by at least a factor of 2, corroborated by comparison of GEOS-Chem and MOZAIC aircraft observations of reactive nitrogen (NOy). Too fast heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) leads to an underestimate in UT NO2 in winter across the northern hemisphere. Absence of interannual variability in lightning flashes in the lightning NOx parameterization induces biases in UT NO2 in the tropics due to anomalous lightning activity linked to the El Niño Southern Oscillation. Ongoing work is to use GEOS-Chem to investigate the implications of updated representation of UT NOx on ozone.

  3. A Fast and Sensitive New Satellite SO2 Retrieval Algorithm based on Principal Component Analysis: Application to the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Li, Can; Joiner, Joanna; Krotkov, A.; Bhartia, Pawan K.

    2013-01-01

    We describe a new algorithm to retrieve SO2 from satellite-measured hyperspectral radiances. We employ the principal component analysis technique in regions with no significant SO2 to capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering and ozone absorption) and measurement artifacts. We use the resulting principal components and SO2 Jacobians calculated with a radiative transfer model to directly estimate SO2 vertical column density in one step. Application to the Ozone Monitoring Instrument (OMI) radiance spectra in 310.5-340 nm demonstrates that this approach can greatly reduce biases in the operational OMI product and decrease the noise by a factor of 2, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing longterm, consistent SO2 records for air quality and climate research.

  4. Impact of spatial proxies on the representation of bottom-up emission inventories: A satellite-based analysis

    NASA Astrophysics Data System (ADS)

    Geng, Guannan; Zhang, Qiang; Martin, Randall V.; Lin, Jintai; Huo, Hong; Zheng, Bo; Wang, Siwen; He, Kebin

    2017-03-01

    Spatial proxies used in bottom-up emission inventories to derive the spatial distributions of emissions are usually empirical and involve additional levels of uncertainty. Although uncertainties in current emission inventories have been discussed extensively, uncertainties resulting from improper spatial proxies have rarely been evaluated. In this work, we investigate the impact of spatial proxies on the representation of gridded emissions by comparing six gridded NOx emission datasets over China developed from the same magnitude of emissions and different spatial proxies. GEOS-Chem-modeled tropospheric NO2 vertical columns simulated from different gridded emission inventories are compared with satellite-based columns. The results show that differences between modeled and satellite-based NO2 vertical columns are sensitive to the spatial proxies used in the gridded emission inventories. The total population density is less suitable for allocating NOx emissions than nighttime light data because population density tends to allocate more emissions to rural areas. Determining the exact locations of large emission sources could significantly strengthen the correlation between modeled and observed NO2 vertical columns. Using vehicle population and an updated road network for the on-road transport sector could substantially enhance urban emissions and improve the model performance. When further applying industrial gross domestic product (IGDP) values for the industrial sector, modeled NO2 vertical columns could better capture pollution hotspots in urban areas and exhibit the best performance of the six cases compared to satellite-based NO2 vertical columns (slope = 1.01 and R2 = 0. 85). This analysis provides a framework for information from satellite observations to inform bottom-up inventory development. In the future, more effort should be devoted to the representation of spatial proxies to improve spatial patterns in bottom-up emission inventories.

  5. SO2 columns over China: Temporal and spatial variations using OMI and GOME-2 observations

    NASA Astrophysics Data System (ADS)

    Huanhuan, Yan; Liangfu, Chen; Lin, Su; Jinhua, Tao; Chao, Yu

    2014-03-01

    Enhancements of SO2 column amounts due to anthropogenic emission sources over China were shown in this paper by using OMI and GOME-2 observations. The temporal and spatial variations of SO2 columns over China were analyzed for the time period 2005-2010. Beijing and Chongqing showed a high concentration in the SO2 columns, attributable to the use of coal for power generation in China and the characteristic of terrain and meteorology. The reduction of SO2 columns over Beijing and surrounding provinces in 2008 was observed by OMI, which confirms the effectiveness of strict controls on pollutant emissions and motor vehicle traffic before and during 2008 Olympic and Paralympic Games. The SO2 columns over China from GOME-2 (0.2-0.5 DU) were lower than those from OMI (0.6-1 DU), but both showed a decrease in SO2 columns over northern China since 2008 (except an increase in OMI SO2 in 2010).

  6. Deriving Surface NO2 Mixing Ratios from DISCOVER-AQ ACAM Observations: A Method to Assess Surface NO2 Spatial Variability

    NASA Astrophysics Data System (ADS)

    Silverman, M. L.; Szykman, J.; Chen, G.; Crawford, J. H.; Janz, S. J.; Kowalewski, M. G.; Lamsal, L. N.; Long, R.

    2015-12-01

    Studies have shown that satellite NO2 columns are closely related to ground level NO2 concentrations, particularly over polluted areas. This provides a means to assess surface level NO2 spatial variability over a broader area than what can be monitored from ground stations. The characterization of surface level NO2 variability is important to understand air quality in urban areas, emissions, health impacts, photochemistry, and to evaluate the performance of chemical transport models. Using data from the NASA DISCOVER-AQ campaign in Baltimore/Washington we calculate NO2 mixing ratios from the Airborne Compact Atmospheric Mapper (ACAM), through four different methods to derive surface concentration from column measurements. High spectral resolution lidar (HSRL) mixed layer heights, vertical P3B profiles, and CMAQ vertical profiles are used to scale ACAM vertical column densities. The derived NO2 mixing ratios are compared to EPA ground measurements taken at Padonia and Edgewood. We find similar results from scaling with HSRL mixed layer heights and normalized P3B vertical profiles. The HSRL mixed layer heights are then used to scale ACAM vertical column densities across the DISCOVER-AQ flight pattern to assess spatial variability of NO2 over the area. This work will help define the measurement requirements for future satellite instruments.

  7. Bearing capacity and rigidity of short plastic-concrete-tubal vertical columns under transverse load

    NASA Astrophysics Data System (ADS)

    Dolzhenko, A. V.; Naumov, A. E.; Shevchenko, A. E.

    2018-03-01

    The results of mathematical modeling in determining strain-stress distribution parameters of a short plastic-concrete-tubal vertical column under horizontal load as those in vertical constructions are described. Quantitative parameters of strain-stress distribution during vertical and horizontal loads and horizontal stiffness were determined by finite element modeling. The internal stress in the concrete column core was analyzed according to equivalent stress in Mohr theory of failure. It was determined that the bearing capacity of a short plastic- concrete-tubal vertical column is 25% higher in resistibility and 15% higher in rigidness than those of the caseless concrete columns equal in size. Cracks formation in the core of a short plastic-concrete-tubal vertical column happens under significantly bigger horizontal loads with less amount of concrete spent than that in caseless concrete columns. The significant increase of bearing capacity and cracking resistance of a short plastic-concrete-tubal vertical column under vertical and horizontal loads allows recommending them as highly effective and highly reliable structural wall elements in civil engineering.

  8. Comparison of Surface and Column Variations of CO2 Over Urban Areas for Future Active Remote CO2 Sensors

    NASA Technical Reports Server (NTRS)

    Choi, Yonghoon; Yang, Melissa; Kooi, Susan; Browell, Edward

    2015-01-01

    High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaign, to investigate the ability of space-based observations to accurately assess near surface conditions related to air quality. This campaign includes, Washington DC/Baltimore, MD (July 2011), San Joaquin Valley, CA (January - February 2013), Houston, TX (September 2013), and Denver, CO (July-August 2014). Each of these campaigns consisted of missed approaches and approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 km). In this study, surface (0 - 1 km) and column-averaged (0 - 3.5 km) CO2 mixing ratio values from the vertical soundings in the four geographically different urban areas are used to investigate the temporal and spatial variability of CO2 within the different urban atmospheric emission environments. Tracers such as CO, CH2O, NOx, and NMHCs are used to identify the source of CO2 variations in the urban sites. Additionally, we apply nominal CO2 column weighting functions for potential future active remote CO2 sensors operating in the 1.57-microns and 2.05-microns measurement regions to convert the in situ CO2 vertical mixing ratio profiles to variations in CO2 column optical depths, which is what the active remote sensors actually measure. Using statistics calculated from the optical depths at each urban site measured during the DISCOVER-AQ field campaign and for each nominal weighting function, we investigate the natural variability of CO2 columns in the lower troposphere; relate the CO2 column variability to the urban surface emissions; and show the measurement requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) in the continental U.S. urban areas.

  9. Validation of GOME (ERS-2) NO2 vertical column data with ground-based measurements at Issyk-Kul (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Ionov, D.; Sinyakov, V.; Semenov, V.

    Starting from 1995 the global monitoring of atmospheric nitrogen dioxide is carried out by the measurements of nadir-viewing GOME spectrometer aboard ERS-2 satellite. Continuous validation of that data by means of comparisons with well-controlled ground-based measurements is important to ensure the quality of GOME data products and improve related retrieval algorithms. At the station of Issyk-Kul (Kyrgyzstan) the ground-based spectroscopic observations of NO2 vertical column have been started since 1983. The station is located on the northern shore of Issyk-Kul lake, 1650 meters above the sea level (42.6 N, 77.0 E). The site is equipped with grating spectrometer for the twilight measurements of zenith-scattered solar radiation in the visible range, and applies the DOAS technique to retrieve NO2 vertical column. It is included in the list of NDSC stations as a complementary one. The present study is focused on validation of GOME NO2 vertical column data, based on 8-year comparison with correlative ground-based measurements at Issyk-Kul station in 1996-2003. Within the investigation, an agreement of both individual and monthly averaged GOME measurements with corresponding twilight ground-based observations is examined. Such agreement is analyzed with respect to different conditions (season, sun elevation), temporal/spatial criteria choice (actual overpass location, correction for diurnal variation) and data processing (GDP version 2.7, 3.0). In addition, NO2 vertical columns were integrated from simultaneous stratospheric profile measurements by NASA HALOE and SAGE-II/III satellite instruments and introduced to explain the differences with ground-based observations. In particular cases, NO2 vertical profiles retrieved from the twilight ground-based measurements at Issuk-Kul were also included into comparison. Overall, summertime GOME NO2 vertical columns were found to be systematicaly lower than ground-based data. This work was supported by International Association for the promotion of co-operation with scientists from the New Independent States of the former Soviet Union (INTAS-YSF-02-138), International Science and Technology Center (ISTC Kr-763), Russian Foundation for Basic Research (RFBR-03-05-64626), the joint foundation of Russian Ministry of Education and St.Petersburg Administration (PD02-1.5-96) and the President of Russia grant (MK-2686.2003.05).

  10. Gas chromatography using ice-coated fused silica columns: study of adsorption of sulfur dioxide on water ice

    NASA Astrophysics Data System (ADS)

    Langenberg, Stefan; Schurath, Ulrich

    2018-05-01

    The well established technique of gas chromatography is used to investigate interactions of sulfur dioxide with a crystalline ice film in a fused silica wide bore column. Peak shape analysis of SO2 chromatograms measured in the temperature range 205-265 K is applied to extract parameters describing a combination of three processes: (i) physisorption of SO2 at the surface, (ii) dissociative reaction with water and (iii) slow uptake into bulk ice. Process (ii) is described by a dissociative Langmuir isotherm. The pertinent monolayer saturation capacity is found to increase with temperature. The impact of process (iii) on SO2 peak retention time is found to be negligible under our experimental conditions. By analyzing binary chromatograms of hydrophobic n-hexane and hydrophilic acetone, the premelt surface layer is investigated in the temperature range 221-263 K, possibly giving rise to irregular adsorption. Both temperature dependencies fit simple van't Hoff equations as expected for process (i), implying that irregular adsorption of acetone is negligible in the investigated temperature range. Adsorption enthalpies of -45 ± 5 and -23±2 kJ mol-1 are obtained for acetone and n-hexane. The motivation of our study was to assess the vertical displacement of SO2 and acetone in the wake of aircraft by adsorption on ice particles and their subsequent sedimentation. Our results suggest that this transport mechanism is negligible.

  11. Trace gas retrievals from Airborne Compact Atmospheric Mapper (ACAM) observations during the 2011 DISCOVER-AQ flight campaign

    NASA Astrophysics Data System (ADS)

    Liu, X.; Kowalewski, M. G.; Janz, S. J.; Bhartia, P. K.; Chance, K.; Krotkov, N. A.; Pickering, K. E.; Crawford, J. H.

    2011-12-01

    The DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) mission has just finished its first flight campaign in the Baltimore-Washington D.C. area in July 2011. The ACAM, flown on board the NASA UC-12 aircraft, includes two spectrographs covering the spectral region 304-900 nm and a high-definition video camera, and is expected to provide column measurements of several important air quality trace gases and aerosols for the DISCOVER-AQ mission. The quick look results for NO2 have been shown to very useful in capturing the strong spatiotemporal variability of NO2. Preliminary fitting of UV/Visible spectra has shown that ACAM measurements have adequate signal to noise ratio to measure the trace gases O2, NO2, HCHO, and maybe SO2 and CHOCHO, at individual pixel resolution, although a great deal of effort is needed to improve the instrument calibration and derive proper reference spectrum for retrieving absolute trace gas column densities. In this study, we present analysis of ACAM instrument calibration including slit function, wavelength registration, and radiometric calibration for both nadir-viewing and zenith-sky measurements. Based on this analysis, an irradiance reference spectrum at ACAM resolution will be derived from a high-resolution reference spectrum with additional correction to account for instrument calibration. Using the derived reference spectrum and/or the measured zenith sky measurements, we will perform non-linear least squares fitting to investigate the retrievals of slant column densities of these trace gases from ACAM measurements, and also use an optimal estimation based algorithm including full radiative transfer calculations to derive the vertical column densities of these trace gases. The initial results will be compared with available in-situ and ground-based measurements taken during the DISCOVER-AQ campaign.

  12. Mini MAX-DOAS Measurements of Air Pollutants over China

    NASA Astrophysics Data System (ADS)

    Staadt, Steffen; Hao, Nan; Trautmann, Thomas

    2016-08-01

    This study continues the work of Clémer et al., (2010) and is aimed to improve trace gas retrievals with mini MAX-DOAS measurements in Nanjing. Based on that work, aerosol extinction vertical profiles are retrieved using the bePRO inversion algorithm developed by the Royal Belgian Institute for Space Aeronomy (BIRA- IASB). Afterwards, the tropospheric trace gas vertical profiles and vertical column densities (VCDs) are retrieved by applying the optimal estimation method to the O4 MAX-DOAS measurements. The Profiles for N O2 , S O2 , glyoxal, formaldehyde and nitrous acid are obtained with different results and different settings for the DOAS measurement. The AODs show small positive correlation against the AERONET values. For NO2, the retrieval shows reasonable concentrations in winter as opposed to summer and has small positive correlations with GOME-2 data. The SO2 VCDs are not correlated with the GOME-2 data, due to high uncertainties from MAX-DOAS and satellite retrievals, while the vertical mixing ratios (VMR) show good agreement with in-situ data (SORPES) at Nanjing. Nitrous acid shows a maximum in winter and a minimum in summer, while glyoxal has its maximum in August and September.

  13. Vertically stabilized elongated cross-section tokamak

    DOEpatents

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  14. PAR and UV effects on vertical migration and photosynthesis in Euglena gracilis.

    PubMed

    Richter, Peter; Helbling, Walter; Streb, Christine; Häder, Donat-P

    2007-01-01

    Recently it was shown that the unicellular flagellate Euglena gracilis changes the sign of gravitaxis from negative to positive upon excessive radiation. This sign change persists in a cell culture for hours even if subsequently transferred to dim light. To test the ecological relevance of this behavior, a vertical column experiment was performed (max. depth 65 cm) to test distribution, photosynthetic efficiency and motility in different horizons of the column (surface, 20, 40 and 65 cm). One column was covered with a UV cut-off filter, which transmits photosynthetically active radiation (PAR) only, the other with a filter which transmits PAR and UV. The columns were irradiated with a solar simulator (PAR 162 W m(-2), UV-A 32.6 W m(-2), UV-B 1.9 W m(-2)). The experiment was conducted for 10 days, normally with a light/dim light cycle of 12 h:12 h, but in some cases the light regime was changed (dim light instead of full radiation). Under irradiation the largest fraction of cells was found at the bottom of the column. The cell density decreased toward the surface. Photosynthetic efficiency, determined with a pulse amplitude modulated fluorometer, was negligible at the surface and increased toward the bottom. While the cell suspension showed a positive gravitaxis at the bottom, the cells in the 40 cm horizon were bimodally oriented (about the same percentage of cells swimming upward and downward, respectively). At 20 cm and at the surface the cells showed negative gravitaxis. Positive gravitaxis was more pronounced in the UV + PAR samples. At the surface and in the 20 and 40 cm horizons photosynthetic efficiency was better in the PAR-only samples than in the PAR + UV samples. At the bottom photosynthetic efficiency was similar in both light treatments. The data suggest that high light reverses gravitaxis of the cells, so that they move downward in the water column. At the bottom the light intensity is lower (attenuation of the water column and self shading of the cells) and the cells recover. After recovery the cells swim upward again until the negative gravitaxis is reversed again.

  15. HCHO and NO2 MAXDOAS retrieval strategies harmonization: Recent results from the EU FP7 project QA4ECV

    NASA Astrophysics Data System (ADS)

    Pinardi, Gaia; Peters, Enno; Hendrick, François; Gielen, Clio; Van Roozendael, Michel; Richter, Andreas; Piters, Ankie; Wagner, Thomas; Wang, Yang; Drosoglou, Theano; Bais, Alkis; Wang, Shanshan; Saiz-Lopez, Alfonso

    2016-04-01

    During the last decade, it has been extensively demonstrated that MAXDOAS is a useful and reliable technique to retrieve integrated column amounts of tropospheric trace gases and aerosols, as well as information on their vertical distributions. Since it is based on optical remote-sensing in the UV-visible region like nadir backscatter space-borne sensors, MAXDOAS is also increasingly recognized as a reference technique for validating satellite nadir observations of air quality species like NO2 and HCHO. However, building up an harmonized network of MAXDOAS spectrometers requires significant efforts in terms of common retrieval strategies and best-practices definitions. Within the EU FP7 project QA4ECV (Quality Assurance for Essential Climate Variables; see http://www.qa4ecv.eu/), harmonization activities have been initiated focusing on the two main steps of the MAXDOAS retrieval, i.e. the DOAS spectral fit providing the so-called differential slant column densities (DSCDs) and the conversion of the retrieved DSCDs to vertical profiles and/or vertical column densities (VCDs). Regarding the first step, the DOAS settings for HCHO and NO2 are optimized through an intercomparison exercise of slant column retrievals involving 15 groups of the MAXDOAS community including the QA4ECV partners, and based on the radiance spectra acquired during the MAD-CAT campaign held in Mainz (Germany) in June-July 2013 (see http://joseba.mpch-mainz.mpg.de/mad_cat.htm). The harmonization of the second step is done through the application of an AMF (aim mass factor) look-up table (LUT) approach on the optimized NO2 and HCHO DSCDs. The AMF LUTs depend on entry parameters like SZA, elevation and relative azimuth angles, wavelength, boundary layer height, AOD, and surface albedo. The advantages and drawbacks of the LUT approach are illustrated at several stations through comparison of the derived VCDs with those retrieved using the more sophisticated Optimal-Estimation-based profiling method. Recommendations for both MAXDOAS retrieval steps will be given in conclusion.

  16. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  17. Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld

    NASA Astrophysics Data System (ADS)

    Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich

    2018-05-01

    Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.

  18. A logistics evaluation of visual acuity as applied to the Bailey-Lovie chart.

    PubMed

    Pierscionek, B K; Weale, R A

    1999-11-01

    To discover whether as a result of the increasing use of the Bailey-Lovie chart some classes of patients may not be affected by the crowding of the smaller test characters, whose spacing is proportional to their size; and to determine acuities with a logistic function so that all of a patient's responses may be utilized. 112 patients were tested both with the original chart and one in which the horizontal distance is kept constant, i.e., the letters are arranged in vertical columns. All of a patient's responses were recorded so that the constants of the logistic function might be determined. No difference was found for very high and very low acuity scores, but, for intermediate ones, the vertical columns yielded acuity ratings increased by some 13%. The use of the logistics function was successful in that the correlation between stimulus and response was between 0.9 and 1 for some 80% of those examined. A constant horizontal spacing may be of advantage to some patients with a conventionally measured visual acuity of approximately 0.9.

  19. Next Generation Aura-OMI SO2 Retrieval Algorithm: Introduction and Implementation Status

    NASA Technical Reports Server (NTRS)

    Li, Can; Joiner, Joanna; Krotkov, Nickolay A.; Bhartia, Pawan K.

    2014-01-01

    We introduce our next generation algorithm to retrieve SO2 using radiance measurements from the Aura Ozone Monitoring Instrument (OMI). We employ a principal component analysis technique to analyze OMI radiance spectral in 310.5-340 nm acquired over regions with no significant SO2. The resulting principal components (PCs) capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering, and ozone absorption) and measurement artifacts, enabling us to account for these various interferences in SO2 retrievals. By fitting these PCs along with SO2 Jacobians calculated with a radiative transfer model to OMI-measured radiance spectra, we directly estimate SO2 vertical column density in one step. As compared with the previous generation operational OMSO2 PBL (Planetary Boundary Layer) SO2 product, our new algorithm greatly reduces unphysical biases and decreases the noise by a factor of two, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing long-term, consistent SO2 records for air quality and climate research. We have operationally implemented this new algorithm on OMI SIPS for producing the new generation standard OMI SO2 products.

  20. Coordinated Hubble Space Telescope and Venus Express Observations of Venus' upper cloud deck

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis Lea; Marcq, Emmanuel; Mills, Franklin; Mahieux, Arnaud; Limaye, Sanjay; Wilson, Colin; Allen, Mark; Bertaux, Jean-Loup; Markiewicz, Wojciech; Roman, Tony; Vandaele, Ann-Carine; Wilquet, Valerie; Yung, Yuk

    2015-09-01

    Hubble Space Telescope Imaging Spectrograph (HST/STIS) UV observations of Venus' upper cloud tops were obtained between 20N and 40S latitude on December 28, 2010; January 22, 2011 and January 27, 2011 in coordination with the Venus Express (VEx) mission. The high spectral (0.27 nm) and spatial (40-60 km/pixel) resolution HST/STIS data provide the first direct and simultaneous record of the latitude and local time distribution of Venus' 70-80 km SO and SO2 (SOx) gas density on Venus' morning quadrant. These data were obtained simultaneously with (a) VEx/SOIR occultation and/or ground-based James Clerk Maxwell Telescope sub-mm observations that record respectively, Venus' near-terminator SO2 and dayside SOx vertical profiles between ∼75 and 100 km; and (b) 0.36 μm VEx/VMC images of Venus' cloud-tops. Updating the (Marcq, E. et al. [2011]. Icarus 211, 58-69) radiative transfer model SO2 gas column densities of ∼2-10 μm-atm and ∼0.4-1.8 μm-atm are retrieved from the December 2010 and January 2011 HST observations, respectively on Venus' dayside (i.e., at solar zenith angles (SZA) < 60°); SO gas column densities of 0.1-0.11 μm-atm, 0.03-0.31 μm-atm and 0.01-0.13 μm-atm are also retrieved from the respective December 28, 2010, January 22, 2011 and January 27, 2011 HST observations. A decline in the observed low-latitude 0.24 and 0.36 μm cloud top brightness paralleled the declining SOx gas densities. On December 28, 2010 SO2 VMR values ∼280-290 ppb are retrieved between 74 and 81 km from the HST and SOIR data obtained near Venus' morning terminator (at SZAs equal to 70° and 90°, respectively); these values are 10× higher than the HST-retrieved January 2011 near terminator values. Thus, the cloud top SO2 gas abundance declined at all local times between the three HST observing dates. On all dates the average dayside SO2/SO ratio inferred from HST between 70 and 80 km is higher than that inferred from the sub-mm the JCMT data above 84 km confirming that SOx photolysis is more efficient at higher altitudes. The direct correlation of the SOx gases provides the first clear evidence that SOx photolysis is not the only source for Venus' 70-80 km sulfur reservoir. The cloud top SO2 gas density is dependent in part on the vertical transport of the gas from the lower atmosphere; and the 0.24 μm cloud top brightness levels are linked to the density of the sub-micron haze. Thus, the new results may suggest a correlation between Venus' cloud-top sub-micron haze density and the vertical transport rate. These new results must be considered in models designed to simulate and explore the relationship between Venus' sulfur chemistry cycle, H2SO4 cloud formation rate and climate evolution. Additionally, we present the first photochemical model that uniquely tracks the transition of the SO2 atmosphere from steady to non-steady state with increasing SZA, as function of altitude within Venus' mesosphere, showing the photochemical and dynamical basis for the factor of ∼2 enhancements in the SOx gas densities observed by HST near the terminator above that observed at smaller SZA. These results must also be considered when modeling the long-term evolution of Venus' atmospheric chemistry and dynamics.

  1. OMI air-quality monitoring over the Middle East

    NASA Astrophysics Data System (ADS)

    Barkley, Michael P.; González Abad, Gonzalo; Kurosu, Thomas P.; Spurr, Robert; Torbatian, Sara; Lerot, Christophe

    2017-04-01

    Using Ozone Monitoring Instrument (OMI) trace gas vertical column observations of nitrogen dioxide (NO2), formaldehyde (HCHO), sulfur dioxide (SO2), and glyoxal (CHOCHO), we have conducted a robust and detailed time series analysis to assess changes in local air quality for over 1000 locations (focussing on urban, oil refinery, oil port, and power plant targets) over the Middle East for 2005-2014. Apart from NO2, which is highest over urban locations, average tropospheric column levels of these trace gases are highest over oil ports and refineries. The highest average pollution levels over urban settlements are typically in Bahrain, Kuwait, Qatar, and the United Arab Emirates. We detect 278 statistically significant and real linear NO2 trends in total. Over urban areas NO2 increased by up to 12 % yr-1, with only two locations showing a decreasing trend. Over oil refineries, oil ports, and power plants, NO2 increased by about 2-9 % yr-1. For HCHO, 70 significant and real trends were detected, with HCHO increasing by 2-7 % yr-1 over urban settlements and power plants and by about 2-4 % yr-1 over refineries and oil ports. Very few SO2 trends were detected, which varied in direction and magnitude (23 increasing and 9 decreasing). Apart from two locations where CHOCHO is decreasing, we find that glyoxal tropospheric column levels are not changing over the Middle East. Hence, for many locations in the Middle East, OMI observes a degradation in air quality over 2005-2014. This study therefore demonstrates the capability of OMI to generate long-term air-quality monitoring at local scales over this region.

  2. The orientation of the cervical vertebral column in unrestrained awake animals. I. Resting position.

    PubMed

    Vidal, P P; Graf, W; Berthoz, A

    1986-01-01

    The orientation of the cervical vertebral column was studied by X-ray photography of the region containing the head and the neck in nine unrestrained species of vertebrates (man, monkey, cat, rabbit, guinea pig, rat, chicken, frog, lizard). In addition, the orientation of the horizontal semicircular canals was measured in four species using landmarks on the skull. In all vertebrates studied, with the exception of frog and lizard, the general orientation of the cervical vertebral column was vertical when animals were at rest, and not horizontal or oblique as suggested by the macroscopic appearance of the neck. The posture of the animal, whether lying, sitting or standing, had little effect on this general vertical orientation, although some variability was noticed depending on the species. This finding prompted the definition of a resting zone, where the cervical column can take any orientation within a narrow range around a mean position. The cervical vertebral column composes part of the S-shaped structure of the entire vertebral column, with one inflection around the cervico-thoracic (C7/Th1) junction. This feature is already noticable in the lizard. The vertical orientation of the cervical vertebral column is interpreted to provide a stable and energy saving balance of the head. Furthermore, when the head is lowered or raised, the atlanto-occipital and cervico-thoracic junctions are predominantly involved, while the entire cervical column largely preserves its intrinsic configuration. The curved configuration of the cervico-thoracic vertebral column embedded in long spring-like muscles is interpreted to function as a shock absorber. At rest, animals did not hold their heads with the horizontal canals oriented earth horizontally all the time, but often maintained them pitched up by ca. 5 deg, as has been reported for man. At other times, presumably when the vigilance level increased, the horizontal canals were brought into the earth horizontal plane. The vertical orientation of the cervical column results in a vertical positioning of the odontoid process of the axis (second cervical vertebra, C2), which thus provides the axis of rotation for yaw movements of the head. This axis corresponds to that of the horizontal semicircular canals. The vertical organization of the cervical vertebral column in birds and mammals, whether the animal is quadrupedal or bipedal, points to a common organizational principle for eye and head movement systems.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation

    NASA Astrophysics Data System (ADS)

    Williams, Jason E.; Folkert Boersma, K.; Le Sager, Phillipe; Verstraeten, Willem W.

    2017-02-01

    We provide a comprehensive description of the high-resolution version of the TM5-MP global chemistry transport model, which is to be employed for deriving highly resolved vertical profiles of nitrogen dioxide (NO2), formaldehyde (CH2O), and sulfur dioxide (SO2) for use in satellite retrievals from platforms such as the Ozone Monitoring Instrument (OMI) and the Sentinel-5 Precursor, and the TROPOspheric Monitoring Instrument (tropOMI). Comparing simulations conducted at horizontal resolutions of 3° × 2° and 1° × 1° reveals differences of ±20 % exist in the global seasonal distribution of 222Rn, being larger near specific coastal locations and tropical oceans. For tropospheric ozone (O3), analysis of the chemical budget terms shows that the impact on globally integrated photolysis rates is rather low, in spite of the higher spatial variability of meteorological data fields from ERA-Interim at 1° × 1°. Surface concentrations of O3 in high-NOx regions decrease between 5 and 10 % at 1° × 1° due to a reduction in NOx recycling terms and an increase in the associated titration term of O3 by NO. At 1° × 1°, the net global stratosphere-troposphere exchange of O3 decreases by ˜ 7 %, with an associated shift in the hemispheric gradient. By comparing NO, NO2, HNO3 and peroxy-acetyl-nitrate (PAN) profiles against measurement composites, we show that TM5-MP captures the vertical distribution of NOx and long-lived NOx reservoirs at background locations, again with modest changes at 1° × 1°. Comparing monthly mean distributions in lightning NOx and applying ERA-Interim convective mass fluxes, we show that the vertical re-distribution of lightning NOx changes with enhanced release of NOx in the upper troposphere. We show that surface mixing ratios in both NO and NO2 are generally underestimated in both low- and high-NOx scenarios. For Europe, a negative bias exists for [NO] at the surface across the whole domain, with lower biases at 1° × 1° at only ˜ 20 % of sites. For NO2, biases are more variable, with lower (higher) biases at 1° × 1° occurring at ˜ 35 % ( ˜ 20 %) of sites, with the remainder showing little change. For CH2O, the impact of higher resolution on the chemical budget terms is rather modest, with changes of less than 5 %. The simulated vertical distribution of CH2O agrees reasonably well with measurements in pristine locations, although column-integrated values are generally underestimated relative to satellite measurements in polluted regions. For SO2, the performance at 1° × 1° is principally governed by the quality of the emission inventory, with limited improvements in the site-specific biases, with most showing no significant improvement. For the vertical column, improvements near strong source regions occur which reduce the biases in the integrated column. For remote regions missing biogenic source terms are inferred.

  4. Analysis of observational records of Dae-gyupyo in Joseon Dynasty

    NASA Astrophysics Data System (ADS)

    Mihn, Byeong-Hee; Lee, Ki-Won; Kim, Sang-Hyuk; Ahn, Young Sook; Lee, Yong Sam

    2012-09-01

    It is known that Dae-gyupyo (the Large Noon Gnomon) and So-gyupyo (the Small Noon Gnomon) were constructed in the reign of King Sejong (1418--1450) of the Joseon Dynasty. Gyupyo is an astronomical instrument for measuring the length of the shadow cast by a celestial body at the meridian passage time; it consists of two basic parts: a measuring scale and a vertical column. According to the Veritable Records of King Sejong and of King Myeongjong (1545--1567), the column of Dae-gyupyo was 40 Cheok (˜ 8 m) in height from the measuring scale and had a cross-bar, like the Guibiao of Shoujing Guo of the Yuan Dynasty in China. In the latter Veritable Records, three observations of the Sun on the date of the winter solstice and two of the full Moon on the first month in a luni-solar calendar are also recorded. In particular, the observational record of Dae-gyupyo for the Sun on Dec. 12, 1563 is ˜ 1 m shorter than the previous two records. To explain this, we investigated two possibilities: the vertical column was inclined, and the cross-bar was lowered. The cross-bar was attached to the column by a supporting arm; that should be installed at an angle of ˜ 36.9° to the north on the basis of a geometric structure inferred from the records of Yuanshi (History of the Yuan Dynasty). We found that it was possible that the vertical column was inclined ˜ 7.7° to the south or the supporting arm was tilted ˜ 58.3° downward. We suggest that the arm was tilted by ˜ 95° (= 36.9° + 58.3°).

  5. Vertical profile of H 2SO 4 vapor at 70-110 km on Venus and some related problems

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2011-09-01

    The vertical profile of H 2SO 4 vapor is calculated using current atmospheric and thermodynamic data. The atmospheric data include the H 2O profiles observed at 70-112 km by the SOIR solar occultations, the SPICAV-UV profiles of the haze extinction at 220 nm, the VeRa temperature profiles, and a typical profile of eddy diffusion. The thermodynamic data are the saturated vapor pressures of H 2O and H 2SO 4 and chemical potentials of these species in sulfuric acid solutions. The calculated concentration of sulfuric acid in the cloud droplets varies from 85% at 70 km to a minimum of 70% at 90 km and then gradually increasing to 90-100% at 110 km. The H 2SO 4 vapor mixing ratio is ˜10 -12 at 70 and 110 km with a deep minimum of 3 × 10 -18 at 88 km. The H 2O-H 2SO 4 system matches the local thermodynamic equilibrium conditions up to 87 km. The column photolysis rate of H 2SO 4 is 1.6 × 10 5 cm -2 s -1 at 70 km and 23 cm -2 s -1 at 90 km. The calculated abundance of H 2SO 4 vapor at 90-110 km and its photolysis rate are smaller than those presented in the recent model by Zhang et al. (Zhang, X., Liang, M.C., Montmessin, F., Bertaux, J.L., Parkinson, C., Yung, Y.L. [2010]. Nat. Geosci. 3, 834-837) by factors of 10 6 and 10 9, respectively. Assumptions of 100% sulfuric acid, local thermodynamic equilibrium, too warm atmosphere, supersaturation of H 2SO 4 (impossible for a source of SO X), and cross sections for H 2SO 4·H 2O (impossible above the pure H 2SO 4) are the main reasons of this huge difference. Significant differences and contradictions between the SPICAV-UV, SOIR, and ground-based submillimeter observations of SO X at 70-110 km are briefly discussed and some weaknesses are outlined. The possible source of high altitude SO X on Venus remains unclear and probably does not exist.

  6. Geometrical appearance and spatial arrangement of structural blocks of the Malan loess in NW China: implications for the formation of loess columns

    NASA Astrophysics Data System (ADS)

    Li, Yanrong; Zhang, Tao; Zhang, Yongbo; Xu, Qiang

    2018-06-01

    Loess, as one of the main Quaternary deposits, covers approximately 6% of the land surface of the Earth. Although loess is loose and fragile, loess columns are popular and they can stand stably for hundreds of years, thereby forming a spectacular landform. The formation of such special column-shaped soil structures is puzzling, and the underlying fundamentals remain unclear. The present study focuses on quantifying and examining the geometrical shape and spatial alignment of structural blocks of the Malan loess at different locations in the Loess Plateau of China. The structural blocks under investigation include clay- and silt-sized particles, aggregates, fragments, lumps, and columns, which vary in size from microns to tens of meters. Regardless of their size, the structural blocks of the Malan loess are found to be similar in shape, i.e., elongated with a length-to-width ratio of approximately 2.6. The aggregates, fragments, lumps, columns, and macropores between aggregates exhibit strong concentration in the vertical or subvertical alignment. These phenomena imply that the Malan loess is anisotropic and it is composed of a combination of vertically aligned strong units and vertically aligned weak segments. Based on this, "vertiloess" structure is proposed to denote this combination. The vertiloess structure prevents horizontal erosion, but favors spalling, peeling, toppling, falling and cracking-sliding of vertical loess pieces, thereby forming loess columns.

  7. 24. DETAIL VIEW OF COLUMN #072 DEVIATING FROM VERTICAL IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. DETAIL VIEW OF COLUMN #072 DEVIATING FROM VERTICAL IN ROW OF INTACT COLUMNS, LOOKING NORTHEAST TO SOUTHWEST. (NOTE BOLTED BLOCK SCABBED TO COLUMN AS JOIST/TRUSS SUPPORT) - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA

  8. Validating NO2 measurements in the vertical atmospheric column with the OMI instrument aboard the EOS Aura satellite against ground-based measurements at the Zvenigorod Scientific Station

    NASA Astrophysics Data System (ADS)

    Gruzdev, A. N.; Elokhov, A. S.

    2009-08-01

    Data on the NO2 content in the vertical column of the atmosphere obtained with the Ozone Monitoring Instrument (OMI) aboard the EOS Aura satellite (United States) in the period from October 2004 to October 2007 are compared with the results of ground-based measurements at the Zvenigorod Scientific Station (55.7° N, 36.8° E). The “unpolluted”; part of the total NO2 content in the atmospheric column, which mostly represents the stratosphere, and the NO2 contents in the vertical column of the troposphere, including the lower layer, which is subject to pollution, are included in the comparison. The correlation coefficient between the results of ground-based and satellite measurements of the “unpolluted” total NO2 content is ˜0.9. The content values measured with the OMI instrument are smaller than the results of ground-based measurements (on average, by (0.30 ± 0.03) × 1015 cm-2 or by (11 ± 1)%). Therms discrepancy between the satellite and ground-based data is 0.6 × 1015 cm-2. The NO2 content in the vertical column of the troposphere from the results of satellite measurements is, on average, (1.4 ± 0.5) × 1015 cm-2, (or about 35%) smaller than from the results of ground-based measurements, and the rms discrepancy between them is about 200%. The correlation coefficient between these data is ˜0.4. This considerable discrepancy is evidently caused by the strong spatial (horizontal) inhomogeneity and the temporal variability of the NO2 field during episodes of pollution, which leads to different (and often uncorrelated) estimates of the NO2 content in the lower troposphere due to different spatial resolutions of ground-based and satellite measurements.

  9. Visual observations of the vertical distribution of plankton throughout the water column above Broken Spur vent field, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Vereshchaka, A. L.; Vinogradov, G. M.

    1999-09-01

    Visual observations were made in September 1997 during the 39 cruise of R/V "Akademik Mstislav Keldysh" with 2 deep-sea manned submersibles "Mir" aboard. During 4 dives the following plankton countings were made: 3 vertical throughout the water column during the day, 2 vertical in the upper 1000 m at night, and 1 oblique in the plume area during the day. Biomass profiles are represented for each dive for all abundant animal groups: copepods, euphausiids+decapods+mysids, chaetognaths, medusae, ctenophores, siphonophores, cyclothones, myctophides, radiolarians, and the total zooplankton. Plankton distribution shows 2 aggregations, one within the main pycnocline and the other near the plume; Gelatinous animals and radiolarians dominate in both aggregations by biomass and make a significant contribution to the plankton biomass throughout the water column. Oblique counting indicates the presence of aggregations of animals near the upper and lower borders of the plume and biomass depletion within the plume core.

  10. PCA-based SO2, NO2, and HCHO retrievals from GeoTASO airborne measurements during KORUS-AQ 2016 campaign

    NASA Astrophysics Data System (ADS)

    Chong, H.; Lee, S.; Jeong, U.; Kim, J.; Li, C.; Krotkov, N. A.; Al-Saadi, J. A.; Janz, S. J.; Kowalewski, M. G.; Nowlan, C. R.; Kang, M.; Joiner, J.; Haffner, D. P.; Koo, J. H.; Hong, H.; Lee, H.

    2017-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) is an airborne instrument measuring backscattered radiance with a spectrometer covering the spectral range between 290-695 nm. GeoTASO flew on the B-200 (UC-12B) - LARC aircraft during the KORUS-AQ campaign, of which the spatial resolution is about 250 nm x 250 m. Principal component analysis (PCA) technique is used to retrieve slant column densities (SCD) of sulfur dioxide (SO2), nitrogen dioxide (NO2), and formaldehyde (HCHO). The fitting windows of SO2, NO2, and HCHO are 310-325 nm, 350-380 nm, and 335-357 nm respectively. The clear PCs of each species are collected from rural areas where are found to have less SCDs of each species from prior iteration step. Using the clear sector PCs and the cross section of each species, SCDs of each trace gas are obtained using the multiple linear regression method. Air mass factors (AMF) of each species are obtained using the atmospheric profiles from chemical transport model calculations during the campaign to convert SCDs to vertical column densities (VCD). The retrieved VCDs of each species well capture small point sources on the flight paths and their plumes propagating downwind areas, which was not available from the ground-based in-situ measurements. The retrieved VCDs will be compared and/or validated against other benchmark measurements during the campaign.

  11. The Copernicus S5P Mission Performance Centre / Validation Data Analysis Facility for TROPOMI operational atmospheric data products

    NASA Astrophysics Data System (ADS)

    Compernolle, Steven; Lambert, Jean-Christopher; Langerock, Bavo; Granville, José; Hubert, Daan; Keppens, Arno; Rasson, Olivier; De Mazière, Martine; Fjæraa, Ann Mari; Niemeijer, Sander

    2017-04-01

    Sentinel-5 Precursor (S5P), to be launched in 2017 as the first atmospheric composition satellite of the Copernicus programme, carries as payload the TROPOspheric Monitoring Instrument (TROPOMI) developed by The Netherlands in close cooperation with ESA. Designed to measure Earth radiance and solar irradiance in the ultraviolet, visible and near infrared, TROPOMI will provide Copernicus with observational data on atmospheric composition at unprecedented geographical resolution. The S5P Mission Performance Center (MPC) provides an operational service-based solution for various QA/QC tasks, including the validation of S5P Level-2 data products and the support to algorithm evolution. Those two tasks are to be accomplished by the MPC Validation Data Analysis Facility (VDAF), one MPC component developed and operated at BIRA-IASB with support from S[&]T and NILU. The routine validation to be ensured by VDAF is complemented by a list of validation AO projects carried out by ESA's S5P Validation Team (S5PVT), with whom interaction is essential. Here we will introduce the general architecture of VDAF, its relation to the other MPC components, the generic and specific validation strategies applied for each of the official TROPOMI data products, and the expected output of the system. The S5P data products to be validated by VDAF are diverse: O3 (vertical profile, total column, tropospheric column), NO2 (total and tropospheric column), HCHO (tropospheric column), SO2 (column), CO (column), CH4 (column), aerosol layer height and clouds (fractional cover, cloud-top pressure and optical thickness). Starting from a generic validation protocol meeting community-agreed standards, a set of specific validation settings is associated with each data product, as well as the appropriate set of Fiducial Reference Measurements (FRM) to which it will be compared. VDAF collects FRMs from ESA's Validation Data Centre (EVDC) and from other sources (e.g., WMO's GAW, NDACC and TCCON). Data manipulations on satellite and FRM data (format conversion, filtering, co-location, regridding and vertical smoothing) are performed by the open source software HARP, while more specific manipulations apply in-house routines. The paper concludes with a short description of expected outputs of the system.

  12. Nitrogen oxides in the arctic stratosphere: Implications for ozone abundances. Ph.D. Thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slusser, J.R.

    1994-01-01

    In the high latitude winter stratosphere, NO2 sequesters chlorine compounds which are extremely efficient at destroying ozone. During the nighttime, NO2 reacts with ozone to form N2O5 which acts as a reservoir of NO2. Under heavy aerosol loading, N2O5 may react with water on aerosol surfaces to form HNO3, a reservoir more resistant to photolysis. This heterogeneous reaction results in reduced NO2 concentration when the sun returns at the end of the winter. A spectrograph system has been developed to measure scattered zenith skylight and thereby determine stratospheric NO2 slant column abundance. Conversion of the measured slant column abundance tomore » vertical column abundance requires dividing by the air mass. The air mass is the enhancement in the optical path for the scattered twilight as compared to a vertical path. Air mass values determined using a multiple scattering radiative transfer code have been compared to those derived using a Monte Carlo code and were found to agree to within 6% at a 90 deg solar zenith angle for a stratospheric absorber. Six months of NO2 vertical column abundance measured over Fairbanks during the winter 1992-93 exhibited the daylight diminished and increased as the sunlight hours lengthened. The overall seasonal behavior was similar to high-latitude measurements made in the Southern Hemisphere. The ratios of morning to evening column abundance were consistent with predictions based on gas-phase chemistry. The possible heterogeneous reaction of N2O5 on sulfate aerosols was investigated using FTIR Spectrometer measurements of HNO3 column abundance and lidar determinations of the aerosol profile. Using an estimated N2O5 column abundance and aerosol profile as input to a simple model, significant HNO3 production was expected. No increase in HNO3 column abundance was measured. From this set of data, it was not possible to determine whether significant amounts of N2O5 were converted to HNO3 by this heterogeneous reaction.« less

  13. A-Train Satellite Observations of Recent Explosive Eruptions in Iceland and Chile

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Yang, K.; Prata, A. J.

    2012-04-01

    The past few years have seen remarkable levels of explosive volcanic activity in Iceland and Chile, with four significant eruptions at Chaitén (May 2008), Eyjafjallajökull (April 2010), Grimsvötn (May 2011) and Cordón Caulle (June 2011 - ongoing). The tremendous disruption and economic impact of the Eyjafjallajökull eruption is well known, but each of these events had a significant impact on aviation, sometimes at great distances from the volcano. As of late 2011, volcanic ash from Cordón Caulle was still affecting airports in southern South America, highlighting the potential for extended disruption during long-lived eruptions. Serendipitously, this period of elevated volcanic activity has coincided with an era of unprecedented availability of satellite remote sensing data pertinent to volcanic cloud studies. In particular, NASA's A-Train satellite constellation (including the Aqua, CloudSat, CALIPSO, and Aura satellites) has been flying in formation since 2006, providing synergistic, multi- and hyper-spectral, passive and active observations. Measurements made by A-Train sensors include total column sulfur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) on Aura, upper tropospheric and stratospheric (UTLS) SO2 column by the Atmospheric Infrared Sounder (AIRS) on Aqua and Microwave Limb Sounder (MLS) on Aura, ash mass loading from AIRS and the Moderate resolution Imaging Spectroradiometer (MODIS) on Aqua, UTLS HCl columns and ice water content (IWC) from MLS, aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO, and hydrometeor profiles from the Cloud Profiling Radar (CPR) on CloudSat. The active vertical profiling capability of CALIPSO, CloudSat and MLS sychronized with synoptic passive sensing of trace gases and aerosols by OMI, AIRS and MODIS provides a unique perspective on the structure and composition of volcanic clouds. A-Train observations during the first hours of atmospheric residence are particularly valuable, as the fallout, segregation and stratification of material in this period determines the concentration and altitude of constituents that remain to be advected downwind. This represents the eruption 'source term' essential for ash dispersion modeling, and hence for aviation hazard mitigation. In this presentation we show how A-Train data have improved our understanding of the composition, structure and dynamics of volcanic eruption clouds, using examples from the recent Icelandic and Chilean eruptions. These events span a range of compositions and eruptive styles, including highly silicic, SO2-poor eruptions (Chaitén and Cordón Caulle), magma-ice interaction (Eyjafjallajökull and Grimsvötn), stratospheric eruption columns (Chaitén, Grimsvötn), and persistent, weak tropospheric plumes (Eyjafjallajökull). In each case, satellite remote sensing played a crucial role in characterizing the eruption, monitoring variations in intensity and tracking the dispersion of volcanic cloud constituents. We also describe plans for advanced SO2 and ash retrieval algorithms that will exploit the synergy between UV and IR sensors in the A-Train for improved quantification of ash and SO2 loading by volcanic eruptions.

  14. Experimental Evaluation of the Failure of a Seismic Design Category - B Precast Concrete Beam-Column Connection System

    DTIC Science & Technology

    2014-12-01

    27  Figure 37. Posttest view of SDC-B experimental specimen...center vertical displacement (y2) vs. time (x). .............................................. 28  Figure 40. Posttest front view of the SDC B top...center column. .......................................................... 30  Figure 41. Posttest front view of end columns

  15. SO2 Emissions and Lifetimes: Estimates from Inverse Modeling Using In Situ and Global, Space-Based (SCIAMACHY and OMI) Observations

    NASA Technical Reports Server (NTRS)

    Lee, Chulkyu; Martin Randall V.; vanDonkelaar, Aaron; Lee, Hanlim; Dickerson, RUssell R.; Hains, Jennifer C.; Krotkov, Nickolay; Richter, Andreas; Vinnikov, Konstantine; Schwab, James J.

    2011-01-01

    Top-down constraints on global sulfur dioxide (SO2) emissions are inferred through inverse modeling using SO2 column observations from two satellite instruments (SCIAMACHY and OMI). We first evaluated the S02 column observations with surface SO2 measurements by applying local scaling factors from a global chemical transport model (GEOS-Chem) to SO2 columns retrieved from the satellite instruments. The resulting annual mean surface SO2 mixing ratios for 2006 exhibit a significant spatial correlation (r=0.86, slope=0.91 for SCIAMACHY and r=0.80, slope = 0.79 for OMI) with coincident in situ measurements from monitoring networks throughout the United States and Canada. We evaluate the GEOS-Chem simulation of the SO2 lifetime with that inferred from in situ measurements to verity the applicability of GEOS-Chem for inversion of SO2 columns to emissions. The seasonal mean SO2 lifetime calculated with the GEOS-Chem model over the eastern United States is 13 h in summer and 48 h in winter, compared to lifetimes inferred from in situ measurements of 19 +/- 7 h in summer and 58 +/- 20 h in winter. We apply SO2 columns from SCIAMACHY and OMI to derive a top-down anthropogenic SO2 emission inventory over land by using the local GEOS-Chem relationship between SO2 columns and emissions. There is little seasonal variation in the top-down emissions (<15%) over most major industrial regions providing some confidence in the method. Our global estimate for annual land surface anthropogenic SO2 emissions (52.4 Tg S/yr from SCIAMACHY and 49.9 Tg S / yr from OMI) closely agrees with the bottom-up emissions (54.6 Tg S/yr) in the GEOS-Chem model and exhibits consistency in global distributions with the bottom-up emissions (r = 0.78 for SCIAMACHY, and r = 0.77 for OMI). However, there are significant regional differences.

  16. 16. DETAIL, VERTICAL MEMBER L2U2 FROM BELOW AND EAST. UNUSUALLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL, VERTICAL MEMBER L2-U2 FROM BELOW AND EAST. UNUSUALLY SHAPED DESIGN REFLECTS COLUMN STRESSES ALSO NOTE LACING, WHICH COMPRISES ANGLES RATHER THAN COMMON FLAT BARS - Coraopolis Bridge, Spanning Ohio River back channel at Ferree Street & Grand Avenue, Coraopolis, Allegheny County, PA

  17. On the use of harmonized HCHO and NO2 MAXDOAS measurements for the validation of GOME-2 and OMI satellite sensors

    NASA Astrophysics Data System (ADS)

    Pinardi, Gaia; Hendrick, François; Gielen, Clio; Van Roozendael, Michel; De Smedt, Isabelle; Lambert, Jean-Christopher; Granville, José; Compernolle, Steven; Richter, Andreas; Peters, Enno; Piters, Ankie; Wagner, Thomas; Wang, Yang; Drosoglou, Theano; Bais, Alkis; Wang, Shanshan; Saiz-Lopez, Alfonso

    2017-04-01

    During the last decade, the MAXDOAS technique has been increasingly recognized as a source of Fiducial Reference Measurements (FRM) suitable for the validation of satellite nadir observations of species relevant for climate and air quality like NO2 and HCHO. As part of the EU FP7 QA4ECV (Quality Assurance for Essential Climate Variables; see http://www.qa4ecv.eu/) project, efforts have been recently made to harmonize a network of a dozen of MAXDOAS spectrometers in view of their use to assess the quality of satellite climate data records generated within the same project. Harmonization tasks have addressed both retrieval steps involved in MAXDOAS retrievals, i.e. the DOAS spectral fit providing the differential slant column densities (DSCDs) and the conversion of the retrieved DSCDs into vertical profiles and/or vertical column densities (VCDs). In this work, we illustrate the successive harmonization steps and present the resulting QA4ECV MAXDOAS database v2. The approach adopted for the conversion of slant to vertical columns is based on a simplified look-up-table approach. The strength and limitation of this approach are discussed using reference data retrieved using an optimal estimation scheme. The QA4ECV MAXDOAS database is then used to validate satellite data sets of NO2 and HCHO columns derived from the Aura/OMI and MetOp/GOME-2 sensors. The methodology of comparison, which is also a subject of the QA4ECV project, is reviewed with respect to co-location criteria, impact of vertical and horizontal smoothing and representativeness of validation sites. We conclude by assessing the current strengths and limitations of the existing MAXDOAS datasets for NO2 and HCHO satellite validation.

  18. Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations

    NASA Astrophysics Data System (ADS)

    De Smedt, I.; Stavrakou, T.; Hendrick, F.; Danckaert, T.; Vlemmix, T.; Pinardi, G.; Theys, N.; Lerot, C.; Gielen, C.; Vigouroux, C.; Hermans, C.; Fayt, C.; Veefkind, P.; Müller, J.-F.; Van Roozendael, M.

    2015-11-01

    We present the new version (v14) of the BIRA-IASB algorithm for the retrieval of formaldehyde (H2CO) columns from spaceborne UV-visible sensors. Applied to OMI measurements from Aura and to GOME-2 measurements from MetOp-A and MetOp-B, this algorithm is used to produce global distributions of H2CO representative of mid-morning and early afternoon conditions. Its main features include (1) a new iterative DOAS scheme involving three fitting intervals to better account for the O2-O2 absorption, (2) the use of earthshine radiances averaged in the equatorial Pacific as reference spectra, and (3) a destriping correction and background normalisation resolved in the across-swath position. For the air mass factor calculation, a priori vertical profiles calculated by the IMAGES chemistry transport model at 09:30 and 13:30 LT are used. Although the resulting GOME-2 and OMI H2CO vertical columns are found to be highly correlated, some systematic differences are observed. Afternoon columns are generally larger than morning ones, especially in mid-latitude regions. In contrast, over tropical rainforests, morning H2CO columns significantly exceed those observed in the afternoon. These differences are discussed in terms of the H2CO column variation between mid-morning and early afternoon, using ground-based MAX-DOAS measurements available from seven stations in Europe, China and Africa. Validation results confirm the capacity of the combined satellite measurements to resolve diurnal variations in H2CO columns. Furthermore, vertical profiles derived from MAX-DOAS measurements in the Beijing area and in Bujumbura are used for a more detailed validation exercise. In both regions, we find an agreement better than 15 % when MAX-DOAS profiles are used as a priori for the satellite retrievals. Finally, regional trends in H2CO columns are estimated for the 2004-2014 period using SCIAMACHY and GOME-2 data for morning conditions, and OMI for early afternoon conditions. Consistent features are observed, such as an increase of the columns in India and central-eastern China, and a decrease in the eastern US and Europe. We find that the higher horizontal resolution of OMI combined with a better sampling and a more favourable illumination at midday allow for more significant trend estimates, especially over Europe and North America. Importantly, in some parts of the Amazonian forest, we observe with both time series a significant downward trend in H2CO columns, spatially correlated with areas affected by deforestation.

  19. Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations

    NASA Astrophysics Data System (ADS)

    De Smedt, I.; Stavrakou, T.; Hendrick, F.; Danckaert, T.; Vlemmix, T.; Pinardi, G.; Theys, N.; Lerot, C.; Gielen, C.; Vigouroux, C.; Hermans, C.; Fayt, C.; Veefkind, P.; Müller, J.-F.; Van Roozendael, M.

    2015-04-01

    We present the new version (v14) of the BIRA-IASB algorithm for the retrieval of formaldehyde (H2CO) columns from spaceborne UV-Visible sensors. Applied to OMI measurements from Aura and to GOME-2 measurements from MetOp-A and B, this algorithm is used to produce global distributions of H2CO representative of mid-morning and early afternoon conditions. Its main features include (1) a new iterative DOAS scheme involving three fitting intervals to better account for the O2-O2 absorption, (2) the use of earthshine radiances averaged in the equatorial Pacific as reference spectra, (3) a destriping correction and background normalisation resolved in the along-swath position. For the air mass factor calculation, a priori vertical profiles calculated by the IMAGES chemistry transport model at 9.30 a.m. and 13.30 p.m. are used. Although the resulting GOME-2 and OMI H2CO vertical columns are found to be highly correlated, some systematic differences are observed. Afternoon columns are generally larger than morning ones, especially in mid-latitude regions. In contrast, over tropical rainforests, morning H2CO columns significantly exceed those observed in the afternoon. These differences are discussed in terms of the H2CO column variation between mid-morning and early afternoon, using ground-based MAX-DOAS measurements available from seven stations in Europe, China and Africa. Validation results confirm the capacity of the combined satellite measurements to resolve diurnal variations in H2CO columns. Furthermore, vertical profiles derived from MAX-DOAS measurements in the Beijing area and in Bujumbura are used for a more detailed validation exercise. In both regions, we find an agreement better than 15% when MAX-DOAS profiles are used as a priori for the satellite retrievals. Finally regional trends in H2CO columns are estimated for the 2004-2014 period using SCIAMACHY and GOME-2 data for morning conditions, and OMI for early afternoon conditions. Consistent features are observed such as an increase of the columns in India and Central-East China, and a decrease in Eastern US and Europe. We find that the higher horizontal resolution of OMI combined to a better sampling and a more favourable illumination at mid-day allow for more significant trend estimates, especially over Europe and North America. Importantly, in some parts of the Amazonian forest, we observe with both time series a significant downward trend in H2CO columns, spatially correlated with areas affected by deforestation.

  20. A Simple Method for Computing Resistance Distance

    NASA Astrophysics Data System (ADS)

    Bapat, Ravindra B.; Gutmana, Ivan; Xiao, Wenjun

    2003-10-01

    The resistance distance ri j between two vertices vi and vj of a (connected, molecular) graph G is equal to the effective resistance between the respective two points of an electrical network, constructed so as to correspond to G, such that the resistance of any edge is unity. We show how rij can be computed from the Laplacian matrix L of the graph G: Let L(i) and L(i, j) be obtained from L by deleting its i-th row and column, and by deleting its i-th and j-th rows and columns, respectively. Then rij = detL(i, j)/detL(i).

  1. CO2 variability from in situ and vertical column measurements in Mexico City

    NASA Astrophysics Data System (ADS)

    Baylon, J. L.; Grutter, M.; Stremme, W.; Bezanilla, A.; Plaza, E.

    2014-12-01

    UNAM started a program to measure, among many other atmospheric parameters, greenhouse gas concentrations at six stations in the Mexican territory as part of the "Red Universitaria de Observatorios Atmosfericos", RUOA (www.ruoa.unam.mx). In this work we present recent time series of CO2 measured at the station located in the university campus in Mexico City, and compare them to total vertical columns of this gas measured at the same location. In situ measurements are continuously carried out with a cavity ring-down spectrometer (Picarro Inc., G2401) since July 2014 and the columns are retrieved from solar absorption measurements taken with a Fourier transform infrared spectrometer (Bruker, Vertex 80) when conditions allow. The retrieval method is described and results of the comparison of both techniques and a detailed analysis of the variability of this important greenhouse gas is presented. Simultaneous surface and column CO2 data are useful to constrain models and estimate emissions.

  2. A New Wet Deposition Module in SILAM Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Kouznetsov, R.; Sofiev, M.

    2013-12-01

    The System for Integrated modeLling of Atmopsheric coMposition SILAM (http://silam.fmi.fi/) is a CTM model of FMI air-quality research unit. SILAM is used for research, operational and emergency-response assessments and forecasting of the atmospheric composition within the scope of European and Finnish national projects. Characteristic scales of the SILAM applications vary from -mesoscale (grid spacing 1 km) up to the globe with characteristic resolution of 1 degree. Till recently, a simple approach based on scavenging coefficients and their species-dependent scaling was used in SILAM. Due to the lack of information on the vertical structure of precipitation in older meteorological datasets, it was prescribed. The new scheme uses a mechanistic description of the scavenging process and utilizes the vertical profiles of cloud water content. A simple model for dissociation of H2SO3 accounts for saturation of SO2 scavenging. As the vertical profiles of precipitation rates are rarely available from meteorological models, they are reconstructed from the profiles of cloud water and surface precipitation fields. The rain/snow increment in a 3D model grid cell is taken as a fraction of surface precipitation intensity equal to the cell's fraction of total cloud water column. The phase of precipitation (liquid/solid) is a function of air temperature. The fall speed is derived from the size of water drops given by a function of rain/snow intensity. In-cloud scavenging is considered as an equilibrium process: . the concentrations in cloud water are assumed to be in equilibrium with ambient air. The sub-cloud scavenging is driven by the precipitation that comes from above the cell. The scavenging by a single droplet is considered as a two-way equilibration process of in-water and in-air concentrations, controlled by the hydrometeors size, cross-section and a time the droplet falls through a cell, effective solubility and amount of already dissolved pollutant. The solubility for most species is given by their effective Henry factors as functions of temperature. An exception is SO2 since the in-water amount of [S(IV)] is not a linear function of SO2 partial pressure in the air. The effective Henry factor for SO2 is then calculated from a dissociation equation after all other species in a cell are processed and their in-water concentrations are known. The new scheme results in substantially more realistic vertical patterns for scavenging. The consideration of equilibration rather than one-way scavenging allows modelling the vertical redistribution of pollutants by precipitation. The scheme provides a simple and well-grounded means to account for saturation of scavenging for SO2.

  3. 47 CFR 90.621 - Selection and assignment of frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in the vertical column may not be re-assigned to a station on a site listed in the horizontal column... Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov. 2...

  4. Use of acoustic backscatter and vertical velocity to estimate concentration and dynamics of suspended solids in Upper Klamath Lake, south-central Oregon: Implications for Aphanizomenon flos-aquae

    USGS Publications Warehouse

    Wood, Tamara M.; Gartner, Jeffrey W.

    2010-01-01

    Vertical velocity and acoustic backscatter measurements by acoustic Doppler current profilers were used to determine seasonal, subseasonal (days to weeks), and diel variation in suspended solids in a freshwater lake where massive cyanobacterial blooms occur annually. During the growing season, the suspended material in the lake is dominated by the buoyancy-regulating cyanobacteria, Aphanizomenon flos-aquae. Measured variables (water velocity, relative backscatter [RB], wind speed, and air and water temperatures) were averaged over the deployment season at each sample time of day to determine average diel cycles. Phase shifts between diel cycles in RB and diel cycles in wind speed, vertical water temperature differences (delta T(degree)), and horizontal current speeds were found by determining the lead or lag that maximized the linear correlation between the respective diel cycles. Diel cycles in RB were more in phase with delta T(degree) cycles, and, to a lesser extent, wind cycles, than to water current cycles but were out of phase with the cycle that would be expected if the vertical movement of buoyant cyanobacteria colonies was controlled primarily by light. Clear evidence of a diel cycle in vertical velocity was found only at the two deepest sites in the lake. Cycles of vertical velocity, where present, were out of phase with expected vertical motion of cyanobacterial colonies based on the theoretical cycle for light-driven vertical movement. This suggests that water column stability and turbulence were more important factors in controlling vertical distribution of colonies than light. Variations at subseasonal time scales were determined by filtering data to pass periods between 1.2 and 15 days. At subseasonal time scales, correlations between RB and currents or air temperature were consistent with increased concentration of cyanobacterial colonies near the surface when water column stability increased (higher air temperatures or weaker currents) and dispersal of colonies throughout the water column when the water column mixed more easily. RB was used to estimate suspended solids concentrations (SSC). Correlations of depth-integrated SSC with currents or air temperatures suggest that depth-integrated water column mass decreased under conditions of greater water column stability and weaker currents. Results suggest that the use of measured vertical velocity and acoustic backscatter as a surrogate for suspended material has the potential to contribute significant additional insight into dynamics of Aphanizomenon flos-aquae colonies in Upper Klamath Lake, south-central Oregon.

  5. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  6. Nitrogen dioxide observations from the Geostationary Trace ...

    EPA Pesticide Factsheets

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m  ×  250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with prelim

  7. Separating methane emissions from agricultural sources and natural gas: direct measurements of excess columns of CH4, C2H6 and NH3 in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Kille, N.; Chiu, R.; Frey, M.; Hase, F.; Kumar Sha, M.; Blumenstock, T.; Hannigan, J. W.; Volkamer, R. M.

    2017-12-01

    Methane (CH4) is a major greenhouse gas emitted from biogenic, thermogenic, and pyrogenic sources. Here we demonstrate a novel approach to separate sources of CH4 emissions based on a network of small portable sensors performing column measurements in the Northern Colorado Front Range (NCFR). In the study area CH4 is emitted from biogenic sources such as concentrated animal feeding operations (CAFOs) and natural gas production and storage. In March 2015 we deployed a network of five Fourier Transform Spectrometers (FTS) to characterize the regional scale methane dome in Colorado's Denver-Julesburg Basin based on excess vertical column measurements (the column enhancement inside the dome over background). Three EM27sun FTS measured CH4, oxygen (O2) and water vapor (H2O) columns at Eaton, CO (inside the dome) and at two boundary sites; the CU mobile SOF (Solar Occultation Flux) measured ethane (C2H6), ammonia (NH3), and H2O at Eaton, CO. The column averaged dry air mole fractions XCH4, XC2H6, and XNH3 were determined using O2 columns for air mass factor normalization, and background column was subtracted to derive excess vertical columns of DXCH4, DXC2H6, DXNH3 at Eaton, CO. Eaton is located both near CAFOs and at the northern edge of oil and natural gas production wells. Our approach for source apportioning methane employs a linear regression analysis that explains DXCH4 in terms of DXC2H6 as tracer for natural gas sources, and DXNH3 as tracer for CAFO emissions. The results of the source apportionment are compared with literature values of the NH3/CH4 and C2H6/CH4 ratio to evaluate the method of excess columns, which is independent of boundary layer height.

  8. Comparison of Water Vapor Measurements by Airborne Sun Photometer and Diode Laser Hygrometer on the NASA DC-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, J. M.; Schmid, Beat; Russell, P. B.

    In January-February 2003 the 14-channel NASA Ames Airborne Tracking Sunphotometer 30 (AATS) and the NASA Langley/Ames Diode Laser Hygrometer (DLH) were flown on the NASA DC-8 aircraft. AATS measured column water vapor on the aircraft-to-sun path, while DLH measured local water vapor in the free stream between the aircraft fuselage and an outboard engine cowling. The AATS and DLH measurements were compared for two DC-8 vertical profiles by differentiating the AATS column measurement and/or integrating the DLH local measurement over the altitude range of each profile (7.7-10 km and 1.2-12.5 km). These comparisons extend, for the first time, tests ofmore » AATS water vapor retrievals to altitudes >~6 km and column contents <0.1 g cm-2. To our knowledge this is the first time suborbital spectroscopic water vapor measurements using the 940-nm band have been tested in conditions so high and dry. For both profiles layer water vapor (LWV) from AATS and DLH were highly correlated, with r2 0.998, rms difference 7.2% and bias (AATS minus DLH) 0.9%. For water vapor densities AATS and DLH had r2 0.968, rms difference 27.6%, and bias (AATS minus DLH) -4.2%. These results compare favorably with previous comparisons of AATS water vapor to in situ results for altitudes <~6 km, columns ~0.1 to 5 g cm-2 and densities ~0.1 to 17 g m-3.« less

  9. Optimal Extraction of Tropospheric Ozone Column by Simultaneous Use of OMI and TES Data and the Surface Temperature

    NASA Astrophysics Data System (ADS)

    Mobasheri, M. R.; Shirazi, H.

    2015-12-01

    This article aims to increase the accuracy of Ozone data from tropospheric column (TOC) of the OMI and TES satellite instruments. To validate the estimated amount of satellite data, Ozonesonde data is used. The vertical resolution in both instruments in the tropospheric atmosphere decreases so that the degree of freedom signals (DOFS) on the average for TES is reduced to 2 and for OMI is reduced to1. But this decline in accuracy in estimation of tropospheric ozone is more obvious in urban areas so that estimated ozone in both instruments alone in non-urban areas show a high correlation with Ozonesonde. But in urban areas this correlation is significantly reduced, due to the ozone pre-structures and consequently an increase on surface-level ozone in urban areas. In order to improve the accuracy of satellite data, the average tropospheric ozone data from the two instruments were used. The aim is to increase the vertical resolution of ozone profile and the results clearly indicate an increase in correlations, but nevertheless the satellite data have a positive bias towards the earth data. To reduce the bias, with the solar flux and nitrogen dioxide values and surface temperatures are calculated as factors of ozone production on the earth's surface and formation of mathematical equations based on coefficients for each of the mentioned values and multiplication of these coefficients by satellite data and repeated comparison with the values of Ozonesonde, the results showed that bias in urban areas is greatly reduced.

  10. Spectrometeric measurements of vertical profile and column abundance of NO2 at Zvenigorod, Russia: Fourteen years of observations

    NASA Astrophysics Data System (ADS)

    Gruzdev, A.; Elokhov, A.

    Since 1990, NO2 measurements are carried out at Zvenigorod Research Station (56°N, 37°E), Moscow region, with the help of zenith viewing spectrophotometer in spectral range 435-450 nm. The instrument and method of observations were verified in comparison campaigns within the framework of the Network for Detection of Stratospheric Change. Measurements are done during morning and evening twilight at solar zenith angles 84-96°. Slant column NO2 abundances are derived from observed spectra taking into account O3 and NO2 absorption, single molecular and aerosol scattering, and the Ring effect. The NO2 abundances in the vertical column as well as vertical NO2 profiles are derived as solution of inverse mathematical problem (with Chahine method) using a spherical single scattering model and a one-dimensional photochemical model. Derived quantities are (1) NO2 abundances within 5-km thick layers in the stratosphere and troposphere, (2) NO2 abundance in the thin atmospheric near-surface layer and (3) columnar NO2 abundances in the troposphere (0-10 km) and the stratosphere (10-50 km) as integrals over appropriate layers. Results of measurements show variability of stratospheric and tropospheric NO2 at different time scales from the diurnal to the interannual scale. Out of the period affected by the Pinatubo eruption (1992-1994), a general decline of the stratospheric column NO2 abundance is occurring, superimposed by interannual variations. A linear, statistically significant, negative annual trend of about 12% per decade has been detected for both morning and evening stratospheric column NO2 abundances. For interpretation of the observed trend, a simple photochemical model is used, which takes into account the observed changes in N2O and stratospheric ozone abundances, and in temperature. The estimated model trend of the stratospheric column NO2 abundance in the extratropical Northern Hemisphere is about -5% per decade, which is less than observed. Dynamical variability is supposed to be responsible, in particular, for the observed NO2 decline.

  11. The MOVPE growth mechanism of catalyst-free self-organized GaN columns in H2 and N2 carrier gases

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Jahn, Uwe; Ledig, Johannes; Wehmann, Hergo-H.; Mandl, Martin; Straßburg, Martin; Waag, Andreas

    2013-12-01

    Columnar structures of III-V semiconductors recently attract considerable attention because of their potential applications in novel optoelectronic and electronic devices. In the present study, the mechanisms for the growth of catalyst-free self-organized GaN columns on sapphire substrate by metal organic vapor phase epitaxy have been thoroughly investigated. The growth behaviours are strongly affected by the choice of carrier gas. If pure nitrogen is used, Ga droplets are able to accumulate on the top of columns during growth, and they are converted into a high quality GaN layer during the cool down phase due to nitridation. Hydrogen as the carrier gas can improve the optical quality of the overall GaN columns substantially, and in addition increase the vertical growth rate. In this case, no indication of Ga droplets could be detected. Furthermore, silane doping during the growth promotes the vertical growth in both cases either pure nitrogen or pure hydrogen as the carrier gas.

  12. A Decade of Change in NO2 and SO2 over the Canadian Oil Sands As Seen from Space

    NASA Technical Reports Server (NTRS)

    Mclinden, Chris A.; Fioletov, Vitali; Krotkov, Nickolay A.; Li, Can; Boersma, K. Folkert; Adams, Cristen

    2015-01-01

    A decade (20052014) of observations from the Ozone Monitoring Instrument (OMI) were used to examine trends in nitrogen dioxide(NO2) and sulfur dioxide (SO2) over a large region of western Canada and the northern United States, with a focus on the Canadian oil sands. In the oil sands, primarily over an area of intensive surface mining, NO2 tropospheric vertical column densities (VCDs) are seen to be increasing by as much as 10year, with the location of the largest trends in a newly developing NO2 lobe well removed from surface monitoring stations. SO2 VCDs in the oil sands have remained approximately constant. The only other significant increase in the region was seen in NO2 over Bakken gas fields in North Dakota which showed increases of up to5yr. By contrast, other locations in the region show substantial declines in both pollutants, providing strong evidence to the efficacy of environmental pollution control measures implemented by both nations. The OMI-derived trends were found to be consistent with those from the Canadian surface monitoring network, although in the case of SO2, it was necessary to apply a correction in order to remove the residual signal from volcanic eruptions present in the OMI data.

  13. Response of SO2 and Particulate Air Pollution to Local and Regional Emission Controls: A Case Study in Maryland

    NASA Technical Reports Server (NTRS)

    He, Hao; Vinnikov, Konstantin Y.; Li, Can; Krotkov, Nickolay Anatoly; Jongeward, Andrew R.; Li, Zhanqing; Stehr, Jeffrey W.; Hains, Jennifer; Dickerson, RUssell R.

    2016-01-01

    This paper addresses the questions of what effect local regulations can have on pollutants with different lifetimes and how surface observations and remotely sensed data can be used to determine the impacts. We investigated the decadal trends of tropospheric sulfur dioxide (SO2) and aerosol pollution over Maryland and its surrounding states, using surface, aircraft, and satellite measurements. Aircraft measurements indicated fewer isolated SO2 plumes observed in summers, a 40 decrease of column SO2, and a 20 decrease of atmospheric optical depth (AOD) over Maryland after the implementation of local regulations on sulfur emissions from power plants (90 reduction from 2010). Surface observations of SO2 and particulate matter (PM) concentrations in Maryland show similar trends. OMI SO2 and MODIS AOD observations were used to investigate the column contents of air pollutants over the eastern U.S.; these indicate decreasing trends in column SO2 (60 decrease) and AOD (20 decrease). The decrease of upwind SO2 emissions also reduced aerosol loadings over the downwind Atlantic Ocean near the coast by 20, while indiscernible changes of the SO2 column were observed. A step change of SO2 emissions in Maryland starting in 20092010 had an immediate and profound benefit in terms of local surface SO2 concentrations but a modest impact on aerosol pollution, indicating that short-lived pollutants are effectively controlled locally, while long-lived pollutants require regional measures.

  14. Multi-source SO2 emission retrievals and consistency of satellite and surface measurements with reported emissions

    NASA Astrophysics Data System (ADS)

    Fioletov, Vitali; McLinden, Chris A.; Kharol, Shailesh K.; Krotkov, Nickolay A.; Li, Can; Joiner, Joanna; Moran, Michael D.; Vet, Robert; Visschedijk, Antoon J. H.; Denier van der Gon, Hugo A. C.

    2017-10-01

    Reported sulfur dioxide (SO2) emissions from US and Canadian sources have declined dramatically since the 1990s as a result of emission control measures. Observations from the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and ground-based in situ measurements are examined to verify whether the observed changes from SO2 abundance measurements are quantitatively consistent with the reported changes in emissions. To make this connection, a new method to link SO2 emissions and satellite SO2 measurements was developed. The method is based on fitting satellite SO2 vertical column densities (VCDs) to a set of functions of OMI pixel coordinates and wind speeds, where each function represents a statistical model of a plume from a single point source. The concept is first demonstrated using sources in North America and then applied to Europe. The correlation coefficient between OMI-measured VCDs (with a local bias removed) and SO2 VCDs derived here using reported emissions for 1° by 1° gridded data is 0.91 and the best-fit line has a slope near unity, confirming a very good agreement between observed SO2 VCDs and reported emissions. Having demonstrated their consistency, seasonal and annual mean SO2 VCD distributions are calculated, based on reported point-source emissions for the period 1980-2015, as would have been seen by OMI. This consistency is further substantiated as the emission-derived VCDs also show a high correlation with annual mean SO2 surface concentrations at 50 regional monitoring stations.

  15. Chlorophyll-a thin layers in the Magellan fjord system: The role of the water column stratification

    NASA Astrophysics Data System (ADS)

    Ríos, Francisco; Kilian, Rolf; Mutschke, Erika

    2016-08-01

    Fjord systems represent hotspots of primary productivity and organic carbon burial. However, the factors which control the primary production in mid-latitude fjords are poorly understood. In this context, results from the first fine-scale measurements of bio-oceanographic features in the water column of fjords associated with the Strait of Magellan are presented. A submersible fluorescence probe (FP) was used to measure the Chlorophyll-a (Chl-a) concentration in situ, along with conductivity, temperature, hydrostatic pressure (depth) and dissolved oxygen (CTD-O2) of the water column. The Austral spring results of 14 FP-CTD-O2 profiles were used to define the vertical and horizontal patches of the fluorescent pigment distribution and their spatial relations with respect to the observed hydrographic features. Three zones with distinct water structures were defined. In all zones, the 'brown' spectral group (diatoms and dinoflagellates) predominated accounting for >80 wt% of the phytoplankton community. Thin layers with high Chl-a concentration were detected in 50% of the profiles. These layers harbored a substantial amount (30-65 wt%) of the phytoplankton biomass. Stratification was positively correlated to the occurrence of Chl-a thin layers. In stable and highly stratified water columns the integrated Chl-a concentration was higher and frequently located within thin layers whereas well mixed water columns displayed lower values and more homogeneous vertical distribution of Chl-a. These results indicate that mixing/stability processes are important factors accounting to the vertical distribution of Chl-a in Magellan fjords.

  16. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; Easter, Richard C.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Liu, Ying; Ortega, Ivan; Sedlacek, Arthur; Shilling, John E.; Shrivastava, Manish; Springston, Stephen R.; Tomlinson, Jason M.; Volkamer, Rainer; Wilson, Jacqueline; Zaveri, Rahul A.; Zelenyuk, Alla

    2016-08-01

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.

  17. Detection of carbon monoxide pollution from cities and wildfires on regional and urban scales: the benefit of CO column retrievals from SCIAMACHY 2.3 µm measurements under cloudy conditions

    NASA Astrophysics Data System (ADS)

    Borsdorff, Tobias; Andrasec, Josip; aan de Brugh, Joost; Hu, Haili; Aben, Ilse; Landgraf, Jochen

    2018-05-01

    In the perspective of the upcoming TROPOMI Sentinel-5 Precursor carbon monoxide data product, we discuss the benefit of using CO total column retrievals from cloud-contaminated SCIAMACHY 2.3 µm shortwave infrared spectra to detect atmospheric CO enhancements on regional and urban scales due to emissions from cities and wildfires. The study uses the operational Sentinel-5 Precursor algorithm SICOR, which infers the vertically integrated CO column together with effective cloud parameters. We investigate its capability to detect localized CO enhancements distinguishing between clear-sky observations and observations with low (< 1.5 km) and medium-high clouds (1.5-5 km). As an example, we analyse CO enhancements over the cities Paris, Los Angeles and Tehran as well as the wildfire events in Mexico-Guatemala 2005 and Alaska-Canada 2004. The CO average of the SCIAMACHY full-mission data set of clear-sky observations can detect weak CO enhancements of less than 10 ppb due to air pollution in these cities. For low-cloud conditions, the CO data product performs similarly well. For medium-high clouds, the observations show a reduced CO signal both over Tehran and Los Angeles, while for Paris no significant CO enhancement can be detected. This indicates that information about the vertical distribution of CO can be obtained from the SCIAMACHY measurements. Moreover, for the Mexico-Guatemala fires, the low-cloud CO data captures a strong outflow of CO over the Gulf of Mexico and the Pacific Ocean and so provides complementary information to clear-sky retrievals, which can only be obtained over land. For both burning events, enhanced CO values are even detectable with medium-high-cloud retrievals, confirming a distinct vertical extension of the pollution. The larger number of additional measurements, and hence the better spatial coverage, significantly improve the detection of wildfire pollution using both the clear-sky and cloudy CO retrievals. Due to the improved instrument performance of the TROPOMI instrument with respect to its precursor SCIAMACHY, the upcoming Sentinel-5 Precursor CO data product will allow improved detection of CO emissions and their vertical extension over cities and fires, making new research applications possible.

  18. Elf cites 5 advantages of horizontal drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-06-01

    ELF Aquitaine used horizontal drilling during a pilot test program to bring commercial production from its Rospo Mare oil discovery in the Adriatic, which would have been a costly disappointment if drilled by a conventional vertical well bore. Rospo Mare is a large reservoir containing a top column of highly viscous crude underlain by a water column. The company felt that a well bore that penetrated the reservoir vertically would bring early flooding of the oil column and yield only water. By penetrating the reservoir with a horizontal well drilled high in the oil column, the well successfully produced onmore » numerous tests from Oct. 1982 until the end of the test program in 1983. Production was termed excellent, with productivity during tests reportedly reaching ca 15 times the rate produced from nearby vertical wells. However, ELF said the results usually average ca 5 times the usual rate of vertical wells.« less

  19. Accessing Suomi NPP OMPS Products Through the GES DISC Online Data Services

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Wei, J. C.; Garasimov, I.; Vollmer, B.

    2017-12-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the primary archive of the latest versions of atmospheric composition data from the Suomi National Polar-orbiting Partnership (NPP) Ozone Mapping Profiler Suite (OMPS) mission. OMPS consists of three spectrometers: a Nadir Mapper (300-420 nm) with 50×50 km2 resolution and 2600 km wide swath, a Nadir Profiler (250-310 nm) with 250×250 km2 footprint, and a three-slit Limb Profiler (290-1000 nm) making 3 vertical profiles spaced about 250 km apart with 1-2 km vertical resolution up to 65 km altitude. OMPS measures primarily ozone, both total column and vertical profiles, but also includes measurements of NO2 and SO2 total and tropospheric columns, aerosol extinction profiles. Also available from OMPS are the Level-1B calibrated and geolocated radiances. All data products are generated at the OMPS Science Investigator Processing System (SIPS) at NASA/GSFC. This presentation will provide an overview of the OMPS products available at the GES DISC archive, as well as demonstrate the various data services provided by the GES DISC. Traditionally users have accessed data by downloading data files using anonymous FTP. Although one may still download the full OMPS data products from the archive (using HTTPS instead), the GES DISC now also offers online data services that allow users to not have to physically download the full data files to their desktop computer. Users can access the data through a desktop client tool (such as IDL, Matlab or Panoply) using OPeNDAP. Other data services include file subsetters (spatially, temporally, and/or by variable), as well as data visualization and exploration services for users to preview or quickly analyze the data. Since TOMS and EOS Aura data products are also available from the GES DISC archive, these can be easily accessed and compared with the OMPS data.

  20. Second Law Violations by Means of a Stratification of Temperature Due to Force Fields

    NASA Astrophysics Data System (ADS)

    Trupp, Andreas

    2002-11-01

    In 1868 J.C. Maxwell proved that a perpetual motion machine of the second kind would become possible, if the equilibrium temperature in a vertical column of gas subject to gravity were a function of height. However, Maxwell had claimed that the temperature had to be the same at all points of the column. So did Boltzmann. Their opponent was Loschmidt. He claimed that the equilibrium temperature declined with height, and that a perpetual motion machine of the second kind operating by means of such column was compatible with the second law of thermodynamics. Extending the general idea behind Loschmidt's concept to other force fields, gravity can be replaced by molecular forces acting on molecules that try to escape from the surface of a liquid into the vapor space. Experiments proving the difference of temperature between the liquid and the vapor phase were conducted in the 19th century already.

  1. Avoidance behavior of juvenile lake sturgeon (Acipenser fulvescens) exposed to Bayluscide 3.2% Granular Sea Lamprey Larvicide

    USGS Publications Warehouse

    Boogaard, Michael A; Rivera, Jane E; Gaikowski, Mark P

    2008-01-01

    Avoidance of juvenile lake sturgeons < 100 mm in length in response to application of the Bayluscide 3.2% Granular Sea Lamprey Larvicide was assessed. Clear plexiglas columns (107 cm in height, 30.5 cm in diameter) to evaluate the potential for the normally bottom-dwelling fishes to move vertically in the water column to avoid niclosamide dissolving from the Bayluscide granules. Vertical migration of lake sturgeons to > 15 cm off the bottom of the column was considered avoidance. Lake sturgeons began displaying avoidance behaviors within 4 to 8 min after the granules were applied and continued for up to 60 min. After 60 min, most or all of the sturgeons were near the surface in the treated columns. In contrast, little movement above the 15-cm mark was observed at any time in any of the control columns. The results of this study are similar to a previous study where juvenile lake sturgeons > 100 mm in length showed the ability to avoid granular Bayluscide. Taken together, we conclude that juvenile lake sturgeons of any size range can detect and avoid granular Bayluscide applications.

  2. Stepped wedge designs: insights from a design of experiments perspective.

    PubMed

    Matthews, J N S; Forbes, A B

    2017-10-30

    Stepped wedge designs (SWDs) have received considerable attention recently, as they are potentially a useful way to assess new treatments in areas such as health services implementation. Because allocation is usually by cluster, SWDs are often viewed as a form of cluster-randomized trial. However, since the treatment within a cluster changes during the course of the study, they can also be viewed as a form of crossover design. This article explores SWDs from the perspective of crossover trials and designed experiments more generally. We show that the treatment effect estimator in a linear mixed effects model can be decomposed into a weighted mean of the estimators obtained from (1) regarding an SWD as a conventional row-column design and (2) a so-called vertical analysis, which is a row-column design with row effects omitted. This provides a precise representation of "horizontal" and "vertical" comparisons, respectively, which to date have appeared without formal description in the literature. This decomposition displays a sometimes surprising way the analysis corrects for the partial confounding between time and treatment effects. The approach also permits the quantification of the loss of efficiency caused by mis-specifying the correlation parameter in the mixed-effects model. Optimal extensions of the vertical analysis are obtained, and these are shown to be highly inefficient for values of the within-cluster dependence that are likely to be encountered in practice. Some recently described extensions to the classic SWD incorporating multiple treatments are also compared using the experimental design framework. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Age-of-Air, Tape Recorder, and Vertical Transport Schemes

    NASA Technical Reports Server (NTRS)

    Lin, S.-J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A numerical-analytic investigation of the impacts of vertical transport schemes on the model simulated age-of-air and the so-called 'tape recorder' will be presented using an idealized 1-D column transport model as well as a more realistic 3-D dynamical model. By comparing to the 'exact' solutions of 'age-of-air' and the 'tape recorder' obtainable in the 1-D setting, useful insight is gained on the impacts of numerical diffusion and dispersion of numerical schemes used in global models. Advantages and disadvantages of Eulerian, semi-Lagrangian, and Lagrangian transport schemes will be discussed. Vertical resolution requirement for numerical schemes as well as observing systems for capturing the fine details of the 'tape recorder' or any upward propagating wave-like structures can potentially be derived from the 1-D analytic model.

  4. Triton's Geyser-like Plumes

    NASA Astrophysics Data System (ADS)

    Brown, Robert H.; Soderblom, Laurence A.

    In August of 1989, while flying by Neptune's largest satellite Triton, Voyager 2 made another of its stunning discoveries in its epic journey through the outer solar system. First seen by one of us (LAS) and Tammy Becker (also of the USGS), after stereoscopic examination of a group of images taken very near Voyager's closest approach to the satellite, were at least two, geyser-like plumes spewing almost perfectly vertical columns of material 1-km across roughly 8-km high into Triton's atmosphere; there the columns were sheared by stratospheric winds into 100-km-long, dark clouds thought to composed of condensed nitrogen mixed with organic particles. Triton's plumes may be the most unique of all the manifestations of geologic activity on satellites in the outer solar system in that their energy source may be sunlight trapped below Triton's surface in a so-called "solid-state greenhouse". This talk will focus on the physical characteristics of those plumes, and on the various mechanisms proposed to explain their presence and apparent persistence on Triton.

  5. Perspectives on African Ozone from Sondes, Dobson and Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Witte, J. C.; Chatfield, R. B.; Diab, R. D.; Thouret, V.; Sauvage, B.

    2004-01-01

    We have been studying variability in ozone over Africa using data from ozonesondes (vertical profiles from surface to stratosphere), aircraft (the MOZAIC dataset with cruise altitude and landing/takeoff profiles) and the ground (Dobson spectrophotometer total ozone column measurement). The following may give context for ozone investigations during AMMA: 1. Total ozone measurements since 1989 show considerable variability in mean value among the African stations in Algeria, Kenya, Egypt, South Africa, as well as in seasonal cycles and year-to-year. Trends are not evident. 2. The impacts of convection, stratospheric injection, biomass burning and lightning appear in ozone sounding profile data. Time-series analysis and case studies point to periodic influences of long-range interactions with the Atlantic ("ozone paradox," wave-one") and Indian Oceans. 3. Tropospheric ozone variations, observed in tropospheric profiles and integrated column amount, follow general seasonal patterns but short- term variability is so strong that simple averages are inadequate for describing "climatology" and statistical classification approaches may be required.

  6. Long range transport and air quality impacts of SO2 emissions from Holuhraun (Bárdarbunga, Iceland)

    NASA Astrophysics Data System (ADS)

    Schmidt, Anja; Witham, Claire; Leadbetter, Susan; Theys, Nicholas; Hort, Matthew; Thordarson, Thorvaldur; Stevenson, John; Shepherd, Janet; Sinnott, Richard; Kenny, Patrick; Barsotti, Sara

    2015-04-01

    Gas emissions from the Holuhraun eruption site in Iceland resulted in increases in observed ground level concentrations of sulphur dioxide (SO2) in the UK and Ireland during two occasions in September 2014. We present data from the Irish and UK monitoring networks along with satellite imagery which describes the temporal and spatial evolution of these pollution episodes. During both events increases in concentration were significant compared to ambient levels. The peaks were short lived, 6-12 hours, and below the World Health Organisation's 10-minute air quality standard for SO2 of 500 µg/m3, but these events show that gas from relatively low altitude volcanic emissions in Iceland can pose a hazard to north west Europe. The two pollution events serve as excellent case studies and observations from the events provide us with a unique dataset for the verification of atmospheric dispersion models. We use the atmospheric dispersion model NAME to simulate the long-range transport, removal and chemical conversion of the volcanic SO2 during September 2014. We evaluate a range of model simulations, using varying model input and physical parameters, against ground based measurements and satellite retrievals of SO2. Simulations demonstrate that the long-range ground concentrations are strongly dependent on the emission flux and the height of emission at source. This relationship is well known from similar studies of other pollution events. However this work also demonstrates a dependence on the model's vertical turbulence parameterisation and the height of the boundary layer determined from the input Numerical Weather Prediction meteorological data. For the pollution events in September 2014, we find that using a mass flux of 40 kilotons per day of SO2 gives best agreement with vertical column retrievals of SO2 from the Ozone Monitoring Instrument, which is in good agreement with initial estimates made by the Icelandic Meteorological Office. "This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright."

  7. Preparative electrophoresis of living lymphocytes

    NASA Technical Reports Server (NTRS)

    Vanoss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.

    1974-01-01

    Vertical liquid columns containing low molecular weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of 0 gravity conditions. Another method that has been tested at 1 G, is the electrophoresis of lymphocytes in a upward direction in vertical columns. By both methods up to 10 to the 7th power lymphocytes can be separated at one time in a 30 cm glass column of 8 mm inside diameter, at 12 v/cm, in 2 hours. Due to convection and sedimentation problems, the separation at 1 G is less than ideal, but it is expected that at 0 gravity electrophoresis will prove to be a uniquely powerful cell separation tool. The technical feasibility of electrophoresing inert particles at 0 G has been proven earlier, during the flight of Apollo 16.

  8. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1995-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  9. Method of using an electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1993-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  10. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1995-01-31

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.

  11. Nitrogen Dioxide Observations from the Geostationary Trace Gas and Aerosol Sensor Optimization (GeoTaso) Airborne Instrument: Retrieval Algorithm and Measurements During DISCOVER-AQ Texas 2013

    NASA Technical Reports Server (NTRS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; Abad, Gonzalo Gonzalez; Liu, Xiaojun; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; hide

    2016-01-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m x 250 m spatial resolution with a fitting precision of 2.2 x 10(exp 15) molecules/sq cm. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  12. NO2 Total and Tropospheric Vertical Column Densities from OMI on EOS Aura: Update

    NASA Technical Reports Server (NTRS)

    Gleason, J.F.; Bucsela, E.J.; Celarier, E.A.; Veefkind, J.P.; Kim, S.W.; Frost, G.F.

    2009-01-01

    The Ozone Monitoring Instrument (OMI), which is on the EOS AURA satellite, retrieves vertical column densities (VCDs) of NO2, along with those of several other trace gases. The relatively high spatial resolution and daily global coverage of the instrument make it particularly well-suited to monitoring tropospheric pollution at scales on the order of 20 km. The OMI NO2 algorithm distinguishes polluted regions from background stratospheric NO2 using a separation algorithm that relies on the smoothly varying stratospheric NO2 and estimations of both stratospheric and tropospheric air mass factors (AMFs). Version 1 of OMI NO2 data has been released for public use. An overview of OMI NO2 data, some recent results and a description of the improvements for version 2 of the algorithm will be presented.

  13. Effect of vertical ground motions on shear demand and capacity in bridge columns.

    DOT National Transportation Integrated Search

    2012-03-01

    The objective of this project was to examine the effects of axial force variation in bridge columns due to strong vertical : ground motions and the influence of these axial force fluctuations on shear strength degradation. : Two quarter scale specime...

  14. Simulations of column-averaged CO2 and CH4 using the NIES TM with a hybrid sigma-isentropic (σ-θ) vertical coordinate

    NASA Astrophysics Data System (ADS)

    Belikov, D. A.; Maksyutov, S.; Sherlock, V.; Aoki, S.; Deutscher, N. M.; Dohe, S.; Griffith, D.; Kyro, E.; Morino, I.; Nakazawa, T.; Notholt, J.; Rettinger, M.; Schneider, M.; Sussmann, R.; Toon, G. C.; Wennberg, P. O.; Wunch, D.

    2013-02-01

    We have developed an improved version of the National Institute for Environmental Studies (NIES) three-dimensional chemical transport model (TM) designed for accurate tracer transport simulations in the stratosphere, using a hybrid sigma-isentropic (σ-θ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly around the tropopause. The air-ascending rate was derived from the effective heating rate and was used to simulate vertical motion in the isentropic part of the grid (above level 350 K), which was adjusted to fit to the observed age of the air in the stratosphere. Multi-annual simulations were conducted using the NIES TM to evaluate vertical profiles and dry-air column-averaged mole fractions of CO2 and CH4. Comparisons with balloon-borne observations over Sanriku (Japan) in 2000-2007 revealed that the tracer transport simulations in the upper troposphere and lower stratosphere are performed with accuracies of ~5% for CH4 and SF6, and ~1% for CO2 compared with the observed volume-mixing ratios. The simulated column-averaged dry air mole fractions of atmospheric carbon dioxide (XCO2) and methane (XCH4) were evaluated against daily ground-based high-resolution Fourier Transform Spectrometer (FTS) observations measured at twelve sites of the Total Carbon Column Observing Network (TCCON) (Bialystok, Bremen, Darwin, Garmisch, Izaña, Lamont, Lauder, Orleans, Park Falls, Sodankylä, Tsukuba, and Wollongong) between January 2009 and January 2011. The comparison shows the model's ability to reproduce the site-dependent seasonal cycles as observed by TCCON, with correlation coefficients typically on the order 0.8-0.9 and 0.4-0.8 for XCO2 and XCH4, respectively, and mean model biases of ±0.2% and ±0.5%, excluding Sodankylä, where strong biases are found. The ability of the model to capture the tracer total column mole fractions is strongly dependent on the model's ability to reproduce seasonal variations in tracer concentrations in the planetary boundary layer (PBL). We found a marked difference in the model's ability to reproduce near-surface concentrations at sites located some distance from multiple emission sources and where high emissions play a notable role in the tracer's budget. Comparisons with aircraft observations over Surgut (West Siberia), in an area with high emissions of methane from wetlands, show contrasting model performance in the PBL and in the free troposphere. Thus, the PBL is another critical region for simulating the tracer total column mole fractions.

  15. Balloon-Borne Full-Column Greenhouse Gas Profiling Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Marc L

    The vertical distributions of CO2, CH4, and other gases provide important constraints for the determination of terrestrial and ocean sources and sinks of carbon and other biogeochemical processes in the Earth system. The DOE Biological and Environmental Research Program (DOE-BER) and the NOAA Earth System Research Laboratory (NOAA-ESRL) collaborate to quantify the vertically resolved distribution of atmospheric carbon-cycle gases (CO2, and CH4) within approximately 99% of the atmospheric column at the DOE ARM Southern Great Plains Facility in Oklahoma. In 2015, flights were delayed while research at NOAA focused on evaluating sources of systematic errors in the gas collection andmore » analysis system and modifying the sampling system to provide duplicate air samples in a single flight package. In 2017, we look forward to proposing additional sampling and analysis at ARM-SGP (and other sites) that characterize the vertical distribution of CO2 and CH4 over time and space.« less

  16. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    DOE PAGES

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; ...

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurementsmore » during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. In conclusion, while a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

  17. Comparative Analysis of the Methane Data Products from the Tropospheric Emission Spectrometer and the Atmospheric Infrared Sounder.

    NASA Astrophysics Data System (ADS)

    Pagano, T. J.; Worden, J. R.

    2016-12-01

    Methane is the second most powerful greenhouse gas with a highly positive radiative forcing of 0.48 W/m2 (IPCC 2013). Global concentrations of methane have been steadily increasing since 2007 (Bruhwiler 2014), raising concerns about methane's impact on the future global climate. For about the last decade, the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura spacecraft has been detecting several trace gas species in the troposphere including methane. The goal of this study is to compare TES methane products to that of the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua spacecraft so that scientific investigations may be transferred from TES to AIRS. The two instruments fly in the afternoon constellations (A-Train), providing numerous coincident measurements for comparison. In addition, they also have a similar spectral range, (3.3 to 15.4 µm) for TES (Beer, 2006) and (3.7 to 15.4 µm) for AIRS (Chahine, 2006), making both satellites sensitive to the mid and upper troposphere. This makes them ideal candidates to compare methane data products. In a previous study, total column methane was mapped and global zonal averages were compared. It was found that bias of the total column measurements between the two sounders was about constant over tropical and subtropical regions. However, because AIRS spectral resolution is lower than that of the TES, it is important to analyze the difference in vertical sensitivity. In this study, we will construct vertical profiles of methane concentration and compare them statistically through RMS difference and bias to better understand these differences. In addition, we will compare the error profile and total column errors of the TES and AIRS methane from the data to better understand error characteristics of the products.

  18. Simultaneous enantioselective separation of polychlorinated biphenyls and their methyl sulfone metabolites by heart-cut MDGC: determination of enantiomeric fractions in fish oils and cow liver samples.

    PubMed

    Pérez-Fernández, Virginia; Castro-Puyana, María; González, María José; Marina, María Luisa; García, María Ángeles; Gómara, Belén

    2012-07-01

    The potential of three capillary columns based on β-cyclodextrin (i.e., Chirasil-Dex, BGB-172, and BGB-176SE) has been studied for the simultaneous enantiomeric separation of polychlorinated biphenyls (PCBs) and methylsulfonyl metabolites of PCBs (MeSO(2)-PCBs) employing a heart-cut multidimensional gas chromatographic system (heart-cut MDGC). Among the columns studied, the BGB-176SE capillary column provided the best results, allowing the simultaneous enantioselective resolution of six MeSO(2)-PCBs and six chiral PCBs; the Chirasil-Dex column did not resolve any of the studied MeSO(2)-PCBs; and a poor resolution was obtained for three MeSO(2)-PCBs when the BGB-172 column was employed. The developed method was successfully applied to two fish oil and one cow liver samples commercially available, which showed different enantioselective pattern. PCBs 91 and 176 presented a clear enrichment of the second eluted atropisomer in codfish oil, whereas in fish oil sample, slight enrichment of the first eluted atropisomer of CB45 and the second eluted atropisomer of CB136 were observed. © 2012 Wiley Periodicals, Inc.

  19. Identification and measurement of atmospheric ethane (C2H6) from a 1951 infrared solar spectrum

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Levine, Joel S.

    1986-01-01

    C2H6 absorption features in the 2980/cm spectral region of the solar spectrum recorded in April, 1951 were analyzed to determine the total vertical column amount and average free tropospheric mixing ratio of C2H6 above Jungfraujoch in the Swiss Alps. The PQ1 subbranch is the best isolated of the three C2H6 features in the 1951 spectrum, with an equivalent width of 0.0099 + or - 0.0025/cm. Results give a total vertical column amount of 9.7 x 10 to the 15th C2H6 molecules/sq cm, with an accuracy of + or - 30 percent. March 1981 measurements from this region give a mixing ratio of about 2.0 ppbv, 2.2 times larger than the 1951 value, suggesting a long-term increase in the free tropospheric C2H6 concentration over western Europe.

  20. Enhanced biological nutrients removal using an integrated oxidation ditch with vertical circle from wastewater by adding an anaerobic column.

    PubMed

    Wang, Shu-mei; Liu, Jun-xin

    2005-01-01

    Compared to conventional oxidation ditches, an integrated oxidation ditch with vertical circle (IODVC) has the characters of concise configuration, simple operation and maintenance, land saving and automatical sludge returning. By the utilization of vertical circulation, an aerobic zone and an anoxic zone can be unaffectedly formed in the IODVC. Therefore, COD and nitrogen can be efficiently removed. However, the removal efficiency of phosphorus was low in the IODVC. In the experiment described, a laboratory scale system to add an anaerobic column to the IODVC has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that the removal efficiency of TP with the anaerobic column was increased to 54.0% from 22.3% without the anaerobic column. After the acetic sodium was added into the influent as carbon sources, the mean TP removal efficency of 77.5% was obtained. At the same time, the mean removal efficiencies of COD, TN and NH3-N were 92.2%, 81.6% and 98.1%, respectively, at 12 h of HRT and 21-25 d of SRT. The optimal operational conditions in this study were as follows: recycle rate = 1.5-2.0, COD/TN > 6, COD/TP > 40, COD loading rate = 0.26-0.32 kgCOD/(kgSS x d), TN loading rate = 0.028-0.034 kgTN/(kgSS x d) and TP loading rate = 0.003-0.005 kgTP/(kgSS x d), respectively.

  1. Experimental study of shock-accelerated inclined heavy gas cylinder

    DOE PAGES

    Olmstead, Dell; Wayne, Patrick; Yoo, Jae-Hwun; ...

    2017-05-23

    An experimental study examines shock acceleration with an initially diffuse cylindrical column of sulfur hexafluoride surrounded by air and inclined with respect to the shock front. Three-dimensional vorticity deposition produces flow patterns whose evolution is captured with planar laser-induced fluorescence in two planes. Both planes are thus parallel to the direction of the shock propagation. The first plane is vertical and passes through the axis of the column. The second visualization plane is normal to the first plane and passes through the centerline of the shock tube. Vortex formation in the vertical and centerline planes is initially characterized by differentmore » rates and morphologies due to differences in initial vorticity deposition. In the vertical plane, the vortex structure manifests a periodicity that varies with Mach number. The dominant wavelength in the vertical plane can be related to the geometry and compressibility of the initial conditions. At later times, the vortex interaction produces a complex and irregular three-dimensional pattern suggesting transition to turbulence. We present highly repeatable experimental data for Mach numbers 1.13, 1.4, 1.7, and 2.0 at column incline angles of 0, 20, and 30 degrees for about 50 nominal cylinder diameters (30 cm) of downstream travel.« less

  2. Vertical suspsended sediment fluxes observed from ocean gliders

    NASA Astrophysics Data System (ADS)

    Merckelbach, Lucas; Carpenter, Jeffrey

    2016-04-01

    Many studies trying to understand a coastal system in terms of sediment transport paths resort to numerical modelling - combining circulation models with sediment transport models. Two aspects herein are crucial: sediment fluxes across the sea bed-water column interface, and the subsequent vertical mixing by turbulence. Both aspects are highly complex and have relatively short time scales, so that the processes involved are implemented in numerical models as parameterisations. Due to the effort required to obtain field observations of suspended sediment concentrations (and other parameters), measurements are scarce, which makes the development and tuning of parameterisations a difficult task. Ocean gliders (autonomous underwater vehicles propelled by a buoyancy engine) provide a platform complementing more traditional methods of sampling. In this work we present observations of suspended sediment concentration (SSC) and dissipation rate taken by two gliders, each equipped with optical sensors and a microstructure sensor, along with current observations from a bottom mounted ADCP, all operated in the German Bight sector of the North Sea in Summer 2014. For about two weeks of a four-week experiment, the gliders were programmed to fly in a novel way as Lagrangian profilers to water depths of about 40 m. The benefit of this approach is that the rate of change of SSC - and other parameters - is local to the water column, as opposed to an unknown composition of temporal and spatial variability when gliders are operated in the usual way. Therefore, vertical sediment fluxes can be calculated without the need of the - often dubious - assumption that spatial variability can be neglected. During the experiment the water column was initially thermally stratified, with a cross-pycnocline diffusion coefficient estimated at 7\\cdot10-5 m2 s-1. Halfway through the experiment the remnants of tropical storm Bertha arrived at the study site and caused a complete mixing of the water column. An analysis of the data showed that resuspension and deposition were solely tidally-driven and in equilibrium prior to the arrival of the storm, with an averaged resuspension rate of 3-4 g m-2 s-1. During the storm the effect of surface waves increased the resuspension rate by an order of magnitude. The data suggest that after the passing of the storm, when the tide was the main driver again, resuspension rates are generally higher than before the storm. This provides a further indication that although a (Summer) storm might be a short-term event, its effects on sediment transport may be felt on much longer time scales.

  3. Using In Situ Observations and Satellite Retrievals to Constrain Large-Eddy Simulations and Single-Column Simulations: Implications for Boundary-Layer Cloud Parameterization in the NASA GISS GCM

    NASA Astrophysics Data System (ADS)

    Remillard, J.

    2015-12-01

    Two low-cloud periods from the CAP-MBL deployment of the ARM Mobile Facility at the Azores are selected through a cluster analysis of ISCCP cloud property matrices, so as to represent two low-cloud weather states that the GISS GCM severely underpredicts not only in that region but also globally. The two cases represent (1) shallow cumulus clouds occurring in a cold-air outbreak behind a cold front, and (2) stratocumulus clouds occurring when the region was dominated by a high-pressure system. Observations and MERRA reanalysis are used to derive specifications used for large-eddy simulations (LES) and single-column model (SCM) simulations. The LES captures the major differences in horizontal structure between the two low-cloud fields, but there are unconstrained uncertainties in cloud microphysics and challenges in reproducing W-band Doppler radar moments. The SCM run on the vertical grid used for CMIP-5 runs of the GCM does a poor job of representing the shallow cumulus case and is unable to maintain an overcast deck in the stratocumulus case, providing some clues regarding problems with low-cloud representation in the GCM. SCM sensitivity tests with a finer vertical grid in the boundary layer show substantial improvement in the representation of cloud amount for both cases. GCM simulations with CMIP-5 versus finer vertical gridding in the boundary layer are compared with observations. The adoption of a two-moment cloud microphysics scheme in the GCM is also tested in this framework. The methodology followed in this study, with the process-based examination of different time and space scales in both models and observations, represents a prototype for GCM cloud parameterization improvements.

  4. Application of WRF/Chem over East Asia: Part I. Model evaluation and intercomparison with MM5/CMAQ

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Zhang, Xin; Wang, Litao; Zhang, Qiang; Duan, Fengkui; He, Kebin

    2016-01-01

    In this work, the application of the online-coupled Weather Research and Forecasting model with chemistry (WRF/Chem) version 3.3.1 is evaluated over East Asia for January, April, July, and October 2005 and compared with results from a previous application of an offline model system, i.e., the Mesoscale Model and Community Multiple Air Quality modeling system (MM5/CMAQ). The evaluation of WRF/Chem is performed using multiple observational datasets from satellites and surface networks in mainland China, Hong Kong, Taiwan, and Japan. WRF/Chem simulates well specific humidity (Q2) and downward longwave and shortwave radiation (GLW and GSW) with normalized mean biases (NMBs) within 24%, but shows moderate to large biases for temperature at 2-m (T2) (NMBs of -9.8% to 75.6%) and precipitation (NMBs of 11.4-92.7%) for some months, and wind speed at 10-m (WS10) (NMBs of 66.5-101%), for all months, indicating some limitations in the YSU planetary boundary layer scheme, the Purdue Lin cloud microphysics, and the Grell-Devenyi ensemble scheme. WRF/Chem can simulate the column abundances of gases reasonably well with NMBs within 30% for most months but moderately to significantly underpredicts the surface concentrations of major species at all sites in nearly all months with NMBs of -72% to -53.8% for CO, -99.4% to -61.7% for NOx, -84.2% to -44.5% for SO2, -63.9% to -25.2% for PM2.5, and -68.9% to 33.3% for PM10, and aerosol optical depth in all months except for October with NMBs of -38.7% to -16.2%. The model significantly overpredicts surface concentrations of O3 at most sites in nearly all months with NMBs of up to 160.3% and NO3- at the Tsinghua site in all months. Possible reasons for large underpredictions include underestimations in the anthropogenic emissions of CO, SO2, and primary aerosol, inappropriate vertical distributions of emissions of SO2 and NO2, uncertainties in upper boundary conditions (e.g., for O3 and CO), missing or inaccurate model representations (e.g., secondary organic aerosol formation, gas/particle partitioning, dust emissions, dry and wet deposition), and inaccurate meteorological fields (e.g., overpredictions in WS10 and precipitation, but underpredictions in T2), as well as the large uncertainties in satellite retrievals (e.g., for column SO2). Comparing to MM5, WRF generally gives worse performance in meteorological predictions, in particular, T2, WS10, GSW, GLW, and cloud fraction in all months, as well as Q2 and precipitation in January and October, due to limitations in the above physics schemes or parameterizations. Comparing to CMAQ, WRF/Chem performs better for surface CO, O3, and PM10 concentrations at most sites in most months, column CO and SO2 abundances, and AOD. It, however, gives poorer performance for surface NOx concentrations at most sites in most months, surface SO2 concentrations at all sites in all months, and column NO2 abundances in January and April. WRF/Chem also gives lower concentrations of most secondary PM and black carbon. Those differences in results are attributed to differences in simulated meteorology, gas-phase chemistry, aerosol thermodynamic and dynamic treatments, dust and sea salt emissions, and wet and dry deposition treatments in both models.

  5. Remote sensing of volcanic CO2, HF, HCl, SO2, and BrO in the downwind plume of Mt. Etna

    NASA Astrophysics Data System (ADS)

    Butz, André; Solvejg Dinger, Anna; Bobrowski, Nicole; Kostinek, Julian; Fieber, Lukas; Fischerkeller, Constanze; Giuffrida, Giovanni Bruno; Hase, Frank; Klappenbach, Friedrich; Kuhn, Jonas; Lübcke, Peter; Tirpitz, Lukas; Tu, Qiansi

    2017-01-01

    Remote sensing of the gaseous composition of non-eruptive, passively degassing volcanic plumes can be a tool to gain insight into volcano interior processes. Here, we report on a field study in September 2015 that demonstrates the feasibility of remotely measuring the volcanic enhancements of carbon dioxide (CO2), hydrogen fluoride (HF), hydrogen chloride (HCl), sulfur dioxide (SO2), and bromine monoxide (BrO) in the downwind plume of Mt. Etna using portable and rugged spectroscopic instrumentation. To this end, we operated the Fourier transform spectrometer EM27/SUN for the shortwave-infrared (SWIR) spectral range together with a co-mounted UV spectrometer on a mobile platform in direct-sun view at 5 to 10 km distance from the summit craters. The 3 days reported here cover several plume traverses and a sunrise measurement. For all days, intra-plume HF, HCl, SO2, and BrO vertical column densities (VCDs) were reliably measured exceeding 5 × 1016, 2 × 1017, 5 × 1017, and 1 × 1014 molec cm-2, with an estimated precision of 2.2 × 1015, 1.3 × 1016, 3.6 × 1016, and 1.3 × 1013 molec cm-2, respectively. Given that CO2, unlike the other measured gases, has a large and well-mixed atmospheric background, derivation of volcanic CO2 VCD enhancements (ΔCO2) required compensating for changes in altitude of the observing platform and for background concentration variability. The first challenge was met by simultaneously measuring the overhead oxygen (O2) columns and assuming covariation of O2 and CO2 with altitude. The atmospheric CO2 background was found by identifying background soundings via the co-emitted volcanic gases. The inferred ΔCO2 occasionally exceeded 2 × 1019 molec cm-2 with an estimated precision of 3.7 × 1018 molec cm-2 given typical atmospheric background VCDs of 7 to 8 × 1021 molec cm-2. While the correlations of ΔCO2 with the other measured volcanic gases confirm the detection of volcanic CO2 enhancements, correlations were found of variable significance (R2 ranging between 0.88 and 0.00). The intra-plume VCD ratios ΔCO2 / SO2, SO2 / HF, SO2 / HCl, and SO2 / BrO were in the range 7.1 to 35.4, 5.02 to 21.2, 1.54 to 3.43, and 2.9 × 103 to 12.5 × 103, respectively, showing pronounced day-to-day and intra-day variability.

  6. Method of using an electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1993-11-16

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figures.

  7. Background CO2 levels and error analysis from ground-based solar absorption IR measurements in central Mexico

    NASA Astrophysics Data System (ADS)

    Baylon, Jorge L.; Stremme, Wolfgang; Grutter, Michel; Hase, Frank; Blumenstock, Thomas

    2017-07-01

    In this investigation we analyze two common optical configurations to retrieve CO2 total column amounts from solar absorption infrared spectra. The noise errors using either a KBr or a CaF2 beam splitter, a main component of a Fourier transform infrared spectrometer (FTIR), are quantified in order to assess the relative precisions of the measurements. The configuration using a CaF2 beam splitter, as deployed by the instruments which contribute to the Total Carbon Column Observing Network (TCCON), shows a slightly better precision. However, we show that the precisions in XCO2 ( = 0.2095 ṡ Total Column CO2Total Column O2) retrieved from > 96 % of the spectra measured with a KBr beam splitter fall well below 0.2 %. A bias in XCO2 (KBr - CaF2) of +0.56 ± 0.25 ppm was found when using an independent data set as reference. This value, which corresponds to +0.14 ± 0.064 %, is slightly larger than the mean precisions obtained. A 3-year XCO2 time series from FTIR measurements at the high-altitude site of Altzomoni in central Mexico presents clear annual and diurnal cycles, and a trend of +2.2 ppm yr-1 could be determined.

  8. Column amounts of trace gases from ground based FTIR measurements in the late north polar winters 1990 and 1991

    NASA Technical Reports Server (NTRS)

    Adrian, Gabriele; Blumenstock, Thomas; Fischer, Herbert; Frank, Eckard; Gerhardt, Lothar; Gulde, Thomas; Maucher, Guido; Oelhaf, Hermann; Thomas, Peter; Trieschmann, Olaf

    1994-01-01

    Two FTIR spectrometers were employed in the late winters 1990 and 1991 in Esrange, North Sweden, and in Ny Aalesund, Spitsbergen to detect zenith column amounts of several trace gases. Time series of column amounts of the trace gases O3, N2O, CH4, HNO3, NO2, CHl, and HF have been derived from the measured spectra. Additionally, some information on the vertical distribution of HCl could be obtained by analyzing the spectral line shapes. The results are interpreted in terms of dynamical and chemical processes.

  9. A high-resolution and observationally constrained OMI NO 2 satellite retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.

    Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situmore » aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.« less

  10. A high-resolution and observationally constrained OMI NO 2 satellite retrieval

    DOE PAGES

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.; ...

    2017-09-26

    Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situmore » aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.« less

  11. A high-resolution and observationally constrained OMI NO2 satellite retrieval

    NASA Astrophysics Data System (ADS)

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.; Swartz, William H.; Lu, Zifeng; Streets, David G.

    2017-09-01

    This work presents a new high-resolution NO2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO2 vertical profile shape factors from a 1.25° × 1° (˜ 110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situ aircraft observations to recalculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime in the eastern US. In this new product, OMI NO2 tropospheric columns increase by up to 160 % in city centers and decrease by 20-50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO2 and Airborne Compact Atmospheric Mapper (ACAM) NO2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in the new product vs. r2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NOx emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO2 satellite retrievals.

  12. First Reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Profiles (1998-2016): 2. Comparisons With Satellites and Ground-Based Instruments

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Sterling, Chance; Jordan, Allen; Johnson, Bryan J.; Oltmans, Samuel J.; Fujiwara, Masatomo; Vömel, Holger; Allaart, Marc; Piters, Ankie; Coetzee, Gert J. R.; Posny, Françoise; Corrales, Ernesto; Diaz, Jorge Andres; Félix, Christian; Komala, Ninong; Lai, Nga; Ahn Nguyen, H. T.; Maata, Matakite; Mani, Francis; Zainal, Zamuna; Ogino, Shin-ya; Paredes, Francisco; Penha, Tercio Luiz Bezerra; da Silva, Francisco Raimundo; Sallons-Mitro, Sukarni; Selkirk, Henry B.; Schmidlin, F. J.; Stübi, Rene; Thiongo, Kennedy

    2017-12-01

    The Southern Hemisphere ADditional OZonesonde (SHADOZ) network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical ozone in the troposphere and stratosphere. Beginning with nine stations in 1998, more than 7,000 ozone and P-T-U profiles are available from 14 SHADOZ sites that have operated continuously for at least a decade. We analyze ozone profiles from the recently reprocessed SHADOZ data set that is based on adjustments for inconsistencies caused by varying ozonesonde instruments and operating techniques. First, sonde-derived total ozone column amounts are compared to the overpasses from the Earth Probe/Total Ozone Mapping Spectrometer, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite satellites that cover 1998-2016. Second, characteristics of the stratospheric and tropospheric columns are examined along with ozone structure in the tropical tropopause layer (TTL). We find that (1) relative to our earlier evaluations of SHADOZ data, in 2003, 2007, and 2012, sonde-satellite total ozone column offsets at 12 stations are 2% or less, a significant improvement; (2) as in prior studies, the 10 tropical SHADOZ stations, defined as within ±19° latitude, display statistically uniform stratospheric column ozone, 229 ± 3.9 DU (Dobson units), and a tropospheric zonal wave-one pattern with a 14 DU mean amplitude; (3) the TTL ozone column, which is also zonally uniform, masks complex vertical structure, and this argues against using satellites for lower stratospheric ozone trends; and (4) reprocessing has led to more uniform stratospheric column amounts across sites and reduced bias in stratospheric profiles. As a consequence, the uncertainty in total column ozone now averages 5%.

  13. Stratospheric column NO2 anomalies over Russia related to the 2011 Arctic ozone hole

    NASA Astrophysics Data System (ADS)

    Aheyeva, Viktoryia; Gruzdev, Aleksandr; Elokhov, Aleksandr; Grishaev, Mikhail; Salnikova, Natalia

    2013-04-01

    We analyze data of spectrometric measurements of stratospheric column NO2 contents at mid- and high-latitude stations of Zvenigorod (55.7°N, Moscow region), Tomsk (56.5°N, West Siberia), and Zhigansk (66.8°N, East Siberia). Measurements are done in visual spectral range with zenith-viewing spectrometers during morning and evening twilights. Alongside column NO2 contents, vertical profiles of NO2 are retrieved at the Zvenigorod station. Zvenigorod and Zhigansk are the measurement stations within the Network for the Detection of Atmospheric Composition Change (NDACC). For interpretation of results of analysis of NO2 data, data of Ozone Monitoring Instrument measurements of total column ozone and rawinsonde data are also analyzed and back trajectories calculated with the help of HYSPLIT trajectory model are used. Significant negative anomalies in stratospheric NO2 columns accompanied by episodes of significant cooling of the stratosphere and decrease in total ozone were observed at the three stations in the winter-spring period of 2011. Trajectory analysis shows that the anomalies were caused by the transport of stratospheric air from the region of the ozone hole observed that season in the Arctic. Although negative NO2 anomalies due to the transport from the Arctic were also observed in some other years, the anomalies in 2011 have had record magnitudes. Analysis of NO2 vertical profiles at Zvenigorod shows that the NO2 anomaly in 2011 compared to other years anomalies was additionally contributed by the denitrification of the Arctic lower stratosphere. NO2 profiles show that a certain degree of the denitrification probably survived even after the ozone hole.

  14. Βiocolloid and colloid transport through water-saturated columns packed with glass beads: Effect of gravity

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Syngouna, V. I.

    2013-12-01

    The role of gravitational force on biocolloid and colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with biocolloids (bacteriophages: ΦΧ174, MS2) and colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q=1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one dimensional, colloid transport model, accounting for gravity effects. The results revealed that flow direction has a significant influence on particle deposition. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for biocolloid and colloid deposition. Schematic illustration of a packed column with up-flow velocity having orientation (-i) with respect to gravity. The gravity vector components are: g(i)= g(-z) sinβ i, and g(-j)= -g(-z) cosβ j. Experimental setup showing the various column arrangements: (a) horizontal, (b) diagonal, and (c) vertical.

  15. Improvement of pre-treatment method for 36Cl/Cl measurement of Cl in natural groundwater by AMS

    NASA Astrophysics Data System (ADS)

    Nakata, Kotaro; Hasegawa, Takuma

    2011-02-01

    Estimation of 36Cl/Cl by accelerator mass spectrometry (AMS) is a useful method to trace hydrological processes in groundwater. For accurate estimation, separation of SO42- from Cl - in groundwater is required because 36S affects AMS measurement of 36Cl. Previous studies utilized the difference in solubility between BaSO 4 and BaCl 2 (BaSO 4 method) to chemically separate SO42- from Cl -. However, the accuracy of the BaSO 4 method largely depends on operator skill, and consequently Cl - recovery is typically incomplete (70-80%). In addition, the method is time consuming (>1 week), and cannot be applied directly to dilute solutions. In this study, a method based on ion-exchange column chromatography (column method) was developed for separation of Cl - and SO42-. Optimum conditions were determined for the diameter and height of column, type and amount of resin, type and concentration of eluent, and flow rate. The recovery of Cl - was almost 100%, which allowed complete separation from SO42-. The separation procedure was short (<6 h), and was successfully applied to dilute (1 mg/L Cl) solution. Extracted pore water and diluted seawater samples were processed by the column and BaSO 4 methods, and then analyzed by AMS to estimate 36S counts and 36Cl/Cl values. 36S counts in samples processed by the column method were stable and lower than those from the BaSO 4 method. The column method has the following advantages over the BaSO 4 method: (1) complete and stable separation of Cl - and SO42-, (2) less operator influence on results, (3) short processing time (<6 h), (4) high (almost 100%) recovery of Cl -, and (5) concentration of Cl - and separation from SO42- in the one system for dilute solutions.

  16. Physical determinants of phytoplankton production, algal stoichiometry, and vertical nutrient fluxes.

    PubMed

    Jäger, Christoph G; Diehl, Sebastian; Emans, Maximilian

    2010-04-01

    Most phytoplankters face opposing vertical gradients in light versus nutrient supplies but have limited capacities for vertical habitat choice. We therefore explored a dynamical model of negatively buoyant algae inhabiting a one-dimensional water column to ask how water column depth and turbulence constrain total (areal) phytoplankton biomass. We show that the population persistence boundaries in water column depth-turbulence space are set by sinking losses and light limitation but that nutrients are most limiting to total biomass in water columns that are neither too shallow or too weakly mixed (where sinking losses prevail) nor too deep and turbulent (where light limitation prevails). In shallow waters, the most strongly limiting process is nutrient influx to the bottom of the water column (e.g., from sediments). In deep waters, the most strongly limiting process is turbulent upward transport of nutrients to the photic zone. Consequently, the highest total biomasses are attained in turbulent waters at intermediate water column depths and in deep waters at intermediate turbulences. These patterns are insensitive to the assumption of fixed versus flexible algal carbon-to-nutrient stoichiometry, and they arise irrespective of whether the water column is a surface layer above a deep water compartment or has direct contact with sediments.

  17. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.

    2016-06-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  18. Mobile MAX-DOAS observation of NO2 and comparison with OMI satellite data in the western coastal areas of the Korean peninsula.

    PubMed

    Chong, Jihyo; Kim, Young J; Gu, Myojeong; Wagner, Thomas; Song, Chul H

    2016-01-01

    Ground-based MAX-DOAS measurements have been used to retrieve column densities of atmospheric absorbers such as NO2, SO2, HCHO, and O3. In this study, mobile MAX-DOAS measurements were conducted to map the 2-D distributions of atmospheric NO2 in the western coastal areas of the Korean peninsula. A Mini-MAX-DOAS instrument was mounted on the rooftop of a mobile lab vehicle with a telescope mounted parallel to the driving direction, pointing forward. The measurements were conducted from 21 to 24 December 2010 along the western coastal areas from Gomso harbor (35.59N, 126.61E) to Gunsan harbor (35.98N, 126.67E). During mobile MAX-DOAS observations, high elevation angles were used to avoid shades from nearby obstacles. For the determination of the tropospheric vertical column density (VCD), the air mass factor (AMF) was retrieved by the so-called geometric approximation. The NO2 VCDs from 20 and 45 degree elevation angles were retrieved from mobile MAX-DOAS measurements. The tropospheric NO2 VCDs derived from mobile MAX-DOAS measurements were compared directly to those retrieved by the OMI satellite observations. Mobile MAX-DOAS VCD was in good agreement with OMI tropospheric VCD on most days. However, OMI tropospheric VCD was much higher than that of mobile MAX-DOAS on 23 December 2010. One probable reason for this difference is that OMI retrieval might overestimate NO2 VCD under haze conditions, when a pollution plume was transported over the measurement site. The mobile MAX-DOAS observations reveal much finer spatial patterns of NO2 distributions, which can provide useful information for the validation of satellite observation of atmospheric trace gases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Calculating carbon mass balance from unsaturated soil columns treated with CaSO₄₋minerals: test of soil carbon sequestration.

    PubMed

    Han, Young-Soo; Tokunaga, Tetsu K

    2014-12-01

    Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSO4-minerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca(2+) and SO4(2)(-) from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Plume propagation direction determination with SO2 cameras

    NASA Astrophysics Data System (ADS)

    Klein, Angelika; Lübcke, Peter; Bobrowski, Nicole; Kuhn, Jonas; Platt, Ulrich

    2017-03-01

    SO2 cameras are becoming an established tool for measuring sulfur dioxide (SO2) fluxes in volcanic plumes with good precision and high temporal resolution. The primary result of SO2 camera measurements are time series of two-dimensional SO2 column density distributions (i.e. SO2 column density images). However, it is frequently overlooked that, in order to determine the correct SO2 fluxes, not only the SO2 column density, but also the distance between the camera and the volcanic plume, has to be precisely known. This is because cameras only measure angular extents of objects while flux measurements require knowledge of the spatial plume extent. The distance to the plume may vary within the image array (i.e. the field of view of the SO2 camera) since the plume propagation direction (i.e. the wind direction) might not be parallel to the image plane of the SO2 camera. If the wind direction and thus the camera-plume distance are not well known, this error propagates into the determined SO2 fluxes and can cause errors exceeding 50 %. This is a source of error which is independent of the frequently quoted (approximate) compensation of apparently higher SO2 column densities and apparently lower plume propagation velocities at non-perpendicular plume observation angles.Here, we propose a new method to estimate the propagation direction of the volcanic plume directly from SO2 camera image time series by analysing apparent flux gradients along the image plane. From the plume propagation direction and the known location of the SO2 source (i.e. volcanic vent) and camera position, the camera-plume distance can be determined. Besides being able to determine the plume propagation direction and thus the wind direction in the plume region directly from SO2 camera images, we additionally found that it is possible to detect changes of the propagation direction at a time resolution of the order of minutes. In addition to theoretical studies we applied our method to SO2 flux measurements at Mt Etna and demonstrate that we obtain considerably more precise (up to a factor of 2 error reduction) SO2 fluxes. We conclude that studies on SO2 flux variability become more reliable by excluding the possible influences of propagation direction variations.

  1. Information-rich spectral channels for simulated retrievals of partial column-averaged methane

    NASA Astrophysics Data System (ADS)

    Su, Zhan; Xi, Xi; Natraj, Vijay; Li, King-Fai; Shia, Run-Lie; Miller, Charles E.; Yung, Yuk L.

    2016-01-01

    Space-based remote sensing of the column-averaged methane dry air mole fraction (XCH4) has greatly increased our understanding of the spatiotemporal patterns in the global methane cycle. The potential to retrieve multiple pieces of vertical profile information would further improve the quantification of CH4 across space-time scales. We conduct information analysis for channel selection and evaluate the prospects of retrieving multiple pieces of information as well as total column CH4 from both ground-based and space-based near-infrared remote sensing spectra. We analyze the degrees of freedom of signal (DOF) in the CH4 absorption bands near 2.3 μm and 1.6 μm and select ˜1% of the channels that contain >95% of the information about the CH4 profile. The DOF is around 4 for fine ground-based spectra (resolution = 0.01 cm-1) and 3 for coarse space-based spectra (resolution = 0.20 cm-1) based on channel selection and a signal-to-noise ratio (SNR) of 300. The DOF varies from 2.2 to 3.2 when SNR is between 100 and 300, and spectral resolution is 0.20 cm-1. Simulated retrieval tests in clear-sky conditions using the selected channels reveal that the retrieved partial column-averaged CH4 values are not sensitive to the a priori profiles and can reflect local enhancements of CH4 in different partial air columns. Both the total and partial column-averaged retrieval errors in all tests are within 1% of the true state. These simulated tests highlight the possibility to retrieve up to three to four pieces of information about the vertical distribution of CH4 in reality.

  2. Overview of the O3M SAF GOME-2 operational atmospheric composition and UV radiation data products and data availability

    NASA Astrophysics Data System (ADS)

    Hassinen, S.; Balis, D.; Bauer, H.; Begoin, M.; Delcloo, A.; Eleftheratos, K.; Gimeno Garcia, S.; Granville, J.; Grossi, M.; Hao, N.; Hedelt, P.; Hendrick, F.; Hess, M.; Heue, K.-P.; Hovila, J.; Jønch-Sørensen, H.; Kalakoski, N.; Kiemle, S.; Kins, L.; Koukouli, M. E.; Kujanpää, J.; Lambert, J.-C.; Lerot, C.; Loyola, D.; Määttä, A.; Pedergnana, M.; Pinardi, G.; Romahn, F.; van Roozendael, M.; Lutz, R.; De Smedt, I.; Stammes, P.; Steinbrecht, W.; Tamminen, J.; Theys, N.; Tilstra, L. G.; Tuinder, O. N. E.; Valks, P.; Zerefos, C.; Zimmer, W.; Zyrichidou, I.

    2015-07-01

    The three GOME-2 instruments will provide unique and long data sets for atmospheric research and applications. The complete time period will be 2007-2022, including the period of ozone depletion as well as the beginning of ozone layer recovery. Besides ozone chemistry, the GOME-2 products are important e.g. for air quality studies, climate modeling, policy monitoring and hazard warnings. The heritage for GOME-2 is in the ERS/GOME and Envisat/SCIAMACHY instruments. The current Level 2 (L2) data cover a wide range of products such as trace gas columns (NO2, BrO, H2CO, H2O, SO2), tropospheric columns of NO2, total ozone columns and vertical ozone profiles in high and low spatial resolution, absorbing aerosol indices from the main science channels as well as from the polarization channels (AAI, AAI-PMD), Lambertian-equivalent reflectivity database, clear-sky and cloud-corrected UV indices and surface UV fields with different weightings and photolysis rates. The Ozone Monitoring and Atmospheric Composition Satellite Application Facility (O3M SAF) processing and data dissemination is operational and running 24/7. Data quality is quarantined by the detailed review processes for the algorithms, validation of the products as well as by a continuous quality monitoring of the products and processing. This is an overview paper providing the O3M SAF project background, current status and future plans to utilization of the GOME-2 data. An important focus is the provision of summaries of the GOME-2 products including product principles and validation examples together with the product sample images. Furthermore, this paper collects the references to the detailed product algorithm and validation papers.

  3. Technical Note: New ground-based FTIR measurements at Ile de La Réunion: observations, error analysis, and comparisons with independent data

    NASA Astrophysics Data System (ADS)

    Senten, C.; de Mazière, M.; Dils, B.; Hermans, C.; Kruglanski, M.; Neefs, E.; Scolas, F.; Vandaele, A. C.; Vanhaelewyn, G.; Vigouroux, C.; Carleer, M.; Coheur, P. F.; Fally, S.; Barret, B.; Baray, J. L.; Delmas, R.; Leveau, J.; Metzger, J. M.; Mahieu, E.; Boone, C.; Walker, K. A.; Bernath, P. F.; Strong, K.

    2008-01-01

    Ground-based high spectral resolution Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various constituents in the atmosphere. This work presents results from two short-term FTIR measurement campaigns in 2002 and 2004, held at the (sub)tropical site Ile de La Réunion (21°S, 55°E). These campaigns represent the first FTIR observations carried out at this site. The results include total column amounts from the surface up to 100 km of ozone (O3), methane (CH4), nitrous oxide (N2O), carbon monoxide (CO), ethane (C2H6), hydrogen chloride (HCl), hydrogen fluoride (HF) and nitric acid (HNO3), as well as some vertical profile information for the first four mentioned trace gases. The data are characterised in terms of the vertical information content and associated error budget. In the 2004 time series, the seasonal increase of the CO concentration was observed by the end of October, along with a sudden rise that has been attributed to biomass burning events in southern Africa and Madagascar. This attribution was based on trajectory modeling. In the same period, other biomass burning gases such as C2H6 also show an enhancement in their total column amounts which is highly correlated with the increase of the CO total columns. The observed total column values for CO are consistent with correlative data from MOPITT (Measurements Of Pollution In The Troposphere). Comparisons between our ground-based FTIR observations and space-borne observations from ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) and HALOE (Halogen Occultation Experiment) confirm the feasibility of the FTIR measurements at Ile de La Réunion.

  4. Metalimnetic oxygen minima alter the vertical profiles of carbon dioxide and methane in a managed freshwater reservoir.

    PubMed

    McClure, Ryan P; Hamre, Kathleen D; Niederlehner, B R; Munger, Zackary W; Chen, Shengyang; Lofton, Mary E; Schreiber, Madeline E; Carey, Cayelan C

    2018-04-30

    Metalimnetic oxygen minimum zones (MOMs) commonly develop during the summer stratified period in freshwater reservoirs because of both natural processes and water quality management. While several previous studies have examined the causes of MOMs, much less is known about their effects, especially on reservoir biogeochemistry. MOMs create distinct redox gradients in the water column which may alter the magnitude and vertical distribution of dissolved methane (CH 4 ) and carbon dioxide (CO 2 ). The vertical distribution and diffusive efflux of CH 4 and CO 2 was monitored for two consecutive open-water seasons in a eutrophic reservoir that develops MOMs as a result of the operation of water quality engineering systems. During both summers, elevated concentrations of CH 4 accumulated within the anoxic MOM, reaching a maximum of 120 μM, and elevated concentrations of CO 2 accumulated in the oxic hypolimnion, reaching a maximum of 780 μM. Interestingly, the largest observed diffusive CH 4 effluxes occurred before fall turnover in both years, while peak diffusive CO 2 effluxes occurred both before and during turnover. Our data indicate that MOMs can substantially change the vertical distribution of CH 4 and CO 2 in the water column in reservoirs, resulting in the accumulation of CH 4 in the metalimnion (vs. at the sediments) and CO 2 in the hypolimnion. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Eleven years of tropospheric NO2 measured by GOME, SCIAMACHY and OMI

    NASA Astrophysics Data System (ADS)

    Eskes, H.; Boersma, F.; Dirksen, R.; van der A, R.; Veefkind, P.; Levelt, P.; Brinksma, E.; van Roozendael, M.; de Smedt, I.; Gleason, J.

    2006-12-01

    Based on measurements of GOME on ESA ERS-2, SCIAMACHY on ESA-ENVISAT, and Ozone Monitoring Instrument (OMI) on the NASA EOS-Aura satellite there is now a unique 11-year dataset of global tropospheric nitrogen dioxide measurements from space. The retrieval approach consists of two steps. The first step is an application of the DOAS (Differential Optical Absorption Spectroscopy) approach which delivers the total absorption optical thickness along the light path (the slant column). For GOME and SCIAMACHY this is based on the DOAS implementation developed by BIRA/IASB. For OMI the DOAS implementation was developed in a collaboration between KNMI and NASA. The second retrieval step, developed at KNMI, estimates the tropospheric vertical column of NO2 based on the slant column, cloud fraction and cloud top height retrieval, stratospheric column estimates derived from a data assimilation approach and vertical profile estimates from space-time collocated profiles from the TM chemistry-transport model. The second step was applied with only minor modifications to all three instruments to generate a uniform 11-year data set. In our talk we will address the following topics: - A short summary of the retrieval approach and results - Comparisons with other retrievals - Comparisons with global and regional-scale models - OMI-SCIAMACHY and SCIAMACHY-GOME comparisons - Validation with independent measurements - Trend studies of NO2 for the past 11 years

  6. Preparative liquid column electrophoresis of T and B lymphocytes at gravity = 1

    NASA Technical Reports Server (NTRS)

    Van Oss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.

    1974-01-01

    Vertical liquid columns containing low-molecular-weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of zero gravity conditions. Another method that has been tested at 1 g, is the electrophoresis of lymphocytes in an upward direction in vertical columns. By both methods up to 100 million lymphocytes can be separated at one time in a 30-cm glass column of 8-mm inside diameter, at 12 V/cm, in two hours. Due to convection and sedimentation problems, the separation at 1 g is less than ideal, but it is expected that at zero gravity electrophoresis will probe to be a uniquely powerful cell separation tool.

  7. Diel Vertical Migration Thresholds of Karenia brevis (Dinophyceae).

    EPA Science Inventory

    Light and nutrient availability change throughout dinoflagellate diel vertical migration (DVM) and/or with subpopulation location in the water column along the west Florida shelf. Typically, the vertical depth of the shelf is greater than the distance a subpopulation can vertical...

  8. Tracing Water Vapor and Ice During Dust Growth

    NASA Astrophysics Data System (ADS)

    Krijt, Sebastiaan; Ciesla, Fred J.; Bergin, Edwin A.

    2016-12-01

    The processes that govern the evolution of dust and water (in the form of vapor or ice) in protoplanetary disks are intimately connected. We have developed a model that simulates dust coagulation, dust dynamics (settling, turbulent mixing), vapor diffusion, and condensation/sublimation of volatiles onto grains in a vertical column of a protoplanetary disk. We employ the model to study how dust growth and dynamics influence the vertical distribution of water vapor and water ice in the region just outside the radial snowline. Our main finding is that coagulation (boosted by the enhanced stickiness of icy grains) and the ensuing vertical settling of solids results in water vapor being depleted, but not totally removed, from the region above the snowline on a timescale commensurate with the vertical turbulent mixing timescale. Depending on the strength of the turbulence and the temperature, the depletion can reach factors of up to ˜50 in the disk atmosphere. In our isothermal column, this vapor depletion results in the vertical snowline moving closer to the midplane (by up to 2 gas scale heights) and the gas-phase {{C}}/{{O}} ratio above the vertical snowline increasing. Our findings illustrate the importance of dynamical effects and the need for understanding coevolutionary dynamics of gas and solids in planet-forming environments.

  9. Vertical columns of NO2, HONO, HCHO, CHOCHO and aerosol extinction: diurnal and seasonal variations in context of CalNex and CARES

    NASA Astrophysics Data System (ADS)

    Ortega, I.; Coburn, S.; Oetjen, H.; Sinreich, R.; Thalman, R. M.; Waxman, E.; Volkamer, R.

    2011-12-01

    We present results from two ground-based University of Colorado Multi Axis Differential Optical Absorption Spectroscopy (CU-MAX-DOAS) instruments that were deployed during the CALNEX and CARES 2010 field campaigns. Ground based CU-MAX-DOAS measurements were carried out through Dec 2010, and measured vertical column abundances of nitrogen dioxide (NO2), nitrous acid (HONO), formaldehyde (HCHO), glyoxal (CHOCHO), and aerosol extinction, which is determined indirectly from observing the oxygen dimers (O4). The measurements were acquired on the top of Millikan library at Caltech, Pasadena, CA, at the Fontana Arrows site located 60 Km east of Caltech, and for a limited period also downwind of Sacramento at T1 site during CARES. In the South Coast Air Basin, the MAX-DOAS instruments at both sites collected an extended time series of use to test satellites, and atmospheric chemistry models. We determine the state of the planetary boundary layer by comparing the columns observations with in-situ sensors, and place the CALNEX and CARES measurements intensive into seasonal context.

  10. Physical Controls on Carbon Flux from a Temperate Lake During Autumn Cooling

    NASA Astrophysics Data System (ADS)

    Czikowsky, M. J.; Miller, S. D.; Tedford, E. W.; MacIntyre, S.

    2011-12-01

    Seasonally-stratified temperate lakes are a source of carbon dioxide to the atmosphere during autumn overturning as CO2 trapped below the thermocline becomes available to the surface for release to the atmosphere. We made continuous measurements of the vertical profile of pCO2 in a ~600 ha temperate lake (Lake Pleasant, maximum depth ~24 m) in southwestern Adirondack Park, New York from mid-September to mid-October 2010 from a moored pontoon boat. Continuous eddy covariance flux measurements of momentum, sensible and latent heat, and CO2 were made in situ, and the water column thermal structure was measured using thermistor chains. The spatial variability (horizontal and vertical) of pCO2 throughout the lake was characterized periodically using a roving profiling system. At the beginning of the study interval, pCO2 at the pontoon boat varied from 500 ppm at the surface to > 3000 ppm below the thermocline. The vertical profile of pCO2 changed markedly during the campaign due to the effects of wind forcing and evaporation (buoyancy), with nearly uniform, high pCO2 throughout the water column at the end of the campaign (Figure 1). The elevated surface water pCO2 increased CO2 emission to the atmosphere.

  11. CO2 profile retrievals from TCCON spectra

    NASA Astrophysics Data System (ADS)

    Dohe, Susanne; Hase, Frank; Sepúlveda, Eliezer; García, Omaira; Wunch, Debra; Wennberg, Paul; Gómez-Peláez, Angel; Abshire, James B.; Wofsy, Steven C.; Schneider, Matthias; Blumenstock, Thomas

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) is a global network of ground-based Fourier Transform Spectrometers recording direct solar spectra in the near-infrared spectral region. With stringent requirements on the instrumentation, data processing and calibration, accurate and precise column-averaged abundances of CO2, CH4, N2O, HF, CO, H2O, and HDO are retrieved being an essential contribution for the validation of satellite data (e.g. GOSAT, OCO-2) and carbon cycle research (Olsen and Randerson, 2004). However, the determined column-averaged dry air mole fraction (DMF) contains no information about the vertical CO2 profile, due to the use of a simple scaling retrieval within the common TCCON analysis, where the fitting algorithm GFIT (e.g. Yang et al., 2005) is used. In this presentation we will apply a different procedure for calculating trace gas abundances from the measured spectra, the fitting algorithm PROFFIT (Hase et. al., 2004) which has been shown to be in very good accordance with GFIT. PROFFIT additionally offers the ability to perform profile retrievals in which the pressure broadening effect of absorption lines is used to retrieve vertical gas profiles, being of great interest especially for the CO2 modelling community. A new analyzing procedure will be shown and retrieved vertical CO2 profiles of the TCCON sites Izaña (Tenerife, Canary Islands, Spain) and Lamont (Oklahoma, USA) will be presented and compared with simultaneously performed surface in-situ measurements and CO2 profiles from different aircraft campaigns. References: - Hase, F. et al., J.Q.S.R.T. 87, 25-52, 2004. - Olsen, S.C. and Randerson, J.T., J.G.Res., 109, D023012, 2004. - Yang, Z. et al., J.Q.S.R.T., 90, 309-321, 2005.

  12. Seasonal cycle and secular trend of the total and tropospheric column abundance of ethane above the Jungfraujoch

    NASA Technical Reports Server (NTRS)

    Ehhalt, D. H.; Schmidt, U.; Zander, R.; Demoulin, P.; Rinsland, C. P.

    1991-01-01

    The secular trend and the seasonal cycle of the total and the tropospheric column abundances of C2H6 over the Jungfraujoch Station (Switzerland) were deduced from infrared solar spectra recorded in 1951 and from 1984 to 1988. Results show a definite seasonal variation in the total vertical column abundance of C2H6, with a maximum of (1.43 + or - 0.03) x 10 to the 16th molecules/sq cm during March and April and a minimum in the fall; the ratio between the maximum and the minimum column abundances was found to be 1.62 + or - 0.11. The secular trend in the tropospheric burden above the Jungfraujoch was found to be (0.85 + or - 0.3) percent/yr.

  13. Toward Quantitative Estimation of the Effect of Aerosol Particles in the Global Climate Model and Cloud Resolving Model

    NASA Astrophysics Data System (ADS)

    Eskes, H.; Boersma, F.; Dirksen, R.; van der A, R.; Veefkind, P.; Levelt, P.; Brinksma, E.; van Roozendael, M.; de Smedt, I.; Gleason, J.

    2005-05-01

    Based on measurements of GOME on ESA ERS-2, SCIAMACHY on ESA-ENVISAT, and Ozone Monitoring Instrument (OMI) on the NASA EOS-Aura satellite there is now a unique 11-year dataset of global tropospheric nitrogen dioxide measurements from space. The retrieval approach consists of two steps. The first step is an application of the DOAS (Differential Optical Absorption Spectroscopy) approach which delivers the total absorption optical thickness along the light path (the slant column). For GOME and SCIAMACHY this is based on the DOAS implementation developed by BIRA/IASB. For OMI the DOAS implementation was developed in a collaboration between KNMI and NASA. The second retrieval step, developed at KNMI, estimates the tropospheric vertical column of NO2 based on the slant column, cloud fraction and cloud top height retrieval, stratospheric column estimates derived from a data assimilation approach and vertical profile estimates from space-time collocated profiles from the TM chemistry-transport model. The second step was applied with only minor modifications to all three instruments to generate a uniform 11-year data set. In our talk we will address the following topics: - A short summary of the retrieval approach and results - Comparisons with other retrievals - Comparisons with global and regional-scale models - OMI-SCIAMACHY and SCIAMACHY-GOME comparisons - Validation with independent measurements - Trend studies of NO2 for the past 11 years

  14. In-situ biochemical remediation of chlorinated organic compounds present as DNAPL using vitamin B12 and reduced titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesage, S.; Sorel, D.; Cherry, J.A.

    1995-12-31

    The feasibility of using a biochemical treatment for the cleanup of DNAPL solvents in the saturated zone was tested using an in-situ large vertical column. Laboratory column studies have shown that a mixture of vitamin B12 and titanium citrate pumped through a column containing 100 {mu}L of tetrachloroethene can completely dissolve and degrade the residual to ethene in a few days. A vertical test column, 80 cm in diameter was installed within a sheet-pile cell isolating a portion of aquifer at CFB Borden. An equimolar mixture of tetrachloroethene and 1,1,1-trichloroethane was injected below the water table to form a residualmore » DNAPL. The injection withdrawal system was operated in an upward flow mode over a 2 m height. In order for the reaction to be proceed, the in-situ pH must be greater than 7 and the Eh lower than -480 mV. The redox of the aquifer and the formation of reaction products was monitored on site, through 8 side pods equipped with stainless steel tubing terminated with 40 {mu}m porous cups, installed at different heights in the test column. The volatile products at the withdrawal well were monitored on-line by dynamic headspace analysis/gas chromatography.« less

  15. Relationship between synoptic scale weather systems and column averaged atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Naja, M.; Yaremchuk, A.; Onishi, R.; Maksyutov, S.; Inoue, G.

    2005-12-01

    Analysis of the atmospheric CO2 observations with transport models contributes to the understanding of the geographical distributions of CO2 sources and sinks. Space-borne sensors could be advantageous for CO2 measurements as they can provide wider spatial and temporal coverage. Inversion studies have suggested requirement of better than 1% precision for the space-borne observations. Since sources and sinks are inferred from spatial and temporal gradients in CO2, the space-borne observations must have no significant geographically varying biases. To study the dynamical biases in column CO2 due to possible correlation between clouds and atmospheric CO2 at synoptic scale, we have made simulations of CO2 (1988-2003) using NIES tracer transport model. Model resolution is 2.5o x 2.5o in horizontal and it has 15 vertical sigma-layers. Fluxes for (1) fossil fuels, (2) terrestrial biosphere (CASA NEP), (3) the oceans, and (4) inverse model derived monthly regional fluxes from 11 land and 11 ocean regions are used. SVD truncation is used to filter out noise in the inverse model flux time series. Model reproduces fairly well CO2 global trend and observed time series at monitoring sites around the globe. Lower column CO2 concentration is simulated inside cyclonic systems in summer over North hemispheric continental areas. Surface pressure is used as a proxy for dynamics and it is demonstrated that anomalies in column averaged CO2 has fairly good correlation with the anomalies in surface pressure. Positive correlation, as high as 0.7, has been estimated over parts of Siberia and N. America in summer time. Our explanation is based on that the low-pressure system is associated the upward motion, which leads to lower column CO2 values over these regions due to lifting of CO2-depleted summertime PBL air, and higher column CO2 over source areas. A sensitivity study without inverse model fluxes shows same correlation. The low-pressure systems' induced negative biases are 0.4-0.6 ppmv in summer over Siberia. Therefore it is essential to consider this bias due to covariance with vertical motion, while analyzing the column CO2 from space-borne observations together with in-situ observations, because most optical observations are not available under cloudy conditions typical for the low-pressure system.

  16. New insights into the column CH2O/NO2 ratio as an indicator of near-surface ozone sensitivity

    NASA Astrophysics Data System (ADS)

    Schroeder, Jason R.; Crawford, James H.; Fried, Alan; Walega, James; Weinheimer, Andrew; Wisthaler, Armin; Müller, Markus; Mikoviny, Tomas; Chen, Gao; Shook, Michael; Blake, Donald R.; Tonnesen, Gail S.

    2017-08-01

    Satellite-based measurements of the column CH2O/NO2 ratio have previously been used to estimate near-surface ozone (O3) sensitivity (i.e., NOx or VOC limited), and the forthcoming launch of air quality-focused geostationary satellites provides a catalyst for reevaluating the ability of satellite-measured CH2O/NO2 to be used in this manner. In this study, we use a 0-D photochemical box model to evaluate O3 sensitivity and find that the relative rate of radical termination from radical-radical interactions to radical-NOx interactions (referred to as LROx/LNOx) provides a good indicator of maximum O3 production along NOx ridgelines. Using airborne measurements from NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relative to Air Quality (DISCOVER-AQ) deployments in Colorado, Maryland, and Houston, we show that in situ measurements of CH2O/NO2 can be used to indicate O3 sensitivity, but there is an important "transition/ambiguous" range whereby CH2O/NO2 fails to categorize O3 sensitivity, and the range and span of this transition/ambiguous range varies regionally. Then, we apply these findings to aircraft-derived column density measurements from DISCOVER-AQ and find that inhomogeneities in vertical mixing in the lower troposphere further degrades the ability of column CH2O/NO2 to indicate near-surface O3 sensitivity (i.e., the transition/ambiguous range is much larger than indicated by in situ data alone), and we hypothesize that the global transition/ambiguous range is sufficiently large to make the column CH2O/NO2 ratio unuseful for classifying near-surface O3 sensitivity. Lastly, we present a case study from DISCOVER-AQ-Houston that suggests that O3 sensitivity on exceedance days may be substantially different than on nonexceedance days (which may be observable from space) and explore the diurnal evolution of O3 sensitivity, O3 production, and the column CH2O/NO2 ratio. The results of these studies suggest that although satellite measurements of CH2O/NO2 alone may not be sufficient for accurately classifying near-surface O3 sensitivity, new techniques offered by geostationary platforms may nonetheless provide methods for using space-based measurements to develop O3 mitigation strategies.

  17. Methane gas seepage - Disregard of significant water column filter processes?

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Schmale, Oliver

    2016-04-01

    Marine methane seepage represents a potential contributor for greenhouse gas in the atmosphere and is discussed as a driver for climate change. The ultimate question is how much methane is released from the seafloor on a global scale and what fraction may reach the atmosphere? Dissolved fluxes from methane seepage sites on the seabed were found to be very efficiently reduced by benthic microbial oxidation, whereas transport of free gas bubbles from the seabed is considered to bypass the effective benthic methane filter. Numerical models are available today to predict the fate of such methane gas bubble release to the water column in regard to gas exchange with the ambient water column, respective bubble lifetime and rise height. However, the fate of rising gas bubbles and dissolved methane in the water column is not only governed by dissolution, but is also affected by lateral oceanographic currents and vertical bubble-induced upwelling, microbial oxidation, and physico-chemical processes that remain poorly understood so far. According to this gap of knowledge we present data from two study sites - the anthropogenic North Sea 22/4b Blowout and the natural Coal Oil point seeps - to shed light into two new processes gathered with hydro-acoustic multibeam water column imaging and microbial investigations. The newly discovered processes are hereafter termed Spiral Vortex and Bubble Transport Mechanism. Spiral Vortex describes the evolution of a complex vortical fluid motion of a bubble plume in the wake of an intense gas release site (Blowout, North Sea). It appears very likely that it dramatically changes the dissolution kinetics of the seep gas bubbles. Bubble Transport Mechanism prescribes the transport of sediment-hosted bacteria into the water column via rising gas bubbles. Both processes act as filter mechanisms in regard to vertical transport of seep related methane, but have not been considered before. Spiral Vortex and Bubble Transport Mechanism represent the basis for a follow up research scheduled for August 2016 with the R/V POSEIDON with the aim to better constrain their mechanisms and to quantify their overall importance.

  18. MIRA: review of inputs from updated results of the phobos mission

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.; Korablev, O. I.; Rodin, A. V.; Titov, D. V.

    1999-01-01

    The future Mars International Reference Atmosphere (MIRA) is intended to replace the present COSPAR Mars Reference Model compiled in 1979 on the basis of Mariner 9 and Viking 1,2 missions results. At the moment, several sources of the post-Viking data potentially useful for MIRA are available. Among them is a data set obtained during Phobos mission in 1989. The interpretation of these data has undergone thorough refinement, so final recommendations for MIRA can be made. The principal points are: 1) vertical profile of water vapor with a ``knee'' at the height about 25 km retrieved in the spring equinox season near equator; 2) variations of water vapor column density including peculiarities on the slopes of high mountains; 3) vertical profiles of ozone; 4) new estimates of CO abundance; 5) surface pressure/height mapping (CO2 altimetry) in selected regions; 6) optical depths of aerosols; 7) vertical profiles of aerosol between surface and 40 km; 8) properties of high altitude ice layers and clouds above mountains; 9) microphysical properties of aerosol particles (size, composition, and number density estimates). The data have been obtained by means of instruments AUGUSTE (UV and NIR spectrometers for limb sounding of the atmosphere using solar occultations), ISM (NIR scanning spectrometer), TERMOSKAN (thermal IR scanning radiometer), KRFM (near-UV and visible multi-band photometer). The observations were performed in equatorial regions during northern spring (solar aerocentric longitudes 8° < Ls < 18°).

  19. Estimating surface NO2 and SO2 mixing ratios from fast-response total column observations and potential application to geostationary missions.

    PubMed

    Knepp, T; Pippin, M; Crawford, J; Chen, G; Szykman, J; Long, R; Cowen, L; Cede, A; Abuhassan, N; Herman, J; Delgado, R; Compton, J; Berkoff, T; Fishman, J; Martins, D; Stauffer, R; Thompson, A M; Weinheimer, A; Knapp, D; Montzka, D; Lenschow, D; Neil, D

    Total-column nitrogen dioxide (NO 2 ) data collected by a ground-based sun-tracking spectrometer system (Pandora) and an photolytic-converter-based in-situ instrument collocated at NASA's Langley Research Center in Hampton, Virginia were analyzed to study the relationship between total-column and surface NO 2 measurements. The measurements span more than a year and cover all seasons. Surface mixing ratios are estimated via application of a planetary boundary-layer (PBL) height correction factor. This PBL correction factor effectively corrects for boundary-layer variability throughout the day, and accounts for up to ≈75 % of the variability between the NO 2 data sets. Previous studies have made monthly and seasonal comparisons of column/surface data, which has shown generally good agreement over these long average times. In the current analysis comparisons of column densities averaged over 90 s and 1 h are made. Applicability of this technique to sulfur dioxide (SO 2 ) is briefly explored. The SO 2 correlation is improved by excluding conditions where surface levels are considered background. The analysis is extended to data from the July 2011 DISCOVER-AQ mission over the greater Baltimore, MD area to examine the method's performance in more-polluted urban conditions where NO 2 concentrations are typically much higher.

  20. Spatial and Temporal Variability of Trace Gas Columns Derived from WRF/Chem Regional Model Output: Planning for Geostationary Observations of Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Follette-Cook, M. B.; Pickering, K.; Crawford, J.; Duncan, B.; Loughner, C.; Diskin, G.; Fried, A.; Weinheimer, A.

    2015-01-01

    We quantify both the spatial and temporal variability of column integrated O3, NO2, CO, SO2, and HCHO over the Baltimore / Washington, DC area using output from the Weather Research and Forecasting model with on-line chemistry (WRF/Chem) for the entire month of July 2011, coinciding with the first deployment of the NASA Earth Venture program mission Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ). Using structure function analyses, we find that the model reproduces the spatial variability observed during the campaign reasonably well, especially for O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument will be the first NASA mission to make atmospheric composition observations from geostationary orbit and partially fulfills the goals of the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. We relate the simulated variability to the precision requirements defined by the science traceability matrices of these space-borne missions. Results for O3 from 0- 2 km altitude indicate that the TEMPO instrument would be able to observe O3 air quality events over the Mid-Atlantic area, even on days when the violations of the air quality standard are not widespread. The results further indicated that horizontal gradients in CO from 0-2 km would be observable over moderate distances (= 20 km). The spatial and temporal results for tropospheric column NO2 indicate that TEMPO would be able to observe not only the large urban plumes at times of peak production, but also the weaker gradients between rush hours. This suggests that the proposed spatial and temporal resolutions for these satellites as well as their prospective precision requirements are sufficient to answer the science questions they are tasked to address.

  1. Analysis of Mexico City urban air pollution using nitrogen dioxide column density measurements from UV/Visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia Payne, D. G.; Grutter, M.; Melamed, M. L.

    2010-12-01

    The differential optical absorption spectroscopy method (DOAS) was used to get column densities of nitrogen dioxide (NO2) from the analysis of zenith sky UV/visible spectra. Since the optical path length provides critical information in interpreting NO2 column densities, in conjunction with NO2 column densities, the oxygen dimer (O4) column density was retrieved to give insight into the optical path length. We report observations of year round NO2 and O4 column densities (from august 2009 to september 2010) from which the mean seasonal levels and the daily evolution, as well as the occurrence of elevated pollution episodes are examined. Surface nitric oxide (NO) and NO2 from the local monitoring network, as well as wind data and the vertical aerosol density from continuous Lidar measurements are used in the analysis to investigate specific events in the context of local emissions from vehicular traffic, photochemical production and transport from industrial emissions. The NO2 column density measurements will enhance the understanding Mexico City urban air pollution. Recent research has begun to unravel the complexity of the air pollution problem in Mexico City and its effects not only locally but on a regional and global scale as well.

  2. Enrichment of light hydrocarbon mixture

    DOEpatents

    Yang, Dali [Los Alamos, NM; Devlin, David [Santa Fe, NM; Barbero, Robert S [Santa Cruz, NM; Carrera, Martin E [Naperville, IL; Colling, Craig W [Warrenville, IL

    2011-11-29

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  3. Enrichment of light hydrocarbon mixture

    DOEpatents

    Yang,; Dali, [Los Alamos, NM; Devlin, David [Santa Fe, NM; Barbero, Robert S [Santa Cruz, NM; Carrera, Martin E [Naperville, IL; Colling, Craig W [Warrenville, IL

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  4. Metal concentrations in the upper atmosphere during meteor showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.

    2010-02-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  5. Metal concentrations in the upper atmosphere during meteor showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.

    2009-09-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  6. Reconsideration of Natural Monuments No. 413 (Mungokri Stromatolite) of Chosun Supergroup, Korea

    NASA Astrophysics Data System (ADS)

    KONG, Dal Yong; LEE, Seong Joo

    2014-05-01

    Stromatolite-like structures, so-called "Mungokri Stromatolite", which is located along the cliff of creeks in the vicinity of Oman bridge, Mungok-ri, Yeongwol, Kangweondo was designated as Natural Monument No. 413 in March, 2000. The Mungokri Stromatolite resembles LLH(laterally-linked hemispheroid) type stromatolite, each dome of which is laterally connected forming a stromatolite bed. The Mungokri Stromatolite, however, cannot be regarded as stromatolite because domal structure and fine lamination (the most diagnostic character) cannot be observed both in the field and through the petrological thin section. The smooth surface structure and very thin, irregular cracks characterized in the surface of the Mungokri Stromatolite also differ from those of a normal stromatolite. Such differences strongly suggest that the Mungokri Stromatolite is not a stromatolite but an algal mound. If we take considerations: 1) general lithology and sedimentary structures of Socheong island, 2) observation that angles of columns' inclination are not consistent throughout the stromatolite beds, and that vertical columns are also found in stromatolite beds, 3) igneous intrusion that would have caused structural deformation of sedimentary rocks of Socheong island, the inclination of Socheong stromatolites could be better interpreted as a secondary structural deformation probably after formation of stromatolite columns, rather than as a result of heliotropism. Consequently, renaming of the Mungokri Stromatolite, Natural Monument No. 413, is necessary. [Acknowledgments] This research was financially supported by the National Research Institute of Cultural Heritage.

  7. Parametric uncertainties in global model simulations of black carbon column mass concentration

    NASA Astrophysics Data System (ADS)

    Pearce, Hana; Lee, Lindsay; Reddington, Carly; Carslaw, Ken; Mann, Graham

    2016-04-01

    Previous studies have deduced that the annual mean direct radiative forcing from black carbon (BC) aerosol may regionally be up to 5 W m-2 larger than expected due to underestimation of global atmospheric BC absorption in models. We have identified the magnitude and important sources of parametric uncertainty in simulations of BC column mass concentration from a global aerosol microphysics model (GLOMAP-Mode). A variance-based uncertainty analysis of 28 parameters has been performed, based on statistical emulators trained on model output from GLOMAP-Mode. This is the largest number of uncertain model parameters to be considered in a BC uncertainty analysis to date and covers primary aerosol emissions, microphysical processes and structural parameters related to the aerosol size distribution. We will present several recommendations for further research to improve the fidelity of simulated BC. In brief, we find that the standard deviation around the simulated mean annual BC column mass concentration varies globally between 2.5 x 10-9 g cm-2 in remote marine regions and 1.25 x 10-6 g cm-2 near emission sources due to parameter uncertainty Between 60 and 90% of the variance over source regions is due to uncertainty associated with primary BC emission fluxes, including biomass burning, fossil fuel and biofuel emissions. While the contributions to BC column uncertainty from microphysical processes, for example those related to dry and wet deposition, are increased over remote regions, we find that emissions still make an important contribution in these areas. It is likely, however, that the importance of structural model error, i.e. differences between models, is greater than parametric uncertainty. We have extended our analysis to emulate vertical BC profiles at several locations in the mid-Pacific Ocean and identify the parameters contributing to uncertainty in the vertical distribution of black carbon at these locations. We will present preliminary comparisons of emulated BC vertical profiles from the AeroCom multi-model ensemble and Hiaper Pole-to-Pole (HIPPO) observations.

  8. [Modeling the Influencing Factors of Karstification and Karst Carbon Cycle in Laboratory].

    PubMed

    Zhao, Rui-yi; Lü, Xian-fu; Duan, Yi-fan

    2015-08-01

    To analyze the influencing factors of karstification and karst carbon cycle, a simulation experiment was carried out and 6 soil columns were designed. The results showed that the content of H2O4, hydrodynamic condition and thickness of the soil had important influence on karstification and karst carbon cycle. For the soil columns which were covered by the same thickness of soil, the concentrations of Ca2+ + Mg2+ and SO4(2-) followed the order of B20-2 > B20-1 > B20-3, B50-2 > B50-1 > B50-3. This meant that input of H2SO4 enhanced the karstification and increasing infiltration water had significant dilution effect on the chemical properties. For the soil columns with different thickness of soil but with the same slag pile and hydrodynamic conditions, the concentrations of Ca2+ + Mg2+ and SO4(2-) followed the order of B50-1 > B20-1, B50-2 > B20-2, B50-3 > B20-3. It was demonstrated that more carbonate rock was dissolved under the thick soil columns. In addition, the net consumption of CO2 mainly depended on the content of H2SO4 in this experiment due to slight contribution of H2CO3 to carbonate rock dissolution. More content of H2SO4 brought about less net consumption of C02, but B50-2 was an exception. Organic matter and other nutrients might be input into deep soil with the slag pile, and they promoted the production of soil C)2. Therefore, more CO2 was consumed due to the increased contribution of H2CO to karstification.

  9. Jupiter's great red spot revisited. [validity of Taylor column theory

    NASA Technical Reports Server (NTRS)

    Hide, R.

    1972-01-01

    On the original Taylor column theory of Jupiter's Great Red Spot, the fixed latitude of the Spot is taken to imply that the Taylor column in Jupiter's atmosphere is associated with a disturbance such as a topographic feature of the surface Q underlying the atmosphere. The alternative suggestion that the Taylor column is produced by a solid raft floating at depth in the atmosphere is somewhat easier to reconcile with the approximately 10s difference between the respective rotation periods P sub S and P sub R of the Red Spot and of the radio sources, but it does not account so readily for the fixed latitude of the Spot unless it can be shown that the raft is in stable equilibrium under the north-south components of the dynamical forces, including wind effects, acting upon it. A slight wavering of the upper end of the Taylor column relative to the lower end could account at least in part for the most rapid variations in P sub S, but the slow large-amplitude variations in P sub S must reflect changes in the longitudinal motion of either the surface Q or of the raft. By generalizing the Proudman-Taylor theorem to the case of a non-homogeneous fluid it is shown that the Taylor column theory does not imply very special and therefore unlikely horizontal and vertical temperature variations in Jupiter's atmosphere, thus refuting a widely-held belief to the contrary.

  10. Programming a hillslope water movement model on the MPP

    NASA Technical Reports Server (NTRS)

    Devaney, J. E.; Irving, A. R.; Camillo, P. J.; Gurney, R. J.

    1987-01-01

    A physically based numerical model was developed of heat and moisture flow within a hillslope on a parallel architecture computer, as a precursor to a model of a complete catchment. Moisture flow within a catchment includes evaporation, overland flow, flow in unsaturated soil, and flow in saturated soil. Because of the empirical evidence that moisture flow in unsaturated soil is mainly in the vertical direction, flow in the unsaturated zone can be modeled as a series of one dimensional columns. This initial version of the hillslope model includes evaporation and a single column of one dimensional unsaturated zone flow. This case has already been solved on an IBM 3081 computer and is now being applied to the massively parallel processor architecture so as to make the extension to the one dimensional case easier and to check the problems and benefits of using a parallel architecture machine.

  11. A study of the total atmospheric sulfur dioxide load using ground-based measurements and the satellite derived Sulfur Dioxide Index

    NASA Astrophysics Data System (ADS)

    Georgoulias, A. K.; Balis, D.; Koukouli, M. E.; Meleti, C.; Bais, A.; Zerefos, C.

    We present characteristics of the sulfur dioxide (SO 2) loading over Thessaloniki, Greece, and seven other selected sites around the world using SO 2 total column measurements from Brewer spectrophotometers together with satellite estimates of the Version 8 TOMS Sulfur Dioxide Index (SOI) over the same locations, retrieved from Nimbus 7 TOMS (1979-1993), Earth Probe TOMS (1996-2003) and OMI/Aura (2004-2006). Traditionally, the SOI has been used to quantify the SO 2 quantities emitted during great volcanic eruptions. Here, we investigate whether the SOI can give an indication of the total SO 2 load for areas and periods away from eruptive volcanic activity by studying its relative changes as a correlative measure to the SO 2 total column. We examined time series from Thessaloniki and another seven urban and non-urban stations, five in the European Union (Arosa, De Bilt, Hohenpeissenberg, Madrid, Rome) and two in India (Kodaikanal, New Delhi). Based on the Brewer data, Thessaloniki shows high SO 2 total columns for a European Union city but values are still low if compared to highly affected regions like those in India. For the time period 1983-2006 the SO 2 levels above Thessaloniki have generally decreased with a rate of 0.028 Dobson Units (DU) per annum, presumably due to the European Union's strict sulfur control policies. The seasonal variability of the SO 2 total column exhibits a double peak structure with two maxima, one during winter and the second during summer. The winter peak can be attributed to central heating while the summer peak is due to synoptic transport from sources west of the city and sources in the north of Greece. A moderate correlation was found between the seasonal levels of Brewer total SO 2 and SOI for Thessaloniki, Greece ( R = 0.710-0.763) and Madrid, Spain ( R = 0.691) which shows that under specific conditions the SOI might act as an indicator of the SO 2 total load.

  12. Cotransport of clay colloids and viruses through water-saturated vertically oriented columns packed with glass beads: Gravity effects.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2016-03-01

    The cotransport of clay colloids and viruses in vertically oriented laboratory columns packed with glass beads was investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (ΚGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in both vertical up (VU) and vertical down (VD) flow directions. In the presence of KGa-1b, estimated mass recovery values for both viruses were higher for VD than VU flow direction, while in the presence of STx-1b the opposite was observed. However, for all cases examined, the produced mass of viruses attached onto suspended clay particles were higher for VD than VU flow direction, suggesting that the flow direction significantly influences virus attachment onto clays, as well as packed column retention of viruses attached onto suspended clays. KGa-1b hindered the transport of ΦX174 under VD flow, while STx-1b facilitated the transport of ΦX174 under both VU and VD flow directions. Moreover, KGa-1b and STx-1b facilitated the transport of MS2 in most of the cases examined except of the case where KGa-1b was present under VD flow. Also, the experimental data were used for the estimation of virus surface-coverages and virus surface concentrations generated by virus diffusion-limited attachment, as well as virus attachment due to sedimentation. Both sedimentation and diffusion limited virus attachment were higher for VD than VU flow, except the case of MS2 and STx-1b cotransport. The diffusion-limited attachment was higher for MS2 than ΦΧ174 for all cases examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability

    NASA Astrophysics Data System (ADS)

    Vandaele, A. C.; Korablev, O.; Belyaev, D.; Chamberlain, S.; Evdokimova, D.; Encrenaz, Th.; Esposito, L.; Jessup, K. L.; Lefèvre, F.; Limaye, S.; Mahieux, A.; Marcq, E.; Mills, F. P.; Montmessin, F.; Parkinson, C. D.; Robert, S.; Roman, T.; Sandor, B.; Stolzenbach, A.; Wilson, C.; Wilquet, V.

    2017-10-01

    Recent observations of sulfur containing species (SO2, SO, OCS, and H2SO4) in Venus' mesosphere have generated controversy and great interest in the scientific community. These observations revealed unexpected spatial patterns and spatial/temporal variability that have not been satisfactorily explained by models. Sulfur oxide chemistry on Venus is closely linked to the global-scale cloud and haze layers, which are composed primarily of concentrated sulfuric acid. Sulfur oxide observations provide therefore important insight into the on-going chemical evolution of Venus' atmosphere, atmospheric dynamics, and possible volcanism. This paper is the first of a series of two investigating the SO2 and SO variability in the Venus atmosphere. This first part of the study will focus on the vertical distribution of SO2, considering mostly observations performed by instruments and techniques providing accurate vertical information. This comprises instruments in space (SPICAV/SOIR suite on board Venus Express) and Earth-based instruments (JCMT). The most noticeable feature of the vertical profile of the SO2 abundance in the Venus atmosphere is the presence of an inversion layer located at about 70-75 km, with VMRs increasing above. The observations presented in this compilation indicate that at least one other significant sulfur reservoir (in addition to SO2 and SO) must be present throughout the 70-100 km altitude region to explain the inversion in the SO2 vertical profile. No photochemical model has an explanation for this behaviour. GCM modelling indicates that dynamics may play an important role in generating an inflection point at 75 km altitude but does not provide a definitive explanation of the source of the inflection at all local times or latitudes The current study has been carried out within the frame of the International Space Science Institute (ISSI) International Team entitled 'SO2 variability in the Venus atmosphere'.

  14. Trends of ozone total columns and vertical distribution from FTIR observations at 8 NDACC stations around the globe

    NASA Astrophysics Data System (ADS)

    Vigouroux, C.; Blumenstock, T.; Coffey, M.; Errera, Q.; García, O.; Jones, N. B.; Hannigan, J. W.; Hase, F.; Liley, B.; Mahieu, E.; Mellqvist, J.; Notholt, J.; Palm, M.; Persson, G.; Schneider, M.; Servais, C.; Smale, D.; Thölix, L.; De Mazière, M.

    2014-09-01

    Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2%, but also independent partial column amounts in about four vertical layers, one in the troposphere and three in the stratosphere up to about 45 km, with a precision of 5-6%. We use eight of the Network for the Detection of Atmospheric Compososition Change (NDACC) stations having a long-term time series of FTIR ozone measurements to study the total and vertical ozone trends and variability, namely: Ny-Alesund (79° N), Thule (77° N), Kiruna (68° N), Harestua (60° N), Jungfraujoch (47° N), Izaña (28° N), Wollongong (34° S) and Lauder (45° S). The length of the FTIR time-series varies by station, but is typically from about 1995 to present. We applied to the monthly means of the ozone total and four partial columns a stepwise multiple regression model including the following proxies: solar cycle, Quasi-Biennial Oscillation (QBO), El Niño-Southern Oscillation (ENSO), Arctic and Antarctic Oscillation (AO/AAO), tropopause pressure (TP), equivalent latitude (EL), Eliassen-Palm flux (EPF), and volume of polar stratospheric clouds (VPSC). At the Arctic stations, the trends are found mostly negative in the troposphere and lower stratosphere, very mixed in the middle stratosphere, positive in the upper stratosphere due to a large increase in the 1995-2003 period, and non-significant when considering the total columns. The trends for mid-latitude and subtropical stations are all non-significant, except at Lauder in the troposphere and upper stratosphere, and at Wollongong for the total columns and the lower and middle stratospheric columns; at Jungfraujoch, the upper stratospheric trend is close to significance (+0.9 ± 1.0 % decade-1). Therefore, some signs of the onset of ozone mid-latitude recovery are observed only in the Southern Hemisphere, while a few more years seems to be needed to observe it at the northern mid-latitude station.

  15. Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe

    NASA Astrophysics Data System (ADS)

    Vigouroux, C.; Blumenstock, T.; Coffey, M.; Errera, Q.; García, O.; Jones, N. B.; Hannigan, J. W.; Hase, F.; Liley, B.; Mahieu, E.; Mellqvist, J.; Notholt, J.; Palm, M.; Persson, G.; Schneider, M.; Servais, C.; Smale, D.; Thölix, L.; De Mazière, M.

    2015-03-01

    Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2% but also independent partial column amounts in about four vertical layers, one in the troposphere and three in the stratosphere up to about 45km, with a precision of 5-6%. We use eight of the Network for the Detection of Atmospheric Composition Change (NDACC) stations having a long-term time series of FTIR ozone measurements to study the total and vertical ozone trends and variability, namely, Ny-Ålesund (79° N), Thule (77° N), Kiruna (68° N), Harestua (60° N), Jungfraujoch (47° N), Izaña (28° N), Wollongong (34° S) and Lauder (45° S). The length of the FTIR time series varies by station but is typically from about 1995 to present. We applied to the monthly means of the ozone total and four partial columns a stepwise multiple regression model including the following proxies: solar cycle, quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO), Arctic and Antarctic Oscillation (AO/AAO), tropopause pressure (TP), equivalent latitude (EL), Eliassen-Palm flux (EPF), and volume of polar stratospheric clouds (VPSC). At the Arctic stations, the trends are found mostly negative in the troposphere and lower stratosphere, very mixed in the middle stratosphere, positive in the upper stratosphere due to a large increase in the 1995-2003 period, and non-significant when considering the total columns. The trends for mid-latitude and subtropical stations are all non-significant, except at Lauder in the troposphere and upper stratosphere and at Wollongong for the total columns and the lower and middle stratospheric columns where they are found positive. At Jungfraujoch, the upper stratospheric trend is close to significance (+0.9 ± 1.0% decade-1). Therefore, some signs of the onset of ozone mid-latitude recovery are observed only in the Southern Hemisphere, while a few more years seem to be needed to observe it at the northern mid-latitude station.

  16. Abundances of Jupiter's Trace Hydrocarbons from Voyager and Cassini. Data Tables: Cassini CIRS Observations Planetary and Space Science, Forthcoming 2010

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Romani, P. N.; Allen, M.; Zhang, X.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2010-01-01

    The following six tables give the retrieved temperatures and volume mixing ratios of C2H2 and C2H6 and the formal errors on these results from the retrieval, as described in the manuscript. These are in the form of two-dimensional tables, specified on a latitudinal and vertical grid. The first column is the pressure in bar, and the second column gives the altitude in kilometers calculated from hydrostatic equilibrium, and applies to the equatorial profile only. The top row of the table specifies the planetographic latitude.

  17. Abundances of Jupiter's Trace Hydrocarbons from Voyager and Cassini. Data Tables: Voyager IRIS Observations Planetary and Space Science, Forthcoming 2010

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Romani, P. N.; Allen, M.; Zhang, X.; Irwin, P. G. J.; Flasar, F. M.

    2010-01-01

    The following six tables give the retrieved temperatures and volume mixing ratios of C2H2 and C2H6 and the formal errors on these results from the retrieval, as described in the manuscript. These are in the form of two-dimensional tables, specified on a latitudinal and vertical grid. The first column is the pressure in bar, and the second column gives the altitude in kilometers calculated from hydrostatic equilibrium, and applies to the equatorial profile only. The top row of the table specifies the planetographic latitude.

  18. 29 CFR 1926.751 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... brakes, rolls, or other methods to shape steel into desired cross sections at room temperature. Column means a load-carrying vertical member that is part of the primary skeletal framing system. Columns do..., such as a wall or column and work with both hands free while leaning. Post means a structural member...

  19. 29 CFR 1926.751 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... brakes, rolls, or other methods to shape steel into desired cross sections at room temperature. Column means a load-carrying vertical member that is part of the primary skeletal framing system. Columns do..., such as a wall or column and work with both hands free while leaning. Post means a structural member...

  20. 29 CFR 1926.751 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... brakes, rolls, or other methods to shape steel into desired cross sections at room temperature. Column means a load-carrying vertical member that is part of the primary skeletal framing system. Columns do..., such as a wall or column and work with both hands free while leaning. Post means a structural member...

  1. Arcsecond Resolution Mapping of Sulfur Dioxide Emission in the Circumstellar Envelope of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Fu, Roger R.; Moullet, Arielle; Patel, Nimesh A.; Biersteker, John; Derose, Kimberly L.; Young, Kenneth H.

    2012-02-01

    We report Submillimeter Array observations of SO2 emission in the circumstellar envelope (CSE) of the red supergiant VY Canis Majoris, with an angular resolution of ≈1''. SO2 emission appears in three distinct outflow regions surrounding the central continuum peak emission that is spatially unresolved. No bipolar structure is noted in the sources. A fourth source of SO2 is identified as a spherical wind centered at the systemic velocity. We estimate the SO2 column density and rotational temperature assuming local thermal equilibrium (LTE) as well as perform non-LTE radiative transfer analysis using RADEX. Column densities of SO2 are found to be ~1016 cm-2 in the outflows and in the spherical wind. Comparison with existing maps of the two parent species OH and SO shows the SO2 distribution to be consistent with that of OH. The abundance ratio f_{SO_{2}}/f_{SO} is greater than unity for all radii larger than 3 × 1016 cm. SO2 is distributed in fragmented clumps compared to SO, PN, and SiS molecules. These observations lend support to specific models of circumstellar chemistry that predict f_{SO_{2}}/f_{SO}>1 and may suggest the role of localized effects such as shocks in the production of SO2 in the CSE.

  2. The life of the cortical column: opening the domain of functional architecture of the cortex (1955-1981).

    PubMed

    Haueis, Philipp

    2016-09-01

    The concept of the cortical column refers to vertical cell bands with similar response properties, which were initially observed by Vernon Mountcastle's mapping of single cell recordings in the cat somatic cortex. It has subsequently guided over 50 years of neuroscientific research, in which fundamental questions about the modularity of the cortex and basic principles of sensory information processing were empirically investigated. Nevertheless, the status of the column remains controversial today, as skeptical commentators proclaim that the vertical cell bands are a functionally insignificant by-product of ontogenetic development. This paper inquires how the column came to be viewed as an elementary unit of the cortex from Mountcastle's discovery in 1955 until David Hubel and Torsten Wiesel's reception of the Nobel Prize in 1981. I first argue that Mountcastle's vertical electrode recordings served as criteria for applying the column concept to electrophysiological data. In contrast to previous authors, I claim that this move from electrophysiological data to the phenomenon of columnar responses was concept-laden, but not theory-laden. In the second part of the paper, I argue that Mountcastle's criteria provided Hubel Wiesel with a conceptual outlook, i.e. it allowed them to anticipate columnar patterns in the cat and macaque visual cortex. I argue that in the late 1970s, this outlook only briefly took a form that one could call a 'theory' of the cerebral cortex, before new experimental techniques started to diversify column research. I end by showing how this account of early column research fits into a larger project that follows the conceptual development of the column into the present.

  3. MAX-DOAS measurements of NO2 column densities in Vienna

    NASA Astrophysics Data System (ADS)

    Schreier, Stefan; Weihs, Philipp; Peters, Enno; Richter, Andreas; Ostendorf, Mareike; Schönhardt, Anja; Burrows, John P.; Schmalwieser, Alois

    2017-04-01

    In the VINDOBONA (VIenna horizontal aNd vertical Distribution OBservations Of Nitrogen dioxide and Aerosols) project, two Multi AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) systems will be set up at two different locations and altitudes in Vienna, Austria. After comparison measurements in Bremen, Germany, and Cabauw, The Netherlands, the first of the two MAX-DOAS instruments was set up at the University of Veterinary Medicine in the northeastern part of Vienna in December 2016. The instrument performs spectral measurements of visible scattered sunlight at defined horizontal and vertical viewing directions. From these measurements, column densities of NO2 and aerosols are derived by applying the DOAS analysis. First preliminary results are presented. The second MAX-DOAS instrument will be set up in April/May 2017 at the University of Natural Resources and Life Sciences in the northwestern part of Vienna. Once these two instruments are measuring simultaneously, small campaigns including car DOAS zenith-sky and tower DOAS off-axis measurements are planned. The main emphasis of this project will be on the installation and operation of two MAX-DOAS instruments, the improvement of tropospheric NO2 and aerosol retrieval, and the characterization of the horizontal, vertical, and temporal variations of tropospheric NO2 and aerosols in Vienna, Austria.

  4. Spatial and Temporal Variability of Carbon Dioxide Using Structure Functions in Urban Areas: Insights for Future Active Remote CO2 Sensors

    NASA Technical Reports Server (NTRS)

    Choi, Yonghoon; Yang, Melissa; Kooi, Susan A.; Browell, Edward V.; DiGangi, Joshua P.

    2015-01-01

    High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaigns during July 2011 over Washington DC/Baltimore, MD; January-February 2013 over the San Joaquin Valley, CA; September 2013 over Houston, TX; and July-August 2014 over Denver, CO. Each of these campaigns have approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 kilometers) at 6-8 different sites in each of the urban areas. In this study, we used structure function analysis, which is a useful way to quantify spatial and temporal variability, by displaying differences with average observations, to evaluate the variability of CO2 in the 0-2 kilometers range (representative of the planetary boundary layer). These results can then be used to provide guidance in the development of science requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission to measure near-surface CO2 variability in different urban areas. We also compare the observed in-situ CO2 variability with the variability of the CO2 column-averaged optical depths in the 0-1 kilometer and 0-3.5 kilometers altitude ranges in the four geographically different urban areas, using vertical weighting functions for potential future ASCENDS lidar CO2 sensors operating in the 1.57 and 2.05 millimeter measurement regions. In addition to determining the natural variability of CO2 near the surface and in the column, radiocarbon method using continuous CO2 and CO measurements are used to examine the variation of emission quantification between anthropogenic and biogenic sources in the DC/Maryland urban site.

  5. Upward flow of supercritical CO2 with transition to gaseous conditions: Simulations for design of large-scale CO2 flow experiments at LUCI

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Peters, C. A.; Dobson, P. F.; Doughty, C.

    2010-12-01

    Understanding the processes involved in large-scale upward flow of CO2 related to Geologic Carbon Sequestration (GCS) is critical to evaluating trapping mechanisms and potential impacts of CO2 leakage over long distances. The Laboratory for Underground CO2 Investigations (LUCI) is being planned to be built at DUSEL to host large-scale vertical CO2 and brine flow experiments. As conceived, LUCI would consist of a 500 m-long vertical raisebore approximately 3 m in diameter which will contain three suspended long-column pressure vessels. The long-column pressure vessels are planned to be 1 m in diameter with thermal control on the outer walls with a centralized inner fiberglass well for accommodating monitoring tools for determining phase saturation, porosity, temperature, and other properties of the flow region. The outer wall of the inner fiberglass well and the inner wall of the main vessel comprise the lateral boundaries of the long vertical annular regions that will be filled with porous media in which experiments investigating flow and transport, geochemical alterations of well cement, and biological processes involving injected CO2 will be performed. The large vertical extent of the column is needed to span the full range of CO2 conditions from supercritical (scCO2, P > 7.4 MPa, T > 31 °C) to gaseous CO2 that is believed to be significant as CO2 flows upwards. Here we consider the CO2-brine flow experiments in which the annular region will be pressurized at the top and bottom and contain brine-filled porous media through which scCO2 introduced at the bottom will flow upward. We are carrying out two-phase flow simulations of the buoyancy- and pressure-driven flow of CO2 and brine upward in the annular porous media region to further design the flow columns, e.g., to determine critical length and diameter requirements, as well as to plan the experiments to be performed. The simulations are carried out using TOUGH2/ECO2N, which models two-phase non-isothermal flow and transport of water, CO2, and NaCl in porous media. To treat important issues of drainage and imbibition at the leading and trailing edges of the CO2 slug, we employ hysteretic relative permeability functions. Simulation results will be presented showing flow rate, saturation, and temperature dependence on permeability, relative permeability parameters, size of initial CO2 slug, imposed upward flow rate, and different side boundary conditions (e.g., fully insulated and temperature equal to a constant geothermal gradient).

  6. AVIRIS Spectrometer Maps Total Water Vapor Column

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg A.; Bruegge, Carol J.; Gary, Bruce L.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) processes maps of vertical-column abundances of water vapor in atmosphere with good precision and spatial resolution. Maps provide information for meteorology, climatology, and agriculture.

  7. A method for retrieving vertical ozone profiles from limb scattered measurements

    NASA Astrophysics Data System (ADS)

    Wang, Zijun; Chen, Shengbo; Yang, Chunyan; Jin, Lihua

    2011-10-01

    A two-step method is employed in this study to retrieve vertical ozone profiles using scattered measurements from the limb of the atmosphere. The combination of the Differential Optical Absorption Spectroscopy (DOAS) and the Multiplicative Algebraic Reconstruction Technique (MART) is proposed. First, the limb radiance, measured over a range of tangent heights, is processed using the DOAS technique to recover the effective column densities of atmospheric ozone. Second, these effective column densities along the lines of sight (LOSs) are inverted using the MART coupled with a forward model SCIATRAN (radiative transfer model for SCIAMACHY) to derive the ozone profiles. This method is applied to Optical Spectrograph and Infra Red Imager System (OSIRIS) radiance, using the wavelength windows 571-617 nm. Vertical ozone profiles between 10 and 48 km are derived with a vertical resolution of 1 km. The results illustrate a good agreement with the cloud-free coincident SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) ozone measurements, with deviations less than ±10% (±5% for altitudes from 17 to 47 km). Furthermore, sensitivities of retrieved ozone to aerosol, cloud parameters and NO2 concentration are also investigated.

  8. Stratospheric OClO and NO2 measured by groundbased UV/Vis-spectroscopy in Greenland in January and February 1990 and 1991

    NASA Technical Reports Server (NTRS)

    Roth, A.; Perner, D.

    1994-01-01

    Groundbased UV/Vis-spectroscopy of zenith scattered sunlight was performed at Sondre Stromfjord (Greenland) during Jan/Feb 1990 and Jan/Feb 1991. Considerable amounts of OClO were observed during both campaigns. Maximum OClO vertical column densities at 92 deg solar zenith angle (SZA) were 7.4 x 10(exp 13) molec/sq cm in 1990 and 5.7 x 10(exp 13) molec/sq cm in 1991 (chemical enhancement is included in the calculation of the air mass factor (AMF)). A threshold seems to exist for OClO detection: OClO was detected on every day when the potential vorticity at the 475 K level of potential temperature was higher than 35 x 10(exp -6)Km(exp 2)kg(exp -1)s(exp -1). NO2 vertical columns lower than 1 x 10(exp 15) molec/sq cm were frequently observed in both winters.

  9. How does horizontal and vertical navigation influence spatial memory of multifloored environments?

    PubMed

    Thibault, Guillaume; Pasqualotto, Achille; Vidal, Manuel; Droulez, Jacques; Berthoz, Alain

    2013-01-01

    Although a number of studies have been devoted to 2-D navigation, relatively little is known about how the brain encodes and recalls navigation in complex multifloored environments. Previous studies have proposed that humans preferentially memorize buildings by a set of horizontal 2-D representations. Yet this might stem from the fact that environments were also explored by floors. Here, we have investigated the effect of spatial learning on memory of a virtual multifloored building. Two groups of 28 participants watched a computer movie that showed either a route along floors one at a time or travel between floors by simulated lifts, consisting in both cases of a 2-D trajectory in the vertical plane. To test recognition, the participants viewed a camera movement that either replicated a segment of the learning route (familiar segment) or did not (novel segment-i.e., shortcuts). Overall, floor recognition was not reliably superior to column recognition, but learning along a floor route produced a better spatial memory performance than did learning along a column route. Moreover, the participants processed familiar segments more accurately than novel ones, not only after floor learning, but crucially, also after column learning, suggesting a key role of the observation mode on the exploitation of spatial memory.

  10. Some results of hemosorption columns development and usage in Czechoslovakia.

    PubMed

    Kálal, J; Tlustáková, M

    Hemoperfusion columns packed with active charcoal and a synthetic resin have been manufactured in Czechoslovakia since 1983. In both cases the sorption packings are coated with a layer of poly(2-hydroxyethyl methacrylate). The columns are manufactured in two sizes: for adults (800 ml) and for children (400 ml). The manufacturer is OPS Kolín: the number of columns manufactured so far is 3400.

  11. Global Free Tropospheric NO2 Abundances Derived Using a Cloud Slicing Technique Applied to Satellite Observations from the Aura Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Choi, S.; Joiner, J.; Choi, Y.; Duncan, B. N.; Bucsela, E.

    2014-01-01

    We derive free-tropospheric NO2 volume mixing ratios (VMRs) and stratospheric column amounts of NO2 by applying a cloud slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top-of-the-atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. Estimates of stratospheric column NO2 are obtained by extrapolating the linear fits to the tropopause. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud slicing data indicates signatures of uplifted and transported anthropogenic NO2 in the middle troposphere as well as lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the Global Modeling Initiative (GMI) for cloudy conditions (cloud optical thicknesses > 10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in the seasonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected by lightning-generated NOx. Stratospheric column NO2 obtained from cloud slicing agrees well with other independently-generated estimates, providing further confidence in the free-tropospheric results.

  12. Intraspecific variation in vertical habitat use by tiger sharks (Galeocerdo cuvier) in the western North Atlantic.

    PubMed

    Vaudo, Jeremy J; Wetherbee, Bradley M; Harvey, Guy; Nemeth, Richard S; Aming, Choy; Burnie, Neil; Howey-Jordan, Lucy A; Shivji, Mahmood S

    2014-05-01

    Tiger sharks (Galeocerdo cuvier) are a wide ranging, potentially keystone predator species that display a variety of horizontal movement patterns, making use of coastal and pelagic waters. Far less, however, is known about their vertical movements and use of the water column. We used pop-up satellite archival tags with two data sampling rates (high rate and standard rate tags) to investigate the vertical habitat use and diving behavior of tiger sharks tagged on the Puerto Rico-Virgin Islands platform and off Bermuda between 2008 and 2009. Useable data were received from nine of 14 sharks tagged, tracked over a total of 529 days. Sharks spent the majority of their time making yo-yo dives within the upper 50 m of the water column and considerable time within the upper 5 m of the water column. As a result, sharks typically occupied a narrow daily temperature range (∼2°C). Dives to greater than 200 m were common, and all sharks made dives to at least 250 m, with one shark reaching a depth of 828 m. Despite some similarities among individuals, a great deal of intraspecific variability in vertical habit use was observed. Four distinct depth distributions that were not related to tagging location, horizontal movements, sex, or size were detected. In addition, similar depth distributions did not necessitate similar dive patterns among sharks. Recognition of intraspecific variability in habitat use of top predators can be crucial for effective management of these species and for understanding their influence on ecosystem dynamics.

  13. Intraspecific variation in vertical habitat use by tiger sharks (Galeocerdo cuvier) in the western North Atlantic

    PubMed Central

    Vaudo, Jeremy J; Wetherbee, Bradley M; Harvey, Guy; Nemeth, Richard S; Aming, Choy; Burnie, Neil; Howey-Jordan, Lucy A; Shivji, Mahmood S

    2014-01-01

    Tiger sharks (Galeocerdo cuvier) are a wide ranging, potentially keystone predator species that display a variety of horizontal movement patterns, making use of coastal and pelagic waters. Far less, however, is known about their vertical movements and use of the water column. We used pop-up satellite archival tags with two data sampling rates (high rate and standard rate tags) to investigate the vertical habitat use and diving behavior of tiger sharks tagged on the Puerto Rico–Virgin Islands platform and off Bermuda between 2008 and 2009. Useable data were received from nine of 14 sharks tagged, tracked over a total of 529 days. Sharks spent the majority of their time making yo-yo dives within the upper 50 m of the water column and considerable time within the upper 5 m of the water column. As a result, sharks typically occupied a narrow daily temperature range (∼2°C). Dives to greater than 200 m were common, and all sharks made dives to at least 250 m, with one shark reaching a depth of 828 m. Despite some similarities among individuals, a great deal of intraspecific variability in vertical habit use was observed. Four distinct depth distributions that were not related to tagging location, horizontal movements, sex, or size were detected. In addition, similar depth distributions did not necessitate similar dive patterns among sharks. Recognition of intraspecific variability in habitat use of top predators can be crucial for effective management of these species and for understanding their influence on ecosystem dynamics. PMID:24963376

  14. First Investigation of Microbial Community Composition in the Bridge (Gadeok Channel) between the Jinhae-Masan Bay and the South Sea of Korea

    NASA Astrophysics Data System (ADS)

    Lee, Jiyoung; Lim, Jae-Hyun; Park, Junhyung; Youn, Seok-Hyun; Oh, Hyun-Ju; Kim, Ju-Hyoung; Kim, Myung Kyum; Cho, Hyeyoun; Yoon, Joo-Eun; Kim, Soyeon; Markkandan, Kesavan; Park, Ki-Tae; Kim, Il-Nam

    2018-02-01

    Microbial community composition varies based on seasonal dynamics (summer: strongly stratified water column; autumn: weakly stratified water column; winter: vertically homogeneous water column) and vertical distributions (surface, middle, and bottom depths) in the Gadeok Channel, which is the primary passage to exchange waters and materials between the Jinhae-Masan Bay and the South Sea waters. The microbial community composition was analyzed from June to December 2016 using 16S rRNA gene sequencing. The community was dominated by the phyla Proteobacteria (45%), Bacteroidetes (18%), Cyanobacteria (15%), Verrucomicrobia (6%), and Actinobacteria (6%). Alphaproteobacteria (29%) was the most abundant microbial class, followed by Flavobacteria (15%) and Gammaproteobacteria (15%) in all samples. The composition of the microbial communities was found to vary vertically and seasonally. The orders Flavobacteriales and Stramenopiles showed opposing seasonal patterns; Flavobacteriales was more abundant in August and December while Stramenopiles showed high abundance in June and October at all depths. The genus Synechococcus reached extremely high abundance (14%) in the June surface water column, but was much less abundant in December water columns. Clustering analysis showed that there was a difference in the microbial community composition pattern between the strongly stratified season and well-mixed season. These results indicate that the seasonal dynamics of physicochemical and hydrologic conditions throughout the water column are important parameters in shaping the microbial community composition in the Gadeok Channel.

  15. Investigation of the 3D distribution of tropospheric formaldehyde (HCHO) at the city of Mainz (Germany) using measurements of a 4 azimuth MAX-DOAS instrument

    NASA Astrophysics Data System (ADS)

    Donner, Sebastian; Gu, Myojeong; Remmers, Julia; Wang, Yang; Wagner, Thomas

    2017-04-01

    The Differential Optical Absorption Spectroscopy (DOAS)-method allows to investigate the distribution of different atmospheric trace gases (e.g. NO2, SO2, HCHO...) simultaneously. This is done by analysing the absorptions of these species in spectra of scattered sunlight. Multi-AXis (MAX)-DOAS measurements observe scattered sun light under different elevation angles. From such measurements tropospheric vertical column densities (VCDs) and vertical profiles of the measured trace gases and aerosols can be determined. We performed measurements using a 4 azimuth MAX-DOAS system on the roof of the Max Planck Institute for Chemistry in Mainz/Germany since 2013. This instrument observes scattered sunlight in 4 separate orthogonal azimuth directions. We derive vertical profiles of trace gases in these 4 different azimuth directions. From these results we can investigate the 3D distribution of the trace gases. Mainz is located at the edge of the Rhine-Main area which is one of the densest populated areas in Germany. Therefore it experiences episodes of high and low pollution depending on the meteorological conditions. In this study we focus on formaldehyde (HCHO). It is either emitted directly by industries and other anthropogenic and biogenic activities. Usually higher amounts are produced by photochemical reactions from precursor substances (secondary production), where it plays an important role in photochemical smog chemistry and O3 chemistry. As it is an intermediate product of basic oxidation cycles of other hydrocarbons (also referred to as volatile organic compounds (VOCs)) especially in summer its concentrations are determined by the abundances of VOCs. Therefore HCHO observations can be used as an indicator for VOCs. Up to now we have nearly 4 years (starting from May 2013) of almost continuous data which provides already a quite large dataset. In this work we present a first overview of our HCHO results including time series of HCHO columns, a first comparison of the results for different azimuth directions, a first characterisation of the corresponding spatial gradients and a comparison to mobile MAX-DOAS measurements which were performed in Winter 2015/2016.

  16. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    NASA Astrophysics Data System (ADS)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  17. A new method for mapping variability in vertical seepage flux in streambeds

    NASA Astrophysics Data System (ADS)

    Chen, Xunhong; Song, Jinxi; Cheng, Cheng; Wang, Deming; Lackey, Susan O.

    2009-05-01

    A two-step approach was used to measure the flux across the water-sediment interface in river channels. A hollow tube was pressed into the streambed and an in situ sediment column of the streambed was created inside the tube. The hydraulic gradient between the two ends of the sediment column was measured. The vertical hydraulic conductivity of the sediment column was determined using a falling-head permeameter test in the river. Given the availability of the hydraulic gradient and vertical hydraulic conductivity of the streambed, Darcy’s law was used to calculate the specific discharge. This approach was applied to the Elkhorn River and one tributary in northeastern Nebraska, USA. The results suggest that the magnitude of the vertical flux varied greatly within a short distance. Furthermore, the flux can change direction from downward to upward between two locations only several meters apart. This spatial pattern of variation probably represents the inflow and outflow within the hyporheic zone, not the regional ambient flow systems. In this study, a thermal infrared camera was also used to detect the discharge locations of groundwater in the streambed. After the hydraulic gradient and the vertical hydraulic conductivity were estimated from the groundwater spring, the discharge rate was calculated.

  18. Formation of well-mixed warm water column in central Bohai Sea during summer: Role of high-frequency atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Wan, Xiuquan; Wang, Zhankun; Liu, Yulong; Wan, Kai

    2017-12-01

    The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.

  19. Optical Remote Sensing Measurements of Air Pollution in Mexico City During MCMA- 2006

    NASA Astrophysics Data System (ADS)

    Galle, B.; Mellqvist, J.; Johansson, M.; Rivera, C.; Samuelsson, J.; Zhang, Y.

    2007-05-01

    During March 2006 the Optical Remote sensing group at Chalmers University of Technology participated in the MCMA-2006 field campaign in Mexico City, performing measurements of air pollution using a set of different optical remote sensing instruments. This poster gives an overview of the techniques applied and results obtained. The techniques applied were: Solar Occultation FTIR and UV spectroscopy from fixed locations throughout the MCMA area, yielding total columns of CO, CH2O, SO2 and NO2. Long Path FTIR measurements from site T0 located in the north part of central Mexico City. With this instrument line-averaged concentration measurements of CO and CO2 was obtained in parallel with DOAS measurements performed by other partners. MAX-DOAS measurements from site T0, yielding total column and spatial distributions of SO2 and NO2. Mobile DOAS scattered Sunlight measurements of total columns of SO2 and NO2 in and around the MCMA area. Mobile and stationary DOAS measurements in the vicinity of Tula and Popocatépetl in order to quantify emissions from industry and volcano.

  20. Global observations of BrO in the troposphere using GOME-2 satellite data

    NASA Astrophysics Data System (ADS)

    Theys, N.; van Roozendael, M.; Hendrick, F.; Xin, Y.; Isabelle, D.; Richter, A.; Mathias, B.; Quentin, E.; Johnston, P. V.; Kreher, K.; Martine, D.

    2010-12-01

    Measurements from the GOME-2 satellite instrument have been analyzed for tropospheric BrO using a residual technique that combines measured BrO columns and estimates of the stratospheric BrO content from a climatological approach driven by O3 and NO2 observations. Comparisons between the GOME-2 results and correlative data including ground-based BrO vertical columns and total BrO columns derived from SCIAMACHY nadir observations, present a good level of consistency. We show that the adopted technique enables to separate the stratospheric and tropospheric fractions of the measured total BrO columns and allows studying the BrO plumes in polar region in more detail. While several satellite BrO plumes can largely be explained by an influence of stratospheric descending air, we show that numerous tropospheric BrO hotspots are associated to regions with low tropopause heights as well. Elaborating on simulations using the p-TOMCAT tropospheric chemical transport model, this finding is found to be consistent with the mechanism of bromine release through sea salt aerosols production during blowing snow events. Outside the polar region, evidences are provided for a global tropospheric BrO background with columns of 1-3 x 1013 molec/cm2.

  1. Global observations of tropospheric BrO columns using GOME-2 satellite data

    NASA Astrophysics Data System (ADS)

    Theys, N.; van Roozendael, M.; Hendrick, F.; Yang, X.; de Smedt, I.; Richter, A.; Begoin, M.; Errera, Q.; Johnston, P. V.; Kreher, K.; de Mazière, M.

    2010-11-01

    Measurements from the GOME-2 satellite instrument have been analyzed for tropospheric BrO using a residual technique that combines measured BrO columns and estimates of the stratospheric BrO content from a climatological approach driven by O3 and NO2 observations. Comparisons between the GOME-2 results and BrO vertical columns derived from correlative ground-based and SCIAMACHY nadir observations, present a good level of consistency. We show that the adopted technique enables separation of stratospheric and tropospheric fractions of the measured total BrO columns and allows quantitative study of the BrO plumes in polar regions. While some satellite observed plumes of enhanced BrO can be explained by stratospheric descending air, we show that most BrO hotspots are of tropospheric origin, although they are often associated to regions with low tropopause heights as well. Elaborating on simulations using the p-TOMCAT tropospheric chemical transport model, this result is found to be consistent with the mechanism of bromine release through sea salt aerosols production during blowing snow events. Outside polar regions, evidence is provided for a global tropospheric BrO background with column of 1-3×1013 molec/cm2, consistent with previous estimates.

  2. Tapered bed bioreactor

    DOEpatents

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  3. First Observations of Iodine Oxide from Space

    NASA Technical Reports Server (NTRS)

    Saiz-Lopez, Alfonso; Chance, Kelly; Liu, Xiong; Kurosu, Thomas P.; Sander, Stanley P.

    2007-01-01

    We present retrievals of IO total columns from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite instrument. We analyze data for October 2005 in the polar regions to demonstrate for the first time the capability to measure IO column abundances from space. During the period of analysis (i.e. Southern Hemisphere springtime), enhanced IO vertical columns over 3 x 10(exp 13) molecules cm(exp -2) are observed around coastal Antarctica; by contrast during that time in the Arctic region IO is consistently below the calculated instrumental detection limit for individual radiance spectra (2-4 x 10(exp 12) molecules cm(exp -2) for slant columns). The levels reported here are in reasonably good agreement with previous ground-based measurements at coastal Antarctica. These results also demonstrate that IO is widespread over sea-ice covered areas in the Southern Ocean. The occurrence of elevated IO and its hitherto unrecognized spatial distribution suggest an efficient iodine activation mechanism at a synoptic scale over coastal Antarctica.

  4. A cryostat device for liquid nitrogen convection experiments

    NASA Astrophysics Data System (ADS)

    Dubois, Charles; Duchesne, Alexis; Caps, Herve

    2015-11-01

    When a horizontal layer of expansible fluid heated from below is submitted to a large vertical temperature gradient, one can observe convective cells. This phenomenon is the so-called Rayleigh-Bénard instability. In the literature, this instability is mainly studied when the entire bottom surface of a container heats the liquid. Under these conditions, the development of regularly spaced convective cells in the liquid bulk is observed. Cooling applications led us to consider this instability in a different geometry, namely a resistor immersed in a bath of cold liquid. We present here experiments conducted with liquid nitrogen. For this purpose, we developed a cryostat in order to be able to perform Particle Image Velocimetry. We obtained 2D maps of the flow and observed, as expected, two Rayleigh-Bénard convective cells around the heater. We particularly investigated the vertical velocity in the central column between the two cells. We compared these data to results we obtained with silicone oil and water in the same geometry. We derived theoretical law from classical models applied to the proposed geometry and found a good agreement with our experimental data. This project has been financially supported by ARC SuperCool contract of the University of Liege.

  5. Using High and Low Resolution Profiles of CO2 and CH4 Measured with AirCores to Evaluate Transport Models and Atmospheric Columns Retrieved from Space

    NASA Astrophysics Data System (ADS)

    Membrive, O.; Crevoisier, C. D.; Sweeney, C.; Hertzog, A.; Danis, F.; Picon, L.; Engel, A.; Boenisch, H.; Durry, G.; Amarouche, N.

    2015-12-01

    Over the past decades many methods have been developed to monitor the evolution of greenhouse gases (GHG): ground networks (NOAA, ICOS, TCCON), aircraft campaigns (HIPPO, CARIBIC, Contrail…), satellite observations (GOSAT, IASI, AIRS…). Nevertheless, precise and regular vertical profile measurements are currently still missing from the observing system. To address this need, an original and innovative atmospheric sampling system called AirCore has been developed at NOAA (Karion et al. 2010). This new system allows balloon measurements of GHG vertical profiles from the surface up to 30 km. New versions of this instrument have been developed at LMD: a high-resolution version "AirCore-HR" that differs from other AirCores by its high vertical resolution and two "light" versions (lower resolution) aiming to be flown under meteorological balloon. LMD AirCores were flown on multi-instrument gondolas along with other independent instruments measuring CO2 and CH4 in-situ during the Strato Science balloon campaigns operated by the French space agency CNES in collaboration with the Canadian Space Agency in Timmins (Ontario, Canada) in August 2014 and 2015. First, we will present comparisons of the vertical profiles retrieved with various AirCores (LMD and Frankfurt University) to illustrate repeatability and impact of the vertical resolution as well as comparisons with independent in-situ measurements from other instruments (laser diode based Pico-SDLA). Second, we will illustrate the usefulness of AirCore measurements in the upper troposphere and stratosphere for validating and interpreting vertical profiles from atmospheric transport models as well as observations of total and partial column of methane and carbon dioxide from several current and future spaceborne missions such as: ACE-FTS, IASI and GOSAT.

  6. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less

  7. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra

    DOE PAGES

    Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff; ...

    2016-08-02

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less

  8. Comparison of the GOSAT TANSO-FTS TIR CH volume mixing ratio vertical profiles with those measured by ACE-FTS, ESA MIPAS, IMK-IAA MIPAS, and 16 NDACC stations

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin S.; Strong, Kimberly; Walker, Kaley A.; Boone, Chris D.; Raspollini, Piera; Plieninger, Johannes; Bader, Whitney; Conway, Stephanie; Grutter, Michel; Hannigan, James W.; Hase, Frank; Jones, Nicholas; de Mazière, Martine; Notholt, Justus; Schneider, Matthias; Smale, Dan; Sussmann, Ralf; Saitoh, Naoko

    2017-10-01

    The primary instrument on the Greenhouse gases Observing SATellite (GOSAT) is the Thermal And Near infrared Sensor for carbon Observations (TANSO) Fourier transform spectrometer (FTS). TANSO-FTS uses three short-wave infrared (SWIR) bands to retrieve total columns of CO2 and CH4 along its optical line of sight and one thermal infrared (TIR) channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios (VMRs) in the troposphere. We examine version 1 of the TANSO-FTS TIR CH4 product by comparing co-located CH4 VMR vertical profiles from two other remote-sensing FTS systems: the Canadian Space Agency's Atmospheric Chemistry Experiment FTS (ACE-FTS) on SCISAT (version 3.5) and the European Space Agency's Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat (ESA ML2PP version 6 and IMK-IAA reduced-resolution version V5R_CH4_224/225), as well as 16 ground stations with the Network for the Detection of Atmospheric Composition Change (NDACC). This work follows an initial inter-comparison study over the Arctic, which incorporated a ground-based FTS at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, and focuses on tropospheric and lower-stratospheric measurements made at middle and tropical latitudes between 2009 and 2013 (mid-2012 for MIPAS). For comparison, vertical profiles from all instruments are interpolated onto a common pressure grid, and smoothing is applied to ACE-FTS, MIPAS, and NDACC vertical profiles. Smoothing is needed to account for differences between the vertical resolution of each instrument and differences in the dependence on a priori profiles. The smoothing operators use the TANSO-FTS a priori and averaging kernels in all cases. We present zonally averaged mean CH4 differences between each instrument and TANSO-FTS with and without smoothing, and we examine their information content, their sensitive altitude range, their correlation, their a priori dependence, and the variability within each data set. Partial columns are calculated from the VMR vertical profiles, and their correlations are examined. We find that the TANSO-FTS vertical profiles agree with the ACE-FTS and both MIPAS retrievals' vertical profiles within 4 % (± ˜ 40 ppbv) below 15 km when smoothing is applied to the profiles from instruments with finer vertical resolution but that the relative differences can increase to on the order of 25 % when no smoothing is applied. Computed partial columns are tightly correlated for each pair of data sets. We investigate whether the difference between TANSO-FTS and other CH4 VMR data products varies with latitude. Our study reveals a small dependence of around 0.1 % per 10 degrees latitude, with smaller differences over the tropics and greater differences towards the poles.

  9. Excitatory neuronal connectivity in the barrel cortex

    PubMed Central

    Feldmeyer, Dirk

    2012-01-01

    Neocortical areas are believed to be organized into vertical modules, the cortical columns, and the horizontal layers 1–6. In the somatosensory barrel cortex these columns are defined by the readily discernible barrel structure in layer 4. Information processing in the neocortex occurs along vertical and horizontal axes, thereby linking individual barrel-related columns via axons running through the different cortical layers of the barrel cortex. Long-range signaling occurs within the neocortical layers but also through axons projecting through the white matter to other neocortical areas and subcortical brain regions. Because of the ease of identification of barrel-related columns, the rodent barrel cortex has become a prototypical system to study the interactions between different neuronal connections within a sensory cortical area and between this area and other cortical as well subcortical regions. Such interactions will be discussed specifically for the feed-forward and feedback loops between the somatosensory and the somatomotor cortices as well as the different thalamic nuclei. In addition, recent advances concerning the morphological characteristics of excitatory neurons and their impact on the synaptic connectivity patterns and signaling properties of neuronal microcircuits in the whisker-related somatosensory cortex will be reviewed. In this context, their relationship between the structural properties of barrel-related columns and their function as a module in vertical synaptic signaling in the whisker-related cortical areas will be discussed. PMID:22798946

  10. Algebraic motion of vertically displacing plasmas

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Bhattacharjee, A.

    2018-02-01

    The vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to come in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear "sinking" behaviour shown to be algebraic and decelerating. The acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.

  11. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surfacemore » measurements during July, and two days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

  12. Multi-year application of WRF-CAM5 over East Asia-Part I: Comprehensive evaluation and formation regimes of O 3 and PM 2.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jian; Zhang, Yang; Wang, Kai

    Accurate simulations of air quality and climate require robust model parameterizations on regional and global scales. The Weather Research and Forecasting model with Chemistry version 3.4.1 has been coupled with physics packages from the Community Atmosphere Model version 5 (CAM5) (WRF-CAM5) to assess the robustness of the CAM5 physics package for regional modeling at higher grid resolutions than typical grid resolutions used in global modeling. In this two-part study, Part I describes the application and evaluation of WRF-CAM5 over East Asia at a horizontal resolution of 36-km for six years: 2001, 2005, 2006, 2008, 2010, and 2011. The simulations aremore » evaluated comprehensively with a variety of datasets from surface networks, satellites, and aircraft. The results show that meteorology is relatively well simulated by WRF-CAM5. However, cloud variables are largely or moderately underpredicted, indicating uncertainties in the model treatments of dynamics, thermodynamics, and microphysics of clouds/ices as well as aerosol-cloud interactions. For chemical predictions, the tropospheric column abundances of CO, NO2, and O3 are well simulated, but those of SO2 and HCHO are moderately overpredicted, and the column HCHO/NO2 indicator is underpredicted. Large biases exist in the surface concentrations of CO, NO2, and PM10 due to uncertainties in the emissions as well as vertical mixing. The underpredictions of NO lead to insufficient O3 titration, thus O3 overpredictions. The model can generally reproduce the observed O3 and PM indicators. These indicators suggest to control NOx emissions throughout the year, and VOCs emissions in summer in big cities and in winter over North China Plain, North/South Korea, and Japan to reduce surface O3, and to control SO2, NH3, and NOx throughout the year to reduce inorganic surface PM.« less

  13. Measuring large-scale vertical motion in the atmosphere with dropsondes

    NASA Astrophysics Data System (ADS)

    Bony, Sandrine; Stevens, Bjorn

    2017-04-01

    Large-scale vertical velocity modulates important processes in the atmosphere, including the formation of clouds, and constitutes a key component of the large-scale forcing of Single-Column Model simulations and Large-Eddy Simulations. Its measurement has also been a long-standing challenge for observationalists. We will show that it is possible to measure the vertical profile of large-scale wind divergence and vertical velocity from aircraft by using dropsondes. This methodology was tested in August 2016 during the NARVAL2 campaign in the lower Atlantic trades. Results will be shown for several research flights, the robustness and the uncertainty of measurements will be assessed, ands observational estimates will be compared with data from high-resolution numerical forecasts.

  14. Modeling Air Quality in the San Joaquin Valley during the 2013 DISCOVER-AQ Field Campaign

    NASA Astrophysics Data System (ADS)

    Chen, J.; Zhao, Z.; Cai, C.; Avise, J.; DaMassa, J.; Kaduwela, A. P.

    2014-12-01

    The San Joaquin Valley (SJV) in California frequently experiences elevated PM2.5 concentrations during winter months. The DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign conducted by NASA took place in the SJV from January 16 to February 06, 2013. This campaign captured two elevated PM2.5 events in Bakersfield where the 24-hour surface PM2.5 exceeded 70 μg/m3 (more than double the 24-hour PM2.5 Standard of 35 μg/m3). The campaign provided unparalleled surface, vertical and column measurements of a suite of gaseous and particulate pollutants in the SJV, which have not been available for over a decade since the last major PM field campaign (CRPAQS in 2000-2001). The U.S. EPA CMAQ model was used to investigate PM formation and buildup throughout the DISCOVER-AQ time period. Model performance will be presented for both surface and vertical profiles of a variety of gases (e.g., O3, NOx, PAN, HNO3, NH3, HCHO and other selected VOCs) and PM species (e.g., nitrate, sulfate, ammonium, black carbon, and organic compounds (OC)), as well as the sensitivity of PM formation and buildup to the simulated meteorological fields. Areas for future model improvements will be also highlighted.

  15. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    NASA Technical Reports Server (NTRS)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  16. Effects of light conditions and temperature gradients on vertical migration behavior of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogramma)

    NASA Astrophysics Data System (ADS)

    Flanders, K. R.; Laurel, B.

    2016-02-01

    Early life stages of marine fishes must maximize growth while minimizing vulnerability to predators. Larval stages in particular are subject to ocean currents, but encounter favorable habitats by adjusting their vertical position in the water column. The investigation of environmental cues that change larval fish behavior is therefore crucial to understanding larval drift and dispersal modeling, and subsequently population structure and connectivity. In this study, the behavioral responses of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogramma) in a vertical water column were examined. Two prominent environmental variables, light and temperature, were manipulated over 3 h during observational trials. Light intensity was studied at two levels (1.484 x 101 μE m-2 s-1 ; 2.54 x102 μE m-2 s-1), and a diel effect was studied through the removal of light after 2 h. Light intensity did not significantly impact the position of either species in a vertical water column. However, a significant difference by species was apparent when all light levels were considered: the mean position of Arctic cod was closer to the surface of the water than that of walleye pollock. The effect of temperature through the introduction of a thermocline (range 5.6°C - 1.5°C) was limited to walleye pollock given the Arctic cod larvae were surface oriented across all light treatments. However, the thermocline did not significantly impact the relative change in position from light to dark in walleye pollock, likely because they were also surface oriented in control treatments. These results could be incorporated into future larval dispersal and survival models, particularly in Alaskan and Arctic waters, to investigate changes in species distributions resulting from global warming impacts. These results also indicate population structures of Arctic cod and walleye pollock could be affected, which may be reflected in ecosystem and trophic interactions. Because Arctic cod larvae were found to be significantly surface-oriented, rising sea surface temperatures pose a considerable threat while walleye pollock could continue territorial expansion northward.

  17. Airborne MAX-DOAS Measurements Over California: Testing the NASA OMI Tropospheric NO2 Product

    NASA Technical Reports Server (NTRS)

    Oetjen, Hilke; Baidar, Sunil; Krotkov, Nickolay A.; Lamsal, Lok N.; Lechner, Michael; Volkamer, Rainer

    2013-01-01

    Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS) measurements of NO2 tropospheric vertical columns were performed over California for two months in summer 2010. The observations are compared to the NASA Ozone Monitoring Instrument (OMI) tropospheric vertical columns (data product v2.1) in two ways: (1) Median data were compared for the whole time period for selected boxes, and the agreement was found to be fair (R = 0.97, slope = 1.4 +/- 0.1, N= 10). (2) A comparison was performed on the mean of coincident AMAX-DOAS measurements within the area of the corresponding OMI pixels with the tropospheric NASA OMI NO2 assigned to that pixel. The effects of different data filters were assessed. Excellent agreement and a strong correlation (R = 0.85, slope = 1.05 +/- 0.09, N= 56) was found for (2) when the data were filtered to eliminate large pixels near the edge of the OMI orbit, the cloud radiance fraction was<50%, the OMI overpass occurred within 2 h of the AMAX-DOAS measurements, the flight altitude was>2 km, and a representative sample of the footprint was taken by the AMAX-DOAS instrument. The AMAX-DOAS and OMI data sets both show a reduction of NO2 tropospheric columns on weekends by 38 +/- 24% and 33 +/- 11%, respectively. The assumptions in the tropospheric satellite air mass factor simulations were tested using independent measurements of surface albedo, aerosol extinction, and NO2 profiles for Los Angeles for July 2010 indicating an uncertainty of 12%.

  18. Investigating ebullition in a sand column using dissolved gas analysis and reactive transport modeling

    USGS Publications Warehouse

    Amos, Richard T.; Mayer, K. Ulrich

    2006-01-01

    Ebullition of gas bubbles through saturated sediments can enhance the migration of gases through the subsurface, affect the rate of biogeochemical processes, and potentially enhance the emission of important greenhouse gases to the atmosphere. To better understand the parameters controlling ebullition, methanogenic conditions were produced in a column experiment and ebullition through the column was monitored and quantified through dissolved gas analysis and reactive transport modeling. Dissolved gas analysis showed rapid transport of CH4 vertically through the column at rates several times faster than the bromide tracer and the more soluble gas CO2, indicating that ebullition was the main transport mechanism for CH4. An empirically derived formulation describing ebullition was integrated into the reactive transport code MIN3P allowing this process to be investigated on the REV scale in a complex geochemical framework. The simulations provided insights into the parameters controlling ebullition and show that, over the duration of the experiment, 36% of the CH4 and 19% of the CO2 produced were transported to the top of the column through ebullition.

  19. Improvement and validation of trace gas retrieval from ACAM aircraft observation

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, X.; Kowalewski, M. G.; Janz, S. J.; Gonzalez Abad, G.; Pickering, K. E.; Chance, K.; Lamsal, L. N.

    2014-12-01

    The ACAM (Airborne Compact Atmospheric Mapper) instrument, flown on board the NASA UC-12 aircraft during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaigns, was designed to provide remote sensing observations of tropospheric and boundary layer pollutants and help understand some of the most important pollutants that directly affect the health of the population. In this study, slant column densities (SCD) of trace gases (O3, NO2, HCHO) are retrieved from ACAM measurements during the Baltimore-Washington D.C. 2011 campaign by the Basic Optical Absorption Spectroscopy (BOAS) trace gas fitting algorithm using a nonlinear least-squares (NLLS) inversion technique, and then are converted to vertical column densities (VCDs) using the Air Mass Factors (AMF) calculated with the VLIDORT (Vector Linearized Discrete Ordinate Radiative Transfer) model and CMAQ (Community Multi-scale Air Quality) model simulations of trace gas profiles. For surface treatment in the AMF, we use high-resolution MODIS climatological BRDF product (Bidirectional Reflectance Distribution Function) at 470 nm for NO2, and use high-resolution surface albedo derived by combining MODIS and OMI albedo databases for HCHO and O3. We validate ACAM results with coincident ground-based PANDORA, aircraft (P3B) spiral and satellite (OMI) measurements and find out generally good agreement especially for NO2 and O3

  20. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea.

    PubMed

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-06-20

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1-2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs.

  1. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  2. Estimating Surface NO2 and SO2 Mixing Ratios from Fast-Response Total Column Observations and Potential Application to Geostationary Missions

    EPA Science Inventory

    Total-column nitrogen dioxide (NO2) data collected by a ground-based sun-tracking spectrometer system 21 (Pandora) and an photolytic-converter-based in-situ instrument collocated at NASA’s Langley Research Center in 22 Hampton, Virginia were analyzed to study the relationship bet...

  3. Real-time Monitoring Network to Characterize Anthropogenic and Natural Events Affecting the Hudson River, NY

    NASA Astrophysics Data System (ADS)

    Islam, M. S.; Bonner, J. S.; Fuller, C.; Kirkey, W.; Ojo, T.

    2011-12-01

    The Hudson River watershed spans 34,700 km2 predominantly in New York State, including agricultural, wilderness, and urban areas. The Hudson River supports many activities including shipping, supplies water for municipal, commercial, and agricultural uses, and is an important recreational resource. As the population increases within this watershed, so does the anthropogenic impact on this natural system. To address the impacts of anthropogenic and natural activities on this ecosystem, the River and Estuary Observatory Network (REON) is being developed through a joint venture between the Beacon Institute, Clarkson University, General Electric Inc. and IBM Inc. to monitor New York's Hudson and Mohawk Rivers in real-time. REON uses four sensor platform types with multiple nodes within the network to capture environmentally relevant episodic events. Sensor platform types include: 1) fixed robotic vertical profiler (FRVP); 2) mobile robotic undulating platform (MRUP); 3) fixed acoustic Doppler current profiler (FADCP) and 4) Autonomous Underwater Vehicle (AUV). The FRVP periodically generates a vertical profile with respect to water temperature, salinity, dissolved oxygen, particle concentration and size distribution, and fluorescence. The MRUP utilizes an undulating tow-body tethered behind a research vessel to measure the same set of water parameters as the FRVP, but does so 'synchronically' over a highly-resolved spatial regime. The fixed ADCP provides continuous water current profiles. The AUV maps four-dimensional (time, latitude, longitude, depth) variation of water quality, water currents and bathymetry along a pre-determined transect route. REON data can be used to identify episodic events, both anthropogenic and natural, that impact the Hudson River. For example, a strong heat signature associated with cooling water discharge from the Indian Point nuclear power plant was detected with the MRUP. The FRVP monitoring platform at Beacon, NY, located in the transition region between fresh and saline water, captured the occurrence of strong precipitation event on the Hudson river as indicated by reduced water column salinity levels in the water column. Despite the large influx of freshwater and suspended solids originating as precipitation runoff, tidal forces dominated the net water transport and coincident suspended particle load. Such information is crucial to track the particle-driven contaminant movement in the water column. Both the FRVP and MRUP have been deployed in an active Poly-Chlorinated Biphenyls Superfund site to characterize the fundamental sediment transport mechanisms affecting remedial dredging operations. A potential application of this monitoring system is in the development of an adaptive remedial operation, where activity would be adjusted to maintain conditions within threshold limits based on real time environmental observations. Further, observational REON data can be integrated with water quality and hydrodynamic models that can be used to evaluate episodic events and their subsequent impacts to the Hudson River.

  4. Spatial and Temporal Variability of Ground and Satellite Column Measurements of NO2 and O3 over the Atlantic Ocean During the Deposition of Atmospheric Nitrogen to Coastal Ecosystems Experiment

    NASA Technical Reports Server (NTRS)

    Martins, Douglas K.; Najjar, Raymond G.; Tzortziou, Maria; Abuhassan, Nader; Thompson, Anne M.; Kollonige, Debra E.

    2016-01-01

    In situ measurements of O3 and nitrogen oxides (NO + NO2=NOx) and remote sensing measurements of total column NO2 and O3 were collected on a ship in the North Atlantic Ocean as part of the Deposition of Atmospheric Nitrogen to Coastal Ecosystems (DANCE) campaign in July August 2014,100 km east of the mid-Atlantic United States. Relatively clean conditions for both surface in situ mixing ratio and total column O3 and NO2 measurements were observed throughout the campaign. Increased surface and column NO2 and O3 amounts were observed when a terrestrial air mass was advected over the study region. Relative to ship-based total column measurements using a Pandora over the entire study, satellite measurements overestimated total column NO2 under these relatively clean atmospheric conditions over offshore waters by an average of 16. Differences are most likely due to proximity, or lack thereof, to surface emissions; spatial averaging due to the field of view of the satellite instrument; and the lack of sensitivity of satellite measurements to the surface concentrations of pollutants. Total column O3 measurements from the shipboard Pandora showed good correlation with the satellite measurements(r 0.96), but satellite measurements were 3 systematically higher than the ship measurements, in agreement with previous studies. Derived values of boundary layer height using the surface in situ and total column measurements of NO2 are much lower than modeled and satellite-retrieved boundary layer heights, which highlight the differences in the vertical distribution between terrestrial and marine environments.

  5. Measurements of Nitrogen Dioxide Total Column Amounts using a Brewer Double Spectrophotometer in Direct Sun Mode

    NASA Technical Reports Server (NTRS)

    Cede, Alexander; Herman, Jay; Richter, Andreas; Krotkov, Nickolay; Burrows, John

    2006-01-01

    NO2 column amounts were measured for the past 2 years at Goddard Space Flight Center, Greenbelt, Maryland, using a Brewer spectrometer in direct Sun mode. A new bootstrap method to calibrate the instrument is introduced and described. This technique selects the cleanest days from the database to obtain the solar reference spectrum. The main advantage for direct Sun measurements is that the conversion uncertainty from slant column to vertical column is negligible compared to the standard scattered light observations where it is typically on the order of 100% (2sigma) at polluted sites. The total 2sigma errors of the direct Sun retrieved column amounts decrease with solar zenith angle and are estimated at 0.2 to 0.6 Dobson units (DU, 1 DU approx. equal to 2.7 10(exp 16) molecules cm(exp -2)), which is more accurate than scattered light measurements for high NO2 amounts. Measured NO2 column amounts, ranging from 0 to 3 DU with a mean of 0.7 DU, show a pronounced daily course and a strong variability from day to day. The NO2 concentration typically increases from sunrise to noon. In the afternoon it decreases in summer and stays constant in winter. As expected from the anthropogenic nature of its source, NO2 amounts on weekends are significantly reduced. The measurements were compared to satellite retrievals from Scanning Image Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Satellite data give the same average NO2 column and show a seasonal cycle that is similar to the ground data in the afternoon. We show that NO2 must be considered when retrieving aerosol absorption properties, especially for situations with low aerosol optical depth.

  6. Solar absorption Fourier Transform Infrared spectroscopy applied to detect SO2 plumes above Mexico City

    NASA Astrophysics Data System (ADS)

    Aldana-Vazquez, A.; Stremme, W.; Grutter, M.

    2010-12-01

    There are sources of emissions of sulfur dioxide (SO2) that disperse to the Metropolitan Area of Mexico City (MCMA). The sources can be divided into three categories: a) The active Popocatepetl volcano located 70 km SE from the center of Mexico City, b) the industrial area located approximately 70 km to the and c) other local sources located in the surroundings from the measurement.. Solar absorption infrared spectra are being recorded since 2007 above the campus of the Universidad Nacional Autónoma de México (UNAM, 19.33 N, 99.18 W, 2260 m.a.s.l.). The column of SO2 was retrieved from all the spectra recorded in 2008 with the retrieval code SFIT2. Enhancement of the SO2 column could be identified in different time periods. The origin of the detected SO2 is determined by correlating the SO2 column with a) its surface concentration measured in the surroundings by the monitoring stations from the city’s monitoring network of (RAMA), b) the height of the mixing layer measured at UNAM, and c) meteorological wind data (REDMET, NCEP-NARR, and SMN). The result shows that the extraordinary events are correlated with the mentioned sources, and the analysis confirms prior studies that the plume travels at different altitudes. The plume of the Popocatepetl volcano is transported according to the wind at 5000 m.a.s.l. while emissions from the industrial area northwest of the MCMA are dispersed at lower altitudes within the mixing layer.

  7. Radiochemical Applications of Insoluble Sulfate Columns. Analytical Possibilities in the Field of the Fission Product Solutions; APLICACIONES RADIO-QUIMICAS DE LAS COLUMNAS DE PRECIPITADOS DE SULFATOS INSOLUBLES. CONTRIBUCION AL ESTUDIO DE LAS SOLUCIONES ENVEJECIDAS DE PRODUCTOS DE FISION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrachina, M.; Sauvagnac, R.

    1962-01-01

    The heterogeneous ion-isotopic exchange column is used to determine the radiochemical composition of raw solutions used in the industrial recuperation of long-lived fission products, The separation of the radioelements is made by small columns, 1--3 cm height, of BaSO/sub 4/ or SrSO/sub 4/, under selected experimental conditions. These columns behave like inorganic exchangers, working by adsorption or ion-isotopic exchange depending on the cases, and they provide selective separation of fission products employing very small volumes of fixing and eluting solutions. By coupling the separative capabilities of these columns and the liquid--liquid extraction with the 2-thenoyltrifluoroacetone and the di-2 ethylexyl orthophosphoricmore » acid, a set of new radiochemical methods, for the determination of Sr/sup 90/, Y/sup 90/, Ce/sup 144/ - Pr/sup 144/, and Pm/sup 147/ in the fission product solutions of Marcoule, were developed. (auth)« less

  8. ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS

    DOEpatents

    Bailes, R.H.; Ellis, D.A.; Long, R.S.

    1958-12-16

    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  9. New constraints on Northern Hemisphere growing season net flux

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Washenfelder, R. A.; Keppel-Aleks, G.; Krakauer, N. Y.; Randerson, J. T.; Tans, P. P.; Sweeney, C.; Wennberg, P. O.

    2007-06-01

    Observations of the column-averaged dry molar mixing ratio of CO2 above both Park Falls, Wisconsin and Kitt Peak, Arizona, together with partial columns derived from aircraft profiles over Eurasia and North America are used to estimate the seasonal integral of net ecosystem exchange (NEE) between the atmosphere and the terrestrial biosphere in the Northern Hemisphere. We find that NEE is ~25% larger than predicted by the Carnegie Ames Stanford Approach (CASA) model. We show that the estimates of NEE may have been biased low by too weak vertical mixing in the transport models used to infer seasonal changes in Northern Hemisphere CO2 mass from the surface measurements of CO2 mixing ratio.

  10. Decreasing Lower Tropospheric Ozone over the North China Plain Observed by IASI: Looking for Explanations

    NASA Astrophysics Data System (ADS)

    Dufour, G.; Eremenko, M.; Lachâtre, M.; Hauglustaine, D.; Fortems-Cheiney, A.; Cuesta, J.; Zhang, Y.; Cai, Z.; Liu, Y.; Xu, X.; Lin, W.; Cooper, O. R.

    2017-12-01

    China, and especially the North China Plain (NCP), is a highly polluted region. Emission reductions have been applied since about 10 years, starting with SO2 emissions in 2006 and with NOx emissions in 2010. Recent satellite observations series show a decrease of NO2 tropospheric columns since 2013 and attributed to the NOx emissions reduction. The question of the impact of such reduction on ozone is then arising. In this study, we use the capabilities of the IASI satellite instrument to retrieve 2 semi-independent columns of ozone in the lower (surface-6km asl) and the upper (6-12km) troposphere - the lower tropospheric (LT) column having a sensitivity maximum at 3-4 km - and we evaluate the variability and trend of LT ozone over the NCP for 2008-2016. Deseasonalized monthly timeseries show two distinct periods: a first period (2008-2012) with no significant trend (slope of the linear fit < -0.1 %/yr) and a second period (2013-2016) with a highly significant negative trend of -1.2 %/yr, leading to an overall trend of -0.77 %/yr for 2008-2016. A first temptation is to attribute this decrease to the NOx emissions changes. However, negative trends have not been reported from background surface measurements in this Chinese region. Furthermore recent work made within the framework of the TOAR initiative reveals discrepancies in the sign of the trends of tropospheric column ozone derived from infrared and ultraviolet satellite instruments. As yet there is no conclusive explanation for the discrepancy. We then investigate the IASI retrieval stability and robustness in terms of vertical sensitivity, interferences with large aerosol loading, and comparing with surface and ozonesonde measurements and the IASI instrument aboard the Metop-B satellite. One issue arises concerning the temporal sampling of IASI that may induce significant change in the trend derived from surface stations. We also explore the possible variables, other than emissions, which could explain the observed negative trends using both a statistical regression model and simulations from global and regional chemistry transport models.

  11. Modeling seasonal variability of carbonate system parameters at the sediment -water interface in the Baltic Sea (Gdansk Deep)

    NASA Astrophysics Data System (ADS)

    Protsenko, Elizaveta; Yakubov, Shamil; Lessin, Gennady; Yakushev, Evgeniy; Sokołowski, Adam

    2017-04-01

    A one-dimensional fully-coupled benthic pelagic biogeochemical model BROM (Bottom RedOx Model) was used for simulations of seasonal variability of biogeochemical parameters in the upper sediment, Bottom Boundary Layer and the water column in the Gdansk Deep of the Baltic Sea. This model represents key biogeochemical processes of transformation of C, N, P, Si, O, S, Mn, Fe and the processes of vertical transport in the water column and the sediments. The hydrophysical block of BROM was forced by the output calculated with model GETM (General Estuarine Transport Model). In this study we focused on parameters of carbonate system at Baltic Sea, and mainly on their distributions near the sea-water interface. For validating of BROM we used field data (concentrations of main nutrients at water column and porewater of upper sediment) from the Gulf of Gdansk. The model allowed us to simulate the baseline ranges of seasonal variability of pH, Alkalinity, TIC and calcite/aragonite saturation as well as vertical fluxes of carbon in a region potentially selected for the CCS storage. This work was supported by project EEA CO2MARINE and STEMM-CCS.

  12. DISCOVER-AQ: An Overview and Initial Comparisons of NO2 with OMI Observations

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth; Crawford, James; Krotkov, Nickolay; Bucsela, Eric; Lamsal, Lok; Celarier, Edward; Herman, Jay; Janz, Scott; Cohen, Ron; Weinheimer, Andrew

    2011-01-01

    The first deployment of the Earth Venture -1 DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project was conducted during July 2011 in the Baltimore-Washington region. Two aircraft (a P-3B for in-situ sampling and a King Air for remote sensing) were used along with an extensive array of surface-based in-situ and remote sensing instrumentation. Fourteen flight days were accomplished by both aircraft and over 250 profiles of trace gases and aerosols were performed by the P-3B over surface air quality monitoring stations, which were specially outfitted with sunphotometers and Pandora UV/Vis spectrometers. The King Air flew with the High Spectral Resolution Lidar for aerosols and the ACAM UV/Vis spectrometer for trace gases. This suite of observations allows linkage of surface air quality with the vertical distributions of gases and aerosols, with remotely-sensed column amounts observed from the surface and from the King Air, and with satellite observations from Aura (OMI and TES), GOME-2, MODIS and GOES. The DISCOVER-AQ data will allow determination of under what conditions satellite retrievals are indicative of surface air quality, and they will be useful in planning new satellites. In addition to an overview of the project, a preliminary comparison of tropospheric column NO2 densities from the integration of in-situ P-3B observations, from the Pandoras and ACAM, and from the new Goddard OMI NO2 algorithm will be presented.

  13. Remote Marine Aerosol: A Characterization of Physical, Chemical and Optical Properties and their Relation to Radiative Transfer in the Troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Porter, John N.

    1997-01-01

    Our research effort is focused on improving our understanding of aerosol properties needed for optical models for remote marine regions. This includes in-situ and vertical column optical closure and involves a redundancy of approaches to measure and model optical properties that must be self consistent. The model is based upon measured in-situ aerosol properties and will be tested and constrained by the vertically measured spectral differential optical depth of the marine boundary layer, MBL. Both measured and modeled column optical properties for the boundary layer, when added to the free-troposphere and stratospheric optical depth, will be used to establish spectral optical depth over the entire atmospheric column for comparison to and validation of satellite derived radiances (AVHRR).

  14. Distribution of trace metals in anchialine caves of Adriatic Sea, Croatia

    NASA Astrophysics Data System (ADS)

    Cuculić, Vlado; Cukrov, Neven; Kwokal, Željko; Mlakar, Marina

    2011-11-01

    This study presents results of the first comprehensive research on ecotoxic trace metals (Cd, Pb, Cu and Zn) in aquatic anchialine ecosystems. Data show the influence of hydrological and geological characteristics on trace metals in highly stratified anchialine water columns. Distribution of Cd, Pb, Cu and Zn in two anchialine water bodies, Bjejajka Cave and Lenga Pit in the Mljet National park, Croatia were investigated seasonally from 2006 to 2010. Behaviour and concentrations of dissolved and total trace metals in stratified water columns and metal contents in sediment, carbonate rocks and soil of the anchialine environment were evaluated. Trace metals and dissolved organic carbon (DOC) concentrations in both anchialine water columns were significantly elevated compared to adjacent seawater. Zn and Cu concentrations were the highest in the Lenga Pit water column and sediment. Elevated concentrations of Zn, Pb and Cu in Bjejajka Cave were mainly terrigenous. Significantly elevated concentrations of cadmium (up to 0.3 μg L -1) were found in the water column of Bjejajka cave, almost two orders of magnitude higher compared to nearby surface seawater. Laboratory analysis revealed that bat guano was the major source of cadmium in Bjejajka Cave. Cadmium levels in Lenga Pit, which lacks accumulations of bat guano, were 20-fold lower. Moreover, low metal amounts in carbonate rocks in both caves, combined with mineral leaching experiments, revealed that carbonates play a minor role as a source of metals in both water columns. We observed two types of vertical distribution pattern of cadmium in the stratified anchialine Bjejajka Cave water column. At lower salinities, non-conservative behaviour was characterized by strong desorption and enrichment of dissolved phase while, at salinities above 20, Cd behaved conservatively and its dissolved concentration decreased. Conservative behaviour of Cu, Pb, Zn and DOC was observed throughout the water column. After heavy rains, Cd showed reduced concentration and uniform vertical distribution, suggesting a non-terrestrial origin. Under the same conditions, concentrations of total and dissolved Pb, Cu, Zn and DOC were significantly elevated. Variations of trace metal vertical distributions in anchialine water columns were caused by large inputs of fresh water (extraordinary rainy events), and were not influenced by seasonal changes.

  15. Algebraic motion of vertically displacing plasmas

    DOE PAGES

    Pfefferle, D.; Bhattacharjee, A.

    2018-02-27

    In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less

  16. Algebraic motion of vertically displacing plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfefferle, D.; Bhattacharjee, A.

    In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less

  17. Operational trace gas column observations from GOME-2 on MetOp

    NASA Astrophysics Data System (ADS)

    Valks, Pieter; Hao, Nan; Pinardi, Gaia; Hedelt, Pascal; Liu, Song; Van Roozendael, Michel; De Smedt, Isabelle; Theys, Nicolas; Koukouli, MariLiza; Balis, Dimitris

    2017-04-01

    This contribution focuses on the operational GOME-2 trace gas column products developed in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Composition Monitoring (AC-SAF). We present an overview of the retrieval algorithms for ozone, OClO, NO2, SO2 and formaldehyde, and we show examples of various applications such as air quality and climate monitoring, using observations from the GOME-2 instruments on MetOp-A and MetOp-B. Total ozone and the minor trace gas columns from GOME-2 are retrieved with the latest version 4.8 of the GOME Data Processor (GDP), which uses an optimized Differential Optical Absorption Spectroscopy (DOAS) algorithm, with air mass factor conversions based on the LIDORT model. Improved total and tropospheric NO2 columns are retrieved in the visible wavelength region between 425 and 497 nm. SO2 emissions from volcanic and anthropogenic sources can be measured by GOME-2 using the UV wavelength region around 320 nm. For formaldehyde, an optimal DOAS fitting window around 335 nm has been determined for GOME-2. The GOME-2 trace gas columns have reached the operational EUMETSAT product status, and are available to the users in near real time (within two hours after sensing by GOME-2). The use of trace gas observations from the GOME-2 instruments on MetOp-A and MetOp-B for air quality purposed will be illustrated, e.g. for South-East Asia and Europe. Furthermore, comparisons of the GOME-2 satellite observations with ground-based measurements will be shown. Finally, the use of GOME-2 trace-gas column data in the Copernicus Atmosphere Monitoring Service (CAMS) will be presented.

  18. Car MAX-DOAS measurements of the tropospheric Formaldehyde (HCHO) column around Bucharest (Romania) and in the Rhein-Main area (Germany)

    NASA Astrophysics Data System (ADS)

    Donner, Sebastian; Shaiganfar, Reza; Riffel, Katharina; Dörner, Steffen; Lampel, Johannes; Remmers, Julia; Wagner, Thomas

    2016-04-01

    The DOAS (differential optical absorption spectroscopy)-method analyses the absorptions of atmospheric trace gases in spectra of scattered sun light. It is an excellent way to determine the concentrations of different trace gases (e.g. NO2, SO2, HCHO…) simultaneously. MAX (Multi-AXis)-DOAS measurements observe scattered sun light under different elevation angles. From such measurements tropospheric vertical column densities (VCDs) or even vertical profiles of the measured trace gases and aerosols can be determined. We performed mobile MAX-DOAS measurements using two instruments on the roof of a car in summer 2015 in Romania during the AROMAT2 campaign and in the Winter/Spring 2016 in the Rhein-Main area (Germany). The latter is one of the densest populated areas in Germany. One instrument is a commercial Mini-MAX-DOAS instrument from the Hoffmann company, the other a self-built instrument using an AVANTES spectrometer with better optical characteristics. The instruments were looking in two different directions (one forward and one backward). Mobile MAX-DOAS measurements cover a quite large area in a short period of time. This enables to map existing gradients of concentrations of tropospheric trace gases, e.g. NO2 and HCHO. The results of those measurements then can be used to validate satellite measurements or can be compared to model results. In this study we focus on formaldehyde (HCHO). In small amounts it is emitted directly by industries and other anthropogenic and biogenic activities. Large amounts are mostly secondary produced. As it is an intermediate product of basic oxidation cycles of other hydrocarbons its concentrations are determined by the abundances of other hydrocarbons. Therefore it can be used as an indicator for volatile organic compounds (VOCs). Furthermore HCHO plays an important role in photochemical smog chemistry and tropospheric O3 chemistry. In this work we present the measurement setup and preliminary HCHO results of the AROMAT2 campaign and first results of the measurements in the Rhein-Main area. We characterize the amounts, spatial gradients and identify potential emission sources of HCHO.

  19. Transport and retention of vertically migrating adult mysid and decapod shrimp in the tidal front on Georges Bank

    USGS Publications Warehouse

    Lough, R. Gregory; Aretxabaleta, Alfredo L.

    2014-01-01

    Vertical profiles of the adult epibenthic shrimp Neomysis americana and Crangon septemspinosus obtained during June 1985 were used to simulate possible rates of ascent from bottom (40 to 50 m) to near surface at night and return by day, and the consequence of these rates on their horizontal distribution. Numerical particles were released at the sampling site using archived model current fields with specified vertical rates (from no swim behavior to 20 mm s(-1)) and tracked for up to 30 d. The best match between observed and modeled vertical profiles was with a vertical swimming speed of 10 mm s(-1) for N. americana and 2 mm s(-1) for C. septemspinosus. Whereas N. americana rapidly swims towards the surface at dusk and descends to bottom by dawn, C. septemspinosus tends to only swim up to the middle of the water column at night. After 16 d, the simulation with 10 mm s(-1) swim speed showed most particles were concentrated in an area centered around the 60 m isobath, where the tidal front was located. At 2 mm s(-1) swim speed particles were concentrated more shoalward onto the western end of Georges Bank. N. americana are expected to be more closely associated with the tidal front, since they spend more time near the front surface convergence, but are more likely to be transported off the bank due to the south-westward-flowing surface tidal jet, whereas C. septemspinosus would be retained primarily on the bank, since they are found deeper in the water column during both day and night.

  20. Recent Large Reduction in Sulfur Dioxide Emissions from Chinese Power Plants Observed by the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Li, Can; Zhang, Qiang; Krotkov, Nickolay A.; Streets, David G.; He, Kebin; Tsay, Si-Chee; Gleason, James F.

    2010-01-01

    The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/ NO2, emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of S0 2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing S02 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources.

  1. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes: Part I. Comprehensive model evaluation and trend analysis for 2006 and 2011

    DOE PAGES

    Chen, Ying; Zhang, Yang; Fan, Jiwen; ...

    2015-08-18

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM 2.5, and PM 10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less

  2. Application of an Online-Coupled Regional Climate Model, WRF-CAM5, over East Asia for Examination of Ice Nucleation Schemes: Part I. Comprehensive Model Evaluation and Trend Analysis for 2006 and 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Zhang, Yang; Fan, Jiwen

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less

  3. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes: Part I. Comprehensive model evaluation and trend analysis for 2006 and 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Zhang, Yang; Fan, Jiwen

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM 2.5, and PM 10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less

  4. 76 FR 28311 - Drawbridge Operation Regulations; Bayou Liberty, Mile 2.0, St. Tammany Parish, Slidell, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ...,'' and then click on the balloon shape in the ``Actions'' column. If you submit your comments by mail or... St. Tammany Parish. The vertical clearance is 7.59 feet (2.31m) above the 2% flowline, elevation 2.5 feet (0.76m) NAVD 1988. Presently, under 33 CFR 117.469, the draw of the S433 Bridge, mile 2.0, at...

  5. Vertical migration and nighttime distribution of adult bloaters in Lake Michigan

    USGS Publications Warehouse

    TeWinkel, Leslie M.; Fleischer, Guy W.

    1999-01-01

    The vertical migration and nighttime vertical distribution of adult bloaters Coregonus hoyi were investigated during late summer in Lake Michigan using acoustics simultaneously with either midwater or bottom trawling. Bloaters remained on or near bottom during the day. At night, bloaters were distributed throughout 30-65 m of water, depending on bottom depth. Shallowest depths of migration were not related to water temperature or incident light. Maximum distances of migration increased with increasing bottom depth. Nighttime midwater densities ranged from 0.00 to 6.61 fish/1,000 mA? and decreased with increasing bottom depth. Comparisons of length distributions showed that migrating and nonmigrating bloaters did not differ in size. However, at most sites, daytime bottom catches collected a greater proportion of larger individuals compared with nighttime midwater or bottom catches. Mean target strengths by 5-m strata indicated that migrating bloaters did not stratify by size in the water column at night. Overall, patterns in frequency of empty stomachs and mean digestive state of prey indicated that a portion of the bloater population fed in the water column at night. Bloater diet composition indicated both midwater feeding and bottom feeding. In sum, although a portion of the bloater population fed in the water column at night, bloaters were not limited to feeding at this time. This research confirmed that bloaters are opportunistic feeders and did not fully support the previously proposed hypothesis that bloater vertical migration is driven by the vertically migrating macroinvertebrate the opossom shrimp Mysis relicta.

  6. 1-D DSMC simulation of Io's atmospheric collapse and reformation during and after eclipse

    NASA Astrophysics Data System (ADS)

    Moore, C. H.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Stewart, B.

    2009-06-01

    A one-dimensional Direct Simulation Monte Carlo (DSMC) model is used to examine the effects of a non-condensable species on Io's sulfur dioxide sublimation atmosphere during eclipse and just after egress. Since the vapor pressure of SO 2 is extremely sensitive to temperature, the frost-supported dayside sublimation atmosphere had generally been expected to collapse during eclipse as the surface temperature dropped. For a pure SO 2 atmosphere, however, it was found that during the first 10 min of eclipse, essentially no change in the atmospheric properties occurs at altitudes above ˜100 km due to the finite ballistic/acoustic time. Hence immediately after ingress the auroral emission morphology above 100 km should resemble that of the immediate pre-eclipse state. Furthermore, the collapse dynamics are found to be greatly altered by the presence of even a small amount of a non-condensable species which forms a diffusion layer near the surface that prevents rapid collapse. It is found that after 10 min essentially no collapse has occurred at altitudes above ˜20 km when a nominal mole fraction of non-condensable gas is present. Collapse near the surface occurs relatively quickly until a static diffusion layer many mean free paths thick of the non-condensable gas builds up which then retards further collapse of the SO 2 atmosphere. For example, for an initial surface temperature of 110 K and 35% non-condensable mole-fraction, the ratio of the SO 2 column density to the initial column density was found to be 0.73 after 10 min, 0.50 after 30 min, and 0.18 at the end of eclipse. However, real gas species (SO, O 2) may not be perfectly non-condensable at Io's surface temperatures. If the gas species was even weakly condensable (non-zero sticking/reaction coefficient) then the effect of the diffusion layer on the dynamics was dramatically reduced. In fact, if the sticking coefficient of the non-condensable exceeds ˜0.25, the collapse dynamics are effectively the same as if there were no non-condensable present. This sensitivity results because the loss of non-condensable to the surface reduces the effective diffusion layer size, and the formation of an effective diffusion layer requires that the layer be stationary; this does not occur if the surface is a sink. Upon egress, vertical stratification of the condensable and non-condensable species occurs, with the non-condensable species being lifted (or pushed) to higher altitudes by the sublimating SO 2 after the sublimating atmosphere becomes collisional. Stratification should affect the morphology and intensity of auroral glows shortly after egress.

  7. NOx emissions of various sources in Romania and the Rhein-Main region in Germany based on mobile MAX-DOAS measurements of NO2.

    NASA Astrophysics Data System (ADS)

    Riffel, Katharina; Sebastian, Donner; Shaiganfar, Reza; Wagner, Thomas; Dörner, Steffen

    2016-04-01

    The MAX DOAS-Method (Multi-AXis Differential Optical Absorption Spectroscopy) is used to analyze different trace gases (e.g. NO2, SO2, HCHO) at the same time and to determine the trace gas vertical column density (vertically integrated concentration). In summer 2015 we performed car-MAX-DOAS measurements in Romania during the AROMAT2 campaign. We encircled Bucharest at different weather situations and different times of the day. Afterwards the total NOx emissions were derived from the mobile MAX-DOAS observations in combination with wind data. In Germany we performed the same measurement procedure in fall/ winter/ spring 2015 /2016 by encircling the cities Mainz and Frankfurt. For the setting we mounted two MAX-DOAS instruments with different viewing directions (forward and backward) on the roof of a car. One instrument is a commercial mini MAX-DOAS that is built by the German company Hoffmann Messtechnik. The second one was built at the MPI in Mainz. This so-called Tube MAX-DOAS uses an AVANTES spectrometer with better optical characteristics than Hoffmann's mini MAX-DOAS. The advantage of two instruments working at the same time is (besides redundancy) that localized emission plumes can be measured from different directions at different locations. Thus, especially for emission plumes from power plants, tomographic methods can be applied to derive information about the plume altitude. Car-MAX-DOAS observations can cover large areas at a short time with reasonable resolution (depending on the speed of the car and the instruments integration time). Thus these measurements are well suited to validate satellites observations. This work will show the first AROMAT2 results of NOx emissions derived in Romania and in the Rhein-Main region, which is one of the most polluted area in Germany.

  8. REACTOR MODERATOR STRUCTURE

    DOEpatents

    Fraas, A.P.; Tudor, J.J.

    1963-08-01

    An improved moderator structure for nuclear reactors consists of moderator blocks arranged in horizontal layers to form a multiplicity of vertically stacked columns of blocks. The blocks in each vertical column are keyed together, and a ceramic grid is disposed between each horizontal layer of blocks. Pressure plates cover- the lateral surface of the moderator structure in abutting relationship with the peripheral terminal lengths of the ceramic grids. Tubular springs are disposed between the pressure plates and a rigid external support. The tubular springs have their axes vertically disposed to facilitate passage of coolant gas through the springs and are spaced apart a selected distance such that at sonae preselected point of spring deflection, the sides of the springs will contact adjacent springs thereby causing a large increase in resistance to further spring deflection. (AEC)

  9. EPA True NO2 ground site measurements ?? multiple sites, TCEQ ground site measurements of meteorological and air pollution parameters ?? multiple sites ,GeoTASO NO2 Vertical Column

    EPA Pesticide Factsheets

    EPA True NO2 ground site measurements ?? multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; TCEQ ground site measurements of meteorological and air pollution parameters ?? multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; GeoTASO NO2 Vertical Column - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013?FALCON=1This dataset is associated with the following publication:Nowlan, C., X. Lu, J. Leitch, K. Chance, G. González Abad, C. Lu, P. Zoogman, J. Cole, T. Delker, W. Good, F. Murcray, L. Ruppert, D. Soo, M. Follette-Cook, S. Janz, M. Kowalewski, C. Loughner, K. Pickering, J. Herman, M. Beaver, R. Long, J. Szykman, L. Judd, P. Kelley, W. Luke, X. Ren, and J. Al-Saadi. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013. Atmospheric Measurement Techniques. Copernicus Publications, Katlenburg-Lindau, GERMANY, 9(6): 2647-2668, (2016).

  10. Carbon monoxide column retrieval for clear-sky and cloudy atmospheres: a full-mission data set from SCIAMACHY 2.3 µm reflectance measurements

    NASA Astrophysics Data System (ADS)

    Borsdorff, Tobias; aan de Brugh, Joost; Hu, Haili; Nédélec, Philippe; Aben, Ilse; Landgraf, Jochen

    2017-05-01

    We discuss the retrieval of carbon monoxide (CO) vertical column densities from clear-sky and cloud contaminated 2311-2338 nm reflectance spectra measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) from January 2003 until the end of the mission in April 2012. These data were processed with the Shortwave Infrared CO Retrieval algorithm (SICOR) that we developed for the operational data processing of the Tropospheric Monitoring Instrument (TROPOMI) that will be launched on ESA's Sentinel-5 Precursor (S5P) mission. This study complements previous work that was limited to clear-sky observations over land. Over the oceans, CO is estimated from cloudy-sky measurements only, which is an important addition to the SCIAMACHY clear-sky CO data set as shown by NDACC and TCCON measurements at coastal sites. For Ny-Ålesund, Lauder, Mauna Loa and Reunion, a validation of SCIAMACHY clear-sky retrievals is not meaningful because of the high retrieval noise and the few collocations at these sites. The situation improves significantly when considering cloudy-sky observations, where we find a low mean bias b = ±6. 0 ppb and a strong correlation between the validation and the SCIAMACHY results with a mean Pearson correlation coefficient r = 0. 7. Also for land observations, cloudy-sky CO retrievals present an interesting complement to the clear-sky data set. For example, at the cities Tehran and Beijing the agreement of SCIAMACHY clear-sky CO observations with MOZAIC/IAGOS airborne measurements is poor with a mean bias of b = 171. 2 ppb and 57.9 ppb because of local CO pollution, which cannot be captured by SCIAMACHY. For cloudy-sky retrievals, the validation improves significantly. Here the retrieved column is mainly sensitive to CO above the cloud and so not affected by the strong local surface emissions. Adjusting the MOZAIC/IAGOS measurements to the vertical sensitivity of the retrieval, the mean bias adds up to b = 52. 3 ppb and 5.0 ppb for Tehran and Beijing. At the less urbanised region around the airport Windhoek, local CO pollution is less prominent and so MOZAIC/IAGOS measurements agree well with SCIAMACHY clear-sky retrievals with a mean bias of b = 15. 5 ppb, but can be even further improved for cloudy SCIAMACHY observations with a mean bias of b = 0. 2 ppb. Overall the cloudy-sky CO retrievals from SCIAMACHY short-wave infrared measurements present a major extension of the clear-sky-only data set, which more than triples the amount of data and adds unique observations over the oceans. Moreover, the study represents the first application of the S5P algorithm for operational CO data processing on cloudy observations prior to the launch of the S5P mission.

  11. Application of composite flow laws to grain size distributions derived from polar ice cores

    NASA Astrophysics Data System (ADS)

    Binder, Tobias; de Bresser, Hans; Jansen, Daniela; Weikusat, Ilka; Garbe, Christoph; Kipfstuhl, Sepp

    2014-05-01

    Apart from evaluating the crystallographic orientation, focus of microstructural analysis of natural ice during the last decades has been to create depth-profiles of mean grain size. Several ice flow models incorporated mean grain size as a variable. Although such a mean value may coincide well with the size of a large proportion of the grains, smaller/larger grains are effectively ignored. These smaller/larger grains, however, may affect the ice flow modeling. Variability in grain size is observed on centimeter, meter and kilometer scale along deep polar ice cores. Composite flow laws allow considering the effect of this variability on rheology, by weighing the contribution of grain-size-sensitive (GSS, diffusion/grain boundary sliding) and grain-size-insensitive (GSI, dislocation) creep mechanisms taking the full grain size distribution into account [1]. Extraction of hundreds of grain size distributions for different depths along an ice core has become relatively easy by automatic image processing techniques [2]. The shallow ice approximation is widely adopted in ice sheet modeling and approaches the full-Stokes solution for small ratios of vertical to horizontal characteristic dimensions. In this approximation shear stress in the vertical plain dominates the strain. This assumption is not applicable at ice divides or dome structures, where most deep ice core drilling sites are located. Within the upper two thirds of the ice column longitudinal stresses are not negligible and ice deformation is dominated by vertical strain. The Dansgaard-Johnsen model [3] predicts a dominating, constant vertical strain rate for the upper two thirds of the ice sheet, whereas in the lower ice column vertical shear becomes the main driver for ice deformation. We derived vertical strain rates from the upper NEEM ice core (North-West Greenland) and compared them to classical estimates of strain rates at the NEEM site. Assuming intervals of constant accumulation rates, we found a variation of vertical strain rates by a factor 2-3 in the upper ice column. We discuss the current applicability of composite flow laws to grain size distributions extracted from ice cores drilled at sites where the flow direction rotates by 90 degrees with depth (i.e. ice divide). An interesting finding is that a transition to a glacial period in future would be associated with a decrease in vertical strain rate (due to a reduced accumulation rate) and an increase of the frequency of small grains (due to an enhanced impurity content). Composite flow laws assign an enhanced contribution of GSS creep to this transition. It is currently unclear which factor would have a greater influence. [1] Herwegh et al., 2005, J. Struct. Geol., 27, 503-521 [2] T. Binder et al., 2013, J. Microsc., 250, 130-141 [3] W. Dansgaard & S.J. Johnsen, 1969, J. Glaciol., 8, 215-223

  12. Estimating vertical profiles of water-cloud droplet effective radius from SWIR satellite measurements via a statistical model derived from CloudSat observations

    NASA Astrophysics Data System (ADS)

    Nagao, T. M.; Murakami, H.; Nakajima, T. Y.

    2017-12-01

    This study proposes an algorithm to estimate vertical profiles of cloud droplet effective radius (CDER-VP) for water clouds from shortwave infrared (SWIR) measurements of Himawari-8/AHI via a statistical model of CDER-VP derived from CloudSat observation. Several similar algorithms in previous studies utilize a spectral radiance matching on the assumption of simultaneous observations of CloudSat and Aqua/MODIS. However, our algorithm does not assume simultaneous observations with CloudSat. First, in advance, a database (DB) of CDER-VP is prepared by the following procedure: TOA radiances at 0.65, 2.3 and 10.4-μm bands of the AHI are simulated using CDER-VP and cloud optical depth vertical profile (COD-VP) contained in the CloudSat 2B-CWC-RVOD and 2B-TAU products. Cloud optical thickness (COT), Column-CDER and cloud top height (CTH) are retrieved from the simulated radiances using a traditional retrieval algorithm with vertically homogeneous cloud model (1-SWIR VHC method). The CDER-VP is added to the DB by using the COT and Column-CDER retrievals as a key of the DB. Then by using principal component (PC) analysis, up to three PC vectors of the CDER-VPs in the DB are extracted. Next, the algorithm retrieves CDER-VP from actual AHI measurements by the following procedure: First, COT, Column-CDER and CTH are retrieved from TOA radiances at 0.65, 2.3 and 10.4-μm bands of the AHI using by 1-SWIR VHC method. Then, the PC vectors of CDER-VP is fetched from the DB using the COT and Column-CDER retrievals as the key of the DB. Finally, using coefficients of the PC vectors of CDER-VP as variables for retrieval, CDER-VP, COT and CTH are retrieved from TOA radiances at 0.65, 1.6, 2.3, 3.9 and 10.4-μm bands of the AHI based on optimal estimation method with iterative radiative transfer calculation. The simulation result showed the CDER-VP retrieval errors were almost smaller than 3 - 4 μm. The CDER retrieval errors at the cloud base were almost larger than the others (e.g. CDER at cloud top), especially when COT and CDER was large. The tendency can be explained by less sensitivities of SWIRs to CDER at cloud base. Additionally, as a case study, this study will attempt to apply the algorithm to the AHI's high-frequency observations, and to interpret the time series of the CDER-VP retrievals in terms of temporal evolution of water clouds.

  13. Overview of SCIAMACHY validation: 2002-2004

    NASA Astrophysics Data System (ADS)

    Piters, A. J. M.; Bramstedt, K.; Lambert, J.-C.; Kirchhoff, B.

    2006-01-01

    SCIAMACHY, on board Envisat, has been in operation now for almost three years. This UV/visible/NIR spectrometer measures the solar irradiance, the earthshine radiance scattered at nadir and from the limb, and the attenuation of solar radiation by the atmosphere during sunrise and sunset, from 240 to 2380 nm and at moderate spectral resolution. Vertical columns and profiles of a variety of atmospheric constituents are inferred from the SCIAMACHY radiometric measurements by dedicated retrieval algorithms. With the support of ESA and several international partners, a methodical SCIAMACHY validation programme has been developed jointly by Germany, the Netherlands and Belgium (the three instrument providing countries) to face complex requirements in terms of measured species, altitude range, spatial and temporal scales, geophysical states and intended scientific applications. This summary paper describes the approach adopted to address those requirements.

    Since provisional releases of limited data sets in summer 2002, operational SCIAMACHY processors established at DLR on behalf of ESA were upgraded regularly and some data products - level-1b spectra, level-2 O3, NO2, BrO and clouds data - have improved significantly. Validation results summarised in this paper and also reported in this special issue conclude that for limited periods and geographical domains they can already be used for atmospheric research. Nevertheless, current processor versions still experience known limitations that hamper scientific usability in other periods and domains. Free from the constraints of operational processing, seven scientific institutes (BIRA-IASB, IFE/IUP-Bremen, IUP-Heidelberg, KNMI, MPI, SAO and SRON) have developed their own retrieval algorithms and generated SCIAMACHY data products, together addressing nearly all targeted constituents. Most of the UV-visible data products - O3, NO2, SO2, H2O total columns; BrO, OClO slant columns; O3, NO2, BrO profiles - already have acceptable, if not excellent, quality. Provisional near-infrared column products - CO, CH4, N2O and CO2 - have already demonstrated their potential for a variety of applications. Cloud and aerosol parameters are retrieved, suffering from calibration with the exception of cloud cover. In any case, scientific users are advised to read carefully validation reports before using the data. It is required and anticipated that SCIAMACHY validation will continue throughout instrument lifetime and beyond and will accompany regular processor upgrades.

  14. Identification and control of plasma vertical position using neural network in Damavand tokamak.

    PubMed

    Rasouli, H; Rasouli, C; Koohi, A

    2013-02-01

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  15. Characterizing the seasonal cycle and vertical structure of ozone in Paris, France using four years of ground based LIDAR measurements in the lowermost troposphere

    NASA Astrophysics Data System (ADS)

    Klein, Amélie; Ancellet, Gérard; Ravetta, François; Thomas, Jennie L.; Pazmino, Andrea

    2017-10-01

    Systematic ozone LIDAR measurements were completed during a 4 year period (2011-2014) in Paris, France to study the seasonal variability of the vertical structure of ozone in the urban boundary layer. In addition, we use in-situ measurements from the surface air quality network that is located in Paris (AIRPARIF). Specifically, we use ozone and NO2 measurements made at two urban stations: Paris13 (60 m ASL) and the Eiffel Tower (310 m ASL) to validate and interpret the LIDAR profiles. Remote sensed tropospheric NO2 integrated columns from the SAOZ instrument located in Paris are also used to interpret ozone measurements. Comparison between ozone LIDAR measurements averaged from 250 m to 500 m and the Eiffel Tower in-situ measurements shows that the accuracy of the LIDAR (originally ±14 μg·m-3) is significantly improved (±7 μg·m-3) when a small telescope with a wide angular aperture is used. Results for the seasonal cycle of the ozone vertical gradient are found to be similar using two methods: (1) measured differences between AIRPARIF stations with measurements at 60 m ASL and 310 m ASL and (2) using LIDAR profiles from 300 m to the top of the Planetary Boundary Layer (PBL). Ozone concentrations measured by the LIDAR increase with altitude within the PBL, with a steeper gradient in winter (60 μg·m-3·km-1) and a less strong gradient in summer (20 μg·m-3·km-1). Results show that in winter, there is a sharp positive gradient of ozone at the surface, which is explained by ozone titration by NO combined with increased atmospheric stability in winter. In the afternoon during summer, photochemistry and vertical mixing are large enough to compensate for ozone titration near the surface, where NOx is emitted, and there is no gradient in ozone observed. In contrast, in the summer during the morning, ozone has a sharper positive vertical gradient similar to the winter values. Comparison of the vertically averaged ozone concentrations up to (0-3 km) and urban layer (0-310 m) ozone concentrations shows that the ratio between these two quantities is the largest in summer (86%) and the lowest in winter (49%). We conclude that satellite measurements that represent the 0-3 km integrated ozone column are not necessarily a good proxy for surface ozone and may lead to incorrect conclusions about the surface ozone seasonal variability. The ratio between the urban layer NO2 average concentration and the boundary layer NO2 average concentration obtained from SAOZ NO2 tropospheric columns is always less than 50%, meaning NO2 does not decrease linearly in the PBL, but with a sharper decrease close to the surface.

  16. Hydrothermal convection and mordenite precipitation in the cooling Bishop Tuff, California, USA

    NASA Astrophysics Data System (ADS)

    Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.

    2014-12-01

    We present field observations of erosional columns in the Bishop Tuff and then use laboratory results and numerical models to argue that these columns are evidence of relict convection in a cooling ignimbrite. Many square kilometers of the Bishop Tuff have evenly-spaced, vertical to semi-vertical erosional columns, a result of hydrothermal alteration. These altered regions are more competent than the surrounding tuff, are 0.1-0.7 m in diameter, are separated by ~ 1 m, and in some cases are more than 8 m in height. JE Bailey (U. of Hawaii, dissertation, 2005) suggested that similar columns in the Bandelier Tuff were formed when slumping allowed water to pool at the surface of the still-cooling ignimbrite. As water percolated downward it boiled generating evenly spaced convection cells similar to heat pipes. We quantify this conceptual model and apply it the Bishop Tuff to understand the physics within ignimbrite-borne hydrothermal systems. We use thin sections to measure changing porosity and use scanning electron microscope (SEM) and x-ray diffraction (XRD) analyses to show that pore spaces in the columns are cemented by the mineral mordenite, a low temperature zeolite that precipitates between 120-200 oC (Bish et al., 1982), also found in the Bandelier Tuff example. We then use scaling to show 1) that water percolating into the cooling Bishop Tuff would convect and 2) that the geometry and spacing of the columns is predicted by the ignimbrite temperature and permeability. We use the computer program HYDROTHERM (Hayba and Ingebritsen, 1994; Kipp et al., 2008) to model 2-phase convection in the Bishop Tuff. By systematically changing permeability, initial temperature, and topography we can identify the pattern of flows that develop when the ignimbrite is cooled by water from above. Hydrothermally altered columns in ignimbrite are the natural product of coupled heat, mass, and chemical transport and have similarities to other geothermal systems, economic ore deposits, and mid-ocean ridge hydrothermal systems. The columns allow direct observation to constrain complex models of multiphase convection, reactive transport, and permeability. Our results also have paleoclimate implications, implying a large and stable source of water in the SE/SSE Long Valley area immediately after the ~760,000 ka caldera-forming eruption.

  17. Vertical boring mill capacity is increased

    NASA Technical Reports Server (NTRS)

    Young, R. J.

    1968-01-01

    Commercially available vertical boring mill with a nominal capacity to 27 feet in diameter of workpiece has been modified in-shop to handle work up to 36 feet in diameter. Capacity was increased by adding extension saddles to the mill support columns on each side.

  18. Transport of viruses through saturated and unsaturated columns packed with sand

    USGS Publications Warehouse

    Anders, R.; Chrysikopoulos, C.V.

    2009-01-01

    Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173-179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid-solid and liquid to air-liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media. ?? Springer Science+Business Media B.V. 2008.

  19. On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Lier-Walqui, Marcus; Fridlind, Ann; Ackerman, Andrew S

    2016-02-01

    The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns aremore » analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts.« less

  20. Influence of pycnocline topography and water-column structure on marine distributions of alcids (Aves: Alcidae) in Anadyr Strait, Northern Bering Sea, Alaska

    USGS Publications Warehouse

    Haney, J. Christopher

    1991-01-01

    Systematic ship-board surveys were used to simultaneously record seabird abundances and resolve coarse-scale (3 to 10 km) horizontal and fine-scale (1 to 10 m) vertical variability in water-column structure and bathymetry for portions of the coastal zone in Anadyr Strait near western St. Lawrence Island, northern Bering Sea, Alaska, during August and September 1987. Three plankton-feeding alcids, parakeet (Cyclorrhynchus psittacula), crested (Aethia cristatella) and least (A. pusilla) auklets, each exhibited distinct associations for different pycnocline characteristics. Least auklets were more abundant in mixed water, but they also occurred within stratified water where the pycnocline and upper-mixed layer were shallow (≤8 m) and thin (≤10 m), respectively. Low body mass (85 g), high buoyancy, and relatively poor diving ability may have restricted this auklet to areas where water-column strata nearly intersected the surface, or to areas from which strata were absent altogether due to strong vertical mixing. Parakeet and crested auklets, which are larger-bodied (ca. 260 g) planktivores with presumably greater diving ability, were more abundant in stratified water, and both species exhibited less specific affinities for water-column characteristic at intermediate and shallow levels. All three auklets avoided locations with strong pycnocline gradients (≤0.22σtm−1), a crude index of the strong, subsurface shear in water velocities characteristic of this region. Auklet distributions in Anadyr Strait were consistent with: (1) strata accessibility, as estimated from relationships between body mass and relative diving ability, (2) possible avoidance of strong subsurface water motions, and (3) habits and distributions of plankton prey. In contrast, largebodied (>450 g) alcids [i.e., common (Uria aalge) and thick-billed (U. lomvia) murres, pigeon guillemots (Cephus columba), tufted (Fratercula cirrhata), and horned (F. corniculata) puffins feeding on fish or benthic invertebrates] showed no consistent relationships with either the pycnocline or upper-mixed layers. All large alcids were more common in stratified than in vertically-mixed waters, but differences in abundance between mixing regimes were small or equivocal. The only measured variable with which all large alcids were associated was total water-column depth: murres, guillemots, and puffins each used areas with shallow sea floors and avoided areas with deeper sea floors. Failure of large alcids to discriminate among foraging areas in Anadyr Strait as a function of pycnocline topography and strength may be attributable to: (1) greater reliance on large pelagic and benthic prey not associated with the pycnocline; (2) higher body mass, lower buoyancy, and greater diving ability; (3) foraging over a uniquely shallow continental shelf where all vertical strata, including the sea floor, are potentially accessible from the ocean surface.

  1. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the gas transfer coefficient, k, for both a vegetated condition and a control condition (no cylinders). The presence of cylinders in the tank substantially increased the rate of the gas transfer. For the highest wind speed, the gas transfer coefficient was several times higher when cylinders were present compared to when they were not. The gas transfer coefficient for the vegetated condition also proved sensitive to wind speed, increasing markedly with increasing mean wind speeds. Profiles of dissolved oxygen revealed well-mixed conditions in the bulk water column following prolonged air-flow above the water surface, suggesting application of the thin-film model is appropriate. The enhanced gas exchange observed might be explained by increased turbulent kinetic energy within the water column and the anisotropy of the cylinder array, which constrains horizontal motions more than vertical motions. Improved understanding of gas exchange in vegetated water columns may be of particularly use to investigations of carbon fluxes and soil accretion in wetlands. Reference: Nepf, H. (1999), Drag, turbulence, and diffusion in flow through emergent vegetation, Water Resour. Res., 35(2), 479-489.

  2. Seismically active column and volcanic plumbing system beneath the island arc of the Izu-Bonin subduction zone

    NASA Astrophysics Data System (ADS)

    Špičák, Aleš; Vaněk, Jiří; Hanuš, Václav

    2009-12-01

    A detailed spatio-temporal analysis of teleseismic earthquake occurrence (mb > 4.0) along the convergent margin of the Izu-Bonin-Mariana arc system reveals an anomalously high concentration of events between 27° and 30.5°N, beneath a chain of seamounts between Tori-shima and Nishino-shima volcanoes. This seismicity is dominated by the 1985/1986 earthquake swarm represented in the Engdahl—van der Hilst—Buland database by 146 earthquakes in the body wave magnitude range 4.3-5.8 and focal depth range 1-100 km. The epicentral cluster of the swarm is elongated parallel to the volcanic chain. Available focal mechanisms are consistent with an extensional tectonic regime and reveal nodal planes with azimuths close to that of the epicentral cluster. Earthquakes of the 1985/1986 swarm occurred in seven time phases. Seismic activity migrated in space from one phase to the other. Earthquake foci belonging to individual phases of the swarm aligned in vertically disposed seismically active columns. The epicentral zones of the columns are located in the immediate vicinity of seamounts Suiyo and Mokuyo, recently reported by the Japanese Meteorological Agency as volcanically active. The three observations—episodic character of earthquake occurrence, column-like vertically arranged seismicity pattern, and existence of volcanic seamounts at the seafloor above the earthquake foci—led us to interpret the 1985/1986 swarm as a consequence of subduction-related magmatic and/or fluid activity. A modification of the shallow earthquake swarm magmatic model of D. Hill fits earthquake foci distribution, tectonic stress orientation and fault plane solutions. The 1985/1986 deep-rooted earthquake swarm in the Izu-Bonin region represents an uncommon phenomenon of plate tectonics. The portion of the lithospheric wedge that was affected by the swarm should be composed of fractured rigid, brittle material so that the source of magma and/or fluids which might induce the swarm should be situated at a depth of at least 100 km in the aseismic part of the subduction zone.

  3. Seismically active column and volcanic plumbing system beneath the island arc of the Izu-Bonin subduction zone

    NASA Astrophysics Data System (ADS)

    Špičák, Aleš; Vaněk, Jiří; Hanuš, Václav

    2009-12-01

    A detailed spatio-temporal analysis of teleseismic earthquake occurrence (mb > 4.0) along the convergent margin of the Izu-Bonin-Mariana arc system reveals an anomalously high concentration of events between 27° and 30.5°N, beneath a chain of seamounts between Tori-shima and Nishino-shima volcanoes. This seismicity is dominated by the 1985/1986 earthquake swarm represented in the Engdahl-van der Hilst-Buland database by 146 earthquakes in the body wave magnitude range 4.3-5.8 and focal depth range 1-100 km. The epicentral cluster of the swarm is elongated parallel to the volcanic chain. Available focal mechanisms are consistent with an extensional tectonic regime and reveal nodal planes with azimuths close to that of the epicentral cluster. Earthquakes of the 1985/1986 swarm occurred in seven time phases. Seismic activity migrated in space from one phase to the other. Earthquake foci belonging to individual phases of the swarm aligned in vertically disposed seismically active columns. The epicentral zones of the columns are located in the immediate vicinity of seamounts Suiyo and Mokuyo, recently reported by the Japanese Meteorological Agency as volcanically active. The three observations-episodic character of earthquake occurrence, column-like vertically arranged seismicity pattern, and existence of volcanic seamounts at the seafloor above the earthquake foci-led us to interpret the 1985/1986 swarm as a consequence of subduction-related magmatic and/or fluid activity. A modification of the shallow earthquake swarm magmatic model of D. Hill fits earthquake foci distribution, tectonic stress orientation and fault plane solutions. The 1985/1986 deep-rooted earthquake swarm in the Izu-Bonin region represents an uncommon phenomenon of plate tectonics. The portion of the lithospheric wedge that was affected by the swarm should be composed of fractured rigid, brittle material so that the source of magma and/or fluids which might induce the swarm should be situated at a depth of at least 100 km in the aseismic part of the subduction zone.

  4. Methyl mercury distributions in relation to the presence of nano- and picophytoplankton in an oceanic water column (Ligurian Sea, North-western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Heimbürger, Lars-Eric; Cossa, Daniel; Marty, Jean-Claude; Migon, Christophe; Averty, Bernard; Dufour, Aurélie; Ras, Josephine

    2010-10-01

    Recent findings on the distribution of methylated mercury (MeHg T) in waters have highlighted the importance of organic carbon remineralization on the production of these compounds in the open ocean. Here, we present the first time-series (20 monthly samplings between July 2007 and May 2009) of high-resolution vertical profiles (10-12 depths in a 2350 m water column) of MeHg T distributions in an open ocean environment, the Ligurian Sea (North-western Mediterranean Sea). Concentrations varied within the sub-picomolar range (general mean: 0.30 ± 0.17 pmol L -1, n = 214) with the lowest values at the surface, increasing with depth up to the oxygen minimum zone, and decreasing slowly at greater depth. Concentrations in the surface waters never exceeded 0.15 pmol L -1, while the highest concentrations (up to 0.82 pmol L -1) were associated to the hypoxycline during the autumn bloom. A detailed vertical MeHg T profile reveals a "double-peak" pattern, coincidental with the two microbial layers described by Tanaka and Rassoulzadegan (2002), the so-called "microbial food web" in the euphotic zone (<100 m) and the "microbial loop" in the aphotic zone (>100 m). Temporal variations in the MeHg T abundance and distribution in the water column were linked to seasonality. The highest MeHg T concentrations were found in the oxygen minimum zone during the period of stratification, and coincide with the greatest abundance of nano- and picophytoplankton (cyanobacteria, nanoflagellates, etc.) in the euphotic layer. None of our deep MeHg T measurements (˜100 m above the sea bottom) revealed a significant sedimentary source of MeHg T. We explored the correlation between MeHg T concentrations and the apparent oxygen utilization, a proxy of organic matter remineralization, over the study period. Results of this study strengthen the hypothesis that net mercury methylation in the open ocean occurs in the water column, is linked to organic matter regeneration, and is promoted by the presence of small-sized nano- and picophytoplankton, that dominate under oligotrophic conditions.

  5. Tropospheric NO2 retrieved from OMI, GOME(-2), and SCIAMACHY within the Quality Assurance For Essential Climate Variables (QA4ECV) project: retrieval improvement, harmonization, and quality assurance

    NASA Astrophysics Data System (ADS)

    Folkert Boersma, K.

    2017-04-01

    One of the prime targets of the EU-project Quality Assurance for Essential Climate Variables (QA4ECV, www.qa4ecv.eu) is the generation and subsequent quality assurance of harmonized, long-term data records of ECVs or precursors thereof. Here we report on a new harmonized and improved retrieval algorithm for NO2 columns and its application to spectra measured by the GOME, SCIAMACHY, OMI, and GOME-2(A) sensors over the period 1996-2016. Our community 'best practices' algorithm is based on the classical 3-step DOAS method. It benefits from a thorough comparison and iteration of spectral fitting and air mass factor calculation approaches between IUP Bremen, BIRA, Max Planck Institute for Chemistry, KNMI, WUR, and a number of external partners. For step 1 of the retrieval, we show that improved spectral calibration and the inclusion of liquid water and intensity-offset correction terms in the fitting procedure, lead to 10-30% smaller NO2 slant columns, in better agreement with independent measurements. Moreover, the QA4ECV NO2 slant columns show 15-35% lower uncertainties relative to earlier versions of the spectral fitting algorithm. For step 2, the stratospheric correction, the algorithm relies on the assimilation of NO2 slant columns over remote regions in the Tracer Model 5 (TM5-MP) chemistry transport model. The representation of stratospheric NOy in the model is improved by nudging towards ODIN HNO3:O3 ratios, leading to more realistic NO2 concentrations in the free-running mode, which is relevant at high latitudes near the terminator. The coupling to TM5-Mass Parallel also allows the calculation of air mass factors (AMFs, step 3) from a priori NO2 vertical profiles simulated at a spatial resolution of 1°×1°, so that hotspot gradients are better resolved in the a priori profile shapes. Other AMF improvements include the use of improved cloud information, and a correction for photon scattering in a spherical atmosphere. Preliminary comparisons indicate that the new QA4ECV tropospheric NO2 columns are ±10% lower than operational products, and provide more spatial detail on the horizontal distribution of NO2 in the troposphere. Our comparisons provide more insight in the origin and nature of the retrieval uncertainties. The final QAECV NO2 product therefore contains overall uncertainty estimates for every measurement, but also information on the contribution of uncertainties of each retrieval sub-step to the overall uncertainty budget. We conclude with a presentation of the data format and a verification of the QA4ECV NO2 columns using the traceable quality assurance methodologies developed in the QA4ECV-project, and via validation against independent measurements (using the online QA4ECV Atmospheric Validation Server tool).

  6. Global observations of tropospheric BrO columns using GOME-2 satellite data

    NASA Astrophysics Data System (ADS)

    Theys, N.; van Roozendael, M.; Hendrick, F.; Yang, X.; de Smedt, I.; Richter, A.; Begoin, M.; Errera, Q.; Johnston, P. V.; Kreher, K.; de Mazière, M.

    2011-02-01

    Measurements from the GOME-2 satellite instrument have been analyzed for tropospheric BrO using a residual technique that combines measured BrO columns and estimates of the stratospheric BrO content from a climatological approach driven by O3 and NO2 observations. Comparisons between the GOME-2 results and BrO vertical columns derived from correlative ground-based and SCIAMACHY nadir observations, present a good level of consistency. We show that the adopted technique enables separation of stratospheric and tropospheric fractions of the measured total BrO columns and allows quantitative study of the BrO plumes in polar regions. While some satellite observed plumes of enhanced BrO can be explained by stratospheric descending air, we show that most BrO hotspots are of tropospheric origin, although they are often associated to regions with low tropopause heights as well. Elaborating on simulations using the p-TOMCAT tropospheric chemical transport model, this result is found to be consistent with the mechanism of bromine release through sea salt aerosols production during blowing snow events. No definitive conclusion can be drawn however on the importance of blowing snow sources in comparison to other bromine release mechanisms. Outside polar regions, evidence is provided for a global tropospheric BrO background with column of 1-3 × 1013 molec cm-2, consistent with previous estimates.

  7. Age-specific light preferences and vertical migration patterns of a Great Lakes invasive invertebrate, Hemimysis anomala

    USGS Publications Warehouse

    Boscarino, Brent T.; Halpin, Kathleen E.; Rudstam, Lars G.; Walsh, Maureen G.; Lantry, Brian F.

    2012-01-01

    We use a combination of spectral sensitivity analyses, laboratory behavioral observations and field distributions of a vertically migrating invertebrate, Hemimysis anomala (a recent invasive species to the Laurentian Great Lakes of North America), to determine if light preference and timing of emergence has an ontogenetic component. Juvenile Hemimysis (−3.4 and 10−2.4 mylux— a Hemimysis-specific unit of brightness derived from visual pigment analyses (wavelength of maximum absorbance = 500 nm; 1 mylux ~ 159 lx). These preferred light levels are equivalent to those present during nautical twilight on the Earth's surface and were several orders of magnitude brighter than those most preferred by adults (> 4.5 mm) in the laboratory (10−6.4 to 10−7.4 mylux). Both size classes completely avoided light levels of 10−0.4 mylux and greater, which are representative of daytime light levels at the Earth's surface. Net hauls taken at ~ 20-min intervals from sunset to the end of nautical twilight on two sampling occasions on Seneca Lake, New York (sampling depth = 2 m) revealed that juveniles emerged into the water column during civil twilight. Adult Hemimysis emerged later during nautical twilight when juveniles had already reached their maximum abundance in the water column. Laboratory-derived light preferences successfully predicted the timing of emergence and time of maximal abundance of both size classes on both sampling occasions. This study is one of the first to demonstrate that Hemimysis diel vertical migration has an ontogenetic component and to report the specific light levels likely to initiate and limit vertical movements.

  8. Isomorphism of dimer configurations and spanning trees on finite square lattices

    NASA Astrophysics Data System (ADS)

    Brankov, J. G.

    1995-09-01

    One-to-one mappings of the close-packed dimer configurations on a finite square lattice with free boundaries L onto the spanning trees of a related graph (or two-graph) G are found. The graph (two-graph) G can be constructed from L by: (1) deleting all the vertices of L with arbitrarily fixed parity of the row and column numbers; (2) suppressing all the vertices of degree 2 except those of degree 2 in L; (3) merging all the vertices of degree 1 into a single vertex g. The matrix Kirchhoff theorem reduces the enumeration problem for the spanning trees on G to the eigenvalue problem for the discrete Laplacian on the square lattice L'=G g with mixed Dirichlet-Neumann boundary conditions in at least one direction. That fact explains some of the unusual finite-size properties of the dimer model.

  9. Vertical migration of motile phytoplankton chains through turbulence

    NASA Astrophysics Data System (ADS)

    Climent, Eric; Lovecchio, Salvatore; Durham, William; Stocker, Roman

    2017-11-01

    Daily, phytoplankton needs to migrate vertically from and towards the ocean surface to find nutrients such as dissolved oxygen. To travel through the water column they need to fight against gravity (by swimming) and fluid turbulence which can make their journey longer. It is often observed that cells migrate across the water column as chains. The first benefit to form chains is that micro-organisms sum up their thrust while reducing their drag. Therefore, upwards swimming is faster for chains in a quiescent fluid with steady vertical orientation. However, as chain length increases their tendency to periodically tumble in turbulent structures increases which reduces orientation stability and limits their capacity to swim upwards. The purpose of our study is to elaborate on this apparent contradiction. We carried out direct numerical simulations and physical analysis of the coupled system of homogeneous isotropic turbulence and chain trajectories through Lagrangian tracking. Formation of chains is indeed favorable for vertical migration through the upper layer of the ocean.

  10. Model of vertical plasma motion during the current quench

    NASA Astrophysics Data System (ADS)

    Breizman, Boris; Kiramov, Dmitrii

    2017-10-01

    Tokamak disruptions impair plasma position control, which allows the plasma column to move and hit the wall. These detrimental events enhance thermal and mechanical loads due to halo currents and runaway electron losses. Their fundamental understanding and prevention is one of the high-priority items for ITER. As commonly observed in experiments, the disruptive plasma tends to move vertically, and the timescale of this motion is rather resistive than Alfvenic. These observations suggest that the plasma column is nearly force-free during its vertical motion. In fact, the force-free constraint is already used in disruption simulators. In this work, we consider a geometrically simple system that mimics the tokamak plasma surrounded by the conducting structures. Using this model, we highlight the underlying mechanism of the vertical displacement events during the current quench phase of plasma disruption. We also address a question of ideal MHD stability of the plasma during its resistive motion. Work supported by the U.S. Department of Energy Contracts DEFG02-04ER54742 and DE-SC0016283.

  11. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions

    NASA Astrophysics Data System (ADS)

    Schmidt, Anja; Witham, Claire S.; Theys, Nicolas; Richards, Nigel A. D.; Thordarson, Thorvaldur; Szpek, Kate; Feng, Wuhu; Hort, Matthew C.; Woolley, Alan M.; Jones, Andrew R.; Redington, Alison L.; Johnson, Ben T.; Hayward, Chris L.; Carslaw, Kenneth S.

    2014-12-01

    Volcanic eruptions take place in Iceland about once every 3 to 5 years. Ash emissions from these eruptions can cause significant disruption to air traffic over Europe and the North Atlantic as is evident from the 2010 eruption of Eyjafjallajökull. Sulfur dioxide (SO2) is also emitted by volcanoes, but there are no criteria to define when airspace is considered hazardous or nonhazardous. However, SO2 is a well-known ground-level pollutant that can have detrimental effects on human health. We have used the United Kingdom Met Office's NAME (Numerical Atmospheric-dispersion Modelling Environment) model to simulate SO2 mass concentrations that could occur in European and North Atlantic airspace for a range of hypothetical explosive eruptions in Iceland with a probability to occur about once every 3 to 5 years. Model performance was evaluated for the 2010 Eyjafjallajökull summit eruption against SO2 vertical column density retrievals from the Ozone Monitoring Instrument and in situ measurements from the United Kingdom Facility for Airborne Atmospheric Measurements research aircraft. We show that at no time during the 2010 Eyjafjallajökull eruption did SO2 mass concentrations at flight altitudes violate European air quality standards. In contrast, during a hypothetical short-duration explosive eruption similar to Hekla in 2000 (emitting 0.2 Tg of SO2 within 2 h, or an average SO2 release rate 250 times that of Eyjafjallajökull 2010), simulated SO2 concentrations are greater than 1063 µg/m3 for about 48 h in a small area of European and North Atlantic airspace. By calculating the occurrence of aircraft encounters with the volcanic plume of a short-duration eruption, we show that a 15 min or longer exposure of aircraft and passengers to concentrations ≥500 µg/m3 has a probability of about 0.1%. Although exposure of humans to such concentrations may lead to irritations to the eyes, nose and, throat and cause increased airway resistance even in healthy individuals, the risk is very low. However, the fact that volcanic ash and sulfur species are not always collocated and that passenger comfort could be compromised might be incentives to provide real-time information on the presence or absence of volcanic SO2. Such information could aid aviation risk management during and after volcanic eruptions.

  12. Spectroscopy of Solid State Laser Materials

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.

    1994-01-01

    We retrieved the vertical distribution of ozone from a series 0.005-0.013/cm resolution infrared solar spectra recorded with the McMath Fourier Transform spectrometer at the Kitt Peak National Solar Observatory. The analysis is based on a multi-layer line-by-line forward model and a semi-empirical version of the optimal estimation inversion method by Rodgers. The 1002.6-1003.2/cm spectral interval has been selected for the analysis on the basis of synthetic spectrum calculations. The characterization and error analysis of the method have been performed. It was shown that for the Kitt Peak spectral resolution and typical signal-to-noise ratio (greater than or equal to 100) the retrieval is stable, with the vertical resolution of approximately 5 km attainable near the surface degrading to approximately 10 km in the stratosphere. Spectra recorded from 1980 through 1993 have been analyzed. The retrieved total ozone and vertical profiles have been compared with total ozone mapping spectrometer (TOMS) satellite total columns for the location and dates of the Kitt Peak Measurements and about 100 ozone ozonesoundings and Brewer total column measurements from Palestine, Texas, from 1979 to 1985. The total ozone measurements agree to +/- 2%. The retrieved profiles reproduce the seasonally averaged variations with altitude, including the ozone spring maximum and fall minimum measured by Palestine sondes, but up to 15% differences in the absolute values are obtained.

  13. CMAQ predictions of tropospheric ozone in the U.S. southwest: influence of lateral boundary and synoptic conditions.

    PubMed

    Shi, Chune; Fernando, H J S; Hyde, Peter

    2012-02-01

    Phoenix, Arizona, has been an ozone nonattainment area for the past several years and it remains so. Mitigation strategies call for improved modeling methodologies as well as understanding of ozone formation and destruction mechanisms during seasons of high ozone events. To this end, the efficacy of lateral boundary conditions (LBCs) based on satellite measurements (adjusted-LBCs) was investigated, vis-à-vis the default-LBCs, for improving the predictions of Models-3/CMAQ photochemical air quality modeling system. The model evaluations were conducted using hourly ground-level ozone and NO(2) concentrations as well as tropospheric NO(2) columns and ozone concentrations in the middle to upper troposphere, with the 'design' periods being June and July of 2006. Both included high ozone episodes, but the June (pre-monsoon) period was characterized by local thermal circulation whereas the July (monsoon) period by synoptic influence. Overall, improved simulations were noted for adjusted-LBC runs for ozone concentrations both at the ground-level and in the middle to upper troposphere, based on EPA-recommended model performance metrics. The probability of detection (POD) of ozone exceedances (>75ppb, 8-h averages) for the entire domain increased from 20.8% for the default-LBC run to 33.7% for the adjusted-LBC run. A process analysis of modeling results revealed that ozone within PBL during bulk of the pre-monsoon season is contributed by local photochemistry and vertical advection, while the contributions of horizontal and vertical advections are comparable in the monsoon season. The process analysis with adjusted-LBC runs confirms the contributions of vertical advection to episodic high ozone days, and hence elucidates the importance of improving predictability of upper levels with improved LBCs. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. SO2 over Central China: Measurements, Numerical Simulations and the Tropospheric Sulfur Budget

    NASA Technical Reports Server (NTRS)

    He, Hao; Li, Can; Loughner, Christopher P.; Li, Zhangqing; Krotkov, Nickolay A.; Yang, Kai; Wang, Lei; Zheng, Youfei; Bao, Xiangdong; Zhao, Guoqiang; hide

    2012-01-01

    SO2 in central China was measured in situ from an aircraft and remotely using the Ozone Monitoring Instrument (OMI) from the Aura satellite; results were used to develop a numerical tool for evaluating the tropospheric sulfur budget - sources, sinks, transformation and transport. In April 2008, measured ambient SO2 concentrations decreased from approx.7 ppbv near the surface to approx. 1 ppbv at 1800 m altitude (an effective scale height of approx.800 m), but distinct SO2 plumes were observed between 1800 and 4500 m, the aircraft's ceiling. These free tropospheric plumes play a major role in the export of SO2 and in the accuracy of OMI retrievals. The mean SO2 column contents from aircraft measurements (0.73 DU, Dobson Units) and operational OMI SO2 products (0.63+/-0.26 DU) were close. The OMI retrievals were well correlated with in situ measurements (r = 0.84), but showed low bias (slope = 0.54). A new OMI retrieval algorithm was tested and showed improved agreement and bias (r = 0.87, slope = 0.86). The Community Multiscale Air Quality (CMAQ) model was used to simulate sulfur chemistry, exhibiting reasonable agreement (r = 0.62, slope = 1.33) with in situ SO2 columns. The mean CMAQ SO2 loading over central and eastern China was 54 kT, approx.30% more than the estimate from OMI SO2 products, 42 kT. These numerical simulations, constrained by observations, indicate that ",50% (35 to 61 %) of the anthropogenic sulfur emissions were transported downwind, and the overall lifetime of tropospheric SO2 was 38+/-7 h.

  15. A note on the effect of wind waves on vertical mixing in Franks Tract, Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Thompson, Janet K.; Jones, Nicole L.; Stephen G. Monismith,

    2008-01-01

    A one-dimensional numerical model that simulates the effects of whitecapping waves was used to investigate the importance of whitecapping waves to vertical mixing at a 3-meter-deep site in Franks Tract in the Sacramento-San Joaquin Delta over an 11-day period. Locally-generated waves of mean period approximately 2 s were generated under strong wind conditions; significant wave heights ranged from 0 to 0.3 m. A surface turbulent kinetic energy flux was used to model whitecapping waves during periods when wind speeds > 5 m s-1 (62% of observations). The surface was modeled as a wind stress log-layer for the remaining 38% of the observations. The model results demonstrated that under moderate wind conditions (5–8 m s-1 at 10 m above water level), and hence moderate wave heights, whitecapping waves provided the dominant source of turbulent kinetic energy to only the top 10% of the water column. Under stronger wind (> 8 m s-1), and hence larger wave conditions, whitecapping waves provided the dominant source of turbulent kinetic energy over a larger portion of the water column; however, this region extended to the bottom half of the water column for only 7% of the observation period. The model results indicated that phytoplankton concentrations close to the bed were unlikely to be affected by the whitecapping of waves, and that the formation of concentration boundary layers due to benthic grazing was unlikely to be disrupted by whitecapping waves. Furthermore, vertical mixing of suspended sediment was unlikely to be affected by whitecapping waves under the conditions experienced during the 11-day experiment. Instead, the bed stress provided by tidal currents was the dominant source of turbulent kinetic energy over the bottom half of the water column for the majority of the 11-day period.

  16. The ins and outs of modelling vertical displacement events

    NASA Astrophysics Data System (ADS)

    Pfefferle, David

    2017-10-01

    Of the many reasons a plasma discharge disrupts, Vertical Displacement Events (VDEs) lead to the most severe forces and stresses on the vacuum vessel and Plasma Facing Components (PFCs). After loss of positional control, the plasma column drifts across the vacuum vessel and comes in contact with the first wall, at which point the stored magnetic and thermal energy is abruptly released. The vessel forces have been extensively modelled in 2D but, with the constraint of axisymmetry, the fundamental 3D effects that lead to toroidal peaking, sideways forces, field-line stochastisation and halo current rotation have been vastly overlooked. In this work, we present the main results of an intense VDE modelling activity using the implicit 3D extended MHD code M3D-C1 and share our experience with the multi-domain and highly non-linear physics encountered. At the culmination of code development by the M3D-C1 group over the last decade, highlighted by the inclusion of a finite-thickness resistive vacuum vessel within the computational domain, a series of fully 3D non-linear simulations are performed using realistic transport coefficients based on the reconstruction of so-called NSTX frozen VDEs, where the feedback control was purposely switched off to trigger a vertical instability. The vertical drift phase, the evolution of the current quench and the onset of 3D halo/eddy currents are diagnosed and investigated in detail. The sensitivity of the current quench to parameter changes is assessed via 2D non-linear runs. The growth of individual toroidal modes is monitored via linear-complex runs. The intricate evolution of the plasma, which is decaying to large extent in force-balance with induced halo/wall currents, is carefully resolved via 3D non-linear runs. The location, amplitude and rotation of normal currents and wall forces are analysed and compared with experimental traces.

  17. Application of WRF/Chem over East Asia: Part II. Model improvement and sensitivity simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Zhang, Xin; Wang, Kai; Zhang, Qiang; Duan, Fengkui; He, Kebin

    2016-01-01

    To address the problems and limitations identified through a comprehensive evaluation in Part I paper, several modifications are made in model inputs, treatments, and configurations and sensitivity simulations with improved model inputs and treatments are performed in this Part II paper. The use of reinitialization of meteorological variables reduces the biases and increases the spatial correlations in simulated temperature at 2-m (T2), specific humidity at 2-m (Q2), wind speed at 10-m (WS10), and precipitation (Precip). The use of a revised surface drag parameterization further reduces the biases in simulated WS10. The adjustment of only the magnitudes of anthropogenic emissions in the surface layer does not help improve overall model performance, whereas the adjustment of both the magnitudes and vertical distributions of anthropogenic emissions shows moderate to large improvement in simulated surface concentrations and column mass abundances of species in terms of domain mean performance statistics, hourly and monthly mean concentrations, and vertical profiles of concentrations at individual sites. The revised and more advanced dust emission schemes can help improve PM predictions. Using revised upper boundary conditions for O3 significantly improves the column O3 abundances. Using a simple SOA formation module further improves the predictions of organic carbon and PM2.5. The sensitivity simulation that combines all above model improvements greatly improves the overall model performance. For example, the sensitivity simulation gives the normalized mean biases (NMBs) of -6.1% to 23.8% for T2, 2.7-13.8% for Q2, 22.5-47.6% for WS10, and -9.1% to 15.6% for Precip, comparing to -9.8% to 75.6% for T2, 0.4-23.4% for Q2, 66.5-101.0% for WS10, and 11.4%-92.7% for Precip from the original simulation without those improvements. It also gives the NMBs for surface predictions of -68.2% to -3.7% for SO2, -73.8% to -20.6% for NO2, -8.8%-128.7% for O3, -61.4% to -26.5% for PM2.5, and -64.0% to 7.2% for PM10, comparing to -84.2% to -44.5% for SO2, -88.1% to -44.0% for NO2, -11.0%-160.3% for O3, -63.9% to -25.2% for PM2.5, and -68.9%-33.3% for PM10 from the original simulation. The improved WRF/Chem is applied to estimate the impact of anthropogenic aerosols on regional climate and air quality in East Asia. Anthropogenic aerosols can increase cloud condensation nuclei, aerosol optical depth, cloud droplet number concentrations, and cloud optical depth. They can decrease surface net radiation, temperature at 2-m, wind speed at 10-m, planetary boundary layer height, and precipitation through various direct and indirect effects. These changes in turn lead to changes in chemical predictions in a variety of ways.

  18. viral abundance distribution in deep waters of the Northern of South China Sea

    NASA Astrophysics Data System (ADS)

    He, Lei; Yin, Kedong

    2017-04-01

    Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.

  19. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea

    PubMed Central

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-01-01

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1–2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs. PMID:24948180

  20. Ecophysiology of phototrophic sulfur bacteria in lakes: Vertical distribution of planktonic populations

    NASA Technical Reports Server (NTRS)

    Guerrero, R.

    1985-01-01

    The study of purple and green sulfur bacterial populations in nature is of interest for the following reasons: (1) high quantities of biomass, with low species diversity can be collected; (2) study of planktonic life permits one to understand the mechanisms, structural as well as physiological, used to maintain their vertical position without sinking; and (3) they are capable of sulfur oxidations and reductions that act as important intermediates in the global sulfur cycle. Purple and green photosynthetic bacteria, moreover, may be responsible for certain geological deposits. Planktonic phototrophic sulfur bacteria were analyzed in relation to their vertical distribution in the water column. Factors, including competition for light, that determine their sedimentation rates and the numerical changes in species and populations were assessed.

  1. Formaldehyde Distribution over North America: Implications for Satellite Retrievals of Formaldehyde Columns and Isoprene Emission

    NASA Technical Reports Server (NTRS)

    Millet, Dylan B.; Jacob, Daniel J.; Turquety, Solene; Hudman, Rynda C.; Wu, Shiliang; Anderson, Bruce E.; Fried, Alan; Walega, James; Heikes, Brian G.; Blake, Donald R.; hide

    2006-01-01

    Formaldehyde (HCHO) columns measured from space provide constraints on emissions of volatile organic compounds (VOCs). Quantitative interpretation requires characterization of errors in HCHO column retrievals and relating these columns to VOC emissions. Retrieval error is mainly in the air mass factor (AMF) which relates fitted backscattered radiances to vertical columns and requires external information on HCHO, aerosols, and clouds. Here we use aircraft data collected over North America and the Atlantic to determine the local relationships between HCHO columns and VOC emissions, calculate AMFs for HCHO retrievals, assess the errors in deriving AMFs with a chemical transport model (GEOS-Chem), and draw conclusions regarding space-based mapping of VOC emissions. We show that isoprene drives observed HCHO column variability over North America; HCHO column data from space can thus be used effectively as a proxy for isoprene emission. From observed HCHO and isoprene profiles we find an HCHO molar yield from isoprene oxidation of 1.6 +/- 0.5, consistent with current chemical mechanisms. Clouds are the primary error source in the AMF calculation; errors in the HCHO vertical profile and aerosols have comparatively little effect. The mean bias and 1Q uncertainty in the GEOS-Chem AMF calculation increase from <1% and 15% for clear skies to 17% and 24% for half-cloudy scenes. With fitting errors, this gives an overall 1 Q error in HCHO satellite measurements of 25-31%. Retrieval errors, combined with uncertainties in the HCHO yield from isoprene oxidation, result in a 40% (1sigma) error in inferring isoprene emissions from HCHO satellite measurements.

  2. Multiscale observations of CO2, 13CO2, and pollutants at Four Corners for emission verification and attribution

    PubMed Central

    Lindenmaier, Rodica; Dubey, Manvendra K.; Henderson, Bradley G.; Butterfield, Zachary T.; Herman, Jay R.; Rahn, Thom; Lee, Sang-Hyun

    2014-01-01

    There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories. We report, to our knowledge, the first ever simultaneous column enhancements in CO2 (3–10 ppm) and NO2 (1–3 Dobson Units), and evidence of δ13CO2 depletion in an urban region with two large coal-fired power plants with distinct scrubbing technologies that have resulted in ∆NOx/∆CO2 emission ratios that differ by a factor of two. Ground-based total atmospheric column trace gas abundances change synchronously and correlate well with simultaneous in situ point measurements during plume interceptions. Emission ratios of ∆NOx/∆CO2 and ∆SO2/∆CO2 derived from in situ atmospheric observations agree with those reported by in-stack monitors. Forward simulations using in-stack emissions agree with remote column CO2 and NO2 plume observations after fine scale adjustments. Both observed and simulated column ∆NO2/∆CO2 ratios indicate that a large fraction (70–75%) of the region is polluted. We demonstrate that the column emission ratios of ∆NO2/∆CO2 can resolve changes from day-to-day variation in sources with distinct emission factors (clean and dirty power plants, urban, and fires). We apportion these sources by using NO2, SO2, and CO as signatures. Our high-frequency remote sensing observations of CO2 and coemitted pollutants offer promise for the verification of power plant emission factors and abatement technologies from ground and space. PMID:24843169

  3. Prediction of axial limit capacity of stone columns using dimensional analysis

    NASA Astrophysics Data System (ADS)

    Nazaruddin A., T.; Mohamed, Zainab; Mohd Azizul, L.; Hafez M., A.

    2017-08-01

    Stone column is the most favorable method used by engineers in designing work for stabilization of soft ground for road embankment, and foundation for liquid structure. Easy installation and cheaper cost are among the factors that make stone column more preferable than other method. Furthermore, stone column also can acts as vertical drain to increase the rate of consolidation during preloading stage before construction work started. According to previous studied there are several parameters that influence the capacity of stone column. Among of them are angle friction of among the stones, arrangement of column (two pattern arrangement most applied triangular and square), spacing center to center between columns, shear strength of soil, and physical size of column (diameter and length). Dimensional analysis method (Buckingham-Pi Theorem) has used to carry out the new formula for prediction of load capacity stone columns. Experimental data from two previous studies was used for analysis of study.

  4. The Vertical Dust Profile over Gale Crater

    NASA Astrophysics Data System (ADS)

    Guzewich, S.; Newman, C. E.; Smith, M. D.; Moores, J.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D. M.; Kleinboehl, A.; Martin-Torres, F. J.; Zorzano, M. P.; Battalio, J. M.

    2017-12-01

    Regular joint observations of the atmosphere over Gale Crater from the orbiting Mars Reconnaissance Orbiter/Mars Climate Sounder (MCS) and Mars Science Laboratory (MSL) Curiosity rover allow us to create a coarse, but complete, vertical profile of dust mixing ratio from the surface to the upper atmosphere. We split the atmospheric column into three regions: the planetary boundary layer (PBL) within Gale Crater that is directly sampled by MSL (typically extending from the surface to 2-6 km in height), the region of atmosphere sampled by MCS profiles (typically 25-80 km above the surface), and the region of atmosphere between these two layers. Using atmospheric optical depth measurements from the Rover Environmental Monitoring System (REMS) ultraviolet photodiodes (in conjunction with MSL Mast Camera solar imaging), line-of-sight opacity measurements with the MSL Navigation Cameras (NavCam), and an estimate of the PBL depth from the MarsWRF general circulation model, we can directly calculate the dust mixing ratio within the Gale Crater PBL and then solve for the dust mixing ratio in the middle layer above Gale Crater but below the atmosphere sampled by MCS. Each atmospheric layer has a unique seasonal cycle of dust opacity, with Gale Crater's PBL reaching a maximum in dust mixing ratio near Ls = 270° and a minimum near Ls = 90°. The layer above Gale Crater, however, has a seasonal cycle that closely follows the global opacity cycle and reaches a maximum near Ls = 240° and exhibits a local minimum (associated with the "solsticial pauses") near Ls = 270°. Knowing the complete vertical profile also allows us to determine the frequency of high-altitude dust layers above Gale, and whether such layers truly exhibit the maximum dust mixing ratio within the entire vertical column. We find that 20% of MCS profiles contain an "absolute" high-altitude dust layer, i.e., one in which the dust mixing ratio within the high-altitude dust layer is the maximum dust mixing ratio in the vertical column of atmosphere over Gale Crater.

  5. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    NASA Astrophysics Data System (ADS)

    Prata, Fred; Woodhouse, Mark; Huppert, Herbert E.; Prata, Andrew; Thordarson, Thor; Carn, Simon

    2017-09-01

    The separation of volcanic ash and sulfur dioxide (SO2) gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21-28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs) occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  6. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  7. Phosphorus vertical migration in aquic brown soil and light chernozem under different phosphorous application rate: a soil column leaching experiment.

    PubMed

    Zhao, Muqiu; Chen, Xin; Shi, Yi; Zhou, Quanlai; Lu, Caiyan

    2009-01-01

    A soil column leaching experiment was conducted to study the vertical migration of phosphorus in aquic brown soil and light chernozem under different phosphorus fertilization rates. The results showed that total dissolved phosphorus concentration in the leachates from the two soils was nearly the same, but dissolved inorganic phosphorus concentration was obviously different. In all fertilization treatments, aquic brown soil had a higher content of phosphorus in calcium chloride extracts compared with light chernozem. But Olsen phosphorus content was higher at the soil depth beneath 0-20 cm, and increased with increasing phosphorus application rate.

  8. Lidar investigations of M-zone

    NASA Technical Reports Server (NTRS)

    Ovezgeldiyev, O. G.; Kurbanmuradov, K.; Lagutin, M. F.; Zarudny, A. A.; Meghel, Yu. E.; Torba, A. A.; Melnikov, V. E.

    1987-01-01

    The creation of pulse dye lasers tuned to resonant line of meteor produced admixtures of atmospheric constituents has made it possible to begin lidar investigations of the vertical distribution of mesospheric sodium concentration and its dynamics in the upper atmosphere. The observed morning increase of sodium concentration in the vertical column is probably caused by diurnal variations of sporadic meteors. The study of the dynamics of the sodium column concentration in the period of meteor streams activity confirms the suggestion of cosmic origin of these atoms. The short lived increase of sodium concentration brought about by a meteor stream, however, exceeds by one order the level of the sporadic background.

  9. Variation of subsurface chlorophyll maximum layer from the vertical profiler and in-situ observation in the eastern coastal region of Korea (the East/Japan Sea)

    NASA Astrophysics Data System (ADS)

    Son, Y. T.; Chang, K. I.; Nam, S.; Kang, D. J.

    2016-02-01

    Coastal monitoring buoy (called it as ESROB) has been continually operated to monitor meteorological (wind, air temperature, air pressure, PAR) and oceanic properties (temperature, salinity, current, chlorophyll fluorescence, DO, turbidity) using equipment such as CTD, fluorometer and WQM (Water Quality Monitor) in the eastern coastal region of Korea (the East/Japan Sea) since April 2011. The ESROB produced temporal evolution of physical and biogeochemical parameters of the water column with high resolution of 10 min interval. In order to understand horizontal influence of physical and biogeochemical parameters on variation of subsurface chlorophyll maximum layer (SCM), interdisciplinary in-situ surveys with small R/V in the study area for about week were conducted in June/October 2014 and in May 2015. A wirewalker, a wave-driven vertically profiling platform (Rainville and Pinkel 2001), was also deployed at two points (about 30 m and 80 m water depth) along cross-shore direction with the ESROB for about one or two weeks with in-situ survey durations. The wirewalker was equipped with CTD, turbidity and chlorophyll a fluorometer profiler, which was completed approximately every 3 10 minute depending on sea surface state. The SCM was observed in almost every deployment nearest coast, except for June in 2014, with variation of semi- and diurnal time periods. Temporal evolution of the wirewalker showed that disappearance and reoccurrence of the SCM within the water column in October 2014, which was associated with vertical mixing induced by strong wind stress. Low salinity plume in the surface layer and shoaling of bottom cold water were concurrently observed after homogeneous water column, affecting another condition to the vertical distribution of chlorophyll a in this coastal region. Moreover in-situ observation with densely points and temporal interval for 1 day revealed that distribution with high concentration of chlorophyll a on isopycnal was association with the horizontal local circulation that has influence on stability (vertical stratification and shear) of the water column. Optical and biogeochemical parameter analyzed from the water samples, affecting on the variation of chlorophyll a concentration within the water column, will be also discussed in the presentation of Ocean Science Meeting.

  10. 47 CFR 15.119 - Closed caption decoder requirements for analog television receivers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... character or space may appear. A cell is one row high and one column wide. (5) Column: One of 32 vertical... television receivers. 15.119 Section 15.119 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.119 Closed caption decoder requirements for analog television...

  11. 47 CFR 15.119 - Closed caption decoder requirements for analog television receivers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... character or space may appear. A cell is one row high and one column wide. (5) Column: One of 32 vertical... television receivers. 15.119 Section 15.119 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.119 Closed caption decoder requirements for analog television...

  12. Long-chain alkylimidazolium ionic liquids, a new class of cationic surfactants coated on ODS columns for anion-exchange chromatography.

    PubMed

    Qiu, Hongdeng; Zhang, Qinghua; Chen, Limei; Liu, Xia; Jiang, Shengxiang

    2008-08-01

    Separations of common inorganic anions were carried out on ODS columns coated with two long-chain alkylimidazolium ionic liquids ([C(12)MIm]Br and [C(14)MIm]Br) as new cationic surfactants for ion chromatography. With phthalate buffer solution as the mobile phases and non-suppressed conductivity detection, high column efficiencies and excellent selectivity were obtained in the separation of inorganic anions. Chromatographic parameters are calculated and the results show that the coated column possesses significant potential for the analysis of some inorganic anions such as CH(3)COO(-), IO(3)(-), Cl(-), BrO(3)(-), NO(2)(-), Br(-), NO(3)(-), SO(4)(2-), I(-), BF(4)(-), and SCN(-). The effect of eluent pH values on the separation of anions has been studied on the column coated with [C(12)MIm]Br. The stability of the coated columns was also examined.

  13. Computational analysis of vertical axis wind turbine arrays

    NASA Astrophysics Data System (ADS)

    Bremseth, J.; Duraisamy, K.

    2016-10-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  14. On the Vertical Distribution of Local and Remote Sources of Water for Precipitation

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.

    2001-01-01

    The vertical distribution of local and remote sources of water for precipitation and total column water over the United States are evaluated in a general circulation model simulation. The Goddard Earth Observing System (GEOS) general circulation model (GCM) includes passive constituent tracers to determine the geographical sources of the water in the column. Results show that the local percentage of precipitable water and local percentage of precipitation can be very different. The transport of water vapor from remote oceanic sources at mid and upper levels is important to the total water in the column over the central United States, while the access of locally evaporated water in convective precipitation processes is important to the local precipitation ratio. This result resembles the conceptual formulation of the convective parameterization. However, the formulations of simple models of precipitation recycling include the assumption that the ratio of the local water in the column is equal to the ratio of the local precipitation. The present results demonstrate the uncertainty in that assumption, as locally evaporated water is more concentrated near the surface.

  15. Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex

    PubMed Central

    Narayanan, Rajeevan T.; Egger, Robert; Johnson, Andrew S.; Mansvelder, Huibert D.; Sakmann, Bert; de Kock, Christiaan P.J.; Oberlaender, Marcel

    2015-01-01

    Vertical thalamocortical afferents give rise to the elementary functional units of sensory cortex, cortical columns. Principles that underlie communication between columns remain however unknown. Here we unravel these by reconstructing in vivo-labeled neurons from all excitatory cell types in the vibrissal part of rat primary somatosensory cortex (vS1). Integrating the morphologies into an exact 3D model of vS1 revealed that the majority of intracortical (IC) axons project far beyond the borders of the principal column. We defined the corresponding innervation volume as the IC-unit. Deconstructing this structural cortical unit into its cell type-specific components, we found asymmetric projections that innervate columns of either the same whisker row or arc, and which subdivide vS1 into 2 orthogonal [supra-]granular and infragranular strata. We show that such organization could be most effective for encoding multi whisker inputs. Communication between columns is thus organized by multiple highly specific horizontal projection patterns, rendering IC-units as the primary structural entities for processing complex sensory stimuli. PMID:25838038

  16. Programmable Aperture with MEMS Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel; Li, Mary; Kutyrev, Alexander; Kletetschka, Gunther; Fettig, Rainer

    2011-01-01

    A microshutter array (MSA) has been developed for use as an aperture array for multi-object selections in James Webb Space Telescope (JWST) technology. Light shields, molybdenum nitride (MoN) coating on shutters, and aluminum/aluminum oxide coatings on interior walls are put on each shutter for light leak prevention, and to enhance optical contrast. Individual shutters are patterned with a torsion flexure that permits shutters to open 90 deg. with a minimized mechanical stress concentration. The shutters are actuated magnetically, latched, and addressed electrostatically. Also, micromechanical features are tailored onto individual shutters to prevent stiction. An individual shutter consists of a torsion hinge, a shutter blade, a front electrode that is coated on the shutter blade, a backside electrode that is coated on the interior walls, and a magnetic cobalt-iron coating. The magnetic coating is patterned into stripes on microshutters so that shutters can respond to an external magnetic field for the magnetic actuation. A set of column electrodes is placed on top of shutters, and a set of row electrodes on sidewalls is underneath the shutters so that they can be electrostatically latched open. A linear permanent magnet is aligned with the shutter rows and is positioned above a flipped upside-down array, and sweeps across the array in a direction parallel to shutter columns. As the magnet sweeps across the array, sequential rows of shutters are rotated from their natural horizontal orientation to a vertical open position, where they approach vertical electrodes on the sidewalls. When the electrodes are biased with a sufficient electrostatic force to overcome the mechanical restoring force of torsion bars, shutters remain latched to vertical electrodes in their open state. When the bias is removed, or is insufficient, the shutters return to their horizontal, closed positions. To release a shutter, both the electrode on the shutter and the one on the back wall where the shutter sits are grounded. The shutters with one or both ungrounded electrodes are held open. Sub-micron bumps underneath light shields and silicon ribs on back walls are the two features to prevent stiction. These features ensure that the microshutter array functions properly in mechanical motions. The MSA technology can be used primarily in multi-object imaging and spectroscopy, photomask generation, light switches, and in the stepper equipment used to make integrated circuits and MEMS (microelectromechanical systems) devices.

  17. Towards Improving Satellite Tropospheric NO2 Retrieval Products: Impacts of the spatial resolution and lighting NOx production from the a priori chemical transport model

    NASA Astrophysics Data System (ADS)

    Smeltzer, C. D.; Wang, Y.; Zhao, C.; Boersma, F.

    2009-12-01

    Polar orbiting satellite retrievals of tropospheric nitrogen dioxide (NO2) columns are important to a variety of scientific applications. These NO2 retrievals rely on a priori profiles from chemical transport models and radiative transfer models to derive the vertical columns (VCs) from slant columns measurements. In this work, we compare the retrieval results using a priori profiles from a global model (TM4) and a higher resolution regional model (REAM) at the OMI overpass hour of 1330 local time, implementing the Dutch OMI NO2 (DOMINO) retrieval. We also compare the retrieval results using a priori profiles from REAM model simulations with and without lightning NOx (NO + NO2) production. A priori model resolution and lightning NOx production are both found to have large impact on satellite retrievals by altering the satellite sensitivity to a particular observation by shifting the NO2 vertical distribution interpreted by the radiation model. The retrieved tropospheric NO2 VCs may increase by 25-100% in urban regions and be reduced by 50% in rural regions if the a priori profiles from REAM simulations are used during the retrievals instead of the profiles from TM4 simulations. The a priori profiles with lightning NOx may result in a 25-50% reduction of the retrieved tropospheric NO2 VCs compared to the a priori profiles without lightning. As first priority, a priori vertical NO2 profiles from a chemical transport model with a high resolution, which can better simulate urban-rural NO2 gradients in the boundary layer and make use of observation-based parameterizations of lightning NOx production, should be first implemented to obtain more accurate NO2 retrievals over the United States, where NOx source regions are spatially separated and lightning NOx production is significant. Then as consequence of a priori NO2 profile variabilities resulting from lightning and model resolution dynamics, geostationary satellite, daylight observations would further promote the next step towards producing a more complete NO2 data product provided sufficient resolution of the observations. Both the corrected retrieval algorithm and the proposed next generation geostationary satellite observations would thus improve emission inventories, better validate model simulations, and advantageously optimize regional specific ozone control strategies.

  18. New-Generation NASA Aura Ozone Monitoring Instrument (OMI) Volcanic SO2 Dataset: Algorithm Description, Initial Results, and Continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Li, Can; Krotkov, Nickolay A.; Carn, Simon; Zhang, Yan; Spurr, Robert J. D.; Joiner, Joanna

    2017-01-01

    Since the fall of 2004, the Ozone Monitoring Instrument (OMI) has been providing global monitoring of volcanic SO2 emissions, helping to understand their climate impacts and to mitigate aviation hazards. Here we introduce a new-generation OMI volcanic SO2 dataset based on a principal component analysis (PCA) retrieval technique. To reduce retrieval noise and artifacts as seen in the current operational linear fit (LF) algorithm, the new algorithm, OMSO2VOLCANO, uses characteristic features extracted directly from OMI radiances in the spectral fitting, thereby helping to minimize interferences from various geophysical processes (e.g., O3 absorption) and measurement details (e.g., wavelength shift). To solve the problem of low bias for large SO2 total columns in the LF product, the OMSO2VOLCANO algorithm employs a table lookup approach to estimate SO2 Jacobians (i.e., the instrument sensitivity to a perturbation in the SO2 column amount) and iteratively adjusts the spectral fitting window to exclude shorter wavelengths where the SO2 absorption signals are saturated. To first order, the effects of clouds and aerosols are accounted for using a simple Lambertian equivalent reflectivity approach. As with the LF algorithm, OMSO2VOLCANO provides total column retrievals based on a set of predefined SO2 profiles from the lower troposphere to the lower stratosphere, including a new profile peaked at 13 km for plumes in the upper troposphere. Examples given in this study indicate that the new dataset shows significant improvement over the LF product, with at least 50% reduction in retrieval noise over the remote Pacific. For large eruptions such as Kasatochi in 2008 (approximately 1700 kt total SO2/ and Sierra Negra in 2005 (greater than 1100DU maximum SO2), OMSO2VOLCANO generally agrees well with other algorithms that also utilize the full spectral content of satellite measurements, while the LF algorithm tends to underestimate SO2. We also demonstrate that, despite the coarser spatial and spectral resolution of the Suomi National Polar-orbiting Partnership (Suomi-NPP) Ozone Mapping and Profiler Suite (OMPS) instrument, application of the new PCA algorithm to OMPS data produces highly consistent retrievals between OMI and OMPS. The new PCA algorithm is therefore capable of continuing the volcanic SO2 data record well into the future using current and future hyperspectral UV satellite instruments.

  19. Influence of sulfur-bearing polyatomic species on high precision measurements of Cu isotopic composition

    USGS Publications Warehouse

    Pribil, M.J.; Wanty, R.B.; Ridley, W.I.; Borrok, D.M.

    2010-01-01

    An increased interest in high precision Cu isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has developed recently for various natural geologic systems and environmental applications, these typically contain high concentrations of sulfur, particularly in the form of sulfate (SO42-) and sulfide (S). For example, Cu, Fe, and Zn concentrations in acid mine drainage (AMD) can range from 100??g/L to greater than 50mg/L with sulfur species concentrations reaching greater than 1000mg/L. Routine separation of Cu, Fe and Zn from AMD, Cu-sulfide minerals and other geological matrices usually incorporates single anion exchange resin column chromatography for metal separation. During chromatographic separation, variable breakthrough of SO42- during anion exchange resin column chromatography into the Cu fractions was observed as a function of the initial sulfur to Cu ratio, column properties, and the sample matrix. SO42- present in the Cu fraction can form a polyatomic 32S-14N-16O-1H species causing a direct mass interference with 63Cu and producing artificially light ??65Cu values. Here we report the extent of the mass interference caused by SO42- breakthrough when measuring ??65Cu on natural samples and NIST SRM 976 Cu isotope spiked with SO42- after both single anion column chromatography and double anion column chromatography. A set of five 100??g/L Cu SRM 976 samples spiked with 500mg/L SO42- resulted in an average ??65Cu of -3.50?????5.42??? following single anion column separation with variable SO42- breakthrough but an average concentration of 770??g/L. Following double anion column separation, the average SO42-concentration of 13??g/L resulted in better precision and accuracy for the measured ??65Cu value of 0.01?????0.02??? relative to the expected 0??? for SRM 976. We conclude that attention to SO42- breakthrough on sulfur-rich samples is necessary for accurate and precise measurements of ??65Cu and may require the use of a double ion exchange column procedure. ?? 2010.

  20. Validation of Smithsonian Astrophysical Observatory's OMI Water Vapor Product

    NASA Astrophysics Data System (ADS)

    Wang, H.; Gonzalez Abad, G.; Liu, X.; Chance, K.

    2015-12-01

    We perform a comprehensive validation of SAO's OMI water vapor product. The SAO OMI water vapor slant column is retrieved using the 430 - 480 nm wavelength range. In addition to water vapor, the retrieval considers O3, NO2, liquid water, O4, C2H2O2, the Ring effect, water ring, 3rd order polynomial, common mode and under-sampling. The slant column is converted to vertical column using AMF. AMF is calculated using GEOS-Chem water vapor profile shape, OMCLDO2 cloud information and OMLER surface albedo information. We validate our product using NCAR's GPS network data over the world and RSS's gridded microwave data over the ocean. We also compare our product with the total precipitable water derived from the AERONET ground-based sun photometer data, the GlobVapour gridded product, and other datasets. We investigate the influence of sub-grid scale variability and filtering criteria on the comparison. We study the influence of clouds, aerosols and a priori profiles on the retrieval. We also assess the long-term performance and stability of our product and seek ways to improve it.

  1. Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    NASA Astrophysics Data System (ADS)

    Kim, P. S.; Jacob, D. J.; Fisher, J. A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Jimenez, J. L.; Campuzano-Jost, P.; Froyd, K. D.; Liao, J.; Hair, J. W.; Fenn, M. A.; Butler, C. F.; Wagner, N. L.; Gordon, T. D.; Welti, A.; Wennberg, P. O.; Crounse, J. D.; St. Clair, J. M.; Teng, A. P.; Millet, D. B.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.

    2015-09-01

    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the southeast US during the summer-fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 × 25 km2 resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the southeast US. OA is simulated successfully with a simple parameterization, assuming irreversible uptake of low-volatility products of hydrocarbon oxidation. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 25 % in the cloud convective layer at 1.5-3 km, and 15 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42-] + [NO3-]) is only 0.5-0.7 mol mol-1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by OA. This would explain the long-term decline of ammonium aerosol in the southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 8-28 % (consistently biased low). The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines are due to shutdowns in both biogenic emissions and UV-driven photochemistry. Surface PM2.5 shows far less summer-to-winter decrease than AOD and we attribute this in part to the offsetting effect of weaker boundary layer ventilation. The SEAC4RS aircraft data demonstrate that AODs measured from space are consistent with surface PM2.5. This implies that satellites can be used reliably to infer surface PM2.5 over monthly timescales if a good CTM representation of the aerosol vertical profile is available.

  2. Measurements of stratospheric composition using a star pointing spectrometer

    NASA Technical Reports Server (NTRS)

    Fish, Deb J.; Jones, Rod L.; Freshwater, Ray A.; Roscoe, Howard K.; Oldham, Derek J.

    1994-01-01

    Measurements of stratospheric composition have been made with a novel star-pointing spectrometer. The instrument consists of a telescope that focuses light from stars, planets, or the moon onto a spectrometer and two dimensional CCD array detector. Atmospheric absorptions can be measured, from which atmospheric columns of several gases can be determined. The instrument was deployed in Abisko, 69 deg N, during the European Arctic Stratospheric Ozone Experiment (EASOE). The instrument has the potential for measuring O3, OClO, NO2, and NO3. In this paper, a method for the retrieval of vertical columns is described, and some examples of ozone measurements given.

  3. Spatial judgments in the horizontal and vertical planes from different vantage points.

    PubMed

    Prytz, Erik; Scerbo, Mark W

    2012-01-01

    Todorović (2008 Perception 37 106-125) reported that there are systematic errors in the perception of 3-D space when viewing 2-D linear perspective drawings depending on the observer's vantage point. Because these findings were restricted to the horizontal plane, the current study was designed to determine the nature of these errors in the vertical plane. Participants viewed an image containing multiple colonnades aligned on parallel converging lines receding to a vanishing point. They were asked to judge where, in the physical room, the next column should be placed. The results support Todorović in that systematic deviations in the spatial judgments depended on vantage point for both the horizontal and vertical planes. However, there are also marked differences between the two planes. While judgments in both planes failed to compensate adequately for the vantage-point shift, the vertical plane induced greater distortions of the stimulus image itself within each vantage point.

  4. Ship-based MAX-DOAS measurements of tropospheric NO2, SO2, and HCHO distribution along the Yangtze River

    NASA Astrophysics Data System (ADS)

    Hong, Qianqian; Liu, Cheng; Chan, Ka Lok; Hu, Qihou; Xie, Zhouqing; Liu, Haoran; Si, Fuqi; Liu, Jianguo

    2018-04-01

    In this paper, we present ship-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of tropospheric trace gases' distribution along the Yangtze River during winter 2015. The measurements were performed along the Yangtze River between Shanghai and Wuhan, covering major industrial areas in eastern China. Tropospheric vertical column densities (VCDs) of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) were retrieved using the air mass factor calculated by the radiative transfer model. Enhanced tropospheric NO2 and SO2 VCDs were detected over downwind areas of industrial zones over the Yangtze River. In addition, spatial distributions of atmospheric pollutants are strongly affected by meteorological conditions; i.e., positive correlations were found between concentration of pollutants and wind speed over these areas, indicating strong influence of transportation of pollutants from high-emission upwind areas along the Yangtze River. Comparison of tropospheric NO2 VCDs between ship-based MAX-DOAS and Ozone Monitoring Instrument (OMI) satellite observations shows good agreement with each other, with a Pearson correlation coefficient (R) of 0.82. In this study, the NO2 / SO2 ratio was used to estimate the relative contributions of industrial sources and vehicle emissions to ambient NO2 levels. Analysis results of the NO2 / SO2 ratio show a higher contribution of industrial NO2 emissions in Jiangsu Province, while NO2 levels in Jiangxi and Hubei provinces are mainly related to vehicle emissions. These results indicate that different pollution control strategies should be applied in different provinces. In addition, multiple linear regression analysis of ambient carbon monoxide (CO) and odd oxygen (Ox) indicated that the primary emission and secondary formation of HCHO contribute 54.4 ± 3.7 % and 39.3 ± 4.3 % to the ambient HCHO, respectively. The largest contribution from primary emissions in winter suggested that photochemically induced secondary formation of HCHO is reduced due to lower solar irradiance in winter. Our findings provide an improved understanding of major pollution sources along the eastern part of the Yangtze River which are useful for designing specific air pollution control policies.

  5. Evaluating a Space-Based Indicator of Surface Ozone-NOx-VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends

    NASA Astrophysics Data System (ADS)

    Jin, Xiaomeng; Fiore, Arlene M.; Murray, Lee T.; Valin, Lukas C.; Lamsal, Lok N.; Duncan, Bryan; Folkert Boersma, K.; De Smedt, Isabelle; Abad, Gonzalo Gonzalez; Chance, Kelly; Tonnesen, Gail S.

    2017-10-01

    Determining effective strategies for mitigating surface ozone (O3) pollution requires knowledge of the relative ambient concentrations of its precursors, NOx, and VOCs. The space-based tropospheric column ratio of formaldehyde to NO2 (FNR) has been used as an indicator to identify NOx-limited versus NOx-saturated O3 formation regimes. Quantitative use of this indicator ratio is subject to three major uncertainties: (1) the split between NOx-limited and NOx-saturated conditions may shift in space and time, (2) the ratio of the vertically integrated column may not represent the near-surface environment, and (3) satellite products contain errors. We use the GEOS-Chem global chemical transport model to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument over three northern midlatitude source regions. We find that FNR in the model surface layer is a robust predictor of the simulated near-surface O3 production regime. Extending this surface-based predictor to a column-based FNR requires accounting for differences in the HCHO and NO2 vertical profiles. We compare four combinations of two OMI HCHO and NO2 retrievals with modeled FNR. The spatial and temporal correlations between the modeled and satellite-derived FNR vary with the choice of NO2 product, while the mean offset depends on the choice of HCHO product. Space-based FNR indicates that the spring transition to NOx-limited regimes has shifted at least a month earlier over major cities (e.g., New York, London, and Seoul) between 2005 and 2015. This increase in NOx sensitivity implies that NOx emission controls will improve O3 air quality more now than it would have a decade ago.

  6. Evaluating a Space-Based Indicator of Surface Ozone-NO x -VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends.

    PubMed

    Jin, Xiaomeng; Fiore, Arlene M; Murray, Lee T; Valin, Lukas C; Lamsal, Lok N; Duncan, Bryan; Boersma, K Folkert; De Smedt, Isabelle; Abad, Gonzalo Gonzalez; Chance, Kelly; Tonnesen, Gail S

    2017-10-16

    Determining effective strategies for mitigating surface ozone (O 3 ) pollution requires knowledge of the relative ambient concentrations of its precursors, NO x , and VOCs. The space-based tropospheric column ratio of formaldehyde to NO 2 (FNR) has been used as an indicator to identify NO x -limited versus NO x -saturated O 3 formation regimes. Quantitative use of this indicator ratio is subject to three major uncertainties: (1) the split between NO x -limited and NO x -saturated conditions may shift in space and time, (2) the ratio of the vertically integrated column may not represent the near-surface environment, and (3) satellite products contain errors. We use the GEOS-Chem global chemical transport model to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument over three northern midlatitude source regions. We find that FNR in the model surface layer is a robust predictor of the simulated near-surface O 3 production regime. Extending this surface-based predictor to a column-based FNR requires accounting for differences in the HCHO and NO 2 vertical profiles. We compare four combinations of two OMI HCHO and NO 2 retrievals with modeled FNR. The spatial and temporal correlations between the modeled and satellite-derived FNR vary with the choice of NO 2 product, while the mean offset depends on the choice of HCHO product. Space-based FNR indicates that the spring transition to NO x -limited regimes has shifted at least a month earlier over major cities (e.g., New York, London, and Seoul) between 2005 and 2015. This increase in NO x sensitivity implies that NO x emission controls will improve O 3 air quality more now than it would have a decade ago.

  7. Vertical distribution of aerosols in the vicinity of Mexico City during MILAGRO-2006 Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, P.A.; Kleinman, L.; Eichinger, W. E.

    On 7 March 2006, a mobile, ground-based, vertical pointing, elastic lidar system made a North-South transect through the Mexico City basin. Column averaged, aerosol size distribution (ASD) measurements were made on the ground concurrently with the lidar measurements. The ASD ground measurements allowed calculation of the column averaged mass extinction efficiency (MEE) for the lidar system (1064 nm). The value of column averaged MEE was combined with spatially resolved lidar extinction coefficients to produce total aerosol mass concentration estimates with the resolution of the lidar (1.5 m vertical spatial and 1 s temporal). Airborne ASD measurements from DOE G-1 aircraftmore » made later in the day on 7 March 2006, allowed the evaluation of the assumptions of constant ASD with height and time used for estimating the column averaged MEE. The results showed that the aerosol loading within the basin is about twice what is observed outside of the basin. The total aerosol base concentrations observed in the basin are of the order of 200 {mu}g/m{sup 3} and the base levels outside are of the order of 100 {mu}g/m{sup 3}. The local heavy traffic events can introduce aerosol levels near the ground as high as 900 {mu}g/m{sup 3}. The article presents the methodology for estimating aerosol mass concentration from mobile, ground-based lidar measurements in combination with aerosol size distribution measurements. An uncertainty analysis of the methodology is also presented.« less

  8. A parametric study of Io’s thermophysical surface properties and subsequent numerical atmospheric simulations based on the best fit parameters

    NASA Astrophysics Data System (ADS)

    Walker, Andrew C.; Moore, Chris H.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2012-07-01

    Io’s sublimation atmosphere is inextricably linked to the SO2 surface frost temperature distribution which is poorly constrained by observations. We constrain Io’s surface thermal distribution by a parametric study of its thermophysical properties in an attempt to better model the morphology of Io’s sublimation atmosphere. Io’s surface thermal distribution is represented by three thermal units: sulfur dioxide (SO2) frosts/ices, non-frosts (probably sulfur allotropes and/or pyroclastic dusts), and hot spots. The hot spots included in our thermal model are static high temperature surfaces with areas and temperatures based on Keck infrared observations. Elsewhere, over frosts and non-frosts, our thermal model solves the one-dimensional heat conduction equation in depth into Io’s surface and includes the effects of eclipse by Jupiter, radiation from Jupiter, and latent heat of sublimation and condensation. The best fit parameters for the SO2 frost and non-frost units are found by using a least-squares method and fitting to observations of the Hubble Space Telescope’s Space Telescope Imaging Spectrograph (HST STIS) mid- to near-UV reflectance spectra and Galileo PPR brightness temperature. The thermophysical parameters are the frost Bond albedo, αF, and thermal inertia, ΓF, as well as the non-frost surface Bond albedo, αNF, and thermal inertia, ΓNF. The best fit parameters are found to be αF ≈ 0.55 ± 0.02 and ΓF ≈ 200 ± 50 J m-2 K-1 s-1/2 for the SO2 frost surface and αNF ≈ 0.49 ± 0.02 and ΓNF ≈ 20 ± 10 J m-2 K-1 s-1/2 for the non-frost surface. These surface thermophysical parameters are then used as boundary conditions in global atmospheric simulations of Io’s sublimation-driven atmosphere using the direct simulation Monte Carlo (DSMC) method. These simulations are unsteady, three-dimensional, parallelized across 360 processors, and include the following physical effects: inhomogeneous surface frosts, plasma heating, and a temperature-dependent residence time on the non-frost surface. The DSMC simulations show that the sub-jovian hemisphere is significantly affected by the daily solar eclipse. The simulated SO2 surface frost temperature is found to drop only ∼5 K during eclipse due to the high thermal inertia of SO2 surface frosts but the SO2 gas column density falls by a factor of 20 compared to the pre-eclipse column due to the exponential dependence of the SO2 vapor pressure on the SO2 surface frost temperature. Supersonic winds exist prior to eclipse but become subsonic during eclipse because the collapse of the atmosphere significantly decreases the day-to-night pressure gradient that drives the winds. Prior to eclipse, the supersonic winds condense on and near the cold nightside and form a highly non-equilibrium oblique shock near the dawn terminator. In eclipse, no shock exists since the gas is subsonic and the shock only reestablishes itself an hour or more after egress from eclipse. Furthermore, the excess gas that condenses on the non-frost surface during eclipse leads to an enhancement of the atmosphere near dawn. The dawn atmospheric enhancement drives winds that oppose those that are driven away from the peak pressure region above the warmest area of the SO2 frost surface. These opposing winds meet and are collisional enough to form stagnation point flow. The simulations are compared to Lyman-α observations in an attempt to explain the asymmetry between the dayside atmospheres of the anti-jovian and sub-jovian hemispheres. Lyman-α observations indicate that the anti-jovian hemisphere has higher column densities than the sub-jovian hemisphere and also has a larger latitudinal extent. A composite “average dayside atmosphere” is formed from a collisionless simulation of Io’s atmosphere throughout an entire orbit. This composite “average dayside” atmosphere without the effect of global winds indicates that the sub-jovian hemisphere has lower average column densities than the anti-jovian hemisphere (with the strongest effect at the sub-jovian point) due primarily to the diurnally averaged effect of eclipse. This is in qualitative agreement with the sub-jovian/anti-jovian asymmetry in the Lyman-α observations which were alternatively explained by the bias of volcanic centers on the anti-jovian hemisphere. Lastly, the column densities in the simulated average dayside atmosphere agree with those inferred from Lyman-α observations despite the thermophysical parameters being constrained by mid- to near UV observations which show much higher instantaneous SO2 gas column densities. This may resolve the apparent discrepancy between the lower “average dayside” column densities observed in the Lyman-α and the higher instantaneous column densities observed in the mid- to near UV.

  9. Vertical migrations of a deep-sea fish and its prey.

    PubMed

    Afonso, Pedro; McGinty, Niall; Graça, Gonçalo; Fontes, Jorge; Inácio, Mónica; Totland, Atle; Menezes, Gui

    2014-01-01

    It has been speculated that some deep-sea fishes can display large vertical migrations and likely doing so to explore the full suite of benthopelagic food resources, especially the pelagic organisms of the deep scattering layer (DSL). This would help explain the success of fishes residing at seamounts and the increased biodiversity found in these features of the open ocean. We combined active plus passive acoustic telemetry of blackspot seabream with in situ environmental and biological (backscattering) data collection at a seamount to verify if its behaviour is dominated by vertical movements as a response to temporal changes in environmental conditions and pelagic prey availability. We found that seabream extensively migrate up and down the water column, that these patterns are cyclic both in short-term (tidal, diel) as well as long-term (seasonal) scales, and that they partially match the availability of potential DSL prey components. Furthermore, the emerging pattern points to a more complex spatial behaviour than previously anticipated, suggesting a seasonal switch in the diel behaviour mode (benthic vs. pelagic) of seabream, which may reflect an adaptation to differences in prey availability. This study is the first to document the fine scale three-dimensional behaviour of a deep-sea fish residing at seamounts.

  10. Impact of the temporal variation of oxygen contents in the water column on the biogeochemistry of the benthic zone

    NASA Astrophysics Data System (ADS)

    Rigaud, Sylvain; Deflandre, Bruno; Grenz, Christian; Pozzato, Lara; Cesbron, Florian; Meulé, Samuel; Bonin, Patricia; Michotey, Valérie; Mirleau, Pascal; Mirleau, Fatma; Knoery, Joel; Zuberer, Frédéric; Guillemain, Dorian; Marguerite, Sébatien; Mayot, Nicolas; Faure, Vincent; Grisel, Raphael; Radakovitch, Olivier

    2017-04-01

    The desoxygenation of the water column in coastal areas, refered as coastal hypoxia, is currently a growing phenomenon still particularly complex to predict. This is mainly due to the fact that the biogeochemical response of the benthic ecosystem to the variation of the oxygen contents in the water column remains poorly understood. Dissolved oxygen concentration is a key parameter controling the benthic micro- and macro-community as well as the biogeochemical reactions occuring in the surface sediment. More particularly, the variation over variable time scales (from hour to years) of the oxygen deficit may induce different pathways for biogeochemical processes such as the oxydation of freshly deposited organic matter and nutrients and metals recycling. This results in variable chemical fluxes at the sediment-water interface, that may in turn, support the eutrophication and desoxygenation of the aquatic system. Our study focus on the Berre lagoon, an eutrophicated mediterranean lagoon impacted by hypoxia events in the water column. Three stations, closely located but impacted by contrasted temporal variation of oxygen deficit in the water column were selected: one station with rare oxygen deficit and with functionnal macrofauna community, one station with almost permanent oxygen deficit and no macrofauna community and one intermediate station with seasonnal oxygen deficit and degraded macrofauna community. Each station was surveyed once during a same field survey while the intermediate station was surveyed seasonnaly. For each campaign, we report vertical profiles of the main chemical components (oxygen, nutrients, metals) along the water-column/sediment continuum, with an increased vertical resolution in the benthic zone using a multi-tool approach (high vertical resolution suprabenthic water sampler and microsensors profiler). In addition, total chemical fluxes at the sediment-water interface was obtained using benthic chambers. This dataset was used to evaluate the influence, of the oxygen concentrations (and its short and long-term variations) in the water column on the nature and location of the main biogeochemical reactions occuring in the benthic zone and the resulting fluxes at the sediment-water interface.

  11. Hybrid indirect/direct contactor for thermal management of counter-current processes

    DOEpatents

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2018-03-20

    The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.

  12. Method of evaporation

    NASA Technical Reports Server (NTRS)

    Dufresne, Eugene R.

    1987-01-01

    Liquids, such as juices, milk, molten metal and the like are concentrated by forming uniformly-sized, small droplets in a precision droplet forming assembly and deploying the droplets in free fall downwardly as a central column within an evacuated column with cool walls. A portion of the solvent evaporates. The vapor flows to the wall, condenses, and usually flows down the wall as a film to condensate collector and drain. The vertical column of freely falling droplets enters the splash guard. The condensate can be collected, sent to other towers or recycled.

  13. The influence of polarization on box air mass factors for UV/vis nadir satellite observations

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.

    2015-04-01

    Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.

  14. The atmospheric abundance of SO2 on Io

    NASA Technical Reports Server (NTRS)

    Ballester, Gilda E.; Strobel, Darrell F.; Moos, H. Warren; Feldman, Paul D.

    1990-01-01

    The IUE satellite has obtained near-UV spectra of Io with sufficient resolution to ascertain the east, or leading and west, or trailing hemispheres' dayside atmosphere SO2 abundance. The derived geometric albedos are compared with various model albedos that might result from proposed SO2 atmospheres, as well as from localized, sublimation- or volcanism-generated atmospheres. A homogeneous-layer alternative atmosphere is introduced whose upper limit on the average SO2 column density for both hemispheres implies that a collisionally thick SO2 atmosphere of intermediate density may have been present on Io's dayside during the present observations.

  15. Measurements of stratospheric odd nitrogen at Arrival Heights, Antarctica, in 1991

    NASA Technical Reports Server (NTRS)

    Keys, J. Gordon; Johnston, Paul V.; Blatherwick, R. D.; Murcray, Frank J.

    1994-01-01

    An FTIR spectrometer was installed at Arrival Heights, Antarctica (78 deg S, 167 deg E) in February 1991 to measure the evolution of stratospheric HNO3 during the year. In particular, it was the intention to make the first observations of HNO3 trends during autumn, concurrently with ongoing measurements of column NO2 made with a grating spectrometer. The time-series of NO2 in the Antarctic shows a rapid decline in the column amount during autumn, and a slow recovery in spring, as the photochemical conditions move the species to and from higher storage reservoirs. The new nitric acid data show for the first time that during autumn the vertical column increases from approximately 1.9 x 10(exp 16) molecule cm(exp -2) at day 30 to approximately 3.1 x 10(exp 16) molecule cm(exp -2) by day 100. When the sun returns in spring, it is found that the column amount has fallen to about half the value at the end of autumn. Spring amounts are variable, but as found in the data from previous years remain low inside the vortex. The autumn increase is attributed to the heterogeneous conversion of N2O5 to gas-phase HNO3 on background aerosols. Low nitric acid column amounts at the start of spring suggest that the HNO3 has moved from the gas to the condensed phase on polar stratospheric clouds with the advent of low temperatures during the polar night.

  16. Towards A Representation of Vertically Resolved Ozone Changes in Reanalyses

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Wargan, Krzysztof; Keller, Christoph; McCarty, Will; Coy, Larry

    2017-01-01

    The Solar Backscatter Ultraviolet Radiometer (SBUV) instruments on NASA and NOAA spacecraft provide a long-term record of total-column ozone and deep-layer partial columns since about 1980. These data have been carefully processed to extract long-term trends and offer a valuable resource for ozone monitoring. Studies assimilating limb-sounding observations in the Goddard Earth Observing System (GEOS) data assimilation system (DAS) demonstrate that vertical ozone gradients in the upper troposphere and lower stratosphere (UTLS) are much better represented than with the deep-layer SBUV observations. This is exemplified by the use of retrieved ozone from the EOS Microwave Limb Sounder (EOS-MLS) instrument in the MERRA-2 reanalysis, for the period after 2004. This study examines the potential for extending the use of limb-sounding observations at earlier times and into the future, so that future reanalyses may be more applicable to the study of long-term ozone changes.Historical data are available from NASA instruments: the Limb Infrared Monitor of the Stratosphere (LIMS: 1978-1979); the Upper Atmospheric Research Satellite (UARS: 1991-1995); Sounding of the Atmosphere using Broadband Emission Radiometry (SABER: 2000-onwards). For the post EOS-MLS period, the joint NASA-NOAA Ozone Monitoring and Profiling Suite Limb Profiler (OMPS-LP) instrument was launched on the Suomi-NPP platform in 201x and is planned for future platforms. This study will examine two aspects of these data pertaining to future reanalyses. First, the feasibility of merging the EOS-MLS and OMPS-LP instruments to provide a long-term record that extends beyond the potential lifetime of EOS-MLS. If feasible, this would allow for long-term monitoring of ozone recovery in a three-dimensional reanalysis context. Second, the skill of the GEOS DAS in ingesting historical data types will be investigated. Because these do not overlap with EOS-MLS, use will be made of system statistics and evaluation using independent datasets. Impacts of using a complete ozone chemistry module will also be considered.

  17. Control of Meridional Flow by a Non-Uniform Rotational Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1999-01-01

    The diffusive mass transfer of species during crystal growth in vertical ampoules is significantly affected by fluid flow in the liquid mother phase (melt). For electrically conductive melts, an elegant way of remotely inducing and controlling this flow is by utilizing a uniform rotational magnetic field (RMF) in the transverse direction. It induces an azimuthal flow which tends to homogenize the thermal and solutal fields. The rotating field also reduces the diffusion boundary layer, stabilizes temperature fluctuations, and promotes better overall crystal growth. For moderate strengths of the applied magnetic field (2-20 m Tesla) with frequencies of up to 400 Hz, the induced secondary meridional flow becomes significant. It typically consists of one roll at the bottom of the liquid column and a second roll (vortex) at the top. The flow along the centerline (ampoule axis) is directed from the growing solid (interface) towards the liquid (melt). In case of convex interfaces (e.g. in floating zone crystal growth) such flow behavior is beneficial since it suppresses diffusion at the center. However, for concave interfaces (e.g. vertical Bridgman crystal growth) such a flow tends to exacerbate the situation in making the interface shape more concave. It would be beneficial to have some control of this meridional flow- for example, a single recirculating cell with controllable direction and flow magnitude will make this technique even more attractive for crystal growth. Such flow control is a possibility if a non-uniform PNE field is utilized for this purpose. Although this idea has been proposed earlier, it has not been conclusively demonstrated so far. In this work, we derive the governing equations for the fluid dynamics for such a system and obtain solutions for a few important cases. Results from parallel experimental measurements of fluid flow in a mercury column subjected to non-uniform RMF will also be presented.

  18. Airborne Sunphotometry of Aerosol Optical Depth and Columnar Water Vapor During ACE-Asia

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Schmid, B.; Russell, P. B.; Livingston, J. M.; Eilers, J. A.; Ramirez, S. A.; Kahn, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    During the Intensive Field Campaign (IFC) of the Aerosol Characterization Experiment - Asia (ACE-Asia), March-May 2001, the 6-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) operated during 15 of the 19 research flights aboard the NCAR C- 130, while its 14-channel counterpart (AATS- 14) was flown successfully on all 18 research flights of a Twin Otter aircraft operated by the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS), Monterey, CA. ACE-Asia was the fourth in a series of aerosol characterization experiments and focused on aerosol outflow from the Asian continent to the Pacific basin. Each ACE was designed to integrate suborbital and satellite measurements and models so as to reduce the uncertainty in calculations of the climate forcing due to aerosols. The Ames Airborne Tracking Sunphotometers measured solar beam transmission at 6 (380-1021 nm, AATS-6) and 14 wavelengths (353-1558 nm, AATS-14) respectively, yielding aerosol optical depth (AOD) spectra and column water vapor (CWV). Vertical differentiation in profiles yielded aerosol extinction and water vapor concentration. The wavelength dependence of AOD and extinction indicates that supermicron dust was often a major component of the aerosol. Frequently this dust-containing aerosol extended to high altitudes. For example, in data flights analyzed to date 34 +/- 13% of full-column AOD(525 nm) was above 3 km. In contrast, only 10 +/- 4% of CWV was above 3 km. In this paper, we will show first sunphotometer-derived results regarding the spatial variation of AOD and CWV, as well as the vertical distribution of aerosol extinction and water vapor concentration. Preliminary comparison studies between our AOD/aerosol extinction data and results from: (1) extinction products derived using in situ measurements and (2) AOD retrievals using the Multi-angle Imaging Spectro-Radiometer (MISR) aboard the TERRA satellite will also be presented.

  19. Characterisation of Central-African emissions based on MAX-DOAS measurements, satellite observations and model simulations over Bujumbura, Burundi.

    NASA Astrophysics Data System (ADS)

    Gielen, Clio; Hendrick, Francois; Pinardi, Gaia; De Smedt, Isabelle; Stavrakou, Trissevgeni; Yu, Huan; Fayt, Caroline; Hermans, Christian; Bauwens, Maité; Ndenzako, Eugene; Nzohabonayo, Pierre; Akimana, Rachel; Niyonzima, Sébastien; Müller, Jean-Francois; Van Roozendael, Michel

    2016-04-01

    Central Africa is known for its strong biogenic, pyrogenic, and to a lesser extent anthropogenic emissions. Satellite observations of species like nitrogen dioxide (NO2) and formaldehyde (HCHO), as well as inverse modelling results have shown that there are large uncertainties associated with the emissions in this region. There is thus a need for additional measurements, especially from the ground, in order to better characterise the biomass-burning and biogenic products emitted in this area. We present MAX-DOAS measurements of NO2, HCHO, and aerosols performed in Central Africa, in the city of Bujumbura, Burundi (3°S, 29°E, 850m). A MAX-DOAS instrument has been operating at this location by BIRA-IASB since late 2013. Aerosol-extinction and trace-gases vertical profiles are retrieved by applying the optimal-estimation-based profiling tool bePRO to the measured O4, NO2 and HCHO slant-column densities. The MAX-DOAS vertical columns and profiles are used for investigating the diurnal and seasonal cycles of NO2, HCHO, and aerosols. Regarding the aerosols, the retrieved AODs are compared to co-located AERONET sun photometer measurements for verification purpose, while in the case of NO2 and HCHO, the MAX-DOAS vertical columns and profiles are used for validating GOME-2 and OMI satellite observations. To characterise the biomass-burning and biogenic emissions in the Bujumbura region, the trace gases and aerosol MAX-DOAS retrievals are used in combination to MODIS fire counts/radiative-power and GOME-2/OMI NO2 and HCHO satellite data, as well as simulations from the NOAA backward trajectory model HYSPLIT. First results show that HCHO seasonal variation around local noon is driven by the alternation of rain and dry periods, the latter being associated with intense biomass-burning agricultural activities and forest fires in the south/south-east and transport from this region to Bujumbura. In contrast, NO2 is seen to depend mainly on local emissions close to the city, due to the short lifetime of this species (typically 1-2 hours). Regarding the biogenic emissions, it is found that they play only a minor role in the observed HCHO seasonality. These results are further assessed using the tropospheric 3D-CTM IMAGES.

  20. Sources, seasonality, and trends of Southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    NASA Astrophysics Data System (ADS)

    Kim, P. S.; Jacob, D. J.; Fisher, J. A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Jimenez, J. L.; Campuzano-Jost, P.; Froyd, K. D.; Liao, J.; Hair, J. W.; Fenn, M. A.; Butler, C. F.; Wagner, N. L.; Gordon, T. D.; Welti, A.; Wennberg, P. O.; Crounse, J. D.; St. Clair, J. M.; Teng, A. P.; Millet, D. B.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.

    2015-07-01

    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the Southeast US during the summer-fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 km × 25 km resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the Southeast US. GEOS-Chem simulation of sulfate requires a missing oxidant, taken here to be stabilized Criegee intermediates, but which could alternatively reflect an unaccounted for heterogeneous process. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 20 % in the cloud convective layer at 1.5-3 km, and 20 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42-] + [NO3-])) is only 0.5-0.7 mol mol-1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by organic aerosol. This would explain the long-term decline of ammonium aerosol in the Southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the Southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the Southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 21 %. The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines are due to shutdowns in both biogenic emissions and UV-driven photochemistry. Surface PM2.5 shows far less summer-to-winter decrease than AOD due to the offsetting effect of weaker boundary layer ventilation. The SEAC4RS aircraft data demonstrate that AODs measured from space are fundamentally consistent with surface PM2.5. This implies that satellites can be used reliably to infer surface PM2.5 over monthly timescales if a good CTM representation of the aerosol vertical profile is available.

  1. Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3

    PubMed Central

    Polimeni, Jonathan R.; Tootell, Roger B.H.

    2016-01-01

    In nonhuman primates (NHPs), secondary visual cortex (V2) is composed of repeating columnar stripes, which are evident in histological variations of cytochrome oxidase (CO) levels. Distinctive “thin” and “thick” stripes of dark CO staining reportedly respond selectively to stimulus variations in color and binocular disparity, respectively. Here, we first tested whether similar color-selective or disparity-selective stripes exist in human V2. If so, available evidence predicts that such stripes should (1) radiate “outward” from the V1–V2 border, (2) interdigitate, (3) differ from each other in both thickness and length, (4) be spaced ∼3.5–4 mm apart (center-to-center), and, perhaps, (5) have segregated functional connections. Second, we tested whether analogous segregated columns exist in a “next-higher” tier area, V3. To answer these questions, we used high-resolution fMRI (1 × 1 × 1 mm3) at high field (7 T), presenting color-selective or disparity-selective stimuli, plus extensive signal averaging across multiple scan sessions and cortical surface-based analysis. All hypotheses were confirmed. V2 stripes and V3 columns were reliably localized in all subjects. The two stripe/column types were largely interdigitated (e.g., nonoverlapping) in both V2 and V3. Color-selective stripes differed from disparity-selective stripes in both width (thickness) and length. Analysis of resting-state functional connections (eyes closed) showed a stronger correlation between functionally alike (compared with functionally unlike) stripes/columns in V2 and V3. These results revealed a fine-scale segregation of color-selective or disparity-selective streams within human areas V2 and V3. Together with prior evidence from NHPs, this suggests that two parallel processing streams extend from visual subcortical regions through V1, V2, and V3. SIGNIFICANCE STATEMENT In current textbooks and reviews, diagrams of cortical visual processing highlight two distinct neural-processing streams within the first and second cortical areas in monkeys. Two major streams consist of segregated cortical columns that are selectively activated by either color or ocular interactions. Because such cortical columns are so small, they were not revealed previously by conventional imaging techniques in humans. Here we demonstrate that such segregated columnar systems exist in humans. We find that, in humans, color versus binocular disparity columns extend one full area further, into the third visual area. Our approach can be extended to reveal and study additional types of columns in human cortex, perhaps including columns underlying more cognitive functions. PMID:26865609

  2. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    NASA Astrophysics Data System (ADS)

    Schaub, D.; Boersma, K. F.; Kaiser, J. W.; Weiss, A. K.; Folini, D.; Eskes, H. J.; Buchmann, B.

    2006-08-01

    Nitrogen dioxide (NO2) vertical tropospheric column densities (VTCs) retrieved from the Global Ozone Monitoring Experiment (GOME) are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute) and BIRA/IASB (Belgian Institute for Space Aeronomy) with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK) of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration) and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively). The mean relative difference (with respect to the ground-based columns) is -7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a priori and the ground-based NO2 profile is analysed by considering AK information. It is moderate and indicates similar shapes of the profiles for clear sky conditions. Only for large GOME columns, differences between the profile shapes explain the larger part of the relative difference. In contrast, the other error sources give rise to the larger relative differences found towards smaller columns. Further, for the clear sky cases, errors from different sources are found to compensate each other partially. The comparison for cloudy cases indicates a poorer agreement between the columns (n=60, R=0.61). The mean relative difference between the columns is 60% with a standard deviation of 118% and GOME on average overestimating the ground-based columns. The clear improvement after inclusion of AK information (n=60, R=0.87) suggests larger errors in the a priori NO2 profiles under cloudy conditions and demonstrates the importance of using accurate profile information for (partially) clouded scenes.

  3. Multi-body dynamics modelling of seated human body under exposure to whole-body vibration.

    PubMed

    Yoshimura, Takuya; Nakai, Kazuma; Tamaoki, Gen

    2005-07-01

    In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spine such as chronic lumbago or low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column and to make up appropriate guidelines or counter plans. In ISO2631-1 or ISO2631-5 assessment of vibration effects to human in the view of adverse-health effect was already presented. However, it is necessary to carry out further research to understand the effect of vibration to human body to examine their validity and to prepare for the future revision. This paper shows the detail measurement of human response to vibration, and the modelling of the seated human body for the assessment of the vibration risk. The vibration transmissibilities from the seat surface to the spinal column and to the head are measured during the exposure to vertical excitation. The modal paramters of seated subject are extracted in order to understand the dominant natural modes. For the evaluation of adverse-health effect the multi-body modelling of the spinal column is introduced. A simplified model having 10 DOFs is counstructed so that the transmissibilities of the model fit to those of experiment. The transient response analysis is illustrated when a half-sine input is applied. The relative displacements of vertebrae are evaluated, which can be a basis for the assessment of vibration risk. It is suggested that the multi-body dynamic model is used to evaluate the vibration effect to the spinal column for seated subjects.

  4. On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E.

    PubMed

    van Lier-Walqui, Marcus; Fridlind, Ann M; Ackerman, Andrew S; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R; North, Kirk; Kollias, Pavlos; Posselt, Derek J

    2016-02-01

    The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote-sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase ( K DP ) observed above the melting level are associated with deep convection updraft cells, so-called " K DP columns" are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR K DP volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity ( Z DR ). Results indicate strong correlations of K DP volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of K DP columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of Z DR to K DP shows commonalities in information content of each, as well as potential problems with Z DR associated with observational artifacts.

  5. Structure and properties of the egg mass of the ommastrephid squid Todarodes pacificus

    PubMed Central

    Puneeta, Pandey; Yamamoto, Jun; Adachi, Kohsuke; Kato, Yoshiki; Sakurai, Yasunori

    2017-01-01

    The Japanese flying squid, Todarodes pacificus, is thought to spawn neutrally buoyant egg masses that retain a specific location in the water column by floating at the interface between water layers of slightly different densities. It is important to understand the physical process that determines the vertical distribution of the egg masses to predict their horizontal drift in relation to embryo survival and subsequent recruitment. Here, mesocosm experiments were conducted in a 300 m3 tank by creating a thermally stratified (17–22°C) water column to obtain egg masses. A cage net methodology was developed to sustain egg masses for detailed observation. We measured the density of the egg masses of T. pacificus, and used this information to infer the vertical distribution patterns of the egg masses at the spawning grounds (Tsushima Strait, Japan). When measured separately, the density of the outer jelly of each egg mass was 2.7 σ units higher than that of the surrounding water. The outer jelly and the specific gravity of embedded individual eggs (~1.10) cause the egg masses to have very slight negative buoyancy relative to the water in which they are formed. Analysis of the vertical profile of the spawning ground showed that water density (σθ) increased sharply at ~30 m depth; thus, egg masses might settle above the pycnocline layer. In conclusion, we suggest that T. pacificus egg masses might retain their location in the water column by floating at the interface between water layers of slightly different densities, which happen to be above the pycnocline layer (actual depth varies seasonally/annually) in the Tsushima Strait between Korea and Japan. PMID:28767686

  6. Structure and properties of the egg mass of the ommastrephid squid Todarodes pacificus.

    PubMed

    Puneeta, Pandey; Vijai, Dharmamony; Yamamoto, Jun; Adachi, Kohsuke; Kato, Yoshiki; Sakurai, Yasunori

    2017-01-01

    The Japanese flying squid, Todarodes pacificus, is thought to spawn neutrally buoyant egg masses that retain a specific location in the water column by floating at the interface between water layers of slightly different densities. It is important to understand the physical process that determines the vertical distribution of the egg masses to predict their horizontal drift in relation to embryo survival and subsequent recruitment. Here, mesocosm experiments were conducted in a 300 m3 tank by creating a thermally stratified (17-22°C) water column to obtain egg masses. A cage net methodology was developed to sustain egg masses for detailed observation. We measured the density of the egg masses of T. pacificus, and used this information to infer the vertical distribution patterns of the egg masses at the spawning grounds (Tsushima Strait, Japan). When measured separately, the density of the outer jelly of each egg mass was 2.7 σ units higher than that of the surrounding water. The outer jelly and the specific gravity of embedded individual eggs (~1.10) cause the egg masses to have very slight negative buoyancy relative to the water in which they are formed. Analysis of the vertical profile of the spawning ground showed that water density (σθ) increased sharply at ~30 m depth; thus, egg masses might settle above the pycnocline layer. In conclusion, we suggest that T. pacificus egg masses might retain their location in the water column by floating at the interface between water layers of slightly different densities, which happen to be above the pycnocline layer (actual depth varies seasonally/annually) in the Tsushima Strait between Korea and Japan.

  7. Precipitation Recycling and the Vertical Distribution of Local and Remote Sources of Water for Precipitation

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Atlas, Robert (Technical Monitor)

    2002-01-01

    Precipitation recycling is defined as the amount of water that evaporates from a region that precipitates within the same region. This is also interpreted as the local source of water for precipitation. In this study, the local and remote sources of water for precipitation have been diagnosed through the use of passive constituent tracers that represent regional evaporative sources along with their transport and precipitation. We will discuss the differences between this method and the simpler bulk diagnostic approach to precipitation recycling. A summer seasonal simulation has been analyzed for the regional sources of the United States Great Plains precipitation. While the tropical Atlantic Ocean (including the Gulf of Mexico) and the local continental sources of precipitation are most dominant, the vertically integrated column of water contains substantial water content originating from the Northern Pacific Ocean, which is not precipitated. The vertical profiles of regional water sources indicate that local Great Plains source of water dominates the lower troposphere, predominantly in the PBL. However, the Pacific Ocean source is dominant over a large portion of the middle to upper troposphere. The influence of the tropical Atlantic Ocean is reasonably uniform throughout the column. While the results are not unexpected given the formulation of the model's convective parameterization, the analysis provides a quantitative assessment of the impact of local evaporation on the occurrence of convective precipitation in the GCM. Further, these results suggest that local source of water is not well mixed throughout the vertical column.

  8. OBSERVATIONS AND MAGNETIC FIELD MODELING OF A SOLAR POLAR CROWN PROMINENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su Yingna; Van Ballegooijen, Adriaan, E-mail: ynsu@head.cfa.harvard.edu

    2012-10-01

    We present observations and magnetic field modeling of the large polar crown prominence that erupted on 2010 December 6. Combination of Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and STEREO{sub B}ehind/EUVI allows us to see the fine structures of this prominence both at the limb and on the disk. We focus on the structures and dynamics of this prominence before the eruption. This prominence contains two parts: an active region part containing mainly horizontal threads and a quiet-Sun part containing mainly vertical threads. On the northern side of the prominence channel, both AIA and EUVI observe bright features which appearmore » to be the lower legs of loops that go above then join in the filament. Filament materials are observed to frequently eject horizontally from the active region part to the quiet-Sun part. This ejection results in the formation of a dense-column structure (concentration of dark vertical threads) near the border between the active region and the quiet Sun. Using the flux rope insertion method, we create nonlinear force-free field models based on SDO/Helioseismic and Magnetic Imager line-of-sight magnetograms. A key feature of these models is that the flux rope has connections with the surroundings photosphere, so its axial flux varies along the filament path. The height and location of the dips of field lines in our models roughly replicate those of the observed prominence. Comparison between model and observations suggests that the bright features on the northern side of the channel are the lower legs of the field lines that turn into the flux rope. We suggest that plasma may be injected into the prominence along these field lines. Although the models fit the observations quiet well, there are also some interesting differences. For example, the models do not reproduce the observed vertical threads and cannot explain the formation of the dense-column structure.« less

  9. Head and cervical spine posture in behaving rats: implications for modeling human conditions involving the head and cervical spine.

    PubMed

    Griffin, C; Choong, W Y; Teh, W; Buxton, A J; Bolton, P S

    2015-02-01

    The aim of this study was to define the temporal and spatial (postural) characteristics of the head and cervical vertebral column (spine) of behaving rats in order to better understand their suitability as a model to study human conditions involving the head and neck. Time spent in each of four behavioral postures was determined from video tape recordings of rats (n = 10) in the absence and presence of an intruder rat. Plain film radiographic examination of a subset of these rats (n = 5) in each of these postures allowed measurement of head and cervical vertebral column positions adopted by the rats. When single they were quadruped or crouched most (∼80%) of the time and bipedal either supported or free standing for only ∼10% of the time. The introduction of an intruder significantly (P < 0.0001) reduced the proportion of time rats spent quadruped (median, from 71% to 47%) and bipedal free standing (median, from 2.9% to 0.4%). The cervical spine was orientated (median, 25-75 percentile) near vertical (18.8°, 4.2°-30.9°) when quadruped, crouched (15.4°, 7.6°-69.3°) and bipedal supported (10.5°, 4.8°-22.6°) but tended to be less vertical oriented when bipedal free standing (25.9°, 7.7°-39.3°). The range of head positions relative to the cervical spine was largest when crouched (73.4°) and smallest when erect free standing (17.7°). This study indicates that, like humans, rats have near vertical orientated cervical vertebral columns but, in contrast to humans, they displace their head in space by movements at both the cervico-thoracic junction and the cranio-cervical regions. © 2014 Wiley Periodicals, Inc.

  10. Internal waves interacting with particles in suspension

    NASA Astrophysics Data System (ADS)

    Micard, Diane

    2016-04-01

    Internal waves are produced as a consequence of the dynamic balance between buoy- ancy and gravity forces when a particle of fluid is vertically displaced in a stable stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves to propagate. Furthermore, these two environ- ments stock a vast amount of particles in suspension, which present a large spectrum of physical properties (size, density, shape), and can be organic, mineral or pollutant agents. Therefore, it is reasonable to expect that internal waves will have an active effect over the dynamics of these particles. In order to study the interaction of internal waves and suspended particles, an ide- alized experimental setup has been implemented. A linear stratification is produced in a 80×40×17 cm3 tank, in which two dimensional plane waves are created thanks to the inno- vative wave generator GOAL. In addition, a particle injector has been developed to produce a vertical column of particles within the fluid, displaying the same two-dimensional sym- metry as the waves. The particle injector allows to control the volumic fraction of particles and the size of the column. The presence of internal waves passing through the column of particles allowed to observe two main effects: The column oscillates around an equilibrium position (which is observed in both, the contours an the interior of the column), and the column is displaced as a whole. The column is displaced depending on the characteristics of the column, the gradient of the density, and the intensity and frequency of the wave. When displaced, the particles within the column are sucked towards the source of waves. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift generated by the wave over the time the particles stay in the wave beam before settling.

  11. Development of achiral and chiral 2D HPLC methods for analysis of albendazole metabolites in microsomal fractions using multivariate analysis for the in vitro metabolism.

    PubMed

    Belaz, Kátia Roberta A; Pereira-Filho, Edenir Rodrigues; Oliveira, Regina V

    2013-08-01

    In this work, the development of two multidimensional liquid chromatography methods coupled to a fluorescence detector is described for direct analysis of microsomal fractions obtained from rat livers. The chiral multidimensional method was then applied for the optimization of the in vitro metabolism of albendazole by experimental design. Albendazole was selected as a model drug because of its anthelmintics properties and recent potential for cancer treatment. The development of two fully automated achiral-chiral and chiral-chiral high performance liquid chromatography (HPLC) methods for the determination of albendazole (ABZ) and its metabolites albendazole sulphoxide (ABZ-SO), albendazole sulphone (ABZ-SO2) and albendazole 2-aminosulphone (ABZ-SO2NH2) in microsomal fractions are described. These methods involve the use of a phenyl (RAM-phenyl-BSA) or octyl (RAM-C8-BSA) restricted access media bovine serum albumin column for the sample clean-up, followed by an achiral phenyl column (15.0×0.46cmI.D.) or a chiral amylose tris(3,5-dimethylphenylcarbamate) column (15.0×0.46cmI.D.). The chiral 2D HPLC method was applied to the development of a compromise condition for the in vitro metabolism of ABZ by means of experimental design involving multivariate analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Relative Role of Horizontal and Vertical Processes in Arctic Amplification

    NASA Astrophysics Data System (ADS)

    Kim, K. Y.

    2017-12-01

    The physical mechanism of Arctic amplification is still controversial. Specifically, relative role of vertical processes resulting from the reduction of sea ice in the Barents-Kara Seas is not clearly understood in comparison with the horizontal advection of heat and moisture. Using daily data, heat and moisture budgets are analyzed during winter (Dec. 1-Feb. 28) over the region of sea ice reduction in order to delineate the relative roles of horizontal and vertical processes. Detailed heat and moisture budgets in the atmospheric column indicate that the vertical processes, release of turbulent heat fluxes and evaporation, are a major contributor to the increased temperature and specific humidity over the Barents-Kara Seas. In addition, greenhouse effect caused by the increased specific humidity, also plays an important role in Arctic amplification. Horizontal processes such as advection of heat and moisture are the primary source of variability (fluctuations) in temperature and specific humidity in the atmospheric column. Advection of heat and moisture, on the other hand, is little responsible for the net increase in temperature and specific humidity over the Barents-Kara Seas.

  13. Habitat Parameters for Oxygen Minimum Zone Copepods from the Eastern Tropical North Pacific

    NASA Astrophysics Data System (ADS)

    Wishner, K. F.; Outram, D.; Grassian, B.

    2016-02-01

    Oxygen minimum zones (OMZs) affect zooplankton distributions and may be expanding in worldwide spatial and vertical extent from climate change. We studied zooplankton (especially copepod) distributions in the Eastern Tropical North Pacific (ETNP) OMZ, using day-night vertically-stratified MOCNESS tows (0-1000m). Habitat parameters (temperature, oxygen, depth) were defined for abundant copepod species and groups. Zooplankton layers, with a unique suite of species, occurred at upper and lower OMZ oxyclines. At the mesopelagic lower oxycline, there was a layer with a characteristic species assemblage and a sharp 10X biomass increase compared to nearby depths. The lower oxycline layer occurred within a narrow very low oxygen concentration (2µM). At two stations with different OMZ vertical extents, the lower oxycline layer depth changed with OMZ thickness, remaining at the same oxygen concentration but different temperature. Life history habitat (diapause depth, temperature) of the copepod Eucalanus inermis was also affected. In the upper water column at the two stations, large diel vertical migrators (fish, euphausiids) descended to taxon-specific daytime depths in the mid OMZ, regardless of oxygen level, but copepod species distributions showed more variability and sensitivity to habitat parameters. We predict that, with moderate OMZ expansion, the lower oxycline community will likely shift depth, thus re-distributing midwater biomass, species, and processes. In the upper water column, large vertical migrator distributions may be less affected, while smaller taxa (copepods) will likely be sensitive to habitat changes. At some point, the ability to withstand these changes may be exceeded for particular taxa, with consequences for assemblages, trophic webs, and export. In keeping with the session theme, we hope to compare our oceanic findings with others' results from coastal hypoxic situations.

  14. Seasonally dynamic diel vertical migrations of Mysis diluviana, coregonine fishes, and siscowet lake trout in the pelagia of western Lake Superior

    USGS Publications Warehouse

    Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Stockwell, Jason D.; Yule, Daniel L.; Sass, Greg G.

    2011-01-01

    Diel vertical migrations are common among many aquatic species and are often associated with changing light levels. The underlying mechanisms are generally attributed to optimizing foraging efficiency or growth rates and avoiding predation risk (μ). The objectives of this study were to (1) assess seasonal and interannual changes in vertical migration patterns of three trophic levels in the Lake Superior pelagic food web and (2) examine the mechanisms underlying the observed variability by using models of foraging, growth, and μ. Our results suggest that the opossum shrimp Mysis diluviana, kiyi Coregonus kiyi, and siscowet lake trout Salvelinus namaycush migrate concurrently during each season, but spring migrations are less extensive than summer and fall migrations. In comparison with M. diluviana, kiyis, and siscowets, the migrations by ciscoes C. artedi were not as deep in the water column during the day, regardless of season. Foraging potential and μ probably drive the movement patterns of M. diluviana, while our modeling results indicate that movements by kiyis and ciscoes are related to foraging opportunity and growth potential and receive a lesser influence from μ. The siscowet is an abundant apex predator in the pelagia of Lake Superior and probably undertakes vertical migrations in the water column to optimize foraging efficiency and growth. The concurrent vertical movement patterns of most species are likely to facilitate nutrient transport in this exceedingly oligotrophic ecosystem, and they demonstrate strong linkages between predators and prey. Fishery management strategies should use an ecosystem approach and should consider how altering the densities of long-lived top predators produces cascading effects on the nutrient cycling and energy flow in lower trophic levels.

  15. Global Free-tropospheric NO2 Abundances Derived Using a Cloud Slicing Technique from AURA OMI

    NASA Technical Reports Server (NTRS)

    Choi, S.; Joiner, J.; Choi, Y.; Duncan, B.N.; Vasilkov, A.; Krotkov, N.; Bucsela, E.J.

    2014-01-01

    We derive free-tropospheric NO2 volume mixing ratios (VMRs) by applying a cloud-slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top of the atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud-slicing data indicates signatures of lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the global modeling initiative (GMI) for cloudy conditions (cloud optical depth less than10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in the seasonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected by lightning-generated NOx.

  16. Composite silicon nanostructure arrays fabricated on optical fibre by chemical etching of multicrystal silicon film.

    PubMed

    Zuo, Zewen; Zhu, Kai; Ning, Lixin; Cui, Guanglei; Qu, Jun; Huang, Wanxia; Shi, Yi; Liu, Hong

    2015-04-17

    Integrating nanostructures onto optical fibers presents a promising strategy for developing new-fashioned devices and extending the scope of nanodevices' applications. Here we report the first fabrication of a composite silicon nanostructure on an optical fiber. Through direct chemical etching using an H2O2/HF solution, multicrystal silicon films with columnar microstructures are etched into a vertically aligned, inverted-cone-like nanorod array embedded in a nanocone array. A faster dissolution rate of the silicon at the void-rich boundary regions between the columns is found to be responsible for the separation of the columns, and thus the formation of the nanostructure array. The morphology of the nanorods primarily depends on the microstructure of the columns in the film. Through controlling the microstructure of the as-grown film and the etching parameters, the structural control of the nanostructure is promising. This fabrication method can be extended to a larger length scale, and it even allows roll-to-roll processing.

  17. Volcanic plume height measured by seismic waves based on a mechanical model

    USGS Publications Warehouse

    Prejean, Stephanie G.; Brodsky, Emily E.

    2011-01-01

    In August 2008 an unmonitored, largely unstudied Aleutian volcano, Kasatochi, erupted catastrophically. Here we use seismic data to infer the height of large eruptive columns such as those of Kasatochi based on a combination of existing fluid and solid mechanical models. In so doing, we propose a connection between a common, observable, short-period seismic wave amplitude to the physics of an eruptive column. To construct a combined model, we estimate the mass ejection rate of material from the vent on the basis of the plume height, assuming that the height is controlled by thermal buoyancy for a continuous plume. Using the estimated mass ejection rate, we then derive the equivalent vertical force on the Earth through a momentum balance. Finally, we calculate the far-field surface waves resulting from the vertical force. The model performs well for recent eruptions of Kasatochi and Augustine volcanoes if v, the velocity of material exiting the vent, is 120-230 m s-1. The consistency between the seismically inferred and measured plume heights indicates that in these cases the far-field ~1 s seismic energy radiated by fluctuating flow in the volcanic jet during the eruption is a useful indicator of overall mass ejection rates. Thus, use of the model holds promise for characterizing eruptions and evaluating ash hazards to aircraft in real time on the basis of far-field short-period seismic data. This study emphasizes the need for better measurements of eruptive plume heights and a more detailed understanding of the full spectrum of seismic energy radiated coeruptively.

  18. Density-driven transport of gas phase chemicals in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Fen, Chiu-Shia; Sun, Yong-tai; Cheng, Yuen; Chen, Yuanchin; Yang, Whaiwan; Pan, Changtai

    2018-01-01

    Variations of gas phase density are responsible for advective and diffusive transports of organic vapors in unsaturated soils. Laboratory experiments were conducted to explore dense gas transport (sulfur hexafluoride, SF6) from different source densities through a nitrogen gas-dry soil column. Gas pressures and SF6 densities at transient state were measured along the soil column for three transport configurations (horizontal, vertically upward and vertically downward transport). These measurements and others reported in the literature were compared with simulation results obtained from two models based on different diffusion approaches: the dusty gas model (DGM) equations and a Fickian-type molar fraction-based diffusion expression. The results show that the DGM and Fickian-based models predicted similar dense gas density profiles which matched the measured data well for horizontal transport of dense gas at low to high source densities, despite the pressure variations predicted in the soil column were opposite to the measurements. The pressure evolutions predicted by both models were in trend similar to the measured ones for vertical transport of dense gas. However, differences between the dense gas densities predicted by the DGM and Fickian-based models were discernible for vertically upward transport of dense gas even at low source densities, as the DGM-based predictions matched the measured data better than the Fickian results did. For vertically downward transport, the dense gas densities predicted by both models were not greatly different from our experimental measurements, but substantially greater than the observations obtained from the literature, especially at high source densities. Further research will be necessary for exploring factors affecting downward transport of dense gas in soil columns. Use of the measured data to compute flux components of SF6 showed that the magnitudes of diffusive flux component based on the Fickian-type diffusion expressions in terms of molar concentration, molar fraction and mass density fraction gradient were almost the same. However, they were greater than the result computed with the mass fraction gradient for > 24% and the DGM-based result for more than one time. As a consequence, the DGM-based total flux of SF6 was in magnitude greatly less than the Fickian result not only for horizontal transport (diffusion-dominating) but also for vertical transport (advection and diffusion) of dense gas. Particularly, the Fickian-based total flux was more than two times in magnitude as much as the DGM result for vertically upward transport of dense gas.

  19. Elevation effects in volcano applications of the COSPEC

    USGS Publications Warehouse

    Gerlach, T.M.

    2003-01-01

    Volcano applications commonly involve sizeable departures from the reference pressure and temperature of COSPEC calibration cells. Analysis shows that COSPEC SO2 column abundances and derived mass emission rates are independent of pressure and temperature, and thus unaffected by elevation effects related to deviations from calibration cell reference state. However, path-length concentrations are pressure and temperature dependent. Since COSPEC path-length concentration data assume the reference pressure and temperature of calibration cells, they can lead to large errors when used to calculate SO2 mixing ratios of volcanic plumes. Correction factors for COSPEC path-length concentrations become significant (c.10%) at elevations of about 1 km (e.g. Kilauea volcano) and rise rapidly to c.80% at 6 km (e.g. Cotopaxi volcano). Calculating SO2 mixing ratios for volcanic plumes directly from COSPEC path-length concentrations always gives low results. Corrections can substantially increase mixing ratios; for example, corrections increase SO2 ppm concentrations reported for the Mount St Helens, Colima, and Erebus plumes by 25-50%. Several arguments suggest it would be advantageous to calibrate COSPEC measurements in column abundance units rather than path-length concentration units.

  20. Mosaic synaptopathy and functional defects in Cav1.4 heterozygous mice and human carriers of CSNB2

    PubMed Central

    Michalakis, Stylianos; Shaltiel, Lior; Sothilingam, Vithiyanjali; Koch, Susanne; Schludi, Verena; Krause, Stefanie; Zeitz, Christina; Audo, Isabelle; Lancelot, Marie-Elise; Hamel, Christian; Meunier, Isabelle; Preising, Markus N.; Friedburg, Christoph; Lorenz, Birgit; Zabouri, Nawal; Haverkamp, Silke; Garrido, Marina Garcia; Tanimoto, Naoyuki; Seeliger, Mathias W.; Biel, Martin; Wahl-Schott, Christian A.

    2014-01-01

    Mutations in CACNA1F encoding the α1-subunit of the retinal Cav1.4 L-type calcium channel have been linked to Cav1.4 channelopathies including incomplete congenital stationary night blindness type 2A (CSNB2), Åland Island eye disease (AIED) and cone-rod dystrophy type 3 (CORDX3). Since CACNA1F is located on the X chromosome, Cav1.4 channelopathies are typically affecting male patients via X-chromosomal recessive inheritance. Occasionally, clinical symptoms have been observed in female carriers, too. It is currently unknown how these mutations lead to symptoms in carriers and how the retinal network in these females is affected. To investigate these clinically important issues, we compared retinal phenotypes in Cav1.4-deficient and Cav1.4 heterozygous mice and in human female carrier patients. Heterozygous Cacna1f carrier mice have a retinal mosaic consistent with differential X-chromosomal inactivation, characterized by adjacent vertical columns of affected and non-affected wild-type-like retinal network. Vertical columns in heterozygous mice are well comparable to either the wild-type retinal network of normal mice or to the retina of homozygous mice. Affected retinal columns display pronounced rod and cone photoreceptor synaptopathy and cone degeneration. These changes lead to vastly impaired vision-guided navigation under dark and normal light conditions and reduced retinal electroretinography (ERG) responses in Cacna1f carrier mice. Similar abnormal ERG responses were found in five human CACNA1F carriers, four of which had novel mutations. In conclusion, our data on Cav1.4 deficient mice and human female carriers of mutations in CACNA1F are consistent with a phenotype of mosaic CSNB2. PMID:24163243

  1. EOS-Aura's Ozone Monitoring Instrument (OMI): Validation Requirements

    NASA Technical Reports Server (NTRS)

    Brinksma, E. J.; McPeters, R.; deHaan, J. F.; Levelt, P. F.; Hilsenrath, E.; Bhartia, P. K.

    2003-01-01

    OMI is an advanced hyperspectral instrument that measures backscattered radiation in the UV and visible. It will be flown as part of the EOS Aura mission and provide data on atmospheric chemistry that is highly synergistic with other Aura instruments HIRDLS, MLS, and TES. OMI is designed to measure total ozone, aerosols, cloud information, and UV irradiances, continuing the TOMS series of global mapped products but with higher spatial resolution. In addition its hyperspectral capability enables measurements of trace gases such as SO2, NO2, HCHO, BrO, and OClO. A plan for validation of the various OM1 products is now being formulated. Validation of the total column and UVB products will rely heavily on existing networks of instruments, like NDSC. NASA and its European partners are planning aircraft missions for the validation of Aura instruments. New instruments and techniques (DOAS systems for example) will need to be developed, both ground and aircraft based. Lidar systems are needed for validation of the vertical distributions of ozone, aerosols, NO2 and possibly SO2. The validation emphasis will be on the retrieval of these products under polluted conditions. This is challenging because they often depend on the tropospheric profiles of the product in question, and because of large spatial variations in the troposphere. Most existing ground stations are located in, and equipped for, pristine environments. This is also true for almost all NDSC stations. OMI validation will need ground based sites in polluted environments and specially developed instruments, complementing the existing instrumentation.

  2. Nutrient fluxes via radium isotopes from the coast to offshore and from the seafloor to upper waters after the 2009 spring bloom in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Su, Ni; Du, Jinzhou; Liu, Sumei; Zhang, Jing

    2013-12-01

    The horizontal and vertical transport of nutrient-rich water both from the coast and from the seafloor to the overlying water column should play an important role in supplying nutrients required for the periods of vegetative or reproductive growth of phytoplankton. In the present work, radium isotopes (223Ra, 224Ra and 226Ra) in the southern Yellow Sea were measured after a spring bloom in June 2009. The exponential-like decrease of 223Ra away from the coast to offshore waters yielded horizontal eddy diffusivities (Kh) of (2.93±1.47)×107 cm2 s-1 by neglecting the advection. This estimate was smaller than that with advection indicator by as much as 21% when using an analytic model for 223Ra and 226Ra. The corresponding horizontal nutrient fluxes were 1525 µmol m-2 d-1 (DIN), 15.9 µmol m-2 d-1 (DIP) and 826 µmol m-2 d-1 (DSi), which would supply around 16% of N and 3% of P requirements based on the primary productivity. The decrease of 224Ra and 223Ra activities from sediments to the upper water column suggests the vertical eddy diffusion coefficient (Kz) of 6.23±5.58 cm2 s-1 below the thermocline, which was within the Yellow Sea Cold Water Mass (YSCWM). The calculated vertical fluxes of nutrient were 4945 μmol m-2 d-1 (DIN), 236 μmol m-2 d-1 (DIP) and 5315 μmol m-2 d-1 (DSi), accounting for up to 52% of N and 40% of P requirements for the phytoplankton growth. These results demonstrate the role of YSCWM as a relative nutrient-rich pool for the supply of nutrient to the southern Yellow Sea via the vertical diffusion process relative to the horizontal process during the summer season. Such processes will be strengthened during the weak density stratification in spring when algal blooms occur.

  3. Variation in depth of whitetip reef sharks: does provisioning ecotourism change their behaviour?

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard; Abrantes, Kátya G.; Seymour, Jamie; Barnett, Adam

    2011-09-01

    In the dive tourism industry, shark provisioning has become increasingly popular in many places around the world. It is therefore important to determine the impacts that provisioning may have on shark behaviour. In this study, eight adult whitetip reef sharks Triaenodon obesus were tagged with time-depth recorders at Osprey Reef in the Coral Sea, Australia. Tags collected time and depth data every 30 s. The absolute change in depth over 5-min blocks was considered as a proxy for vertical activity level. Daily variations in vertical activity levels were analysed to determine the effects of time of day on whitetip reef shark behaviour. This was done for days when dive boats were absent from the area, and for days when dive boats were present, conducting shark provisioning. Vertical activity levels varied between day and night, and with the presence of boats. In natural conditions (no boats present), sharks remained at more constant depths during the day, while at night animals continuously moved up and down the water column, showing that whitetip reef sharks are nocturnally active. When boats were present, however, there were also long periods of vertical activity during the day. If resting periods during the day are important for energy budgets, then shark provisioning may affect their health. So, if this behaviour alteration occurs frequently, e.g., daily, this has the potential to have significant negative effects on the animals' metabolic rates, net energy gain and overall health, reproduction and fitness.

  4. Benefits of China's efforts in gaseous pollutant control indicated by the bottom-up emissions and satellite observations 2000-2014

    NASA Astrophysics Data System (ADS)

    Xia, Yinmin; Zhao, Yu; Nielsen, Chris P.

    2016-07-01

    To evaluate the effectiveness of national air pollution control policies, the emissions of SO2, NOX, CO and CO2 in China are estimated using bottom-up methods for the most recent 15-year period (2000-2014). Vertical column densities (VCDs) from satellite observations are used to test the temporal and spatial patterns of emissions and to explore the ambient levels of gaseous pollutants across the country. The inter-annual trends in emissions and VCDs match well except for SO2. Such comparison is improved with an optimistic assumption in emission estimation that the emission standards for given industrial sources issued after 2010 have been fully enforced. Underestimation of emission abatement and enhanced atmospheric oxidization likely contribute to the discrepancy between SO2 emissions and VCDs. As suggested by VCDs and emissions estimated under the assumption of full implementation of emission standards, the control of SO2 in the 12th Five-Year Plan period (12th FYP, 2011-2015) is estimated to be more effective than that in the 11th FYP period (2006-2010), attributed to improved use of flue gas desulfurization in the power sector and implementation of new emission standards in key industrial sources. The opposite was true for CO, as energy efficiency improved more significantly from 2005 to 2010 due to closures of small industrial plants. Iron & steel production is estimated to have had particularly strong influence on temporal and spatial patterns of CO. In contrast to fast growth before 2011 driven by increased coal consumption and limited controls, NOX emissions decreased from 2011 to 2014 due to the penetration of selective catalytic/non-catalytic reduction systems in the power sector. This led to reduced NO2 VCDs, particularly in relatively highly polluted areas such as the eastern China and Pearl River Delta regions. In developed areas, transportation is playing an increasingly important role in air pollution, as suggested by the increased ratio of NO2 to SO2 VCDs. For air quality in mega cities, the inter-annual trends in emissions and VCDs indicate that surrounding areas are more influential in NO2 level for Beijing than those for Shanghai.

  5. A New Retrieval Algorithm for OMI NO2: Tropospheric Results and Comparisons with Measurements and Models

    NASA Technical Reports Server (NTRS)

    Swartz, W. H.; Bucesla, E. J.; Lamsal, L. N.; Celarier, E. A.; Krotkov, N. A.; Bhartia, P, K,; Strahan, S. E.; Gleason, J. F.; Herman, J.; Pickering, K.

    2012-01-01

    Nitrogen oxides (NOx =NO+NO2) are important atmospheric trace constituents that impact tropospheric air pollution chemistry and air quality. We have developed a new NASA algorithm for the retrieval of stratospheric and tropospheric NO2 vertical column densities using measurements from the nadir-viewing Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. The new products rely on an improved approach to stratospheric NO2 column estimation and stratosphere-troposphere separation and a new monthly NO2 climatology based on the NASA Global Modeling Initiative chemistry-transport model. The retrieval does not rely on daily model profiles, minimizing the influence of a priori information. We evaluate the retrieved tropospheric NO2 columns using surface in situ (e.g., AQS/EPA), ground-based (e.g., DOAS), and airborne measurements (e.g., DISCOVER-AQ). The new, improved OMI tropospheric NO2 product is available at high spatial resolution for the years 200S-present. We believe that this product is valuable for the evaluation of chemistry-transport models, examining the spatial and temporal patterns of NOx emissions, constraining top-down NOx inventories, and for the estimation of NOx lifetimes.

  6. Spatial variance and assessment of nitrogen dioxide pollution in major cities of Pakistan along N5-Highway.

    PubMed

    Shabbir, Yasir; Khokhar, Muhammad Fahim; Shaiganfar, Reza; Wagner, Thomas

    2016-05-01

    This paper discusses the findings of the first car MAX-DOAS (multi-axis differential optical absorption spectroscopy) field campaign (300km long) along the National Highway-05 (N5-Highway) of Pakistan conducted on 13 and 14 November, 2012. The main objective of the field campaign was to assess the spatial distribution of tropospheric nitrogen dioxide (NO2) columns and corresponding concentrations along the N5-Highway from Islamabad to Lahore. Source identification of NO2 revealed that the concentrations were higher within major cities along the highway. The highest NO2 vertical column densities (NO2 VCDs) were found around two major cities of Rawalpindi and Lahore. This study also presents a comparison of NO2 VCDs measured by the ozone monitoring instrument (OMI) and car MAX-DOAS observations. The comparison revealed similar spatial distribution of the NO2 columns with both car MAX-DOAS and satellite observations, but the car MAX-DOAS observations show much more spatial details. Maximum NO2 VCD retrieved from car MAX-DOAS observations was up to an order of magnitude larger than the OMI observations in urban areas. Copyright © 2015. Published by Elsevier B.V.

  7. Comparison Between IASI/Metop-A and OMI/Aura Ozone Column Amounts with EUBREWNET Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, Ernesto

    2016-07-01

    This work addresses the comparison of {bf IASI (Infrared Atmospheric Sounding Interferometer)} on board Metop-A and {bf OMI (Ozone Monitoring Instrument)} on board Aura to several ground-based Brewer spectrophotometers belonging to the {bf European Brewer Network (EUBREWNET)} for the period September 2010 to December 2015. The focus of this study is to examine how well the satellite retrieval products capture the total ozone column amounts (TOC) at different latitudes and evaluate the different levels of Brewer spectrophotometer data. On this comparison Level 1, 1.5 and 2 Brewer data will be used to evaluate satellite data, where: 1) Level 1 Brewer data are the TOC calculated with the standard Brewer algorithm from the direct sun measurements; 2) Level 1.5 Brewer data are Level 1.0 observations filtered and corrected from instrumental issues: and 3) Level 2.0 Brewer data are 1.5 observations, but validated with a posteriori calibration. The IASI retrievals examined are operational IASI Level 2 products, version 5 from September 2010 to October 2014, and version 6 from October 2014 to December 2015, from {it EUMETSAT Data Centre}, while OMI retrievals are OMI-DOAS TOC products extracted from the {it NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)}. The differences and their implications for the retrieved products will be discussed and, in order to evaluate the quality and sensitivity of each product, special attention will be put on analyzing the instrumental errors from these different measurement techniques. Furthermore, those parameters that could affect the comparison of the different datasets such as the different viewing geometry, the satellite data vertical sensitivity, cloudiness conditions, spectral region used for retrievals, and so on, will be analyzed in detail.

  8. Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops With a Pulsed Multi-Wavelength Airborne Lidar

    NASA Technical Reports Server (NTRS)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael R.; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; hide

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was approx. 5% for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 micro-s wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90% of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  9. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    NASA Astrophysics Data System (ADS)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; Chen, Jeff; Choi, Yonghoon; Yang, Mei Ying Melissa

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ˜ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  10. Estimation of Solar Energy on Vertical 3D Building Walls on City Quarter Scale

    NASA Astrophysics Data System (ADS)

    Jaugsch, F.; Löwner, M.-O.

    2016-10-01

    In urban areas, solar energy is one promising source of renewable energy to achieve the EU parliament's goal of reducing CO2 emissions by 20 % compared to 1990. Although annual radiation on vertical walls is lower than that on roof surfaces, they are larger in area and, therefore may contribute to energy production. On the other hand, the modelling of shadowing effects is cost intensive in an complex urban environment. Here we present a method for the calculation of solar potential on vertical walls for simple 2D maps with additional building height information. We introduced observer point columns that enable a fast decision whether a whole vertical set of observer points is illuminated or not. By the introduction of a maximum shade length, we reduce processing time in ArcGIS. 206,291 points of 130 buildings have been analysed in time steps of 15 minutes resulting in 15 769 pairs of solar angles. Results disprove the potential of vertical walls serving to fill the winter gap of roof mounted solar energy plants. Best wall orientation for the deployment of solar panels are west and east in summer, whereas it is southeast in winter.

  11. Algebraic motion of vertically displacing plasmas

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Amitava; Pfefferle, David; Hirvijoki, Eero

    2017-10-01

    The vertical displacement of tokamak plasmas is modelled during the non-linear phase by a free-moving current-carrying rod coupled to a set of fixed conducting wires and a cylindrical conducting shell. The models capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the vacuum vessel. The plasma is assumed not to vary during the VDE such that it behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented from coming in contact with the wall due to steep effective potential barriers by the eddy currents, and will hence oscillate at Alfvénic frequencies about a given force-free position. In addition to damping oscillations, resistivity allows for the column to drift towards the vessel on slow flux penetration timescales. The initial exponential motion of the plasma, i.e. the resistive vertical instability, is succeeded by a non-linear sinking behaviour, that is shown analytically to be algebraic and decelerative. The acceleration of the plasma column often observed in experiments is thus conjectured to originate from an early sharing of toroidal current between the core, the halo plasma and the wall or from the thermal quench dynamics precipitating loss of plasma current

  12. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China.

    PubMed

    Luo, Xiaojun; Mai, Bixian; Yang, Qingshu; Fu, Jiamo; Sheng, Guoying; Wang, Zhishi

    2004-06-01

    Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) were measured in suspended particles and dissolved phase from the Baiertang water column and the Macao water column samples as collected from the Guangzhou channel of the Pearl River and the Macao harbor, where the sediments were heavily contaminated with organic pollutants. Total OCPs concentration varies from 23.4 to 61.7 ng/l in Baiertang water column and from 25.2 to 67.8 ng/l in Macao column, while total PAHs concentration varies from 987.1 to 2878.5 ng/l in the Baiertang water column and from 944.0 to 6654.6 ng/l in the Macao column. The vertical distribution profiles of pollutants and the partition of pollutants between particles and dissolved phases indicate that the sediments in Baiertang act as an important source of selected pollutants, and the pollutants in water of this region were mainly originated from the release and re-suspension of contaminants residing in the sediments. The sediments in Macao harbor act as a reservoir for organochlorine pesticides, such as DDTs mainly introduced by river inflow from Xijiang and PAHs input by brackish water from the Lingdingyang estuary. Combustion of fossil fuels and petroleum input are the main sources of PAHs in the Macao water column, while combustion of fossil fuels and coal is responsible for the PAHs in the Baiertang water column. The ratios of DDT/(DDD+DDE) for the Macao water column samples demonstrate that such chemicals were input into this region in recent times.

  13. Vertical Profiles as Observational Constraints on Nitrous Oxide (N2O) Emissions in an Agricultural Region

    NASA Astrophysics Data System (ADS)

    Pusede, S.; Diskin, G. S.

    2015-12-01

    We use diurnal variability in near-surface N2O vertical profiles to derive N2O emission rates. Our emissions estimates are ~3 times greater than are accounted for by inventories, a discrepancy in line with results from previous studies using different approaches. We quantify the surface N2O concentration's memory of local surface emissions on previous days to be 50-90%. We compare measured profiles both over and away from a dense N2O source region in the San Joaquin Valley, finding that profile shapes, diurnal variability, and changes in integrated near-surface column abundances are distinct according to proximity to source areas. To do this work, we use aircraft observations from the wintertime DISCOVER-AQ project in California's San Joaquin Valley, a region of intense agricultural activity.

  14. Micro-fabricated packed gas chromatography column based on laser etching technology.

    PubMed

    Sun, J H; Guan, F Y; Zhu, X F; Ning, Z W; Ma, T J; Liu, J H; Deng, T

    2016-01-15

    In this work, a micro packed gas chromatograph column integrated with a micro heater was fabricated by using laser etching technology (LET) for analyzing environmental gases. LET is a powerful tool to etch deep well-shaped channels on the glass wafer, and it is the most effective way to increase depth of channels. The fabricated packed GC column with a length of over 1.6m, to our best knowledge, which is the longest so far. In addition, the fabricated column with a rectangular cross section of 1.2mm (depth) × 0.6mm (width) has a large aspect ratio of 2:1. The results show that the fabricated packed column had a large sample capacity, achieved a separation efficiency of about 5800 plates/m and eluted highly symmetrical Gaussian peaks. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to revise assumed aerosol optical properties for an improved representation of aerosol radiative forcing.

  16. On the relationship between the snowflake type aloft and the surface precipitation types at temperatures near 0 °C

    NASA Astrophysics Data System (ADS)

    Sankaré, Housseyni; Thériault, Julie M.

    2016-11-01

    Winter precipitation types can have major consequences on power outages, road conditions and air transportation. The type of precipitation reaching the surface depends strongly on the vertical temperature of the atmosphere, which is often composed of a warm layer aloft and a refreezing layer below it. A small variation of the vertical structure can lead to a change in the type of precipitation near the surface. It has been shown in previous studies that the type of precipitation depends also on the precipitation rate, which is directly linked to the particle size distribution and that a difference as low as 0.5 °C in the vertical temperature profile could change the type of precipitation near the surface. Given the importance of better understanding the formation of winter precipitation type, the goal of this study is to assess the impact of the snowflake habit aloft on the type of precipitation reaching the surface when the vertical temperature is near 0 °C. To address this, a one dimensional cloud model coupled with a bulk microphysics scheme was used. Four snowflake types (dendrite, bullet, column and graupel) have been added to the scheme. The production of precipitation at the surface from these types of snow has been compared to available observations. The results showed that the thickness of the snow-rain transition is four times deeper when columns and graupel only fall through the atmosphere compared to dendrites. Furthermore, a temperature of the melting layer that is three (four) times warmer is required to completely melt columns and graupel (dendrites). Finally, the formation of freezing rain is associated with the presence of lower density snowflakes (dendrites) aloft compared to the production of ice pellets (columns). Overall, this study demonstrated that the type of snowflakes has an impact on the type of precipitation reaching the surface when the temperature is near 0 °C.

  17. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-06-01

    Nitrogen Dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging (UV)-vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK. Retrieved NO2 columns at a surface resolution of 80 m x 20 m revealed hot spots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hot spots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  18. Continuous-Flow MOVPE of Ga-Polar GaN Column Arrays and Core-Shell LED Structures

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Li, Shunfeng; Mohajerani, Matin Sadat; Ledig, Johannes; Wehmann, Hergo-Heinrich; Mandl, Martin; Strassburg, Martin; Steegmüller, Ulrich; Jahn, Uwe; Lähnemann, Jonas; Riechert, Henning; Griffiths, Ian; Cherns, David; Waag, Andreas

    2013-06-01

    Arrays of dislocation free uniform Ga-polar GaN columns have been realized on patterned SiOx/GaN/sapphire templates by metal organic vapor phase epitaxy using a continuous growth mode. The key parameters and the physical principles of growth of Ga-polar GaN three-dimensional columns are identified, and their potential for manipulating the growth process is discussed. High aspect ratio columns have been achieved using silane during the growth, leading to n-type columns. The vertical growth rate increases with increasing silane flow. In a core-shell columnar LED structure, the shells of InGaN/GaN multi quantum wells and p-GaN have been realized on a core of n-doped GaN column. Cathodoluminescence gives insight into the inner structure of these core-shell LED structures.

  19. Validation of TES ammonia observations at the single pixel scale in the San Joaquin Valley during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Sun, Kang; Cady-Pereira, Karen; Miller, David J.; Tao, Lei; Zondlo, Mark A.; Nowak, John B.; Neuman, J. A.; Mikoviny, Tomas; Müller, Markus; Wisthaler, Armin; Scarino, Amy J.; Hostetler, Chris A.

    2015-05-01

    Ammonia measurements from a vehicle-based, mobile open-path sensor and those from aircraft were compared with Tropospheric Emission Spectrometer (TES) NH3 columns at the pixel scale during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality field experiment. Spatial and temporal mismatches were reduced by having the mobile laboratory sample in the same areas as the TES footprints. To examine how large heterogeneities in the NH3 surface mixing ratios may affect validation, a detailed spatial survey was performed within a single TES footprint around the overpass time. The TES total NH3 column above a single footprint showed excellent agreement with the in situ total column constructed from surface measurements with a difference of 2% (within the combined measurement uncertainties). The comparison was then extended to a TES transect of nine footprints where aircraft data (5-80 ppbv) were available in a narrow spatiotemporal window (<10 km, <1 h). The TES total NH3 columns above the nine footprints agreed to within 6% of the in situ total columns derived from the aircraft-based measurements. Finally, to examine how TES captures surface spatial gradients at the interpixel scale, ground-based, mobile measurements were performed directly underneath a TES transect, covering nine footprints within ±1.5 h of the overpass. The TES total columns were strongly correlated (R2 = 0.82) with the median NH3 mixing ratios measured at the surface. These results provide the first in situ validation of the TES total NH3 column product, and the methodology is applicable to other satellite observations of short-lived species at the pixel scale.

  20. Determining Boundary Layer Mixing State based on NASA DISCOVER-AQ Airborne Soundings over the Baltimore/Washington Area

    NASA Astrophysics Data System (ADS)

    Chen, G.; Crawford, J. H.; Silverman, M. L.; Anderson, B. E.; Barrick, J. D.; Diskin, G. S.; Fried, A.; Yang, M. M.; Weinheimer, A. J.; Lenschow, D. H.

    2012-12-01

    The DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) mission conducted its first field deployment in the Washington D.C./Baltimore region during July 2011. The overarching goal is to better understand how remotely-sensed column measurements can be used to diagnose near-surface air quality. To achieve this objective, the DISCOVER-AQ sampling strategy requires extensive probing of the vertical structure of the lower troposphere as it relates to both trace gases and aerosols. This strategy was implemented by using the NASA P-3B aircraft to spiral from 0.3 to ~3 km over 6 MDE (Maryland Department of the Environment) ground monitoring sites. A total of 254 spirals were flown which generated detailed vertical distributions for a large variety of trace gases, aerosol properties, and meteorological variables. This data set allows a detailed assessment of vertical mixing state, which can be estimated by the changes of the measured variables with height within the boundary layer. The data set was further filtered to minimize the influence of the horizontal inhomogeneity. To be presented are cases under different atmospheric stability classes to show the actual observed atmospheric structure and vertical distributions of the aerosols and trace gases which have a wide range of lifetimes.

  1. Net community production and metabolic balance at the oligotrophic ocean site, station ALOHA

    NASA Astrophysics Data System (ADS)

    le B. Williams, Peter J.; Morris, Paul J.; Karl, David M.

    2004-11-01

    To test the hypothesis that in oligotrophic areas of the ocean respiration exceeds production, a 12-month study was undertaken of in vitro-determined net oxygen production and consumption in the top 150 m of the water column at the extreme oligotrophic site, Station ALOHA, in the North Pacific subtropical gyre. Throughout the year the water column was observed to be in metabolic deficit, the calculated cumulative shortfall being 9±1.7 mol O2 m-2 a-1 (approximately 100 g C m-2 a-1), an amount equivalent to 40% of measured production (annual estimated rates of production and consumption were, respectively, 22 and 31 mol O2 m-2 a-1). We consider three possible explanations for the observed deficit: the in vitro oxygen rate measurements, in themselves, are fundamentally flawed and should be discounted, the observations are correct and the observed deficit is a true account of the balance of oxygen (and organic carbon) at Station ALOHA, or the observations are correct as they stand, but need not be interpreted as organic carbon imbalance for that ecosystem. We find no error unique to the oxygen rate measurements themselves. We find also no evidence that the associated organic carbon deficit can be sustained over the long-term by internal organic reserves or by external subsidy. Accordingly we accept the geochemical findings that calculated in situ oxygen flux requires the euphotic zone of the water column at this site to be slightly (circa 2 mol C m-2 a-1) autotrophic, in contrast to the simple analysis of our observations which gives a net heterotrophic water column. We discuss a number of processes that may give rise to the observed discrepancy. In part it may derive from the difficulty of reproducing the variations in the light field experienced by an algal cell due to vertical advection. It may also derive from the intermittency of production. This latter effect would manifest itself in the following manner. Because of its universal distribution in the food web, respiration has greater integrating properties than photosynthesis and so will give a more accurate estimate of the long-term mean in studies with coarse sampling frequencies. If the system is undersampled, then short bursts of photosynthesis are prone to be missed from the integration of the production term but will be seen in the consumption term: hence the apparent deficit. The corollary of this line of reasoning is that, in undersampled systems, respiration has the potential to give a more accurate measurement of integrated system production than photosynthesis.

  2. Vertical distribution of dimethylsulfide, sulfur dioxide, aerosol ions, and radon over the northeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Andreae, M. O.; Berresheim, H.; Andreae, T. W.; Kritz, M. A.; Bates, T. S.

    1988-01-01

    The vertical distributions, in temperate latitudes, of dimethylsulfide (DMS), SO2, radon, methanesulfonate (MSA), nonsea-salt sulfate (nss-sulfate), and aerosol Na(+), NH4(+), and NO(-) ions were determined in samples collected by an aircraft over the northeast Pacific Ocean during May 3-12, 1985. DMS was also determined in surface seawater. It was found that DMS concentrations, both in seawater and in the atmospheric boundary layer, were significantly lower than the values reported previously for subtropical and tropical regions, reflecting the seasonal variability in the temperate North Pacific. The vertical profiles of DMS, MSA, SO2, and nss-sulfate were found to be strongly dependent on the convective stability of the atmosphere and on air mass origin. Biogenic sulfur emissions could account for most of the sulfur budget in the boundary layer, while the long-range transport of continentally derived air masses was mainly responsible for the elevated levels of both SO2 and nss-sulfate in the free troposphere.

  3. Simultaneous assimilation of AIRS and GOSAT CO2 observations with Ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Liu, J.; Kalnay, E.; Fung, I.; Kang, J.

    2012-12-01

    Lack of CO2 vertical information could lead to bias in the surface CO2 flux estimation (Stephens et al., 2007). Liu et al. (2012) showed that assimilating AIRS CO2 observations, which are sensitive to middle to upper troposphere CO2, improves CO2 concentration, especially in the middle to upper troposphere. GOSAT is sensitive to CO2 over the whole column, but the spatial coverage is sparser than AIRS. In this study, we assimilate AIRS and GOSAT CO2 observations simultaneously along with surface flask CO2 observations and meteorology observations with Ensemble Kalman filter (EnKF) to constrain CO2 vertical profiles simulated by NCAR carbon-climate model. We will show the impact of assimilating AIRS and GOSAT CO2 on the CO2 vertical gradient, seasonal cycle and spatial gradient by assimilating only GOSAT or AIRS and comparing to the control experiment. The quality of CO2 analysis will be examined by validating against independent CO2 aircraft observations, and analyzing the relationship between CO2 analysis fields and major circulation, such as Madden Julian Oscillation. We will also discuss the deficiencies of the observation network in understanding the carbon cycle.

  4. Development of a Fabry-Perot Interferometer for Ultra-Precise Measurements of Column CO2

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Georgieva, Elena M.; Heaps, William S.

    2005-01-01

    A passive Fabry-Perot based instrument is described for detecting column CO2 through absorption measurements at 1.58 microns . In this design, solar flux reaches the instrument platform and is directed through two channels. In the first channel, transmittance fi5nges from a Fabry-Perot interferometer are aligned with CO2 absorption lines so that absorption due to CO2 is primarily detected. The second channel encompasses the same frequency region as the first, but is comparatively more sensitive to changes in the solar flux than absorption due to CO2. The ratio of these channels is sensitive to changes in the total CO2 column, but not to changes in solar flux. This inexpensive instrument will offer high precision measurements (error 4%) in a compact package. Design of this instrument and preliminary ground-based measurements of column CO2 are presented here as well as strategies for deployment on aircraft and satellite platforms.

  5. Transport of Cryptosporidium parvum Oocysts in Soil Columns following Applications of Raw and Separated Liquid Slurries

    PubMed Central

    Petersen, Heidi H.; Enemark, Heidi L.; Olsen, Annette; Amin, M. G. Mostofa

    2012-01-01

    The potential for the transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a 4-week period, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method, although recovery rates were low (<1%). Soil columns with injected liquid slurry leached 73 and 90% more oocysts compared to columns with injected and surface-applied raw slurries, respectively. Among leachate samples containing oocysts, 44/72 samples yielded viable oocysts as determined by a dye permeability assay (DAPI [4′,6′-diamidino-2-phenylindole]/propidium iodide) with the majority (41%) of viable oocysts found in leachate from soil columns with added liquid slurry. The number of viable oocysts was positively correlated (r = 0.63) with the total number of oocysts found. Destructively sampling of the soil columns showed that type of slurry and irrigation played a role in the vertical distribution of oocysts, with more oocysts recovered from soil columns added liquid slurry irrespective of the irrigation status. Further studies are needed to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether the application of separated liquid slurry to agricultural land may represent higher risks for groundwater contamination compared to application of raw slurry. PMID:22706058

  6. Pollution damage to the Powell Building, Reston, Virginia

    USGS Publications Warehouse

    Doe, B.R.; Reddy, M.M.; Eggleston, J.R.

    1999-01-01

    Concrete column segments of the Powell Building (Reston, VA) exposed to the elements and wetted by precipitation were `cleaned' and roughened, but sheltered portions of the columns retained their smoothness and pollution accumulates, similar to observations for limestone, marble, and sandstone. Weathering effects on the columns were dominated by precipitation run-off and not the acidity of the precipitation. The process may be dry deposition of sulfur dioxide (SO2) and nitric oxides (NOx) that formed soluble salts in the presence of humid air or dew, salts that were removed by precipitation run-off.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, M. L.; Sweeney, C.

    The vertical distributions of CO 2, CH 4, and other gases provide important constraints when determining terrestrial and ocean sources and sinks of carbon and other biogeochemical processes in the Earth system. The U.S. Department of Energy's (DOE) Office of Biological and Environmental Research and the National Oceanic and Atmospheric Administration's Earth System Research Laboratory to quantify the vertically resolved distribution of atmospheric carbon-cycle gases(CO 2, CH 4 ) within approximately 99% of the atmospheric column at the DOE ’s Atmospheric Radiation Measurement Southern Great Plains (SGP) site in Oklahoma . During the 2012 to 2014 campaign period, 12 successfulmore » Air C ore flights were conducted from the SGP site . In addition to providing critical data for evaluating remote sensing and earth system models, valuable lessons were learned that motivate improvements to the sampling and recovery systems and campaign logistics . With the launch of the Orbiting Carbon Observatory - 2 (OCO - 2) and Greenhouse gases Observing Satellite ( GOSAT ) satellites, we look forward to proposing additional sampling and analysis efforts at the SGP site and at other sites to characterize the vertical distribution of CO 2, CH 4 over time and space.« less

  8. Simultaneous anaerobic transformation of tetrachloroethene and carbon tetrachloride in a continuous flow column

    NASA Astrophysics Data System (ADS)

    Azizian, Mohammad F.; Semprini, Lewis

    2016-07-01

    Tetrachloroethene (PCE) and carbon tetrachloride (CT) were simultaneously transformed in a packed column that was bioaugmented with the Evanite culture (EV). The data presented here have been obtained over a period of 1930 days. Initially the column was continuously fed synthetic groundwater with PCE (0.1 mM), sulfate (SO42 -) (0.2 mM) and formate (2.1 mM) or lactate (1.1 mM), but not CT. In these early stages of the study the effluent H2 concentrations ranged from 7 to 19 nM, and PCE was transformed to ethene (ETH) (81 to 85%) and vinyl chloride (VC) (11 to 17%), and SO42 - was completely reduced when using either lactate or formate as electron donors. SO42 - reduction occurred concurrently with cis-DCE and VC dehalogenation. Formate was a more effective substrate for promoting dehalogenation based on electron donor utilization efficiency. Simultaneous PCE and CT tests found CT (0.015 mM) was completely transformed with 20% observed as chloroform (CF) and trace amounts of chloromethane (CM) and dichloromethane (DCM), but no methane (CH4) or carbon disulfide (CS2). PCE transformation to ETH improved with CT addition in response to increases in H2 concentrations to 160 nM that resulted from acetate formation being inhibited by either CT or CF. Lactate fermentation was negatively impacted after CT transformation tests, with propionate accumulating, and H2 concentrations being reduced to below 1 nM. Under these conditions both SO42 - reduction and dehalogenation were negatively impacted, with sulfate reduction not occurring and PCE being transformed to cis-dichloroethene (c-DCE) (52%) and VC (41%). Upon switching to formate, H2 concentrations increased to 40 nM, and complete SO42 - reduction was achieved, while PCE was transformed to ETH (98%) and VC (1%), with no acetate detected. Throughout the study PCE dehalogenation to ethene was positively correlated with the effluent H2 concentrations.

  9. Earthworm Activity and the Potential for Enhanced Leaching of Inorganic Elements in Soils

    NASA Astrophysics Data System (ADS)

    Gruau, G.; Ablain, F.; Cluzeau, D.

    2002-12-01

    The potential influence of earthworms on the mobility of soil inorganic constituents was experimentally investigated. Six 20 cm long and 15 cm i.d. columns were packed with soil (loamy material, Paris basin, France). Three earthworm specimens - Lombricus terrestris - were introduced into 3 of the 6 columns (earthworm treatment or ET), the remaing 3 being used to study changes in water composition and solute fluxes without earthworms (control treatment or CT). The 6 columns were operated for 8 weeks and were subjected to 100 ml addition of distilled water at 1, 8, 15, 22, 29, 36, 43 and 50 days. Effluents were collected weekly, filtered and analysed for their Dissolved Organic Carbon (DOC) as well as Si, Na, K, Mg, Ca, Fe, Mn, Al, Sr, Ba, Cu, Zn, Cr, Cd, REE and U concentrations. Replicates yielded extremely consistent results, with standard deviations generally lower than 10%. Effluent volumes were greatest during ET simulations (28% difference on a cumulative basis), which can be attributed to the construction by Lombricus terrestris of permanent vertical burrows into the soil columns. Different temporal chemical trends were observed depending on whether earthworms were present or not. During ET simulations, a washout phenomenon occurred for DOC, Ca, Mg, Fe, Ba, Sr, Cu and U during the startup outflow period (week 2). This washout was followed by a period of apparent equilibrium with concentrations in ET effluents remaining roughly constant for all solutes except REE, Zn and to a lesser extent Mn. No such washout nor equilibrium period was observed during CT simulations. Instead, concentrations in Ca, Mg, Fe, Ba, Sr, Cr and Cu decreased from week 2 to week 8, while those in other solutes increased from week 2 to week 5, then declining untill week 8. For many elements (not all), final (equilibrium?) concentrations (8 weeks simulation) were highest in ET effluents (e.g. 17% higher for Ca and Na; 30% higher for Zn), despite the enhanced infiltration rate (and thus the likely shorter soil-water interaction time). Although preliminary, these results suggest that earthworm activities can potentialy increase the leaching of a wide variety of inorganic elements in soils. This increase could occur through the ability of earthworms to change the biogeochemical conditions in the soil along their burrows (so-called drilosphere).

  10. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  11. Peru upwelling plankton respiration: calculations of carbon flux, nutrient retention efficiency and heterotrophic energy production

    NASA Astrophysics Data System (ADS)

    Packard, T. T.; Osma, N.; Fernández-Urruzola, I.; Codispoti, L. A.; Christensen, J. P.; Gómez, M.

    2014-11-01

    Oceanic depth profiles of plankton respiration are described by a power function, RCO2 = (RCO2)0(z/z0)b similar to the vertical carbon flux profile. Furthermore, because both ocean processes are closely related, conceptually and mathematically, each can be calculated from the other. The exponent (b), always negative, defines the maximum curvature of the respiration depth-profile and controls the carbon flux. When b is large, the C flux (FC) from the epipelagic ocean is low and the nutrient retention efficiency (NRE) is high allowing these waters to maintain high productivity. The opposite occurs when b is small. This means that the attenuation of respiration in ocean water columns is critical in understanding and predicting both vertical FC as well as the capacity of epipelagic ecosystems to retain their nutrients. The NRE is a new metric defined as the ratio of nutrient regeneration in a seawater layer to the nutrients introduced into that layer via FC. A depth-profile of FC is the integral of water column respiration. This relationship facilitates calculating ocean sections of FC from water column respiration. In a FC section across the Peru upwelling system we found a FC maximum extending down to 400 m, 50 km off the Peru coast. Finally, coupling respiratory electron transport system activity to heterotrophic oxidative phosphorylation promoted the calculation of an ocean section of heterotrophic energy production (HEP). It ranged from 250 to 500 J d-1 m-3 in the euphotic zone, to less than 5 J d-1 m-3 below 200 m on this ocean section.

  12. Peruvian upwelling plankton respiration: calculations of carbon flux, nutrient retention efficiency, and heterotrophic energy production

    NASA Astrophysics Data System (ADS)

    Packard, T. T.; Osma, N.; Fernández-Urruzola, I.; Codispoti, L. A.; Christensen, J. P.; Gómez, M.

    2015-05-01

    Oceanic depth profiles of plankton respiration are described by a power function, RCO2 = (RCO2)0 (z/z0)b, similar to the vertical carbon flux profile. Furthermore, because both ocean processes are closely related, conceptually and mathematically, each can be calculated from the other. The exponent b, always negative, defines the maximum curvature of the respiration-depth profile and controls the carbon flux. When |b| is large, the carbon flux (FC) from the epipelagic ocean is low and the nutrient retention efficiency (NRE) is high, allowing these waters to maintain high productivity. The opposite occurs when |b| is small. This means that the attenuation of respiration in ocean water columns is critical in understanding and predicting both vertical FC as well as the capacity of epipelagic ecosystems to retain their nutrients. The ratio of seawater RCO2 to incoming FC is the NRE, a new metric that represents nutrient regeneration in a seawater layer in reference to the nutrients introduced into that layer via FC. A depth profile of FC is the integral of water column respiration. This relationship facilitates calculating ocean sections of FC from water column respiration. In an FC section and in a NRE section across the Peruvian upwelling system we found an FC maximum and a NRE minimum extending down to 400 m, 50 km off the Peruvian coast over the upper part of the continental slope. Finally, considering the coupling between respiratory electron transport system activity and heterotrophic oxidative phosphorylation promoted the calculation of an ocean section of heterotrophic energy production (HEP). It ranged from 250 to 500 J d-1 m-3 in the euphotic zone to less than 5 J d-1 m-3 below 200 m on this ocean section.

  13. Vertically migrating swimmers generate aggregation-scale eddies in a stratified column.

    PubMed

    Houghton, Isabel A; Koseff, Jeffrey R; Monismith, Stephen G; Dabiri, John O

    2018-04-01

    Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing 1-3 . However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres 3,5,6 . This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .

  14. The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012-2013

    NASA Astrophysics Data System (ADS)

    Damerell, Gillian M.; Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan

    2016-05-01

    This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre-scale water mass changes. Below ˜150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode-1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ˜415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700-900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques.

  15. The effect of wind mixing on the vertical distribution of buoyant plastic debris

    NASA Astrophysics Data System (ADS)

    Kukulka, T.; Proskurowski, G.; Morét-Ferguson, S.; Meyer, D. W.; Law, K. L.

    2012-04-01

    Micro-plastic marine debris is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant. The fate and transport of plastic marine debris is governed by poorly understood geophysical processes, such as ocean mixing within the surface boundary layer. Based on profile observations and a one-dimensional column model, we demonstrate that plastic debris is vertically distributed within the upper water column due to wind-driven mixing. These results suggest that total oceanic plastics concentrations are significantly underestimated by traditional surface measurements, requiring a reinterpretation of existing plastic marine debris data sets. A geophysical approach must be taken in order to properly quantify and manage this form of marine pollution.

  16. New Insights in Tropospheric Ozone and its Variability

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.; Douglass, Anne R.; Ziemke, Jerry R.; Rodriquez, Jose M.

    2011-01-01

    We have produced time-slice simulations using the Goddard Earth Observing System Version 5 (GEOS-5) coupled to a comprehensive stratospheric and tropospheric chemical mechanism. These simulations are forced with observed sea surface temperatures over the past 25 years and use constant specified surface emissions, thereby providing a measure of the dynamically controlled ozone response. We examine the model performance in simulating tropospheric ozone and its variability. Here we show targeted comparisons results from our simulations with a multi-decadal tropical tropospheric column ozone dataset obtained from satellite observations of total column ozone. We use SHADOZ ozonesondes to gain insight into the observed vertical response and compare with the simulated vertical structure. This work includes but is not limited to ENSO related variability.

  17. Central solar-energy receiver

    DOEpatents

    Not Available

    1981-10-27

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  18. Central solar energy receiver

    DOEpatents

    Drost, M. Kevin

    1983-01-01

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  19. Formaldehyde Column Density Measurements as a Suitable Pathway to Estimate Near-Surface Ozone Tendencies from Space

    NASA Technical Reports Server (NTRS)

    Schroeder, Jason R.; Crawford, James H.; Fried, Alan; Walega, James; Weinheimer, Andrew; Wisthaler, Armin; Mueller, Markus; Mikoviny, Tomas; Chen, Gao; Shook, Michael; hide

    2016-01-01

    In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation (r2 = 0.45) between ozone (O3) and formaldehyde (CH2O) column densities was observed. Further analysis revealed regional variability in the O3-CH2O relationship, with Maryland having a strong relationship when data were viewed temporally and Houston having a strong relationship when data were viewed spatially. These differences in regional behavior are attributed to differences in volatile organic compound (VOC) emissions. In Maryland, biogenic VOCs were responsible for approx.28% of CH2O formation within the boundary layer column, causing CH2O to, in general, increase monotonically throughout the day. In Houston, persistent anthropogenic emissions dominated the local hydrocarbon environment, and no discernable diurnal trend in CH2O was observed. Box model simulations suggested that ambient CH2O mixing ratios have a weak diurnal trend (+/-20% throughout the day) due to photochemical effects, and that larger diurnal trends are associated with changes in hydrocarbon precursors. Finally, mathematical relationships were developed from first principles and were able to replicate the different behaviors seen in Maryland and Houston. While studies would be necessary to validate these results and determine the regional applicability of the O3-CH2O relationship, the results presented here provide compelling insight into the ability of future satellite missions to aid in monitoring near-surface air quality.

  20. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, William M.

    1988-05-24

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.

  1. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, W.M.

    1985-12-04

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  2. Development of the pelvis and posterior part of the vertebral column in the Anura

    PubMed Central

    Ročková, Hana; Roček, Zbyněk

    2005-01-01

    The anuran pelvic girdle is unique among all amphibians in that its acetabular portion is located far posterior to the sacrum, lateral to the postsacral (= caudal) vertebral column, which is reduced to a single rod-like element called the urostyle. This situation in the adult is strikingly different not only from that in ancestral temnospondyls but also in other modern amphibians. Because there is no fossil that would document this evolutionary anatomical modification except for Triadobatrachus, the only data may be inferred from development in modern anurans. We chose seven anuran species (belonging to the genera Discoglossus, Bombina, Pelobates, Bufo, Rana and Xenopus), representing the principal locomotory types (saltation, swimming, crawling and burrowing). Development of the pelvic girdle was studied on cleared and stained whole mounts and partly on serial histological sections. The basic developmental pattern was similar in all species: the pelvis on both sides develops from two centres (puboischiadic and iliac, respectively). The ilium then extends vertically towards the sacral vertebra and later rotates posteriorly so that ultimately the acetabulum is lateral to the tail (= urostyle). Only minor deviations from this pattern were found, mainly associated with differences in water and terrestrial dwelling. PMID:15679868

  3. Sounding-Based Thermodynamic Budgets from Dynamo/Cindy/Amie

    NASA Astrophysics Data System (ADS)

    Johnson, R. H.; Ciesielski, P. E.; Ruppert, J. H.; Katsumata, M.

    2014-12-01

    The DYNAMO/CINDY/AMIE field campaign, conducted over the Indian Ocean from October 2011 to March 2012, was designed to study the initiation of the Madden-Julian Oscillation (MJO). Two prominent MJOs occurred in the experimental domain during the Special Observing Period in October and November. Data from a northern and a southern sounding array (NSA and SSA, respectively) have been used to investigate the apparent heat sources and sinks (Q1 and Q2) and radiative heating rates QR throughout the life cycles of the two MJO events. The MJO signal was far stronger in the NSA than the SSA, so attention is focused on results for the NSA. Time series of Q1, Q2, and the vertical eddy flux of moist static energy reveal an evolution of cloud systems for both MJOs consistent with prior studies: shallow, non-precipitating cumulus during the suppressed phase, followed by cumulus congestus, then deep convection during the active phase, and finally stratiform precipitation. However, the duration of these phases was shorter for the November MJO than for the October event. The profiles of Q1 and Q2 for the two arrays indicate a greater stratiform rain fraction for the NSA than the SSA, a finding supported by TRMM measurements. Surface rainfall rates and column-integrated QR determined as residuals from the budgets show good agreement with satellite-based estimates. The column-integrated QR anomaly was nearly 20% of the net-tropospheric convective heating anomaly for the October MJO, approaching the proposed condition for radiative-convective instability. The ratio was far less for the November event, further emphasizing important distinctions between the two MJOs.

  4. An object-based approach to weather analysis and its applications

    NASA Astrophysics Data System (ADS)

    Troemel, Silke; Diederich, Malte; Horvath, Akos; Simmer, Clemens; Kumjian, Matthew

    2013-04-01

    The research group 'Object-based Analysis and SEamless prediction' (OASE) within the Hans Ertel Centre for Weather Research programme (HErZ) pursues an object-based approach to weather analysis. The object-based tracking approach adopts the Lagrange perspective by identifying and following the development of convective events over the course of their lifetime. Prerequisites of the object-based analysis are a high-resolved observational data base and a tracking algorithm. A near real-time radar and satellite remote sensing-driven 3D observation-microphysics composite covering Germany, currently under development, contains gridded observations and estimated microphysical quantities. A 3D scale-space tracking identifies convective rain events in the dual-composite and monitors the development over the course of their lifetime. The OASE-group exploits the object-based approach in several fields of application: (1) For a better understanding and analysis of precipitation processes responsible for extreme weather events, (2) in nowcasting, (3) as a novel approach for validation of meso-γ atmospheric models, and (4) in data assimilation. Results from the different fields of application will be presented. The basic idea of the object-based approach is to identify a small set of radar- and satellite derived descriptors which characterize the temporal development of precipitation systems which constitute the objects. So-called proxies of the precipitation process are e.g. the temporal change of the brightband, vertically extensive columns of enhanced differential reflectivity ZDR or the cloud top temperature and heights identified in the 4D field of ground-based radar reflectivities and satellite retrievals generated by a cell during its life time. They quantify (micro-) physical differences among rain events and relate to the precipitation yield. Analyses on the informative content of ZDR columns as precursor for storm evolution for example will be presented to demonstrate the use of such system-oriented predictors for nowcasting. Columns of differential reflectivity ZDR measured by polarimetric weather radars are prominent signatures associated with thunderstorm updrafts. Since greater vertical velocities can loft larger drops and water-coated ice particles to higher altitudes above the environmental freezing level, the integrated ZDR column above the freezing level increases with increasing updraft intensity. Validation of atmospheric models concerning precipitation representation or prediction is usually confined to comparisons of precipitation fields or their temporal and spatial statistics. A comparison of the rain rates alone, however, does not immediately explain discrepancies between models and observations, because similar rain rates might be produced by different processes. Within the event-based approach for validation of models both observed and modeled rain events are analyzed by means of proxies of the precipitation process. Both sets of descriptors represent the basis for model validation since different leading descriptors - in a statistical sense- hint at process formulations potentially responsible for model failures.

  5. Tropospheric nitrogen dioxide column retrieval based on ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F. M.; Hendrick, F.; Pinardi, G.; Fayt, C.; Van Roozendael, M.

    2013-12-01

    A retrieval approach has been developed to derive tropospheric NO2 vertical column amounts from ground-based zenith-sky measurements of scattered sunlight. Zenith radiance spectra are observed in the visible range by the BIRA-IASB Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument and analyzed by the DOAS technique, based on a least-squares spectral fitting. In recent years, this technique has shown to be a well-suited remote sensing tool for monitoring atmospheric trace gases. The retrieval algorithm is developed and validated based on a two month dataset acquired from June to July 2009 in the framework of the Cabauw (51.97° N, 4.93° E) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). Once fully operational, the retrieval approach can be applied to observations from stations of the Network for the Detection of Atmospheric Composition Change (NDACC). The obtained tropospheric vertical column amounts are compared with the multi-axis retrieval from the BIRA-IASB MAX-DOAS instrument and the retrieval from a zenith-viewing only SAOZ instrument (Système d'Analyse par Observations Zénithales), owned by Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS). First results show a good agreement for the whole time series with the multi-axis retrieval (R = 0.82; y = 0.88x + 0.30) as well as with the SAOZ retrieval (R = 0.85; y = 0.76x + 0.28 ). Main error sources arise from the uncertainties in the determination of tropospheric and stratospheric air mass factors, the stratospheric NO2 abundances and the residual amount in the reference spectrum. However zenith-sky measurements have been commonly used over the last decades for stratospheric monitoring, this study also illustrates the suitability for retrieval of tropospheric column amounts. As there are long time series of zenith-sky acquisitions available, the developed approach offers new perspectives with regard to the use of observations from the NDACC stations.

  6. Dispersal of post-larval macrobenthos in subtidal sedimentary habitats: Roles of vertical diel migration, water column, bedload transport and biological traits' expression

    NASA Astrophysics Data System (ADS)

    Pacheco, Aldo S.; Uribe, Roberto A.; Thiel, Martin; Oliva, Marcelo E.; Riascos, Jose M.

    2013-03-01

    Post-larval dispersal along the sediment-water interface is an important process in the dynamics of macrobenthic populations and communities in marine sublittoral sediments. However, the modes of post-larval dispersal in low energy sublittoral habitats have been poorly documented. Herein we examined the specific dispersal mechanisms (diel vertical migration, water column, and bedload transport) and corresponding biological traits of the dispersing assemblage. At two sublittoral sites (sheltered and exposed) along the northern coast of Chile, we installed different trap types that capture benthic organisms with specific modes of dispersal (active emergence and passive water column drifting) and also by a combination of mechanisms (bedload transport, passive suspension and settlement from the water column). Our results show that even though there were common species in all types of traps, the post-larval macrobenthic assemblage depended on specific mechanisms of dispersal. At the sheltered site, abundant emerging taxa colonized sediments that were placed 0.5 m above the bottom and bedload-transported invertebrates appeared to be associated to the passive drifting of macroalgae. At the exposed site, assemblage dispersal was driven by specific mechanisms e.g. bedload transport and active emergence. At both sites the biological traits "small size, swimming, hard exoskeleton, free living and surface position" were associated to water column and bedload dispersal. This study highlights the importance of (i) the water-sediment interface for dispersal of post-larvae in sublittoral soft-bottom habitat, and (ii) a specific set of biological traits when dispersing either along the bottom or through the water column.

  7. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    NASA Astrophysics Data System (ADS)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    Rogoznica Lake is highly eutrophic marine system located on the Eastern Adriatic coast (43°32‧N, 15°58‧E). Because of the relatively small size (10,276 m2) and depth (15 m) it experiences strong natural and indirect anthropogenic influences. Dynamics within the lake is characterized by the extreme and highly variable environmental conditions (seasonal variations in salinity and temperature, water stratification and mixing, redox and euxinic conditions, concentrations of nutrients) which significantly influence the biology inside the lake. Due to the high phytoplankton activity, the upper part of the water column is well oxygenated, while hypoxia/anoxia usually occurs in the bottom layers. Anoxic part of the water column is characterized with high concentrations of sulfide (up to 5 mM) and nutrients (NH4+ up to 315 μM; PO43- up to 53 μM; SiO44- up to 680 μM) indicating the pronounced remineralization of the allochthonous organic matter, produced in the surface waters. The mixolimnion varies significantly within a season feeling effects of the Adriatic atmospheric and ocean dynamics (temperature, wind, heat fluxes, rainfall) which all affect the vertical stability and possibly induce vertical mixing and/or turnover. Seasonal vertical mixing usually occurs during the autumn/winter upon the breakdown of the stratification, injecting oxygen-rich water from the surface into the deeper layers. Depending on the intensity and duration of the vertical dynamics (slower diffusion and/or faster turnover of the water layers) anoxic conditions could developed within the whole water column. Extreme weather events such as abrupt change in the air temperature accompanied with a strong wind and consequently heat flux are found to be a key triggering mechanism for the fast turnover, introducing a large amount of nutrients and sulfur species from deeper parts to the surface. Increased concentration of nutrients, especially ammonium, phosphate, and silicates persisting for several months after the mixing event, together with anoxic stress conditions, additionally influence already stressed ecosystem, hence shifting the community structure and food/web interactions in this marine system.

  8. Simulating phosphorus removal from a vertical-flow constructed wetland grown with C alternifolius species

    Treesearch

    Ying Ouyang; Lihua Cui; Gary Feng; John Read

    2015-01-01

    Vertical flow constructed wetland (VFCW) is a promising technique for removal of excess nutrients and certain pollutants from wastewaters. The aim of this study was to develop a STELLA (structural thinking, experiential learning laboratory with animation) model for estimating phosphorus (P) removal in an artificial VFCW (i.e., a substrate column with six zones) grown...

  9. Bioenergetic evaluation of diel vertical migration by bull trout ( Salvelinus confluentus ) in a thermally stratified reservoir

    Treesearch

    Madeleine Eckmann; Jason Dunham; Edward J. Connor; Carmen A. Welch

    2016-01-01

    Many species living in deeper lentic ecosystems exhibit daily movements that cycle through the water column, generally referred to as diel vertical migration (DVM). In this study, we applied bioenergetics modelling to evaluate growth as a hypothesis to explain DVM by bull trout (Salvelinus confluentus) in a thermally stratified reservoir (Ross Lake...

  10. User Guide for HUFPrint, A Tabulation and Visualization Utility for the Hydrogeologic-Unit Flow (HUF) Package of MODFLOW

    USGS Publications Warehouse

    Banta, Edward R.; Provost, Alden M.

    2008-01-01

    This report documents HUFPrint, a computer program that extracts and displays information about model structure and hydraulic properties from the input data for a model built using the Hydrogeologic-Unit Flow (HUF) Package of the U.S. Geological Survey's MODFLOW program for modeling ground-water flow. HUFPrint reads the HUF Package and other MODFLOW input files, processes the data by hydrogeologic unit and by model layer, and generates text and graphics files useful for visualizing the data or for further processing. For hydrogeologic units, HUFPrint outputs such hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, vertical hydraulic conductivity or anisotropy, specific storage, specific yield, and hydraulic-conductivity depth-dependence coefficient. For model layers, HUFPrint outputs such effective hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, specific storage, primary direction of anisotropy, and vertical conductance. Text files tabulating hydraulic properties by hydrogeologic unit, by model layer, or in a specified vertical section may be generated. Graphics showing two-dimensional cross sections and one-dimensional vertical sections at specified locations also may be generated. HUFPrint reads input files designed for MODFLOW-2000 or MODFLOW-2005.

  11. Modelling the vertical distribution of Prochlorococcus and Synechococcus in the North Pacific Subtropical Ocean.

    PubMed

    Rabouille, Sophie; Edwards, Christopher A; Zehr, Jonathan P

    2007-10-01

    A simple model was developed to examine the vertical distribution of Prochlorococcus and Synechococcus ecotypes in the water column, based on their adaptation to light intensity. Model simulations were compared with a 14-year time series of Prochlorococcus and Synechococcus cell abundances at Station ALOHA in the North Pacific Subtropical Gyre. Data were analysed to examine spatial and temporal patterns in abundances and their ranges of variability in the euphotic zone, the surface mixed layer and the layer in the euphotic zone but below the base of the mixed layer. Model simulations show that the apparent occupation of the whole euphotic zone by a genus can be the result of a co-occurrence of different ecotypes that segregate vertically. The segregation of ecotypes can result simply from differences in light response. A sensitivity analysis of the model, performed on the parameter alpha (initial slope of the light-response curve) and the DIN concentration in the upper water column, demonstrates that the model successfully reproduces the observed range of vertical distributions. Results support the idea that intermittent mixing events may have important ecological and geochemical impacts on the phytoplankton community at Station ALOHA.

  12. 14 CFR 23.485 - Side load conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... positions. (b) The limit vertical load factor must be 1.33, with the vertical ground reaction divided... reaction divided between the main wheels so that— (1) 0.5 (W) is acting inboard on one side; and (2) 0.33...

  13. Water column distribution of stable isotopes and carbonate properties in the South-eastern Levantine basin (Eastern Mediterranean): Vertical and temporal change

    NASA Astrophysics Data System (ADS)

    Sisma-Ventura, G.; Yam, R.; Kress, N.; Shemesh, A.

    2016-06-01

    Water column distributions of the oxygen isotopic composition of sea-water (δ18OSW) and the stable carbon isotope ratio of dissolved inorganic carbon (δ13CDIC), total alkalinity (AT) and the pH (total scale) at 25 °C (25 °CpHTotal) were investigated along the Southeast Mediterranean (SE-Med) shelf and open water, during 2009-2010. While, the vertical profiles of δ18OSW lacked a clear depth signature, those of δ13CDIC were characterized by a structure that reflects the major water masses in the Levantine basin, with noticeable vertical gradients. The δ13CDIC Suess effect of the Levantine water column was estimated from the difference between the average profiles of 1988 and 2009-2010 (Δδ13CDIC). We observed δ13CDIC temporal change, which indicates propagation of anthropogenic CO2 (Cant) to depth of about 700 m. The Modified Atlantic Water (MAW; 0-200 m) and the Levantine Intermediate Water (LIW; 200-400 m) exhibited a depletion rate of - 0.13 ± 0.03 and - 0.11 ± 0.03‰ decade- 1, respectively, representing 50% of the atmospheric change, while the deep water of the Adriatic source (700-1300 m) did not change during this period. A Δδ13CDIC depletion trend was also recognized below 1350 m, corresponding to the Aegean source deep water (EMDWAeg) and therefore associated to the Eastern Mediterranean Transient (EMT) event. Anthropogenic CO2 accumulation rate of 0.38 ± 0.12 mol C m- 2 yr- 1 for the upper 700 m of the SE-Med, over the last 22 yr, was estimated on the basis of mean depth-integrated δ13CDIC Suess effect profile. Our results confirm lower accumulation rate than that of the subtropical North Atlantic, resulting due to the super-saturation with respect to CO2 of the well-stratified Levantine surface water. High pCO2 saturation during summer (+ 150 μatm), in oppose to a small degree of under-saturation in winter (- 30 μatm) was calculated from surface water AT and 25 °CpHTotal data. However, the δ13CDIC depletion trend of the LIW and the EMDWAeg supports isotopically light Cant penetrating into the Levantine interior during convection events, such as the EMT.

  14. Outdoor cultivation of temperature-tolerant Chlorella sorokiniana in a column photobioreactor under low power-input.

    PubMed

    Béchet, Quentin; Muñoz, Raul; Shilton, Andy; Guieysse, Benoit

    2013-01-01

    Temperature-tolerant Chlorella sorokiniana was cultivated in a 51-L column photobioreactor with a 1.1 m(2) illuminated area. The reactor was operated outdoors under tropical meteorological conditions (Singapore) without controlling temperature and the culture was mixed at a power input of 7.5 W/m(3) by sparging CO(2) -enriched air at 1.2 L/min (gas hold-up of 0.02). Biomass productivity averaged 10 ± 2.2 g/m(2) -day over six batch studies, yielding an average photosynthetic efficiency (PE) of 4.8 ± 0.5% of the total solar radiation (P = 0.05, N = 6). This demonstrates that temperature-tolerant microalgae can be cultivated at high PE under a mixing input sevenfold to ninefold lower than current operational guidelines (50-70 W/m(3)) and without the need for temperature control (the culture broth temperature reached 41 °C during operation). In this study, the PE value was determined based on the amount of solar radiation actually reaching the algae and this amount was estimated using a mathematical model fed with onsite solar irradiance data. This determination was found to be particularly sensitive to the value of the atmospheric diffusion coefficient, which generated a significant uncertainty in the PE calculation. The use of the mathematical model, however, confirmed that the vertical reactor geometry supported efficient photosynthesis by reducing the duration and intensity of photoinhibition events. The model also revealed that all three components of direct, diffuse, and reflected solar radiation were quantitatively important for the vertical column photobioreactor, accounting for 14%, 65%, and 21% of the total solar radiation reaching the culture, respectively. The accurate prediction of the discrete components of solar radiation reaching the algae as a function of climatic, geographic, and design parameters is therefore crucial to optimize the individual reactor geometry and the layout/spacing between the individual reactors in a reactor farm. Copyright © 2012 Wiley Periodicals, Inc.

  15. Cyclic degassing of Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Ilanko, Tehnuka; Oppenheimer, Clive; Burgisser, Alain; Kyle, Philip

    2015-06-01

    Field observations have previously identified rapid cyclic changes in the behaviour of the lava lake of Erebus volcano. In order to understand more fully the nature and origins of these cycles, we present here a wavelet-based frequency analysis of time series measurements of gas emissions from the lava lake, obtained by open-path Fourier transform infrared spectroscopy. This reveals (i) a cyclic change in total gas column amount, a likely proxy for gas flux, with a period of about 10 min, and (ii) a similarly phased cyclic change in proportions of volcanic gases, which can be explained in terms of chemical equilibria and pressure-dependent solubilities. Notably, the wavelet analysis shows a persistent periodicity in the CO2/CO ratio and strong periodicity in H2O and SO2 degassing. The `peaks' of the cycles, defined by maxima in H2O and SO2 column amounts, coincide with high CO2/CO ratios and proportionally smaller increases in column amounts of CO2, CO, and OCS. We interpret the cycles to arise from recharge of the lake by intermittent pulses of magma from shallow depths, which degas H2O at low pressure, combined with a background gas flux that is decoupled from this very shallow magma degassing.

  16. Tidal asymmetry and variability of bed shear stress and sediment bed flux at a site in San Francisco Bay, USA

    USGS Publications Warehouse

    Brennan, Matthew L.; Schoellhamer, David H.; Burau, Jon R.; Monismith, Stephen G.; Winterwerp, J.C.; Kranenburg, C.

    2002-01-01

    The relationship between sediment bed flux and bed shear stress during a pair of field experiments in a partially stratified estuary is examined in this paper. Time series of flow velocity, vertical density profiles, and suspended sediment concentration were measured continuously throughout the water column and intensely within 1 meter of the bed. These time series were analyzed to determine bed shear stress, vertical turbulent sediment flux, and mass of sediment suspended in the water column. Resuspension, as inferred from near-bed measurements of vertical turbulent sediment flux, was flood dominant, in accordance with the flood-dominant bed shear stress. Bathymetry-induced residual flow, gravitational circulation, and ebb tide salinity stratification contributed to the flood dominance. In addition to this flow-induced asymmetry, the erodibility of the sediment appears to increase during the first 2 hours of flood tide. Tidal asymmetry in bed shear stress and erodibility help explain an estuarine turbidity maximum that is present during flood tide but absent during ebb tide. Because horizontal advection was insignificant during most of the observation periods, the change in bed mass can be estimated from changes in the total suspended sediment mass. The square wave shape of the bed mass time series indicates that suspended sediment rapidly deposited in an unconsolidated or concentrated benthic suspension layer at slack tides and instantly resuspended when the shear stress became sufficiently large during a subsequent tide. The variability of bed mass associated with the spring/neap cycle (about 60 mg/cm2) is similar to that associated with the semidiurnal tidal cycle.

  17. Pelagic origin and fate of sedimenting particles in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Bathmann, Ulrich V.; Peinert, Rolf; Noji, Thomas T.; Bodungen, Bodo V.

    A 17 month record of vertical particle flux of dry weight, carbonate and organic carbon were 25.8, 9.4 and 2.4g.m -2y -1, respectively. Parallel to trap deployments, pelagic system structure was recorded with high vertical and temporal resolution. Within a distinct seasonal cycle of vertical particle flux, zooplankton faecal pellets of various sizes, shapes and contents were collected by the traps in different proportions and quantities throughout the year (range: 0-4,500 10 3m -2d -1). The remains of different groups of organisms showed distinct seasonal variations in abundance. In early summer there was a small maximum in the diatom flux and this was followed by pulses of tinntinids, radiolarians, foraminiferans and pteropods between July and November. Food web interactions in the water column were important in controlling the quality and quantity of sinking materials. For example, changes in the population structure of dominant herbivores, the break-down of regenerating summer populations of microflagellates and protozooplankton and the collapse of a pteropod dominated community, each resulted in marked sedimentation pulses. These data from the Norwegian Sea indicate those mechanisms which either accelerate or counteract loss of material via sedimentation. These involve variations in the structure of the pelagic system and they operatè on long (e.g. annual plankton succession) and short (e.g. the end of new production, sporadic grazing of swarm feeders) time scales. Connecting investigation of the water column with a high resolution in time in parallel with drifting sediment trap deployments and shipboard experiments with the dominant zooplankters is a promising approach for giving a better understanding of both the origin and the fate of material sinking to the sea floor.

  18. Do diatoms percolate through soil and can they be used for tracing the origin of runoff?

    NASA Astrophysics Data System (ADS)

    De Graaf, Lenka; Cammeraat, Erik; Pfister, Laurent; Wetzel, Carlos; Klaus, Julian; Hissler, Christophe

    2015-04-01

    Tracers are widely used to study the movement of water in a catchment. Because of depletion of scientific possibilities with most common tracer types, we proposed the use of diatoms as a natural tracer. Paradoxical results on the contribution of surface runoff to the storm hydrograph were obtained in pioneer research on this idea. Diatom transport via the subsurface flow to the stream would explain this paradox. Prerequisite for this is vertical transport of diatoms through soils, which is the topic of this study. Emphasis is on percolation behavior (speed of percolation, speed of percolation over time, and species distribution) of Pseudostaurosira sp. and Melosira sp. (Bacillariophyceae) through undisturbed soil columns of contrasting substrates. Co-objective is to study the flowpaths of water through the soil columns. Natural undisturbed soil columns were sampled in the Attert basin (Luxembourg) on schist, marl and sandstone substrates. Rain simulation experiments were performed to study vertical diatom transport. Rhodamine dye experiments were carried out to gain insight in the active flowpaths of water, and breakthrough experiments were performed to study the responses of the soil columns to applied water. Diatoms were transported through the soil columns of the three substrates. A vast majority of diatom percolation took place within the first 15 minutes, percolation hereafter was marginal but nevertheless present. Peaks in diatom percolation corresponded with a high flux caused by the addition of the diatom culture, but seepage of diatoms along the sides is unlikely according to the species distribution and the rhodamine dye experiment. Pseudostaurosira sp. percolated significantly better than Melosira sp. Significantly more diatoms percolated through the marl columns compared to the schist columns and variance within the sandstone group was very high. Absolute differences between substrates however, were marginal. Most preferential flowpaths were observed in the marl columns, indicating highest active macroporosity in these columns. Although the sample size of this study was small, it is suspected that the highest diatom percolation percentages of the marl columns is linked to its greater macroporosity and most importantly, diatoms can percolate through soil (macro-) pores.

  19. Dynamic characterization of the Chamousset rock column before its fall

    NASA Astrophysics Data System (ADS)

    Levy, C.; Baillet, L.; Jongmans, D.

    2009-04-01

    The rockfall of Chamousset (volume of 21000m3 ) occurred on November 10, 2007, affecting the 300 m high Urgonian cliff of the southern Vercors massif, French Alps. This event took place when the Vercors plateau was covered by snow. The unstable column was previously detected by observations on the development of a 30 m long fracture back on the plateau. Two aerial Lidar scans of the cliff were acquired before and after the failure, allowing the geometry of the column and of the broken plane to be determined. A temporary seismic array along with two extensometers was installed from July to November 2007. The seismic array consisted of 7 short period seismometers (1 three-components and 6 vertical-component). One vertical seismometer was installed on the column while the other 6 were deployed on the plateau with an array aperture of about 70 m. During the last two months of record, short period seismometers were replaced by 4.5 Hz geophones. The monitoring system recorded in a continuous mode (1000 Hz of frequency sampling) but it stopped to work two weeks before the fall, after the solar panels were covered by snow. During the running period, the seismic array recorded hundreds of local seismic events, from short (less than 0.5 s) impulsive signals to events with a long duration (a few tens of seconds). Our study was first focused on the dynamic response of the column and on the seismic noise frequency content. Fourier spectra of the seismic noise signals recorded on the column and the corresponding spectral ratios showed the presence of several resonance frequencies of the column. The first resonance frequency was measured at 3.6 Hz in July 2007 and it decreases regularly with time to reach 2.6 Hz two weeks before the fall. In parallel, extensometer measurements show that the fracture aperture increased with time during the same period. The dynamic response of a block which separates from a rock mass was 2D numerically modelled. Finite element computations showed that the progressive block decoupling, resulting from a crack propagation inside the mass, generates a decrease of the natural frequency, as it was measured on the site. These results highlight the interest to study the dynamic response of an unstable column for hazard assessment purposes. In a second phase, we studied the recorded impulsive signals in which we were able to identify P and S waves. Seismic experiments were performed in September 2008 on the plateau in order to constrain the ground velocity structure. Preliminary event location shows that the signal sources were located along the broken plane and probably result from micro-cracks along rock bridges.

  20. Sulfur dioxide in the Venus Atmosphere: II. Spatial and temporal variability

    NASA Astrophysics Data System (ADS)

    Vandaele, A. C.; Korablev, O.; Belyaev, D.; Chamberlain, S.; Evdokimova, D.; Encrenaz, Th.; Esposito, L.; Jessup, K. L.; Lefèvre, F.; Limaye, S.; Mahieux, A.; Marcq, E.; Mills, F. P.; Montmessin, F.; Parkinson, C. D.; Robert, S.; Roman, T.; Sandor, B.; Stolzenbach, A.; Wilson, C.; Wilquet, V.

    2017-10-01

    The vertical distribution of sulfur species in the Venus atmosphere has been investigated and discussed in Part I of this series of papers dealing with the variability of SO2 on Venus. In this second part, we focus our attention on the spatial (horizontal) and temporal variability exhibited by SO2. Appropriate data sets - SPICAV/UV nadir observations from Venus Express, ground-based ALMA and TEXES, as well as UV observation on the Hubble Space Telescope - have been considered for this analysis. High variability both on short-term and short-scale are observed. The long-term trend observed by these instruments shows a succession of rapid increases followed by slow decreases in the SO2 abundance at the cloud top level, implying that the transport of air from lower altitudes plays an important role. The origins of the larger amplitude short-scale, short-term variability observed at the cloud tops are not yet known but are likely also connected to variations in vertical transport of SO2 and possibly to variations in the abundance and production and loss of H2O, H2SO4, and Sx.

  1. Evidence of linked biogeochemical and hydrological processes in homogeneous and layered vadose zone systems

    NASA Astrophysics Data System (ADS)

    McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.

    2010-12-01

    Understanding chemical fate and transport in the vadose zone is critical to protect groundwater resources and preserve ecosystem health. However, prediction can be challenging due to the dynamic hydrologic and biogeochemical nature of the vadose zone. Additional controls on hydrobiogeochemical processes are added by subsurface structural heterogeneity. This study uses repacked soil column experiments to quantify linkages between microbial activity, geochemical cycling and hydrologic flow. Three “short” laboratory soil columns were constructed to evaluate the effects of soil layering: a homogenized medium-grained sand, homogenized organic-rich loam, and a sand-over-loam layered column. In addition, two “long” columns were constructed using either gamma-irradiated (sterilized) or untreated sediments to evaluate the effects of both soil layers and the presence of microorganisms. The long columns were packed identically; a medium-grained sand matrix with two vertically separated and horizontally offset lenses of organic-rich loam. In all 5 columns, downward and upward infiltration of water was evaluated to simulate rainfall and rising water table events respectively. In-situ colocated probes were used to measure soil water content, matric potential, Eh, major anions, ammonium, Fe2+, and total sulfide. Enhanced biogeochemical cycling was observed in the short layered column versus the short, homogeneous columns, and enumerations of iron and sulfate reducing bacteria were 1-2 orders of magnitude greater. In the long columns, microbial activity caused mineral bands and produced insoluble gases that impeded water flow through the pores of the sediment. Capillary barriers, formed around the lenses due to soil textural differences, retarded water flow rates through the lenses. This allowed reducing conditions to develop, evidenced by the production of Fe2+ and S2-. At the fringes of the lenses, Fe2+ oxidized to form Fe(III)-oxide bands that further retarded water flux. No such mineral bands developed in the sterilized column. As a consequence, water content in the lenses of the sterilized column was half that of the other column and flow rates through the lenses were an order of magnitude lower. This flow impedance limited the interaction and mixing of groundwater with infiltrating vadose zone water and led to the formation of geochemically distinct water masses residing in relatively close proximity to one another. Results provide a specific examples of the direct impact of biogeochemical cycling on water flow in the vadose zone and vice versa. In addition, these demonstrate that the presence of layers in vadose zone environments may be an important control on overall chemical fate and transport in subsurface systems.

  2. A mass-balance code for the quantitative interpretation of fluid column profiles in ground-water studies

    NASA Astrophysics Data System (ADS)

    Paillet, Frederick

    2012-08-01

    A simple mass-balance code allows effective modeling of conventional fluid column resistivity logs in dilution tests involving column replacement with either distilled water or dilute brine. Modeling a series of column profiles where the inflowing formation water introduces water quality interfaces propagating along the borehole gives effective estimates of the rate of borehole flow. Application of the dilution model yields estimates of borehole flow rates that agree with measurements made with the heat-pulse flowmeter under ambient and pumping conditions. Model dilution experiments are used to demonstrate how dilution logging can extend the range of borehole flow measurement at least an order of magnitude beyond that achieved with flowmeters. However, dilution logging has the same dynamic range limitation encountered with flowmeters because it is difficult to detect and characterize flow zones that contribute a small fraction of total flow when that contribution is superimposed on a larger flow. When the smaller contribution is located below the primary zone, ambient downflow may disguise the zone if pumping is not strong enough to reverse the outflow. This situation can be addressed by increased pumping. But this is likely to make the moveout of water quality interfaces too fast to measure in the upper part of the borehole, so that a combination of flowmeter and dilution method may be more appropriate. Numerical experiments show that the expected weak horizontal flow across the borehole at conductive zones would be almost impossible to recognize if any ambient vertical flow is present. In situations where natural water quality differences occur such as flowing boreholes or injection experiments, the simple mass-balance code can be used to quantitatively model the evolution of fluid column logs. Otherwise, dilution experiments can be combined with high-resolution flowmeter profiles to obtain results not attainable using either method alone.

  3. Next-Generation Aura/OMI NO2 and SO2 Products

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay; Yang, Kai; Bucsela, Eric; Lamsal, Lok; Celarier, Edward; Swartz, William; Carn, Simon; Bhartia, Pawan; Gleason, James; Pickering, Ken; hide

    2011-01-01

    The measurement of both SO2 and NO2 gases are recognized as an essential component of atmospheric composition missions. We describe current capabilities and limitations of the operational Aura/OMI NO2 and SO2 data that have been used by a large number of researchers. Analyses of the data and validation studies have brought to light a number of areas in which these products can be expanded and improved. Major improvements for new NASA standard (SP) NO2 product include more accurate tropospheric and stratospheric column amounts, along with much improved error estimates and diagnostics. Our approach uses a monthly NO2 climatology based on the NASA Global Modeling Initiative (GMI) chemistry-transport model and takes advantage of OMI data from cloudy scenes to find clean areas where the contribution from the trap NO2 column is relatively small. We then use a new filtering, interpolation and smoothing techniques for separating the stratospheric and tropospheric components of NO2, minimizing the influence of a priori information. The new algorithm greatly improves the structure of stratospheric features relative to the original SP. For the next-generation OMI SO2 product we plan to implement operationally the offline iterative spectral fitting (ISF) algorithm and re-process the OMI Level-2 SO2 dataset using a priori SO2 and aerosol profiles, clouds, and surface reflectivity appropriate for observation conditions. This will improve the ability to detect and quantify weak tropospheric SO2 loadings. The new algorithm is validated using aircraft in-situ data during field campaigns in China (2005 and 2008) and in Maryland (Frostburg, 2010 and DISCOVER-AQ in July 2011). The height of the SO2 plumes will also be estimated for high SO2 loading cases (e.g., volcanic eruptions). The same SO2 algorithm will be applied to the data from OMPS sensor to be launched on NPP satellite later this year. The next-generation NO2 and SO2 products will provide critical information (e.g., averaging kernels) for evaluation of chemistry-transport models, for data assimilation, and to impose top-down constraints on the SO2 and NO2 emission sources.

  4. Pathway Ranking for In-place Sediment Management (CU1209). Site 2 Report - Pearl Harbor

    DTIC Science & Technology

    2006-04-01

    type resistance cell. The probe is configured with two pairs of stainless steel electrodes, the outer pair through which a known current is imposed...the “bioinhibited” (no oxygen control) deployment at BPA . Vertical axis is dissolved oxygen concentration, and horizontal axis is sample record at 6...99 Table 5-7. BFSD results from site BPA . Numbers in the Flux Rate Confidence column indicate the

  5. Vertical migration of aggregated aerobic and anaerobic ammonium oxidizers enhances oxygen uptake in a stagnant water layer.

    PubMed

    Vlaeminck, Siegfried E; Dierick, Katleen; Boon, Nico; Verstraete, Willy

    2007-07-01

    Ammonium can be removed as dinitrogen gas by cooperating aerobic and anaerobic ammonium-oxidizing bacteria (AerAOB and AnAOB). The goal of this study was to verify putative mutual benefits for aggregated AerAOB and AnAOB in a stagnant freshwater environment. In an ammonium fed water column, the biological oxygen consumption rate was, on average, 76 kg O(2) ha(-1) day(-1). As the oxygen transfer rate of an abiotic control column was only 17 kg O(2) ha(-1) day(-1), biomass activity enhanced the oxygen transfer. Increasing the AnAOB gas production increased the oxygen consumption rate with more than 50% as a result of enhanced vertical movement of the biomass. The coupled decrease in dissolved oxygen concentration increased the diffusional oxygen transfer from the atmosphere in the water. Physically preventing the biomass from rising to the upper water layer instantaneously decreased oxygen and ammonium consumption and even led to the occurrence of some sulfate reduction. Floating of the biomass was further confirmed to be beneficial, as this allowed for the development of a higher AerAOB and AnAOB activity, compared to settled biomass. Overall, the results support mutual benefits for aggregated AerAOB and AnAOB, derived from the biomass uplifting effect of AnAOB gas production.

  6. Seismic reflection imaging of shallow oceanographic structures

    NASA Astrophysics Data System (ADS)

    Piété, Helen; Marié, Louis; Marsset, Bruno; Thomas, Yannick; Gutscher, Marc-André

    2013-05-01

    Multichannel seismic (MCS) reflection profiling can provide high lateral resolution images of deep ocean thermohaline fine structure. However, the shallowest layers of the water column (z < 150 m) have remained unexplored by this technique until recently. In order to explore the feasibility of shallow seismic oceanography (SO), we reprocessed and analyzed four multichannel seismic reflection sections featuring reflectors at depths between 10 and 150 m. The influence of the acquisition parameters was quantified. Seismic data processing dedicated to SO was also investigated. Conventional seismic acquisition systems were found to be ill-suited to the imaging of shallow oceanographic structures, because of a high antenna filter effect induced by large offsets and seismic trace lengths, and sources that typically cannot provide both a high level of emission and fine vertical resolution. We considered a test case, the imagery of the seasonal thermocline on the western Brittany continental shelf. New oceanographic data acquired in this area allowed simulation of the seismic acquisition. Sea trials of a specifically designed system were performed during the ASPEX survey, conducted in early summer 2012. The seismic device featured: (i) four seismic streamers, each consisting of six traces of 1.80 m; (ii) a 1000 J SIG sparker source, providing a 400 Hz signal with a level of emission of 205 dB re 1 μPa @ 1 m. This survey captured the 15 m thick, 30 m deep seasonal thermocline in unprecedented detail, showing images of vertical displacements most probably induced by internal waves.

  7. Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning

    PubMed Central

    Walsby, Anthony E; Holland, Daryl P

    2005-01-01

    Two particular difficulties in measuring the sinking velocities of phytoplankton cells are preventing convection within the sedimenting medium and determining the changing depth of the cells. These problems are overcome by using a density-stabilized sedimentation column scanned by a laser. For freshwater species, a suspension of phytoplankton is layered over a vertical density gradient of Percoll solution; as the cells sink down the column their relative concentration is measured by the forward scattering of light from a laser beam that repeatedly scans up and down the column. The Percoll gradient stabilizes the column, preventing vertical mixing by convection, radiation or perturbation of density by the descending cells. Measurements were made on suspensions of 15 μm polystyrene microspheres with a density of 1050 kg m−3; the mean velocity was 6.28 μm s−1, within 1.5% of that calculated by the Stokes equation, 6.36 μm s−1. Measurements made on the filamentous cyanobacterium Planktothrix rubescens gave mean velocities within the theoretical range of values based on the range of size, shape, orientation and density of the particles in a modified Stokes equation. Measurements on marine phytoplankton may require density gradients prepared with other substances. PMID:16849271

  8. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  9. Microwave Remote Sensing of the Temperature and Distribution of Sulfur Compounds in the Lower Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Kolodner, Marc A.; Butler, Bryan J.; Suleiman, Shady H.; Steffes, Paul G.

    2002-08-01

    A multi-wavelength radio frequency observation of Venus was performed on April 5, 1996, with the Very Large Array to investigate potential variations in the vertical and horizontal distribution of temperature and the sulfur compounds sulfur dioxide (SO 2) and sulfuric acid vapor (H 2SO 4(g)) in the atmosphere of the planet. Brightness temperature maps were produced which feature significantly darkened polar regions compared to the brighter low-latitude regions at both observed frequencies. This is the first time such polar features have been seen unambiguously in radio wavelength observations of Venus. The limb-darkening displayed in the maps helps to constrain the vertical profile of H 2SO 4(g), temperature, and to some degree SO 2. The maps were interpreted by applying a retrieval algorithm to produce vertical profiles of temperature and abundance of H 2SO 4(g) given an assumed sub-cloud abundance of SO 2. The results indicate a substantially higher abundance of H 2SO 4(g) at high latitudes (above 45°) than in the low-latitude regions. The retrieved temperature profiles are up to 25 K warmer than the profile obtained by the Pioneer Venus sounder probe at altitudes below 40 km (depending on location and assumed SO 2 abundance). For 150 ppm of SO 2, it is more consistent with the temperature profile obtained by Mariner 5, extrapolated to the surface via a dry adiabat. The profiles obtained for H 2SO 4(g) at high latitudes are consistent with those derived from the Magellan radio occultation experiments, peaking at around 8 ppm at an altitude of 46 km and decaying rapidly away from that altitude. At low latitudes, no significant H 2SO 4(g) is observed, regardless of the assumed SO 2 content. This is well below that measured by Mariner 10 (Lipa and Tyler 1979, Icarus39, 192-208), which peaked at ˜14 ppm near 47 km. Our results favor ≤100 ppm of SO 2 at low latitudes and ≤50 ppm in polar regions. The low-latitude value is statistically consistent with the results of Bézard et al. (1983, Geophs. Res. Lett.20, 1587-1590), who found that a sub-cloud SO 2 abundance of 130±40 ppm best matched their observations in the near-IR. The retrieved temperature profile and higher abundance of H 2SO 4(g) in polar regions are consistent with a strong equatorial-to-polar, cloud-level flow due to a Hadley cell in the atmosphere of Venus.

  10. Carbone_et_al_2016_ambient_data

    EPA Pesticide Factsheets

    This data set has two sets of gaseous elemental mercury data. The first column contains all Hg related data some of which may have been affected by the upslope events such as the emissions from the nearby volcano. The next column contain values that were flagged and excluded as being affected by the nearby volcanic events. The flagging method used to eliminate these values was developed using an episode identification scheme using SO2 data. For the years of 2002 through 2004, hourly SO2 data were used to llag the upslope values. For the years of 2005-2009, 5 minute SO2 values were used to flag upslope events.While SO2 and O3 data were collected by EPA as part of this study, the CO2 data were downloaded from NOAA data website along with the flag related information provided below. (http://www.esrl.noaa.gov/gmd/dv/data/index.php?parameter_name=Carbon%2BDioxide&showall=1&site=MLO)This dataset is associated with the following publication:Carbone, F., M. Landis, C.N. Gencarelli, A. Naccarato, F. Sprovieri, F. De Simone, I.M. Hedgecock, and N. Pirrone. Sea surface temperature variation linked to elemental mercury concentrations measured on Mauna Loa. GEOPHYSICAL RESEARCH LETTERS. American Geophysical Union, Washington, DC, USA, online, (2016).

  11. Mixing on the Heard Island Plateau during HEOBI

    NASA Astrophysics Data System (ADS)

    Robertson, R.

    2016-12-01

    On the plateau near Heard and McDonald Islands, the water column was nearly always well mixed. Typically, temperature differences between the surface and the bottom, 100-200 m, were less than 0.2oC and often less that 0.1oC. Surface stratification developed through insolation and deep primarily through a combination of upwelling from canyons and over the edge of the plateau and tidal advection. This stratification was primarily removed by a combination of wind and tidal mixing. Persistent winds of 30 knots mixed the upper 20-50 m. Strong wind events, 40-60 knots, mixed the water column to 100-200 m depth, which over the plateau, was often the entire water column. Benthic tidal friction mixed the bottom 30-50 m. Although the water column was unstratified at the two plume sites intensively investigated, tidal velocities were baroclinic, probably due to topographic controls. Tidal advection changed the bottom temperatures by 0.5oC within 8 hours, more than doubling the prior stratification. Wind mixing quickly homogenized the water column, resulting in the surface often showing the deeper upwelling and advective events. Although acoustic plumes with bubbles were observed in the water column, there was no evidence of geothermal vents or geothermal influence on temperatures. Mixing by bubbles rising in the water column was indistinguishable from the wind and tidal mixing, although the strongest upward vertical velocities were observed at the sites of these acoustic/bubble plumes.

  12. The fate of production in the central Arctic Ocean - top-down regulation by zooplankton expatriates?

    NASA Astrophysics Data System (ADS)

    Olli, Kalle; Wassmann, Paul; Reigstad, Marit; Ratkova, Tatjana N.; Arashkevich, Elena; Pasternak, Anna; Matrai, Patricia A.; Knulst, Johan; Tranvik, Lars; Klais, Riina; Jacobsen, A.

    2007-01-01

    We estimated primary and bacterial production, mineral nutrients, suspended chlorophyll a (Chl), particulate organic carbon (POC) and nitrogen (PON), abundance of planktonic organisms, mesozooplankton fecal pellet production, and the vertical flux of organic particles of the central Arctic Ocean (Amundsen basin, 89-88° N) during a 3 week quasi-Lagrangian ice drift experiment at the peak of the productive season (August 2001). A visual estimate of ≈15% ice-free surface, plus numerous melt ponds on ice sheets, supported a planktonic particulate primary production of 50-150 mg C m -2 d -1 (mean 93 mg C m -2 d -1, n = 7), mostly confined to the upper 10 m of the nutrient replete water column. The surface mixed layer was separated from the rest of the water column by a strong halocline at 20 m depth. Phototrophic biomass was low, generally 0.03-0.3 mg Chl m -3 in the upper 20 m and <0.02 mg Chl m -3 below, dominated by various flagellates, dinoflagellates and diatoms. Bacterial abundance (typically 3.7-5.3 × 10 5, mean 4.1 × 10 5 cells ml -1 in the upper 20 m and 1.3-3.7 × 10 5, mean 1.9 × 10 5 cells ml -1 below) and Chl concentrations were closely correlated ( r = 0.75). Mineral nutrients (3 μmol NO 3 l -1, 0.45 μmol PO 4 l -1, 4-5 μmol SiO 4 l -1) were probably not limiting the primary production in the upper layer. Suspended POC concentration was ∼30-105 (mean 53) mg C m -3 and PON ∼5.4-14.9 (mean 8.2) mg N m -3 with no clear vertical trend. The vertical flux of POC in the upper 30-100 m water column was ∼37-92 (mean 55) mg C m -2 d -1 without clear decrease with depth, and was quite similar at the six investigated stations. The mesozooplankton biomass (≈2 g DW m -2, mostly in the upper 50 m water column) was dominated by adult females of the large calanoid copepods Calanus hyperboreus and Calanus glacialis (≈1.6 g DW m -2). The grazing of these copepods (estimated via fecal pellet production rates) was ≈15 mg C m -2 d -1, being on the order of 3% and 20% of the expected food-saturated ingestion rates of C. hyperboreus and C. glacialis, respectively. The stage structure of these copepods, dominated by adult females, and their unsatisfied grazing capacity during peak productive period suggest allochthonous origin of these species from productive shelf areas, supported by their long life span and the prevailing surface currents in the Arctic Ocean. We propose that the grazing capacity of the expatriated mesozooplankton population would match the potential seasonal increase of primary production in the future decreased ice perspective, diminishing the likelihood of algal blooms.

  13. Physical and Chemical Factors Influencing the Transport and Fate of Microorganisms in Soils with Preferential Flow

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Bradford, S. A.; Simunek, J.

    2011-12-01

    Laboratory and numerical studies were conducted to investigate the influence of physical and chemical factors on the transport of E.coli O157:H7 and coliphage φX174 through preferential flow systems. Preferential flow systems were created in 13.2 cm diameter and 20 cm length columns by embedding sand lens of various grain size, length, and vertical position into finer textured matrix sand. Tracer solutions containing bromide and microbes were prepared at different ionic strength (IS) and sprayed onto the surface of the columns at desired steady rates using a rain simulator to achieve saturated or unsaturated conditions. Effluents were collected at the column bottom continuously and analyzed for concentrations of bromide, φX174, and E.coli. Complementary numerical simulations were conducted using the HYDRUS 2D code over a wider range of physical and chemical conditions, and to analyze bromide and microbe transport in the columns. Results indicated that preferential transport of the microbes was dependent on the hydraulic contrasts between the matrix and lens, the length of the lens, the size of microorganism, and the water saturation. The IS also influenced the preferential transport of microbes. In particular, increasing retention with IS decreased the overall microbe transport but increased the relative importance of preferential flow.

  14. 15 CFR 922.60 - Boundary.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MARINE SANCTUARY PROGRAM REGULATIONS Monitor National Marine Sanctuary § 922.60 Boundary. The Monitor National Marine Sanctuary (Sanctuary) consists of a vertical water column in the Atlantic Ocean one mile in...

  15. Atmospheric CO2 Concentration Measurements with Clouds from an Airborne Lidar

    NASA Astrophysics Data System (ADS)

    Mao, J.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Numata, K.; Chen, J. R.; Sun, X.; DiGangi, J. P.; Choi, Y.

    2017-12-01

    Globally distributed atmospheric CO2 concentration measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space are limited to cloud-free scenes. NASA Goddard is developing a pulsed, integrated-path differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations, XCO2, from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate XCO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. We demonstrate this measurement capability using airborne lidar measurements from summer 2017 ASCENDS airborne science campaign in Alaska. We show retrievals of XCO2 to ground and to a variety of cloud tops. We will also demonstrate how the partial column XCO2 to cloud tops and cloud slicing approach help resolving vertical and horizontal gradient of CO2 in cloudy conditions. The XCO2 retrievals from the lidar are validated against in situ measurements and compared to the Goddard Parameterized Chemistry Transport Model (PCTM) simulations. Adding this measurement capability to the future lidar mission for XCO2 will provide full global and seasonal data coverage and some information about vertical structure of CO2. This unique facility is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation.

  16. Light hydrocarbons vertical profiles and fluxes in a french rural area

    NASA Astrophysics Data System (ADS)

    Kanakidou, M.; Bonsang, B.; Lambert, G.

    By means of manned hot air balloon flights, in July 1986, an experiment was conducted in a rural area of southwest France in order to determine the production at ground level of non-methane hydrocarbons in the C 2-C 6 range. Flux determinations were based on vertical profiles before and after the development of a temperature inversion layer which allowed the measurement of the NMHC accumulation close to ground level. The main species produced in the late afternoon were acetylene, propane, ethene, propene and ethane with production rates of the order of 0.5 to 2 × 10 -4g of C m -2 h -1. Isoprene was found to be the main other unsaturated species also produced. The fluxes and the atmospheric content of the air column before the inversion are consistent with an average OH radical concentration of 2 × 10 6 cm -3.

  17. Analysis of the weekly cycle in the atmosphere near Moscow

    NASA Astrophysics Data System (ADS)

    Gruzdev, A. N.

    2013-03-01

    Using the spectral method and the method of grouping by days of week, we analyzed the weekly cycles by standard air sounding data obtained at the Dolgoprudny station near Moscow and by the results of measurements of NO2 content in the stratosphere and the atmospheric boundary layer at the Zvenigorod Research Station of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, in 1990-2010. We revealed weekly cycles of the NO2 content in the vertical column of the stratosphere, temperature, geopotential, meridional wind velocity in the troposphere and lower stratosphere, and the tropopause height in the warm half of the year (mid-April to mid-October). The weekly variations in temperature in the troposphere are positive in the first half of the week and negative in the second half, and the variations in temperature in the tropopause layer and in the lower stratosphere are opposite in sign to the tropospheric variations. The weekly cycle of the tropopause height is approximately in phase with the cycle of tropospheric temperature, and the weekly cycle of the NO2 content in the stratospheric column is opposite in phase to the cycle of the tropopause height. Weekly variations were also observed in the total ozone content over Moscow. This finding was confirmed by calculations based on regression relationships between the vertical distribution of ozone and tropopause height. Conceptual mechanisms of weekly cycles were proposed.

  18. The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012–2013

    PubMed Central

    Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan

    2016-01-01

    Abstract This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre‐scale water mass changes. Below ∼150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode‐1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ∼415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700–900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques. PMID:27840785

  19. In vitro investigations of propulsion during laser lithotripsy using video tracking.

    PubMed

    Eisel, Maximilian; Ströbl, Stephan; Pongratz, Thomas; Strittmatter, Frank; Sroka, Ronald

    2018-04-01

    Ureteroscopic laser lithotripsy is an important and widely used method for destroying ureter stones. It represents an alternative to ultrasonic and pneumatic lithotripsy techniques. Although these techniques have been thoroughly investigated, the influence of some physical parameters that may be relevant to further improve the treatment results is not fully understood. One crucial topic is the propulsive stone movement induced by the applied laser pulses. To simplify and speed up the optimization of laser parameters in this regard, a video tracking method was developed in connection with a vertical column setup that allows recording and subsequently analyzing the propulsive stone movement in dependence of different laser parameters in a particularly convenient and fast manner. Pulsed laser light was applied from below to a cubic BegoStone phantom loosely guided within a vertical column setup. The video tracking method uses an algorithm to determine the vertical stone position in each frame of the recorded scene. The time-dependence of the vertical stone position is characterized by an irregular series of peaks. By analyzing the slopes of the peaks in this signal it was possible to determine the mean upward stone velocity for a whole pulse train and to compare it for different laser settings. For a proof of principle of the video tracking method, a specific pulse energy setting (1 J/pulse) was used in combination with three different pulse durations: short pulse (0.3 ms), medium pulse (0.6 ms), and long pulse (1.0 ms). The three pulse durations were compared in terms of their influence on the propulsive stone movement in terms of upward velocity. Furthermore, the propulsions induced by two different pulse energy settings (0.8 J/pulse and 1.2 J/pulse) for a fixed pulse duration (0.3 ms) were compared. A pulse repetition rate of 10 Hz was chosen for all experiments, and for each laser setting, the experiment was repeated on 15 different freshly prepared stones. The latter set of experiments was compared with the results of previous propulsion measurements performed with a pendulum setup. For a fixed pulse energy (1 J/pulse), the mean upward propulsion velocity increased (from 120.0 to 154.9 mm · s -1 ) with decreasing pulse duration. For fixed pulse duration (0.3 ms), the mean upward propulsion velocity increased (from 91.9 to 123.3 mm · s -1 ) with increasing pulse energy (0.8 J/pulse and 1.2 J/pulse). The latter result corresponds roughly to the one obtained with the pendulum setup (increase from 61 to 105 mm · s -1 ). While the mean propulsion velocities for the two different pulse energies were found to differ significantly (P < 0.001) for the two experimental and analysis methods, the standard deviations of the measured mean propulsion velocities were considerably smaller in case of the vertical column method with video tracking (12% and 15% for n = 15 freshly prepared stones) than in case of the pendulum method (26% and 41% for n = 50 freshly prepared stones), in spite of the considerably smaller number of experiment repetitions ("sample size") in the first case. The proposed vertical column method with video tracking appears advantageous compared to the pendulum method in terms of the statistical significance of the obtained results. This may partly be understood by the fact that the entire motion of the stones contributes to the data analysis, rather than just their maximum distance from the initial position. The key difference is, however, that the pendulum method involves only one single laser pulse in each experiment run, which renders this method rather tedious to perform. Furthermore, the video tracking method appears much better suited to model a clinical lithotripsy intervention that utilizes longer series of laser pulses at higher repetition rates. The proposed video tracking method can conveniently and quickly deliver results for a large number of laser pulses that can easily be averaged. An optimization of laser settings to achieve minimal propulsive stone movement should thus be more easily feasible with the video tracking method in connection with the vertical column setup. Lasers Surg. Med. 50:333-339, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. The Application of TD/GC/NICI-MS with an Al2O3-PLOT-S Column for the Determination of Perfluoroalkylcycloalkanes in the Atmosphere.

    PubMed

    Ren, Yu; Schlager, Hans; Martin, Damien

    2014-01-01

    A modified method for the quantitative determination of atmospheric perfluoroalkylcycloalkanes (PFCs) using thermal desorption coupled with gas chromatography and detection by negative ion chemical ionization-mass spectrometry was developed. Using an optimized analytical system, a commercially available Al 2 O 3 porous layer open tubular (PLOT) capillary column (30 m × 0.25 mm) deactivated with Na 2 SO 4 was used for separation of PFCs. Improvements in the separation of PFCs, the corresponding identification and the limit of detection of PFCs using this method and column are presented. The method was successfully applied to determine the atmospheric background concentrations of a range of PFCs from a number of samples collected at a rural site in Germany. The results of this study suggest that the method outlined using the Al 2 O 3 -PLOT-S capillary column has good sensitivity and selectivity, and that it can be deployed in a routine laboratory process for the analysis of PFCs in the future research work. In addition, the ability of this column to separate the isomers of one of the lower boiling PFCs (perfluorodimethylcyclobutane) and its ability to resolve perfluoroethylcyclohexane offer the opportunity for single-column analysis for multiple PFCs.

  1. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; White, J.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-11-01

    Nitrogen dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging UV/Vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK on a cloud-free winter day in February 2013. Retrieved NO2 columns gridded to a surface resolution of 80 m × 20 m revealed hotspots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hotspots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  2. Device and method for treatment of gases

    DOEpatents

    Vegge, Olaf Trygve; Brinch, Jon Christian

    2007-01-30

    The device and method of the present invention employs a column having a gas inlet in its lower part and a gas outlet in its upper part. Carbon particles are introduced into the column through a supply pipe. The supply pipe is movable so that by manipulating the height of the supply pipe in conjunction with discharging particulate matter through the column, the height of the bed of particulate matter in the column can be adjusted so that the retention time of the off gas in the particulate bed is constant. By maintaining a constant retention time of the off gas in the bed, complete conversion of the off gas is achieved.

  3. Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Rodriguez, Jose M.; Hu, Wen-Jie; Ko, Malcolm K. W.; Weisenstein, Debra K.; Kumer, John B.; Mergenthaler, John L.; Russel, James M., III; Koike, Makoto; Yue, Glenn K.

    1999-01-01

    We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include N2O, HNO3, and ClONO2 from the cryogenic limb array etalon spectrometer (CLAES), version 7 (v.7), and temperature, methane, ozone, H2O, HCl, NO and NO2 from the halogen occultation experiment (HALOE), version 18. The analysis is carried out for the UARS data obtained between January 1992 and September 1994 in the 100-to 1-mbar (approx. 17-47 km) altitude range and over 10 degrees latitude bins from 70 S to 70 N. The spatiotemporal evolution of aerosol surface area density (SAD) is adopted from analysis of the Stratospheric Aerosol and Gas Experiment (SAGE) II data. A diurnal steady state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD, and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NOy) is obtained by three different methods: (1) as a sum of the UARS-measured NO, NO2, HNO3, and ClONO2; (2) from the N2O-NOy correlation, and (3) from the CH4-NOy correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated monthly averaged NOx/NOy ratios and the NO, NO2, and HNO3 profiles are compared with the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years, such as recovery of NOx after the eruption, their seasonal variability and vertical profiles. However, the model underestimates the NO2 content, particularly in the 30- to 7-mbar (approx.23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground-based measurements at 45 S and 45 N are also presented. Our analysis indicates that ground-based and HALOE v.18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at midlatitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45 S, suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed.

  4. Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements. Appendix F

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Rodriguez, Jose M.; Hu, Wenjie; Ko, Malcolm K. W.; Weisenstein, Debra K.; Kumer, John B.; Mergenthaler, John L.; Russell, James M., III; Koike, Makoto; Yue, Glenn K.

    1999-01-01

    We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include N2O, HNO3, and ClONO2 from the cryogenic limb array etalon spectrometer (CLAES), version 7 (v.7), and temperature, methane, ozone, H2O, HCl, NO and NO2 from the halogen occultation experiment (HALOE), version 18. The analysis is carried out for the UARS data obtained between January 1992 and September 1994 in the 100- to 1-mbar (approx. 17-47 km) altitude range and over 10 deg latitude bins from 70 deg S to 70 deg N. The spatiotemporal evolution of aerosol surface area density (SAD) is adopted from analysis of the Stratospheric Aerosol and Gas Experiment (SAGE) II data. A diurnal steady state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD, and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NOY) is obtained by three different methods: (1) as a sum of the UARS-measured NO, NO2, HNO3, and ClONO2; (2) from the N2O-NOY correlation; and (3) from the CH4-NOY correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated monthly averaged NO(x)/NO(y) ratios and the NO, NO2, and HNO3 profiles are compared with the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years, such as recovery of NO(x) after the eruption, their seasonal variability and vertical profiles. However, the model underestimates the NO2 content, particularly in the 30- to 7-mbar (approx. 23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground-based measurements at 45 deg S and 45 deg N are also presented. Our analysis indicates that ground-based and HALOE v.18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at midlatitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45 deg S, suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed.

  5. Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks.

    PubMed

    Bayat, Ali Esfandyari; Junin, Radzuan; Shamshirband, Shahaboddin; Chong, Wen Tong

    2015-09-16

    Engineered aluminum oxide (Al2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2) nanoparticles (NPs) are utilized in a broad range of applications; causing noticeable quantities of these materials to be released into the environment. Issues of how and where these particles are distributed into the subsurface aquatic environment remain as major challenges for those in environmental engineering. In this study, transport and retention of Al2O3, TiO2, and SiO2 NPs through various saturated porous media were investigated. Vertical columns were packed with quartz-sand, limestone, and dolomite grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolet-visible spectrophotometer. It was found that Al2O3 and TiO2 NPs are easily transported through limestone and dolomite porous media whereas NPs recoveries were achieved two times higher than those found in the quartz-sand. The highest and lowest SiO2-NPs recoveries were also achieved from the quartz-sand and limestone columns, respectively. The experimental results closely replicated the general trends predicted by the filtration and DLVO calculations. Overall, NPs mobility through a porous medium was found to be strongly dependent on NP surface charge, NP suspension stability against deposition, and porous medium surface charge and roughness.

  6. IASI carbon monoxide validation over the Arctic during POLARCAT spring and summer campaigns

    NASA Astrophysics Data System (ADS)

    Pommier, M.; Law, K. S.; Clerbaux, C.; Turquety, S.; Hurtmans, D.; Hadji-Lazaro, J.; Coheur, P.-F.; Schlager, H.; Ancellet, G.; Paris, J.-D.; Nédélec, P.; Diskin, G. S.; Podolske, J. R.; Holloway, J. S.; Bernath, P.

    2010-11-01

    In this paper, we provide a detailed comparison between carbon monoxide (CO) data measured by the Infrared Atmospheric Sounding Interferometer (IASI)/MetOp and aircraft observations over the Arctic. The CO measurements were obtained during North American (NASA ARCTAS and NOAA ARCPAC) and European campaigns (POLARCAT-France, POLARCAT-GRACE and YAK-AEROSIB) as part of the International Polar Year (IPY) POLARCAT activity in spring and summer 2008. During the campaigns different air masses were sampled including clean air, polluted plumes originating from anthropogenic sources in Europe, Asia and North America, and forest fire plumes originating from Siberia and Canada. The paper illustrates that CO-rich plumes following different transport pathways were well captured by the IASI instrument, in particular due to the high spatial coverage of IASI. The comparison between IASI CO total columns, 0-5 km partial columns and profiles with collocated aircraft data was achieved by taking into account the different sensitivity and geometry of the sounding instruments. A detailed analysis is provided and the agreement is discussed in terms of information content and surface properties at the location of the observations. For profiles, the data were found to be in good agreement in spring with differences lower than 17%, whereas in summer the difference can reach 20% for IASI profiles below 8 km for polluted cases. For total columns the correlation coefficients ranged from 0.15 to 0.74 (from 0.47 to 0.77 for partial columns) in spring and from 0.26 to 0.84 (from 0.66 to 0.88 for partial columns) in summer. A better agreement is seen over the sea in spring (0.73 for total column and 0.78 for partial column) and over the land in summer (0.69 for total columns and 0.81 for partial columns). The IASI vertical sensitivity was better over land than over sea, and better over land than over sea ice and snow allowing a higher potential to detect CO vertical distribution during summer.

  7. Wall-Friction Support of Vertical Loads in Submerged Sand and Gravel Columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, O. R.; Vollmer, H. J.; Hepa, V. S.

    Laboratory studies of the ‘floor-loads’ under submerged vertical columns of sand and/or gravel indicate that such loads can be approximated by a buoyancy-corrected Janssen-silo-theory-like relationship. Similar to conditions in storage silos filled with dry granular solids, most of the weight of the sand or gravel is supported by wall friction forces. Laboratory measurements of the loads on the floor at the base of the water-filled columns (up to 25-diameters tall) indicate that the extra floor-load from the addition of the granular solid never exceeded the load that would exist under an unsupported (wide) bed of submerged sand or gravel thatmore » has a total depth corresponding to only two column-diameters. The measured floorloads reached an asymptotic maximum value when the depth of granular material in the columns was only three or four pipe-diameters, and never increased further as the columns were filled to the top (e.g. up to heights of 10 to 25 diameters). The floor-loads were stable and remained the same for days after filling. Aggressive tapping (e.g. hitting the containing pipe on the outside, manually with a wrench up and down the height and around the circumference) could increase (and occasionally decrease) the floor load substantially, but there was no sudden collapse or slumping to a state without significant wall friction effects. Considerable effort was required, repeatedly tapping over almost the entire column wall periphery, in order to produce floor-loads that corresponded to the total buoyancy-corrected weight of granular material added to the columns. Projecting the observed laboratory behavior to field conditions would imply that a stable floor-load condition, with only a slightly higher total floor pressure than the preexisting hydrostatic-head, would exist after a water-filled bore-hole is filled with sand or gravel. Significant seismic vibration (either a large nearby event or many micro-seismic events over an extended period) would likely be necessary before the full (buoyancy-corrected) weight of the sand and/or gravel would be ‘delivered’ to the bottom of the submerged column.« less

  8. Spectroscopic detection of stratospheric hydrogen cyanide

    NASA Technical Reports Server (NTRS)

    Coffey, M. T.; Mankin, W. G.; Cicerone, R. J.

    1981-01-01

    A number of features have been identified as absorption lines of hydrogen cyanide in infrared spectra of stratospheric absorption obtained from a high-altitude aircraft. Column amounts of stratospheric hydrogen cyanide have been derived from spectra recorded on eight flights. The average vertical column amount above 12 kilometers is 7.1 + or - 0.8 x 10 to the 14th molecules per square centimeter, corresponding to an average mixing ratio of 170 parts per trillion by volume.

  9. Evaluation of avoidance behavior of tadpole madtoms (Noturus gyrinus) as a surrogate for the endangered northern madtom (Noturus stigmosus) in response to granular Bayluscide®

    USGS Publications Warehouse

    Boogaard, Michael A.; Erickson, Richard A.; Hubert, Terrance D.

    2016-09-02

    The vertical avoidance behavior of the tadpole madtom (Noturus gyrinus) exposed to environmentally relevant concentrations of the granular formulation of the lampricide Bayluscide® was evaluated. The lampricide formulation (3.2 percent active ingredient coated on a sand granule) is used to control larval sea lamprey populations in the Great Lakes. The tadpole madtom was chosen as a surrogate to the federally endangered northern madtom (Noturus stigmosus) based on similar life history characteristics and habitat requirements. Vertical avoidance of tadpole madtoms in response to the granular formulation was documented in clear Plexiglas columns (107 centimeters in height, 30.5 centimeters in diameter) for 1 hour after chemical application. Each avoidance trial produced data consisting of the number of tadpole madtoms avoiding the chemical at a given time. Based on the overall data, tadpole madtoms in treated columns were 11.7 times more likely to display avoidance compared to those in untreated controls. Results indicate that it is likely that northern madtoms will be able to detect and avoid Bayluscide® from granular applications if their response is similar to that of the tadpole madtom.

  10. Evaporation From Soil Containers With Irregular Shapes

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Narkis, Kfir

    2017-11-01

    Evaporation from bare soils under laboratory conditions is generally studied using containers of regular shapes where the vertical edges are parallel to the flow lines in the drying domain. The main objective of this study was to investigate the impact of irregular container shapes, for which the flow lines either converge or diverge toward the surface. Evaporation from initially saturated sand and sandy loam soils packed in cones and inverted cones was compared to evaporation from corresponding cylindrical columns. The initial evaporation rate was higher in the cones, and close to potential evaporation. At the end of the experiment, the cumulative evaporation depth in the sand cone was equal to that in the column but higher than in the inverted cone, while in the sandy loam, the order was cone > column > inverted cone. By comparison to the column, stage 1 evaporation was longer in the cones, and practically similar in the inverted cones. Stage 2 evaporation rate decreased with the increase of the evaporating surface area. These results were more pronounced in the sandy loam. For the sand column, the transition between stage 1 and stage 2 evaporation occurred when the depth of the saturation front was approximately equal to the characteristic length of the soil. However, for the cone and the inverted cone, it occurred for a shallower depth of the saturation front. It seems therefore that the concept of the characteristic length derived from the soil hydraulic properties is related to drying systems of regular shapes.

  11. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign

    NASA Astrophysics Data System (ADS)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2015-04-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).

  12. Study of vertical Si/SiO2 interface using laser-assisted atom probe tomography and transmission electron microscopy.

    PubMed

    Lee, J H; Lee, B H; Kim, Y T; Kim, J J; Lee, S Y; Lee, K P; Park, C G

    2014-03-01

    Laser-assisted atom probe tomography has opened the way to three-dimensional visualization of nanostructures. However, many questions related to the laser-matter interaction remain unresolved. We demonstrate that the interface reaction can be activated by laser-assisted field evaporation and affects the quantification of the interfacial composition. At a vertical interface between Si and SiO2, a SiO2 molecule tends to combine with a Si atom and evaporate as a SiO molecule, reducing the evaporation field. The features of the reaction depend on the direction of the laser illumination and the inner structure of tip. A high concentration of SiO is observed at a vertical interface between Si and SiO2 when the Si column is positioned at the center of the tip, whereas no significant SiO is detected when the SiO2 layer is at the center. The difference in the interfacial compositions of two samples was due to preferential evaporation of the Si layer. This was explained using transmission electron microscopy observations before and after atom probe experiments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Redistribution of exchangeable calcium, magnesium, and aluminum following lime or gypsum applications to a Brazilian Oxisol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavan, M.A.; Bingham, F.T.; Pratt, P.F.

    A greenhouse experiment was carried out with 16 columns of an undisturbed Oxisol that had sufficient subsoil acidity to restrict root growth of a wide variety of crop plants. The objective was to determine the effects of surface applied CaCO/sub 3/, CaSO/sub 4/ x 2H/sup 2/O, and water on subsoil pH and exchangeable Al, Ca, and Mg. Eight soil columns were treated with CaCO/sub 3/ or CaSO/sub 4/ x 2H/sup 2/O at rates equal to 0.25 and 1.50 x the lime equivalent (KCL-extractable Al). The irrigation treatments consisted of trickle irrigation applied at 8.94 and 17.88 mm day/sup -1/ formore » 6 months. These treatments were superimposed on the amendment treatments. Observations included volume and composition of drainage water during the course of the experiment and chemical composition of the soil column by depth increments once the irrigation treatments were completed. Soil analysis included pH, cation exchange capacity (CEC), exchangeable cations, and composition of saturation extracts of soil. Effects of CaCO/sub 3/ treatments were observed only in the upper 20 cm of the profiles irrespective of irrigation and fertilizer treatments. The CaCO/sub 3/ treatments increased soil pH, CEC, and exchangeable Al; and CaSO/sub 4/ x 2H/sup 2/O treatments reduced the level of exchangeable Al and Mg throughout the 100-cm depth profiles while increasing the level of exhangeable Ca. Soil pH and CEC were unaffected by the latter treatment. Based on the effectiveness of CaSO/sup 4/ x 2H/sup 2/O in reducing exchangeable Al and Mg while increasing exchangeable Ca, the combination of dolomitic lime and gypsum appears to be an appropriate amendment treatment for Oxisols with toxic concentrations of available Al.« less

  14. Retrieval of CHOCHO from MAX-DOAS measurements in the Beijing area

    NASA Astrophysics Data System (ADS)

    Hendrick, Francois; Lerot, Christophe; Stavrakou, Trissevgeni; De Smedt, Isabelle; Fayt, Caroline; Gielen, Clio; Hermans, Christian; Müller, Jean-Francois; Pinardi, Gaia; Van Roozendael, Michel

    2015-04-01

    Glyoxal (CHOCHO) is one of the most important carbonyl compounds in the atmosphere. It is produced mainly by the oxidation of biogenic and anthropogenic non-methane volatile organic compounds (NMVOCs) which participate to the formation of tropospheric ozone and secondary organic aerosols. CHOCHO is also directly released by biomass burning and fossil fuel combustion. Measuring this species is therefore of major importance for air quality monitoring, especially given the scarcity of available CHOCHO observational data sets. In this presentation, CHOCHO vertical profiles and corresponding column densities are retrieved from MAX-DOAS measurements in the Beijing city center and at the suburban site of Xianghe located at 60km East of Beijing. The periods covered by the observations are June 2008-April 2009 in Beijing and March 2010-December 2014 in Xianghe. We first investigate the capability of the MAX-DOAS technique to measure this species in such highly-polluted environment. Then the diurnal and seasonal cycles of CHOCHO near-surface concentrations and vertical column densities as well as the corresponding CHOCHO/HCHO ratios are examined on a long-term basis at both locations. The CHOCHO/HCHO ratios are derived from MAX-DOAS HCHO vertical profiles retrieved in parallel to the CHOCHO profiles. These diurnal and seasonal cycles are further assessed using simulations from the 3D-CTM IMAGES and observations from the OMI and GOME-2 satellite nadir instruments. The impact of these results on our knowledge about the CHOCHO budget is discussed.

  15. Cloud Microphysics Budget in the Tropical Deep Convective Regime

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Cloud microphysics budgets in the tropical deep convective regime are analyzed based on a 2-D cloud resolving simulation. The model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. The role of cloud microphysics is first examined by analyzing mass-weighted mean heat budget and column-integrated moisture budget. Hourly budgets show that local changes of mass-weighted mean temperature and column-integrated moisture are mainly determined by the residuals between vertical thermal advection and latent heat of condensation and between vertical moisture advection and condensation respectively. Thus, atmospheric thermodynamics depends on how cloud microphysical processes are parameterized. Cloud microphysics budgets are then analyzed for raining conditions. For cloud-vapor exchange between cloud system and its embedded environment, rainfall and evaporation of raindrop are compensated by the condensation and deposition of supersaturated vapor. Inside the cloud system, the condensation of supersaturated vapor balances conversion from cloud water to raindrop, snow, and graupel through collection and accretion processes. The deposition of supersaturated vapor balances conversion from cloud ice to snow through conversion and riming processes. The conversion and riming of cloud ice and the accretion of cloud water balance conversion from snow to graupel through accretion process. Finally, the collection of cloud water and the melting of graupel increase raindrop to compensate the loss of raindrop due to rainfall and the evaporation of raindrop.

  16. Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR

    NASA Astrophysics Data System (ADS)

    Dammers, Enrico; Shephard, Mark W.; Palm, Mathias; Cady-Pereira, Karen; Capps, Shannon; Lutsch, Erik; Strong, Kim; Hannigan, James W.; Ortega, Ivan; Toon, Geoffrey C.; Stremme, Wolfgang; Grutter, Michel; Jones, Nicholas; Smale, Dan; Siemons, Jacob; Hrpcek, Kevin; Tremblay, Denis; Schaap, Martijn; Notholt, Justus; Erisman, Jan Willem

    2017-07-01

    Presented here is the validation of the CrIS (Cross-track Infrared Sounder) fast physical NH3 retrieval (CFPR) column and profile measurements using ground-based Fourier transform infrared (FTIR) observations. We use the total columns and profiles from seven FTIR sites in the Network for the Detection of Atmospheric Composition Change (NDACC) to validate the satellite data products. The overall FTIR and CrIS total columns have a positive correlation of r = 0.77 (N = 218) with very little bias (a slope of 1.02). Binning the comparisons by total column amounts, for concentrations larger than 1.0 × 1016 molecules cm-2, i.e. ranging from moderate to polluted conditions, the relative difference is on average ˜ 0-5 % with a standard deviation of 25-50 %, which is comparable to the estimated retrieval uncertainties in both CrIS and the FTIR. For the smallest total column range (< 1.0 × 1016 molecules cm-2) where there are a large number of observations at or near the CrIS noise level (detection limit) the absolute differences between CrIS and the FTIR total columns show a slight positive column bias. The CrIS and FTIR profile comparison differences are mostly within the range of the single-level retrieved profile values from estimated retrieval uncertainties, showing average differences in the range of ˜ 20 to 40 %. The CrIS retrievals typically show good vertical sensitivity down into the boundary layer which typically peaks at ˜ 850 hPa (˜ 1.5 km). At this level the median absolute difference is 0.87 (std = ±0.08) ppb, corresponding to a median relative difference of 39 % (std = ±2 %). Most of the absolute and relative profile comparison differences are in the range of the estimated retrieval uncertainties. At the surface, where CrIS typically has lower sensitivity, it tends to overestimate in low-concentration conditions and underestimate in higher atmospheric concentration conditions.

  17. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Xing, Chengzhi; Liu, Cheng; Wang, Shanshan; Chan, Ka Lok; Gao, Yang; Huang, Xin; Su, Wenjing; Zhang, Chengxin; Dong, Yunsheng; Fan, Guangqiang; Zhang, Tianshu; Chen, Zhenyi; Hu, Qihou; Su, Hang; Xie, Zhouqing; Liu, Jianguo

    2017-12-01

    Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm, while vertical distribution of ozone (O3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs) measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere.

  18. Orientation is different: Interaction between contour integration and feature contrasts in visual search.

    PubMed

    Jingling, Li; Tseng, Chia-Huei; Zhaoping, Li

    2013-09-10

    Salient items usually capture attention and are beneficial to visual search. Jingling and Tseng (2013), nevertheless, have discovered that a salient collinear column can impair local visual search. The display used in that study had 21 rows and 27 columns of bars, all uniformly horizontal (or vertical) except for one column of bars orthogonally oriented to all other bars, making this unique column of collinear (or noncollinear) bars salient in the display. Observers discriminated an oblique target bar superimposed on one of the bars either in the salient column or in the background. Interestingly, responses were slower for a target in a salient collinear column than in the background. This opens a theoretical question of how contour integration interacts with salience computation, which is addressed here by an examination of how salience modulated the search impairment from the collinear column. We show that the collinear column needs to have a high orientation contrast with its neighbors to exert search interference. A collinear column of high contrast in color or luminance did not produce the same impairment. Our results show that orientation-defined salience interacted with collinear contour differently from other feature dimensions, which is consistent with the neuronal properties in V1.

  19. An ab-initio study of the energetics and geometry of sulfide, sulfite and sulfate incorporation into apatite: The thermodynamic basis for using this system as an oxybarometer

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Konecke, B.; Fiege, A.; Simon, A. C.; Becker, U.

    2017-12-01

    We use ab-initio calculations to investigate the energetics and geometry of incorporation of S with its oxidation states S6+, S4+, and S2- into the apatite end-members fluor-, chlor-, and hydroxylapatite, [Ca10(PO4)6(F,Cl,OH)2]. The reaction energy of the balanced equation indicates the stability of the modeled S-incorporated apatite relative to the host apatite, the source, and sink phases. One possible coupled substitution mechanism involves the replacement of La3+ + PO43- ↔ Ca2+ + SO42-. Our results show that the incorporation of SO42- into La- and Na-bearing apatite, Ca8NaLa(PO4)6(F,Cl,OH)2, is energetically favored over the incorporation into La- and Si-bearing apatite, Ca9La(PO4)5(SiO4)(F,Cl,OH)2. Co-incorporation of SO42- and SO32- is energetically favored when the lone pair electrons of SO32- face towards the anion column site, compared to facing away from it. Full or partial incorporation of S2- is favored on the column anion site in the form of [Ca10(PO4)6S] and [Ca20(PO4)12SX2)], where X = F, Cl, or OH. Upon full incorporation (i.e., replacing all column ions by sulfide ions), S2- is positioned in the anion column at z = 0.5 (half way between the mirror planes at z = 1/4 and z = 3/4) in the energy-optimized structure. The calculated energies for partial incorporation of S2- demonstrate that in an energy-optimized structure, S2- is displaced from the mirror plane at z = 1/4 or 3/4, by 1.0 to 1.6 Å, depending on the surrounding species (F-, Cl- or OH-); however, the probability for S2- to be incorporated into the apatite structure is highest for chlorapatite end-members. Our results describe energetically feasible incorporation mechanisms for all three oxidations states of S (S6+, S4+, S2-) in apatite, along with structural distortion and concurring electronic structure changes. These observations are consistent with recently published experimental results (Konecke et al. 2017) that demonstrate S6+, S4+ and S2- incorporation into apatite, where the ratio of S6+/∑S in apatite is controlled by oxygen fugacity (fO2). The new computational results coupled with published experimental data provide the basis for using S in apatite as a geochemical proxy to trace variations in oxygen fugacity of magmatic and magmatic-hydrothermal systems.

  20. A Physics Based Vehicle Terrain Interaction Model for Soft Soil off-Road Vehicle Simulations

    DTIC Science & Technology

    2012-01-01

    assumed terrain deformation, use of empirical relationships for the deformation, or finite/discrete element approaches for the terrain. A real-time...vertical columns of soil, and the deformation of each is modeled using visco-elasto-plastic compressibility relationships that relate subsoil pressures to...produced by tractive and turning forces will also be incorporated into the model. Both the vertical and horizontal force/displacement relationships

  1. Bottom Interaction in Long Range Acoustic Propagation

    DTIC Science & Technology

    2006-09-30

    Pacific Ocean utilizing controlled sources and vertical and horizontal receiver arrays . Broadband sources are considered with typical center...The LOAPEX (Long-range Ocean Acoustic Propagation Experiment) vertical line arrays (VLA) are described on page 1 of the LOAPEX cruise report: " The...hydrophone arrays on the two combined VLAs covered most of the 5-km water column. We refer to one of the VLAs as the deep VLA (DVLA), located at

  2. Turbulent mixing induced by Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Krivets, V. V.; Ferguson, K. J.; Jacobs, J. W.

    2017-01-01

    Richtmyer-Meshkov instability is studied in shock tube experiments with an Atwood number of 0.7. The interface is formed in a vertical shock tube using opposed gas flows, and three-dimensional random initial interface perturbations are generated by the vertical oscillation of gas column producing Faraday waves. Planar Laser Mie scattering is used for flow visualization and for measurements of the mixing process. Experimental image sequences are recorded at 6 kHz frequency and processed to obtain the time dependent variation of the integral mixing layer width. Measurements of the mixing layer width are compared with Mikaelian's [1] model in order to extract the growth exponent θ where a fairly wide range of values is found varying from θ ≈ 0.2 to 0.6.

  3. Polar boundary layer bromine explosion and ozone depletion events in the chemistry-climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    NASA Astrophysics Data System (ADS)

    Falk, Stefanie; Sinnhuber, Björn-Martin

    2018-03-01

    Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.

  4. Influence of wind and river discharge on the vertical exchange process in the Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Hong, B.; Peng, S.

    2016-02-01

    Vertical exchange process is controlled by the buoyancy input from river discharge and the momentum input by wind forcing. This study investigates the vertical exchange process in the Pearl River Estuary by using a 3-D numerical model. The vertical exchange time (VET) is used to quantify the magnitude of vertical exchange process in response to changing local wind and river discharge. During the dry season, it only takes about 2 days for the surface layer water mass being transported to the bottom layer. During the wet season, such transport will take more than 20 days in a large portion of the main channel. The water in the slope area can be well ventilated. Linear regression of VET indicates that water column stratification can be used to estimate the VET and up to 71% of the variance can be accounted. The estimation by using river runoff can only account for about 49% of the variance. The effects of wind speed and direction are investigated separately. Neither river runoff nor the stratification can properly predict the VET during the typical wet season. Further investigations are needed to reveal the dynamics of vertical exchange process and find out other factors that influence the VET during the wet season.

  5. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2018-05-23

    ... from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Campaign including Maryland, Texas, California, and ... observations to diagnose near-surface conditions relating to air quality. To diagnose air quality conditions from space, reliable satellite ...

  6. The role of internal waves in larval fish interactions with potential predators and prey

    NASA Astrophysics Data System (ADS)

    Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.; Tang, Dorothy

    2014-09-01

    Tidally driven internal wave packets in coastal environments have the potential to influence patchiness of larval fishes, prey, and gelatinous predators. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to synoptically sample larval fishes, copepods, and planktonic predators (ctenophores, hydromedusae, chaetognaths, and polychaetes) across these predictable features in the summer near Stellwagen Bank, Massachusetts, USA. Full water column profiles and fixed depth transects (∼10 m depth) were used to quantify vertical and horizontal components of the fish and invertebrate distributions during stable and vertically mixed conditions associated with tidally generated internal waves. Larval fishes, consisting mostly of Urophycis spp., Merluccius bilinearis, and Labridae, were concentrated near the surface, with larger sizes generally occupying greater depths. During stable water column conditions, copepods formed a near surface thin layer several meters above the chlorophyll-a maximum that was absent when internal waves were propagating. In contrast, ctenophores and other predators were much more abundant at depth, but concentrations near 10 m increased immediately after the internal hydraulic jump mixed the water column. During the propagation of internal waves, the fine-scale abundance of larval fishes was more correlated with the abundance of gelatinous predators and less correlated with copepods compared to the stable conditions. Vertical oscillations caused by the internal hydraulic jump can disperse patches of zooplankton and force surface dwelling larval fishes into deeper water where probability of predator contact is increased, creating conditions potentially less favorable for larval fish growth and survival on short time scales.

  7. Mercury in the Black Sea - results of the 2013 GEOTRACES MEDBlack cruise

    NASA Astrophysics Data System (ADS)

    Heimbürger, L. E.; Sonke, J.; Rijkenberg, M. J. A.; Gerringa, L. J.; De Baar, H. J. W.

    2014-12-01

    Inorganic mercury (Hg), whether of natural or anthropogenic origin, can be converted into the neurotoxin methylmercury (MeHg). Today we believe this conversion occurs during the bacterial remineralization of sinking organic matter in the oceanic water column. The Black Sea with its high organic matter inputs and anoxic deep waters is an excellent study site to investigate in more detail the processes yielding MeHg. To date only one vertical profile of Hg species near the Western shelf and one vertical profile in the Western Gyre are published (Lamborg et al. 2008). We will present new results of the 2013 Dutch-led GEOTRACES MEDBlack cruise in the Black Sea. Research vessel "Pelagia" occupied 12 full depth stations along an east-west transect from 13 to 25 July 2013. High resolution vertical profiles were sampled using a titanium ultraclean CTD frame (de Baar et al., 2008) equipped with 24 x 24L PVDF samplers. Samples were filtered (0.2µm, Sartobran 300), drawn into pre-cleaned 250mL Savillex PFA bottles and acidified to 0.4% (v:v) with double-distilled HCl. Dissolved MeHg, as the sum of monomethylHg and dimethylHg, was analyzed via isotope dilution gas chromatography sector field inductively coupled mass spectrometry. Total dissolved Hg was determined following the US EPA 1631 method. We will present high resolution vertical Hg species profiles, including one ultra-high resolution profile (1 sample every 5m-depth) to understand the dynamics along the chemocline (Luther et al., 1991). We will also present the results of the GEOTRACES international intercalibration exercise for dissolved MeHg and dissolved total Hg in surface seawater that we organized during the same cruise. References De Baar HJW, Timmermans KR, Laan P, De Porto HH, Ober S, Blom JJ, Bakker MC, Schilling J, Sarthou G, Smit MG, Klunder M. Titan: A new facility for ultraclean sampling of trace elements and isotopes in the deep oceans in the international Geotraces program. Mar. Chem. 2008, 111(1-2): 4-21. Lamborg CH, Yiğiterhan O, Fitzgerald WF, Balcom PH, Hammerschmidt CR, Murray J.Vertical distribution of mercury species at two sites in the Western Black Sea. Mar.Chem. 2008, 111(1-2): 77-89. Luther III GW, Church TM, Powell D. Sulfur speciation and sulfide oxidation in the water column of the Black Sea. DSR I 1991, 38:1121-1137.

  8. Recommendations to the NRC (Nuclear Regulatory Commission) for Review Criteria for Alternative Methods of Low-Level Radioactive Waste Disposal. Task 2A. Below-Ground Vaults.

    DTIC Science & Technology

    1988-01-01

    Settlements ........ 2.6-21 2.6.2.7.4.2 Total Settleme. t ... 2.6-21 2.6.2.7.4.3 Lateral Deformations ........ 2.6-22 2.6.2.7.5 Limits for Soil Loads and...otherwise specified, such as construction loads , etc. 2.1-2 F - Loads due to lateral and vertical pressure of incidental liquids. H - Loads due to lateral ...design loads , as well as forces and moments imposed by the continuity of the structural framing system. Columns should be designed to sustain all design

  9. NO2 and HCHO variability in Mexico City from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Grutter, M.; Friedrich, M. M.; Rivera, C. I.; Arellano, E. J.; Stremme, W.

    2015-12-01

    Atmospheric studies in large cities are of great relevance since pollution affects air quality and human health. A network of Multi Axis Differential Optical Absorption Spectrometers (MAX-DOAS) has been established in strategic sites within the Mexico City metropolitan area. Four instruments are now in operation with the aim to study the variability and spatial distribution of key pollutants, providing results of O4, NO2 and HCHO slant column densities (SCD). A numerical code has been written to retrieve gas profiles of NO2 and HCHO using radiative transfer simulations. We present the first results of the variability of these trace gases which will bring new insight in the current knowledge of transport patterns, emissions as well as frequency and origin of extraordinary events. Results of the vertical column densities (VCD) valiability of NO2 and HCHO in Mexico City are presented. These studies are useful to validate current and future satellite observatopns such as OMI, TROPOMI and TEMPO.

  10. Study of Differential Column Measurements for Urban Greenhouse Gas Emission Monitoring

    NASA Astrophysics Data System (ADS)

    Chen, Jia; Hedelius, Jacob K.; Viatte, Camille; Jones, Taylor; Franklin, Jonathan E.; Parker, Harrison; Wennberg, Paul O.; Gottlieb, Elaine W.; Dubey, Manvendra K.; Wofsy, Steven C.

    2016-04-01

    Urban areas are home to 54% of the total global population and account for ˜ 70% of total fossil fuel emissions. Accurate methods for measuring urban and regional scale carbon fluxes are required in order to design and implement policies for emissions reduction initiatives. In this paper, we demonstrate novel applications of compact solar-tracking Fourier transform spectrometers (Bruker EM27/SUN) for differential measurements of the column-averaged dry-air mole fractions (DMFs) of CH4 and CO2 within urban areas. Our differential column method uses at least two spectrometers to make simultaneous measurements of CO2, CH4 and O2 column number densities. We then compute the column-averaged DMFs XG for a gas G and the differences ΔXG between downwind and upwind stations. By accurately measuring the small differences in integrated column amounts across local and regional sources, we directly observe the mass loading of the atmosphere due to the influence of emissions in the intervening locale. The inference of the source strength is much more direct than inversion modeling using only surface concentrations, and less subject to errors associated with modeling small-scale transport phenomena. We characterize the differential sensor system using Allan variance analysis and show that the differential column measurement has a precision of 0.01% for XCO2 and XCH4 using an optimum integration time of 10 min, which corresponds to standard deviations of 0.04 ppm, and 0.2 ppb, respectively. The sensor system is very stable over time and after relocation across the contiguous US, i.e. the scaling factors between the two Harvard EM27/SUNs and the measured instrument line function parameters are consistent. We use the differential column measurements to determine the emission of an area source. We measure the downwind minus upwind column gradient ΔXCH4 (˜ 2 ppb, 0.1%) across dairy farms in the Chino California area, and input the data to a simple column model for comparison with emission strengths reported in the literature. Our model assumes that air parcels within the air column are transported with a mass-enhancement-weighed horizontal wind velocity U, which is estimated using surface wind speeds measured at nearby airports and assuming a wind profile power law up to the mixing height, to which CH4 emissions are transported vertically by turbulent flow. The emission estimate using differential column measurements is dominated by the uncertainty in the transport i.e. U, not the differential column measurements themself. Furthermore, we derive spatial column gradient ratios ΔXCH4/ΔXCO2 across Pasadena within the Los Angeles basin, and determine values that are consistent with regional emission ratios from the literature. Our precise, rapid measurements allow us to determine short-term variations (5 to 10 minutes) of XCO2 and XCH4 in side-by-side measurements at Caltech and Harvard. Both Harvard EM27/SUNs capture these fluctuations simultaneously, which represent geophysical phenomena, not noise as might be assumed. Overall, this study helps establish a range of new applications for compact solar-viewing Fourier transform spectrometers.

  11. Vertical Distribution of Aerosols and Water Vapor Using CRISM Limb Observations

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Wolff, M. J.; Clancy, R. T.; CRISM Science; Operations Teams

    2011-12-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of CO2 (or surface pressure) and H2O gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 nm for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal available from aerosol scattering. Significant differences are seen in the retrieved vertical profiles of dust and water ice as a function of season. Dust typically extends to higher altitudes during the perihelion season. Ice aerosols are often observed to cap the dust layer during all seasons. Water vapor is observed to be deeply mixed in the perihelion season and confined near the surface in the aphelion season. The CRISM limb-geometry observations support the quantitative retrieval of aerosol and gas vertical profiles. These quantities cannot be retrieved using nadir observations, and they enable the study of important new science questions. The CRISM limbs also serve as a valuable supplement to the MRO/MCS limb profiles, enabling validation and multi-wavelength comparisons. Additional CRISM limb-geometry sets will continue to be taken approximately every two months (~30 degrees of Ls) as operations allow.

  12. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-05

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Spinally projecting neurons of the dorsal column nucleus in a reptile: locus of origin and trajectory of termination.

    PubMed

    Pritz, M B

    1996-01-01

    Interconnections between the dorsal column nucleus and the spinal cord were investigated in a reptile, Caiman crocodilus. After placement of an anterograde tracer into the dorsal column nucleus, descending fibers are seen to leave this nucleus to enter the dorsal funiculus where they course ventrally to terminate in lamina V of the spinal cord as far caudally as C2. Placement of a retrograde tracer into cut fibers of the cervical spinal cord identified the relay cells of the dorsal column nucleus that project to the spinal cord. These neurons were mainly clustered in a caudal and ventral part of this nucleus. The soma of these spinally projecting cells were small and were generally round or oval in shape. A number of these neurons had the long axis of their soma oriented dorsoventrally, with a primary dendrite extending dorsally. Fibers in the dorsal funiculus that originated from the spinal cord enter the caudal part of the dorsal column nucleus and turn ventral. In the dorsal column nucleus, these axons run parallel to the vertically oriented dendrites of these spinally projecting cells before termination in close relation to the cell bodies of these neurons. Quantitative observations (mean +/- standard error) were made on well labeled neurons and included several measurements: area, perimeter, and degree of eccentricity (greatest width/greatest length) in both the transverse as well as the sagittal plane. These spinally projecting neurons in Caiman are located in the dorsal column nucleus in a position similar to that of spinally projecting cells in cats.

  14. How the Learning Path and the Very Structure of a Multifloored Environment Influence Human Spatial Memory

    PubMed Central

    Dollé, Laurent; Droulez, Jacques; Bennequin, Daniel; Berthoz, Alain; Thibault, Guillaume

    2015-01-01

    Few studies have explored how humans memorize landmarks in complex multifloored buildings. They have observed that participants memorize an environment either by floors or by vertical columns, influenced by the learning path. However, the influence of the building’s actual structure is not yet known. In order to investigate this influence, we conducted an experiment using an object-in-place protocol in a cylindrical building to contrast with previous experiments which used rectilinear environments. Two groups of 15 participants were taken on a tour with a first person perspective through a virtual cylindrical three-floored building. They followed either a route discovering floors one at a time, or a route discovering columns (by simulated lifts across floors). They then underwent a series of trials, in which they viewed a camera movement reproducing either a segment of the learning path (familiar trials), or performing a shortcut relative to the learning trajectory (novel trials). We observed that regardless of the learning path, participants better memorized the building by floors, and only participants who had discovered the building by columns also memorized it by columns. This expands on previous results obtained in a rectilinear building, where the learning path favoured the memory of its horizontal and vertical layout. Taken together, these results suggest that both learning mode and an environment’s structure influence the spatial memory of complex multifloored buildings. PMID:26770288

  15. Vertical and horizontal fluxes of plutonium and americium in the western Mediterranean and the Strait of Gibraltar.

    PubMed

    León Vintró, L; Mitchell, P I; Condren, O M; Downes, A B; Papucci, C; Delfanti, R

    1999-09-30

    New data on the vertical distributions of plutonium and americium in the waters of the western Mediterranean and the Strait of Gibraltar are examined in terms of the processes governing their delivery to, transport in and removal from the water column within the basin. Residence times for plutonium and americium in surface waters of approximately 15 and approximately 3 years, respectively, are deduced, and it is shown that by the mid 1990s only approximately 35% of the 239,240Pu and approximately 5% of the 241Am deposited as weapons fallout still resided in the water column. Present 239,240Pu inventories in the water column and the underlying sediments are estimated to be approximately 25 TBq and approximately 40 TBq, respectively, which reconcile well with the time-integrated fallout deposition in this zone, taken to be approximately 69 TBq. The data show that there are significant net outward fluxes of plutonium and americium from the basin through the Strait of Gibraltar at the present time. These appear to be compensated by net inward fluxes of similar magnitude through the Strait of Sicily. Thus, the time-integrated fallout deposition in the western basin can be accounted for satisfactorily in terms of present water column and sediment inventories. Enhanced scavenging on the continental shelves, as evidenced by the appreciably higher transuranic concentrations in shelf sediments, supports this contention.

  16. Comparison of MAX-DOAS profiling algorithms during CINDI-2 - Part 2: trace gases

    NASA Astrophysics Data System (ADS)

    Hendrick, Francois; Friess, Udo; Tirpitz, Lukas; Apituley, Arnoud; Van Roozendael, Michel; Kreher, Karin; Richter, Andreas; Wagner, Thomas

    2017-04-01

    The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. CINDI-2 was aiming at assessing the consistency of MAX-DOAS slant column density measurements of tropospheric species (NO2, HCHO, O3, and O4) relevant for the validation of future ESA atmospheric Sentinel missions, through coordinated operation of a large number of DOAS and MAXDOAS instruments from all over the world. An important objective of the campaign was to study the relationship between remote-sensing column and profile measurements of the above species and collocated reference ancillary observations. For this purpose, the CINDI-2 Profiling Task Team (CPTT) was created, involving 22 groups performing aerosol and trace gas vertical profile inversion using dedicated MAX-DOAS profiling algorithms, as well as the teams responsible for ancillary profile and surface concentration measurements (NO2 analysers, NO2 sondes, NO2 and Raman LIDARs, CAPS, Long-Path DOAS, sunphotometer, nephelometer, etc). The main purpose of the CPTT is to assess the consistency of the different profiling tools for retrieving aerosol extinction and trace gas vertical profiles through comparison exercises using commonly defined settings and to validate the retrievals with correlative observations. In this presentation, we give an overview of the MAX-DOAS vertical profile comparison results, focusing on NO2 and HCHO, the aerosol retrievals being presented in a companion abstract led by U. Frieß. The performance of the different algorithms is investigated with respect to the various sky and weather conditions and aerosol loadings encountered during the campaign. The consistency between optimal-estimation-based and parameterized profiling tools is also evaluated for these different conditions, together with the level of agreement with available NO2 and HCHO ancillary observations. This comparison study will be put in the perspective of the development of a centralized MAX-DOAS processing system within the framework of the ESA Fiducial Reference Measurements (FRM) project.

  17. Vertical structure of larval fish assemblages during diel cycles in summer and winter in the southern part of Bahía de La Paz, México

    NASA Astrophysics Data System (ADS)

    Aceves-Medina, Gerardo; Saldierna-Martínez, Ricardo; Hinojosa-Medina, Alejandro; Jiménez-Rosenberg, Sylvia P. A.; Hernández-Rivas, Martín E.; Morales-Ávila, Raúl

    2008-03-01

    The effect of environmental variables on the vertical structure of larval fish assemblages in a tropical coastal lagoon was analyzed. Ichthyoplankton samples were collected from the near-bottom and surface strata near the mouth of a subtropical lagoon during contrasting seasonal conditions of temperature, photoperiod, light intensity, and tidal heights. During summer, larval fish assemblages had high species richness ( R) and were dominated by tropical species. During winter, assemblages had lower R values and were dominated by subtropical and temperate species. Vertical distribution patterns of the taxa were determined by the interaction of environmental variables and behavior of each species to maintain their position in a stratum in the water column, or to achieve vertical migrations induced by environmental stimuli that, in this case, were thermal gradient, column water stratification, and intensity of light. Depth position and vertical migration of fish larvae, coupled with the flood and ebb tide conditions, played an important role in their retention and displacement toward the lagoon. Fish larvae with distribution restricted to the inner part of the inlet, such as Achirus mazatlanus, Etropus sp., and several gobies, were more abundant in the near-bottom stratum during the ebb tide, allowing them to avoid exportation, whereas those that could spawn outside, but depended on the inlet as a nursery area, were more abundant near the surface during flood tide, such as Abudefduf troschelii and Stegastes rectifraenum.

  18. The Vertical Dust Profile Over Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Newman, C. E.; Smith, M. D.; Moores, J. E.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D.; Kleinböhl, A.; Mischna, M.; Martín-Torres, F. J.; Zorzano-Mier, M.-P.; Battalio, M.

    2017-12-01

    We create a vertically coarse, but complete, profile of dust mixing ratio from the surface to the upper atmosphere over Gale Crater, Mars, using the frequent joint atmospheric observations of the orbiting Mars Climate Sounder (MCS) and the Mars Science Laboratory Curiosity rover. Using these data and an estimate of planetary boundary layer (PBL) depth from the MarsWRF general circulation model, we divide the vertical column into three regions. The first region is the Gale Crater PBL, the second is the MCS-sampled region, and the third is between these first two. We solve for a well-mixed dust mixing ratio within this third (middle) layer of atmosphere to complete the profile. We identify a unique seasonal cycle of dust within each atmospheric layer. Within the Gale PBL, dust mixing ratio maximizes near southern hemisphere summer solstice (Ls = 270°) and minimizes near winter solstice (Ls = 90-100°) with a smooth sinusoidal transition between them. However, the layer above Gale Crater and below the MCS-sampled region more closely follows the global opacity cycle and has a maximum in opacity near Ls = 240° and exhibits a local minimum (associated with the "solsticial pause" in dust storm activity) near Ls = 270°. With knowledge of the complete vertical dust profile, we can also assess the frequency of high-altitude dust layers over Gale. We determine that 36% of MCS profiles near Gale Crater contain an "absolute" high-altitude dust layer wherein the dust mixing ratio is the maximum in the entire vertical column.

  19. Optimation and Determination of Fe-Oxinate Complex by Using High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Oktavia, B.; Nasra, E.; Sary, R. C.

    2018-04-01

    The need for iron will improve the industrial processes that require iron as its raw material. Control of industrial iron waste is very important to do. One method of iron analysis is to conduct indirect analysis of iron (III) ions by complexing with 8-Hydroxyquinoline or oxine. In this research, qualitative and quantitative tests of iron (III) ions in the form of complex with oxine. The analysis was performed using HPLC at a wavelength of 470 nm with an ODS C18 column. Three methods of analysis were performed: 1) Fe-oxinate complexes were prepared in an ethanol solvent so no need for separation anymore, (2) Fe-oxinate complexes were made in chloroform so that a solvent extraction was required before the complex was injected into the column while the third complex was formed in the column, wherein the eluent contains the oxide and the metal ions are then injected. The resulting chromatogram shows that the 3rd way provides a better chromatogram for iron analysis.

  20. Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements

    NASA Astrophysics Data System (ADS)

    Adirosi, E.; Baldini, L.; Roberto, N.; Gatlin, P.; Tokay, A.

    2016-03-01

    A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the microstructure of rain both in stratiform and convective conditions.

  1. Space-based retrieval of NO2 over biomass burning regions: quantifying and reducing uncertainties

    NASA Astrophysics Data System (ADS)

    Bousserez, N.

    2014-10-01

    The accuracy of space-based nitrogen dioxide (NO2) retrievals from solar backscatter radiances critically depends on a priori knowledge of the vertical profiles of NO2 and aerosol optical properties. This information is used to calculate an air mass factor (AMF), which accounts for atmospheric scattering and is used to convert the measured line-of-sight "slant" columns into vertical columns. In this study we investigate the impact of biomass burning emissions on the AMF in order to quantify NO2 retrieval errors in the Ozone Monitoring Instrument (OMI) products over these sources. Sensitivity analyses are conducted using the Linearized Discrete Ordinate Radiative Transfer (LIDORT) model. The NO2 and aerosol profiles are obtained from a 3-D chemistry-transport model (GEOS-Chem), which uses the Fire Locating and Monitoring of Burning Emissions (FLAMBE) daily biomass burning emission inventory. Aircraft in situ data collected during two field campaigns, the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and the Dust and Biomass-burning Experiment (DABEX), are used to evaluate the modeled aerosol optical properties and NO2 profiles over Canadian boreal fires and West African savanna fires, respectively. Over both domains, the effect of biomass burning emissions on the AMF through the modified NO2 shape factor can be as high as -60%. A sensitivity analysis also revealed that the effect of aerosol and shape factor perturbations on the AMF is very sensitive to surface reflectance and clouds. As an illustration, the aerosol correction can range from -20 to +100% for different surface reflectances, while the shape factor correction varies from -70 to -20%. Although previous studies have shown that in clear-sky conditions the effect of aerosols on the AMF was in part implicitly accounted for by the modified cloud parameters, here it is suggested that when clouds are present above a surface layer of scattering aerosols, an explicit aerosol correction would be beneficial to the NO2 retrieval. Finally, a new method that uses slant column information to correct for shape-factor-related AMF error over NOx emission sources is proposed, with possible application to near-real-time OMI retrievals.

  2. Northern and Southern Hemisphere Ground-Based Infrared Spectroscopic Measurements of Tropospheric Carbon Monoxide and Ethane

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Jones, Nicholas B.; Connor, Brian J.; Logan, Jennifer A.; Pougatchev, Nikita; Goldman, Aaron; Murcray, Frank J.; Stephen, Thomas M.; Pine, Alan S.; Zander, Rodolphe; hide

    1998-01-01

    Time series of CO and C2H6 measurements have been derived from high resolution infrared solar spectra recorded in Lauder, New Zealand (45.0 deg S, 169.7 deg E, altitude 0.37 km) and at the U. S. National Solar Observatory (31.90 deg N, 111.6 deg W, altitude 2.09 km) on Kitt Peak. Lauder observations were obtained between July 1993 and November 1997 while the Kitt Peak measurements were recorded between May 1977 and December 1997. Both databases were analyzed with spectroscopic parameters that included significant improvements for C2H6 relative to previous studies. Target CO and C2H6 lines were selected to achieve similar vertical samplings based on averaging kernels. These calculations show that partial columns from layers extending from the surface to the mean tropopause and from the mean tropopause to 100 km are nearly independent. Retrievals based on a semiempirical application of the Rodgers optimal estimation technique are reported for the lower layer, which has a broad maximum in sensitivity in the upper troposphere. The Lauder CO and C2H6 partial columns exhibit highly asymmetrical seasonal cycles with minima in austral autumn and sharp peaks in austral spring. The spring maxima are the result of tropical biomass burning emissions followed by deep convective vertical transport to the upper troposphere and long-range horizontal transport. Significant year-to-year variations are observed for both CO and C2H6, but the measured trends, (+0.37 +/- 0.57)%/ yr and (-0.64 +/- 0.79)%/ yr, 1 sigma, respectively, indicate no significant long-term changes. The Kitt Peak data also exhibit CO and C2H6 seasonal variations in the lower layer with trends equal to (-0.27 +/- 0.17)%/ yr and (-1.20 +/- 0.35)%/ yr, 1 sigma, respectively. Hence, a decrease in the Kitt Peak tropospheric C2H6 column has been detected, though the CO trend is not significant. Both measurement sets are compared with previous observations, reported trends, and three-dimensional model calculations.

  3. Northern and Southern Hemisphere Ground-Based Infrared Spectroscopic Measurements of Tropospheric Carbon Monoxide and Ethane

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Jones, Nicholas B.; Connor, Brian J.; Logan, Jennifer A.; Pougatchev, Nikita S.; Goldman, Aaron; Murcray, Frank J.; Stephen, Thomas M.; Pine, Alan S.; Zander, Rodolphe

    1998-01-01

    Time series of CO and C2H, measurements have been derived from high-resolution infrared solar spectra recorded in Lauder, New Zealand (45.0 degrees S, 169.7 degrees E, altitude 0.37 km), and at the U.S. National Solar Observatory (31.9 degrees N, 11, 1.6 degrees W, altitude 2.09 km) on Kitt Peak. Lauder observations were obtained between July 1993 and November 1997, while the Kitt Peak measurements were recorded between May 1977 and December 1997. Both databases were analyzed with spectroscopic parameters that included significant improvements for C2H6 relative to previous studies. Target CO and C2H6 lines were selected to achieve similar vertical samplings based on averaging kernels. These calculations show that partial columns from layers extending from the surface to the mean tropopause and from the mean tropopause to 100 km are nearly independent. Retrievals based on a semiempirical application of the Rodgers optimal estimation technique are reported for the lower layer, which has a broad maximum in sensitivity in the upper troposphere. The Lauder CO and C2H, partial columns exhibit highly asymmetrical seasonal cycles with minima in austral autumn and sharp peaks in austral spring. The spring maxima are the result of tropical biomass burning emissions followed by deep convective vertical transport to the upper troposphere and long-range horizontal transport. Significant year-to-year variations are observed for both CO and C2H6, but the measured trends, (+0.37 +/- 0.57)% yr(exp -1) and (-0.64 +/- 0.79)% yr(exp -1), I sigma, respectively, indicate no significant long-term changes. The Kitt Peak data also exhibit CO and C2H6, seasonal variations in the lower layer with trends equal to (-0.27 +/- 0.17)% yr(exp -1) and (-1.20 +/- 0.35)% yr(exp -1), 1 sigma, respectively. Hence a decrease in the Kitt Peak tropospheric C2H6 column has been detected, though the CO trend is not significant. Both measurement sets are compared with previous observations, reported trends, and three-dimensional model calculations.

  4. [Spatial distribution of sulfur dioxide around a tobacco bulk-curing workshop cluster].

    PubMed

    He, Fan; Wang, Mei; Wang, Tao; Sun, Jian-Feng; Huang, Wu-Xing; Tian, Bin-Qiang; Gong, Chang-Rong

    2014-03-01

    In order to manifest lower energy consumption and less labor employment, and provide the theoretical basis for constructing environmentally friendly modem tobacco agriculture, this paper analyzed gas composition of the chimney from a bulk-curing barn and the dispersion of sulfur dioxide (SO2) around the workshop cluster using ecom-J2KN flue gas analyzer and air sampler. During curing, the concentrations of carbon dioxide (CO2) and SO2 in the chimney were both highest at 38 degrees C, while the concentration of nitrogen oxides (NOx) was highest at 42 degrees C. The emission concentration of SO2 from the chimney was 1327.60-2218.40 mg x m(-3). Average SO2 emission would decrease by 49.7% through adding 4.0% of a sulfur-fixed agent. The highest concentrations of SO2 in the surface soil appeared at the yellowing stage. SO2 concentration in horizontal direction localized at 43-80 m exceeded 0.5 mg x m(-3). The highest concentration of SO2 (0.57 mg x m(-3)) was observed at 50 m. At 50 m in the downstream wind direction of the workshop cluster, SO2 concentration in vertical direction localized at 0.9-1.8 m exceeded 0.5 mg x m(-3), and the highest concentration of SO2 in vertical direction was 0.65 mg x m(-3) at 1.6 m. During curing, the average concentration of SO2 was decreased by 0.43 mg x m(-3) by using the sulfur-fixed agent. The polluted boundary was localized at 120 m in the downstream wind direction of the workshop cluster.

  5. Estimating the volcanic emission rate and atmospheric lifetime of SO2 from space: a case study for Kīlauea volcano, Hawai'i

    USGS Publications Warehouse

    Beirle, Steffen; Hörmann, Christoph; Penning de Vries, Malouse; Dörner, Stefan; Kern, Christoph; Wagner, Thomas

    2014-01-01

    We present an analysis of SO2 column densities derived from GOME-2 satellite measurements for the Kīlauea volcano (Hawai`i) for 2007–2012. During a period of enhanced degassing activity in March–November 2008, monthly mean SO2 emission rates and effective SO2 lifetimes are determined simultaneously from the observed downwind plume evolution and meteorological wind fields, without further model input. Kīlauea is particularly suited for quantitative investigations from satellite observations owing to the absence of interfering sources, the clearly defined downwind plumes caused by steady trade winds, and generally low cloud fractions. For March–November 2008, the effective SO2 lifetime is 1–2 days, and Kīlauea SO2 emission rates are 9–21 kt day−1, which is about 3 times higher than initially reported from ground-based monitoring systems.

  6. Infrared observations and laboratory simulations of interstellar CH_4_ and SO_2_.

    NASA Astrophysics Data System (ADS)

    Boogert, A. C. A.; Schutte, W. A.; Helmich, F. P.; Tielens, A. G. G. M.; Wooden, D. H.

    1997-02-01

    Interstellar CH_4_ may consume a fair amount of the carbon budget in dense molecular clouds, but probably less than CO, CH_3_OH, and CO_2_. However, it can only be observed at wavelength regions in the infrared that are heavily affected by the earth atmosphere. With new space and airborne missions (e.g. ISO, SOFIA) in mind we have studied the near infrared absorption spectra of solid and gaseous CH_4_. We obtained laboratory spectra of the ν_4_ deformation mode (1302cm^-1^, 7.68μm) of solid CH_4_ in astrophysically relevant mixtures. We found that the peak position and width of this absorption band vary strongly as a function of molecular environment, compared to temperature and particle shape effects. Hence, observations of this feature will provide a powerful probe of the molecular composition of interstellar ices. Also the gas phase CH_4_ ro-vibrational spectrum of the same band has been calculated. Using observed physical conditions around the protostar W 33A, we show that unresolved gaseous CH_4_ lines are detectable (at the 2-5% level) at a resolution R>1000, when the column density N>=10^16^ cm^-2^. An astrophysically relevant molecule with a very strong transition in the same wavelength regime, is SO_2_. We studied the ν _3_ asymmetric stretching mode (1319 cm^-1^, 7.58 μm) of solid SO_2_ in several mixtures, revealing that the peak position, width and detailed profile of this band are very sensitive to the molecular environment. Besides probing the composition of ice mantles, observations of solid SO_2_ will provide important information on the sulfur budget locked up in grain mantles, which is currently poorly known. We compare the laboratory and calculated spectra of CH_4_ and SO_2_ with previously published ground based spectra and new airborne observations of young stellar objects in the 7-8μm region. W 33A, NGC 7538 : IRS1 and IRS9 show a feature near 7.68μm that is consistent with absorption by solid CH_4_ or the Q-branch of gaseous CH_4_. The column density of solid CH_4_ would be 0.3-4% of solid H_2_O, indicating that solid CH_4_ consumes 0.5+/-0.3% of the cosmic carbon abundance. A gaseous origin would imply a column density of at least this amount, being highly dependent on the assumed temperature of the absorbing gas. A second absorption feature is detected toward W 33A and NGC 7538 : IRS1 at 7.58 μm. The peak position and width of this feature are consistent with the ν_3_ mode of solid SO_2_ in a matrix of solid CH_3_OH or pure SO_2_. The derived column density is 0.1-1% of solid H_2_O, indicating that solid SO_2_ locks up 0.6-6% of the cosmic sulfur abundance. This study shows that 7-8μm spectroscopy of dense molecular clouds, using new airborne and space-based platforms, will provide valuable information on the composition of icy grain mantles and molecular cloud chemistry.

  7. On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E

    PubMed Central

    van Lier-Walqui, Marcus; Fridlind, Ann M.; Ackerman, Andrew S.; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R.; North, Kirk; Kollias, Pavlos; Posselt, Derek J.

    2017-01-01

    The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote-sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase (KDP) observed above the melting level are associated with deep convection updraft cells, so-called “KDP columns” are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR KDP volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity (ZDR). Results indicate strong correlations of KDP volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of KDP columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of ZDR to KDP shows commonalities in information content of each, as well as potential problems with ZDR associated with observational artifacts. PMID:29503466

  8. Demonstration of Tuning to Stimulus Orientation in the Human Visual Cortex: A High-Resolution fMRI Study with a Novel Continuous and Periodic Stimulation Paradigm

    PubMed Central

    Sun, Pei; Gardner, Justin L.; Costagli, Mauro; Ueno, Kenichi; Waggoner, R. Allen; Tanaka, Keiji; Cheng, Kang

    2013-01-01

    Cells in the animal early visual cortex are sensitive to contour orientations and form repeated structures known as orientation columns. At the behavioral level, there exist 2 well-known global biases in orientation perception (oblique effect and radial bias) in both animals and humans. However, their neural bases are still under debate. To unveil how these behavioral biases are achieved in the early visual cortex, we conducted high-resolution functional magnetic resonance imaging experiments with a novel continuous and periodic stimulation paradigm. By inserting resting recovery periods between successive stimulation periods and introducing a pair of orthogonal stimulation conditions that differed by 90° continuously, we focused on analyzing a blood oxygenation level-dependent response modulated by the change in stimulus orientation and reliably extracted orientation preferences of single voxels. We found that there are more voxels preferring horizontal and vertical orientations, a physiological substrate underlying the oblique effect, and that these over-representations of horizontal and vertical orientations are prevalent in the cortical regions near the horizontal- and vertical-meridian representations, a phenomenon related to the radial bias. Behaviorally, we also confirmed that there exists perceptual superiority for horizontal and vertical orientations around horizontal and vertical meridians, respectively. Our results, thus, refined the neural mechanisms of these 2 global biases in orientation perception. PMID:22661413

  9. The Star Schema Benchmark and Augmented Fact Table Indexing

    NASA Astrophysics Data System (ADS)

    O'Neil, Patrick; O'Neil, Elizabeth; Chen, Xuedong; Revilak, Stephen

    We provide a benchmark measuring star schema queries retrieving data from a fact table with Where clause column restrictions on dimension tables. Clustering is crucial to performance with modern disk technology, since retrievals with filter factors down to 0.0005 are now performed most efficiently by sequential table search rather than by indexed access. DB2’s Multi-Dimensional Clustering (MDC) provides methods to "dice" the fact table along a number of orthogonal "dimensions", but only when these dimensions are columns in the fact table. The diced cells cluster fact rows on several of these "dimensions" at once so queries restricting several such columns can access crucially localized data, with much faster query response. Unfortunately, columns of dimension tables of a star schema are not usually represented in the fact table. In this paper, we show a simple way to adjoin physical copies of dimension columns to the fact table, dicing data to effectively cluster query retrieval, and explain how such dicing can be achieved on database products other than DB2. We provide benchmark measurements to show successful use of this methodology on three commercial database products.

  10. Site Location Details, Air Pollution Monitoring Equipment Used, Aircraft Flight Path Information, and Deployment Configuration for the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) Field Campaign in Colorado: Summer 2014

    EPA Science Inventory

    For EPA, this Summer 2014, Denver CO, DISCOVER-AQ field research activity focused on assessing Federal Reference Methods (FRMs) and Federal Equivalent Methods (FEMs) for ozone (O3) and Nitrogen Dioxide (NO2), while comparing their operational performance to each other and to smal...

  11. Surface morphology of active normal faults in hard rock: Implications for the mechanics of the Asal Rift, Djibouti

    NASA Astrophysics Data System (ADS)

    Pinzuti, Paul; Mignan, Arnaud; King, Geoffrey C. P.

    2010-10-01

    Tectonic-stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localised magma intrusion, with normal faults accommodating extension and subsidence only above the maximum reach of the magma column. In these magmatic rifting models, or so-called magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Vertical profiles of normal fault scarps from levelling campaign in the Asal Rift, where normal faults seem sub-vertical at surface level, have been analysed to discuss the creation and evolution of normal faults in massive fractured rocks (basalt lava flows), using mechanical and kinematics concepts. We show that the studied normal fault planes actually have an average dip ranging between 45° and 65° and are characterised by an irregular stepped form. We suggest that these normal fault scarps correspond to sub-vertical en echelon structures, and that, at greater depth, these scarps combine and give birth to dipping normal faults. The results of our analysis are compatible with the magmatic intrusion models instead of tectonic-stretching models. The geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.

  12. Tritium and radiocarbon in the western North Pacific waters: post-Fukushima situation.

    PubMed

    Kaizer, Jakub; Aoyama, Michio; Kumamoto, Yuichiro; Molnár, Mihály; Palcsu, László; Povinec, Pavel P

    2018-04-01

    Impact of the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident on tritium ( 3 H) and radiocarbon ( 14 C) levels in the water column of the western North Pacific Ocean in winter 2012 is evaluated and compared with radiocesium ( 134,137 Cs) data collected for the same region. Tritium concentrations in surface seawater, varying between 0.4 and 2.0 TU (47.2-236 Bq m -3 ), follow the Fukushima radiocesium trend, however, some differences in the vertical profiles were observed, namely in depths of 50-400 m. No correlation was visible in the case of 14 C, whose surface Δ 14 C levels raised from negative values (about -40‰) in the northern part of transect, to positive values (∼68‰) near the equator. Homogenously mixed 14 C levels in the subsurface layers were observed at all stations. Sixteen surface (from 30 in total) and 6 water profile (from 7) stations were affected by the Fukushima tritium. Surface and vertical profile data together with the calculated water column inventories indicate that the total amount of the FNPP1-derived tritium deposited to the western North Pacific Ocean was 0.7 ± 0.3 PBq. No clear impact of the Fukushima accident on 14 C levels in the western North Pacific was observed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. An investigation of thoracic and lumbar cancellous vertebral architecture using power-spectral analysis of plain radiographs*

    PubMed Central

    Buck, AM; Price, RI; Sweetman, IM; Oxnard, CE

    2002-01-01

    The internal architecture of the vertebral bodies spanning the levels T1 to L5 in seven male columns was studied using mammographic-resolution radiographs of 2.5-mm-thick planar parasagittal slices. The overlapping radiographic shadows of vertebral trabeculae combined in the image to form a series of ‘elements’, broadly representative of the cancellous structure. The orientations and sizes of these elements were analysed by applying the Fast Fourier transform (FFT) to the digitized radiographic images. Elements aligned in the ‘vertical’ orientation, along the long axis of the column, were the most prominent for all vertebral levels. The relative prominence of horizontal to vertical elements was generally constant along the column below T5. In contrast, the relative prominence of oblique to vertical elements declined in the cranio-caudal direction, particularly in individuals aged ≥ 60 years. The ratio of ‘large’ (x > 0.3 mm) to ‘small’ (0.15 mm ≤ x ≤ 0.3 mm) elements was unchanged cranio-caudally in specimens < 60 years. However, in individuals ≥ 60 years, large elements increased in relative prominence in the caudal direction. These results suggest that a basic orthogonal pattern of trabeculae is found along the male human spine, regardless of differences in vertebral body size. Power-spectral analysis is shown to yield information summarizing the predominant orientations and sizes of radiographically rendered architectural elements of vertebral cancellous bone, to define the effects of ageing on architecture, and to identify broad structural differences between vertebral levels in the adult male spine. PMID:12090391

  14. Turbulent Kinetic Energy (TKE) Budgets Using 5-beam Doppler Profilers

    NASA Astrophysics Data System (ADS)

    Guerra, M. A.; Thomson, J. M.

    2016-12-01

    Field observations of turbulence parameters are important for the development of hydrodynamic models, understanding contaminant mixing, and predicting sediment transport. The turbulent kinetic energy (TKE) budget quantifies where turbulence is being produced, dissipated or transported at a specific site. The Nortek Signature 5-beam AD2CP was used to measure velocities at high sampling rates (up to 8 Hz) at Admiralty Inlet and Rich Passage in Puget Sound, WA, USA. Raw along-beam velocity data is quality controlled and is used to estimate TKE spectra, spatial structure functions, and Reynolds stress tensors. Exceptionally low Doppler noise in the data enables clear observations of the inertial sub-range of isotropic turbulence in both the frequency TKE spectra and the spatial structure functions. From these, TKE dissipation rates are estimated following Kolmogorov's theory of turbulence. The TKE production rates are estimated using Reynolds stress tensors together with the vertical shear in the mean flow. The Reynolds stress tensors are estimated following the methodology of Dewey and Stinger (2007), which is significantly improved by inclusion of the 5th beam (as opposed to the conventional 4). These turbulence parameters are used to study the TKE budget along the water column at the two sites. Ebb and flood production and dissipation rates are compared through the water column at both sites. At Admiralty Inlet, dissipation exceeds production during ebb while the opposite occurs during flood because the proximity to a lateral headland. At Rich Passage, production exceeds dissipation through the water column for all tidal conditions due to a vertical sill in the vicinity of the measurement site.

  15. OMI Global Tropospheric Bromine Oxide (BrO) Column Densities: Algorithm, Retrieval and Initial Validation

    NASA Astrophysics Data System (ADS)

    Suleiman, R. M.; Chance, K.; Liu, X.; Kurosu, T. P.; Gonzalez Abad, G.

    2014-12-01

    We present and discuss a detailed description of the retrieval algorithms for the OMI BrO product. The BrO algorithms are based on direct fitting of radiances from 319.0-347.5 nm. Radiances are modeled from the solar irradiance, attenuated and adjusted by contributions from the target gas and interfering gases, rotational Raman scattering, undersampling, additive and multiplicative closure polynomials and a common mode spectrum. The version of the algorithm used for both BrO includes relevant changes with respect to the operational code, including the fit of the O2-O2 collisional complex, updates in the high resolution solar reference spectrum, updates in spectroscopy, an updated Air Mass Factor (AMF) calculation scheme, and the inclusion of scattering weights and vertical profiles in the level 2 products. Updates to the algorithms include accurate scattering weights and air mass factor calculations, scattering weights and profiles in outputs and available cross sections. We include retrieval parameter and window optimization to reduce the interference from O3, HCHO, O2-O2, SO2, improve fitting accuracy and uncertainty, reduce striping, and improve the long-term stability. We validate OMI BrO with ground-based measurements from Harestua and with chemical transport model simulations. We analyze the global distribution and seasonal variation of BrO and investigate BrO emissions from volcanoes and salt lakes.

  16. Sulfur dioxide reactions on ice surfaces: Implications for dry deposition to snow

    Treesearch

    Martha H. Conklin; Richard A. Sommerfeld; S. Kay Laird; John E. Villinski

    1993-01-01

    Controlled exposure of ice to a reactive gas, SO2, demonstrated the importance of the chemical composition of the ice surface on the accumulation of acidity in snow. In a series of bench-scale continuous-flow column experiments run at four temperatures (-1, -8, -30 and -60°C), SO2 was shown to dissolve and to react with other species in the ice-air interfacial region...

  17. Vadose Zone as a Potential Carbon Source: a Look at Seasonal Spikes in Hyporheic Zone pCO2

    NASA Astrophysics Data System (ADS)

    Brandes, J.

    2016-12-01

    Connections between soils, terrestrial streams and the atmosphere are not yet thoroughly understood as contributing factors to the global carbon budget. We collected data from an undisturbed soil column adjacent to a small stream in a forested watershed in the H. J. Andrews Experimental Forest in the Western Cascades of Oregon in the United States. Our data includes: CO2 (ppm); temperature (oC); depth below water table (m); and soil moisture (cm3/cm3) and spans approximately one year. We are analyzing the data using the gradient method and have observed distinct seasonal patterns which may support previous research describing temporal processes. We can expect to see changing soil moisture characteristics which may promote either vertical CO2 diffusion out of the surface or vertical/lateral advection into subsurface flow. We hypothesize that there is flushing of soil CO2 into the hyporheic zone during precipitation events following soil CO2 buildup.

  18. A 15-year record (2001-2015) of the ratio of nitrate to non-sea-salt sulfate in precipitation over East Asia

    NASA Astrophysics Data System (ADS)

    Itahashi, Syuichi; Yumimoto, Keiya; Uno, Itsushi; Hayami, Hiroshi; Fujita, Shin-ichi; Pan, Yuepeng; Wang, Yuesi

    2018-02-01

    Acidifying species in precipitation can have severe impacts on ecosystems. The chemical composition of precipitation is directly related to the amount of precipitation; accordingly, it is difficult to identify long-term variation in chemical concentrations. The ratio of the nitrate (NO3-) to non-sea-salt sulfate (nss-SO42-) concentration in precipitation on an equivalent basis (hereinafter, Ratio) is a useful index to investigate the relative contributions of these acidifying species. To identify the long-term record of acidifying species in precipitation over East Asia, the region with the highest emissions worldwide, we compiled ground-based observations of the chemical composition of precipitation over China, Korea, and Japan from 2001 to 2015 based on the Acid Deposition Monitoring Network in East Asia (EANET). The spatial coverage was limited, but additional monitoring data for Japan, southern China, and northern China around Beijing were utilized. The period of analysis was divided into three phases: Phase I (2001-2005), Phase II (2006-2010), and Phase III (2011-2015). The behaviors of NO3- and nss-SO42- concentrations and hence the Ratio in precipitation were related to these precursors. The anthropogenic NOx and SO2 emissions and the NOx / SO2 emission ratio were analyzed. Further, satellite observations of the NO2 and SO2 column density to capture the variation in emissions were applied. We found that the long-term trend in the NO3- concentration in precipitation was not related to the variation in NOx emission and the NO2 column. In comparison, the nss-SO42- concentration in precipitation over China, Korea, and Japan was partially connected to the changes in SO2 emissions from China, but the trends were not significant. The long-term trends of Ratio over China, Korea, and Japan were nearly flat during Phase I, increased significantly during Phase II, and were essentially flat again during Phase III. This variation in Ratio in East Asia clearly corresponded to the NOx / SO2 emission ratio and the NO2 / SO2 column ratio in China. The initial flat trend during Phase I was due to increases in both NOx and SO2 emissions in China, the significantly increasing trend during Phase II was triggered by the increase in NOx emissions and decrease in SO2 emissions in China, and the return to a flat trend during Phase III was caused by declines in both NOx and SO2 emissions in China. These results suggest that emissions in China had a significant impact not only on China but also on downwind precipitation chemistry during the 15-year period of 2001-2015. In terms of wet deposition, the NO3- wet deposition over China, Korea, and Japan did not change dramatically, but the nss-SO42- wet deposition declined over China, Korea, and Japan from Phase II to III. These declines were caused by a strong decrease in the nss-SO42- concentration in precipitation accompanied by a reduction in SO2 emission from China, which counteracted the increase in precipitation. These findings indicated that the acidity of precipitation shifted from sulfur to nitrogen.

  19. Combining active and passive remote sensing from research aircraft with atmospheric models to evaluate NOx emission fluxes and O3 formation in the Los Angeles Megacity

    NASA Astrophysics Data System (ADS)

    Baidar, Sunil; Oetjen, Hilke; Senff, Christoph; Alvarez, Raul, II; Hardesty, Michael; Langford, Andrew; Kim, Si-Wan; Trainer, Michael; Volkamer, Rainer

    2013-04-01

    Ozone (O3) and nitrogen dioxide (NO2) are two important components of air pollution. We have measured vertical column amounts of NO2, and vertical profiles of O3 and wind speed by means of measurements of solar stray light by CU Airborne MAX-DOAS, and active remote sensing using the NOAA TOPAZ lidar, and the University of Leeds Doppler lidar aboard the NOAA Twin Otter research aircraft. A total of 52 flights (up to 4 hours each) were carried out between May 19 and July 19 2010 during the CalNex and CARES field campaigns. These flights cover most of California. The boundary layer height was measured by TOPAZ lidar, and trace gas concentrations of NO2 and O3 were integrated over boundary layer height. These column integrated quantities are then combined with direct wind speed measurements to quantify directly the pollutant flux across the boundary, as defined by the flight track. By tracking the pollution fluxes during transects that are flown upwind and in various distances downwind of a NOx emission source, the NOx emission rate, and the ozone formation rate are quantified. These pollutant fluxes are calculated here for the first time exclusively based on measurements (i.e., without need to infer wind speed from a model). These fluxes provide constraints to quantify localized NOx emissions, and are being compared with WRF-Chem model simulations.

  20. Impact of Surface Emissions to the Zonal Variability of Tropical Tropospheric Ozone and Carbon Monoxide for November 2004

    NASA Technical Reports Server (NTRS)

    Bowman, K. W.; Jones, D.; Logan, J.; Worden, H.; Boersma, F.; Chang, R.; Kulawik, S.; Osterman, G.; Worden, J.

    2008-01-01

    The chemical and dynamical processes governing the zonal variability of tropical tropospheric ozone and carbon monoxide are investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions. Vertical ozone profile estimates from the Tropospheric Emission Spectrometer (TES) and ozone sonde measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network show the so called zonal 'wave-one' pattern, which is characterized by peak ozone concentrations (70-80 ppb) centered over the Atlantic, as well as elevated concentrations of ozone over Indonesia and Australia (60-70 ppb) in the lower troposphere. Observational evidence from TES CO vertical profiles and Ozone Monitoring Instrument (OMI) NO2 columns point to regional surface emissions as an important contributor to the elevated ozone over Indonesia. This contribution is investigated with the GEOS-Chem chemistry and transport model using surface emission estimates derived from an optimal inverse model, which was constrained by TES and Measurements Of Pollution In The Troposphere (MOPITT) CO profiles (Jones et al., 2007). These a posteriori estimates, which were over a factor of 2 greater than climatological emissions, reduced differences between GEOS-Chem and TES ozone observations by 30-40% and led to changes in GEOS-Chem upper tropospheric ozone of up to 40% over Indonesia. The remaining residual differences can be explained in part by upper tropospheric ozone produced from lightning NOx in the South Atlantic. Furthermore, model simulations from GEOS-Chem indicate that ozone over Indonesian/Australian is more sensitive to changes in surface emissions of NOx than ozone over the tropical Atlantic.

  1. Wind-Tunnel Investigation of the Effect of Vertical Position of the Wing on the Side Flow in the Region of the Vertical Tail

    DTIC Science & Technology

    1941-04-01

    measured with a bank of pitot -yaw tubes-connected to a direct-reading multiple-tube manometer. The- bank of pitot -yaw tubes was so mounted as- to...neutral and deflected 60°. These Surveys were made on a cross-tunnel line 2.26 inches above the fuselage center line, and the pitot -yaw tubes were...Langley Field-, 7a-., January 30, 1941. NACA Technical Note So. 804 17 REFERENCES 1. Pearson, Henry A., and Jones, Robert T. : Theoretical

  2. The 2010 Eyja eruption evolution by using IR satellite sensors measurements: retrieval comparison and insights into explosive volcanic processes

    NASA Astrophysics Data System (ADS)

    Piscini, A.; Corradini, S.; Merucci, L.; Scollo, S.

    2010-12-01

    The 2010 April-May Eyja eruption caused an unprecedented disruption to economic, political and cultural activities in Europe and across the world. Because of the harming effects of fine ash particles on aircrafts, many European airports were in fact closed causing millions of passengers to be stranded, and with a worldwide airline industry loss estimated of about 2.5 billion Euros. Both security and economical issues require robust and affordable volcanic cloud retrievals that may be really improved through the intercomparison among different remote sensing instruments. In this work the Thermal InfraRed (TIR) measurements of different polar and geostationary satellites instruments as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR) and the Spin Enhanced Visible and Infrared Imager (SEVIRI), have been used to retrieve the volcanic ash and SO2 in the entire eruption period over Iceland. The ash retrievals (mass, AOD and effective radius) have been carried out by means of the split window BTD technique using the channels centered around 11 and 12 micron. The least square fit procedure is used for the SO2 retrieval by using the 7.3 and 8.7 micron channels. The simulated TOA radiance Look-Up Table (LUT) needed for both the ash and SO2 column abundance retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. Further, the volcanic plume column altitude and ash density have been computed and compared, when available, with ground observations. The results coming from the retrieval of different IR sensors show a good agreement over the entire eruption period. The column height, the volcanic ash and the SO2 emission trend confirm the indentified different phases occurred during the Eyja eruption. We remark that the retrieved volcanic plume evolution can give important insights into eruptive dynamics during long-lived explosive activity.

  3. In situ SEM Observation of Column-like and Foam-like CNT Array Nanoindentation

    DTIC Science & Technology

    2011-03-02

    frompyrolization of iron(II) phthalocyanine , producing vertically aligned CNTs with a nominal outer diameter of 50 nm.11,12 The array was indented using a 40 40 μm...www.acsami.org In situ SEM Observation of Column-like and Foam-like CNT Array Nanoindentation Matthew R. Maschmann,†,‡Qiuhong Zhang,†,§ Robert Wheeler...multiple length scales. Their behavior is expected to rely heavily on the properties of individual constituent CNTs , interactions and load distribution

  4. Global and Regional Radiative Forcing from 20 Reductions in BC, OC and SO4 an HTAP2 Multi-Model Study

    NASA Technical Reports Server (NTRS)

    Stjern, Camilla Weum; Samset, Bjorn Hallvard; Myhre, Gunnar; Bian, Huisheng; Chin, Mian; Davila, Yanko; Dentener, Frank; Emmons, Louisa; Flemming, Johannes; Haslerud, Amund Sovde; hide

    2016-01-01

    In the Hemispheric Transport of Air Pollution Phase 2 (HTAP2) exercise, a range of global atmospheric general circulation and chemical transport models performed coordinated perturbation experiments with 20% reductions in emissions of anthropogenic aerosols, or aerosol precursors, in a number of source regions. Here, we compare the resulting changes in the atmospheric load and vertically resolved profiles of black carbon (BC), organic aerosols (OA) and sulfate (SO4/ from 10 models that include treatment of aerosols. We use a set of temporally, horizontally and vertically resolved profiles of aerosol forcing efficiency (AFE) to estimate the impact of emission changes in six major source regions on global radiative forcing (RF) pertaining to the direct aerosol effect, finding values between. 51.9 and 210.8mW/sq m/Tg for BC, between -2.4 and -17.9mW/sq m/Tg for OA and between -3.6 and -10.3W/sq m/Tg for SO4. In most cases, the local influence dominates, but results show that mitigations in south and east Asia have substantial impacts on the radiative budget in all investigated receptor regions, especially for BC. In Russia and the Middle East, more than 80 % of the forcing for BC and OA is due to extra-regional emission reductions. Similarly, for North America, BC emissions control in east Asia is found to be more important than domestic mitigations, which is consistent with previous findings. Comparing fully resolved RF calculations to RF estimates based on vertically averaged AFE profiles allows us to quantify the importance of vertical resolution to RF estimates. We find that locally in the source regions, a 20% emission reduction strengthens the radiative forcing associated with SO4 by 25% when including the vertical dimension, as the AFE for SO4 is strongest near the surface. Conversely, the local RF from BC weakens by 37% since BC AFE is low close to the ground. The fraction of BC direct effect forcing attributable to intercontinental transport, on the other hand, is enhanced by one-third when accounting for the vertical aspect, because long-range transport primarily leads to aerosol changes at high altitudes, where the BC AFE is strong. While the surface temperature response may vary with the altitude of aerosol change, the analysis in the present study is not extended to estimates of temperature or precipitation changes.

  5. A preliminary comparison between TOVS and GOME level 2 ozone data

    NASA Astrophysics Data System (ADS)

    Rathman, William; Monks, Paul S.; Llewellyn-Jones, David; Burrows, John P.

    1997-09-01

    A preliminary comparison between total column ozone concentration values derived from TIROS Operational Vertical Sounder (TOVS) and Global Ozone Monitoring Experiment (GOME) has been carried out. Two comparisons of ozone datasets have been made: a) TOVS ozone analysis maps vs. GOME level 2 data; b) TOVS data located at Northern Hemisphere Ground Ozone Stations (NHGOS) vs. GOME data. Both analyses consistently showed an offset in the value of the total column ozone between the datasets [for analyses a) 35 Dobson Units (DU); and for analyses b) 10 DU], despite a good correlation between the spatial and temporal features of the datasets. A noticeably poor correlation in the latitudinal bands 10°/20° North and 10°/20° South was observed—the reasons for which are discussed. The smallest region which was statistically representative of the ozone value correlation dataset of TOVS data at NHGOS and GOME level-2 data was determined to be a region that was enclosed by effective radius of 0.75 arc-degrees (83.5km).

  6. Comparison of MAX-DOAS profiling algorithms during CINDI-2 - Part 1: aerosols

    NASA Astrophysics Data System (ADS)

    Friess, Udo; Hendrick, Francois; Tirpitz, Jan-Lukas; Apituley, Arnoud; van Roozendael, Michel; Kreher, Karin; Richter, Andreas; Wagner, Thomas

    2017-04-01

    The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. CINDI-2 was aiming at assessing the consistency of MAX-DOAS slant column density measurements of tropospheric species (NO2, HCHO, O3, and O4) relevant for the validation of future ESA atmospheric Sentinel missions, through coordinated operation of a large number of DOAS and MAXDOAS instruments from all over the world. An important objective of the campaign was to study the relationship between remote-sensing column and profile measurements of the above species and collocated reference ancillary observations. For this purpose, the CINDI-2 Profiling Task Team (CPTT) was created, involving 22 groups performing aerosol and trace gas vertical profile inversion using dedicated MAX-DOAS profiling algorithms, as well as the teams responsible for ancillary profile and surface concentration measurements (NO2 analysers, NO2 sondes, NO2 and Raman LIDARs, CAPS, Long-Path DOAS, sun photometer, nephelometer, etc). The main purpose of the CPTT is to assess the consistency of the different profiling tools for retrieving aerosol extinction and trace gas vertical profiles through comparison exercises using commonly defined settings and to validate the retrievals with correlative observations. In this presentation, we give an overview of the MAX-DOAS vertical profile comparison results, focusing on the retrieval of aerosol extinction profiles, with the trace gas retrievals being presented in a companion abstract led by F. Hendrick. The performance of the different algorithms is investigated with respect to the variable visibility and cloud conditions encountered during the campaign. The consistency between optimal-estimation-based and parameterized profiling tools is also evaluated for these different conditions, together with the level of agreement with available ancillary aerosol observations, including sun photometer, nephelometer and LIDAR. This comparison study will be put in the perspective of the development of a centralized MAX-DOAS processing system within the framework of the ESA Fiducial Reference Measurements (FRM) project.

  7. Ice shelf basal melt rates around Antarctica from simulations and observations

    NASA Astrophysics Data System (ADS)

    Schodlok, M. P.; Menemenlis, D.; Rignot, E. J.

    2016-02-01

    We introduce an explicit representation of Antarctic ice shelf cavities in the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) ocean retrospective analysis; and compare resulting basal melt rates and patterns to independent estimates from satellite observations. Two simulations are carried out: the first is based on the original ECCO2 vertical discretization; the second has higher vertical resolution particularly at the depth range of ice shelf cavities. The original ECCO2 vertical discretization produces higher than observed melt rates and leads to a misrepresentation of Southern Ocean water mass properties and transports. In general, thicker levels at the base of the ice shelves lead to increased melting because of their larger heat capacity. This strengthens horizontal gradients and circulation within and outside the cavities and, in turn, warm water transports from the shelf break to the ice shelves. The simulation with more vertical levels produces basal melt rates (1735 ± 164 Gt/a) and patterns that are in better agreement with observations. Thinner levels in the sub-ice-shelf cavities improve the representation of a fresh/cold layer at the ice shelf base and of warm/salty water near the bottom, leading to a sharper pycnocline and reduced vertical mixing underneath the ice shelf. Improved water column properties lead to more accurate melt rates and patterns, especially for melt/freeze patterns under large cold-water ice shelves. At the 18 km grid spacing of the ECCO2 model configuration, the smaller, warm-water ice shelves cannot be properly represented, with higher than observed melt rates in both simulations.

  8. 29 CFR 1614.703 - Manner and format of data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vertical columns. The oldest fiscal year data shall be listed first, reading left to right, with the other... Resource Locator (URL) for the data it posts under this subpart. Thereafter, new or changed URLs shall be...

  9. Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks

    PubMed Central

    Esfandyari Bayat, Ali; Junin, Radzuan; Shamshirband, Shahaboddin; Tong Chong, Wen

    2015-01-01

    Engineered aluminum oxide (Al2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2) nanoparticles (NPs) are utilized in a broad range of applications; causing noticeable quantities of these materials to be released into the environment. Issues of how and where these particles are distributed into the subsurface aquatic environment remain as major challenges for those in environmental engineering. In this study, transport and retention of Al2O3, TiO2, and SiO2 NPs through various saturated porous media were investigated. Vertical columns were packed with quartz-sand, limestone, and dolomite grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolet-visible spectrophotometer. It was found that Al2O3 and TiO2 NPs are easily transported through limestone and dolomite porous media whereas NPs recoveries were achieved two times higher than those found in the quartz-sand. The highest and lowest SiO2-NPs recoveries were also achieved from the quartz-sand and limestone columns, respectively. The experimental results closely replicated the general trends predicted by the filtration and DLVO calculations. Overall, NPs mobility through a porous medium was found to be strongly dependent on NP surface charge, NP suspension stability against deposition, and porous medium surface charge and roughness. PMID:26373598

  10. First Top-Down Estimates of Anthropogenic NOx Emissions Using High-Resolution Airborne Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Souri, Amir H.; Choi, Yunsoo; Pan, Shuai; Curci, Gabriele; Nowlan, Caroline R.; Janz, Scott J.; Kowalewski, Matthew G.; Liu, Junjie; Herman, Jay R.; Weinheimer, Andrew J.

    2018-03-01

    A number of satellite-based instruments have become an essential part of monitoring emissions. Despite sound theoretical inversion techniques, the insufficient samples and the footprint size of current observations have introduced an obstacle to narrow the inversion window for regional models. These key limitations can be partially resolved by a set of modest high-quality measurements from airborne remote sensing. This study illustrates the feasibility of nitrogen dioxide (NO2) columns from the Geostationary Coastal and Air Pollution Events Airborne Simulator (GCAS) to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. We convert slant column densities to vertical columns using a radiative transfer model with (i) NO2 profiles from a high-resolution regional model (1 × 1 km2) constrained by P-3B aircraft measurements, (ii) the consideration of aerosol optical thickness impacts on radiance at NO2 absorption line, and (iii) high-resolution surface albedo constrained by ground-based spectrometers. We characterize errors in the GCAS NO2 columns by comparing them to Pandora measurements and find a striking correlation (r > 0.74) with an uncertainty of 3.5 × 1015 molecules cm-2. On 9 of 10 total days, the constrained anthropogenic emissions by a Kalman filter yield an overall 2-50% reduction in polluted areas, partly counterbalancing the well-documented positive bias of the model. The inversion, however, boosts emissions by 94% in the same areas on a day when an unprecedented local emissions event potentially occurred, significantly mitigating the bias of the model. The capability of GCAS at detecting such an event ensures the significance of forthcoming geostationary satellites for timely estimates of top-down emissions.

  11. The MAC aerosol climatology

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2015-12-01

    Aerosol is highly diverse in space and time. And many different aerosol optical properties are needed (consistent to each other) for the determination of radiative effects. To sidestep a complex (and uncertain) aerosol treatment (emission to mass to optics) a monthly gridded climatology for aerosol properties has been developed. This MPI Aerosol Climatology (MAC) is strongly tied to observational statistics for aerosol column optical properties by AERONET (over land) and by MAN (over oceans). To fill spatial gaps, to address decadal change and to address vertical variability, these sparsely distributed local data are extended with central data of an ensemble of output from global models with complex aerosol modules. This data merging in performed for aerosol column amount (AOD), for aerosol size (AOD,fine) and for aerosol absorption (AAOD). The resulting MAC aerosol climatology is an example for the combination of high quality local observations with spatial, temporal and vertical context from model simulations.

  12. Five scientists at Johns Hopkins in the modern evolution of neuroscience.

    PubMed

    Harrison, T S

    2000-08-01

    Neuroscience's evolution at Johns Hopkins, from neurophysiology to the new field of neurobiology, though unplanned, was rapid and important. Beginning in 1933 when Philip Bard became professor of physiology at Johns Hopkins, members of his department concentrated initially on neuroanatomical control of placing reactions and sexual activity. Vernon Mountcastle, extending available techniques, discovered vertical somato-sensory columns in the 1950's. Stephen Kuffler, who arrived at Hopkins in 1947, was a pioneer in single unit microelectrode recording techniques. He soon attracted scientists from all over the world to his laboratory. Among them, Torsten Wiesel and David Hubel discovered vertical neuronal columns in the visual cortex. During several decades at Johns Hopkins, these five scientists set extremely high scientific standards and established a climate of inquiry in which ideas were shared and young scientists encouraged. They contributed significantly to the emerging discipline of neuroscience.

  13. Understanding the Effect of Stratification on Vertical and Temporal Heterogenieties of Cyanobacteria Blooms in Lakes Using a Long Term in-situ Monitoring Station

    NASA Astrophysics Data System (ADS)

    Wilkinson, A.; Guala, M.; Hondzo, M.

    2017-12-01

    Harmful Algal Blooms (HAB) are made up of potentially toxic freshwater microorganisms called cyanobacteria, because of this they are a ecological and public health hazard. The occurrences of toxic HAB are unpredictable and highly spatially and temporary variable in freshwater ecosystems. To study the abiotic drivers for toxic HAB, a floating research station has been deployed in a hyper-eutrophic lake in Madison Lake, Minnesota, from June-October 2016. This research station provides full depth water quality (hourly) and meteorological monitoring (5 minutes). Water quality monitoring is performed by an autonomously traversed water quality sonde that provides chemical, physical and biological measurements; including phycocyanin, a photosynthetic pigment distinct to cyanobacteria. A bloom of cyanobacteria recorded in the epiliminion in mid-July was driven by prolonged strong thermal stratification in the water column, high surface water temperatures and high phosphate concentrations in the epiliminion. The high biovolume (BV) persisted until late September and was sustained below the surface after stratification weakened, when the thermocline did not confine cyanobacteria-rich layers any more, and cyanobacteria vertical heterogeneities decayed in the water column. High correlations among BV stratification, surface water temperature, and stratification stability informed the development of a quantitative relationship to determine how BV heterogeneities vary with thermal structure in the water column. The BV heterogeneity decreased with thermal stratification stability and surface water temperature, and the dynamic lake stability described by the Lake Number. Finally the location of maximum BV accumulation showed diurnal patterns ie. BV peaks were observed at 1 m depth during the day and deeper layers during the night, which followed patterns in light penetration and thermocline depth. These findings capture cyanobacteria vertical and temporal heterogeneities on a on full depth, seasonal scale and quantify BV distribution throughout the water column under different stratification conditions, which can be important for mitigating risks of contamination of drinking water and recreational exposure.

  14. Column abundance measurements of atmospheric hydroxyl at 45 deg S

    NASA Technical Reports Server (NTRS)

    Wood, S. W.; Keep, D. J.; Burnett, C. R.; Burnett, E. B.

    1994-01-01

    The first Southern Hemisphere measurements of the vertical column abundance of atmospheric hydroxyl (OH) have been obtained at Lauder, New Zealand (45 deg S) with a PEPSIOS instrument measuring the absorption of sunlight at 308 nm. The variation of column OH with solar zenith angle is similar to that measured at other sites. However average annual abundances of OH are about 20% higher than those found by similar measurements at 40 deg N. Minimum OH abundances about 10% less than average levels at 40 deg N, are observed during austral spring. The OH abundance abruptly increases by 30% in early summer and remains at the elevated level until late the following winter.

  15. Proteome-wide detection and quantitative analysis of irreversible cysteine oxidation using long column UPLC-pSRM.

    PubMed

    Lee, Chia-Fang; Paull, Tanya T; Person, Maria D

    2013-10-04

    Reactive oxygen species (ROS) play an important role in normal biological functions and pathological processes. ROS is one of the driving forces for oxidizing proteins, especially on cysteine thiols. The labile, transient, and dynamic nature of oxidative modifications poses enormous technical challenges for both accurate modification site determination and quantitation of cysteine thiols. The present study describes a mass spectrometry-based approach that allows effective discovery and quantification of irreversible cysteine modifications. The utilization of a long reverse phase column provides high-resolution chromatography to separate different forms of modified cysteine thiols from protein complexes or cell lysates. This Fourier transform mass spectrometry (FT-MS) approach enabled detection and quantitation of ataxia telangiectasia mutated (ATM) complex cysteine sulfoxidation states using Skyline MS1 filtering. When we applied the long column ultra high pressure liquid chromatography (UPLC)-MS/MS analysis, 61 and 44 peptides from cell lysates and cells were identified with cysteine modifications in response to in vitro and in vivo H2O2 oxidation, respectively. Long column ultra high pressure liquid chromatography pseudo selected reaction monitoring (UPLC-pSRM) was then developed to monitor the oxidative level of cysteine thiols in cell lysate under varying concentrations of H2O2 treatment. From UPLC-pSRM analysis, the dynamic conversion of sulfinic (S-O2H) and sulfonic acid (S-O3H) was observed within nucleoside diphosphate kinase (Nm23-H1) and heat shock 70 kDa protein 8 (Hsc70). These methods are suitable for proteome-wide studies, providing a highly sensitive, straightforward approach to identify proteins containing redox-sensitive cysteine thiols in biological systems.

  16. Rotating Apparatus for Isoelectric Focusing

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1986-01-01

    Remixing of separated fractions prevented. Improved isoelectric focusing apparatus helps to prevent electro-osmosis and convection, both of which cause remixing of separated fractions. Fractionating column segmented and rotated about horizontal axis: Only combined effects of both features fully effective in making good separations. Improved apparatus slowly rotated continuously or rocked (at rotational amplitude of at least 180 degrees) about its horizontal axis so average gravitational vector experienced by fluid is zero and convection is therefore suppressed. Electro-osmosis suppressed and convection further suppressed by separating column into disklike compartments along its length with filters. Experiments have shown dimensions of apparatus not critical. Typical compartment and column volumes are 2 and 40 ml, respectively. Rotation speeds lie between 3 and 30 rpm.

  17. Vertical Distribution of Aersols and Water Vapor Using CRISM Limb Observations

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd

    2011-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of C02 (or surface pressure) and H20 gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 run for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal available from aerosol scattering.

  18. Seasonal changes in partial, reverse diel vertical migrations of cisco Coregonus artedi.

    PubMed

    Ahrenstorff, T D; Hrabik, T R

    2016-09-01

    The objectives of this study were to (1) document changes in partial, reverse diel vertical migrations (DVM) patterns of cisco Coregonus artedi in Ten Mile Lake, MN, U.S.A., throughout the year and (2) evaluate the mechanisms that may cause shifts in migration behaviour. Results indicated that C. artedi vertical distributions remained deep in the water column during the day and night of the spring and autumn, which was related to a low risk, low reward strategy. During summer, a partial migration occurred where a portion of the population remained deeper according to the low risk, low reward strategy, while the other portion performed a more extensive high risk, high reward reverse DVM. In winter, C. artedi did not migrate because there were only low risk, low reward conditions present at all depths. The extensive partial, reverse DVM during summer probably increased the growth potential of C. artedi, helping individuals survive in a lake with low zooplankton prey resources. © 2016 The Fisheries Society of the British Isles.

  19. MAX-DOAS measurements of nitrogen dioxide at the high altitude sites Zugspitze (2964 m) and Pico Espejo (4765 m)

    NASA Astrophysics Data System (ADS)

    Schreier, Stefan F.; Richter, Andreas; Wittrock, Folkard; Burrows, John P.

    2015-04-01

    Spectral measurements at two mountain sites were performed with a MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instrument from February to July 2003 (Zugspitze, Germany) and from March 2004 to November 2008 (Pico Espejo, Venezuela). Here, these measurements are used for the retrieval of slant column densities (SCDs) of nitrogen dioxide (NO2). While at the altitude of observations the NO2 levels are usually small, uplifting of anthropogenic emissions from the valley and in Venezuela also transport of emissions from biomass burning can lead to significant enhancements. Daily, weekly, and seasonal cycles of NO2 SCDs are shown for the two stations, linked to different meteorological conditions and compared between the two sites. In a next step, a preliminary approach to derive vertical column densities (VCDs) is presented. VCDs of NO2 from ground-based MAX-DOAS instruments provide useful information for the validation of satellite instruments such as SCIAMACHY, OMI, and GOME-2. Comparisons between ground-based and satellite-based NO2 VCDs are shown for selected periods.

  20. Budget analysis of Escherichia coli at a southern Lake Michigan Beach

    USGS Publications Warehouse

    Thupaki, P.; Phanikumar, M.S.; Beletsky, D.; Schwab, D.J.; Nevers, M.B.; Whitman, R.L.

    2010-01-01

    Escherichia coli (EC) concentrations at two beaches impacted by river plume dynamics in southern Lake Michigan were analyzed using three-dimensional hydrodynamic and transport models. The relative importance of various physical and biological processes influencing the fate and transport of EC were examined via budget analysis and a first-order sensitivity analysis of model parameters. The along-shore advective fluxofEC(CFU/m2·s)was found to be higher compared to its crossshore counterpart; however, the sum of diffusive and advective components was of a comparable magnitude in both directions showing the importance of cross-shore exchange in EC transport. Examination of individual terms in the EC mass balance equation showed that vertical turbulent mixing in the water column dominated the overall EC transport for the summer conditions simulated. Dilution due to advection and diffusion accounted for a large portion of the total EC budget in the nearshore, and the net EC loss rate within the water column (CFU/m3·s) was an order of magnitude smaller compared to the horizontal and vertical transport rates. This result has important implications for modeling EC at recreational beaches; however, the assessment of the magnitude of EC loss rate is complicated due to the strong coupling between vertical exchange and depth-dependent EC loss processes such as sunlight inactivation and settling. Sensitivity analysis indicated that solar inactivation has the greatest impact on EC loss rates. Although these results are site-specific, they clearly bring out the relative importance of various processes involved.

  1. Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (HSRL) Measurements and the Calipso Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.; hide

    2012-01-01

    Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.

  2. Vertical variation of a black soil's properties in response to freeze-thaw cycles and its links to shift of microbial community structure.

    PubMed

    Han, Ziming; Deng, Mingwen; Yuan, Anqi; Wang, Jiahui; Li, Hao; Ma, Jincai

    2018-06-01

    Soil freeze-thaw cycles (FTCs) change soil physical, chemical, and biological properties, however information regarding their vertical variations in response to FTCs is limited. In this work, black soil (silty loam) packed soil columns were exposed to 8 FTCs, and soil properties were determined for each of vertical layer of soil columns. The results revealed that after FTCs treatment, moisture and electrical conductivity (EC) salinity tended to increase in upper soil layers. Increments of ammonium nitrogen (NH 4 + -N) and nitrate nitrogen (NO 3 - -N) in top layers (0-10cm) were greater than those in other layers, and increments of water soluble organic carbon (WSOC) and decrease of microbial biomass carbon (MBC) in middle layers (10-20cm) were greater than those in both ends. Overall, microbial community structure was mainly influenced by soil physical properties (moisture and EC) and chemical properties (pH and WSOC). For bacterial (archaeal) and fungal communities, soil physical properties, chemical properties and their interaction explained 79.73% and 82.66% of total variation, respectively. Our results provided insights into the vertical variation of soil properties caused by FTCs, and such variation had a major impact on the change of structure and composition of soil bacterial and fungal communities. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Anomalous electrical signals associated with microbial activity: Results from Iron and Nitrate-Reducing Columns

    NASA Astrophysics Data System (ADS)

    Aaron, R. B.; Zheng, Q.; Flynn, P.; Singha, K.; Brantley, S.

    2008-12-01

    Three flow-through columns outfitted with Ag/AgCl electrodes were constructed to test the effects of different microbial processes on the geophysical measurements of self potential (SP), bulk electrical conductivity (σ b), and induced polarization (IP). The columns were filled with sieved, Fe-bearing subsurface sediment from the Delmarva Peninsula near Oyster, VA, inoculated (9:1 ratio) with a freshly-collected, shallow subsurface sediment from a wetland floodplain (Dorn Creek) near Madison, WI. Each of the columns was fed anoxic and sterile PIPES buffered artificial groundwater (PBAGW) containing different concentrations of acetate and nitrate. The medium fed to Column 1 (nitrate-reducing) was amended with 100 μM acetate and 2 mM nitrate. Column 2 (iron-reducing) was run with PBAGW containing 1.0 mM acetate and 0 mM nitrate. Column 3 (alternating redox state) was operated under conditions designed to alternately stimulate nitrate-reducing and iron-reducing populations to provide conditions, i.e., the presence of both nitrate and microbially-produced Fe(II), that would allow growth of nitrate-dependent Fe(II)-oxidizing populations. We operated Column 3 with a cycling strategy of 14-18 days of high C medium (1 mM acetate and 100 μ M nitrate) followed by 14-18 days of low C medium (100 μ M acetate and 2 mM nitrate). Effluent chemistry (NO3-, NO2-, NH4+, acetate, and Fe2+) was sampled daily for four months so as to be concurrent with the electrical measurements. We observed chemical evidence of iron reduction (dissolved [Fe(II)] = 0.2mM) in the effluent from the iron reduction and alternating redox columns. Chemical depletion of NO3- ([NO3-] ranged from 1 to 0.02mM), the production of NO2-, and possible production of NH4+ (0.2 mM) was observed in the nitrate reducing column as well as the alternating redox column. All three columns displayed loss of acetate as microbial activity progressed. σ b remained constant in the alternating redox column (~0.15 S/m), increased in the iron reducing column (0.2 S/m to 0.8 S/m) and increased markedly in the nitrate reducing column (0.3 S/m to 1.2 S/m). This runs counter to our expectations. We expected to see an increase in σ b as [Fe(II)] increased and a decrease in σ b as nitrate was removed from the columns. All three columns showed little or no IP response at the outset and developed negative chargeabilities over the course of the experiment (as great as -20 mV/V). These values are anomalous and difficult to interpret. SP signals show the most variable response. Initially all three columns had SP values at or very near 0 mV. SP for the nitrate reducing column remained constant around 0mV. The iron reducing column displayed an increasingly negative SP response for the first two months that became constant at about -200mV for the remainder of the experiment. The alternating redox column displayed an oscillating signal recording large positive values (~475 mV) when nitrate concentrations were low and returning to a baseline value (~160mV) when nitrate was introduced to the column. The results of these column experiments indicate that there is a link between microbial activity and geophysical signals and that further research is needed to better quantify these signals.

  4. VUV pressure-broadening in sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Lyons, J. R.; Herde, H.; Stark, G.; Blackie, D. S.; Pickering, J. C.; de Oliveira, N.

    2018-05-01

    In the pre-oxygenated ancient Earth atmosphere, the lack of O3 absorption allowed ultraviolet photodissociation of numerous molecules in the troposphere and lower stratosphere. For molecules with narrow line-type absorption spectra, optically thick columns would have produced isotope fractionation due to self-shielding of the most abundant isotopologues. In the lower atmosphere pressure broadening would modify, and in some cases, eliminate these isotope signatures. Shielding is particularly important for quantifying or constraining photolysis-derived isotope effects, such as those believed to explain the sulfur mass-independent fractionation in Archean sedimentary rocks. Here, we report pressure broadening coefficients for natural abundance SO2 in theC˜1B2 ←X˜1A1 band system at 215 nm. For gas bath pressures up to 750 mbar, we find broadening coefficients of 0.30 ± 0.03 cm-1 atm-1 and 0.40 ± 0.04 cm-1 atm-1 for N2 and CO2, respectively. These broadening coefficients are ∼30% larger than SO2 broadening coefficients previously measured in the B˜ -X˜ bands at 308 nm. Because of the highly congested nature of the C˜ -X˜ bands, pressure broadening in the early Earth troposphere will cause line profile overlap that will diminish the self-shielding-derived mass-independent isotope fractionation for optically thick SO2 columns. Thus, non-explosive volcanic eruptions may not have left a signature of SO2 self-shielding in the ancient sedimentary rock record.

  5. Seasonal in situ observations of glyoxal and methylglyoxal over the temperate oceans of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Selleck, P. W.; Galbally, I. E.; Keywood, M. D.; Harvey, M. J.; Lerot, C.; Helmig, D.; Ristovski, Z.

    2014-08-01

    Dicarbonyls glyoxal and methylglyoxal have been measured with 2,4-dinitrophenylhydrazine (2,4-DNPH) cartridges and high performance liquid chromatography (HPLC), optimised for dicarbonyl detection, in clean marine air over the temperate Southern Hemisphere (SH) oceans. Measurements of a range of dicarbonyl precursors (volatile organic compounds, VOCs) were made in parallel. These are the first in situ measurements of glyoxal and methylglyoxal over the remote temperate oceans. Six 24 h samples were collected in late summer (February-March) over the Chatham Rise in the South West Pacific Ocean during the Surface Ocean Aerosol Production (SOAP) voyage in 2012, while 34 24 h samples were collected at Cape Grim Baseline Air Pollution Station in late winter (August-September) 2011. Average glyoxal mixing ratios in clean marine air were 7 ppt at Cape Grim, and 24 ppt over Chatham Rise. Average methylglyoxal mixing ratios in clean marine air were 28 ppt at Cape Grim and 12 ppt over Chatham Rise. The mixing ratios of glyoxal at Cape Grim are the lowest observed over the remote oceans, while mixing ratios over Chatham Rise are in good agreement with other temperate and tropical observations, including concurrent MAX-DOAS observations. Methylglyoxal mixing ratios at both sites are comparable to the only other marine methylglyoxal observations available over the tropical Northern Hemisphere (NH) ocean. Ratios of glyoxal : methylglyoxal > 1 over Chatham Rise but < 1 at Cape Grim, suggesting different formation and/or loss processes or rates dominate at each site. Dicarbonyl precursor VOCs, including isoprene and monoterpenes, are used to calculate an upper estimate yield of glyoxal and methylglyoxal in the remote marine boundary layer and explain at most 1-3 ppt of dicarbonyls observed, corresponding to 11 and 17% of the observed glyoxal and 28 and 10% of the methylglyoxal at Chatham Rise and Cape Grim, respectively, highlighting a significant but as yet unknown production mechanism. Glyoxal surface observations from both sites were converted to vertical columns and compared to average vertical column densities (VCDs) from GOME-2 satellite retrievals. Both satellite columns and in situ observations are higher in summer than winter, however satellite vertical column densities exceeded the surface observations by more than 1.5 × 1014 molecules cm-2 at both sites. This discrepancy may be due to the incorrect assumption that all glyoxal observed by satellite is within the boundary layer, or may be due to challenges retrieving low VCDs of glyoxal over the oceans due to interferences by liquid water absorption, or use of an inappropriate normalisation reference value in the retrieval algorithm. This study provides much needed data to verify the presence of these short lived gases over the remote ocean and provide further evidence of an as yet unidentified source of both glyoxal and also methylglyoxal over the remote oceans.

  6. Seasonal in situ observations of glyoxal and methylglyoxal over the temperate oceans of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Selleck, P. W.; Galbally, I. E.; Keywood, M. D.; Harvey, M. J.; Lerot, C.; Helmig, D.; Ristovski, Z.

    2015-01-01

    The dicarbonyls glyoxal and methylglyoxal have been measured with 2,4-dinitrophenylhydrazine (2,4-DNPH) cartridges and high-performance liquid chromatography (HPLC), optimised for dicarbonyl detection, in clean marine air over the temperate Southern Hemisphere (SH) oceans. Measurements of a range of dicarbonyl precursors (volatile organic compounds, VOCs) were made in parallel. These are the first in situ measurements of glyoxal and methylglyoxal over the remote temperate oceans. Six 24 h samples were collected in summer (February-March) over the Chatham Rise in the south-west Pacific Ocean during the Surface Ocean Aerosol Production (SOAP) voyage in 2012, while 34 24 h samples were collected at Cape Grim Baseline Air Pollution Station in the late winter (August-September) of 2011. Average glyoxal mixing ratios in clean marine air were 7 ppt at Cape Grim and 23 ppt over Chatham Rise. Average methylglyoxal mixing ratios in clean marine air were 28 ppt at Cape Grim and 10 ppt over Chatham Rise. The mixing ratios of glyoxal at Cape Grim are the lowest observed over the remote oceans, while mixing ratios over Chatham Rise are in good agreement with other temperate and tropical observations, including concurrent Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations. Methylglyoxal mixing ratios at both sites are comparable to the only other marine methylglyoxal observations available over the tropical Northern Hemisphere (NH) ocean. Ratios of glyoxal : methylglyoxal > 1 over Chatham Rise but < 1 at Cape Grim suggest that a different formation and/or loss processes or rates dominate at each site. Dicarbonyl precursor VOCs, including isoprene and monoterpenes, are used to calculate an upper-estimate yield of glyoxal and methylglyoxal in the remote marine boundary layer and explain at most 1-3 ppt of dicarbonyls observed, corresponding to 10% and 17% of the observed glyoxal and 29 and 10% of the methylglyoxal at Chatham Rise and Cape Grim, respectively, highlighting a significant but as yet unknown production mechanism. Surface-level glyoxal observations from both sites were converted to vertical columns and compared to average vertical column densities (VCDs) from GOME-2 satellite retrievals. Both satellite columns and in situ observations are higher in summer than winter; however, satellite vertical column densities exceeded the surface observations by more than 1.5 × 1014 molecules cm-2 at both sites. This discrepancy may be due to the incorrect assumption that all glyoxal observed by satellite is within the boundary layer, or it may be due to challenges retrieving low VCDs of glyoxal over the oceans due to interferences by liquid water absorption or the use of an inappropriate normalisation reference value in the retrieval algorithm. This study provides much-needed data to verify the presence of these short-lived gases over the remote ocean and provide further evidence of an as yet unidentified source of both glyoxal and also methylglyoxal over the remote oceans.

  7. Assessing systematic errors in GOSAT CO2 retrievals by comparing assimilated fields to independent CO2 data

    NASA Astrophysics Data System (ADS)

    Baker, D. F.; Oda, T.; O'Dell, C.; Wunch, D.; Jacobson, A. R.; Yoshida, Y.; Partners, T.

    2012-12-01

    Measurements of column CO2 concentration from space are now being taken at a spatial and temporal density that permits regional CO2 sources and sinks to be estimated. Systematic errors in the satellite retrievals must be minimized for these estimates to be useful, however. CO2 retrievals from the TANSO instrument aboard the GOSAT satellite are compared to similar column retrievals from the Total Carbon Column Observing Network (TCCON) as the primary method of validation; while this is a powerful approach, it can only be done for overflights of 10-20 locations and has not, for example, permitted validation of GOSAT data over the oceans or deserts. Here we present a complementary approach that uses a global atmospheric transport model and flux inversion method to compare different types of CO2 measurements (GOSAT, TCCON, surface in situ, and aircraft) at different locations, at the cost of added transport error. The measurements from any single type of data are used in a variational carbon data assimilation method to optimize surface CO2 fluxes (with a CarbonTracker prior), then the corresponding optimized CO2 concentration fields are compared to those data types not inverted, using the appropriate vertical weighting. With this approach, we find that GOSAT column CO2 retrievals from the ACOS project (version 2.9 and 2.10) contain systematic errors that make the modeled fit to the independent data worse. However, we find that the differences between the GOSAT data and our prior model are correlated with certain physical variables (aerosol amount, surface albedo, correction to total column mass) that are likely driving errors in the retrievals, independent of CO2 concentration. If we correct the GOSAT data using a fit to these variables, then we find the GOSAT data to improve the fit to independent CO2 data, which suggests that the useful information in the measurements outweighs the negative impact of the remaining systematic errors. With this assurance, we compare the flux estimates given by assimilating the ACOS GOSAT retrievals to similar ones given by NIES GOSAT column retrievals, bias-corrected in a similar manner. Finally, we have found systematic differences on the order of a half ppm between column CO2 integrals from 18 TCCON sites and those given by assimilating NOAA in situ data (both surface and aircraft profile) in this approach. We assess how these differences change in switching to a newer version of the TCCON retrieval software.

  8. Antiterrorism Measures For Historic Properties

    DTIC Science & Technology

    2006-09-01

    steel jacket on an existing concrete column (Morley Builders 1997...of the material. Figure 17. Seismic application of a steel jacket on an existing concrete column (Morley Builders 1997). Columns — Reinforced...from a previously unreinforced structure, so future irreversibility of the technique need not disqualify it from consideration by project teams. ERDC

  9. Transport and attenuation of metal(loid)s in mine tailings amended with organic carbon: Column experiments

    NASA Astrophysics Data System (ADS)

    Lindsay, Matthew B. J.; Blowes, David W.; Ptacek, Carol J.; Condon, Peter D.

    2011-07-01

    A laboratory-scale column experiment was conducted to evaluate the effect of organic carbon amendments on the mobility of As, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Tl and Zn in mine tailings. Three columns were packed with sulfide- and carbonate-rich tailings, which were amended with a 1:1 (vol.) mixture of peat and spent brewing grain at proportions of 0, 2 and 5 vol. %. A simulated input solution characterized by circumneutral pH and elevated concentrations of SO 4 and S 2O 3 was passed through the columns for 540 days. The input solution contained low concentrations of metal(loid)s during the initial 300 days and elevated concentrations thereafter. Decreases in mass transport of S 2O 3 were observed in all columns; with increased attenuation observed at 5 vol. % organic carbon content. Removal of Mn, Ni, Cu, Sb and Mo was observed in all columns during the initial 300 days. However, during this time, mobilization of Fe, As, Zn and Pb was observed, with the greatest increases in concentration observed at the higher organic carbon content. During the final 240 days, S 2O 3 removal was enhanced in columns containing organic carbon, and Fe, Mn, Ni, Tl, As and Sb removal also was observed. This study demonstrates the influence of organic carbon amendments on metal(loid) mobility in mine tailings. Decreases in mass discharge of metal(loid)s may be achieved using this technique; however, site-specific geochemical conditions must be considered before field-scale implementation.

  10. Aspects of embryonic and larval development in bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix

    USGS Publications Warehouse

    George, Amy E.; Chapman, Duane C.

    2013-01-01

    As bighead carp Hypophthalmichthys nobilis and silver carp H. molitrix (the bigheaded carps) are poised to enter the Laurentian Great Lakes and potentially damage the region’s economically important fishery, information on developmental rates and behaviors of carps is critical to assessing their ability to establish sustainable populations within the Great Lakes basin. In laboratory experiments, the embryonic and larval developmental rates, size, and behaviors of bigheaded carp were tracked at two temperature treatments, one “cold” and one “warm”. Developmental rates were computed using previously described stages of development and the cumulative thermal unit method. Both species have similar thermal requirements, with a minimum developmental temperature for embryonic stages of 12.1° C for silver carp and 12.9° C for bighead carp, and 13.3° C for silver carp larval stages and 13.4° C for bighead carp larval stages. Egg size differed among species and temperature treatments, as egg size was larger in bighead carp, and “warm" temperature treatments. The larvae started robust upwards vertical swimming immediately after hatching, interspersed with intervals of sinking. Vertical swimming tubes were used to measure water column distribution, and ascent and descent rates of vertically swimming fish. Water column distribution and ascent and descent rates changed with ontogeny. Water column distribution also showed some diel periodicity. Developmental rates, size, and behaviors contribute to the drift distance needed to fulfill the early life history requirements of bigheaded carps and can be used in conjunction with transport information to assess invasibility of a river.

  11. Removal of oxygen demand and nitrogen using different particle-sizes of anthracite coated with nine kinds of LDHs for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangling; Guo, Lu; Wang, Yafen; Ruan, Congying

    2015-10-01

    This paper reports the application of anthracite particles of different sizes and coated with nine kinds of layered double hydroxides (LDHs) varying in MII-MIII cations, as alternative substrates in the simulated vertical-flow constructed wetland columns. Effects of LDHs-coating and particle size of modified anthracites were examined to evaluate their abilities in removing oxygen demand and nitrogen from sewage wastewater. Results showed that LDHs modification effectively enhanced the removal of nitrogen and organics. The removal efficiencies of total nitrogen (TN) , ammonia and chemical oxygen demand (COD) were best improved by 28.5%, 11.9% and 4.1% for the medium particle size (1-3 mm), followed by 9.2%, 5.5% and 13.6% for the large size (3-5 mm), respectively. Only TN removal was improved up to 16.6% for the small particle size (0.5-1 mm). Nitrate tended to accumulate and fluctuate greatly across all the treatments, probably due to the dominancy of aerobic condition in the vertical-flow columns. Overall, MgFe-LDHs was selected as the best-modified coating for anthracite. The results suggested LDHs modification would be one of the promising strategies to provide new-types of highly efficient and lasting wetland substrates.

  12. Performance of a system with full- and pilot-scale sludge drying reed bed units treating septic tank sludge in Brazil.

    PubMed

    Calderón-Vallejo, Luisa Fernanda; Andrade, Cynthia Franco; Manjate, Elias Sete; Madera-Parra, Carlos Arturo; von Sperling, Marcos

    2015-01-01

    This study investigated the performance of sludge drying reed beds (SDRB) at full- and pilot-scale treating sludge from septic tanks in the city of Belo Horizonte, Brazil. The treatment units, planted with Cynodon spp., were based on an adaptation of the first-stage of the French vertical-flow constructed wetland, originally developed for treating sewage. Two different operational phases were investigated; in the first one, the full-scale unit was used together with six pilot-scale columns in order to test different feeding strategies. For the second phase, only the full-scale unit was used, including a recirculation of the filtered effluent (percolate) to one of the units of the French vertical wetland. Sludge application was done once a week emptying a full truck, during 25 weeks. The sludge was predominantly diluted, leading to low solids loading rates (median values of 18 kgTS m(-2) year(-1)). Chemical oxygen demand removal efficiency in the full-scale unit was reasonable (median of 71%), but the total solids removal was only moderate (median of 44%) in the full-scale unit without recirculation. Recirculation did not bring substantial improvements in the overall performance. The other loading conditions implemented in the pilot columns also did not show statistically different performances.

  13. Growth kinetics and mass transport mechanisms of GaN columns by selective area metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas

    2014-04-01

    Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.

  14. Temporal and spatial distribution of metallic species in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Correira, John Thomas

    2009-06-01

    Every day the Earth is bombarded by approximately 100 tons of meteoric material. Much of this material is completely ablated on atmospheric entry, resulting in a layer of atomic metals in the upper atmosphere between 70 km - 150 km. These neutral atoms are ionized by solar radiation and charge exchange. Metal ions have a long lifetime against recombination loss, allowing them to be redistributed globally by electromagnetic forces, especially when lifted to altitudes >150 km. UV radiances from the Global Ozone Monitoring Experiment (GOME) spectrometer are used to determine long-term dayside variations of the total vertical column density below 795 km of the meteoric metal species Mg and Mg + in the upper atmosphere. A retrieval algorithm developed to determine magnesium column densities was applied to all available data from the years 1996-2001. Long term results show middle latitude dayside Mg + peaks in vertical content during the summer, while neutral Mg demonstrates a much more subtle maximum in summer. Atmospheric metal concentrations do not correlate strongly solar activity. An analysis of spatial variations shows geospatial distributions are patchy, with local regions of increased column density. To study short term variations and the role of meteor showers a time dependent mass flux rate is calculated using published estimates of meteor stream mass densities and activity profiles. An average daily mass flux rate is also calculated and used as a baseline against which shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities. There appears to be little correlation between modeled meteor shower mass flux rates and changes in the observed neutral magnesium and Mg + metal column densities.

  15. Evaluating Precipitation Observed in Complex Terrain During GPM Field Campaigns with the SIMBA Data-Fusion Tool

    NASA Astrophysics Data System (ADS)

    Wingo, S. M.; Petersen, W. A.; Gatlin, P. N.; Marks, D. A.; Wolff, D. B.; Pabla, C. S.

    2017-12-01

    The versatile SIMBA (System for Integrating Multi-platform data to Build the Atmospheric column) precipitation data-fusion framework produces an atmospheric column data product with multi-platform observations set into a common 3-D grid, affording an efficient starting point for multi-sensor comparisons and analysis that can be applied to any region. Supported data sources include: ground-based scanning and profiling radars (S-, X-, Ku-, K-, and Ka-band), multiple types of disdrometers and rain gauges, the GPM Core Observatory's Microwave Imager (GMI, 10-183 GHz) and Dual-frequency Precipitation Radar (DPR, Ka/Ku-band), as well as thermodynamic soundings and the Multi-Radar/Multi-Sensor QPE product. SIMBA column data files provide a unique way to evaluate the complete vertical profile of precipitation. Two post-launch (GPM Core in orbit) field campaigns focused on different facets of the GPM mission: the Olympic Mountains Experiment (OLYMPEX) was geared toward winter season (November-February) precipitation in Pacific frontal systems and their transition from the coastal to mountainous terrain of northwest Washington, while the Integrated Precipitation and Hydrology Experiment (IPHEx) sampled warm season (April-June) precipitation and supported hydrologic applications in the southern Appalachians and eastern North Carolina. Both campaigns included multiple orographic precipitation enhancement episodes. SIMBA column products generated for select OLYMPEX and IPHEx events will be used to evaluate spatial variability and vertical profiles of precipitation and drop size distribution parameters derived and/or observed by space- and ground-based sensors. Results will provide a cursory view of how well the space-based measurements represent what is observed from the ground below and an indication to how the terrain in both regions impacts the characteristics of precipitation within the column and reaching the ground.

  16. Evaluating Precipitation Observed in Complex Terrain During GPM Field Campaigns with the SIMBA Data-Fusion Tool

    NASA Astrophysics Data System (ADS)

    Wingo, S. M.; Petersen, W. A.; Gatlin, P. N.; Marks, D. A.; Wolff, D. B.; Pabla, C. S.

    2016-12-01

    The versatile SIMBA (System for Integrating Multi-platform data to Build the Atmospheric column) precipitation data-fusion framework produces an atmospheric column data product with multi-platform observations set into a common 3-D grid, affording an efficient starting point for multi-sensor comparisons and analysis that can be applied to any region. Supported data sources include: ground-based scanning and profiling radars (S-, X-, Ku-, K-, and Ka-band), multiple types of disdrometers and rain gauges, the GPM Core Observatory's Microwave Imager (GMI, 10-183 GHz) and Dual-frequency Precipitation Radar (DPR, Ka/Ku-band), as well as thermodynamic soundings and the Multi-Radar/Multi-Sensor QPE product. SIMBA column data files provide a unique way to evaluate the complete vertical profile of precipitation. Two post-launch (GPM Core in orbit) field campaigns focused on different facets of the GPM mission: the Olympic Mountains Experiment (OLYMPEX) was geared toward winter season (November-February) precipitation in Pacific frontal systems and their transition from the coastal to mountainous terrain of northwest Washington, while the Integrated Precipitation and Hydrology Experiment (IPHEx) sampled warm season (April-June) precipitation and supported hydrologic applications in the southern Appalachians and eastern North Carolina. Both campaigns included multiple orographic precipitation enhancement episodes. SIMBA column products generated for select OLYMPEX and IPHEx events will be used to evaluate spatial variability and vertical profiles of precipitation and drop size distribution parameters derived and/or observed by space- and ground-based sensors. Results will provide a cursory view of how well the space-based measurements represent what is observed from the ground below and an indication to how the terrain in both regions impacts the characteristics of precipitation within the column and reaching the ground.

  17. Ocean stratification reduces melt rates at the grounding zone of the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Begeman, C. B.; Tulaczyk, S. M.; Marsh, O.; Mikucki, J.; Stanton, T. P.; Hodson, T. O.; Siegfried, M. R.; Powell, R. D.; Christianson, K. A.; King, M. A.

    2017-12-01

    Ocean-driven melting of ice shelves is often invoked as the primary mechanism for triggering ice loss from Antarctica. However, due to the difficulty in accessing the sub-ice-shelf ocean cavity, the relationship between ice-shelf melt rates and ocean conditions is poorly understood, particularly near the transition from grounded to floating ice, known as the grounding zone. Here we present the first borehole oceanographic observations from the grounding zone of Antarctica's largest ice shelf. Contrary to predictions that tidal currents near grounding zones should mix the water column, driving high ice-shelf melt rates, we find a stratified sub-ice-shelf water column. The vertical salinity gradient dominates stratification over a weakly unstable vertical temperature gradient; thus, stratification takes the form of a double-diffusive staircase. These conditions limit vertical heat fluxes and lead to low melt rates in the ice-shelf grounding zone. While modern grounding zone melt rates may presently be overestimated in models that assume efficient tidal mixing, the high sensitivity of double-diffusive staircases to ocean freshening and warming suggests future melt rates may be underestimated, biasing projections of global sea-level rise.

  18. Deformation and electrical properties of magnetic and vertically conductive composites with a chain-of-spheres structure

    NASA Astrophysics Data System (ADS)

    Choi, Chulmin; Hong, Soonkook; Chen, Li-Han; Liu, Chin-Hung; Choi, Duyoung; Kuru, Cihan; Jin, Sungho

    2014-05-01

    Vertically anisotropically conductive composites with aligned chain-of-spheres of 20-75 mm Ni particles in an elastomer matrix have been prepared by curing the mixture at 100°C-150°C under an applied magnetic field of ˜300-1000 Oe. The particles are coated with a ˜120 nm thick Au layer for enhanced electrical conductivity. The resultant vertically aligned but laterally isolated columns of conductive particles extend through the whole composite thickness and the end of the Ni columns protrude from the surface, contributing to enhanced electrical contact on the composite surface. The stress-strain curve on compressive deformation exhibits a nonlinear behavior with a rapidly increasing Young's modulus with stress (or pressure). The electrical contact resistance Rc decreases rapidly when the applied pressure is small and then more gradually after the applied pressure reaches 500 psi (˜3.4 MPa), corresponding to a 30% deformation. The directionally conductive elastomer composite material with metal pads and conductive electrodes on the substrate surface can be used as a convenient tactile shear sensor for applications involving artificial limbs, robotic devices, and other visual communication devices such as touch sensitive screens.

  19. Seasonal variability of surface and column carbon monoxide over the megacity Paris, high-altitude Jungfraujoch and Southern Hemispheric Wollongong stations

    NASA Astrophysics Data System (ADS)

    Té, Yao; Jeseck, Pascal; Franco, Bruno; Mahieu, Emmanuel; Jones, Nicholas; Paton-Walsh, Clare; Griffith, David W. T.; Buchholz, Rebecca R.; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Janssen, Christof

    2016-09-01

    This paper studies the seasonal variation of surface and column CO at three different sites (Paris, Jungfraujoch and Wollongong), with an emphasis on establishing a link between the CO vertical distribution and the nature of CO emission sources. We find the first evidence of a time lag between surface and free tropospheric CO seasonal variations in the Northern Hemisphere. The CO seasonal variability obtained from the total columns and free tropospheric partial columns shows a maximum around March-April and a minimum around September-October in the Northern Hemisphere (Paris and Jungfraujoch). In the Southern Hemisphere (Wollongong) this seasonal variability is shifted by about 6 months. Satellite observations by the IASI-MetOp (Infrared Atmospheric Sounding Interferometer) and MOPITT (Measurements Of Pollution In The Troposphere) instruments confirm this seasonality. Ground-based FTIR (Fourier transform infrared) measurements provide useful complementary information due to good sensitivity in the boundary layer. In situ surface measurements of CO volume mixing ratios at the Paris and Jungfraujoch sites reveal a time lag of the near-surface seasonal variability of about 2 months with respect to the total column variability at the same sites. The chemical transport model GEOS-Chem (Goddard Earth Observing System chemical transport model) is employed to interpret our observations. GEOS-Chem sensitivity runs identify the emission sources influencing the seasonal variation of CO. At both Paris and Jungfraujoch, the surface seasonality is mainly driven by anthropogenic emissions, while the total column seasonality is also controlled by air masses transported from distant sources. At Wollongong, where the CO seasonality is mainly affected by biomass burning, no time shift is observed between surface measurements and total column data.

  20. Evaluation of Redoubt Volcano's sulfur dioxide emissions by the Ozone Monitoring Instrument

    USGS Publications Warehouse

    Lopez, Taryn; Carn, Simon A.; Werner, Cynthia A.; Fee, David; Kelly, Peter; Doukas, Michael P.; Pfeffer, Melissa; Webley, Peter; Cahill, Catherine F.; Schneider, David

    2013-01-01

    The 2009 eruption of Redoubt Volcano, Alaska, provided a rare opportunity to compare satellite measurements of sulfur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) with airborne SO2 measurements by the Alaska Volcano Observatory (AVO). Herein we: (1) compare OMI and airborne SO2 column density values for Redoubt's tropospheric plume, (2) calculate daily SO2 masses from Mount Redoubt for the first three months of the eruption, (3) develop simple methods to convert daily measured SO2 masses into emission rates to allow satellite data to be directly integrated with the airborne SO2 emissions dataset, (4) calculate cumulative SO2 emissions from the eruption, and (5) evaluate OMI as a monitoring tool for high-latitude degassing volcanoes. A linear correlation (R2 ~ 0.75) is observed between OMI and airborne SO2 column densities. OMI daily SO2 masses for the sample period ranged from ~ 60.1 kt on 24 March to below detection limit, with an average daily SO2 mass of ~ 6.7 kt. The highest SO2 emissions were observed during the initial part of the explosive phase and the emissions exhibited an overall decreasing trend with time. OMI SO2 emission rates were derived using three methods and compared to airborne measurements. This comparison yields a linear correlation (R2 ~ 0.82) with OMI-derived emission rates consistently lower than airborne measurements. The comparison results suggest that OMI's detection limit for high latitude, springtime conditions varies from ~ 2000 to 4000 t/d. Cumulative SO2 masses calculated from daily OMI data for the sample period are estimated to range from 542 to 615 kt, with approximately half of this SO2 produced during the explosive phase of the eruption. These cumulative masses are similar in magnitude to those estimated for the 1989–90 Redoubt eruption. Strong correlations between daily OMI SO2 mass and both tephra mass and acoustic energy during the explosive phase of the eruption suggest that OMI data may be used to infer relative eruption size and explosivity. Further, when used in conjunction with complementary datasets, OMI daily SO2 masses may be used to help distinguish explosive from effusive activity and identify changes in lava extrusion rates. The results of this study suggest that OMI is a useful volcano monitoring tool to complement airborne measurements, capture explosive SO2 emissions, and provide high temporal resolution SO2 emissions data that can be used with interdisciplinary datasets to illuminate volcanic processes.

Top