Science.gov

Sample records for sobre lo sublime

  1. The Sublime Corpse in Gertrudis Gomez de Avellaneda's Women's Journal "Album Cubano de lo Bueno y lo Bello" (1860)

    ERIC Educational Resources Information Center

    LaGreca, Nancy

    2009-01-01

    This article examines Gertrudis Gomez de Avellaneda's choice to include articles depicting the advanced decay of cadavers, which are simultaneously horrible and awesome, in her women's periodical "Album Cubano de lo Bueno y lo Bello". Background on Avellaneda's biography, women's print culture, and theories of the sublime provide a frame for the…

  2. The Sublime and Education

    ERIC Educational Resources Information Center

    Carson, Jamin

    2006-01-01

    The sublime is a theory of aesthetics that reached its highest popularity in British literature during the Romantic period (c. 1785-1832). This article (1) explicates philosophers' different meanings of the sublime; (2) show how the sublime is relevant to education; and (3) show how the sublime "works" in literature by analyzing William Blake's…

  3. A sublimation heat engine.

    PubMed

    Wells, Gary G; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-03-03

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.

  4. A sublimation heat engine

    NASA Astrophysics Data System (ADS)

    Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-03-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.

  5. X-38 Advanced Sublimator

    NASA Technical Reports Server (NTRS)

    Dingell, Chuck; Quintana, Clemente; Le, Suy; Hafemalz, David S.; Clark, Mike; Cloutier, Robert

    2009-01-01

    A document discusses a heat rejection device for transferring heat from a space vehicle by venting water into space through the use of a novel, two-stage water distribution system. The system consists of two different, porous media that stop water-borne contaminants from clogging the system and causing operational failures. Feedwater passes through a small nozzle, then into a porous disk made of sintered stainless steel, and then finally into large-pore aluminum foam. The smaller pore layer of the steel disk controls the pressure drop of the feedwater. The ice forms in the foam layer, and then sublimates, leaving any contaminants behind. The pore-size of the foam is two orders of magnitude larger than the current porous plate sublimators, allowing for a greater tolerance for contaminants. Using metallic fibers in the foam also negates problems with compression seen in the use of poly(tetrafluoroethylene) felt.

  6. A sublimation heat engine.

    PubMed

    Wells, Gary G; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-01-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669

  7. A sublimation heat engine

    PubMed Central

    Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-01-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid–vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669

  8. Modelling Sublimation of Carbon Dioxide

    ERIC Educational Resources Information Center

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  9. Sublimation systems and associated methods

    DOEpatents

    Turner, Terry D.; McKellar, Michael G.; Wilding, Bruce M.

    2016-02-09

    A system for vaporizing and sublimating a slurry comprising a fluid including solid particles therein. The system includes a first heat exchanger configured to receive the fluid including solid particles and vaporize the fluid and a second heat exchanger configured to receive the vaporized fluid and solid particles and sublimate the solid particles. A method for vaporizing and sublimating a fluid including solid particles therein is also disclosed. The method includes feeding the fluid including solid particles to a first heat exchanger, vaporizing the fluid, feeding the vaporized fluid and solid particles to a second heat exchanger and sublimating the solid particles. In some embodiments the fluid including solid particles is liquid natural gas or methane including solid carbon dioxide particles.

  10. Io's volcanic and sublimation atmospheres

    NASA Technical Reports Server (NTRS)

    Moreno, Miguel A.; Schubert, Gerald; Kivelson, Margaret G.; Paige, David A.; Baumgardner, John

    1991-01-01

    Fully 3D axisymmetric gasdynamic equations simulating SO2 and H2S frost sublimation and SO2 dayside and nightside volcanic atmospheres on Io are numerically solved, using a time-explicit finite-volume formulation. Both the sublimation and volcanic atmospheres generate horizontal supersonic winds away from the subsolar point or the volcanic vent. While the sublimation atmosphere is primarily driven by horizontal pressure gradients determined by surface temperatures, the volcanic atmosphere is driven by pressure gradients that are determined by the source rate. Sublimation and condensation produce patterns of surface deposits which are characteristic of the two types of atmospheres. The volcanic model is quantitatively consistent with Voyager observations of ring deposits.

  11. The Sublime and the Vulgar.

    ERIC Educational Resources Information Center

    Swann, Karen

    1990-01-01

    Explores how Edmund Burke's discourse on the sublime helps illuminate attacks on the vulgarization of culture (as typified by Allan Bloom), both for the presumedly "vulgar" reader and for the champions of high culture. (MG)

  12. Displacement, Substitution, Sublimation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Sigmund Freund worked with the mechanisms of displacement, substitution, and sublimation. These mechanisms have many similarities and have been studied diagnostically and therapeutically. Displacement and substitution seem to fit in well with phobias, hysterias, somatiyations, prejudices, and scapegoating. Phobias, prejudices, and scapegoating…

  13. Membrane evaporator/sublimator investigation

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    Data are presented on a new evaporator/sublimator concept using a hollow fiber membrane unit with a high permeability to liquid water. The aim of the program was to obtain a more reliable, lightweight and simpler Extra Vehicular Life Support System (EVLSS) cooling concept than is currently being used.

  14. Eisenhower and the American Sublime

    ERIC Educational Resources Information Center

    O'Gorman, Ned

    2008-01-01

    This essay presents Dwight D. Eisenhower's presidential rhetoric as an iteration of an American synecdochal sublime. Eisenhower's rhetoric sought to re-aim civic sight beyond corporeal objects to the nation's transcendental essence. This rhetoric is intimately connected to prevailing political anxieties and exigencies, especially the problem of…

  15. APPARATUS FOR CONDENSATION AND SUBLIMATION

    DOEpatents

    Schmidt, R.J.; Fuis, F. Jr.

    1958-10-01

    An apparatus is presented for the sublimation and condensation of uranium compounds in order to obtain an improved crystalline structure of this material. The apparatus comprises a vaporizing chamber and condensing structure connected thereto. There condenser is fitted with a removable liner having a demountable baffle attached to the liner by means of brackets and a removable pin. The baffle is of spiral cross-section and is provided with cooling coils disposed between the surfaces of the baffle for circulation of a temperature controlling liquid within the baffle. The cooling coll provides for controlllng the temperature of the baffle to insure formatlon of a satisfactory condensate, and the removable liner facilitates the removal of condensate formed during tbe sublimation process.

  16. Partial separation of fullerenes by gradient sublimation

    SciTech Connect

    Yeretzian, C.; Wiley, J.B.; Holczer, K.; Su, T.; Nguyen, S.; Kaner, R.B.; Whetten, R.L. )

    1993-09-30

    An experimental technique is investigated to separate/enrich fullerenes of metallofullerenes, exploiting differences in sublimation temperatures without the use of solvents. Fullerenes are sublimed out of the soot and deposited on a quartz rod along a temperature gradient (gradient sublimation). In a position-sensitive experiment the composition of the deposit on the rod is monitored by laser-desorption mass spectrometry. Strongly enriched regions containing specific fullerene molecules (i.e., C[sub 84] or LaC[sub 82]) are observed. Furthermore, C[sub 74], which could not be extracted from the soot by organic solvents, sublimes out of the soot. 26 refs., 6 figs.

  17. Schopenhauer, Nietzsche, and the Aesthetically Sublime

    ERIC Educational Resources Information Center

    Vandenabeele, Bart

    2003-01-01

    Much has been written on the relationship between Arthur Schopenhauer and Friedrich Nietzsche. Much remains to be said, however, concerning their respective theories of the sublime. In this article, the author first argues against the traditional, dialectical view of Schopenhauer's theory of the sublime that stresses the crucial role the sublime…

  18. Investigation of Transient Performance for a Sublimator

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Sheth, Rubik; Stephan, Ryan A.

    2009-01-01

    Sublimators have been used as heat rejection devices for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100%. However, sublimators are currently being considered to operate in a cyclical topping mode during low lunar orbit for Altair and possibly Orion, which represents a new mode of operation for sublimators. In this mission phase, the sublimator will be repeatedly started and stopped during each orbit to provide supplemental heat rejection for the portion of the orbit where the sink temperature exceeds the system setpoint temperature. This paper will investigate the effects of these transient starts and stops on the feedwater utilization during various feedwater timing scenarios. The X-38 sublimator, which represents the state of the art in sublimator technology, was used to understand this behavior and to quantify the feedwater performance. Data from various scenarios will be analyzed to investigate feedwater utilization under the cyclical conditions. This paper will also provide recommendations for future sublimator designs and/or feedwater control.

  19. Canopy Effects on Macroscale Snow Sublimation

    NASA Astrophysics Data System (ADS)

    Svoma, B. M.

    2015-12-01

    Sublimation of snow cover directly affects snow accumulation, impacting ecosystem processes, soil moisture, soil porosity, biogeochemical processes, wildfire, and water resources. Available energy, the exposed surface area of a snow cover, and exposure time with the atmosphere vary greatly in complex terrain (e.g., aspect, elevation, forest cover), with latitude, and with continentality. It is therefore difficult to scale up results from site specific short term studies. Using the 32-km NARR, the 4-km PRISM, with 30-m terrain and forest cover data, meteorological variables are downscaled to simulate sublimation from canopy intercepted snow and from the snowpack over the Salt River Basin in Arizona for a wet and dry year. Simulations indicate that: (1) total sublimation is highly variable in response to variability in both sublimation rate and snow cover duration; (2) total canopy sublimation is similar for both years while ground sublimation is considerably greater during the wet year; (3) sublimation is a relatively greater contribution to the snow water budget during the dry year (28% vs. 20% of total snowfall); (4) at high elevations, ground sublimation is less in open areas than forested areas during the dry year, while the reverse is evident during the wet year as snowpack lasted longer into spring. While a reduction in leaf area index leads to a reduction of total sublimation due to less interception in both years, ground sublimation increases during the dry year, possibly due to less sheltering from solar radiation and wind. This reduction in sheltering results in a large decrease in snowpack duration (i.e., ten days in spring) at mid-elevations for the wet year, leading to a decrease in ground sublimation. This results in a 500 meter difference in the elevation of maximum sublimation reduction upon reduced leaf area index between the two years. Forest cover properties can vary considerably on short and long time scales through natural (wildfire, bark beetle

  20. Experimental Investigation of Transient Sublimator Performance

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Stephan, Ryan A.; Leimkuehler, Thomas O.

    2012-01-01

    Sublimators have been used as heat rejection devices for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100%. However, sublimators are currently being considered for operations in a cyclical topping mode, which represents a new mode of operation for sublimators. Sublimators can be used as a supplemental heat rejection device during mission phases where the environmental temperature or heat rejection requirement changes rapidly. This scenario may occur during low lunar orbit, low earth orbit, or other planetary orbits. In these mission phases, the need for supplemental heat rejection will vary between zero and some fraction of the overall heat load. In particular, supplemental heat rejection is required for the portion of the orbit where the radiative sink temperature exceeds the system setpoint temperature. This paper will describe the effects of these transient starts and stops on the feedwater utilization during various feedwater timing scenarios. Experimental data from various scenarios is analyzed to investigate feedwater consumption efficiency under the cyclical conditions. Start up utilization tests were conducted to better understand the transient performance. This paper also provides recommendations for future sublimator design and transient operation.

  1. Coating Thermoelectric Devices To Suppress Sublimation

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Caillat, Thierry; Fleurial, Jean-Pierre; Snyder, G. Jeffrey

    2007-01-01

    A technique for suppressing sublimation of key elements from skutterudite compounds in advanced thermoelectric devices has been demonstrated. The essence of the technique is to cover what would otherwise be the exposed skutterudite surface of such a device with a thin, continuous film of a chemically and physically compatible metal. Although similar to other sublimation-suppression techniques, this technique has been specifically tailored for application to skutterudite antimonides. The primary cause of deterioration of most thermoelectric materials is thermal decomposition or sublimation - one or more elements sublime from the hot side of a thermoelectric couple, changing the stoichiometry of the device. Examples of elements that sublime from their respective thermoelectric materials are Ge from SiGe, Te from Pb/Te, and now Sb from skutterudite antimonides. The skutterudite antimonides of primary interest are CoSb3 [electron-donor (n) type] and CeFe(3-x)Co(x)Sb12 [electron-acceptor (p) type]. When these compounds are subjected to typical operating conditions [temperature of 700 C and pressure <10(exp -5) torr (0.0013 Pa)], Sb sublimes from their surfaces, with the result that Sb depletion layers form and advance toward their interiors. As the depletion layer advances in a given device, the change in stoichiometry diminishes the thermal-to-electric conversion efficiency of the device. The problem, then, is to prevent sublimation, or at least reduce it to an acceptably low level. In preparation for an experiment on suppression of sublimation, a specimen of CoSb3 was tightly wrapped in a foil of niobium, which was selected for its chemical stability. In the experiment, the wrapped specimen was heated to a temperature of 700 C in a vacuum of residual pressure <10(exp -5) torr (0.0013 Pa), then cooled and sectioned. Examination of the sectioned specimen revealed that no depletion layer had formed, indicating the niobium foil prevented sublimation of antimony at 700 C

  2. Heat of Sublimation of I-2.

    ERIC Educational Resources Information Center

    Henderson, Giles; Robarts, Ronald A., Jr.

    1978-01-01

    Describes an inexpensive double-beam laser photometry experiment to determine the molar heat of sublimation of I-2. The experiment employs common laboratory materials and components and gives results with a two percent to three percent accuracy. (Author/GA)

  3. Modeling sublimation of a charring ablator

    NASA Technical Reports Server (NTRS)

    Balhoff, J. F.; Pike, R. W.

    1973-01-01

    The Hertz-Knudsen analysis is shown to accurately predict the sublimation rate from a charring ablator. Porosity is shown to have a significant effect on the surface temperature. The predominant carbon species found in the vapor is C3, which agrees well with the results of previous investigations.

  4. NO reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, Robert A.

    1988-01-01

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with HNCO at a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid.

  5. No reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, Robert A.

    1990-01-01

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with NHCO into a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid.

  6. System and method for suppressing sublimation using opacified aerogel

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeff S. (Inventor); Snyder, G. Jeffrey (Inventor); Calliat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Jones, Steven M. (Inventor); Palk, Jong-Ah (Inventor)

    2008-01-01

    The present invention relates to a castable, aerogel-based, ultra-low thermal conductivity opacified insulation to suppress sublimation. More specifically, the present invention relates to an aerogel opacified with various opacifying or reflecting constituents to suppress sublimation and provide thermal insulation in thermoelectric modules. The opacifying constituent can be graded within the aerogel for increased sublimation suppression, and the density of the aerogel can similarly be graded to achieve optimal thermal insulation and sublimation suppression.

  7. GFEChutes Lo-Fi

    NASA Technical Reports Server (NTRS)

    Gist, Emily; Turner, Gary; Shelton, Robert; Vautier, Mana; Shaikh, Ashraf

    2013-01-01

    NASA needed to provide a software model of a parachute system for a manned re-entry vehicle. NASA has parachute codes, e.g., the Descent Simulation System (DSS), that date back to the Apollo Program. Since the space shuttle did not rely on parachutes as its primary descent control mechanism, DSS has not been maintained or incorporated into modern simulation architectures such as Osiris and Antares, which are used for new mission simulations. GFEChutes Lo-Fi is an object-oriented implementation of conventional parachute codes designed for use in modern simulation environments. The GFE (Government Furnished Equipment), low-fidelity (Lo-Fi) parachute model (GFEChutes Lo-Fi) is a software package capable of modeling the effects of multiple parachutes, deployed concurrently and/or sequentially, on a vehicle during the subsonic phase of reentry into planetary atmosphere. The term "low-fidelity" distinguishes models that represent the parachutes as simple forces acting on the vehicle, as opposed to independent aerodynamic bodies. GFEChutes Lo-Fi was created from these existing models to be clean, modular, certified as NASA Class C software, and portable, or "plug and play." The GFE Lo-Fi Chutes Model provides basic modeling capability of a sequential series of parachute activities. Actions include deploying the parachute, changing the reefing on the parachute, and cutting away the parachute. Multiple chutes can be deployed at any given time, but all chutes in that case are assumed to behave as individually isolated chutes; there is no modeling of any interactions between deployed chutes. Drag characteristics of a deployed chute are based on a coefficient of drag, the face area of the chute, and the local dynamic pressure only. The orientation of the chute is approximately modeled for purposes of obtaining torques on the vehicle, but the dynamic state of the chute as a separate entity is not integrated - the treatment is simply an approximation. The innovation in GFEChutes

  8. Psychotherapy. Sublimation and the psychodynamics of birding.

    PubMed

    Clemens, Norman A

    2012-07-01

    An adventure in extreme birding prompted the psychoanalyst author to reflect on "why do people do this?" Like myriad human interests, vocations, and avocations, the activity of bird watching is a socially acceptable activity that is the final pathway for multiple motivations that are likely to have a long history in the individual's development. It may have origins in basic survival skills. Various psychological defense mechanisms may be involved, the most mature and successful one being sublimation. Success of a defense-like sublimation may be viewed in terms of freedom from anxiety or from obsessive extremes that interfere with the individual's wellbeing, important relationships, or physical or financial health. The author considers whether the characters in the film The Big Year exemplify such success or the lack of it. PMID:22805903

  9. No reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, Robert

    1989-01-01

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with HNCO at a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid and CO or other H-atom generating species is also present or added to the gas stream.

  10. Sublimation Crystal Growth of Yttrium Nitride

    SciTech Connect

    Du, Li; Edgar, J H; Meisner, Roberta Ann; Bakalova-hadjikrasteva, Silvia; Kuball, M

    2010-01-01

    The sublimation recombination crystal growth of bulk yttrium nitride crystals is reported. The YN source material was prepared by reacting yttrium metal with nitrogen at 1200 C and 800 Torr total pressure. Crystals were produced by subliming this YN from the source zone, and recondensing it from the vapor as crystals at a lower temperature (by 50 C). Crystals were grown from 2000 to 2100 C and with a nitrogen pressure from 125 to 960 Torr. The highest rate was 9.64 10 5 mol/h (9.92 mg/h). The YN sublimation rate activation energy was 467.1 21.7 kJ/mol. Individual crystals up to 200 m in dimension were prepared. X-ray diffraction confirmed that the crystals were rock salt YN, with a lattice constant of 4.88 . The YN crystals were unstable in air; they spontaneously converted to yttria (Y2O3) in 2 4 h. A small fraction of cubic yttria was detected in the XRD of a sample exposed to air for a limited time, while non-cubic yttria was detected in the Raman spectra for a sample exposed to air for more than 1 h.

  11. Sublimating grains model of cometary coma.

    NASA Astrophysics Data System (ADS)

    Faggi, S.; Tozzi, G. P.; Brucato, J. R.

    Billion years of space weathering produces a crust of organic matter (see e.g. Kanuchova et al. 2012) that will be released when a comet enter for the first time in the inner Solar System. New comets, coming form the Oort Colud at their first passage close to the Sun, are particularly important because they are not differentiated by the Solar radiation and they are supposed to have a large quantity of ice organic matter close to the surface. When a comet approach to the Sun, its activity is driven by the sublimation of these nucleus ices: if the heliocentric distances, R_H , is greater than 3 AU the sublimation of CO and CO_2 ices is the main source of comet activity, otherwise at shorter distances, the sublimation of water become the most important mechanism of activity. These gases, escaping from the nucleus, drag in the coma grains that can be refractory dust (silicates, carbon), water ice and/or organic ices. Oort comets at their first passage in the inner Solar System, should produce an halo of organic or water icy particles. Our group has been monitoring new, inbound, bright Oort comets (C/2011 F1, C/2012 S1, C/2012 K1, C/2013 V5, C/2012 F3, C/2013 US10, C/2013 X1) to search for these icy grains. The method consists in detecting the cloud of sublimating grains in the inner coma by using the Sigma Af function (Tozzi et al. 2007) directly from images. However this over-population of grains, beside the sublimation, can be also due to short time activity (outburst) or too big grains expanding at very slow velocity, as it has been found in comet 67P/C-G (Tozzi eta al, 2011, A&A, 531, 54). To disentangle between the phenomena it is necessary to monitor the comet both at short timescale, for the outbursts (by repeating the observations after few nights), and at long term (weeks-months). If the cloud does not expand with the decreasing of the heliocentric distance there is high probability that we are in presence of organic and/or water ice grains. We can disentangle

  12. Science Sublime: The Philosophy of the Sublime, Dewey's Aesthetics, and Science Education

    ERIC Educational Resources Information Center

    Cavanaugh, Shane

    2014-01-01

    Feelings of awe, wonder, and appreciation have been largely ignored in the working lives of scientists and, in turn, science education has not accurately portrayed science to students. In an effort to bring the affective qualities of science into the classroom, this work draws on the writings of the sublime by Burke, Kant, Emerson, and Wordsworth…

  13. Reassessing Aesthetic Appreciation of Nature in the Kantian Sublime

    ERIC Educational Resources Information Center

    Brady, Emily

    2012-01-01

    The sublime has been a relatively neglected topic in recent work in philosophical aesthetics, with existing discussions confined mainly to problems in Kant's theory. Given the revival of interest in his aesthetic theory and the influence of the Kantian sublime compared to other eighteenth-century accounts, this focus is not surprising. Kant's…

  14. Sublime science: Teaching for scientific sublime experiences in middle school classrooms

    NASA Astrophysics Data System (ADS)

    Cavanaugh, Shane

    Due to a historical separation of cognition and emotion, the affective aspects of learning are often seen as trivial in comparison to the more 'essential' cognitive qualities - particularly in the domain of science. As a result of this disconnect, feelings of awe, wonder, and astonishment as well as appreciation have been largely ignored in the working lives of scientists. In turn, I believe that science education has not accurately portrayed the world of science to our students. In an effort to bring the affective qualities of science into the science classroom, I have drawn on past research in the field of aesthetic science teaching and learning as well as works by, Burke, Kant, and Dewey to explore a new construct I have called the "scientific sublime". Scientific sublime experiences represent a sophisticated treatment of the cognitive as well as affective qualities of science learning. The scientific sublime represents feelings of awe, wonder, and appreciation that come from a deep understanding. It is only through this understanding of a phenomenon that we can appreciate its true complexity and intricacies, and these understandings when mixed with the emotions of awe and reverence, are sublime. Scientific sublime experiences are an attempt at the re-integration of cognition and feeling. The goal of this research was twofold: to create and teach a curriculum that fosters scientific sublime experiences in middle school science classes, and to better understand how these experiences are manifested in students. In order to create an approach to teaching for scientific sublime experiences, it was first necessary for me to identify key characteristics of such an experience and a then to create a pedagogical approach, both of which are described in detail in the dissertation. This research was conducted as two studies in two different middle schools. My pedagogical approach was used to create and teach two five-week 7 th grade science units---one on weather

  15. Sublimation Growth of Titanium Nitride Crystals

    SciTech Connect

    Du, Li; Edgar, J H; Kenik, Edward A; Meyer III, Harry M

    2009-01-01

    The sublimation-recondensation growth of titanium nitride crystal with N/Ti ratio of 0.99 on tungsten substrate is reported. The growth rate dependence on temperature and pressure was determined, and the calculated activation energy is 775.8 29.8kJ/mol. The lateral and vertical growth rates changed with the time of growth and the fraction of the tungsten substrate surface covered. The orientation relationship of TiN (001) || W (001) with TiN [100] || W [110], a 45o angle between TiN [100] and W [100], occurs not only for TiN crystals deposited on W (001) textured tungsten but also for TiN crystals deposited on randomly orientated tungsten. This study demonstrates that this preferred orientational relationship minimizes the lattice mismatch between the TiN and tungsten.

  16. The formation of filamentary sublimate residues (FSR) from mineral grains

    NASA Technical Reports Server (NTRS)

    Storrs, A. D.; Fanale, F. P.; Saunders, R. S.; Stephens, J. B.

    1988-01-01

    The significant interparticle forces observed between solar system dust grains upon desorption or sublimation of excess volatiles in simulated Martian or cometary environments are presently investigated, in order to more precisely define these mechanisms and to simulate the types of deposits thereby formed. Some classes of phyllosilicate mineral grains are noted to bond together to form a highly porous filamentary sublimate residue (FSR) exhibiting an exceptionally high tensile strength for its density; this may be important in its control of erosion and sublimation in Martian and cometary environments. It is concluded that FSR formation from clean mineral grains in water ice may be important in the formation of the Martian polar layered terrain.

  17. Sulfur "Concrete" for Lunar Applications - Sublimation Concerns

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Toutanji, Houssam

    2006-01-01

    Melting sulfur and mixing it with an aggregate to form "concrete" is commercially well established and constitutes a material that is particularly well-suited for use in corrosive environments. Discovery of the mineral troilite (FeS) on the moon poses the question of extracting the sulfur for use as a lunar construction material. This would be an attractive alternative to conventional concrete as it does not require water. However, the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. Here it is assumed that the lunar ore can be mined, refined, and the raw sulfur melded with appropriate lunar regolith to form, for example, bricks. This study evaluates pure sulfur and two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar stimulant and SiO2 powder as aggregate additions. Each set was subjected to extended periods in a vacuum environment to evaluate sublimation issues. Results from these experiments are presented and discussed within the context of the lunar environment.

  18. Sublimation in bright spots on (1) Ceres

    NASA Astrophysics Data System (ADS)

    Nathues, A.; Hoffmann, M.; Schaefer, M.; Le Corre, L.; Reddy, V.; Platz, T.; Cloutis, E. A.; Christensen, U.; Kneissl, T.; Li, J.-Y.; Mengel, K.; Schmedemann, N.; Schaefer, T.; Russell, C. T.; Applin, D. M.; Buczkowski, D. L.; Izawa, M. R. M.; Keller, H. U.; O'Brien, D. P.; Pieters, C. M.; Raymond, C. A.; Ripken, J.; Schenk, P. M.; Schmidt, B. E.; Sierks, H.; Sykes, M. V.; Thangjam, G. S.; Vincent, J.-B.

    2015-12-01

    The dwarf planet (1) Ceres, the largest object in the main asteroid belt with a mean diameter of about 950 kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth-Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity. Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5, 6, 7) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager. These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles may explain this haze. We conclude that Ceres must have accreted material from beyond the ‘snow line’, which is the distance from the Sun at which water molecules condense.

  19. Sublimation in bright spots on (1) Ceres.

    PubMed

    Nathues, A; Hoffmann, M; Schaefer, M; Le Corre, L; Reddy, V; Platz, T; Cloutis, E A; Christensen, U; Kneissl, T; Li, J-Y; Mengel, K; Schmedemann, N; Schaefer, T; Russell, C T; Applin, D M; Buczkowski, D L; Izawa, M R M; Keller, H U; O'Brien, D P; Pieters, C M; Raymond, C A; Ripken, J; Schenk, P M; Schmidt, B E; Sierks, H; Sykes, M V; Thangjam, G S; Vincent, J-B

    2015-12-10

    The dwarf planet (1) Ceres, the largest object in the main asteroid belt with a mean diameter of about 950 kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth-Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity. Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5-7) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager. These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles may explain this haze. We conclude that Ceres must have accreted material from beyond the 'snow line', which is the distance from the Sun at which water molecules condense.

  20. Sublimation in bright spots on (1) Ceres.

    PubMed

    Nathues, A; Hoffmann, M; Schaefer, M; Le Corre, L; Reddy, V; Platz, T; Cloutis, E A; Christensen, U; Kneissl, T; Li, J-Y; Mengel, K; Schmedemann, N; Schaefer, T; Russell, C T; Applin, D M; Buczkowski, D L; Izawa, M R M; Keller, H U; O'Brien, D P; Pieters, C M; Raymond, C A; Ripken, J; Schenk, P M; Schmidt, B E; Sierks, H; Sykes, M V; Thangjam, G S; Vincent, J-B

    2015-12-10

    The dwarf planet (1) Ceres, the largest object in the main asteroid belt with a mean diameter of about 950 kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth-Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity. Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5-7) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager. These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles may explain this haze. We conclude that Ceres must have accreted material from beyond the 'snow line', which is the distance from the Sun at which water molecules condense. PMID:26659183

  1. Dynamics and Mechanisms of Exfoliated Black Phosphorus Sublimation.

    PubMed

    Fortin-Deschênes, Matthieu; Levesque, Pierre L; Martel, Richard; Moutanabbir, Oussama

    2016-05-01

    We report on real time observations of the sublimation of exfoliated black phosphorus layers throughout annealing using in situ low energy electron microscopy. We found that sublimation manifests itself above 375 ± 20 °C through the nucleation and expansion of asymmetric, faceted holes with the long axis aligned along the [100] direction and sharp tips defined by edges consisting of alternating (10) and (11) steps. This thermally activated process repeats itself via successive sublimation of individual layers. Calculations and simulations using density functional theory and kinetic Monte Carlo allowed to determine the involved atomic pathways. Sublimation is found to occur via detachments of phosphorus dimers rather than single atoms. This behavior and the role of defects is described using an analytical model that captures all essential features. This work establishes an atomistic-level understanding of the thermal stability of exfoliated black phosphorus and defines the temperature window available for material and device processing. PMID:27097073

  2. Scanning electron microscope observations of sublimates from Merapi Volcano, Indonesia

    USGS Publications Warehouse

    Symonds, R.

    1993-01-01

    Sublimates were sampled from high-temperature (up to 800??C) fumaroles at Merapi volcano in January 1984. Sampling is accomplished by inserting silica tubes into high-temperature vents. Volcanic glass flows through the tubes and sublimates precipitate on the inner walls in response to the temperature gradient. With decreasing temperature (800-500??C) in the tubes, there are five sublimate zones. Texturally, the sublimate phases grade from large, well-formed crystals at their highest-temperature occurrence to more numerous, smaller crystals that are less perfect at lower temperatures. These changes imply that the crystal nucleation and growth rates increase and decrease, respectively, as temperature decreases. Overall, the textural data suggest that the gas is saturated or slightly super-saturated with the phases at their hottest occurrence, but that the gas becomes increasingly super-saturated with the phases at lower temperatures. -from Author

  3. Nietzsche's View of Sublimation in the Educational Process

    ERIC Educational Resources Information Center

    Sharp, Ann Margaret

    1975-01-01

    Article outlined Nietzsche's beliefs on the primary aim of education, the conscious production of the free man through the process of sublimation, the active redirecting of one's life energy in the service of creativity. (Editor/RK)

  4. Sublimation as a Landform-Shaping Process on Pluto

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A. D.; White, O. L.; Umurhan, O. M.; Schenk, P. M.; Beyer, R. A.; McKinnon, W. B.; Singer, K. N.; Spencer, J. R.; Stern, S. A.; Young, L. A.; Weaver, H.; Olkin, C. B.; Ennico, K.

    2016-01-01

    Several icy-world surfaces in the solar system exhibit sublimation-driven landform modification erosion, condensation, and mass wasting [1]. In addition to the obvious role of gravity, mass wasting can work in conjunction with internal disaggregation of a landform's relief-supporting material through the loss (or deteriorating alteration) of its cohesive matrix. To give a conspicuous example, Callisto's landscape exhibits widespread erosion from sublimation erosion of slopes, which results in smooth, undulating, low albedo plains composed of lag deposits, with isolated high albedo pinnacles perched on remnants of crater rims due to the re-precipitation of ice on local cold traps [2, 3, 4]. Sublimation-driven mass wasting was anticipated on Pluto prior to the encounter (see refs in [5]). Here we report on several landscapes on Pluto we interpret to be formed, or at least heavily modified, by sublimation erosion.

  5. Mass spectrometry study of the sublimation of aliphatic dipeptides

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Tyunina, E. Yu.; Krasnov, A. V.; Tyunina, V. V.; Giricheva, N. I.; Girichev, A. V.

    2012-03-01

    The sublimation of glycyl-L-α-alanine (Gly-Ala), L-α-alanyl-L-α-alanine (Ala-Ala), and DL-α-alanyl-DL-α-valine (Ala-Val) aliphatic dipeptides is studied by electron ionization mass spectrometry in combination with Knudsen effusion. The temperature range in which substances sublime as monomer molecular forms is determined. Enthalpies of sublimation Δs H°( T) are determined for Gly-Ala, Ala-Ala, and Ala-Val. It is shown that the enthalpy of sublimation of dipeptides increases with an increase in the side hydrocarbon radical. The unknown Δs H°(298) values for 17 amino acids and nine dipeptides are estimated using the proposed "structure-property" correlation model, in which the geometry and electron characteristics of molecules are used as structural descriptors.

  6. Development and Testing of the Contaminant Insensitive Sublimator

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2007-01-01

    Sublimators have been used for heat rejection for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Some of the attractive features of sublimators are that they are compact, lightweight, and self-regulating. One of the drawbacks of previous designs has been sensitivity to non-volatile contamination in the feedwater, which can clog relatively small pores (approx. 3-6 micrometers) in the porous plates where ice forms and sublimates. A new design that is less sensitive to contaminants is being developed at the Johnson Space Center (JSC). This paper describes the design, fabrication, and testing of the Contaminant Insensitive Sublimator (CIS) Engineering Development Unit (EDU).

  7. Development and Testing of the Contaminant Insensitive Sublimator

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Westheimer, David T.

    2006-01-01

    Sublimators have been used for heat rejection for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Some of the attractive features of sublimators are that they are compact, lightweight, and self-regulating. One of the drawbacks of previous designs has been sensitivity to non-volatile contamination in the feedwater, which can clog relatively small pores (approx.3-6 microns) in the porous plates where ice forms and sublimates. A new design that is less sensitive to contaminants is being developed at the Johnson Space Center. This paper describes the design, fabrication, and testing of the Contaminant Insensitive Sublimator (CIS) Engineering Development Unit (EDU).

  8. The size dependence of sublimation rates for interplanetary ice particles

    NASA Technical Reports Server (NTRS)

    Patashnick, H.; Rupprecht, G.

    1975-01-01

    The sublimation rates for water ice have been computed as a function of particle size for various solar distances. Because of the size dependence of the absorption and emission properties of the particles, a sublimation-rate minimum evolves whose depth and position are sensitive to the spectral-absorption properties of the particle in combination with the spectral distribution of solar radiation. As a consequence, a quasistable size of interplanetary ice particles is predicted which is independent of solar distance.

  9. Sublimation rates of explosive materials : method development and initial results.

    SciTech Connect

    Phelan, James M.; Patton, Robert Thomas

    2004-08-01

    Vapor detection of explosives continues to be a technological basis for security applications. This study began experimental work to measure the chemical emanation rates of pure explosive materials as a basis for determining emanation rates of security threats containing explosives. Sublimation rates for TNT were determined with thermo gravimetric analysis using two different techniques. Data were compared with other literature values to provide sublimation rates from 25 to 70 C. The enthalpy of sublimation for the combined data was found to be 115 kJ/mol, which corresponds well with previously reported data from vapor pressure determinations. A simple Gaussian atmospheric dispersion model was used to estimate downrange concentrations based on continuous, steady-state conditions at 20, 45 and 62 C for a nominal exposed block of TNT under low wind conditions. Recommendations are made for extension of the experimental vapor emanation rate determinations and development of turbulent flow computational fluid dynamics based atmospheric dispersion estimates of standoff vapor concentrations.

  10. MALDI Imaging of Lipids after Matrix Sublimation/Deposition

    PubMed Central

    Murphy, Robert C.; Hankin, Joseph A.; Barkley, Robert M.; Zemski Berry, Karin A.

    2011-01-01

    Mass spectrometric techniques have been developed to record mass spectra of biomolecules including lipids as they naturally exist within tissues and thereby permit the generation of images displaying the distribution of specific lipids in tissues, organs, and intact animals. These techniques are based on matrix-assisted laser desorption/ionization (MALDI) that requires matrix application onto the tissue surface prior to analysis. One technique of application that has recently shown significant advantages for lipid analysis is sublimation of matrix followed by vapor deposition directly onto the tissue. Explanations for enhanced sensitivity realized by sublimation/deposition related to sample temperature after a laser pulse and matrix crystal size are presented. Specific examples of sublimation/deposition in lipid imaging of various organs including brain, ocular tissue, and kidney are presented. PMID:21571091

  11. On the interaction of sublimating gas with cometary bodies

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan K.

    Sublimation of volatiles is a defining process of comet nuclei, and profoundly affects their dynamics, structure, and appearance. Central to understanding the processes by which comets formed and subsequently evolved is a careful computation of this sublimation pressure as a function of heliocentric distance. Unlike previous efforts, I develop a thermodynamic method to numerically compute the sublimation pressure of any species from limited knowledge of its physical properties. I then describe a novel cometary disruption mechanism in which this sublimation pressure induces differential stresses within the body of the nucleus that exceed its material strength, resulting in structural failure and breakup of the nucleus. I show that this mechanism is consistent with the behavior of Comet ISON (C/2012 S1), and use it to estimate the cohesive strength of ISON's nucleus, a first for a Long-Period Comet. Sublimating volatiles can also generate sublimative torques that alter the rotation state of the nucleus. However, computing these torques requires high-resolution information on the shape and activity of the nucleus, which is available only for the few nuclei visited by spacecraft. To remedy this, I develop a novel framework based on the YORP Effect (the torques asteroids experience by emitting thermal photons from their asymmetric shapes) to study the effects of sublimative torques on populations of cometary bodies. I take advantage of the similar manner in which surfaces emit both thermal photons and sublimating molecules to derive numerical relationships that describe sublimative torques by appropriately scaling the YORP torque equations. I then use this framework to explain the formation of dust striae (long linear features in the tails of Long-Period Comets that align with the Sun), which has remained an enigma for more than a century. I show that the observed ˜10-100 m chunks ejected from comet nuclei experience sublimative torques that spin them up to the point

  12. Enthalpy of sublimation as measured using a silicon oscillator

    NASA Astrophysics Data System (ADS)

    Shakeel, Hamza; Pomeroy, J. M.

    In this study, we report the enthalpy of sublimation of common gases (nitrogen, oxygen, argon, carbon dioxide, neon, krypton, xenon, and water vapor) using a large area silicon oscillator with a sub-ng (~0.027 ng/cm2) mass sensitivity. The double paddle oscillator design enables high frequency stability (17 ppb) at cryogenic temperatures and provides a consistent technique for enthalpy measurements. The enthalpies of sublimation are derived from the rate of mass loss during programmed thermal desorption and are detected as a change in the resonance frequency of the self-tracking oscillator. These measured enthalpy values show excellent agreement with the accepted literature values.

  13. Alumina Paste Sublimation Suppression Barrier for Thermoelectric Device

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah (Inventor); Caillat, Thierry (Inventor)

    2014-01-01

    Alumina as a sublimation suppression barrier for a Zintl thermoelectric material in a thermoelectric power generation device operating at high temperature, e.g. at or above 1000K, is disclosed. The Zintl thermoelectric material may comprise Yb.sub.14MnSb.sub.11. The alumina may be applied as an adhesive paste dried and cured on a substantially oxide free surface of the Zintl thermoelectric material and polished to a final thickness. The sublimation suppression barrier may be finalized by baking out the alumina layer on the Zintl thermoelectric material until it becomes substantially clogged with ytterbia.

  14. Contactless prompt tumbling rebound of drops from a sublimating slope

    NASA Astrophysics Data System (ADS)

    Antonini, Carlo; Jung, Stefan; Wetzel, Andreas; Heer, Emmanuel; Schoch, Philippe; Moqaddam, Ali Mazloomi; Chikatamarla, Shyam S.; Karlin, Ilya; Marengo, Marco; Poulikakos, Dimos

    2016-05-01

    We have uncovered a drop rebound regime, characteristic of highly viscous liquids impacting tilted sublimating surfaces. Here the drops, rather than showing a slide, spread, recoil, and rebound behavior, exhibit a prompt tumbling rebound. As a result, glycerol surprisingly rebounds faster than three orders of magnitude less viscous water. When a viscous drop impacts a sublimating surface, part of its initial linear momentum is converted into angular momentum: Lattice Boltzmann simulations confirmed that tumbling owes its appearance to the rapid transition of the internal angular velocity prior to rebound to a constant value, as in a tumbling solid body.

  15. Modular Porous Plate Sublimator /MPPS/ requires only water supply for coolant

    NASA Technical Reports Server (NTRS)

    Rathbun, R. J.

    1966-01-01

    Modular porous plate sublimators, provided for each location where heat must be dissipated, conserve the battery power of a space vehicle by eliminating the coolant pump. The sublimator requires only a water supply for coolant.

  16. Alumina Paste Layer as a Sublimation Suppression Barrier for Yb14MnSb11

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Caillat, Thierry

    2010-01-01

    Sublimation is a major cause of degradation of thermoelectric power generation systems. Most thermoelectric materials tend to have peak values at the temperature where sublimation occurs. A sublimation barrier is needed that is stable at operating temperatures, inert against thermoelectric materials, and able to withstand thermal cycling stress. A porous alumina paste layer is suitable as a sublimation barrier for Yb14MnSb11. It can accommodate stress generated by the thermal expansion discrepancy between the suppression layer and thermoelectric materials. Sublimation suppression is achieved by filling pores naturally with YbO2, a natural byproduct of sublimation. YbO2 generated during the sublimation of Yb14MnSb11 fills the porous structure of the alumina paste, causing sublimation to decrease with time as the pores become filled.

  17. Modeling the development of martian sublimation thermokarst landforms

    NASA Astrophysics Data System (ADS)

    Dundas, Colin M.; Byrne, Shane; McEwen, Alfred S.

    2015-12-01

    Sublimation-thermokarst landforms result from collapse of the surface when ice is lost from the subsurface. On Mars, scalloped landforms with scales of decameters to kilometers are observed in the mid-latitudes and considered likely thermokarst features. We describe a landscape evolution model that couples diffusive mass movement and subsurface ice loss due to sublimation. Over periods of tens of thousands of Mars years under conditions similar to the present, the model produces scallop-like features similar to those on the martian surface, starting from much smaller initial disturbances. The model also indicates crater expansion when impacts occur in surfaces underlain by excess ice to some depth, with morphologies similar to observed landforms on the martian northern plains. In order to produce these landforms by sublimation, substantial quantities of excess ice are required, at least comparable to the vertical extent of the landform, and such ice must remain in adjacent terrain to support the non-deflated surface. We suggest that martian thermokarst features are consistent with formation by sublimation, without melting, and that significant thicknesses of very clean excess ice (up to many tens of meters, the depth of some scalloped depressions) are locally present in the martian mid-latitudes. Climate conditions leading to melting at significant depth are not required.

  18. The Digital Sublime: Lessons from Kelli Connell's "Double Life"

    ERIC Educational Resources Information Center

    Huang, Yi-hui

    2012-01-01

    The digital sublime refers to digital-composite photography that presents "the existence of something unpresentable" and that renders a matchless look a sophisticated fabrication, a perfect and clean composition, a maximum color saturation, a multiple-point perspective, and stunning or newfangled content. Abandoning the traditional one-shot mode…

  19. Literary Study, Measurement, and the Sublime: Disciplinary Assessment

    ERIC Educational Resources Information Center

    Heiland, Donna, Ed.; Rosenthal, Laura J., Ed.

    2011-01-01

    This collection of essays, "Literary Study, Measurement, and the Sublime: Disciplinary Assessment," edited by Donna Heiland and Laura J. Rosenthal, represents an important new venture in the Foundation's communication program. The book is the product of many authors, including the editors, both of whom have written essays for it. But it is the…

  20. Modeling the development of martian sublimation thermokarst landforms

    USGS Publications Warehouse

    Dundas, Colin M.; Byrne, Shane; McEwen, Alfred S.

    2015-01-01

    Sublimation-thermokarst landforms result from collapse of the surface when ice is lost from the subsurface. On Mars, scalloped landforms with scales of decameters to kilometers are observed in the mid-latitudes and considered likely thermokarst features. We describe a landscape evolution model that couples diffusive mass movement and subsurface ice loss due to sublimation. Over periods of tens of thousands of Mars years under conditions similar to the present, the model produces scallop-like features similar to those on the Martian surface, starting from much smaller initial disturbances. The model also indicates crater expansion when impacts occur in surfaces underlain by excess ice to some depth, with morphologies similar to observed landforms on the Martian northern plains. In order to produce these landforms by sublimation, substantial quantities of excess ice are required, at least comparable to the vertical extent of the landform, and such ice must remain in adjacent terrain to support the non-deflated surface. We suggest that Martian thermokarst features are consistent with formation by sublimation, without melting, and that significant thicknesses of very clean excess ice (up to many tens of meters, the depth of some scalloped depressions) are locally present in the Martian mid-latitudes. Climate conditions leading to melting at significant depth are not required.

  1. Isotopic Fractionation of Water-Ice from Sublimation

    NASA Astrophysics Data System (ADS)

    Christensen, E.; Boyer, C.; Park, M.; Gormally, J.; Benitez, E.; Dominguez, G.

    2015-12-01

    Elizabeth Christensen, Charisa Boyer, Manesseh Park, Ezra Benitez, Gerardo Dominguez Understanding the multi-isotopic fractionation of water-ice that results from its sublimation may be important for understanding the isotopic composition of cometary ices. Here we describe an experimental setup whose purpose is to understand the effects of various astrophysical processes on the δD and δ18O and δ17O composition of water-ices. Our setup consists of an ultrahigh vacuum (UHV) chamber with oil free pumping, a closed cycle He cryostat to achieve low temperatures (capable of reaching 6K), and a vacuum line connected to the chamber via a UHV feed-through. Water isotopologues H216O, H218O, H217O, and HD16O samples can be measured after sublimation of water-ice with a cavity ring-down spectrometer (Picarro L2120-i) that is connected to the vacuum line. To perform these experiments, ambient water vapor was introduced into, frozen, and purified inside the UHV chamber (T< 150 K). Water-ice samples were sublimated for varying amounts of time to collect various fractions of the original reservoir. We will present the first results on the oxygen and deuterium isotopic fractionation of water-ice sublimation and discuss their implications for interpreting the isotopic compositions of cometary ices.

  2. System for NO reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, R.A.

    1989-01-24

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with HNCO at a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid. 1 fig.

  3. System for NO reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, Robert A.

    1989-01-01

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with HNCO at a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid.

  4. Optimization of fast dissolving etoricoxib tablets prepared by sublimation technique.

    PubMed

    Patel, D M; Patel, M M

    2008-01-01

    The purpose of this investigation was to develop fast dissolving tablets of etoricoxib. Granules containing etoricoxib, menthol, crospovidone, aspartame and mannitol were prepared by wet granulation technique. Menthol was sublimed from the granules by exposing the granules to vacuum. The porous granules were then compressed in to tablets. Alternatively, tablets were first prepared and later exposed to vacuum. The tablets were evaluated for percentage friability and disintegration time. A 3(2) full factorial design was applied to investigate the combined effect of 2 formulation variables: amount of menthol and crospovidone. The results of multiple regression analysis indicated that for obtaining fast dissolving tablets; optimum amount of menthol and higher percentage of crospovidone should be used. A surface response plots are also presented to graphically represent the effect of the independent variables on the percentage friability and disintegration time. The validity of a generated mathematical model was tested by preparing a checkpoint batch. Sublimation of menthol from tablets resulted in rapid disintegration as compared with the tablets prepared from granules that were exposed to vacuum. The optimized tablet formulation was compared with conventional marketed tablets for percentage drug dissolved in 30 min (Q(30)) and dissolution efficiency after 30 min (DE(30)). From the results, it was concluded that fast dissolving tablets with improved etoricoxib dissolution could be prepared by sublimation of tablets containing suitable subliming agent.

  5. Advances in sublimation studies for particles of explosives

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Nguyen, Viet; Fischer, Thomas; Abrishami, Tara; Papantonakis, Michael; Kendziora, Chris; Mott, David R.; McGill, R. Andrew

    2015-05-01

    When handling explosives, or related surfaces, the hands routinely become contaminated with particles of explosives and related materials. Subsequent contact with a solid surface results in particle crushing and deposition. These particles provide an evidentiary trail which is useful for security applications. As such, the opto-physico-chemical characteristics of these particles are critical to trace explosives detection applications in DOD or DHS arenas. As the persistence of these particles is vital to their forensic exploitation, it is important to understand which factors influence their persistence. The longevity or stability of explosives particles on a substrate is a function of several environmental parameters or particle properties including: Vapor pressure, particle geometry, airflow, particle field size, substrate topography, humidity, reactivity, adlayers, admixtures, particle areal density, and temperature. In this work we deposited particles of 2,4-dinitrotoluene on standard microscopy glass slides by particle sieving and studied their sublimation as a function of airflow velocity, areal particle density and particle field size. Analysis of 2D microscopic images was used to compute and track particle size and geometrical characteristics. The humidity, temperature and substrate type were kept constant for each experiment. A custom airflow cell, using standard microscopy glass slide, allowed in-situ photomicroscopy. Areal particle densities and airflow velocities were selected to provide relevant loadings and flow velocities for a range of potential applications. For a chemical of interest, we define the radial sublimation velocity (RSV) for the equivalent sphere of a particle as the parameter to characterize the sublimation rate. The RSV is a useful parameter because it is independent of particle size. The sublimation rate for an ensemble of particles was found to significantly depend on airflow velocity, the areal density of the particles, and the

  6. Sublimation of amino acids with enantiomeric excess amplification

    NASA Astrophysics Data System (ADS)

    Guillemin, Jean-Claude; Guillemin, Jean-Claude; Bellec, Aurelien

    The notion of chirality was first reported in 1848 by Pasteur, when he mechanically separated the two enantiomers of tartrate salts.[1] Amino acids are considered as the most important building blocks of life with sugars. On the Earth, the living systems are only composed of L- amino acids and D-sugars. Nowadays, the origin of homochirality on Earth is still unknown, and there are many theories trying to explain this phenomenon. Recently Cooks [2] and Feringa [3] reported that the sublimation of small amounts of L and D amino acid mixtures containing an excess of one of them leads to a huge enantiomeric excess (ee) enhancement of the sublimate. We reinvestigated these experiments to determine the rules leading to this enhancement. Starting from mixtures of L- and DL leucine we observed increasing and decreasing of the ee in function of the starting ratios. By the use of 13C derivatives, the origin of the sublimed enantiomers has been precised. Various parameters (L and D, or L and DL mixtures, dissolution in water before sublimation, . . . ) were studied. We also took into consideration the recently proposed hypothesis of the role played by the eutectic ee in the sublimation. [4] The application of these results to find an explanation of the enantiomeric excess in meteorites or in the Primitive Earth scenarios will be discussed. 1 Pasteur, L. Ann. Phys., 1848, 24, 442. 2 R. H. Perry, C. Wu, M. Nefliu, R. G. Cooks, Chem. Commun., 2007, 1071-1073. 3 S. P. Fletcher, R. B. C. Jagt, B. L. Feringa, Chem. Commun., 2007, 2578-2580. 4 D. G. Blackmond, M. Klussmannb Chem. Commun., 2007, 3990-3996.

  7. Differential Sublimation of Terrestrial Permafrost and the Ramifications for Terrain Features on Mars

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.; Mellon, M. T.

    2016-09-01

    Sublimation loss of ice wedge ice in CRREL Permafrost Tunnel in Alaska (2.8 mm) is linear over 386 days, while ice cemented silt sublimation follows a decreasing relationship with time over 51 years with little sublimation over the past 20 years.

  8. Relationship between molecular descriptors and the enthalpies of sublimation of natural amino acids

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Tyunina, V. V.; Girichev, G. V.; Tyunina, E. Yu.

    2016-07-01

    A multiparameter correlation between the enthalpies of sublimation and molecular descriptors of natural amino acids is proposed, based on generalized experimental and literature data on the heat effects of sublimation. The contributions from Van der Waals interactions, hydrogen bond formation, and electrostatic effects into enthalpy of sublimation has been evaluated using regression coefficients.

  9. Robust Magnetic Properties of a Sublimable Single-Molecule Magnet.

    PubMed

    Kiefl, Evan; Mannini, Matteo; Bernot, Kevin; Yi, Xiaohui; Amato, Alex; Leviant, Tom; Magnani, Agnese; Prokscha, Thomas; Suter, Andreas; Sessoli, Roberta; Salman, Zaher

    2016-06-28

    The organization of single-molecule magnets (SMMs) on surfaces via thermal sublimation is a prerequisite for the development of future devices for spintronics exploiting the richness of properties offered by these magnetic molecules. However, a change in the SMM properties due to the interaction with specific surfaces is usually observed. Here we present a rare example of an SMM system that can be thermally sublimated on gold surfaces while maintaining its intact chemical structure and magnetic properties. Muon spin relaxation and ac susceptibility measurements are used to demonstrate that, unlike other SMMs, the magnetic properties of this system in thin films are very similar to those in the bulk, throughout the full volume of the film, including regions near the metal and vacuum interfaces. These results exhibit the robustness of chemical and magnetic properties of this complex and provide important clues for the development of nanostructures based on SMMs. PMID:27139335

  10. Triggering Sublimation-driven Activity of Main Belt Comets

    NASA Astrophysics Data System (ADS)

    Haghighipour, N.; Maindl, T. I.; Schäfer, C.; Speith, R.; Dvorak, R.

    2016-10-01

    It has been suggested that the comet-like activity of main belt comets (MBCs) is due to the sublimation of sub-surface water–ice that has been exposed as a result of their surfaces being impacted by meter-sized bodies. We have examined the viability of this scenario by simulating impacts between meter-sized and kilometer-sized objects using a smooth particle hydrodynamics approach. Simulations have been carried out for different values of the impact velocity and impact angle, as well as different target material and water-mass fractions. Results indicate that for the range of impact velocities corresponding to those in the asteroid belt, the depth of an impact crater is slightly larger than 10 m, suggesting that if the activation of MBCs is due to the sublimation of sub-surface water–ice, this ice has to exist no deeper than a few meters from the surface. Results also show that ice exposure occurs in the bottom and on the interior surface of impact craters, as well as on the surface of the target where some of the ejected icy inclusions are re-accreted. While our results demonstrate that the impact scenario is indeed a viable mechanism to expose ice and trigger the activity of MBCs, they also indicate that the activity of the current MBCs is likely due to ice sublimation from multiple impact sites and/or the water contents of these objects (and other asteroids in the outer asteroid belt) is larger than the 5% that is traditionally considered in models of terrestrial planet formation, providing more ice for sublimation. We present the details of our simulations and discuss their results and implications.

  11. The IBEX-Lo Sensor

    NASA Astrophysics Data System (ADS)

    Fuselier, S. A.; Bochsler, P.; Chornay, D.; Clark, G.; Crew, G. B.; Dunn, G.; Ellis, S.; Friedmann, T.; Funsten, H. O.; Ghielmetti, A. G.; Googins, J.; Granoff, M. S.; Hamilton, J. W.; Hanley, J.; Heirtzler, D.; Hertzberg, E.; Isaac, D.; King, B.; Knauss, U.; Kucharek, H.; Kudirka, F.; Livi, S.; Lobell, J.; Longworth, S.; Mashburn, K.; McComas, D. J.; Möbius, E.; Moore, A. S.; Moore, T. E.; Nemanich, R. J.; Nolin, J.; O'Neal, M.; Piazza, D.; Peterson, L.; Pope, S. E.; Rosmarynowski, P.; Saul, L. A.; Scherrer, J. R.; Scheer, J. A.; Schlemm, C.; Schwadron, N. A.; Tillier, C.; Turco, S.; Tyler, J.; Vosbury, M.; Wieser, M.; Wurz, P.; Zaffke, S.

    2009-08-01

    The IBEX-Lo sensor covers the low-energy heliospheric neutral atom spectrum from 0.01 to 2 keV. It shares significant energy overlap and an overall design philosophy with the IBEX-Hi sensor. Both sensors are large geometric factor, single pixel cameras that maximize the relatively weak heliospheric neutral signal while effectively eliminating ion, electron, and UV background sources. The IBEX-Lo sensor is divided into four major subsystems. The entrance subsystem includes an annular collimator that collimates neutrals to approximately 7°×7° in three 90° sectors and approximately 3.5°×3.5° in the fourth 90° sector (called the high angular resolution sector). A fraction of the interstellar neutrals and heliospheric neutrals that pass through the collimator are converted to negative ions in the ENA to ion conversion subsystem. The neutrals are converted on a high yield, inert, diamond-like carbon conversion surface. Negative ions from the conversion surface are accelerated into an electrostatic analyzer (ESA), which sets the energy passband for the sensor. Finally, negative ions exit the ESA, are post-accelerated to 16 kV, and then are analyzed in a time-of-flight (TOF) mass spectrometer. This triple-coincidence, TOF subsystem effectively rejects random background while maintaining high detection efficiency for negative ions. Mass analysis distinguishes heliospheric hydrogen from interstellar helium and oxygen. In normal sensor operations, eight energy steps are sampled on a 2-spin per energy step cadence so that the full energy range is covered in 16 spacecraft spins. Each year in the spring and fall, the sensor is operated in a special interstellar oxygen and helium mode during part of the spacecraft spin. In the spring, this mode includes electrostatic shutoff of the low resolution (7°×7°) quadrants of the collimator so that the interstellar neutrals are detected with 3.5°×3.5° angular resolution. These high angular resolution data are combined with

  12. Sublimation measurements and analysis of high temperature thermoelectric materials and devices

    NASA Technical Reports Server (NTRS)

    Shields, V.; Noon, L.

    1983-01-01

    High temperature thermoelectric device sublimation effects are compared for rare earth sulfides, selenides, and state-of-the-art Si-Ge alloys. Although rare earth calcogenides can potentially exhibit superior sublimation characteristics, the state-of-the-art Si-Ge alloy with silicon nitride sublimation-inhibitive coating has been tested to 1000 C. Attention is given to the ceramic electrolyte cells, forming within electrical and thermal insulation, which affect leakage conductance measurements in Si-Ge thermoelectric generators.

  13. The enthalpy of sublimation and thermodynamic functions of fermium

    SciTech Connect

    Haire, R.G.; Gibson, J.K. , Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6375 )

    1989-12-01

    The enthalpy of sublimation of fermium (Fm), element 100, has now been determined directly by measuring the partial pressure of Fm over alloys, for the temperature range of 642 to 905 K. The partial pressures were determined using Knudsen effusion and target collection techniques. Dilute (10{sup {minus}5}--10{sup {minus}7} atom %) solid alloys of Fm and mixtures of Fm and Es in both Sm and Yb solvents were studied. The presence of Es in two of the alloys allowed a direct comparison of the behavior of Fm and Es, where the latter could be used as a reference. It was possible to calculate enthalpies of sublimation and a hypothetical vapor pressure/temperature relationship for pure Fm metal by selecting Yb as the solvent most likely to form a nearly ideal alloy with Fm. From the experimental vapor pressure data, we derived average Second Law values of 33.8{plus minus}3 kcal/mol and 23.5{plus minus}3 cal/mol deg for the enthalpy and entropy of sublimation of Fm at 298 K. Third Law enthalpy values were also calculated using the experimental partial pressure data and entropies estimated from derived free energy functions and heat capacities for the solid and gaseous forms of Fm. The average Third Law values (34.8 kcal/mol and 25.1 cal/mol deg, respectively, at 298 K) are in agreement with those obtained via the Second Law. These results establish that Fm, like Es (element 99), is a divalent metal. The finding that Fm metal is the second divalent actinide element experimentally establishes the trend towards metallic divalency expected in the second half of the actinide series.

  14. Carcinogenicity of sublimed urethane in mice through the respiratory tract.

    PubMed

    Nomura, T; Hayashi, T; Masuyama, T; Tanaka, S; Nakajima, H; Kurokawa, N; Isa, Y

    1990-08-01

    The carcinogenicity of sublimed urethane (ethyl carbamate) in air was examined with mice. JCL:ICR mice were nursed in a plastic cage inside a vinyl chamber which was ventilated 4 times per hour. The mice were exposed to urethane gas for various periods by passing air which contained a high concentration of sublimed urethane (1.29 micrograms/ml) into the vinyl chamber, or by placing a vessel containing crystalline urethane inside the vinyl chamber so that it was filled with spontaneously-sublimed urethane gas at a low concentration (0.25 microgram/ml). When female mice were killed 5 months after exposure, lung tumor frequency increased almost linearly with the number of days of exposure in the low concentration experiment, but increased in a non-linear manner in the high concentration experiment. In terms of nearly the same total dose, i.e., (concentration of urethane gas in air) X (days of inhalation), one day of exposure to urethane gas at the low concentration induced lung tumors at a significantly higher frequency than 1/4 day of exposure to urethane gas at the high concentration. When male mice were killed at 12 months after exposure to examine the progressive change of induced tumors, malignant, invasive and metastatic tumors were found to have been induced more frequently in the lung after exposure to urethane gas at the low concentration (0.25 microgram/ml for 10 days) than at the high concentration (1.29 microgram/ml for 4 days), although the total dose in the former group was about half of that in the latter. Continuous exposure to urethane gas for a longer period at the low concentration seems to be more efficient for the induction, promotion and/or progression of lung tumors than the exposure for a shorter period at the high concentration.

  15. The sublimation kinetics of GeSe single crystals

    NASA Technical Reports Server (NTRS)

    Irene, E. A.; Wiedemeier, H.

    1975-01-01

    The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.

  16. Adhesive coated electrical apparatus having sublimable protective covering and an assembly method

    DOEpatents

    Wootton, Roy E.

    1982-01-01

    Electrical apparatus including an enclosure, an electrode disposed within the enclosure, and supports for insulatably supporting the electrode within the enclosure has a permanently sticky adhesive material which is disposed on the interior surface of the outer enclosure. A high-vapor-pressure sublimable material is disposed on the permanently sticky adhesive material, with the sublimable material capable of subliming away in the presence of a vacuum. The presence of the sublimable material enables the apparatus to be non-sticky during assembly and handling operations, while being rendered sticky upon commissioning of the apparatus.

  17. Determination of surface shear stress with the naphthalene sublimation technique

    NASA Technical Reports Server (NTRS)

    Lee, J. A.; Greeley, Ronald

    1987-01-01

    Aeolian entrainment and transport are functions of surface shear stress and particle characteristics. Measuring surface shear stress is difficult, however, where logarithmic wind profiles are not found, such as regions around large roughness elements. An outline of a method whereby shear stress can be mapped on the surface around an object is presented. The technique involves the sublimation of naphthalene (C10H8) which is a function of surface shear stress and surface temperature. This technique is based on the assumption that the transfer of momentum, heat and mass are analogous (Reynolds analogy). If the Reynolds analogy can be shown to be correct for a given situation, then knowledge of the diffusion of one property allows the determination of the others. The analytical framework and data acquisition for the method are described. The technique was tested in the Planetary Geology Wind Tunnel. Results show that the naphthalene sublimation technique is a reasonably accurate method for determining shear stress, particularly around objects where numerous point values are needed.

  18. Past, present, and future of sublimation transfer imaging

    NASA Astrophysics Data System (ADS)

    Akada, Masanori

    1990-07-01

    SONY's announcement of tlavica system shaked the world in 1981. In the new nonphotographic imaging system, image is acquired with CCD to be converted into electric image-signal, stored in magnetic recording media,displayed on a CR1 and printed on a special sheet. To get a hard copy, Sublimation Transfer technology was developed. That announcement brought about world-wide R&D of competitive color imaging systems: Ink-jet, Wax transfer,. Sublimation Transfer(ST) and Electrophotography. In spite of much effort,most of those were insufficient for getting a good hard copy. Developing sufficient ST recording media, Dai Nippon Printing started ST recording media business in 1986. It was the first manufacturing scale production and sale of ST recording media in the world. Nowadays ST technology is known for its advantages: high image quality, consistency from copy to copy, smooth tone-reproduction from high-light to maximum density, and easiness to use. In the following paper progress of ST recording media and the present situation and future markets of the media will be presented.

  19. Growth of aluminum nitride bulk crystals by sublimation

    NASA Astrophysics Data System (ADS)

    Liu, Lianghong

    The research work of this thesis is driven by the fact that the lack of nitride bulk crystals has hindered the full-realization of III-nitride devices. AIN bulk crystals were grown on a resistively heated furnace by sublimation and characterized by optical microscopy, XRD, AFM, SEM, and Raman spectroscopy. First the properties, synthesis, advantages and disadvantages of the seven most commonly/potentially employed substrates (sapphire, 6H-SiC, Si, GaAs, LiGaO2, Al, and GaN) for epitaxy are presented and consequences are discussed, including the crystallographic orientation and polarity, surface morphology, stress, and defects in the GaN films. Subsequently, the transport effect and surface kinetics for the sublimation growth were investigated. Theoretical predictions from a detailed two-dimensional model accounting transport only agree well with the experimental data at pressure above 100 Torr and seed temperature ranging from 1700˜1900°C while the activation energy of the growth rate was estimated as 681KJ/mol. Consequently, a global model accounting for both the surface kinetics and transport in the vapor phase is described to explain the mismatches between transport-only model predictions and experiments below 100 Torr. The model parameters for the sticking coefficient of N2 were identified from the experimental data. The refined model more accurately predicts the growth rate over a wider pressure range. Then, the effects of substrate misorientation and buffer layers (both SiC and AlN) on the morphology and growth mode of AlN deposited on 6H-SiC were explored. The AlN sublimated on the on-axis and off-axis 6H-SiC substrate without any treatment proceeded by island growth, producing a high density of screw dislocations. This produced individual AlN grains and rough surface morphologies. These problems were largely eliminated by first depositing an AlN layer on the 6H-SiC by MOCVD before starting sublimation growth. 2-dimensional growth was achieved on the 6H

  20. Thermodynamic investigations of nitroxoline sublimation by simultaneous DSC-FTIR method and isothermal TG analysis.

    PubMed

    Gao, Gau-Yi; Lin, Shan-Yang

    2010-01-01

    To investigate the physicochemical characteristics, thermodynamics, possible sublimation process and kinetics of nitroxoline, differential scanning calorimetry (DSC), isothermal thermogravimetry (TG), and Fourier transform infrared (FTIR) microspectroscopy equipped with a micro hot-stage of DSC microscopy assembly (simultaneous DSC-FTIR method) were used. The DSC result indicates that nitroxoline exhibited a sharp endothermic peak at 182 degrees C with enthalpy of 103.1 J/g due to the melting point of nitroxoline. A sublimation behavior of nitroxoline was found from 129 degrees C by gradual weight loss in TG curve. However, the nonisothermal DSC-FTIR method reveals that the temperature at 95 degrees C was the onset temperature of nitroxoline sublimation. A significant difference between DSC-FTIR method and TG analysis suggests that the simultaneous DSC-FTIR method was more sensitive than that of the TG analysis to detect the beginning temperature of nitroxoline sublimation. The sublimation kinetics of nitroxoline determined by isothermal TG analysis evidenced that the zero-order kinetics was followed over the sublimation time. The sublimation enthalpy correction was also carried out by a group additivity approach for the estimation of heat capacity. The enthalpy of nitroxoline sublimation estimated was 86.14 KJ/mol at 298.15 K.

  1. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    SciTech Connect

    Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L.; Oliveira, A. N.; Li, M. S.

    2015-07-15

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  2. The SCITEAS experiment: Optical characterizations of sublimating icy planetary analogues

    NASA Astrophysics Data System (ADS)

    Pommerol, A.; Jost, B.; Poch, O.; El-Maarry, M. R.; Vuitel, B.; Thomas, N.

    2015-05-01

    We have designed and built a laboratory facility to investigate the spectro-photometric and morphologic properties of different types of ice-bearing planetary surface analogs and follow their evolution upon exposure to a low pressure and low temperature environment. The results obtained with this experiment are used to verify and improve our interpretations of current optical remote-sensing datasets. They also provide valuable information for the development and operation of future optical instruments. The Simulation Chamber for Imaging the Temporal Evolution of Analogue Samples (SCITEAS) is a small thermal vacuum chamber equipped with a variety of ports and feedthroughs that permit both in-situ and remote characterizations as well as interacting with the sample. A large quartz window located directly above the sample is used to observe its surface from outside with a set of visible and near-infrared cameras. The sample holder can be easily and quickly inserted and removed from the chamber and is compatible with the other measurement facilities of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern. We report here on the results of two of the first experiments performed in the SCITEAS chamber. In the first experiment, fine-grained water ice mixed with dark organic and mineral matter was left to sublime in vacuum and at low temperature, simulating the evolution of the surface of a comet nucleus approaching the Sun. We observed and characterized the formation and evolution of a crust of refractory organic and mineral matter at the surface of the sample and linked the evolution of its structure and texture to its spectro-photometric properties. In the second experiment, a frozen soil was prepared by freezing a mixture of smectite mineral and water. The sample was then left to sublime for 6 h to simulate the loss of volatiles from icy soil at high latitudes on Mars. Colour images were produced using the definitions of the

  3. Direct Isolation of Purines and Pyrimidines from Nucleic Acids Using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Schubert, Michael; Bada, Jeffrey L.

    2003-01-01

    A sublimation technique was developed to isolate purines and pyrimidines directly from lambda-deoxyribonucleic acid (lambda-DNA) and Escherichia coli cells. The sublimation of adenine, cytosine, guanine, and thymine from lambda-DNA was tested under reduced pressure (approx. 0.5 Torr) at temperatures of >150 C. With the exception of guanine, approximately 60 -75% of each base was sublimed directly from the lambda-DNA and recovered on a coldfinger of the sublimation apparatus after heating to 450 C. Several nucleobases including adenine, cytosine, thymine, and uracil were also recovered from E. coli bacteria after heating the cells to the same temperature, although some thermal decomposition of the bases also occurred. These results demonstrate the feasibility of using sublimation to isolate purines and pyrimidines from native E. coli DNA and RNA without any chemical treatment of the cells.

  4. Calculational criticality analyses of 10- and 20-MW UF{sub 6} freezer/sublimer vessels

    SciTech Connect

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF{sub 6} freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF{sub 6} in each vessel have been considered for uranium enriched between 2 and 5 wt % {sup 235}U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  5. Calculational criticality analyses of 10- and 20-MW UF[sub 6] freezer/sublimer vessels

    SciTech Connect

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF[sub 6] freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF[sub 6] in each vessel have been considered for uranium enriched between 2 and 5 wt % [sup 235]U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  6. Methods of conveying fluids and methods of sublimating solid particles

    DOEpatents

    Turner, Terry D; Wilding, Bruce M

    2013-10-01

    A heat exchanger and associated methods for sublimating solid particles therein, for conveying fluids therethrough, or both. The heat exchanger includes a chamber and a porous member having a porous wall having pores in communication with the chamber and with an interior of the porous member. A first fluid is conveyed into the porous member while a second fluid is conveyed into the porous member through the porous wall. The second fluid may form a positive flow boundary layer along the porous wall to reduce or eliminate substantial contact between the first fluid and the interior of the porous wall. The combined first and second fluids are conveyed out of the porous member. Additionally, the first fluid and the second fluid may each be conveyed into the porous member at different temperatures and may exit the porous member at substantially the same temperature.

  7. Onset of sublimation in comet P/Halley (1982i)

    NASA Technical Reports Server (NTRS)

    Wyckoff, S.; Wagner, R. M.; Wehinger, P. A.; Schleicher, D. G.; Festou, M. C.

    1985-01-01

    The first direct evidence for the onset of sublimation of a comet nucleus is reported. Emission due to CN observed in spectra of the comet P/Halley provides evidence for the development of the gas coma. Broad-band photometric observations of the comet indicate that the dust coma developed near a preperihelion heliocentric distance r of about 6 AU. Rates of gas production and brightening for the comet have been derived at r of 4-6 AU. The mean preperihelion nuclear magnitude derived for the comet was used to calculate an effective radius of the nucleus, which for plausible values of the geometric albedo lies in the range 1-4 km.

  8. Uranium hexaflouride freezer/sublimer process simulator/trainer

    SciTech Connect

    Carnal, C.L. ); Belcher, J.D.; Tapp, P.A.; Ruppel, F.R.; Wells, J.C. )

    1991-01-01

    This paper describes a software and hardware simulation of a freezer/sublimer unit used in gaseous diffusion processing of uranium hexafluoride (UF{sub 6}). The objective of the project was to build a plant simulator that reads control signals and produces plant signals to mimic the behavior of an actual plant. The model is based on physical principles and process data. Advanced Continuous Simulation Language (ACSL) was used to develop the model. Once the simulation was validated with actual plant process data, the ACSL model was translated into Advanced Communication and Control Oriented Language (ACCOL). A Bristol Babcock Distributed Process Controller (DPC) Model 3330 was the hardware platform used to host the ACCOL model and process the real world signals. The DPC will be used as a surrogate plant to debug control system hardware/software and to train operators to use the new distributed control system without disturbing the process. 2 refs., 4 figs.

  9. Sublimation Model for Formation of Martian Residual Cap Depressions

    NASA Astrophysics Data System (ADS)

    Byrne, S.; Ingersoll, A. P.

    2000-10-01

    In an effort for explain the formation of the 'Swiss-cheese' terrain visible on the southern residual cap of Mars, we have developed a radiative model to follow the growth/decay of an initial depression due to sublimation/condensation of carbon dioxide. The pits making up this terrain have many distinctive features, they are shallow ( 10m deep), with steep walls and flat floors and contain an interior moat which runs along the bottom of the walls. They have lateral sizes ranging from a few 10's of meters to a kilometer and are quasi-circular. The model accounts for incident sunlight, emitted thermal radiation, and scattered short and long wave radiation. We have investigated many cases involving pure dry-ice with constant albedo, albedo as a function of insolation, and differing albedo for fresh and residual frost (the latter has lower albedo). The last case mentioned shows the most promising results to date. With these conditions it is possible for the depressions to grow and develop flat central portions although they still lack the observed steep walls of the pits. In the other cases mentioned the initial depressions heal themselves and disappear into the surrounding terrain. Other processes or materials could be responsible for the remainder of the observed features. Water ice stored a few meters under a carbon dioxide covering would have dramatic effects on the growth of any depression which encounters it, both due to its low sublimation rate and its ability to store heat. We will extend the current model to include a water ice layer and account for the subsequent heat storage which could possibly follow. For water ice models, a challenge is to reproduce the low brightness temperatures that persist throughout the summer at the residual south polar cap.

  10. Estimating surface sublimation losses from snowpacks in a mountain catchment using eddy covariance and turbulent transfer calculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sublimation is a critical component of the snow cover mass balance. While sublimation can be directly measured using eddy covariance (EC), such measurements are relatively uncommon in complex mountainous environments. EC measurements of surface snowpack sublimation from three consecutive winter sea...

  11. Como Lo Hago Yo: Mielomeningocele En Bolivia

    PubMed Central

    Dabdoub, Carlos F.; Dabdoub, Carlos B.; Villavicencio, Ramiro; Quevedo, Germán

    2014-01-01

    Introducción: Las malformaciones del tubo neural (MTN) representan la segunda causa más frecuente de anomalías congénitas, luego de las cardiopatías. En este grupo se destaca el mielomeningocele (MMC) por su mayor incidencia, y por ser la más incapacitante y la más compleja entre todas las demás malformaciones del sistema nervioso c`entral (SNC). En Bolivia, como en muchos países de Sudamérica, los bajos niveles socio-culturales y la debilidad en el sistema sanitario, hacen que su incidencia y su morbilidad, sean mayores que en las naciones más desarrolladas. Material y Métodos: Se realizó un estudio retrospectivo y descriptivo de 70 casos de MMC, atendidos por un equipo multidisciplinario en el Hospital Universitario Japonés (HUJ) de Santa Cruz de la Sierra, entre 2008-2011. De ellos, 60 fueron intervenidos quirúrgicamente. Resultados: Se realizaron controles prenatales sólo en 27 mujeres (38.6%), diagnosticándose una disrafia espinal en apenas dos casos (7.4%). La edad de ingreso del MMC en su mayoría fue después de las 24 horas (65.6%), predominando su localización en la región lumbosacra (64.3%). De ellos, 67.2% eran abiertos, presentando un 32.9% un daño neurológico motor parcial mientras que 47.1% tenían paraplejia por debajo de la lesión. De los 70 casos, tres (4.3%) no fueron intervenidos, por presentar defectos congénitos severos o estado general grave. Las principales complicaciones posoperatorias inmediatas fueron: dehiscencia de sutura y/o infección de la herida (16.6%), fístula de líquido cefalorraquídeo (LCR) (10%) e infección del SNC (11.7%). La mortalidad general y postoperatoria fue de 7.1% y 3.3%, respectivamente. Al mes de vida presentaban hidrocefalia un 80% de los pacientes operados, colocándose una derivación ventriculoperitoneal (DVP) de presión media. De 9 pacientes que tuvieron un acompanamiento de dos o más años, seis presentaron una médula anclada, que fueron intervenidas quirúrgicamente. Conclusi

  12. A neurobiological enquiry into the origins of our experience of the sublime and beautiful.

    PubMed

    Ishizu, Tomohiro; Zeki, Semir

    2014-01-01

    Philosophies of aesthetics have posited that experience of the sublime-commonly but not exclusively derived from scenes of natural grandeur-is distinct from that of beauty and is a counterpoint to it. We wanted to chart the pattern of brain activity which correlates with the declared intensity of experience of the sublime, and to learn whether it differs from the pattern that correlates with the experience of beauty, reported in our previous studies (e.g., Ishizu and Zeki, 2011). 21 subjects participated in a functional magnetic resonance imaging experiment. Prior to the experiment, they viewed pictures of landscapes, which they rated on a scale of 1-5, with 5 being the most sublime and 1 being the least. This allowed us to select, for each subject, five sets of stimuli-from ones experienced as very sublime to those experienced as not at all sublime-which subjects viewed and re-rated in the scanner while their brain activity was imaged. The results revealed a distinctly different pattern of brain activity from that obtained with the experience of beauty, with none of the areas active with the latter experience also active during experience of the sublime. Sublime and beautiful experiences thus appear to engage separate and distinct brain systems.

  13. In Situ Observation on Dislocation-Controlled Sublimation of Mg Nanoparticles.

    PubMed

    Yu, Qian; Mao, Min-Min; Li, Qing-Jie; Fu, Xiao-Qian; Tian, He; Li, Ji-Xue; Mao, Scott X; Zhang, Ze

    2016-02-10

    Sublimation is an important endothermic phase transition in which the atoms break away from their neighbors in the crystal lattice and are removed into the gas phase. Such debonding process may be significantly influenced by dislocations, the crystal defect that changes the bonding environment of local atoms. By performing systematic defects characterization and in situ transmission electron microscopy (TEM) tests on a core--shell MgO-Mg system, which enables us to "modulate" the internal dislocation density, we investigated the role of dislocations on materials' sublimation with particular focus on the sublimation kinetics and mechanism. It was observed that the sublimation rate increases significantly with dislocation density. As the density of screw dislocations is high, the intersection of screw dislocation spirals creates a large number of monatomic ledges, resulting in a "liquid-like" motion of solid-gas interface, which significantly deviates from the theoretically predicted sublimation plane. Our calculation based on density functional theory demonstrated that the remarkable change of sublimation rate with dislocation density is due to the dramatic reduction in binding energy of the monatomic ledges. This study provides direct observation to improve our understanding on this fundamental phase transition as well as to shed light on tuning materials' sublimation by "engineering" dislocation density in applications. PMID:26799861

  14. LoWMob: Intra-PAN Mobility Support Schemes for 6LoWPAN.

    PubMed

    Bag, Gargi; Raza, Muhammad Taqi; Kim, Ki-Hyung; Yoo, Seung-Wha

    2009-01-01

    Mobility in 6LoWPAN (IPv6 over Low Power Personal Area Networks) is being utilized in realizing many applications where sensor nodes, while moving, sense and transmit the gathered data to a monitoring server. By employing IEEE802.15.4 as a baseline for the link layer technology, 6LoWPAN implies low data rate and low power consumption with periodic sleep and wakeups for sensor nodes, without requiring them to incorporate complex hardware. Also enabling sensor nodes with IPv6 ensures that the sensor data can be accessed anytime and anywhere from the world. Several existing mobility-related schemes like HMIPv6, MIPv6, HAWAII, and Cellular IP require active participation of mobile nodes in the mobility signaling, thus leading to the mobility-related changes in the protocol stack of mobile nodes. In this paper, we present LoWMob, which is a network-based mobility scheme for mobile 6LoWPAN nodes in which the mobility of 6LoWPAN nodes is handled at the network-side. LoWMob ensures multi-hop communication between gateways and mobile nodes with the help of the static nodes within a 6LoWPAN. In order to reduce the signaling overhead of static nodes for supporting mobile nodes, LoWMob proposes a mobility support packet format at the adaptation layer of 6LoWPAN. Also we present a distributed version of LoWMob, named as DLoWMob (or Distributed LoWMob), which employs Mobility Support Points (MSPs) to distribute the traffic concentration at the gateways and to optimize the multi-hop routing path between source and destination nodes in a 6LoWPAN. Moreover, we have also discussed the security considerations for our proposed mobility schemes. The performance of our proposed schemes is evaluated in terms of mobility signaling costs, end-to-end delay, and packet success ratio.

  15. LoWMob: Intra-PAN Mobility Support Schemes for 6LoWPAN.

    PubMed

    Bag, Gargi; Raza, Muhammad Taqi; Kim, Ki-Hyung; Yoo, Seung-Wha

    2009-01-01

    Mobility in 6LoWPAN (IPv6 over Low Power Personal Area Networks) is being utilized in realizing many applications where sensor nodes, while moving, sense and transmit the gathered data to a monitoring server. By employing IEEE802.15.4 as a baseline for the link layer technology, 6LoWPAN implies low data rate and low power consumption with periodic sleep and wakeups for sensor nodes, without requiring them to incorporate complex hardware. Also enabling sensor nodes with IPv6 ensures that the sensor data can be accessed anytime and anywhere from the world. Several existing mobility-related schemes like HMIPv6, MIPv6, HAWAII, and Cellular IP require active participation of mobile nodes in the mobility signaling, thus leading to the mobility-related changes in the protocol stack of mobile nodes. In this paper, we present LoWMob, which is a network-based mobility scheme for mobile 6LoWPAN nodes in which the mobility of 6LoWPAN nodes is handled at the network-side. LoWMob ensures multi-hop communication between gateways and mobile nodes with the help of the static nodes within a 6LoWPAN. In order to reduce the signaling overhead of static nodes for supporting mobile nodes, LoWMob proposes a mobility support packet format at the adaptation layer of 6LoWPAN. Also we present a distributed version of LoWMob, named as DLoWMob (or Distributed LoWMob), which employs Mobility Support Points (MSPs) to distribute the traffic concentration at the gateways and to optimize the multi-hop routing path between source and destination nodes in a 6LoWPAN. Moreover, we have also discussed the security considerations for our proposed mobility schemes. The performance of our proposed schemes is evaluated in terms of mobility signaling costs, end-to-end delay, and packet success ratio. PMID:22346730

  16. LoWMob: Intra-PAN Mobility Support Schemes for 6LoWPAN

    PubMed Central

    Bag, Gargi; Raza, Muhammad Taqi; Kim, Ki-Hyung; Yoo, Seung-Wha

    2009-01-01

    Mobility in 6LoWPAN (IPv6 over Low Power Personal Area Networks) is being utilized in realizing many applications where sensor nodes, while moving, sense and transmit the gathered data to a monitoring server. By employing IEEE802.15.4 as a baseline for the link layer technology, 6LoWPAN implies low data rate and low power consumption with periodic sleep and wakeups for sensor nodes, without requiring them to incorporate complex hardware. Also enabling sensor nodes with IPv6 ensures that the sensor data can be accessed anytime and anywhere from the world. Several existing mobility-related schemes like HMIPv6, MIPv6, HAWAII, and Cellular IP require active participation of mobile nodes in the mobility signaling, thus leading to the mobility-related changes in the protocol stack of mobile nodes. In this paper, we present LoWMob, which is a network-based mobility scheme for mobile 6LoWPAN nodes in which the mobility of 6LoWPAN nodes is handled at the network-side. LoWMob ensures multi-hop communication between gateways and mobile nodes with the help of the static nodes within a 6LoWPAN. In order to reduce the signaling overhead of static nodes for supporting mobile nodes, LoWMob proposes a mobility support packet format at the adaptation layer of 6LoWPAN. Also we present a distributed version of LoWMob, named as DLoWMob (or Distributed LoWMob), which employs Mobility Support Points (MSPs) to distribute the traffic concentration at the gateways and to optimize the multi-hop routing path between source and destination nodes in a 6LoWPAN. Moreover, we have also discussed the security considerations for our proposed mobility schemes. The performance of our proposed schemes is evaluated in terms of mobility signaling costs, end-to-end delay, and packet success ratio. PMID:22346730

  17. Sublimation rates of carbon monoxide and carbon dioxide from comets at large heliocentric distances

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1992-01-01

    Using a simple model for outgassing from a small flat surface area, the sublimation rates of carbon monoxide and carbon dioxide, two species more volatile than water ice that are known to be present in comets, are calculated for a suddenly activated discrete source on the rotating nucleus. The instantaneous sublimation rate depends upon the comet's heliocentric distance and the Sun's zenith angle at the location of the source. The values are derived for the constants of CO and CO2 in an expression that yields the local rotation-averaged sublimation rate as a function of the comet's spin parameters and the source's cometocentric latitude.

  18. Ice sublimation and rheology - Implications for the Martian polar layered deposits

    NASA Technical Reports Server (NTRS)

    Hofstadter, Mark D.; Murray, Bruce C.

    1990-01-01

    If the sublimation and creep of water ice are important processes in the Martian polar layered deposits, ice-rich scenario formation and evolution schemes must invoke a mechanism for the inhibition of sublimation, such as a dust layer derived from the residue of the sublimating deposits. This layer could be of the order of 1 m in thickness. If the deposits are ice-rich, flows of more than 1 km should have occurred. It is noted that the dust particles in question may be cemented by such ice that may be present, but that impurities may also have served to cement dust particles together even in the absence of ice.

  19. Contamination Effects of Getter Ion and Titanium Sublimation Pumped Systems on Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Visentine, James T.; Richmond, Robert G.

    1973-01-01

    Previous studies have indicated that ultraclean vacuum can be produced when titanium sublimation pumps are used in conjunction with getter-ion pumps. Experiments are described in which the degrees of cleanliness of a typical getter-ion, titanium sublimation-pumped system were monitored by measuring the effects of surface contamination on the reflectance of evaporated vacuum ultraviolet mirrors. Results are presented which indicate that severe reflectance losses occurred when startup of a getter-ion pump was initiated at too high a chamber pressure. Significant reflectance losses also occurred as a result of titanium sublimation-pump operation. These data are reviewed and recommendations for improved system performance are presented.

  20. Bion and the sublime: the origins of an aesthetic paradigm.

    PubMed

    Civitarese, Giuseppe

    2014-12-01

    In constructing his theory Bion drew on a number of symbolic matrices: psychoanalysis, philosophy, mathematics, literature, aesthetics. The least investigated of these is the last. True, we know that Bion cites many authors of the Romantic period, such as Coleridge, Keats, Blake and Wordsworth, as well as others who were held in high esteem in the Romantic period, such as Milton. However, less is known about the influence exerted on him by the aesthetics of the sublime, which while chronologically preceding Romanticism is in fact one of its components. My working hypothesis is that tracing a number of Bion's concepts back to this secret model can serve several purposes: firstly, it contributes to the study of the sources, and, secondly, it makes these concepts appear much less occasional and idiosyncratic than we might believe, being as they are mostly those less immediately understandable but not less important (O, negative capability, nameless dread, the infinite, the language of achievement, unison etc.). Finally, connecting these notions to a matrix, that is, disclosing the meaning of elements that are not simply juxtaposed but dynamically interrelated, in my view significantly increases not only their theoretical intelligibility but also their usefulness in clinical practice. In conclusion, one could legitimately argue that Bion gradually subsumed all the other paradigms he drew on within the aesthetic paradigm. PMID:25388282

  1. Imaging the dust sublimation front of a circumbinary disk

    NASA Astrophysics Data System (ADS)

    Hillen, M.; Kluska, J.; Le Bouquin, J.-B.; Van Winckel, H.; Berger, J.-P.; Kamath, D.; Bujarrabal, V.

    2016-04-01

    Aims: We present the first near-IR milli-arcsecond-scale image of a post-AGB binary that is surrounded by hot circumbinary dust. Methods: A very rich interferometric data set in six spectral channels was acquired of IRAS 08544-4431 with the new RAPID camera on the PIONIER beam combiner at the Very Large Telescope Interferometer (VLTI). A broadband image in the H-band was reconstructed by combining the data of all spectral channels using the SPARCO method. Results: We spatially separate all the building blocks of the IRAS 08544-4431 system in our milliarcsecond-resolution image. Our dissection reveals a dust sublimation front that is strikingly similar to that expected in early-stage protoplanetary disks, as well as an unexpected flux signal of ~4% from the secondary star. The energy output from this companion indicates the presence of a compact circum-companion accretion disk, which is likely the origin of the fast outflow detected in Hα. Conclusions: Our image provides the most detailed view into the heart of a dusty circumstellar disk to date. Our results demonstrate that binary evolution processes and circumstellar disk evolution can be studied in detail in space and over time. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 094.D-0865.

  2. Climatological observations and predicted sublimation rates at Lake Hoare, Antarctica.

    USGS Publications Warehouse

    Clow, G.D.; McKay, C.P.; Simmons, G.M.; Wharton, R.A.

    1988-01-01

    In December 1985, an automated meteorological station was established at Lake Hoare in the dry valley region of Antarctica. Here, we report on the first year-round observations available for any site in Taylor Valley. This dataset augments the year-round data obtained at Lake Vanda (Wright Valley) by winter-over crews during the late 1960s and early 1970s. The mean annual solar flux at Lake Hoare was 92 W m-2 during 1986, the mean air temperature -17.3 degrees C, and the mean 3-m wind speed 3.3 m s-1. The local climate is controlled by the wind regime during the 4-month sunless winter and by seasonal and diurnal variations in the incident solar flux during the remainder of the year. Temperature increases of 20 degrees-30 degrees C are frequently observed during the winter due to strong fo??hn winds descending from the Polar Plateau. A model incorporating nonsteady molecular diffusion into Kolmogorov-scale eddies in the interfacial layer and similarity-theory flux-profiles in the surface sublayer, is used to determine the rate of ice sublimation from the acquired meteorological data. Despite the frequent occurrence of strong winter fo??hns, the bulk of the annual ablation occurs during the summer due to elevated temperatures and persistent moderate winds. The annual ablation from Lake Hoare is estimated to have been 35.0 +/- 6.3 cm for 1986.

  3. Sulfur “concrete” for lunar applications Sublimation concerns

    NASA Astrophysics Data System (ADS)

    Grugel, Richard N.; Toutanji, Houssam

    Melting sulfur and mixing it with an aggregate to form “concrete” is commercially well established and constitutes a material that is particularly well-suited for use in corrosive environments. Discovery of the mineral troilite (FeS) on the moon poses the question of extracting the sulfur for use as a lunar construction material. This would be an attractive alternative to conventional concrete as it does not require water. However, the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. Here it is assumed that the lunar ore can be mined, refined, and the raw sulfur melded with appropriate lunar regolith to form, for example, bricks. This study evaluates pure sulfur and two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar stimulant and SiO2 powder as aggregate additions. Each set was subjected to extended periods in a vacuum environment to evaluate sublimation issues. Results from these experiments are presented and discussed within the context of the lunar environment.

  4. Phase transition and surface sublimation of a mobile Potts model.

    PubMed

    Bailly-Reyre, A; Diep, H T; Kaufman, M

    2015-10-01

    We study in this paper the phase transition in a mobile Potts model by the use of Monte Carlo simulation. The mobile Potts model is related to a diluted Potts model, which is also studied here by a mean-field approximation. We consider a lattice where each site is either vacant or occupied by a q-state Potts spin. The Potts spin can move from one site to a nearby vacant site. In order to study the surface sublimation, we consider a system of Potts spins contained in a recipient with a concentration c defined as the ratio of the number of Potts spins N(s) to the total number of lattice sites N(L)=N(x)×N(y)×N(z). Taking into account the attractive interaction between the nearest-neighboring Potts spins, we study the phase transitions as functions of various physical parameters such as the temperature, the shape of the recipient, and the spin concentration. We show that as the temperature increases, surface spins are detached from the solid phase to form a gas in the empty space. Surface order parameters indicate different behaviors depending on the distance to the surface. At high temperatures, if the concentration is high enough, the interior spins undergo a first-order phase transition to an orientationally disordered phase. The mean-field results are shown as functions of temperature, pressure, and chemical potential, which confirm in particular the first-order character of the transition. PMID:26565221

  5. Schiller Goes to the Movies: Locating the Sublime in "Thelma and Louise."

    ERIC Educational Resources Information Center

    Hoyng, Peter

    1997-01-01

    Endeavors to make students aware of similarities between today's movie culture and the theater of the 18th century; parallels between a traditional drama and a movie script; and Schiller's understanding of the sublime. (36 references) (Author/CK)

  6. Access to uncombined titanium through an inhibiting film in sublimation pumping of deuterium.

    NASA Technical Reports Server (NTRS)

    Steinberg, R.; Alger, D. L.

    1973-01-01

    Experimental demonstration of the possibility to gain access to sublayers of uncombined titanium through an inhibiting surface film in titanium bulk sublimator pumping by adding a thin layer of titanium to an apparently occluded surface. Though most of the work described was directed toward more effective utilization of titanium in bulk sublimation pumping for small positive-ion accelerators, the results presented should be of interest to others concerned with hydrogen pumping in general and the problems associated with inhibiting films.

  7. LoTi Turns Up the Heat!

    ERIC Educational Resources Information Center

    Moersch, Christopher

    2010-01-01

    When LoTi was first introduced in 1994 as the Levels of Technology Implementation framework, the intent was to create a tool to help district leadership quantify how teachers were using technology in the classroom. After serving the past 15 years as a research framework, self-reporting technology integration survey, and school improvement model,…

  8. Collection-efficient, axisymmetric vacuum sublimation module for the purification of solid materials

    NASA Astrophysics Data System (ADS)

    May, Michael; Paul, Elizabeth; Katovic, Vladimir

    2015-11-01

    A vacuum sublimation module of axisymmetric geometry was developed and employed to purify solid-phase materials. The module provides certain practical advantages and it comprises: a metering valve, glass collector, glass lower body, main seal, threaded bushing, and glass internal cartridge (the latter to contain starting material). A complementary process was developed to de-solvate, sublime, weigh, and collect solid chemical materials exemplified by oxalic acid, ferrocene, pentachlorobenzene, chrysene, and urea. The oxalic acid sublimate was analyzed by titration, melting range, Fourier Transform Infrared (FT-IR) Spectroscopy, cyclic voltammetry, and its (aqueous phase) electrolytically generated gas. The analytical data were consistent with a high-purity, anhydrous oxalic acid sublimate. Cyclic voltammograms of 0.11 mol. % oxalic acid in water displayed a 2.1 V window on glassy carbon electrode beyond which electrolytic decomposition occurs. During module testing, fifteen relatively pure materials were sublimed with (energy efficient) passive cooling and the solid-phase recovery averaged 95 mass %. Key module design features include: compact vertical geometry, low-angle conical collector, uniformly compressed main seal, modest power consumption, transparency, glovebox compatibility, cooling options, and preferential conductive heat transfer. To help evaluate the structural (module) heat transfer, vertical temperature profiles along the dynamically evacuated lower body were measured versus electric heater power: for example, an input of 18.6 W generated a temperature 443-K at the bottom. Experimental results and engineering calculations indicate that during sublimation, solid conduction is the primary mode of heat transfer to the starting material.

  9. Comet 67P/CG: Influence of the sublimation coefficient on the temperature and outgassing

    NASA Astrophysics Data System (ADS)

    Kossacki, Konrad J.; Markiewicz, Wojciech J.

    2013-05-01

    The sublimation rate of ice is commonly calculated using simple Hertz-Knudsen formula. This formula is derived from the kinetic theory of gases and ignores microphysical processes determining the actual sublimation rate. The microphysical processes can be accounted for by including in the Herz-Knudsen equation a temperature dependent sublimation coefficient (Kossacki, K.J., Markiewicz, W.J., Skorov, Y., Koemle, N.I. [1999]. Planet. Space Sci. 47, 1521-1530; Gundlach, B., Skorov, Y.V., Blum, J. [2011]. Icarus, 213, 710-719). Here we address the question to what extent inaccuracy of the simple Hertz-Knudsen equation affects the calculated temperature of a cometary nucleus and the emission rate of water vapor to space. We performed numerical simulations dealing with evolution of a model comet of the orbit the same as Comet 67P/Churyumov-Gerasimenko, target comet of the Rosetta mission (Glassmeier, K.H., Boehnardt, H., Koshny, D., Kuhrt, E., Richter, I. [2007]. Space Sci. Rev. 128, 1-21). We have found, that the temperature below dust mantle is most sensitive to the value of the sublimation coefficient when the mantle is coarse grained, while the sublimation rate is most affected when the mantle is fine grained. We also conclude that derivation of the temperature below the mantle from the measured water production rate ignoring temperature dependence of the sublimation coefficient leads to an underestimate of the temperature by more than 10 K when the nucleus is fine grained.

  10. Temperature dependence of the sublimation rate of water ice: Influence of impurities

    NASA Astrophysics Data System (ADS)

    Kossacki, Konrad J.; Leliwa-Kopystynski, Jacek

    2014-05-01

    The sublimation rate of ice is commonly calculated using the simple Hertz-Knudsen formula. This formula is derived from the kinetic theory of gases and ignores microphysical processes determining the actual sublimation rate. The microphysical processes can be accounted for by including the temperature dependent sublimation coefficient (Kossacki, K.J., et al. [1999]. Planet. Space Sci. 47, 1521-1530; Gundlach, B., Skorov, Y.V., Blum, J. [2011]. Icarus 213, 710-719). Kossacki and Markiewicz (Kossacki, K.J., Markiewicz, W.J. [2013]. Icarus 224, 172-177) discussed to what extent inaccuracy of the simple Hertz-Knudsen equation affects the calculated temperature of Comet 67P/Churyumov-Gerasimenko. Numerical simulations presented in Kossacki and Markiewicz (Kossacki, K.J., Markiewicz, W.J. [2013]. Icarus 224, 172-177) indicate, that derivation of the temperature below the dust mantle from the measured water production rate ignoring temperature dependence of the sublimation coefficient can lead to an underestimate of the temperature by more than 10 K. Thus, it is important to know the dependence on the sublimation coefficient of the composition of the real cometary ice, which can be far from purity. We intended to check whether a small amount of dissolved minerals can affect the temperature dependence of the sublimation coefficient of ice. According to our experiments the answer is positive.

  11. Desorption and sublimation kinetics for fluorinated aluminum nitride surfaces

    SciTech Connect

    King, Sean W. Davis, Robert F.; Nemanich, Robert J.

    2014-09-01

    an additional high temperature peak at 910 °C with E{sub d} = 370 ± 10 kJ/mol that is consistent with both the dehydrogenation of surface AlOH species and H{sub 2} assisted sublimation of AlN. Similarly, N{sub 2} exhibited a similar higher temperature desorption peak with E{sub d} = 535 ± 40 kJ/mol that is consistent with the activation energy for direct sublimation of AlN.

  12. Estimates of the Volume of Snowpack Sublimation in Arizona's Salt River Watershed

    NASA Astrophysics Data System (ADS)

    Svoma, B. M.

    2012-12-01

    The liquid equivalent volumes of snowpack sublimation, melt, and snowfall over the Salt River watershed, a major source of water for the Phoenix metropolitan area, will be estimated using the National Operational Hydrologic Remote Sensing Center's Snow Data Assimilation System (SNODAS) for the nine water years on record (i.e., 2004-2012). SNODAS integrates data from satellites, aircraft, and ground stations with downscaled output from numerical weather prediction models and an energy/mass balance snowpack model. The SNODAS dataset contains daily values of sublimation, snow water equivalent, snowfall, and melt, among other variables, at high (< 1 km2) resolution providing the opportunity to accurately estimate the volumes of snowpack balance variables for regions with complex topography. Snowpack ablation consists of sublimation and melting. Snow particles at sub-freezing temperatures will sublimate rather than melt if surrounded by air that is below the equilibrium water vapor pressure with respect to ice. When sublimation occurs, there is a direct loss of water from the given drainage basin when the vapor is carried away by the prevailing atmospheric flow. Preliminary analyses of water years 2005 (wet El Niño), 2007 (dry El Niño), 2008 (wet La Niña), and 2012 (dry La Niña) suggest that there is a substantial amount of sublimation over the Salt River watershed. From October 1 to April 30, approximately 16 percent of snowfall sublimated during the four years, ranging from approximately 98 million cubic meters (79,884 acre-feet) in water year 2005 to approximately 208 million cubic meters (168,726 acre-feet) in water year 2012. Sublimation is the most prevalent at the highest elevations of the watershed with more than 30 percent of snowfall sublimating at elevations above 2,744 meters above sea level. Of the four years analyzed, the sublimation to snowfall ratio was the highest for the two water years with anomalously high precipitation (i.e, 2005 and 2008). This

  13. PRECISION POINTING OF IBEX-Lo OBSERVATIONS

    SciTech Connect

    Hlond, M.; Bzowski, M.; Moebius, E.; Kucharek, H.; Heirtzler, D.; Schwadron, N. A.; Neill, M. E. O'; Clark, G.; Crew, G. B.; Fuselier, S.; McComas, D. J. E-mail: eberhard.moebius@unh.edu E-mail: stephen.a.fuselier@linco.com E-mail: DMcComas@swri.edu

    2012-02-01

    Post-launch boresight of the IBEX-Lo instrument on board the Interstellar Boundary Explorer (IBEX) is determined based on IBEX-Lo Star Sensor observations. Accurate information on the boresight of the neutral gas camera is essential for precise determination of interstellar gas flow parameters. Utilizing spin-phase information from the spacecraft attitude control system (ACS), positions of stars observed by the Star Sensor during two years of IBEX measurements were analyzed and compared with positions obtained from a star catalog. No statistically significant differences were observed beyond those expected from the pre-launch uncertainty in the Star Sensor mounting. Based on the star observations and their positions in the spacecraft reference system, pointing of the IBEX satellite spin axis was determined and compared with the pointing obtained from the ACS. Again, no statistically significant deviations were observed. We conclude that no systematic correction for boresight geometry is needed in the analysis of IBEX-Lo observations to determine neutral interstellar gas flow properties. A stack-up of uncertainties in attitude knowledge shows that the instantaneous IBEX-Lo pointing is determined to within {approx}0.{sup 0}1 in both spin angle and elevation using either the Star Sensor or the ACS. Further, the Star Sensor can be used to independently determine the spacecraft spin axis. Thus, Star Sensor data can be used reliably to correct the spin phase when the Star Tracker (used by the ACS) is disabled by bright objects in its field of view. The Star Sensor can also determine the spin axis during most orbits and thus provides redundancy for the Star Tracker.

  14. Ambient noise tomography of Lo'ihi

    NASA Astrophysics Data System (ADS)

    McClement, K.; Thurber, C. H.; Teel, A.; Caplan-Auerbach, J.

    2012-12-01

    Lo'ihi seamount, the youngest volcano in the Hawaiian-Emperor chain, lies approximately 30 km south of Hawai'i Island with its summit still approximately 1 km below sea level. Lo'ihi offers a unique opportunity to study the early formation of a hotspot volcano and can provide insight into the deep internal structure of the other volcanoes that make up the Hawaiian Islands. This study uses Ambient Noise Tomography (ANT) to create a 3D tomographic image of Lo'ihi's S-wave velocity structure from ocean bottom seismometer (OBS) data. ANT has been used in many subaerial studies but has seen very few applications to OBS data. This study uses continuous data recorded in 2010 to 2011 from 12 short-period OBS instruments deployed on and around Lo'ihi. With the farthest distance between stations being just over 30 km, the stations provide a fairly dense coverage mainly for the northern half of the volcano. Following the approach of Masterlark et al. [2010], we computed vertical-vertical and vertical-radial cross-correlations using 97 days of continuous data from the 12 stations to produce the ambient noise Green's functions. From these, dispersion curves were produced over a frequency range from .04 Hz to 0.65 Hz . After a quality control analysis, checkerboard tests were used to determine a suitable cell size for the 2D group velocity inversions. The final step is the inversion of the group velocity dispersion curves to create a 3D Vs model. The 3D Vs image produced through this method does not provide clear evidence of a shallow magma chamber; however, when compared to a previous P-wave velocity (Vp) model [Caplan-Auerbach, 2001], a high Vp/Vs ratio is evident especially at depths from 1 km to 5 km, indicating the presence of highly fractured rock.

  15. Sublimation and Irradiation of Glycolaldehyde/Water Ices

    NASA Astrophysics Data System (ADS)

    Burke, Daren; Brown, W. A.; Viti, S.; Woods, P. M.; Slater, B.

    2012-05-01

    There is currently great interest among astronomers and astrobiologists in the inventory of organic molecules in space, in particular in star and planet-forming regions. Observations towards the Galactic Centre have revealed a rich and complex chemistry, from simple organic molecules such as methane (CH4) and methanol (CH3OH) to the recent detection of ethyl formate (C2H5OCHO) and n-propyl cyanide (C3H7CN). Amongst the most important organic species detected in space is glycolaldehyde (CH2OHCHO), an isomer of methyl formate (HCOOCH3) and acetic acid (CH3COOH). Glycolaldehyde is the simplest of the monosaccharide sugars and it reacts with propenal to form ribose, a central constituent of RNA. As a consequence, it is thought that glycolaldehyde may have a role in the origins of life in our universe. We present a detailed investigation of the adsorption and desorption of glycolaldehyde and methyl formate using temperature programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) under ultra-high vacuum. The sublimation of glycolaldehyde/water and methyl formate/water containing ices from a model carbonaceous grain surface (graphite) will be presented, along with kinetic parameters for desorption (such as the binding energy, order of desorption and desorption pre-exponential factor) derived from analysis of TPD. These experimental parameters will be incorporated into astronomical models of star-forming regions. Additional experiments investigating the stability of glycolaldehyde/water containing ices to electron/UV irradiation will also be discussed. Electron irradiation (simulating the effect of cosmic ray ionisation, which produces electrons) and UV irradiation (over a range of wavelengths) is used to examine competing routes for non-thermal desorption, decomposition and formation. RAIRS and TPD will be used to identify any reaction products and to monitor the desorption/decomposition of glycolaldehyde as a function of irradiation time. This

  16. Growth of aluminum nitride bulk crystals by sublimation

    NASA Astrophysics Data System (ADS)

    Liu, Bei

    The commercial potential of III-nitride semiconductors is already being realized by the appearance of high efficiency, high reliability, blue and green LEDS around the world. However, the lack of a native nitride substrate has hindered the full-realization of more demanding III-nitride devices. To date, single aluminum nitride (AlN) crystals are not commercially available. New process investigation is required to scale up the crystal size. New crucibles stable up to very high temperatures (˜2500°C) are needed which do not incorporate impurities into the growing crystals. In this thesis, the recent progresses in bulk AlN crystal growth by sublimation-recondensation were reviewed first. The important physical, optical and electrical properties as well as chemical and thermal stabilities of AlN were discussed. The development of different types of growth procedures including self-seeding, substrate employed and a new "sandwich" technique were covered in detail. Next, the surface morphology and composition at the initial stages of AlN grown on 6H-SiC (0001) were investigated. Discontinuous AlN coverage occurred after 15 minutes of growth. The initial discontinuous nucleation of AlN and different lateral growth of nuclei indicated discontinuous AIN direct growth on on-axis 6H-SiC substrates. At the temperature in excess of 2100°C, the durability of the furnace fixture materials (crucibles, retorts, etc.) remains a critical problem. The thermal and chemical properties and performance of several refractory materials, including tantalum carbide, niobium carbide, tungsten, graphite, and hot-pressed boron nitride (HPBN), in inert gas, as well as under AIN crystal growth conditions were discussed. TaC and NbC are the most stable crucible materials in the crystal growth system. HPBN crucible is more suitable for AlN self-seeding growth, as crystals tend to nucleate in thin colorless platelets with low dislocation density. Finally, clear and colorless thin platelet Al

  17. Mechanism and kinetics for ammonium dinitramide (ADN) sublimation: a first-principles study.

    PubMed

    Zhu, R S; Chen, Hui-Lung; Lin, M C

    2012-11-01

    The mechanism for sublimation of NH(4)N(NO(2))(2) (ADN) has been investigated quantum-mechanically with generalized gradient approximation plane-wave density functional theory calculations; the solid surface is represented by a slab model and the periodic boundary conditions are applied. The calculated lattice constants for the bulk ADN, which were found to consist of NH(4)(+)[ON(O)NNO(2)](-) units, instead of NH(4)(+)[N(NO(2))(2)](-), agree quite well with experimental values. Results show that three steps are involved in the sublimation/decomposition of ADN. The first step is the relaxation of the surface layer with 1.6 kcal/mol energy per NH(4)ON(O)NNO(2) unit; the second step is the sublimation of the surface layer to form a molecular [NH(3)]-[HON(O)NNO(2)] complex with a 29.4 kcal/mol sublimation energy, consistent with the experimental observation of Korobeinichev et al. (10) The last step is the dissociation of the [H(3)N]-[HON(O)NNO(2)] complex to give NH(3) and HON(O)NNO(2) with the dissociation energy of 13.9 kcal/mol. Direct formation of NO(2) (g) from solid ADN costs a much higher energy, 58.3 kcal/mol. Our calculated total sublimation enthalpy for ADN(s) → NH(3)(g) + HON(O)NNO(2)) (g), 44.9 kcal/mol via three steps, is in good agreement with the value, 42.1 kcal/mol predicted for the one-step sublimation process in this work and the value 44.0 kcal/mol computed by Politzer et al. (11) using experimental thermochemical data. The sublimation rate constant for the rate-controlling step 2 can be represented as k(sub) = 2.18 × 10(12) exp (-30.5 kcal/mol/RT) s(-1), which agrees well with available experimental data within the temperature range studied. The high pressure limit decomposition rate constant for the molecular complex H(3)N···HON(O)NNO(2) can be expressed by k(dec) = 3.18 × 10(13) exp (-15.09 kcal/mol/RT) s(-1). In addition, water molecules were found to increase the sublimation enthalpy of ADN, contrary to that found in the ammonium

  18. Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes

    USGS Publications Warehouse

    Hansen, C.J.; Byrne, S.; Portyankina, G.; Bourke, M.; Dundas, C.; McEwen, A.; Mellon, M.; Pommerol, A.; Thomas, N.

    2013-01-01

    Spring sublimation of the seasonal CO2 northern polar cap is a dynamic process in the current Mars climate. Phenomena include dark fans of dune material propelled out onto the seasonal ice layer, polygonal cracks in the seasonal ice, sand flow down slipfaces, and outbreaks of gas and sand around the dune margins. These phenomena are concentrated on the north polar erg that encircles the northern residual polar cap. The Mars Reconnaissance Orbiter has been in orbit for three Mars years, allowing us to observe three northern spring seasons. Activity is consistent with and well described by the Kieffer model of basal sublimation of the seasonal layer of ice applied originally in the southern hemisphere. Three typical weak spots have been identified on the dunes for escape of gas sublimed from the bottom of the seasonal ice layer: the crest of the dune, the interface of the dune with the interdune substrate, and through polygonal cracks in the ice. Pressurized gas flows through these vents and carries out material entrained from the dune. Furrows in the dunes channel gas to outbreak points and may be the northern equivalent of southern radially-organized channels (“araneiform” terrain), albeit not permanent. Properties of the seasonal CO2 ice layer are derived from timing of seasonal events such as when final sublimation occurs. Modification of dune morphology shows that landscape evolution is occurring on Mars today, driven by seasonal activity associated with sublimation of the seasonal CO2 polar cap.

  19. A neurobiological enquiry into the origins of our experience of the sublime and beautiful

    PubMed Central

    Ishizu, Tomohiro; Zeki, Semir

    2014-01-01

    Philosophies of aesthetics have posited that experience of the sublime—commonly but not exclusively derived from scenes of natural grandeur—is distinct from that of beauty and is a counterpoint to it. We wanted to chart the pattern of brain activity which correlates with the declared intensity of experience of the sublime, and to learn whether it differs from the pattern that correlates with the experience of beauty, reported in our previous studies (e.g., Ishizu and Zeki, 2011). 21 subjects participated in a functional magnetic resonance imaging experiment. Prior to the experiment, they viewed pictures of landscapes, which they rated on a scale of 1–5, with 5 being the most sublime and 1 being the least. This allowed us to select, for each subject, five sets of stimuli—from ones experienced as very sublime to those experienced as not at all sublime—which subjects viewed and re-rated in the scanner while their brain activity was imaged. The results revealed a distinctly different pattern of brain activity from that obtained with the experience of beauty, with none of the areas active with the latter experience also active during experience of the sublime. Sublime and beautiful experiences thus appear to engage separate and distinct brain systems. PMID:25426046

  20. A New Method for Estimating Bacterial Abundances in Natural Samples using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert were heated to a temperature of 500 C for several seconds under reduced pressure. The sublimate was collected on a cold finger and the amount of adenine released from the samples then determined by high performance liquid chromatography (HPLC) with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approx. l0(exp 5) to l0(exp 9) E. coli cell equivalents per gram. For most of these samples, the sublimation based cell counts were in agreement with total bacterial counts obtained by traditional DAPI staining. The simplicity and robustness of the sublimation technique compared to the DAPI staining method makes this approach particularly attractive for use by spacecraft instrumentation. NASA is currently planning to send a lander to Mars in 2009 in order to assess whether or not organic compounds, especially those that might be associated with life, are present in Martian surface samples. Based on our analyses of the Atacama Desert soil samples, several million bacterial cells per gam of Martian soil should be detectable using this sublimation technique.

  1. The Effect of CO2 Ice Cap Sublimation on Mars Atmosphere

    NASA Technical Reports Server (NTRS)

    Batterson, Courtney

    2016-01-01

    Sublimation of the polar CO2 ice caps on Mars is an ongoing phenomenon that may be contributing to secular climate change on Mars. The transfer of CO2 between the surface and atmosphere via sublimation and deposition may alter atmospheric mass such that net atmospheric mass is increasing despite seasonal variations in CO2 transfer. My study builds on previous studies by Kahre and Haberle that analyze and compare data from the Phoenix and Viking Landers 1 and 2 to determine whether secular climate change is happening on Mars. In this project, I use two years worth of temperature, pressure, and elevation data from the MSL Curiosity rover to create a program that allows for successful comparison of Curiosity pressure data to Viking Lander pressure data so a conclusion can be drawn regarding whether CO2 ice cap sublimation is causing a net increase in atmospheric mass and is thus contributing to secular climate change on Mars.

  2. Iridium-bearing sublimates at a hot-spot volcano (Piton de la Fournaise, Indian Ocean)

    SciTech Connect

    Toutain, J.P. ); Meyer, G.

    1989-12-01

    Sublimates and incrustations derived upon the cooling of volcanic gases have been collected on various sites (Piton de la Fournaise, Poas, Momotombo, Etna, Ardoukoba and Erta-Ale). They have been analyzed for Ir and other volatile elements (Se, As, Cu, Au, Ag, Pb, Tl) by means of instrumental neutron activation analysis (INAA) and proton induced X-Ray emission (PIXE). Among the investigated volcanoes, only Piton de la Fournaise is found to release detectable amounts of iridium. Ir in Piton de la Fournaise sublimates is associated with F-minerals. This confirms its gaseous transport as a volatile fluoride compound. Iridium seems to be preferentialy released by hot-spot type volcanoes, and its detection in Piton de la Fournaise sublimates provides a positive argument in favor of a volcanic hypothesis to explain the KTB events.

  3. Sublimation and reformation of icy grains in the primitive solar nebula

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.; Engel, Steffi; Rizk, Bashar; Horanyi, Mihaly

    1991-01-01

    The quantity of water ice that sublimates during the free fall of grains into the solar nebula from a surrounding interstellar cloud varies from over 90 percent of the grain mass as 30 AU from the nebular center to less than 10 percent at more than 100 AU. Virtually all the water that is sublimated ultimately recondenses, since the cold nebular gas lying beyond 10 AU is unable to hold more than a small portion as vapor. The return of most of the gas to solid phase near the nebular ambient temperature, of about 50 K, may result in at least two grain populations consisting, in one case, of unaltered interstellar grains which did not undergo sublimation, and in the other of water ice which cocondensed with more volatile gases at nebular ambient temperatures to yield volatile-rich amorphous phases.

  4. Modifications of comet materials by the sublimation process: Results from simulation experiments

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Bar-Nun, Akiva; Lammerzahl, P.; Klinger, J.; Kochan, H.; Keller, H. U.; Neukum, G.; Roessler, K.; Stoeffler, D.; Spohn, T.

    1989-01-01

    An active comet like comet Halley loses by sublimation a surface layer of the order of 1 m thickness per perihelion passage. In situ measurements show that water ice is the main constituent which contributes to the gas emission although even more volatile species (CO, NH3, CH4, CO2 etc.) have been identified. Dust particles which were embedded in the ices are carried by the sublimating gases. Measurements of the chemical composition of cometary grains indicate that they are composed of silicates of approximate chondritic composition and refractory carbonaceous material. Comet simulation experiments show that significant modifications of cometary materials occur due to sublimation process in near surface layers which have to be taken into account in order to derive the original state of the material.

  5. New method for estimating bacterial cell abundances in natural samples by use of sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  6. New method for estimating bacterial cell abundances in natural samples by use of sublimation.

    PubMed

    Glavin, Daniel P; Cleaves, H James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L

    2004-10-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  7. Thermal Stability and Anisotropic Sublimation of Two-Dimensional Colloidal Bi2Te3 and Bi2Se3 Nanocrystals.

    PubMed

    Buha, Joka; Gaspari, Roberto; Del Rio Castillo, Antonio Esau; Bonaccorso, Francesco; Manna, Liberato

    2016-07-13

    The structural and compositional stabilities of two-dimensional (2D) Bi2Te3 and Bi2Se3 nanocrystals, produced by both colloidal synthesis and by liquid phase exfoliation, were studied by in situ transmission electron microscopy (TEM) during annealing at temperatures between 350 and 500 °C. The sublimation process induced by annealing is structurally and chemically anisotropic and takes place through the preferential dismantling of the prismatic {011̅0} type planes, and through the preferential sublimation of Te (or Se). The observed anisotropic sublimation is independent of the method of nanocrystal's synthesis, their morphology, or the presence of surfactant molecules on the nanocrystals surface. A thickness-dependent depression in the sublimation point has been observed with nanocrystals thinner than about 15 nm. The Bi2Se3 nanocrystals were found to sublimate below 280 °C, while the Bi2Te3 ones sublimated at temperatures between 350 and 450 °C, depending on their thickness, under the vacuum conditions in the TEM column. Density functional theory calculations confirm that the sublimation of the prismatic {011̅0} facets is more energetically favorable. Within the level of modeling employed, the sublimation occurs at a rate about 700 times faster than the sublimation of the {0001} planes at the annealing temperatures used in this work. This supports the distinctly anisotropic mechanisms of both sublimation and growth of Bi2Te3 and Bi2Se3 nanocrystals, known to preferentially adopt a 2D morphology. The anisotropic sublimation behavior is in agreement with the intrinsic anisotropy in the surface free energy brought about by the crystal structure of Bi2Te3 or Bi2Se3. PMID:27231980

  8. The Sublimation Rate of CO2 Under Simulated Mars Conditions and the Possible Climatic Implications

    NASA Astrophysics Data System (ADS)

    Bryson, Kathryn; Chevrier, V.; Roe, L.; White, K.; Blackburn, D.

    2008-09-01

    In order to understand the behavior of CO2 on Mars, we have studied the sublimation of dry ice under simulated martian conditions. Our experiments resulted in an average sublimation rate for CO2 ice of 1.20 ± 0.27 mm h-1. These results are very close to those observed of the martian polar caps retreat, and suggest a common process for the sublimation mechanism on Mars and in our chamber. Based on these results we created a model where irradiance from the sun is the primary source of heat on the martian polar surface. Our model predicts a 32 cm offset between the amount of CO2 ice sublimated and deposited in the southern polar region. The eccentricity of the martian orbit causes the southern hemisphere to sublimate more then it deposits back during one martian year. We have compared MOC and HiRISE images from approximately the same season (Ls 285.57º and 289.5º, respectively) from three martian years apart. These images indicate an average sublimation rate of 0.43 ± 0.04 m y-1, very close to the 0.32 m y-1 predicted by our model. Due to the length of Mars’ precession cycle, 93,000 martian years, it will take an extensive amount of time for the equinoxes to change. Therefore, we predict that the CO2 of the south polar cap will migrate entirely to the northern polar cap before such changes could occur. If the CO2 ice is only a thin layer above a much thicker water ice layer, this could expose large amounts of water ice, having a drastic climactic affect.

  9. Collection-efficient, axisymmetric vacuum sublimation module for the purification of solid materials.

    PubMed

    May, Michael; Paul, Elizabeth; Katovic, Vladimir

    2015-11-01

    A vacuum sublimation module of axisymmetric geometry was developed and employed to purify solid-phase materials. The module provides certain practical advantages and it comprises: a metering valve, glass collector, glass lower body, main seal, threaded bushing, and glass internal cartridge (the latter to contain starting material). A complementary process was developed to de-solvate, sublime, weigh, and collect solid chemical materials exemplified by oxalic acid, ferrocene, pentachlorobenzene, chrysene, and urea. The oxalic acid sublimate was analyzed by titration, melting range, Fourier Transform Infrared (FT-IR) Spectroscopy, cyclic voltammetry, and its (aqueous phase) electrolytically generated gas. The analytical data were consistent with a high-purity, anhydrous oxalic acid sublimate. Cyclic voltammograms of 0.11 mol. % oxalic acid in water displayed a 2.1 V window on glassy carbon electrode beyond which electrolytic decomposition occurs. During module testing, fifteen relatively pure materials were sublimed with (energy efficient) passive cooling and the solid-phase recovery averaged 95 mass %. Key module design features include: compact vertical geometry, low-angle conical collector, uniformly compressed main seal, modest power consumption, transparency, glovebox compatibility, cooling options, and preferential conductive heat transfer. To help evaluate the structural (module) heat transfer, vertical temperature profiles along the dynamically evacuated lower body were measured versus electric heater power: for example, an input of 18.6 W generated a temperature 443-K at the bottom. Experimental results and engineering calculations indicate that during sublimation, solid conduction is the primary mode of heat transfer to the starting material. PMID:26628150

  10. Crystallization and sublimation of non-racemic mixtures of natural amino acids: a path towards homochirality

    NASA Astrophysics Data System (ADS)

    Tarasevych, Arkadii V.; Guillemin, Jean-Claude

    2012-07-01

    Homochirality of biologically important molecules such as amino acids and sugars is a prerequisite for the origin of life. There are different forces or mechanisms in the Universe to trigger off the primary imbalance in the enantiomeric ratio. Very likely the initial bias of one type of enantiomers over the other on Earth was arisen from the inflow of extraterrestrial matter (carbonaceous meteorites). The phase transitions (crystallization, sublimation) of non-racemic mixtures of enantiomers are ones of the most probable mechanisms for the homochirogenesis[1]. The sublimation, almost uninvestigated subject and forgotten for 30 years, revealed recently a pathway to the enantioenrichment of natural amino acids[2]. Starting from a mixture with a low content of an enantiopure amino acid a partial sublimation gives a considerable enrichment. In our further experiments we combined two first-order phase transitions of amino acid(s) mixtures: crystallization and sublimation. The results show the possibility of the transfer of enantiopurity between different amino acids[3]. Subliming a crystallized mixture of racemic amino acids with an enantiopure one we found that the sublimate is a non-racemic mixture of the same handedness for all components. The significance of the studies can be realized taking into account that just 5 of 22 proteinogenic amino acids are able to homochiral self-organization. The relevance of these studies to the Prebiotic Earth and to the evolution of the single handedness of biological molecules will be discussed. [1] Blackmond, Phil. Trans. R. Soc. B 2011, 366, 2878. [2] Guillemin et al., Chem. Commun. 2010 , 46, 1482. [3] Tarasevych, Guillemin et al., submitted.

  11. Static sublimation purification process and characterization of LiZnP semiconductor material

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Reichenberger, Michael A.; Edwards, Nathan; Ugorowski, Philip B.; Sunder, Madhana; Weeks, Joseph; McGregor, Douglas S.

    2015-06-01

    Refinement of the class AIBIICV materials continue as a candidate for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q value of 4.78 MeV, larger than 10B, and easily identified above background radiations. Hence, devices composed of either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) may provide a semiconductor material for compact high efficiency neutron detectors. A sub-branch of the III-V semiconductors, the filled tetrahedral compounds, AIBIICV, known as Nowotny-Juza compounds, are known for their desirable cubic crystal structure. Starting material was synthesized by combining equimolar portions of Li, Zn, and P sealed under vacuum (10-6 Torr) in quartz ampoules, having boron nitride liners, and subsequently reacted in a compounding furnace (Montag et al., 2015, J. of Cryst. Growth). A static vacuum sublimation in quartz was performed to help purify the synthesized material. The chemical composition of the sublimed material and remaining material was confirmed by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Lithium was not detected in the sublimed material, however, approximately stoichiometric concentrations of each constituent element were found in the remaining LiZnP material. X-ray diffraction phase identification scans of the remains material and sublimed material were compared, and further indicated the impurity materials were sublimed away from the synthesized materials. The resulting material from the sublimation process showed characteristics of a higher purity ternary compound.

  12. Lo Gnomone Clementino Astronomia Meridiana in Basilica

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2014-05-01

    Costruito per chiara volontà del papa 70 anni dopo il caso Galileo, lo Gnomone Clementino è un grande telescopio solare che non fa uso di lenti a 92 anni dall’invenzione del cannocchiale. Queste due caratteristiche basterebbero da sole a giustificare l’interesse verso questo strumento. L’astronomia meridiana è alla base dell’astrometria e dell’astrofisica moderna. Lo Gnomone Clementino sta oggi all’astronomia, come il veliero “Amerigo Vespucci” sta alla Marina Italiana. E’ possibile svolgere ogni genere di osservazione e studio su questo strumento, e dal 2002 vi tengo lezioni teorico-pratiche del corso di Storia dell’Astronomia e La Terra nel Sistema Solare della Sapienza, Università di Roma, Facoltà di Lettere e Filosofia. Questo testo aggiunge alcuni tasselli alla ricerca storica sulla meridiana, appoggiandosi, com’è naturale, sulle spalle di giganti che mi hanno preceduto in questi studi. In particolare la misura dell’azimut della meridiana, ed il suo inquadramento tra gli strumenti simili ed alcuni studi di astrometria sui dati del 1701-1703 di Bianchini, che sono apparsi fin’ora soltanto su riviste specializzate ed in Inglese vengono qui proposti in Italiano e semplificati, per valorizzare sempre più questa straordinaria opera d’arte e di scienza.

  13. Thermal roughening of GaAs surface by dislocation-induced step-flow sublimation

    NASA Astrophysics Data System (ADS)

    Akhundov, I. O.; Kazantsev, D. M.; Kozhuhov, A. S.; Alperovich, V. L.

    2016-08-01

    The thermal roughening of epitaxial GaAs film surface is studied under anneals at temperatures 700-775 °C in the presence of a saturated Ga-As melt. Surface roughening consists in the formation of spiral “inverted pyramids” on the initially flat surface due to the step-flow sublimation induced by screw dislocations. The observed roughening indicates that, despite the presence of As and Ga vapors provided by the melt, the annealing conditions are shifted from equilibrium towards sublimation.

  14. On the sublimation of blowing snow and of snow in canopies

    NASA Astrophysics Data System (ADS)

    Taylor, P. A.; Simon, K.; Gordon, M.; Weng, W.

    2003-04-01

    Tests have been made within the Canadian Land Surface Scheme (CLASS) of various parameterizations of sublimation of blowing snow, and tested in the context of data from weather stations (Goose Bay and Resolute) in northern Canada. We will focus on parameterization schemes based on results obtained with the PIEKTUK model of blowing snow. In addition we will present preliminary results concerning the parameterization of sublimation of snow caught in tree canopies, using schemes similar to those for evaporation from wet canopies. This is considered to be a major factor in the water budgets of forested areas in northern Canada.

  15. First principles prediction of the gas-phase precursors for AlN sublimation growth.

    PubMed

    Li, Yanxin; Brenner, Donald W

    2004-02-20

    Using a new, parameter-free first principles strategy for modeling sublimation growth, we show that while Al and N2 dominate gas concentrations in AlN sublimation growth chambers under typical growth conditions, N2 is undersaturated with respect to the crystal and therefore cannot be a growth precursor. Instead, our calculations predict that the nitrogen-containing precursors are Al(n)N (n=2,3,4), in stark contrast to assumptions used in all previous modeling studies of this system.

  16. First Principles Prediction of the Gas-Phase Precursors for AlN Sublimation Growth

    NASA Astrophysics Data System (ADS)

    Li, Yanxin; Brenner, Donald W.

    2004-02-01

    Using a new, parameter-free first principles strategy for modeling sublimation growth, we show that while Al and N2 dominate gas concentrations in AlN sublimation growth chambers under typical growth conditions, N2 is undersaturated with respect to the crystal and therefore cannot be a growth precursor. Instead, our calculations predict that the nitrogen-containing precursors are AlnN (n=2,3,4), in stark contrast to assumptions used in all previous modeling studies of this system.

  17. Sublimation as a Continuous and Transient Source of Water in Europa's Exosphere

    NASA Astrophysics Data System (ADS)

    Hayne, Paul O.

    2016-10-01

    Europa's crust is composed primarily of water ice, which may be vaporized by sputtering and sublimation when exposed to the jovian radiation environment. Models of H2O in Europa's exosphere have focused primarily on the contribution of sputtering by energetic particles, with globally averaged production rates estimated to be ~1015 H2O m-2 s-1. Although sublimation rates at Europa's average dayside temperature of ~106 K are much lower at ~1010 H2O m-2 s-1, surfaces at low- to mid-latitude experiences temperatures in excess of 130 K, with expected sublimation rates of >1015 H2O m-2 s-1 possible. These production rates would be reduced where the surface ice is mixed with impurities, or through development of a non-ice lag deposit. In addition to the continuous flux due to sublimation, transient outgassing may be caused by exposure of fresh ice to direct sunlight, for example by mass wasting on steep slopes. Here, we revisit the process of sublimation on Europa's surface to quantify possible H2O vapor production on a range of spatial and temporal scales.The model includes solar heating, conduction, and vapor diffusion. Temperatures and sublimation rates are calculated by the instantaneous energy budget within each model layer, and outgassing to the exosphere depends on the surface vapor pressure and molecular thermal velocities. Vapor densities and line-of-sight column abundances can be directly compared to observations. Our results show that for surfaces composed of pure ice, sublimation contributes significant quantities to the dayside exosphere. The production rate declines as a sublimation lag develops, with a characteristic timescale of ~1 – 10 kyr at the equator. Freshly exposed ice may produce localized sources. For example, a fresh exposure of ice at 60° latitude with dimension ~2 km would be expected to produce a line-of-sight column abundance of ~1020 H2O m-2 near the limb. However, expansion of the plume would lead to lower column abundance at higher

  18. Methods for the doping of silicon layers in growth by sublimation MBE

    SciTech Connect

    Shengurov, V. G.; Svetlov, S. P. Chalkov, V. Yu.; Shengurov, D. V.; Denisov, S. A.

    2006-02-15

    Epitaxial layers doped with various impurities were grown by sublimation MBE on Si (100) substrates. Doping with phosphorus was controlled at electron densities ranging from 2x10{sup 13} to 10{sup 19} cm{sup -3}. A high dopant concentration of {approx}10{sup 20} cm{sup -3} was obtained from the evaporation of partly molten Si sources. It shown that the type and concentration of an impurity in the sublimation MBE process can be controlled by the fabrication of multilayer p{sup +}-n{sup +} structures.

  19. Matrix sublimation method for the formation of high-density amorphous ice

    NASA Astrophysics Data System (ADS)

    Kouchi, A.; Hama, T.; Kimura, Y.; Hidaka, H.; Escribano, R.; Watanabe, N.

    2016-08-01

    A novel method for the formation of amorphous ice involving matrix sublimation has been developed. A CO-rich CO:H2O mixed ice was deposited at 8-10 K under ultra-high vacuum condition, which was then allowed to warm. After the sublimation of matrix CO at 35 K, amorphous ice remained. The amorphous ice formed exhibits a highly porous microscale texture; however, it also rather exhibits a density similar to that of high-density amorphous ice formed under high pressure. Furthermore, unlike conventional vapor-deposited amorphous ice, the amorphous ice is stable up to 140 K, where it transforms directly to cubic ice Ic.

  20. Sulfur in vacuum - Sublimation effects on frozen melts, and applications to Io's surface and torus

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.

    1987-01-01

    Vacuum sublimation effects on solid sulfur yield a form of the element that is white at room temperature, is fluffy in texture, and forms on frozen sulfur in vacuum through differential evaporation of molecular species in the solid. This vacuum sulfur should exist in large quantity on Io, if the solid free sulfur there has solidified from a melt; a sulfur volcanism model for Io is accordingly developed on this basis which implies that the color and spectra of different sulfur regions of Io could indicate their relative crystallization ages and cooling histories. The flux of sublimating hotspot sulfur appears consistent with estimated turnover rates of the Io surface.

  1. An Investigation Into the Potential Role of Carbon Dioxide Sublimation in Linear Gully Pit Formation on Mars

    NASA Astrophysics Data System (ADS)

    Mc Keown, L.; McElwaine, J.; Bourke, M. C.

    2016-09-01

    We present the results of a suite of experiments and image analysis undertaken to test the CO2 sublimation hypothesis, which accounts for linear gully formation via the interaction of sublimating CO2 ice blocks with porous substrate on martian dunes.

  2. Starspots on LO Pegasi, 2006-2015

    NASA Astrophysics Data System (ADS)

    Harmon, Robert O.; Chalmers, Mark; Geda, Robel; Henry, Brandi; Sliupas, Viesulas

    2016-01-01

    LO Pegasi is a rapidly rotating (P = 10.154 hr) young solar analog (spectral class K5-7V) variable star of BY Dra type that exhibits dark starspots on its surface that modulate its brightness as they are carried into and out of view by the star's rotation. Surface maps of the spot distribution were produced based on BVRI photometry obtained at Perkins Observatory from 2006-2015. The maps were generated from the light curves via a non-linear inversion algorithm that uses the differences in the limb darkening through different filter passbands to improve the latitude resolution of the maps. We present an analysis of variations in the size of a polar spot suggested by changes in the average brightness and the amplitude of the rotational modulation from year to year.

  3. DIRECT STELLAR RADIATION PRESSURE AT THE DUST SUBLIMATION FRONT IN MASSIVE STAR FORMATION: EFFECTS OF A DUST-FREE DISK

    SciTech Connect

    Tanaka, Kei E. I.; Nakamoto, Taishi

    2011-10-01

    In massive star formation ({approx}> 40 M{sub sun}) by core accretion, the direct stellar radiation pressure acting on the dust particles exceeds the gravitational force and interferes with mass accretion at the dust sublimation front, the first absorption site. Ram pressure generated by high accretion rates of 10{sup -3} M{sub sun} yr{sup -1} is thought to be required to overcome the direct stellar radiation pressure. We investigate the direct stellar irradiation on the dust sublimation front, including the inner accretion disk structure. We show that the ram pressure of the accretion disk is lower than the stellar radiation pressure at the dust sublimation front. Thus, another mechanism must overcome the direct stellar radiation pressure. We suggest that the inner hot dust-free region is optically thick, shielding the dust sublimation front from direct stellar irradiation. Thus, accretion would not halt at the dust sublimation front, even at lower accretion rates.

  4. Thermodynamics of sublimation, crystal lattice energies, and crystal structures of racemates and enantiomers: (+)- and (+/-)-ibuprofen.

    PubMed

    Perlovich, German L; Kurkov, Sergey V; Hansen, Lars Kr; Bauer-Brandl, Annette

    2004-03-01

    Thermodynamic differences between ibuprofen (IBP) racemate and the (+)-enantiomer were studied by X-ray diffraction, thermoanalysis, and crystal energy calculations. The thermodynamic functions of sublimation (as a measure of crystal lattice energy) were obtained by the transpiration method. The sublimation enthalpies (DeltaH(sub)) of (+/-)-IBP and (+)-IBP are 115.8 +/- 0.6 and 107.4 +/- 0.5 kJ. mol(-1), respectively. Using the temperature dependency of the saturated vapor pressure, the relative fractions of enthalpy and entropy of the sublimation process were calculated, and the sublimation process for both the racemate and the enantiomer was found to be enthalpy driven (62%). Two different force fields, Mayo et al. (M) and Gavezzotti (G), were used for comparative analysis of crystal lattice energies. Both force fields revealed that the van der Waals term contributes more to the packing energy in (+)-IBP than in (+/-)-IBP. The hydrogen bonding energy, however, contributes at 29.7 and 32.3% to the total crystal lattice energy in (+)-IBP and (+/-)-IBP (M), respectively. Furthermore, different structure fragments of the IBP molecule were analyzed with respect to their contribution to nonbonded van der Waals interactions. The effect of the C-H distance on the van der Waals term of the crystal lattice energy was also studied.

  5. Undergraduate Laboratory Experiment Facilitating Active Learning of Concepts in Transport Phenomena: Experiment with a Subliming Solid

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.

    2015-01-01

    An experiment based on the sublimation of a solid was introduced in the undergraduate Transport Phenomena course. The experiment required the students to devise their own apparatus and measurement techniques. The theoretical basis, assignment of the experiment, experimental results, and student/instructor observations are described in this paper.…

  6. How to Kill a Journalism School: The Digital Sublime in the Discourse of Discontinuance

    ERIC Educational Resources Information Center

    McDevitt, Michael; Sindorf, Shannon

    2012-01-01

    The authors argue that journalism's uncertain identity in academia has made it vulnerable to unreflective instrumentalism in the digital era. They show how instrumentalism intertwined with the digital sublime constitutes a rhetorically resonate rationale for closing a journalism school. Evidence comes from documents and testimony associated with…

  7. "To Elevate I Must First Soften": Rhetoric, Aesthetic, and the Sublime Traditions

    ERIC Educational Resources Information Center

    Ianetta, Melissa

    2005-01-01

    The bifurcation of rhetorical and literary traditions that has impoverished the understanding of disciplinary history as a simultaneously rhetorical and literary event is illustrated. It is demonstrated that defining the sublime experience solely in terms of its aesthetic heritage, and thus obscuring its rhetorical foundations, suppresses those…

  8. Electrical properties of zinc-sulfide films produced by close-spaced vacuum sublimation

    SciTech Connect

    Kurbatov, D. I.

    2013-09-15

    The electrical properties of ZnS films produced by closed-space vacuum sublimation are studied. From analysis of the current-voltage characteristics under conditions of space-charge-limited currents and of the temperature dependences of conductivity, the energy levels of localized states in the band gap of the ZnS films are determined.

  9. Structure-property relationships in halogenbenzoic acids: Thermodynamics of sublimation, fusion, vaporization and solubility.

    PubMed

    Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P

    2016-10-01

    Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs. PMID:27424058

  10. 77 FR 50185 - LoCorr Fund Management, LLC and LoCorr Investment Trust; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... shareholder approval. Applicants: LoCorr Fund Management, LLC (``LFM'' or the ``Adviser'') and LoCorr... Adviser (the ``Independent Trustees''), and by shareholders representing a majority of each of the LoCorr... Agreements will be approved by shareholders and by the Board, including a majority of the...

  11. Sublimation of natural amino acids and induction of asymmetry by meteoritic amino acids

    NASA Astrophysics Data System (ADS)

    Tarasevych, Arkadii V.; Guillemin, Jean-Claude

    It is believed that the homochirality of building blocks of life like amino acids (AAs) and sugars is a prerequisite requirement for the origin and evolution of life. Among different mechanisms that might have triggered the initial disparity in the enantiomeric ratio on the primitive Earth, the key roles were assigned to: (i) local chiral symmetry breaking and (ii) the inflow of extraterrestrial matter (eg the carbonaceous meteorites containing non-racemic AAs). Recently it has been revealed that sublimation, a subject almost completely neglected for a long time, gives a pathway to enantioenrichment of natural AAs (1,2 and references herein). Sublimation is however one of the key physical processes that occur on comets. Starting from a mixture with a low content of an enantiopure AA, a partial sublimation gives an important enrichment of the sublimate (1,2). The resulted disparity in the ratio between enantiomers of a partial sublimate is determined by the crystalline nature of the starting mixture: we observed a drastic difference in the behavior of (i) mixtures based on true racemic compounds and (ii) mechanical mixtures of two enantiopure solid phases. On the other hand, combination of crystallization and sublimation can lead to segregation of enantioenriched fractions starting from racemic composition of sublimable aliphatic AAs (Ala, Leu, Pro, Val) in mixtures with non-volatile enantiopure ones (Asn, Asp, Glu, Ser, Thr) (3). The resulted sense of chirality correlates with the handedness of the non-volatile AAs: the observed changes in enantiomeric ratios clearly demonstrate the preferential homochiral interactions and a tendency of natural amino acids to homochiral self-organization. It is noteworthy that just these 5 (Asn, Asp, Glu, Ser, Thr) out of 22 proteinogenic amino acids are able to local symmetry breaking. On the other hand, recent data on the enantiomeric composition of the Tagish Lake, a C2-type carbonaceous meteorite, revealed a large L

  12. Static sublimation purification process and characterization of LiZnAs semiconductor material

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Reichenberger, Michael A.; Edwards, Nathaniel S.; Ugorowski, Philip B.; Sunder, Madhana; Weeks, Joseph; McGregor, Douglas S.

    2016-03-01

    Refinement of the class AIBIICV materials continue as a candidate for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q value of 4.78 MeV, larger than 10B, and easily identified above background radiations. Hence, devices composed of either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) may provide a semiconductor material for compact high efficiency neutron detectors. A sub-branch of the III-V semiconductors, the filled tetrahedral compounds, AIBIICV, known as Nowotny-Juza compounds, are known for their desirable cubic crystal structure. Starting material was synthesized by equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules with a boron nitride lining, and reacted in a compounding furnace [1]. The synthesized material showed signs of high impurity levels from material and electrical property characterization. In the present work, a static vacuum sublimation of synthesized LiZnAs loaded in a quartz vessel was performed to help purify the synthesized material. The chemical composition of the sublimed material and remains material was confirmed by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Lithium was not detected in the sublimed material, however, near stoichiometric amounts of each constituent element were found in the remains material for LiZnAs. X-ray diffraction phase identification scans of the remains material and sublimed material were compared, and further indicated the impurity materials were removed from the synthesized materials. The remaining powder post the sublimation process showed characteristics of a higher purity ternary compound.

  13. Carbon deposition characteristics of LO2/HC propellants

    NASA Technical Reports Server (NTRS)

    Hernandez, Rosemary; Mercer, Steve D.

    1987-01-01

    The generation and deposition of carbon have been studied using subscale hardware with LO2/RP-1, LO2/propane, and LO2/methane at low mixture ratio conditions. The deposition of carbon on the turbine simulator tubes was evaluated at mixture ratios of 0.20 to 0.60, and at chamber pressures from 720 to 1650 psia. The carbon-deposition rate is a strong function of mixture ratio and a weak function of chamber pressure. There is a mixture ratio that will minimize deposition for LO2/RP-1; a threshold mixture ratio for LO2/propane; and no deposition for LO2/methane at any mixture ratio tested. The turbine drive operating limits were defined for each fuel tested.

  14. Practical sublimation source for large-scale chromium gettering in fusion devices

    SciTech Connect

    Simpkins, J.E.; Emerson, L.C.; Mioduszewski, P.K.

    1983-01-01

    This paper describes the technique of chromium gettering with a large-scale sublimation source which resembles in its design the VARIAN Ti-Ball. It consists of a hollow chromium sphere with a diameter of approximately 3 cm and an incandescent filament for radiation heating from inside the ball. While the fabrication of the source is described in a companion paper, we discuss here the gettering technique. The experimental arrangement consists of an UHV system instrumented for total- and partial-pressure measurements, a film-thickness monitor, thermocouples, an optical pyrometer, and appropriate instrumentation to measure the heating power. The results show the temperature and corresponding sublimation rate of the Cr-Ball as function of input power. In addition, an example of the total pumping speed of a gettered surface is shown.

  15. Adamantane derivatives of sulfonamides: sublimation, solubility, solvation and transfer processes in biologically relevant solvents.

    PubMed

    Perlovich, G L; Volkova, T V; Sharapova, A V; Kazachenko, V P; Strakhova, N N; Proshin, A N

    2016-04-01

    Eight adamantane derivatives of sulfonamides were synthesized and characterized. Temperature dependencies of saturation vapor pressure were obtained using the transpiration method and thermodynamic functions of the sublimation processes were calculated. Solubility values of the selected compounds in buffer (pH 7.4), 1-octanol and 1-hexane were determined at different temperatures using the isothermal saturation method. Thermophysical characteristics of fusion processes (melting points and fusion enthalpies) of the substances were studied using the DSC method. Transfer processes from buffer to 1-octanol, from buffer to 1-hexane and 1-hexane to 1-octanol were analyzed. The impact of the molecules' structural modification on sublimation, solubility and solvation/hydration processes in the solvents was studied. Correlation equations connecting the thermodynamic functions with physicochemical descriptors were obtained.

  16. AlN homoepitaxial growth on sublimation-AlN substrate by low-pressure HVPE

    NASA Astrophysics Data System (ADS)

    Nomura, Takuya; Okumura, Kenta; Miyake, Hideto; Hiramatsu, Kazumasa; Eryu, Osamu; Yamada, Yoichi

    2012-07-01

    Crack-free thick AlN layers with low impurity concentrations were grown on free-standing AlN substrates fabricated by a sublimation method. Cracks due to tensile stresses were generated in the overgrowth layer when using on-axis AlN (0 0 0 1) substrates, as indicated by Raman scattering spectroscopy. In contrast, cracks were not generated when using 5° off-angle AlN (0 0 0 1) substrates. High crystalline quality was indicated by X-ray rocking curve (XRC) analysis. The full width at half maximum (FWHM) values of the (0 0 0 2) and (1 0-1 0) diffractions were 277 and 306 arcsec, respectively. Secondary ion mass spectrometry (SIMS) measurements indicated that the Si and C impurity concentrations were reduced to half of those in the sublimation-grown AlN substrates.

  17. X-ray characterization of bulk AIN single crystals grown by the sublimation technique

    NASA Astrophysics Data System (ADS)

    Raghothamachar, B.; Dudley, M.; Rojo, J. C.; Morgan, K.; Schowalter, L. J.

    2003-03-01

    Bulk AlN single crystal boules have been grown using the sublimation technique and several substrates have been prepared from them. Microstructural characterization of these substrates has been performed using synchrotron white beam X-ray topography (SWBXT) and high-resolution triple axis X-ray diffraction. Our study has revealed that AlN single crystal boules grown by the sublimation technique can possess a high structural quality with dislocation densities of 800-1000/cm 2 and rocking curves with a full-width at half-maximum of less than 10 arcsec. The distribution of dislocations is inhomogeneous with large areas of the wafer free from dislocations. Inclusions are also observed (density of the order of 10 5/cm 3) and their distribution is also inhomogeneous.

  18. Growth of bulk AlN and GaN single crystals by sublimation

    SciTech Connect

    Balkas, C.M.; Sitar, Z.; Zheleva, T.; Bergman, L.; Shmagin, I.K.; Muth, J.F.; Kolbas, R.; Nemanich, R.; Davis, R.F.

    1997-12-31

    Single crystals of AlN to 1 mm thickness were grown in the range 1,950--2,250 C on 10 x 10 mm{sup 2} {alpha}(6H)-SiC(0001) substrates via sublimation-recondensation method. Hot pressed polycrystalline AlN was used as the source material. The color varied from transparent to dark green/blue. The crystal morphology varied with growth conditions. Most crystals were 0.3 mm--1 mm thick transparent layers which completely covered the substrates. Raman, optical and transmission electron microscopy (TEM) results are presented. Single crystals of gallium nitride (GaN) were also grown by subliming powders of this material under an ammonia (NH{sub 3}) flow. Optical microscopy, Raman and photoluminescence results are shown.

  19. Freestanding Highly Crystalline Single Crystal AlN Substrates Grown by a Novel Closed Sublimation Method

    NASA Astrophysics Data System (ADS)

    Yamakawa, Masayasu; Murata, Kazuki; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu; Amano, Hiroshi; Azuma, Masanobu

    2011-04-01

    We fabricated thick freestanding AlN films by a novel close-spaced sublimation method. The spacing between a sintered AlN polycrystal and a SiC substrate is 1 mm. A Ta ring was used to control the spacing between the AlN polycrystal and the SiC substrate. In addition, a special AlN adhesive was also used to fill in the gap between the AlN polycrystal, the Ta ring, and the SiC substrate. By a combination of these techniques, an AlN growth rate as high as 600 µm/h was achieved. A freestanding AlN layer was obtained by the sublimation of the SiC substrate during the AlN growth.

  20. Effects of Atmospheric and Surface Dust on the Sublimation Rates of CO2 on Mars

    NASA Technical Reports Server (NTRS)

    Bonev, B. P.; James, P. B.; Bjorkman, J. E.; Hansen, G. B.; Wolff, M. J.

    2003-01-01

    We present an overview of our modeling work dedicated to study the effects of atmospheric dust on the sublimation of CO2 on Mars. The purpose of this study is to better understand the extent to which dust storm activity can be a root cause for interannual variability in the planetary CO2 seasonal cycle, through modifying the springtime regression rates of the south polar cap. We obtain calculations of the sublimation fluxes for various types of polar surfaces and different amounts of atmospheric dust. These calculations have been compared qualitatively with the regression patterns observed by Mars Global Surveyor (MGS) in both visible and infrared wavelengths, for two years of very different dust histories (1999, and 2001).

  1. Adamantane derivatives of sulfonamides: sublimation, solubility, solvation and transfer processes in biologically relevant solvents.

    PubMed

    Perlovich, G L; Volkova, T V; Sharapova, A V; Kazachenko, V P; Strakhova, N N; Proshin, A N

    2016-04-01

    Eight adamantane derivatives of sulfonamides were synthesized and characterized. Temperature dependencies of saturation vapor pressure were obtained using the transpiration method and thermodynamic functions of the sublimation processes were calculated. Solubility values of the selected compounds in buffer (pH 7.4), 1-octanol and 1-hexane were determined at different temperatures using the isothermal saturation method. Thermophysical characteristics of fusion processes (melting points and fusion enthalpies) of the substances were studied using the DSC method. Transfer processes from buffer to 1-octanol, from buffer to 1-hexane and 1-hexane to 1-octanol were analyzed. The impact of the molecules' structural modification on sublimation, solubility and solvation/hydration processes in the solvents was studied. Correlation equations connecting the thermodynamic functions with physicochemical descriptors were obtained. PMID:26976747

  2. The sublimation temperature of the cometary nucleus Observational evidence for H2O snows

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1985-01-01

    It is shown that information on the chemical composition of cometary snows can be inferred from the distance r(0) between sublimating states in the cometary nucleus. Consideration is given to three techniques for measuring r(0): estimation of the dependence on distance of non-gravitational forces (NGF); estimation of the dependence on distance of molecular emissions; and (3), analysis of the cometary light curve. The dependence on distance of the NGFs suggests that the observed sublimations of short-period coments are determined by water snow. Light curves of newly discovered comets appear to confirm this result. The large production rates of H and OH in cometary atmospheres suggest that they are due to dissociation of H2O in the vapor states. Estimates of r(0) for eleven different comets are given in a table.

  3. Controlling Gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystals.

    PubMed

    Kim, Dae Seok; Cha, Yun Jeong; Kim, Mun Ho; Lavrentovich, Oleg D; Yoon, Dong Ki

    2016-01-01

    Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at elevated temperatures. The pattern of alternating patches of negative, zero and positive mean curvature of the air-smectic interface has a profound effect on the rate of sublimation. As a result of sublimation, condensation and restructuring, initially equilibrium smectic films with negative and zero Gaussian curvature are transformed into structures with pronounced positive Gaussian curvature of layers packing, which are rare in the samples obtained by cooling from the isotropic melt. The observed relationship between the curvatures, bulk elastic behaviour and interfacial geometries in sintering of smectic liquid crystals might pave the way for new approaches to control soft morphologies at micron and submicron scales. PMID:26725975

  4. Dehydration polycondensation of dicarboxylic acids and diols using sublimating strong brønsted acids.

    PubMed

    Moyori, Takaya; Tang, Tang; Takasu, Akinori

    2012-05-14

    We investigated catalytic activities of strong brønsted acids for dehydration polycondensations of dicarboxylic acids and diols, which were carried out at low temperature (<100 °C) under reduced pressure (0.3-3 mmHg). Strong Brønsted acids, bis(perfluoroalkanesulfonyl)imide and perfluoroalkanesulfonic acid, showed higher activity than p-toluenesulfonic acid or rare-earth catalysts at 60 °C. In particular, bis(nonafluorobutanesulfonyl)imide (Nf(2)NH) showed the highest activity to synthesize not only aliphatic polyester (M(n) > 19000) but also aromatic polyester (M(n) > 7000). The used Nf(2)NH was sublimated from the reaction flask during polycondensation, and the sublimate, Nf(2)NH, was extra pure so that we can reuse the catalyst without loss of the activity in the dehydration polycondensations.

  5. Three-dimensional textures and defects of soft material layering revealed by thermal sublimation

    PubMed Central

    Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I.; Clark, Noel A.; Jung, Hee-Tae

    2013-01-01

    Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal. PMID:24218602

  6. Controlling Gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystals.

    PubMed

    Kim, Dae Seok; Cha, Yun Jeong; Kim, Mun Ho; Lavrentovich, Oleg D; Yoon, Dong Ki

    2016-01-04

    Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at elevated temperatures. The pattern of alternating patches of negative, zero and positive mean curvature of the air-smectic interface has a profound effect on the rate of sublimation. As a result of sublimation, condensation and restructuring, initially equilibrium smectic films with negative and zero Gaussian curvature are transformed into structures with pronounced positive Gaussian curvature of layers packing, which are rare in the samples obtained by cooling from the isotropic melt. The observed relationship between the curvatures, bulk elastic behaviour and interfacial geometries in sintering of smectic liquid crystals might pave the way for new approaches to control soft morphologies at micron and submicron scales.

  7. Darwin's sublime: the contest between reason and imagination in On the Origin of Species.

    PubMed

    Bradley, Benjamin Sylvester

    2011-01-01

    Recent Darwin scholarship has provided grounds for recognising the Origin as a literary as well as a scientific achievement. While Darwin was an acute observer, a gifted experimentalist and indefatigable theorist, this essay argues that it was also crucial to his impact that the Origin transcended the putative divide between the scientific and the literary. Analysis of Darwin's development as a writer between his journal-keeping on HMS Beagle and his construction of the Origin argues the latter draws on the pattern of the Romantic or Kantian sublime. The Origin repeatedly uses strategies which challenge the natural-theological appeal to the imagination in conceiving nature. Darwin's sublime coaches the Origin's readers into a position from which to envision nature that reduces and contains its otherwise overwhelming complexity. As such, it was Darwin's literary achievement that enabled him to fashion a new 'habit of looking at things in a given way' that is the centrepiece of the scientific revolution bearing his name.

  8. Controlling Gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystals

    PubMed Central

    Kim, Dae Seok; Cha, Yun Jeong; Kim, Mun Ho; Lavrentovich, Oleg D.; Yoon, Dong Ki

    2016-01-01

    Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at elevated temperatures. The pattern of alternating patches of negative, zero and positive mean curvature of the air–smectic interface has a profound effect on the rate of sublimation. As a result of sublimation, condensation and restructuring, initially equilibrium smectic films with negative and zero Gaussian curvature are transformed into structures with pronounced positive Gaussian curvature of layers packing, which are rare in the samples obtained by cooling from the isotropic melt. The observed relationship between the curvatures, bulk elastic behaviour and interfacial geometries in sintering of smectic liquid crystals might pave the way for new approaches to control soft morphologies at micron and submicron scales. PMID:26725975

  9. Evidence for Sublimation/Recondensation Controlling Ignition Time in HMX Thermal Explosions

    NASA Astrophysics Data System (ADS)

    Smilowitz, Laura; Henson, Bryan

    2014-03-01

    Time to ignition for HMX based secondary high explosive formulations can be plotted linearly on a simple Arrhenius plot. The time to ignition is believed to be controlled by specific chemical decomposition steps with the rate limiting step being decomposition in the solid, accompanied by significant exothermicity. Subsequent exothermic chemistry involving gas phase products is also important. We have evidence for the diffusion of intact HMX molecules within hot HMX formulations. The sublimation and recondensation of HMX molecules carries significant enthalpy around a system, comparable to the enthalpy of reaction in the solid and gas phase, and can impact both the time and location of ignition. In this talk, we will present evidence that HMX sublimation and recondensation can control the time to ignition in a PBX 9501 thermal explosion.

  10. Sublimating icy planetesimals as the source of nucleation seeds for grain condensation in classical novae

    NASA Technical Reports Server (NTRS)

    Matese, John J.; Whitmire, D. P.; Reynolds, R. T.

    1989-01-01

    The problem of grain nucleation during novae outbursts is a major obstacle to our understanding of dust formation in these systems. How nucleation seeds can form in the hostile post-outburst environment remains an unresolved matter. It is suggested that the material for seeding the condensation of ejecta outflow is stored in a primordial disk of icy planetesimals surrounding the system. Evidence is presented that the requisite number of nucleation seeds can be released by sublimation of the planetesimals during outbursts.

  11. Modeling and simulation of AlN bulk sublimation growth systems

    NASA Astrophysics Data System (ADS)

    Wu, Bei; Ma, Ronghui; Zhang, Hui; Prasad, Vish

    2004-05-01

    In this paper, we have developed a numerical model to simulate two AlN sublimation growth systems. Temperature distributions in the growth cell for resistance and induction heating systems are presented and compared. The growth rate has been predicted and compared with experimental data. An anisotropic thermomechanical stress model is also developed to predict the thermal stress distribution in the as-grown crystal, with or without contact with the crucible wall.

  12. Spectroscopy of lithium atoms sublimated from isolation matrix of solid Ne.

    PubMed

    Sacramento, R L; Scudeller, L A; Lambo, R; Crivelli, P; Cesar, C L

    2011-10-01

    We have studied, via laser absorption spectroscopy, the velocity distribution of (7)Li atoms released from a solid neon matrix at cryogenic temperatures. The Li atoms are implanted into the Ne matrix by laser ablation of a solid Li precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms at around 12 K. We find interesting differences in the velocity distribution of the released Li atoms from the model developed for our previous experiment with Cr [R. Lambo, C. C. Rodegheri, D. M. Silveira, and C. L. Cesar, Phys. Rev. A 76, 061401(R) (2007)]. This may be due to the sublimation regime, which is at much lower flux for the Li experiment than for the Cr experiment, as well as to the different collisional cross sections between those species to the Ne gas. We find a drift velocity compatible with Li being thermally sublimated at 11-13 K, while the velocity dispersion around this drift velocity is low, around 5-7 K. With a slow sublimation of the matrix we can determine the penetration depth of the laser ablated Li atoms into the Ne matrix, an important information that is not usually available in most matrix isolation spectroscopy setups. The present results with Li, together with the previous results with Cr suggest this to be a general technique for obtaining cryogenic atoms, for spectroscopic studies, as well as for trap loading. The release of the isolated atoms is also a useful tool to study and confirm details of the matrix isolated atoms which are masked or poorly understood in the solid.

  13. Auxiliary titanium sublimation pump produces ultrahigh /10 to the minus 11 torr/ vacuum

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.

    1966-01-01

    Sublimated titanium as a gettering agent in conjunction with a turbine-type pump provides a two-step procedure for obtaining an ultrahigh vacuum of 10 to the minus 11 torr. The pump alone evacuates the chamber to a pressure of 10 to the minus 9 torr. The residual gas is removed by the gettering agent at a pumping speed of 15 liters per second per square inch.

  14. Access to uncombined titanium through an inhibiting film in sublimation pumping of deuterium.

    NASA Technical Reports Server (NTRS)

    Steinberg, R.; Alger, D. L.

    1972-01-01

    In principle, titanium bulk sublimator pumping should be ideal for removing large quantities of deuterium from a vacuum system. In practice, much of the deposited titanium remains uncombined and is wasted. We have demonstrated, through a series of experiments, that it is possible (by the addition of a thin layer of titanium to an apparently occluded surface) to gain access to previously deposited sublayers of uncombined titanium in spite of the presence of an inhibiting film (such as an oxide) on the surface.

  15. Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution.

    PubMed

    Yang, Junhai; Caprioli, Richard M

    2011-07-15

    We have employed matrix deposition by sublimation for protein image analysis on tissue sections using a hydration/recrystallization process that produces high-quality MALDI mass spectra and high-spatial-resolution ion images. We systematically investigated different washing protocols, the effect of tissue section thickness, the amount of sublimated matrix per unit area, and different recrystallization conditions. The results show that an organic solvent rinse followed by ethanol/water rinses substantially increased sensitivity for the detection of proteins. Both the thickness of the tissue section and the amount of sinapinic acid sublimated per unit area have optimal ranges for maximal protein signal intensity. Ion images of mouse and rat brain sections at 50, 20, and 10 μm spatial resolution are presented and are correlated with hematoxylin and eosin (H&E)-stained optical images. For targeted analysis, histology-directed imaging can be performed using this protocol where MS analysis and H&E staining are performed on the same section.

  16. Crystal structure analysis and sublimation thermodynamics of bicyclo derivatives of a neuroprotector family.

    PubMed

    Surov, Artem O; Proshin, Alexey N; Perlovich, German L

    2014-02-01

    The crystal structures of three new structurally related drug-like bicyclo derivatives are correlated with measured thermodynamic quantities for their sublimation and melting processes. The sublimation thermodynamics are determined using the temperature dependencies of the vapour pressure, and the melting processes are examined using differential scanning calorimetry. The three compounds contain a common N-(3-thia-1-azabicyclo[3.3.1]non-2-ylidene)aniline core, with either a CH3, F or CF3 substituent at the 4-position of the aniline ring. Lattice energy calculations are made using both the PIXEL and Coulomb-London-Pauli (CLP) models, and the conformational flexibility of the molecules is examined using gas-phase density functional theory (DFT) calculations. The experimentally measured crystal lattice energies (ΔH(0)sub) decrease in the order: CH3 > F > CF3. The calculated lattice energies using the PIXEL approach are in good agreement with the experimental values, and the partitioned intermolecular interaction energies suggest that dispersion contributions dominate the crystal structures of all three compounds. The sublimation energies and melting points are inversely correlated for the three molecules, with the melting points increasing in the order CF3 < F < CH3.

  17. Formulation Development and Characterization of Meclizine Hydrochloride Sublimated Fast Dissolving Tablets.

    PubMed

    Vemula, Sateesh Kumar; Vangala, Mohan

    2014-01-01

    The intention of present research is to formulate and develop the meclizine hydrochloride fast dissolving tablets using sublimation method to enhance the dissolution rate. In this study an attempt was made to fasten the drug release from the oral tablets by incorporating the superdisintegrants and camphor as sublimating agent. The prepared fast dissolving tablets were subjected to precompression properties and characterized for hardness, weight variation, friability, wetting time, water absorption ratio, and disintegration time. From in vitro release studies, the formulation F9 exhibited fast release profile of about 98.61% in 30 min, and disintegration time 47 sec when compared with other formulations. The percent drug release in 30 min (Q 30) and initial dissolution rate for formulation F9 was 98.61 ± 0.25%, 3.29%/min. These were very much higher compared to marketed tablets (65.43 ± 0.57%, 2.18%/min). The dissolution efficiency was found to be 63.37 and it is increased by 1.4-fold with F9 FDT tablets compared to marketed tablets. Differential scanning calorimetry and Fourier transform infrared spectroscopy studies revealed that there was no possibility of interactions. Thus the development of meclizine hydrochloride fast dissolving tablets by sublimation method is a suitable approach to improve the dissolution rate. PMID:27355021

  18. Formulation Design and Optimization of Orodispersible Tablets of Quetiapine Fumarate by Sublimation Method

    PubMed Central

    Kalyankar, P.; Panzade, P.; Lahoti, S.

    2015-01-01

    The objective of present study was to formulate directly compressible orodispersible tablets of quetiapine fumarate by sublimation method with a view to enhance patient compliance. A full 32 factorial design was used to investigate the effect of two variables viz., concentration of Indion 414 and camphor. Indion 414 (3-5 % w/w) was used as superdisintegrant and camphor (5-15 % w/w) as subliming agent. The tablets were evaluated for thickness, weight variation, hardness, friability, content uniformity, wetting time, porosity, in vitro disintegration time and in vitro drug release. The formulation containing 5% w/w of Indion 414 and 5% w/w camphor was emerged as promising based on evaluation parameters. The disintegration time for optimized formulation was 18.66 s. The tablet surface was evaluated for presence of pores by scanning electron microscopy before and after sublimation. Differential scanning colorimetric study did not indicate any drug excipient incompatibility, either during mixing or after compression. The effect of independent variables on disintegration time, % drug release and friability is presented graphically by surface response plots. Short-term stability studies on the optimized formulation indicated no significant changes in drug content and in vitro disintegration time. The directly compressible orodispersible tablets of quetiapine fumarate with lower friability, greater drug release and shorter disintegration times were obtained using Indion 414 and camphor at optimum concentrations. PMID:26180271

  19. Properties of Filamentary Sublimation Residues from Dispersions of Clay in Ice

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Parker, T. J.; Saunders, R. S.; Laue, E. G.; Fanale, F. P.

    1985-01-01

    The properties of sublimate residues are of considerable interest in studies of the thermal modeling of Martian and cometary ice surfaces. The study of the formation of sand grains from this mantle on Martian polar ice is also supported by these experiments. To understand these properties, a series of low temperature vacuum experiments were run during which dirty ices that might be expected to be found in Martian polar caps and in comet nuclei were made and then freeze dried. In addition to using particulate material of appropriate grain size and minerology, particle nucleated ices were simulated by dispersing the particulates in the ice so that they did not contact one another. This noncontact dispersion was the most difficult requirement to achieve but the most rewarding in that it produced a new filamentary sublimate residue that was not a relic of the frozen dispersion. If the siliceous particles are allowed to touch one another in the ice the structure of the contacting particles in the ice will remain as a relic after the ice is sublimed away.

  20. Formulation Development and Characterization of Meclizine Hydrochloride Sublimated Fast Dissolving Tablets

    PubMed Central

    Vangala, Mohan

    2014-01-01

    The intention of present research is to formulate and develop the meclizine hydrochloride fast dissolving tablets using sublimation method to enhance the dissolution rate. In this study an attempt was made to fasten the drug release from the oral tablets by incorporating the superdisintegrants and camphor as sublimating agent. The prepared fast dissolving tablets were subjected to precompression properties and characterized for hardness, weight variation, friability, wetting time, water absorption ratio, and disintegration time. From in vitro release studies, the formulation F9 exhibited fast release profile of about 98.61% in 30 min, and disintegration time 47 sec when compared with other formulations. The percent drug release in 30 min (Q30) and initial dissolution rate for formulation F9 was 98.61 ± 0.25%, 3.29%/min. These were very much higher compared to marketed tablets (65.43 ± 0.57%, 2.18%/min). The dissolution efficiency was found to be 63.37 and it is increased by 1.4-fold with F9 FDT tablets compared to marketed tablets. Differential scanning calorimetry and Fourier transform infrared spectroscopy studies revealed that there was no possibility of interactions. Thus the development of meclizine hydrochloride fast dissolving tablets by sublimation method is a suitable approach to improve the dissolution rate. PMID:27355021

  1. Tomography-based observation of sublimation and snow metamorphism under temperature gradient and advective flow

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Schneebeli, M.; Steinfeld, A.

    2015-09-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray micro-tomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. The sublimation of water vapor for saturated air flowing across the snow sample was experimentally determined via variations of the porous ice structure. The results showed that the exothermic gas-to-solid phase change is favorable vis-a-vis the endothermic solid-to-gas phase change, thus leading to more ice deposition than ice sublimation. Sublimation has a marked effect on the structural change of the ice matrix but diffusion of water vapor in the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong reposition process of water molecules on the ice grains is relevant for atmospheric chemistry.

  2. A method to measure winter precipitation and sublimation under global warming conditions

    NASA Astrophysics Data System (ADS)

    Herndl, Markus; Slawitsch, Veronika; von Unold, Georg

    2016-04-01

    Winter precipitation and snow sublimation are fundamental components of the alpine moisture budget. Much work has been done in the study of these processes and its important contribution to the annual water balance. Due to the above-average sensitivity of the alpine region to climate change, a change in the importance and magnitude of these water balance parameters can be expected. To determine these effects, a lysimeter-facility enclosed in an open-field climate manipulation experiment was established in 2015 at AREC Raumberg-Gumpenstein which is able to measure winter precipitation and sublimation under global warming conditions. In this facility, six monolithic lysimeters are equipped with a snow cover monitoring system, which separates the snow cover above the lysimeter automatically from the surrounding snow cover. Three of those lysimeters were exposed to a +3°C scenario and three lysimeters to ambient conditions. Weight data are recorded every minute and therefore it is possible to get high-resolution information about the water balance parameter in winter. First results over two snow event periods showed that the system can measure very accurately winter precipitation and sublimation especially in comparison with other measurement systems and usually used models. Also first trends confirm that higher winter temperatures may affect snow water equivalent and snow cover duration. With more data during the next years using this method, it is possible to quantify the influence of global warming on water balance parameters during the winter periods.

  3. EVIDENCE FOR A RECEDING DUST SUBLIMATION REGION AROUND A SUPERMASSIVE BLACK HOLE

    SciTech Connect

    Kishimoto, Makoto; Tristram, Konrad R. W.; Weigelt, Gerd; Hönig, Sebastian F.; Antonucci, Robert; Millan-Gabet, Rafael; Barvainis, Richard; Millour, Florentin; Kotani, Takayuki

    2013-10-01

    The near-IR emission in Type 1 active galactic nuclei (AGNs) is thought to be dominated by the thermal radiation from dust grains that are heated by the central engine in the UV/optical and are almost at the sublimation temperature. A brightening of the central source can thus further sublimate the innermost dust, leading to an increase in the radius of the near-IR emitting region. Such changes in radius have been indirectly probed by the measurements of the changes in the time lag between the near-IR and UV/optical light variation. Here we report direct evidence for such a receding sublimation region through the near-IR interferometry of the brightest Type 1 AGN in NGC 4151. The increase in radius follows a significant brightening of the central engine with a delay of at least a few years, which is thus the implied destruction timescale of the innermost dust distribution. Compiling historic flux variations and radius measurements, we also infer the reformation timescale for the inner dust distribution to be several years in this galactic nucleus. More specifically and quantitatively, we find that the radius at a given time seems to be correlated with a long-term average of the flux over the previous several (∼6) years, instead of the instantaneous flux. Finally, we also report measurements of three more Type 1 AGNs newly observed with the Keck interferometer, as well as the second epoch measurements for three other AGNs.

  4. Vapor pressures and sublimation enthalpies of seven heteroatomic aromatic hydrocarbons measured using the Knudsen effusion technique.

    PubMed

    Goldfarb, Jillian L; Suuberg, Eric M

    2010-06-01

    The vapor pressures of seven heteroatom-containing cyclic aromatic hydrocarbons, ranging in molecular weight from (168.19 to 208.21) grams plus sign in circlemol(-1) were measured over the temperature range of (301 to 486) Kelvin using the isothermal Knudsen effusion technique. The compounds measured include: anthraquinone, 9-fluorenone, 9-fluorenone oxime, phenoxazine, phenoxathiin and 9H-pyrido[3,4-b]indole. These solid-state sublimation measurements provided values that are compared to vapor pressures of parent aromatic compounds (anthracene and fluorene) and to others with substituent groups in order to examine the effects of alcohol, ketone, pyridine, and pyrrole functionality on this property. The enthalpies and entropies of sublimation for each compound were determined from the Clausius-Clapeyron equation. Though there is no consistent trend in terms of the effects of substitutions on changes in the enthalpy or entropy of sublimation, we note that the prevalence of enthalpic or entropic driving forces on vapor pressure depend on molecule-specific factors and not merely molecular weight of the substituents.

  5. Vapor pressures and sublimation enthalpies of seven heteroatomic aromatic hydrocarbons measured using the Knudsen effusion technique

    PubMed Central

    Goldfarb, Jillian L.; Suuberg, Eric M.

    2010-01-01

    The vapor pressures of seven heteroatom-containing cyclic aromatic hydrocarbons, ranging in molecular weight from (168.19 to 208.21) grams⊕mol−1 were measured over the temperature range of (301 to 486) Kelvin using the isothermal Knudsen effusion technique. The compounds measured include: anthraquinone, 9-fluorenone, 9-fluorenone oxime, phenoxazine, phenoxathiin and 9H-pyrido[3,4-b]indole. These solid-state sublimation measurements provided values that are compared to vapor pressures of parent aromatic compounds (anthracene and fluorene) and to others with substituent groups in order to examine the effects of alcohol, ketone, pyridine, and pyrrole functionality on this property. The enthalpies and entropies of sublimation for each compound were determined from the Clausius-Clapeyron equation. Though there is no consistent trend in terms of the effects of substitutions on changes in the enthalpy or entropy of sublimation, we note that the prevalence of enthalpic or entropic driving forces on vapor pressure depend on molecule-specific factors and not merely molecular weight of the substituents. PMID:20414454

  6. Deviations from Ideal Sublimation Vapor Pressure Behavior in Mixtures of Polycyclic Aromatic Compounds with Interacting Heteroatoms.

    PubMed

    Goldfarb, Jillian L; Suuberg, Eric M

    2010-08-01

    Despite the relatively small atomic fraction of a given heteroatom in a binary mixture of polycyclic aromatic compounds (PAC), the inclusion of heteroatomic substituted compounds can significantly impact mixture vapor pressure behavior over a wide range of temperatures. The vapor pressures of several binary PAC mixtures containing various heteroatoms show varying behavior, from practically ideal behavior following Raoult's law to significant deviations from ideality depending on the heteroatom(s) present in the mixture. Mixtures were synthesized using the quench-cool technique with equimolar amounts of two PAC, both containing heteroatoms such as aldehyde, carboxyl, nitrogen, and sulfur substituent groups. For some mixtures, deviation from ideality is inversely related to temperature, though in other cases we see deviations from ideality increasing with temperature, whereas some appear independent of temperature. Most commonly we see lower vapor pressures than predicted by Raoult's law, which indicates that the interacting heteroatoms prefer the solid mixture phase as opposed to the vapor phase. Although negative deviations predominate from Raoult's Law, the varying mixtures investigated show both higher and lower enthalpies and entropies of sublimation than predicted. In each mixture, a higher enthalpy of sublimation leads to higher entropy of sublimation than predicted, and vice versa.

  7. Deviations from Ideal Sublimation Vapor Pressure Behavior in Mixtures of Polycyclic Aromatic Compounds with Interacting Heteroatoms

    PubMed Central

    Goldfarb, Jillian L.; Suuberg, Eric M.

    2013-01-01

    Despite the relatively small atomic fraction of a given heteroatom in a binary mixture of polycyclic aromatic compounds (PAC), the inclusion of heteroatomic substituted compounds can significantly impact mixture vapor pressure behavior over a wide range of temperatures. The vapor pressures of several binary PAC mixtures containing various heteroatoms show varying behavior, from practically ideal behavior following Raoult’s law to significant deviations from ideality depending on the heteroatom(s) present in the mixture. Mixtures were synthesized using the quench-cool technique with equimolar amounts of two PAC, both containing heteroatoms such as aldehyde, carboxyl, nitrogen, and sulfur substituent groups. For some mixtures, deviation from ideality is inversely related to temperature, though in other cases we see deviations from ideality increasing with temperature, whereas some appear independent of temperature. Most commonly we see lower vapor pressures than predicted by Raoult’s law, which indicates that the interacting heteroatoms prefer the solid mixture phase as opposed to the vapor phase. Although negative deviations predominate from Raoult’s Law, the varying mixtures investigated show both higher and lower enthalpies and entropies of sublimation than predicted. In each mixture, a higher enthalpy of sublimation leads to higher entropy of sublimation than predicted, and vice versa. PMID:23807818

  8. Formation of the dumbbell-like nucleus of a comet by sublimation

    NASA Astrophysics Data System (ADS)

    Vavilov, Dmitrii; Medvedev, Yurii; Zatitskiy, Pavel

    2016-10-01

    The nucleus of the comet 67P/Churyumov-Gerasimenko is an elongated body with a deep groove around the middle. There are also other comets that look like dumbbells (e.g. 103P/Hartley 2, 19P/Borrelly, 1P/Halley). Two most probable interpretations are discussed in the scientific society. The first hypothesis explains the creation of such an object as sticking of two cometesimals during the process of formation. The second one suggests that the sublimation process can change the nucleus shape and make a groove in the middle.In this work we consider the second hypothesis. It was assumed that the spin axis of the nucleus is perpendicular to the plane of the cometary orbit and that initially the nucleus shape is a sphere. Thus, the problem is represented as a differential equation, which describes the change of the cometary nucleus. We solved this equation analytically. It was shown that initially a convex cometary nucleus (e.g. a sphere), consisting of homogeneous material, can not be transformed into a dumbbell-like body by the influence of sublimation. However, assuming that the density in the centre of the nucleus is less than on the surface, a groove can arise on the equator of the cometary nucleus as a result of sublimation.

  9. Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry.

    PubMed

    Hikal, Walid M; Weeks, Brandon L

    2014-07-01

    The diffusion coefficients of explosives are crucial in their trace detection and lifetime estimation. We report on the experimental values of diffusion coefficients of three of the most important explosives in both military and industry: TNT, PETN, and RDX. Thermogravimetric analysis (TGA) was used to determine the sublimation rates of TNT, PETN, and RDX powders in the form of cylindrical billets. The TGA was calibrated using ferrocene as a standard material of well-characterized sublimation rates and vapor pressures to determine the vapor pressures of TNT, PETN, and RDX. The determined sublimation rates and vapor pressures were used to indirectly determine the diffusion coefficients of TNT, PETN, and RDX for the first time. A linear log-log dependence of the diffusion coefficients on temperature is observed for the three materials. The diffusion coefficients of TNT, PETN, and RDX at 273 K were determined to be 5.76×10(-6)m(2)/sec, 4.94×10(-6)m(2)/s, and 5.89×10(-6)m(2)/s, respectively. Values are in excellent agreement with the theoretical values in literature.

  10. Step bunching process induced by the flow of steps at the sublimated crystal surface

    NASA Astrophysics Data System (ADS)

    Załuska-Kotur, Magdalena A.; KrzyŻewski, Filip

    2012-06-01

    Stepped GaN(0001) surface is studied by the kinetic Monte Carlo method and compared with the model based on Burton-Cabrera-Frank equations. Successive stages of surface pattern evolution during high temperature sublimation process are discussed. At low sublimation rates, clear, well defined step bunches form. The process happens in the absence or for very low Schwoebel barriers. Bunches of several steps are well separated, move slowly and stay straight. Character of the process changes for more rapid sublimation process where double step formations become dominant and together with meanders and local bunches assemble into the less ordered surface pattern. Solution of the analytic equations written for one dimensional system confirms that step bunching is induced by the particle advection caused by step movement. Relative particle flow towards moving steps becomes important when due to the low Schwoebel barrier both sides of the step are symmetric. Simulations show that in the opposite limit of very high Schwoebel barrier steps fracture and rough surface builds up.

  11. Thermal Stability and Anisotropic Sublimation of Two-Dimensional Colloidal Bi2Te3and Bi2Se3Nanocrystals

    NASA Astrophysics Data System (ADS)

    Buha, Joka; Gaspari, Roberto; Del Rio Castillo, Antonio Esau; Bonaccorso, Francesco; Manna, Liberato

    2016-07-01

    The structural and compositional stabilities of two dimensional 2D Bi2Te3 and Bi2Se3 nanocrystals, produced by both colloidal synthesis and by liquid phase exfoliation, were studied by in situ transmission electron microscopy TEM during annealing at temperatures between 350 and 500 C. The sublimation process induced by annealing is structurally and chemically anisotropic and takes place through the preferential dismantling of the prismatic 011-0 type planes, and through the preferential sublimation of Te or Se.

  12. Experimental Investigation of Sublimation of Ice at Subsonic and Supersonic Speeds and Its Relation to Heat Transfer

    NASA Technical Reports Server (NTRS)

    Coles, Willard D.; Ruggeri, Robert S.

    1954-01-01

    An experimental investigation was conducted in a 3.84- by 10-inch tunnel to determine the mass transfer by sublimation, heat transfer, and skin friction for an iced surface on a flat plate for Mach numbers of 0.4, 0.6, and 0.8 and pressure altitudes to 30,000 feet. Measurements of rates of sublimation were also made for a Mach number of 1.3 at a pressure altitude of 30,000 feet. The results show that the parameters of sublimation and heat transfer were 40 to 50 percent greater for an iced surface than was the bare-plate heat-transfer parameter. For iced surfaces of equivalent roughness, the ratio of sublimation to heat-transfer parameters was found to be 0.90. The sublimation data obtained at a Mach number of 1.3 showed no appreciable deviation from that obtained at subsonic speeds. The data obtained indicate that sublimation as a means of removing ice formations of appreciable thickness is usually too slow to be of mach value in the de-icing of aircraft at high altitudes.

  13. Impact of sublimation losses in the mass balance of glaciers in semi-arid mountain regions

    NASA Astrophysics Data System (ADS)

    Ayala, Alvaro; Pellicciotti, Francesca; Burlando, Paolo; MacDonell, Shelley; McPhee, James

    2016-04-01

    Glaciers in semiarid mountain regions may lose an important part of their winter snow accumulation through sublimation processes that are enhanced by the high-elevation, intense radiation and dry atmosphere of these environments. As glaciers in these regions secure freshwater resources to lower valleys during summer and drought periods, it is important to advance in a detailed quantification of their sublimation losses. However, logistical concerns and complex meteorological features make the measuring and modelling of glacier mass balances a difficult task. In this study, we estimated the spring-summer mass balances of Tapado and Juncal Norte glaciers in the semiarid Andes of north-central Chile by running a distributed energy balance model that accounts for melt, refreezing and sublimation from the surface and blowing snow. Meteorological input data were available from on-glacier Automatic Weather Stations (AWS) that were installed during the ablation season of years 2005-06, 2008-09, 2013-14 and 2014-15. Snow pits, ablation stakes and a time-lapse camera that provided surface albedo were also available. Distributed air temperature and wind speed were dynamically downscaled from NASA MERRA reanalysis using the software WINDSIM and validated against the data from the AWSs. The rest of the meteorological variables were distributed using statistical relations with air temperature derived from the AWSs data. Initial snow conditions were estimated using satellite images and distributed manual snow depth measurements. Preliminary results show that total ablation diminishes with elevation and that, during the early ablation season (October-November), melt is the main ablation component below 4500 m with sublimation dominating the ablation above this elevation. Above 4500 m an important fraction of meltwater refreezes during night. As the ablation season advances (December-February), melt extends to higher elevations, refreezing plays a smaller role and sublimation is

  14. Laboratory experiments to explore the sediment transport capacity of carbon dioxide sublimation under martian conditions

    NASA Astrophysics Data System (ADS)

    Sylvest, Matthew; Conway, Susan; Patel, Manish; Dixon, John; Barnes, Adam

    2015-04-01

    Every spring, the solid carbon dioxide deposited over the martian high latitudes sublimates. Several, unusual surface features, including dark spots and flows on sand dunes, as well as recent activity in martian gullies, have been associated with this CO2 sublimation. Water and/or brines have also been proposed as potential agents for these events, but the timing of these phenomena suggest CO2 sublimation is more likely. However, the exact mechanism by which CO2 sublimation moves sediment is not fully understood, and this understanding is required to validate the CO2 hypothesis. Here we present the results of the first ever laboratory simulations of this process under martian conditions, and show that significant quantities of loose sediment can be transported. The centrepiece of the apparatus is a 1m diameter, 2m long Mars simulation chamber, housed at The Open University, UK. JSC Mars-1A regolith simulant was formed into a slope, inside a box, ~30 cm long, 23 cm wide by 12 cm deep. The box is constructed of coiled, copper tubing to allow cooling of the regolith by liquid nitrogen. The experimental procedure consists of four stages: 1) establishment of a dry atmosphere in the chamber, 2) cooling the regolith sufficiently to support condensation of CO2 frost at reduced pressure, 3) introduction of cooled CO2 gas above the regolith to deposit as frost, and 4) video recording the surface evolution under radiant heating (~100 mins). Two High Definition digital video cameras were mounted above the box and image pairs taken from the videos were then used to create digital elevation models (DEMs) in Agisoft Photoscan at regular intervals. In our initial experiments we performed four experimental runs where the slope was set at or near the angle of repose (~30°). In each case we observed mass wasting events triggered by the sublimation of the deposited CO2 over the whole duration of the insolation. The highest levels of activity occurred in the first third of the run

  15. Lo/Ld phase coexistence modulation induced by GM1.

    PubMed

    Puff, Nicolas; Watanabe, Chiho; Seigneuret, Michel; Angelova, Miglena I; Staneva, Galya

    2014-08-01

    Lipid rafts are assumed to undergo biologically important size-modulations from nanorafts to microrafts. Due to the complexity of cellular membranes, model systems become important tools, especially for the investigation of the factors affecting "raft-like" Lo domain size and the search for Lo nanodomains as precursors in Lo microdomain formation. Because lipid compositional change is the primary mechanism by which a cell can alter membrane phase behavior, we studied the effect of the ganglioside GM1 concentration on the Lo/Ld lateral phase separation in PC/SM/Chol/GM1 bilayers. GM1 above 1mol % abolishes the formation of the micrometer-scale Lo domains observed in GUVs. However, the apparently homogeneous phase observed in optical microscopy corresponds in fact, within a certain temperature range, to a Lo/Ld lateral phase separation taking place below the optical resolution. This nanoscale phase separation is revealed by fluorescence spectroscopy, including C12NBD-PC self-quenching and Laurdan GP measurements, and is supported by Gaussian spectral decomposition analysis. The temperature of formation of nanoscale Lo phase domains over an Ld phase is determined, and is shifted to higher values when the GM1 content increases. A "morphological" phase diagram could be made, and it displays three regions corresponding respectively to Lo/Ld micrometric phase separation, Lo/Ld nanometric phase separation, and a homogeneous Ld phase. We therefore show that a lipid only-based mechanism is able to control the existence and the sizes of phase-separated membrane domains. GM1 could act on the line tension, "arresting" domain growth and thereby stabilizing Lo nanodomains. PMID:24835016

  16. Dynamical screening of van der Waals interactions in nanostructured solids: Sublimation of fullerenes

    SciTech Connect

    Tao, Jianmin; Yang, Jing; Rappe, Andrew M.

    2015-04-28

    Sublimation energy is one of the most important properties of molecular crystals, but it is difficult to study, because the attractive long-range van der Waals (vdW) interaction plays an important role. Here, we apply efficient semilocal density functional theory (DFT), corrected with the dynamically screened vdW interaction (DFT + vdW), the Rutgers-Chalmers nonlocal vdW-DF, and the pairwise-based dispersion-corrected DFT-D2 developed by Grimme and co-workers, to study the sublimation of fullerenes. We find that the short-range part, which accounts for the interaction due to the orbital overlap between fullerenes, is negligibly small. Our calculation shows that there exists a strong screening effect on the vdW interaction arising from the valence electrons of fullerenes. On the other hand, higher-order contributions can be as important as the leading-order term. The reasons are that (i) the surface of fullerene molecules is metallic and thus highly polarizable, (ii) the band gap of fullerene solids is small (less than 2 eV), and (iii) fullerene molecules in the solid phase are so densely packed, yielding the high valence electron density and small equilibrium intermolecular distances (the first nearest neighbor distance is only about 10 Å for C{sub 60}). However, these two effects make opposite contributions, leading to significant error cancellation between these two contributions. We demonstrate that, by considering higher-order contributions and the dynamical screening, the DFT + vdW method can yield sublimation energies of fullerenes in good agreement with reference values, followed by vdW-DF and DFT-D2. The insights from this study are important for a better understanding of the long-range nature of vdW interactions in nanostructured solids.

  17. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide.

    PubMed

    de Heer, Walt A; Berger, Claire; Ruan, Ming; Sprinkle, Mike; Li, Xuebin; Hu, Yike; Zhang, Baiqian; Hankinson, John; Conrad, Edward

    2011-10-11

    After the pioneering investigations into graphene-based electronics at Georgia Tech, great strides have been made developing epitaxial graphene on silicon carbide (EG) as a new electronic material. EG has not only demonstrated its potential for large scale applications, it also has become an important material for fundamental two-dimensional electron gas physics. It was long known that graphene mono and multilayers grow on SiC crystals at high temperatures in ultrahigh vacuum. At these temperatures, silicon sublimes from the surface and the carbon rich surface layer transforms to graphene. However the quality of the graphene produced in ultrahigh vacuum is poor due to the high sublimation rates at relatively low temperatures. The Georgia Tech team developed growth methods involving encapsulating the SiC crystals in graphite enclosures, thereby sequestering the evaporated silicon and bringing growth process closer to equilibrium. In this confinement controlled sublimation (CCS) process, very high-quality graphene is grown on both polar faces of the SiC crystals. Since 2003, over 50 publications used CCS grown graphene, where it is known as the "furnace grown" graphene. Graphene multilayers grown on the carbon-terminated face of SiC, using the CCS method, were shown to consist of decoupled high mobility graphene layers. The CCS method is now applied on structured silicon carbide surfaces to produce high mobility nano-patterned graphene structures thereby demonstrating that EG is a viable contender for next-generation electronics. Here we present for the first time the CCS method that outperforms other epitaxial graphene production methods.

  18. Sublimation-driven erosion on Hyperion: Topographic analysis and landform simulation model tests

    NASA Astrophysics Data System (ADS)

    Howard, Alan D.; Moore, Jeffrey M.; Schenk, Paul M.; White, Oliver L.; Spencer, John

    2012-07-01

    The unique appearance of Hyperion can be explained in part by the loss to space of ballistic ejecta during impact events, as was proposed by Thomas et al. (Thomas, P.C. et al. [2007a]. Icarus 190, 573-584). We conclude that such loss is a partial explanation, accounting for the lack of appreciable intercrater plains on a saturation-cratered surface. In order to create the smooth surfaces and the reticulate, honeycomb pattern of narrow divides between old craters, appreciable subsequent modification of crater morphology must occur through mass-wasting processes accompanied by sublimation, probably facilitated by the loss of CO2 as a component of the relief-supporting matrix of the bedrock. During early stages of crater degradation, steep, crenulate bedrock slopes occupy the upper crater walls with abrupt transitions downslope onto smooth slopes near the angle of repose mantled by mass wasting debris, as can be seen within young craters. Long-continued mass wasting eventually results in slopes totally mantled with particulate debris. This mass wasting effectively destroys small craters, at least in part accounting for the paucity of sub-kilometer craters on Hyperion. Surface temperatures measured by Cassini CIRS range from 58 K to 127 K and imply a surface thermal inertia of 11 ± 2 J m-2 K-1 s-1/2 and bolometric albedo ranging from 0.05 to 0.33. Resulting H2O sublimation rates are only tens of cm per billion years for most of the surface, so the evolution of the observed landforms is likely to require sublimation of more volatile species such as CO2.

  19. Piezoelectric crystal microbalance measurements of enthalpy of sublimation of C2-C9 dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.

    2016-02-01

    We present here a novel experimental set-up that is able to measure the enthalpy of sublimation of a given compound by means of piezoelectric crystal microbalances (PCMs). The PCM sensors have already been used for space measurements, such as for the detection of organic and non-organic volatile species and refractory materials in planetary environments. In Earth atmospherics applications, PCMs can be also used to obtain some physical-chemical processes concerning the volatile organic compounds (VOCs) present in atmospheric environments. The experimental set-up has been developed and tested on dicarboxylic acids. In this work, a temperature-controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC recondensed onto the PCM quartz crystal, allowing the determination of the deposition rate. From the measurements of deposition rates, it has been possible to infer the enthalpy of sublimation of adipic acid, i.e. ΔHsub : 141.6 ± 0.8 kJ mol-1, succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1, and azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1. The results obtained show an accuracy of 1 % for succinic, adipic, and azelaic acid and within 5 % for oxalic acid and are in very good agreement with previous works (within 6 % for adipic, succinic, and oxalic acid and within 11 % or larger for azelaic acid).

  20. Measuring Enthalpy of Sublimation of Volatiles by Means of Piezoelectric Crystal Microbalances

    NASA Astrophysics Data System (ADS)

    Dirri, Fabrizio; Palomba, Ernesto; Longobardo, Andrea; Zampetti, Emiliano

    2016-09-01

    Piezoelectric Crystal Microbalances (PCM's) are widely used to study the chemical processes involving volatile compounds in any environment, such as condensation process. Since PCM's are miniaturized sensor, they are very suitable for planetary in situ missions, where can be used to detect and to measure the mass amount of astrobiologically significant compounds, such as water and organics. This work focuses on the realization and testing of a new experimental setup, able to characterize volatiles which can be found in a planetary environment. In particular the enthalpy of sublimation of some dicarboxylic acids has been measured. The importance of dicarboxylic acids in planetology and astrobiology is due to the fact that they have been detected in carbonaceous chondritic material (e.g. Murchinson), among the most pristine material present in our Solar System. In this work, a sample of acid was heated in an effusion cell up to its sublimation. For a set of temperatures (from 30 °C to 75 °C), the deposition rate on the PCM surface has been measured. From these measurements, it has been possible to infer the enthalpy of sublimation of Adipic acid, i.e. ΔH = 141.6 ± 0.8 kJ/mol and Succinic acid, i.e. ΔH = 113.3 ± 1.3 kJ/mol. This technique has so demonstrated to be a good choice to recognise a single compound or a mixture (with an analysis upstream) even if some improvements concerning the thermal stabilization of the system will be implemented in order to enhance the results' accuracy. The experiment has been performed in support of the VISTA (Volatile In Situ Thermogravimetry Analyzer) project, which is included in the scientific payload of the ESA MarcoPolo-R mission study.

  1. Piezoelectric crystal microbalance measurements of enthalpy of sublimation of C2-C9 dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.

    2015-07-01

    We present here a novel experimental setup able to measure the enthalpy of sublimation of a given compound by means of Piezoelectric Crystal Microbalances (PCM). This experiment was performed in the TG-Lab facility in IAPS-INAF, dedicated to the development of TGA sensors for space measurements, such as detection of organic and non-organic volatile species and refractory materials in planetary environments. In order to study physical-chemical processes concerning the Volatile Organic Compounds (VOC) present in atmospheric environments, the setup has been tested on Dicarboxylic acids. Acids with low molecular weight are among the components of organic fraction of particulate matter in the atmosphere, coming from different sources (biogenic and anthropogenic). Considering their relative abundance, it is useful to consider Dicarboxylic acid as "markers" to define the biogenic or anthropogenic origin of the aerosol, thus obtaining some information of the emission sources. In this work, a temperature controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC re-condensed onto the PCM quartz crystal allowing the determination of the deposition rate. From the measurements of deposition rates, it was possible to infer the enthalpy of sublimation of Adipic acid, i.e. Δ Hsub: 141.6 ± 0.8 kJ mol-1, Succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, Oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1 and Azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1 (weight average values). The results obtained are in very good agreement with literature within 10 % for the Adipic, Succinic and Oxalic acid.

  2. Time Variability of the Dust Sublimation Zones in Pre-Main Sequence Disk Systems

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Carpenter, W. J.; Grady, C. A.; Russel, R. W.; Lynch, D. K.; Rudy, R. J.; Mazuk, S. M.; Venturini, C. C.; Kimes, R. L.; Beerman, L. C.; Ablordeppey, K. E.; Puetter, R. C.; Wisnewski, P.; Brafford, S. M.; Polomski, E. R.; Hammel, H. B.; Perry, R. B.; Wilde, J. L.

    2007-01-01

    The dust sublimation zone (DSZ) is the region of pre-main sequence (PMS) disks where dust grains most easily anneal, sublime, and condense out of the gas. Because of this, it is a location where crystalline material may be enhanced and redistributed throughout the rest of the disk. A decade-long program to monitor the thermal emission of the grains located in this region demonstrates that large changes in emitted flux occur in many systems. Changes in the thermal emission between 3 and 13.5 microns were observed in HD 31648 (MWC 480), HD 163296 (MWC 275), and DG Tau. This emission is consistent with it being produced at the DSZ, where the transition from a disk of gas to one of gas+dust occurs. In the case of DG Tau, the outbursts were accompanied by increased emission on the 10 micron silicate band on one occasion, while on another occasion it went into absorption. This requires lofting of the material above the disk into the line of sight. Such changes will affect the determination of the inner disk structure obtained through interferometry measurements, and this has been confirmed in the case of HD 163296. Cyclic variations in the heating of the DSZ will lead to the annealing of large grains, the sublimation of smaller grains, possibly followed by re-condensation as the zone enters a cooling phase. Lofting of dust above the disk plane, and outward acceleration by stellar winds and radiation pressure, can re-distribute the processed material to cooler regions of the disk, where cometesimals form. This processing is consistent with the detection of the preferential concentration of large crystalline grains in the inner few AU of PMS disks using interferometric spectroscopy with the VLTI.

  3. Novel Strategy to Fabricate Floating Drug Delivery System Based on Sublimation Technique.

    PubMed

    Huanbutta, Kampanart; Limmatvapirat, Sontaya; Sungthongjeen, Srisagul; Sriamornsak, Pornsak

    2016-06-01

    The present study aims to develop floating drug delivery system by sublimation of ammonium carbonate (AMC). The core tablets contain a model drug, hydrochlorothiazide, and various levels (i.e., 0-50% w/w) of AMC. The tablets were then coated with different amounts of the polyacrylate polymers (i.e., Eudragit® RL100, Eudragit® RS100, and the mixture of Eudragit® RL100 and Eudragit® RS100 at 1:1 ratio). The coated tablets were kept at ambient temperature (25°C) or cured at 70°C for 12 h before further investigation. The floating and drug release behaviors of the tablets were performed in simulated gastric fluid USP without pepsin at 37°C. The results showed that high amount of AMC induced the floating of the tablets. The coated tablets containing 40 and 50% AMC floated longer than 8 h with a time-to-float of about 3 min. The sublimation of AMC from the core tablets decreased the density of system, causing floating of the tablets. The tablets coated with Eudragit® RL100 floated at a faster rate than those of Eudragit® RS100. Even the coating level of polymer did not influence the time-to-float and floating time of coated tablets containing the same amount of AMC, the drug release from the tablets coated with higher coating level of polymer showed slower drug release. The results suggested that the sublimation technique using AMC is promising for the development of floating drug delivery system.

  4. Sublime Science

    ERIC Educational Resources Information Center

    Girod, Mark

    2007-01-01

    One of the shortcomings in most efforts to integrate art and science is that many people have a shallow understanding of art, which inevitably leads to shallow connections between art and science. Coloring drawings of planets, building sculptures of volcanoes, and decorating scientific diagrams are fine activities, but they do not link science and…

  5. Low-z LoBAL QSOs: orientation or evolution?

    NASA Astrophysics Data System (ADS)

    Lazarova, M.

    2015-09-01

    Low-ionization Broad Absorption Line QSOs (LoBALs) are redder type-1 QSOs characterized by broad, blue-shifted absorptions of Mg II, indicating gas outflows at velocities up to 0.2c. There is still much debate regarding the nature of these objects. In the orientation paradigm, LoBALs are present in all QSOs, but can only be observed along limited lines of sight that skim the obscuring torus. Conversely, in the evolution paradigm LoBALS have been interpreted as being a short phase in the early stages of the QSO lifecycle, when QSO-driven winds are expelling gas and dust from the central regions. To explore the suggestion by previous work that LoBALS are more likely to be observed in mergers and recently fueled QSOs, we conducted a morphological analysis of a volume-limited sample of 22 SDSS-selected LoBALs at 0.5 < z < 0.6 using HST/WFC3. We find signs of recent or ongoing tidal interaction in 2/3 of the host galaxies, and detailed surface brightness analysis with GALFIT indicates that the vast majority have early-type morphologies. Our results confirm the high rate of mergers in LoBAL hosts and they further show that LoBALs can be observed at any stage of the merger when QSO activity is expected, according to numerical simulations. While the morphologies of these objects may support the evolution paradigm, their SEDs do not suggest they are a population of QSOs statistically different from optically-selected type-1 QSOs. We discuss the two possible explanations for LoBALs implied by our results.

  6. An experimental study of the sublimation of water ice and the release of trapped gases

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Donn, B.

    1991-01-01

    The release of the more volatile component of the Ar/H2O, CO/H2O, and CO2/H2O mixtures presently studied during sublimation is found to occur in several discrete temperature regions; gas release correlates with IR spectrum changes of the solid ice. Relative peak intensities during warming are noted to depend on the initial gas/H2O ratio. The irradiation of CO- or CO2-containing ices respectively led to the release of CO2 and CO, as well as the initial species. The implications of these results for cometary behavior are discussed.

  7. IO - Could SO2 condensation/sublimation cause the sometimes reported post-eclipse brightening

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Cruikshank, D. P.; Banerdt, W. B.

    1981-01-01

    It is shown that each of the three quantifiable brightening characteristics (i.e., amplitude, time-scale /half-life/, and temporal variability) suggests that brightening of Io may be due to condensation and sublimation of SO2 frost. This is concentrated within a region that encompasses both the subsolar points at the time of entrance into and emergence from eclipse, and volcanic sources. Qualitatively and intuitively, an SO2 frost hypothesis is found to provide good possibilities for explaining any variations in Io's ability to brighten, which may occur on a time scale of years.

  8. Formation of graphene layers by vacuum sublimation of silicon carbide using a scanning heat source

    SciTech Connect

    Dmitriev, A. N.; Cherednichenko, D. I.

    2011-12-15

    The kinetics of surface graphitization during dissociative vacuum evaporation of silicon carbide, under the effect of a scanning heat source, is studied. A model of the process is developed. The model provides a means for theoretically treating the dynamics of formation and the number of residual carbon atomic layers. The vapor stoichiometric coefficient which ensures the minimization of the number of structural defects in graphene, is optimized at the sublimation temperature: {theta} = 1/{eta}(T{sub max}). The proposed method can be used as a basis for graphene production technology.

  9. Crystal structure of the growth surface of silicon carbide obtained by sublimation

    SciTech Connect

    Babayants, G. I. Popenko, V. A.

    2007-03-15

    Structural study of polycrystalline silicon carbide obtained by sublimation performed via X-ray luminescence and X-ray diffraction analysis. It is shown that chemical vapor deposition of silicon carbide results in the formation of grains with the (00.1), (01.1), and (12.3) crystallographic planes parallel to the growth surface. The grains with the (00.1) growth planes are characterized by perfect structure and by red luminescence. Domains with yellow luminescence have a mosaic structure with the (01.1) and (12.3) growth planes.

  10. Modeling of Sublimation-Driven Erosion and Ice Pinnacle Formation on Callisto

    NASA Astrophysics Data System (ADS)

    White, Oliver; Umurhan, Orkan M.; Howard, Alan D.; Moore, Jeffrey M.

    2014-11-01

    Most of the areas observed at high resolution on the Galilean satellite Callisto have a morphology that implies sublimation-driven landform modification and mass wasting is at work [Moore et al., 1999]. These areas comprise rolling dark plains with interspersed bright pinnacles. Howard and Moore [2008], using the MARSSIM landform evolution model, simulated evolution of this landscape as a combination of bedrock volatile sublimation, mass wasting of the dark, non-coherent residue, and redeposition of ice at high-elevation cold traps sheltered from thermal re-radiation to form the pinnacles.The goal of our study is to further investigate the details of pinnacle formation by refining this model, and by constraining values for the variable environmental parameters within the model such that they are consistent with the current understanding of Callisto’s surface environment. We present the results of the updated model and our experimentation with varying key parameters.Our refinement of the model has caused us to revise the result of Howard and Moore [2008] that the pinnacles represent an ice cover of several tens to hundreds of meters. Instead, our results indicate an ice coverage reaching several meters at most, a figure that is consistent with the prediction of Moore et al. [2004]. We have also modified the model such that ice contained within the pinnacles is now subject to sublimation itself.Using Fick’s Law to solve for the diffusive transport rate between a volatile table and an atmosphere [Moore et al., 1996], we have determined that the loss rate of H2O ice from the volatile-refractory bedrock through sublimation is too slow 10-20 kg m-2 s-1) to account for the formation of the ice pinnacles, and that a volatile mixture that contains H2O ice is necessary to facilitate its loss. We find that CO2 hydrate fulfills this role well: loss rates of CO2●6H2O 10-10 kg m-2 s-1) are sufficient to produce deposited ice thicknesses reaching several meters, with the

  11. Dust clouds around red giant stars - Evidence of sublimating comet disks?

    NASA Astrophysics Data System (ADS)

    Matese, J. J.; Whitmire, D. P.; Reynolds, R. T.

    1989-09-01

    The dust production by disk comets around intermediate mass stars evolving into red giants is studied, focusing on AGB supergiants. The model of Iben and Renzini (1983) is used to study the observed dust mass loss for AGB stars. An expression is obtained for the comet disk net dust production rate and values of the radius and black body temperature corresponding to peak sublimation are calculated for a range of stellar masses. Also, the fractional amount of dust released from a cometesimal disk during a classical nova outburst is estimated.

  12. The Anomalous Drift of Comet ISON (C/2012 S1) due to Sublimating Volatiles near Perihelion

    NASA Astrophysics Data System (ADS)

    Steckloff, J. K.; Keane, J. V.; Milam, S.; Coulson, I.; Knight, M. M.

    2014-12-01

    Prior to perihelion passage on 28 November 2013, the observed right ascension (RA) and declination (Dec) coordinates of comet C/2012 S1 (ISON) significantly lagged the predicted JPL (# 53) ephemeris. We show that this "braking effect" is due to a dynamic pressure exerted by sublimating gases on the sunward side of the nucleus [1]. Comet ISON was observed November 23 through November 28 using the SCUBA-2 sub-millimeter camera on the James Clerk Maxwell Telescope (JCMT). Imaging is achieved simultaneously at wavelengths of 850 μm and 450 μm, with RA and Dec determined from the central peak in the coma brightness [2]. When comet ISON was first detected at 850 μm, the 1-mm-sized dust particles were tightly bound to the comet nucleus until at least November 23. Three days later, the dust was less tightly bound, elongated and diffuse, spread out over as much as 120 arc seconds (80,000 km) in the anti-solar direction, suggesting a fragmentation event. We compute the average braking velocity of the nucleus of comet ISON by first measuring the distance between the central RA position and the predicted JPL ephemeris. We then calculate the change in this distance between subsequent observations, and divide this value by the elapsed time between the two observations to yield an average drift velocity of the nucleus over this time interval. We assume that comet ISON, like a number of Jupiter Family Comets visited by spacecraft [3], has low thermal inertia. Thus, the sublimating gases are emitted predominantly on the sunward side of the nucleus. Additionally, we assume that water ice dominates the sublimating gases [4]. We then calculate the pressure on the surface of the nucleus due to the emitted gases using the procedure described in [1]. We match the average drift velocity of the nucleus due to this sublimation pressure with the observed average drift velocity from the JCMT observations, which is sensitive to the size of the body, allowing us to estimate the size of the

  13. Magnetic bistability in a submonolayer of sublimated Fe4 single-molecule magnets.

    PubMed

    Malavolti, Luigi; Lanzilotto, Valeria; Ninova, Silviya; Poggini, Lorenzo; Cimatti, Irene; Cortigiani, Brunetto; Margheriti, Ludovica; Chiappe, Daniele; Otero, Edwige; Sainctavit, Philippe; Totti, Federico; Cornia, Andrea; Mannini, Matteo; Sessoli, Roberta

    2015-01-14

    We demonstrate that Fe4 molecules can be deposited on gold by thermal sublimation in ultra-high vacuum with retention of single molecule magnet behavior. A magnetic hysteresis comparable to that found in bulk samples is indeed observed when a submonolayer film is studied by X-ray magnetic circular dichroism. Scanning tunneling microscopy evidences that Fe4 molecules are assembled in a two-dimensional lattice with short-range hexagonal order and coexist with a smaller contaminant. The presence of intact Fe4 molecules and the retention of their bistable magnetic behavior on the gold surface are supported by density functional theory calculations.

  14. The formation of striae within cometary dust tails by a sublimation-driven YORP-like effect

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan K.; Jacobson, Seth A.

    2016-01-01

    Sublimating gas molecules scatter off of the surface of an icy body in the same manner as photons (Lambertian Scattering). This means that for every photon-driven body force, there should be a sublimation-driven analog that affects icy bodies. Thermal photons emitted from the surfaces of asymmetrically shaped bodies in the Solar System generate net torques that change the spin rates of these bodies over time. The long-term averaging of this torque is called the YORP effect. Here we propose a sublimation-driven analog to the YORP effect (Sublimation-YORP or SYORP), in which sublimating gas molecules emitted from the surfaces of icy bodies in the Solar System also generate net torques on the bodies. However, sublimating gas molecules carry ∼104-105 times more momentum away from the body than thermal photons, resulting in much greater body torques. Previous studies of sublimative torques focused on emissions from highly localized sources on the surfaces of Jupiter Family Comet nuclei, and have therefore required extensive empirical observations to predict the resulting behavior of the body. By contrast, SYORP applies to non-localized emissions across the entire body, which likely dominates sublimation-drive torques on small icy chunks and dynamically young comets outside the Jupiter Family, and can therefore be applied without high-resolution spacecraft observations of their surfaces. Instead, we repurpose the well-tested mathematical machinery of the YORP effect to account for sublimation-driven torques. We show how an SYORP-driven mechanism best matches observations of the rarely observed, Sun-oriented linear features (striae) in the tails of comets, whose formation mechanism has remained enigmatic for decades. The SYORP effect naturally explains why striae tend to be observed between near-perihelion and ∼1 AU from the Sun for comets with perihelia less than 0.6 AU, and solves longstanding problems with moving enough material into the cometary tail to form

  15. LoFASM's FPGA-based Digital Acquisition System

    NASA Astrophysics Data System (ADS)

    Dartez, Louis P.; Jenet, F.; Creighton, T. D.; Ford, A. J.; Hicks, B.; Hinojosa, J.; Kassim, N. E.; Price, R. H.; Stovall, K.; Ray, P. S.; Taylor, G. B.

    2014-01-01

    The Low Frequency All Sky Monitor (LoFASM) is a distributed array of dipole antennas that are sensitive to radio frequencies from 10 to 88 MHz. LoFASM consists of antennas and front end electronics that were originally developed for the Long Wavelength Array (LWA) by the U.S. Naval Research Lab, the University of New Mexico, Virginia Tech, and the Jet Propulsion Laboratory. LoFASM, funded by the U.S. Department of Defense, will initially consist of 4 stations, each consisting of 12 dual-polarization dipole antenna stands. The primary science goals of LoFASM will be the detection and study of low-frequency radio transients, a high priority science goal as deemed by the National Research Council's decadal survey. The data acquisition system for the LoFASM antenna array will be using Field Programmable Gate Array (FPGA) technology to implement a real time full Stokes spectrometer and data recorder. This poster presents an overview of the current design and digital architecture of a single station of the LoFASM array as well as the status of the entire project.

  16. An investigation on the mechanism of sublimed DHB matrix on molecular ion yields in SIMS imaging of brain tissue.

    PubMed

    Dowlatshahi Pour, Masoumeh; Malmberg, Per; Ewing, Andrew

    2016-05-01

    We have characterized the use of sublimation to deposit matrix-assisted laser desorption/ionization (MALDI) matrices in secondary ion mass spectrometry (SIMS) analysis, i.e. matrix-enhanced SIMS (ME-SIMS), a common surface modification method to enhance sensitivity for larger molecules and to increase the production of intact molecular ions. We use sublimation to apply a thin layer of a conventional MALDI matrix, 2,5-dihydroxybenzoic acid (DHB), onto rat brain cerebellum tissue to show how this technique can be used to enhance molecular yields in SIMS while still retaining a lateral resolution around 2 μm and also to investigate the mechanism of this enhancement. The results here illustrate that cholesterol, which is a dominant lipid species in the brain, is decreased on the tissue surface after deposition of matrix, particularly in white matter. The decrease of cholesterol is followed by an increased ion yield of several other lipid species. Depth profiling of the sublimed rat brain reveals that the lipid species are de facto extracted by the DHB matrix and concentrated in the top most layers of the sublimed matrix. This extraction/concentration of lipids directly leads to an increase of higher mass lipid ion yield. It is also possible that the decrease of cholesterol decreases the potential suppression of ion yield caused by cholesterol migration to the tissue surface. This result provides us with significant insights into the possible mechanisms involved when using sublimation to deposit this matrix in ME-SIMS. PMID:26922337

  17. Formulation and evaluation of fast dissolving tablets of cinnarizine using superdisintegrant blends and subliming material

    PubMed Central

    Basu, Biswajit; Bagadiya, Abhishek; Makwana, Sagar; Vipul, Vora; Batt, Devraj; Dharamsi, Abhay

    2011-01-01

    The aim of this investigation was to develop fast dissolving tablet of cinnarizine. A combination of super disintegrants, i.e., sodium starch glycolate (SSG) and crosscarmellose sodium (CCS) were used along with camphor as a subliming material. An optimized concentration of camphor was added to aid the porosity of the tablet. A 32 full factorial design was applied to investigate the combined effect of two formulation variables: Amount of SSG and CCS. Infrared (IR) spectroscopy was performed to identify the physicochemical interaction between drug and polymer. IR spectroscopy showed that there is no interaction of drug with polymer. In the present study, direct compression was used to prepare the tablets. The powder mixtures were compressed into tablet using flat face multi punch tablet machine. Camphor was sublimed from the tablet by exposing the tablet to vacuum drier at 60°C for 12 hours. All the formulations were evaluated for their characteristics such as average weight, hardness, wetting time, friability, content uniformity, dispersion time (DT), and dissolution rate. An optimized tablet formulation (F 9) was found to have good hardness of 3.30 ± 0.10 kg/cm2, wetting time of 42.33 ± 4.04 seconds, DT of 34.67 ± 1.53 seconds, and cumulative drug release of not less than 99% in 16 minutes. PMID:22247895

  18. Darwin's sublime: the contest between reason and imagination in On the Origin of Species.

    PubMed

    Bradley, Benjamin Sylvester

    2011-01-01

    Recent Darwin scholarship has provided grounds for recognising the Origin as a literary as well as a scientific achievement. While Darwin was an acute observer, a gifted experimentalist and indefatigable theorist, this essay argues that it was also crucial to his impact that the Origin transcended the putative divide between the scientific and the literary. Analysis of Darwin's development as a writer between his journal-keeping on HMS Beagle and his construction of the Origin argues the latter draws on the pattern of the Romantic or Kantian sublime. The Origin repeatedly uses strategies which challenge the natural-theological appeal to the imagination in conceiving nature. Darwin's sublime coaches the Origin's readers into a position from which to envision nature that reduces and contains its otherwise overwhelming complexity. As such, it was Darwin's literary achievement that enabled him to fashion a new 'habit of looking at things in a given way' that is the centrepiece of the scientific revolution bearing his name. PMID:20665077

  19. Formulation and evaluation of fast dissolving tablets of cinnarizine using superdisintegrant blends and subliming material.

    PubMed

    Basu, Biswajit; Bagadiya, Abhishek; Makwana, Sagar; Vipul, Vora; Batt, Devraj; Dharamsi, Abhay

    2011-10-01

    The aim of this investigation was to develop fast dissolving tablet of cinnarizine. A combination of super disintegrants, i.e., sodium starch glycolate (SSG) and crosscarmellose sodium (CCS) were used along with camphor as a subliming material. An optimized concentration of camphor was added to aid the porosity of the tablet. A 3(2) full factorial design was applied to investigate the combined effect of two formulation variables: Amount of SSG and CCS. Infrared (IR) spectroscopy was performed to identify the physicochemical interaction between drug and polymer. IR spectroscopy showed that there is no interaction of drug with polymer. In the present study, direct compression was used to prepare the tablets. The powder mixtures were compressed into tablet using flat face multi punch tablet machine. Camphor was sublimed from the tablet by exposing the tablet to vacuum drier at 60°C for 12 hours. All the formulations were evaluated for their characteristics such as average weight, hardness, wetting time, friability, content uniformity, dispersion time (DT), and dissolution rate. An optimized tablet formulation (F 9) was found to have good hardness of 3.30 ± 0.10 kg/cm(2), wetting time of 42.33 ± 4.04 seconds, DT of 34.67 ± 1.53 seconds, and cumulative drug release of not less than 99% in 16 minutes. PMID:22247895

  20. EVOLUTION OF SIZE DISTRIBUTION OF ICY GRAINS BY SUBLIMATION AND CONDENSATION

    SciTech Connect

    Kuroiwa, Takuto; Sirono, Sin-iti

    2011-09-20

    In the outer part of a protoplanetary disk, dust grains consist of silicate core covered by an ice mantle. A temporal heating event in the disk results in sublimation of the ice mantle. After the end of the heating event, as the temperature decreases, H{sub 2}O molecules recondense on the surface of the dust grain. Ultimately, the dust grain is covered by an ice mantle. Because the equilibrium vapor pressure on the grain surface decreases with the grain size, a large grain grows faster than a small grain. As a result, the size of an icy dust grain changes as a result of the heating event. The change in size also affects the mechanical properties of the dust aggregates formed by the icy grains. In this paper, we investigated the evolution of the size distribution of icy dust grains during sublimation and condensation. We found that the size evolution of icy grains can be divided into two stages. In the first stage, the icy grains grow through condensation of H{sub 2}O molecules. In the second stage, the size of grains changes further as H{sub 2}O molecules are transferred between icy grains while the surrounding gas condenses. The size distribution of the icy dust grains becomes bimodal, with a small number of relatively large grains and many small grains without an icy mantle. Possible effects of the size change on the evolution of icy dust aggregates are discussed.

  1. GaAs surface cleaning by thermal oxidation and sublimation in molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Saito, Junji; Nanbu, Kazuo; Ishikawa, Tomonori; Kondo, Kazuo

    1988-01-01

    GaAs surface cleaning by thermal oxidation and sublimation prior to molecular-beam-epitaxial growth has been investigated as a means of reducing the carrier depletion at the substrate and epitaxial layer interface. The carrier depletion between the substrate and epitaxial films, measured by a C-V carrier profiling technique, was shown to decrease significantly with an increase in the thickness of the thermal oxidation. The concentration of carbon contamination near the substrate-epitaxial interface was measured using secondary ion mass spectroscopy. The carbon concentration correlated very well with the carrier depletion. Therefore, the main origin of the carrier depletion is believed to be the carbon concentration of the initial growth surface. Based on these results, the thermal oxidation and sublimation of a semi-insulating GaAs substrate was successfully applied to improve the mobility and sheet concentration of the two-dimensional electron gas in selectively doped GaAs/N-Al0.3Ga0.7As heterostructures with very thin GaAs buffer layers.

  2. Sublimation from icy jets as a probe of the interstellar volatile content of comets.

    PubMed

    Blake, G A; Qi, C; Hogerheijde, M R; Gurwell, M A; Muhleman, D O

    1999-03-18

    Comets are some of the most primitive bodies left over from the Solar System's early history. They may preserve both interstellar material and material from the proto-solar nebula, and so studies of their volatile components can provide clues about the evolution of gases and ices, as a collapsing molecular cloud transforms into a mature planetary system. Previous observations of emission from rotational transitions in molecules have averaged over large areas of the inner coma, and therefore include both molecules that sublimed from the nucleus and those that result from subsequent chemical processes in the coma Here we present high-resolution observations of emission from the molecules HNC, DCN and HDO associated with comet Hale-Bopp. Our data reveal arc-like structures-icy jets-offset from (but close to) the nucleus. The measured abundance ratios on 1-3" scales are substantially different from those on larger scales, and cannot be accounted for by models of chemical processes in the coma; they are, however, similar to the values observed in the cores of dense interstellar clouds and young stellar objects. We therefore propose that sublimation from millimetre-sized icy grains ejected from the nucleus provides access to relatively unaltered volatiles. The D/H ratios inferred from our data suggest that, by mass, Hale-Bopp (and by inference the outer regions of the early solar nebula) consists of > or =15-40% of largely unprocessed interstellar material.

  3. [Research on the polycrystalline CdS thin films prepared by close-spaced sublimation].

    PubMed

    Yang, Ding-Yu; Xia, Geng-Pei; Zheng, Jia-Gui; Feng, Liang-Huan; Cai, Ya-Ping

    2009-01-01

    In the present paper, the factors of influence on the deposition rate of CdS films prepared by close-spaced sublimation (CSS) were first studied systematically, and it was found from the experiments that the deposition rate increased with the raised temperature of sublimation source, while decreased with the raised substrate temperature and the deposition pressure. The structure, morphology and light transmittance of the prepared samples were tested subsequently, and the results show: (1) The CdS films deposited under different oxygen partial pressure all present predominating growth lattice orientation (103), and further more the films will be strengthened after annealed under CdCl2 atmosphere. (2) The AFM images of CdS show that the films are compact and uniform in grain diameter, and the grain size becomes larger with the increased substrate temperature. Along with it, the film roughness was also augmented. (3) The transmittance in the shortwave region of visible light through the CdS films would be enhanced when its thickness is reduced, and that will help improve the shortwave spectral response of CdTe solar cells. Finally, the prepared CdS films were employed to fabricate CdTe solar cells, which have achieved a conversion efficiency of 10.29%, and thus the feasibility of CSS process in the manufacture of CdTe solar cells was validated primarily.

  4. Determination of the AlN Sublimation Growth Precursors from ab initio Modeling

    NASA Astrophysics Data System (ADS)

    Li, Yanxin; Brenner, Donald

    2003-03-01

    Concentrations of gas-phase species and their supersaturation with respect to crystal growth in an AlN sublimation chamber were calculated using an ab initio model that considers 16 gas-phase species. To determine the degree of supersaturation, two calculations were carried out. In the first, concentrations were calculated subject to experimental pressure and temperature conditions with no constraints on the amount of N and Al. In the second calculation, the concentrations were constrained such that the amount of N and Al matched that at the solid source, mimicking a chamber where the inlet N2 and sublimation source are the only sources of Al and N. The calculations predict that Al is supersaturated and in high concentration, and therefore is likely a growth precursor in agreement with assumptions in prior modeling studies. In contrast, while our calculations show that N2 is present in high concentrations, it is not supersaturated and therefore is not a growth precursor, in contrast to assumptions made in prior models. Instead, our calculations show that Al3N, while in lower concentration than N2, is supersaturated and therefore is likely a sourcs for N addition to the crystal. This result resolves apparent discrepancies in the literature in which the sticking coefficient for N2, which must be assumed very small to match experimental growth rates, varies from model to model.

  5. Sublimation growth of AlN crystals: Growth mode and structure evolution

    NASA Astrophysics Data System (ADS)

    Yakimova, R.; Kakanakova-Georgieva, A.; Yazdi, G. R.; Gueorguiev, G. K.; Syväjärvi, M.

    2005-07-01

    The aim of this study has been to realize growth conditions suitable for seeded sublimation growth of AlN and to understand the relationship between external growth parameters and the initial stages of growth with respect to growth mode and structure evolution. Close space sublimation growth geometry has been used in a RF-heated furnace employing high-purity graphite coated by TaC with a possibility to change the growth environment from C- to Ta-rich. Influence of certain impurities on the initially formed crystallites with respect to their shape, size and population has been considered. It is shown that some impurity containing vapor molecules may act as transport agents and suppliers of nitrogen for the AlN growth. SiC seeds, both bare and with MOCVD AlN buffer, have been employed. By varying the process conditions we have grown crystals with different habits, e.g. from needles, columnar- and plate-like, to freestanding quasi-bulk material. The growth temperature ranged 1600-2000 °C whereas the optimal external nitrogen pressure varied from 200 to 700 mbar. There is a narrow parameter window in the relationship temperature-pressure for the evolution of different structural forms. Growth modes with respect to process conditions are discussed.

  6. Evaluation of AlN single-crystal grown by sublimation method

    NASA Astrophysics Data System (ADS)

    Miyanaga, Michimasa; Mizuhara, Naho; Fujiwara, Shinsuke; Shimazu, Mitsuru; Nakahata, Hideaki; Kawase, Tomohiro

    2007-03-01

    AlN single crystals with thicknesses from 3 μm to 4 mm were grown on SiC substrates by the sublimation method. Evaluations of crystalline quality were performed by X-ray diffraction (XRD), transmission electron microscope (TEM) and etch pit density (EPD) measurement. The FWHM of the XRD rocking curve for AlN (1 0 1¯ 0) reflection was as small as 26 arcsec for the sample of 4 mm thickness, and the dislocation density was estimated to be less than 10 6 cm -2 by EPD measurement in spite of the large lattice mismatch of 1% between AlN and SiC. TEM observation was conducted to investigate the mechanism of the improvement of the crystalline quality. We observed the significant reduction of dislocations above the interface, allowing growth of 3 μm-4 mm thick AlN with high crystalline quality. These results show that the commercial production of large-sized, high-quality substrates of AlN single crystal is possible using the sublimation technique.

  7. Sublimation growth of AlN bulk crystals in Ta crucibles

    NASA Astrophysics Data System (ADS)

    Mokhov, E. N.; Avdeev, O. V.; Barash, I. S.; Chemekova, T. Yu.; Roenkov, A. D.; Segal, A. S.; Wolfson, A. A.; Makarov, Yu. N.; Ramm, M. G.; Helava, H.

    2005-07-01

    AlN single crystals of 0.5 in diameter and up to 10-12 mm long have been grown by sublimation/recondensation in pre-treated tantalum crucibles. Growth of 45 mm diameter and 4 mm long polycrystalline AlN boules has also been demonstrated. After high-temperature pre-treatment in a carbon-containing atmosphere, the tantalum crucibles can be used for 300-400 h of AlN sublimation growth at 2200-2300 °C, without Ta impurities or additional C impurities in concentrations higher than 100 ppm appearing in the crystals. Both self-seeded growth of polycrystalline AlN on the crucible lid and seeded growth of single-crystal AlN on (0 0 0 1) SiC plates and AlN/SiC templates are demonstrated. X-ray diffractometry and topography of the grown crystals show a block structure with the characteristic block size >200 nm and the scatter of FWHMs of ω-scans in the range of 60-750 arcsec. Test slicing and polishing of the crystals and test MBE growth of AlGaN/AlN structures on the obtained AlN substrates have been successfully performed.

  8. Computational analysis for dry-ice sublimation assisted CO2 jet impingement flow

    NASA Astrophysics Data System (ADS)

    Kwak, Songmi; Lee, Jaeseon

    2015-11-01

    The flow and heat transfer characteristics of the novel gas-solid two-phase jet impingement are investigated computationally. When the high pressure carbon dioxide (CO2) flow passes through a nozzle or orifice, it experiences the sudden expansion and the rapid temperature drop occurred by Joule-Thomson effect. This temperature drop causes the lower bulk jet fluid temperature than the CO2 sublimation line, so dry-ice becomes formed. By using CO2 gas-solid mixture as a working fluid of jet impingement, it is expected the heat transfer enhancement can be achieved due to the low bulk temperature and the additional phase change latent heat. In this study, 2D CFD model is created to predict the cooling effect of gas-solid CO2 jet. The gas-solid CO2 flow is considered by Euler-Lagrangian approach of mixed phase and the additional heat transfer module is embedded to account for the sublimation phenomena of the solid state CO2. The jet flow and heat transfer performance of gas-solid CO2 jet is investigated by the variance of flow parameter like Reynolds number, solid phase concentration and jet geometries.

  9. Formation of gullies on Mars by debris flows triggered by CO2 sublimation

    NASA Astrophysics Data System (ADS)

    Pilorget, C.; Forget, F.

    2016-01-01

    Martian gully landforms resemble terrestrial debris flows formed by the action of liquid water and have thus been interpreted as evidence for potential habitable environments on Mars within the past few millennia. However, ongoing gully formation has been detected under surface conditions much too cold for liquid water, but at times in the martian year when a thin layer of seasonal CO2 frost is present and defrosting above the regolith. These observations suggest that the CO2 condensation-sublimation cycle could play a role in gully formation. Here we use a thermo-physical numerical model of the martian regolith underlying a CO2 ice layer and atmosphere to show that the pores beneath the ice layer can be filled with CO2 ice and subjected to extreme pressure variations during the defrosting season. The subsequent gas fluxes can destabilize the regolith material and induce gas-lubricated debris flows with geomorphic characteristics similar to martian gullies. Moreover, we find that subsurface CO2 ice condensation, sublimation and pressurization occurs at conditions found at latitudes and slope orientations where gullies are observed. We conclude that martian gullies can result from geologic dry ice processes that have no terrestrial analogues and do not require liquid water. Such dry ice processes may have helped shape the evolution of landforms elsewhere on the martian surface.

  10. TERRESTRIAL PLANET FORMATION THROUGH ACCRETION OF SUBLIMATING ICY PLANETESIMALS IN A COLD NEBULA

    SciTech Connect

    Machida, Ryosuke; Abe, Yutaka

    2010-06-20

    Most of the theories of the solar system formation stand on the assumption that the formation of planetesimals occurs in a transparent (i.e., optically thin) nebula, in which H{sub 2}O ice is unstable at the formation region of the terrestrial planet due to direct stellar irradiation. However, in the astronomical context, it is confirmed by both observations and numerical models that protoplanetary disks are initially opaque (i.e., optically thick) owing to floating small dust particles, and the interior of the disk is colder than the transparent disk. If planetesimals are formed in the opaque cold nebula, they should be mainly composed of H{sub 2}O ice, even at the formation region of terrestrial planets. Abundant icy material would help the formation of planetesimals through enhancement of the dust amount. Icy planetesimals start sublimation when the protoplanetary disk gets transparent through clearance of small dust particles. Here, we investigated the consequence of such icy planetesimal formation through numerical simulations of the competition between the sublimation and accretion of icy planetesimals. It was shown that various types of planets ranging from rocky planets to water-ball planets can be formed inside the location of the snow line of a transparent disk depending on the disk mass and the time evolution of disk transparency. We found size-dependent water content of icy planetesimals, which suggests potential difference in the redox state between meteorites and terrestrial planets at the same distance from the central star.

  11. Comet Encke - Precession of the spin axis, nongravitational motion, and sublimation

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.; Sekanina, Z.

    1979-01-01

    From the observed light curve of P/Encke the jet force from sublimation is calculated both as a (precessing) torque and as a (perturbing) force transverse to the radius vector. An integral iteration is carried out over 59 perihelion passages, 1786-1977, to fit the previously determined nongravitational transverse force and to derive the precession of the spin axis. It is shown that the spin axis turned more than 100 degrees in longitude and almost 30 degrees in latitude from 1786 to 1977, but appears to have been almost fixed in direction for hundreds of revolutions before 1700. It is suggested that ejected meteoroidal debris accumulated on the currently less active hemisphere, insulating it to maintain a low activity level. A tentative rotation period of 6 h 33 min is derived, using Whipple's halo method. The suggested spinup rate is 21 min/century, while the current rate of relative mass loss by sublimation is 0.09% of the comet's mass per revolution. Moreover, the mass of the nucleus is estimated at less than 10 to the 16th grams, and its oblateness at less than 4%.

  12. The chemical and structural properties of PECVD polymerized ferrocene deposited by the sublimation of the precursor material

    NASA Astrophysics Data System (ADS)

    Enlow, Jesse; Jiang, Hao; Peri, Someshwar; Foster, Mark; Bunning, Timothy

    2007-03-01

    The novel deposition of metal containing precursor materials in plasma enhanced chemical vapor deposition through the sublimation of the material in its solid state is investigated. The chemical composition and structural properties of these thin films, examined through XPS, variable angle ellipsometry, FT-IR, AFM and X-ray reflectivity, are reported. Using a custom designed plasma chamber and sublimation system, pp-ferrocene films have shown high chemical and mechanical robustness, are pin-hole free, have extremely smooth surface morphologies, and are highly crosslinked through the bulk. The use of sublimation in PECVD opens up the deposition technique to a wealth of new metal containing monomers. And with PECVD you retain a high amount of control over the deposition parameters and resultant film compositions for these organo-metallic films.

  13. Latent fingermark visualisation using reduced-pressure sublimation of copper phthalocyanine.

    PubMed

    Williams, Geraint; ap Llwyd Dafydd, Hefin; Watts, Alun; McMurray, Neil

    2011-01-30

    The sublimation of copper phthalocyanine (CuPc) at a temperature of 400°C under conditions of reduced pressure is shown to be an effective method of developing latent fingermarks on certain types of surface. Preliminary experiments on a limited selection of surfaces including paper, plastic and ceramic tiles were carried out using a simple apparatus consisting of a vacuum desiccator and a resistive heater. CuPc from the gas phase condenses preferentially on fingermark deposits, revealing deep blue patterns with excellent ridge detail clarity on light coloured surfaces. The technique is shown to be most effective on porous surfaces such as paper, but relatively ineffective on non-porous ceramic and plastic surfaces.

  14. Growth of CdTe thin films on graphene by close-spaced sublimation method

    SciTech Connect

    Jung, Younghun; Yang, Gwangseok; Kim, Jihyun; Chun, Seungju; Kim, Donghwan

    2013-12-02

    CdTe thin films grown on bi-layer graphene were demonstrated by using the close-spaced sublimation method, where CdTe was selectively grown on the graphene. The density of the CdTe domains was increased with increasing the number of the defective sites in the graphene, which was controlled by the duration of UV exposure. The CdTe growth rate on the bi-layer graphene electrodes was 400 nm/min with a bandgap energy of 1.45–1.49 eV. Scanning electron microscopy, micro-Raman spectroscopy, micro-photoluminescence, and X-ray diffraction technique were used to confirm the high quality of the CdTe thin films grown on the graphene electrodes.

  15. Selective Area Sublimation: A Simple Top-down Route for GaN-Based Nanowire Fabrication.

    PubMed

    Damilano, B; Vézian, S; Brault, J; Alloing, B; Massies, J

    2016-03-01

    Post-growth in situ partial SiNx masking of GaN-based epitaxial layers grown in a molecular beam epitaxy reactor is used to get GaN selective area sublimation (SAS) by high temperature annealing. Using this top-down approach, nanowires (NWs) with nanometer scale diameter are obtained from GaN and InxGa1-xN/GaN quantum well epitaxial structures. After GaN regrowth on InxGa1-xN/GaN NWs resulting from SAS, InxGa1-xN quantum disks (QDisks) with nanometer sizes in the three dimensions are formed. Low temperature microphotoluminescence experiments demonstrate QDisk multilines photon emission around 3 eV with individual line widths of 1-2 meV.

  16. HiRISE Images of the Sublimation of the Southern Seasonal Polar Cap of Mars

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; McEwen, A. S.; Okubo, C.; Byrne, S.; Becker, T.; Kieffer, H.; Mellon, M.; HiRISE Team

    2007-12-01

    The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) has returned images with unprecedented resolution of Mars southern seasonal CO2 polar cap. Several high latitude sites were selected for systematic monitoring throughout the spring as the seasonal cap sublimed away. The capability of MRO to turn off-nadir enabled acquisition of stereo pairs to study the topography. HiRISE color capability distinguishes processes involving dust and frost. Color images show evidence of localized migration of frost as dark spots sublimate. Unique landforms are found in the cryptic terrain[1] region of Mars polar cap. These unusual landforms have narrow channels emanating radially, dubbed spiders[2]. Fans of dust blown by the prevailing wind are hypothesized to come from gas jets of CO2 subliming beneath translucent seasonal ice [3]. HiRISE images show a wide variety of morphologies of narrow channels. In some regions deep narrow channels converge radially, while in others the high channel density is more akin to lace. A smooth evolution of one form to another has been observed. Channels converge dendritically, often uphill, consistent with formation by flowing gas, not liquid. More dust fans are observed in regions of spiders than in lace, suggesting that the sublimating gas under the seasonal ice builds up more pressure and can entrain more dust in spidery areas. These differing terrain types are found within a single 6 x 10 km image, which has presumably homogeneous weather, thus a uniform layer of ice and exposure to atmospheric dust. HiRiSE images show that the dust fans tend to emerge from low spots, where the subsurface is accessed, then are blown up and out onto the surface of the seasonal ice. The fans evolve from a thin diffuse covering to thick blankets filling in the narrow channels. We hypothesize that dust collects in the channels, and that these relatively more permeable dust-filled channels form pathways for the next seasons

  17. Near-equilibrium growth of thick, high quality beta-SiC by sublimation

    NASA Technical Reports Server (NTRS)

    Shields, Virgil B.; Fekade, Konjit; Spencer, Michael G.

    1993-01-01

    A close spaced near-equilibrium growth technique was used to produce thick, high quality epitaxial layers of beta-silicon carbide. The process utilized a sublimation method to grow morphologically smooth layers. The beta silicon carbide growth layers varied from about 200 to 750 microns in thickness. Chemical vapor deposition grown, 2-10 microns, beta silicon carbide films were used as seeds at 1860 and 1910 C growth temperatures. The respective average growth rates were 20 and 30 microns per hour. The layers are p-type with a 3.1 x 10 exp 17/cu cm carrier concentration. Electrical measurements indicate considerable improvement in the breakdown voltage of Schottky barriers on growth samples. Breakdown values ranged from 25 to 60 V. These measurements represent the highest values reported for 3C-SiC.

  18. The sublimation growth of AlN fibers: transformations in morphology & fiber direction

    NASA Astrophysics Data System (ADS)

    Bao, H. Q.; Chen, X. L.; Li, H.; Wang, G.; Song, B.; Wang, W. J.

    2009-01-01

    The growth of AlN fibers using sublimation method was investigated in the temperature range from 1600 °C to 2000 °C. Large-scale AlN fibers are obtained with diameters from 100 nm to 50 μm and lengths up to several millimeters. The fiber morphology and growth direction are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), and Raman scattering. The fibers change from wire-like to prism-like in morphology and increase in diameter as rising temperatures, accompanying a transformation in axial direction from [10 bar{1}0 ] to [0001]. The transformation in the growth direction is discussed in terms of AlN structure and supersaturation of AlN gas species. These results provide useful information for controlling the growth of large-scale AlN fibers.

  19. Experimental and theoretical analysis of sublimation growth of AlN bulk crystals

    NASA Astrophysics Data System (ADS)

    Makarov, Yu. N.; Avdeev, O. V.; Barash, I. S.; Bazarevskiy, D. S.; Chemekova, T. Yu.; Mokhov, E. N.; Nagalyuk, S. S.; Roenkov, A. D.; Segal, A. S.; Vodakov, Yu. A.; Ramm, M. G.; Davis, S.; Huminic, G.; Helava, H.

    2008-03-01

    The current status of sublimation growth of aluminum nitride (AlN) bulk crystals is discussed. Growth of AlN single-crystal layers on silicon carbide (SiC) seeds in pre-carbonized tantalum crucibles in graphite equipment and of AlN bulk crystals on the AlN layers in tungsten crucibles and equipment is considered. All stages of the technology, including pre-growth processing (preparation of durable crucibles, high-purity AlN sources, and high-quality seeds), seeding on SiC and AlN, growth of bulk AlN crystals, and post-growth processing (calibration, slicing, lapping, polishing, and characterization of the crystals) are described. Special attention is given to "scaling" the technology to grow large-diameter (up to 2 in) AlN crystals, in which connection seeding on large-diameter SiC substrates and lateral overgrowth of the crystals are considered.

  20. Seeded growth of AlN bulk single crystals by sublimation

    NASA Astrophysics Data System (ADS)

    Schlesser, R.; Dalmau, R.; Sitar, Z.

    2002-06-01

    AlN bulk single crystals were grown by sublimation of AlN powder at temperatures of 2100-2300°C in an open crucible geometry in a 400 Torr nitrogen atmosphere. Small, single crystalline AlN c-platelets, prepared by vaporization of Al in a nitrogen atmosphere, were used as seeds. Seeded growth occurred preferentially in the crystallographic c-direction, with growth rates exceeding 500 μm/h, while the seed crystals grew only marginally in the c-plane. Transparent, centimeter-sized AlN single crystals were grown within 24 h. Characterization by X-ray diffraction showed that rocking curves around the (0 0 0 2) reflection were very narrow (25 arcsec full-width at half-maximum), thus indicating very high crystalline quality of the material grown on the seeds.

  1. Relationship between appearance crystalline planes and growth temperatures during sublimation growth of AlN crystals

    NASA Astrophysics Data System (ADS)

    Li, Juan; Hu, Xiaobo; Jiang, Shouzhen; Ning, Lina; Wang, Yingmin; Chen, Xiufang; Xu, Xiangang; Wang, Jiyang; Jiang, Minhua

    2006-07-01

    Self-seeded growth of aluminum nitride single crystals in BN crucible was conducted by sublimation method. It was found that the growth temperature played a critical role in the determination of the crystal morphologies and the appearance crystalline planes. The (0 0 0 1) and pseudo ( 1 1 2¯ 0) planes were often present at low and high temperature, respectively. The self-seeded crystals possess high structural quality which were assessed by high resolution X-ray diffractometry with a full-width at half-maximum of 35.76 arcsec. Step flow mechanism for the growth of AlN similar to SiC growth was confirmed with the aid of atomic force microscopy.

  2. Study on the Seeded Growth of AlN Bulk Crystals by Sublimation

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Krishnan; Iwaya, Motoaki; Kamiyama, Satoshi; Amano, Hiroshi; Akasaki, Isamu; Takagi, Takashi; Noro, Tadashi

    2004-11-01

    Seeded growth of AlN single crystals on 6H-SiC substrates by sublimation has been investigated. Pyrocarbon coated graphite crucibles were used. Temperature profile and source-substrate distance have been found to be the most influencing parameters of crystal growth. AlN crystals of maximum dimension 9 mm (length) × 5 mm (width) × 300 μm (thickness) were grown on SiC substrates and the best crystal showed an XRD omega rocking curve FWHM of 4.81 arcmin. AlN nucleated as independent hexagonal islands and coalesced as growth progressed on. Growth rate of AlN grown on C-face SiC has been found to be higher than that on Si-face SiC. Pyrocarbon coated crucibles have been found to be better suited for AlN growth as the impurity incorporation in to crystals due to crucible was less.

  3. The Durability of Various Crucible Materials for Aluminum Nitride Crystal growth by Sublimation

    SciTech Connect

    Liu,B.; Edgar, J.; Gu, Z.; Zhuang, D.; Raghothamachar, B.; Dudley, M.; Sarua, A.; Kuball, M.; Meyer, H.

    2004-01-01

    Producing high purity aluminum nitride crystals by the sublimation-recondensation technique is difficult due to the inherently reactive crystal growth environment, normally at temperature in excess of 2100 C. The durability of the furnace fixture materials (crucibles, retorts, etc.) at such a high temperature remains a critical problem. In the present study, the suitability of several refractory materials for AlN crystal growth is investigated, including tantalum carbide, niobium carbide, tungsten, graphite, and hot-pressed boron nitride. The thermal and chemical properties and performance of these materials in inert gas, as well as under AlN crystal growth conditions are discussed. TaC and NbC are the most stable crucible materials with very low elemental vapor pressures in the crystal growth system. Compared with refractory material coated graphite crucibles, HPBN crucible is better for AlN self-seeded growth, as crystals tend to nucleate in thin colorless platelets with low dislocation density.

  4. Growth of SiC single crystals on patterned seeds by a sublimation method

    NASA Astrophysics Data System (ADS)

    Yang, Xianglong; Chen, Xiufang; Peng, Yan; Xu, Xiangang; Hu, Xiaobo

    2016-04-01

    Growth of 6H-SiC on patterned seeds with the vertical sidewalls composed of {11-20} and {1-100} faces by a sublimation method at 1700-2000 °C was studied. Anisotropy in lateral growth rates was observed, i.e the growth rate towards <11-20> was faster than that along <1-100>. It was found that free lateral growth on mesas was accompanied by a sharp decrease in the density of threading dislocation. The dependence of lateral growth rate on growth conditions such as reactor pressure and growth temperature was investigated. The factors governing the process of lateral growth of 6H-SiC on patterned seeds were discussed.

  5. Electrical properties of Si:Er/Si layers grown by sublimation molecular-beam epitaxy

    SciTech Connect

    Belova, O. V.; Shabanov, V. N.; Kasatkin, A. P.; Kuznetsov, O. A.; Yablonskii, A. N.; Kuznetsov, M. V.; Kuznetsov, V. P. Kornaukhov, A. V.; Andreev, B. A.; Krasil'nik, Z. F.

    2008-02-15

    Temperature dependences of the concentration and electron Hall mobility in Si:Er/Sr epitaxial layers grown at T = 600 Degree-Sign C and annealed at 700 or 900 Degree-Sign C have been investigated. The layers were grown by sublimation molecular-beam epitaxy in vacuum ({approx}10{sup -5} Pa). The energy levels of Er-related donor centers are located 0.21-0.27 eV below the bottom of the conduction band of Si. In the range 80-300 K, the electron Hall mobility in unannealed Si:Er epitaxial layers was lower than that in Czochralski-grown single crystals by a factor of 3-10. After annealing the layers, the fraction of electron scattering from Er donor centers significantly decreases.

  6. Modeling the Seasonal South Polar Cap Sublimation Rates at Dust Storm Conditions

    NASA Technical Reports Server (NTRS)

    Bonev, B. P.; James, P. B.; Wolff, M. J.; Bjorkman, J. E.; Hansen, G. B.; Benson, J. L.

    2003-01-01

    Carbon dioxide is the principal component of the Martian atmosphere and its interaction with the polar caps forms the CO2 seasonal cycle on the planet. A significant fraction of the atmospheric constituent condenses on the surface during the polar winter and sublimes back during spring. The basic aspects of the CO2 cycle have been outlined by Leighton and Murray and a number of follow-up theoretical models ranging from energy balance to general circulation models have been used to study the physical processes involved in the cycle. This paper presents a modeling study on the seasonal south polar cap subliminiation rate under dust storm conditions. Mars Global Surveyor observations are also presented.

  7. Knudsen measurements of the sublimation and the heat of formation of GeSe

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.; Irene, E. A.

    1974-01-01

    Knudsen effusion studies of the sublimation of polycrystalline GeSe have been performed employing mass spectrometry. The results demonstrate that GeSe vaporizes congruently under present experimental conditions according to the reaction: GeSe(s) yields GeSe(g). The mean values for the third-law heat and second-law entropy of reaction based on direct mass-loss data are 42.0 + or - 1.5 kcal/mole and 42.3 + or - 1.6 eu respectively. From these data the standard heat of formation was calculated to be -10.1 + or - 2.0 kcal/mole, and the standard absolute entropy was determined to be 16.9 + or - 2.0 eu.

  8. Selective Area Sublimation: A Simple Top-down Route for GaN-Based Nanowire Fabrication.

    PubMed

    Damilano, B; Vézian, S; Brault, J; Alloing, B; Massies, J

    2016-03-01

    Post-growth in situ partial SiNx masking of GaN-based epitaxial layers grown in a molecular beam epitaxy reactor is used to get GaN selective area sublimation (SAS) by high temperature annealing. Using this top-down approach, nanowires (NWs) with nanometer scale diameter are obtained from GaN and InxGa1-xN/GaN quantum well epitaxial structures. After GaN regrowth on InxGa1-xN/GaN NWs resulting from SAS, InxGa1-xN quantum disks (QDisks) with nanometer sizes in the three dimensions are formed. Low temperature microphotoluminescence experiments demonstrate QDisk multilines photon emission around 3 eV with individual line widths of 1-2 meV. PMID:26885770

  9. Electrical properties of Si:Er/Si layers grown by sublimation molecular-beam epitaxy

    SciTech Connect

    Belova, O. V.; Shabanov, V. N.; Kasatkin, A. P.; Kuznetsov, O. A.; Yablonskii, A. N.; Kuznetsov, M. V.; Kuznetsov, V. P. Kornaukhov, A. V.; Andreev, B. A.; Krasil'nik, Z. F.

    2008-02-15

    Temperature dependences of the concentration and electron Hall mobility in Si:Er/Sr epitaxial layers grown at T = 600 deg. C and annealed at 700 or 900 deg. C have been investigated. The layers were grown by sublimation molecular-beam epitaxy in vacuum ({approx}10{sup -5} Pa). The energy levels of Er-related donor centers are located 0.21-0.27 eV below the bottom of the conduction band of Si. In the range 80-300 K, the electron Hall mobility in unannealed Si:Er epitaxial layers was lower than that in Czochralski-grown single crystals by a factor of 3-10. After annealing the layers, the fraction of electron scattering from Er donor centers significantly decreases.

  10. Main-belt comets: sublimation-driven activity in the asteroid belt

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.

    2016-01-01

    Our knowledge of main-belt comets (MBCs), which exhibit comet-like activity likely due to the sublimation of volatile ices, yet orbit in the main asteroid belt, has increased greatly since the discovery of the first known MBC, 133P/Elst-Pizarro, in 1996, and their recognition as a new class of solar system objects after the discovery of two more MBCs in 2005. I review work that has been done over the last 10 years to improve our understanding of these enigmatic objects, including the development of systematic discovery methods and diagnostics for distinguishing MBCs from disrupted asteroids (which exhibit comet-like activity due to physical disruptions such as impacts or rotational destabilization). I also discuss efforts to understand the dynamical and thermal properties of these objects.

  11. Enthalpie de sublimation du soufre α : mesure calorimétrique

    NASA Astrophysics Data System (ADS)

    Chastel, R.; Ezzine, M.

    1993-04-01

    An effusion cell-calorimetric method has been used to determine the sublimation enthalpy of α sulfur at 298.15 K. The value 13.05 ± 0. 1 kJ/gram atom, is compared to literature data. L'existence d'une phase vapeur de composition complexe au-dessus de certains éléments rend délicate la définition d'une enthalpie d'évaporation par atome-gramme de l'élément : dans le cas du soufre α, nous avons utilisé une méthode calorimétrique directe qui conduit à : Δ H_{vap(298,15 K)}= 13,05± 0,1 kJ/atome-gramme.

  12. Evaluation of explosive sublimation as the mechanism of nanosecond laser ablation of tungsten under vacuum conditions

    NASA Astrophysics Data System (ADS)

    Oderji, Hassan Yousefi; Farid, Nazar; Sun, Liying; Fu, Cailong; Ding, Hongbin

    2016-08-01

    A non-equilibrium mechanism for nanosecond laser ablation is suggested herein, and its predictions are compared to the results of W experiments performed under vacuum conditions. A mechanism of particle formation is explained via this model, with partial sublimation of the superheated irradiated zone of the target considered to be the mechanism of laser ablation. In this study, a mixture of vapor and particles was explosively generated and subsequently prevented the rest of a laser pulse from reaching its intended target. This mechanism was found to play an essential role in the ablation of W under vacuum conditions, and it provides a theoretical justification for particle formation. Moreover, special considerations were taken into account for the expansion of plasma into a vacuum. The model was evaluated by measuring the mass of ablated particles using a quartz crystal deposition monitor and time-resolved optical emission spectroscopy. The results of this model were found to be in good agreement with experimental values.

  13. Sublimation rate of molecular crystals - role of internal degrees of freedom

    SciTech Connect

    Maiti, A; Zepeda-Ruiz, L A; Gee, R H; Burnham, A

    2007-01-19

    It is a common practice to estimate site desorption rate from crystal surfaces with an Arrhenius expression of the form v{sub eff} exp(-{Delta}E/k{sub B}T), where {Delta}E is an activation barrier to desorb and v{sub eff} is an effective vibrational frequency {approx} 10{sup 12} sec{sup -1}. However, such a formula can lead to several to many orders of magnitude underestimation of sublimation rates in molecular crystals due to internal degrees of freedom. We carry out a quantitative comparison of two energetic molecular crystals with crystals of smaller entities like ice and Argon (solid) and uncover the errors involved as a function of molecule size. In the process, we also develop a formal definition of v{sub eff} and an accurate working expression for equilibrium vapor pressure.

  14. Thermodynamic studies of Fenbufen, Diflunisal, and Flurbiprofen: sublimation, solution and solvation of biphenyl substituted drugs.

    PubMed

    Kurkov, Sergey V; Perlovich, German L

    2008-06-01

    Temperature dependency of saturated vapour pressure for Fenbufen (FBF) was obtained. Heat capacities for Fenbufen, Diflunisal (DIF), and Flurbiprofen (FBP) were measured, and standard thermodynamic functions of sublimation were calculated (FBF: DeltaGsub298=74.0 kJ mol(-1); DeltaHsub298=155.0+/-0.8 kJ mol(-1); DeltaSsub298=272+/-3 J mol(-1)K(-1); DIF: DeltaGsub298=57.6 kJ mol(-1); DeltaHsub298=120.1+/-0.6 kJ mol(-1); DeltaSsub298=210+/-2 J mol(-1)K(-1); FBP: DeltaGsub298=53.3 kJ mol(-1); DeltaHsub298=110.2+/-0.5 kJ mol(-1); DeltaSsub298=191+/-2 J mol(-1)K(-1)). Thermochemical parameters of fusion process for FBF were obtained, and evaporation enthalpy was estimated from fusion and sublimation enthalpies. Temperature dependencies of the solubility in buffer solutions (pHs 2.0 and 7.4), n-Octanol, and n-Hexane were measured, and solution and solvation thermodynamic functions were calculated. The transfer thermodynamic functions from n-Hexane to solvents used (imitating specific "drug-solvent" interaction), and from buffer solutions to n-Octanol (imitating partitioning/distribution processes) were analyzed. Specific/non-specific "drug-solvent" interaction ratios in terms of solvation enthalpies were estimated. All studied solutions are characterized by prevalence of non-specific "drug-solvent" interactions. A difference exists between mechanisms of partitioning and distribution of studied drugs.

  15. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    SciTech Connect

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L.; D'Alessio, P.; Espaillat, C.; Sargent, B.; Watson, D. M.; Hernández, J. E-mail: ncalvet@umich.edu E-mail: lingleby@umich.edu E-mail: cespaillat@cfa.harvard.edu E-mail: dmw@pas.rochester.edu

    2013-10-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10{sup –8} to 10{sup –10} M{sub ☉} yr{sup –1}, the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10{sup –4} of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system.

  16. The effect of plasma heating on sublimation-driven flow in Io's atmosphere

    NASA Technical Reports Server (NTRS)

    Wong, Mau C.; Johnson, Robert E.

    1995-01-01

    The atmospheric flow on Io is numerically computed in a flat 2-D axisymmetric geometry for a sublimation atmosphere on the trailing hemisphere subjected to plasma bombardment, UV heating, and IR cooling. Calculations are performed for subsolar vapor pressures of approximately 6.5 x 10(exp -3) Pa (approximately 3 x 10(exp 18) SO2/sq cm) and 6.8 x 10(exp -4) Pa (approximately 4 x 10(exp 17) SO2/sq cm); the latter approximates the vapor pressure of F. P. Fanale et al. (1982). The amount of plasma energy deposited in the atmosphere is 20% of the plasma flow energy due to corotation (J. A. Linker et al., 1988). It is found that plasma heating significantly inflates the upper atmosphere, increasing both the exobase altitude and the amount of surface covered by more than an exospheric column of gas. This in turn controls the supply of the Io plasma torus (M. A. McGrath and R. E. Johnson, 1987). The horizontal flow of mass and energy is also important in determining the exobase altitude; and it is shown that IR cooling can be important, although our use of the equilibrium, cool-to-space approximation for a pure SO2 gas (E. Lellouch et al., 1992) may overestimate this effect. The calculated exobase altitudes are somewhat lower than those suggested by McGrath and Johnson (1987) for supplying the torus, indicating the details of the plasma energy deposition and sputter ejection rate near the exobase, as well as the IR emission from this region need to be examined. In addition, the molecules sublimed (or sputtered) from the surface are transported to the exobase in times short compared to the molecular photodissociation time. Therefore, the exobase is dominated by molecular species and the exobase is supplied by a small region of the surface.

  17. Formulation design and optimization of fast dissolving clonazepam tablets by sublimation method.

    PubMed

    Shirsand, S B; Suresh, Sarasija; Kusumdevi, V; Swamy, P V

    2011-09-01

    Fast dissolving tablets of clonazepam were prepared by sublimation method with a view to enhance patient compliance. A 3(2) full factorial design was applied to investigate the combined effect of two formulation variables: amount of croscarmellose sodium and camphor. Croscarmellose sodium (2-8% w/w) was used as superdisintegrant and camphor (20-40% w/w) was used as subliming agent, to increase the porosity of the tablets, since it helps water to penetrate into the tablets, along with directly compressible mannitol to enhance mouth feel. The tablets were evaluated for hardness, friability, thickness, drug content uniformity, in vitro dispersion time, wetting time and water absorption ratio. Based on in vitro dispersion time (approximately 11 s); the formulation containing 5% w/w croscarmellose sodium and 40% w/w camphor was found to be promising and tested for in vitro drug release pattern (in pH 6.8 phosphate buffer). Short-term stability (at 40°/75% relative humidity for 3 mo) and drug-excipient interaction. Surface response plots are presented to graphically represent the effect of independent variables on the in vitro dispersion time. The validity of the generated mathematical model was tested by preparing two extra-design checkpoints. The optimized tablet formulation was compared with conventional commercial tablet formulation for drug release profiles. This formulation showed nearly nine-fold faster drug release (t(50%) 1.8 min) compared to the conventional commercial tablet formulation (t(50%) 16.4 min). Short-term stability studies on the formulation indicated that there are no significant changes in drug content and in vitro dispersion time (P<0.05). PMID:22923860

  18. Fe embedded in ice: The impacts of sublimation and energetic particle bombardment

    NASA Astrophysics Data System (ADS)

    Frankland, Victoria L.; Plane, John M. C.

    2015-05-01

    Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.

  19. BabeLO--An Extensible Converter of Programming Exercises Formats

    ERIC Educational Resources Information Center

    Queiros, R.; Leal, J. P.

    2013-01-01

    In the last two decades, there was a proliferation of programming exercise formats that hinders interoperability in automatic assessment. In the lack of a widely accepted standard, a pragmatic solution is to convert content among the existing formats. BabeLO is a programming exercise converter providing services to a network of heterogeneous…

  20. Sublimation of Ices Containing Organics and/or Minerals and Implications for Icy Bodies Surface Structure and Spectral Properties

    NASA Astrophysics Data System (ADS)

    Poch, O.; Pommerol, A.; Jost, B.; Yoldi, Z.; Carrasco, N.; Szopa, C.; Thomas, N.

    2015-12-01

    The surfaces of many objects in the Solar System comprise substantial quantities of water ice either in pure form or mixed with minerals and/or organic molecules. Sublimation is a process responsible for shaping and changing the reflectance properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surfaces made of mixtures of water ice and non-volatile components (complex organic matter and silicates), as they undergo sublimation of the water ice under low temperature and pressure conditions (Poch et al., under review). We prepared icy surfaces which are potential analogues of ices found on comets, icy satellites or trans-neptunian objects (TNOs). The experiments were carried out in the SCITEAS simulation setup recently built as part of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern (Pommerol et al., 2015a). As the water ice sublimated, we observed in situ the formation of a sublimation lag deposit, or sublimation mantle, made of the non-volatiles at the top of the samples. The texture (porosity, internal cohesiveness etc.), the activity (outbursts and ejection of mantle fragments) and the spectro-photometric properties of this mantle are found to differ strongly depending on the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the volatile component and the dust/ice mass ratio. The results also indicate how the band depths of the sub-surface water ice evolve during the build-up of the sublimation mantle. These data provide useful references for interpreting remote-sensing observations of Rosetta (see Pommerol et al., 2015b), and also New Horizons. Poch, O., et al., under review in IcarusPommerol, A., et al., 2015a, Planet. Space Sci. 109-110, 106-122. http://dx.doi.org/10.1016/j.pss.2015.02.004Pommerol, A., et al., 2015b, Astronomy and Astrophysics, in press. http://dx.doi.org/10.1051/0004-6361/201525977

  1. Effect of recondensation of sublimed species on nanoparticle temperature evolution in time-resolved laser-induced incandescence

    NASA Astrophysics Data System (ADS)

    Memarian, F.; Liu, F.; Thomson, K. A.; Daun, K. J.; Snelling, D. R.; Smallwood, G. J.

    2015-03-01

    In high-fluence laser-induced incandescence (LII), current LII models significantly overpredict the soot nanoparticle temperature decay rate compared to that inferred from two-color pyrometry at the first 100 ns after the peak laser pulse in atmospheric pressure flames. One possible cause is the back flow of sublimed species, which to date has been neglected in LII modeling. In this study, the transient direct simulation Monte Carlo (DSMC) method has been used, for the first time, to calculate the temperature evolution of soot particles, taking into account recondensation of sublimed species. In this algorithm, the physical time is discretized into a number of time steps called ensemble time steps, and the heat flux is calculated by performing several DSMC runs in each ensemble time step before proceeding to the next ensemble time step until the variance reaches an acceptable value. This heat flux is then used to update the nanoparticle temperature over the ensemble time step. Using the new algorithm, the temperature evolution of the particle can be predicted by the DSMC code, which is an improvement to previous DSMC simulations in which predetermined temperature decay curves must be prescribed. The results show that recondensation of sublimed species on the originating nanoparticle is not significant. Although accounting for condensation of sublimed species originating from neighboring soot particles enhances the role of recondensation of sublimed species in slowing down the soot particle temperature decay, it is still not sufficient to be considered as a plausible cause for the discrepancy between modeled soot temperature and the two-color pyrometry measured one in high-fluence LII.

  2. 77 FR 2715 - D'Lo Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... Energy Regulatory Commission D'Lo Gas Storage, LLC; Notice of Application Take notice that on December 29, 2011, D'Lo Gas Storage, LLC (D'Lo), 1002 East St. Mary Blvd., Lafayette, Louisiana 70503, filed in... D'Lo to construct, operate, and maintain a new natural gas storage project to be located in...

  3. Quadrature mixture LO suppression via DSW DAC noise dither

    DOEpatents

    Dubbert, Dale F.; Dudley, Peter A.

    2007-08-21

    A Quadrature Error Corrected Digital Waveform Synthesizer (QECDWS) employs frequency dependent phase error corrections to, in effect, pre-distort the phase characteristic of the chirp to compensate for the frequency dependent phase nonlinearity of the RF and microwave subsystem. In addition, the QECDWS can employ frequency dependent correction vectors to the quadrature amplitude and phase of the synthesized output. The quadrature corrections cancel the radars' quadrature upconverter (mixer) errors to null the unwanted spectral image. A result is the direct generation of an RF waveform, which has a theoretical chirp bandwidth equal to the QECDWS clock frequency (1 to 1.2 GHz) with the high Spurious Free Dynamic Range (SFDR) necessary for high dynamic range radar systems such as SAR. To correct for the problematic upconverter local oscillator (LO) leakage, precision DC offsets can be applied over the chirped pulse using a pseudo-random noise dither. The present dither technique can effectively produce a quadrature DC bias which has the precision required to adequately suppress the LO leakage. A calibration technique can be employed to calculate both the quadrature correction vectors and the LO-nulling DC offsets using the radar built-in test capability.

  4. The ClearfLo project - Understanding London's meteorology and composition

    NASA Astrophysics Data System (ADS)

    Belcher, Stephen; Bohnenstengel, Sylvia

    2014-05-01

    ClearfLo is a large multi-institutional project funded by the UK Natural Environment Research Council (NERC). ClearfLo established integrated measurements of meteorology, gaseous and particulate composition/loading of London's (UK) urban atmosphere in 2011 and 2012 to understand the processes underlying poor air quality. A new and unique long-term measurement infrastructure was established in London at street level, urban background and elevated sites and contrasted against rural locations to determine the urban increment in meteorology and pollution. This approach enables understanding the seasonal variations in the meteorology and composition together with the controlling processes. In addition two intensive observation periods (IOPs) provide more detail in winter 2012 and during the Olympics in summer 2012 focusing upon the vertical structure and evolution of the urban boundary layer, chemical controls on nitrogen dioxide and ozone production, in particular the role of volatile organic compounds, and processes controlling the evolution, size, distribution and composition of particulate matter. In this talk we present early analysis of the meteorology and air quality measurements within ClearfLo. In particular we show measurements that indicate the dominant regimes of London's boundary layer.

  5. Origin of Sublimation Polygons in the Antarctic Western Dry Valleys: Implications for Patterned Ground Development on Mars

    NASA Astrophysics Data System (ADS)

    Marchant, D. R.; Head, J. W.

    2003-12-01

    Two hypotheses have been developed in order to address the age, origin, and evolution of surface polygons in the western Dry Valleys region of southern Victoria Land. Resolution of this debate has direct relevance and implications for patterned ground in ice-rich terrain on Mars. One hypothesis, the dynamic hypothesis, states that growth of sand-wedges pervasively deforms sediment across polygonal terrain, recycling sediment from troughs to polygon centers and back again over time scales of thousands of years. A second hypothesis, the stability hypothesis, states that deformation associated with sand-wedge polygons, particularly those that form over buried ice, is restricted to polygon troughs; the implication is that polygon centers may contain undisturbed soils >1 million years old. Evidence comes from field data that show that the age, origin, and morphology of polygons that form over buried ice in the western Dry Valleys region is tied collectively to the location and rate of sublimation of underlying ice. In Beacon Valley, sublimation of debris-rich ice produces a dry surface lag that insulates and slows loss of remaining ice. Sub-zero temperature cycling of near-surface ice and soil creates tensile stresses that result in a network of hexagonal cracks, extending upward from buried ice toward the ground surface. Where fines sift downward into open thermal-contraction cracks, a coarse-grained lag deposit forms on top of the ice. Owing to spatial variations in till texture, rates of sublimation vary across the ice surface. High rates occur below coarse-grained lags that cap contraction cracks; low rates are found at polygon centers beneath fine-grained low porosity/permeability debris. Measured concentrations of in-situ produced cosmogenic 3He in two depth profiles through sublimation till show a steady decrease with depth, indicating negligible recycling of surface materials on million-year time scales. These data suggest that once polygon troughs deepen

  6. Thermal alteration in carbonaceous chondrites and implications for sublimation in rock comets

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Lauretta, Dante S.; Steckloff, Jordan K.

    2015-11-01

    Rock comets are small solar system bodies in Sun-skirting orbits (perihelion q < ~0.15 AU) that form comae rich in mineral sublimation products, but lack typical cometary ice sublimation products (H2O, CO2, etc.). B-class asteroid (3200) Phaethon, considered to be the parent body of the Geminid meteor shower, is the only rock comet currently known to periodically eject dust and form a coma. Thermal fracturing or thermal decomposition of surface materials may be driving Phaethon’s cometary activity (Li & Jewitt, 2013). Phaethon-like asteroids have dynamically unstable orbits, and their perihelia can change rapidly over their ~10 Myr lifetimes (de León et al., 2010), raising the possibility that other asteroids may have been rock comets in the past. Here, we propose using spectroscopic observations of mercury (Hg) as a tracer of an asteroid’s thermal metamorphic history, and therefore as a constraint on its minimum achieved perihelion distance.B-class asteroids such as Phaethon have an initial composition similar to aqueously altered primitive meteorites such as CI- or CM-type meteorites (Clark et al., 2010). Laboratory heating experiments of ~mm sized samples of carbonaceous chondrite meteorites from 300K to 1200K at a rate of 15K/minute show mobilization and volatilization of various labile elements at temperatures that could be reached by Mercury-crossing asteroids. Samples became rapidly depleted in labile elements and, in particular, lost ~75% of their Hg content when heated from ~500-700 K, which corresponds to heliocentric distances of ~0.15-0.3 au, consistent with our thermal models. Mercury has strong emission lines in the UV (~ 185 nm) and thus its presence (or absence) relative to carbonaceous chondrite abundances would indicate if these bodies had perihelia in their dynamical histories inside of 0.15 AU, and therefore may have previously been Phaethon-like rock comets. Future space telescopes or balloon-borne observing platforms equipped with a UV

  7. Modelling of the sublimation of icy grains in the coma of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Vincent, J.-B.; Shi, X.; Sierks, H.; Rose, M.; Güttler, C.; Tubiana, C.

    2015-10-01

    The ESA (European Space Agency) Rosetta spacecraft was launched on 2 March 2004, to reach comet 67P/Churyumov-Gerasimenko in August 2014. Since March 2014, images of the nucleus and the coma (gas and dust) of the comet have been acquired by the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) camera system [1] using both, the wide angle camera (WAC) and the narrow angle camera (NAC). The orbiter will be maintained in the vicinity of the comet until perihelion (Rh=1.3 AU) or even until Rh=1.8 AU post-perihelion (December 2015). Nineteen months of uninterrupted, close-up observations of the gas and dust coma will be obtained and will help to characterize the evolution of comet gas and dust activity during its approach to the Sun. Indeed, for the first time, we will follow the development of a comet's coma from a close distance. Also the study of the dust-gas interaction in the coma will highlight the sublimation of icy grains. Even if the sublimation of icy grains is known, it is not yet integrated in a complete dust-gas model. We are using the Direct Simulation Monte Carlo (DSMC) method to study the gas flow close to the nucleus. The code called PI-DSMC (www.pidsmc. com) can simulate millions of molecules for multiple species.When the gas flow is simulated, we inject the dust particle with a zero velocity and we take into account the 3 forces acting on the grains in a cometary environment (drag force, gravity and radiative pressure). We used the DLL (Dynamic Link Library) model to integrate the sublimation of icy grains in the gas flowand allow studying the effect of the additional gas on the dust particle trajectories. For a quantitative analysis of the sublimation of icy, outflowing grains we will consider an ensemble of grains of various radii with different compositions [2] The evolution of the grains, once they are ejected into the coma, depends on their initial size, their composition and the heliocentric distance (because the temperature of

  8. Isolation of Purines and Pyrimidines from the Murchison Meteorite Using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.

    2004-01-01

    The origin of life on Earth, and possibly on other planets such as Mars, would have required the presence of liquid water and a continuous supply of prebiotic organic compounds. The exogenous delivery of organic matter by asteroids, comets, and carbonaceous meteorites could have contributed to the early Earth s prebiotic inventory by seeding the planet with biologically important organic compounds. A wide variety of prebiotic organic compounds have previously been detected in the Murchison CM type carbonaceous chondrite including amino acids, purines and pyrimidines. These compounds dominate terrestrial biochemistry and are integral components of proteins, DNA and RNA. Several purines including adenine, guanine, hypoxanthine, and xanthine, as well as the pyrimidine uracil, have previously been detected in water or formic acid extracts of Murchison using ion-exclusion chromatography and ultraviolet spectroscopy. However, even after purification of these extracts, the accurate identification and quantification of nucleobases is difficult due to interfering UV absorbing compounds. In order to reduce these effects, we have developed an extraction technique using sublimation to isolate purines and pyrimidines from other non-volatile organic compounds in Murchison acid extracts.

  9. Conceptual design of a low-pressure micro-resistojet based on a sublimating solid propellant

    NASA Astrophysics Data System (ADS)

    Cervone, Angelo; Mancas, Alexandru; Zandbergen, Barry

    2015-03-01

    In the current and future trend towards smaller satellite missions, the development of a simple and reliable propulsion system with performance and characteristics in line with the typical requirements of nano-satellites and CubeSats plays a crucial role for enhancing the capabilities of this type of missions. This paper describes the design of a micro-resistojet using water stored in the frozen state (ice) as propellant, operating under sublimation conditions at low pressure. The low operating pressure allows for using the vapor pressure of ice as the only method of propellant feeding, thereby allowing for extremely low thrust and electric power usage. The results of an extensive set of numerical simulations for optimizing the thruster geometry in terms of power ratio and specific impulse produced are discussed. In addition, the design of the complete propulsion system is described. It makes use of a limited number of moving parts and two power sources, one in the thruster to increase the propellant temperature and one in the tank to maintain the propellant storage conditions. Results show that the proposed design represents an alternative option capable of meeting the typical requirements of small satellite missions by means of an intrinsically green propellant such as water, with the pressure inside the system never exceeding 600 Pa. Optimization results showed an optimum thrust to power ratio in range 0.2-1.2 mN/W for an expansion slot aspect ratio of 2.5.

  10. Thermal shielding by subliming volume reflectors in convective and intense radiative environments.

    NASA Technical Reports Server (NTRS)

    Howe, J. T.; Green, M. J.; Weston, K. C.

    1973-01-01

    The behavior of dielectric materials having densely packed internal scattering centers subject to extreme convective and radiative environments is analyzed. Experiments have shown that these materials act as volume reflectors of incident radiation even when the exposed surface is being eroded by thermochemical ablation. The analysis was applied to interpret experiments of subliming Teflon models exposed to combined radiative and convective fluxes up to 1.7 kW/sq cm for several seconds. Results show that, although the exposed surface receded at an apparently steady rate, the internal temperature climbed continually, due to internal absorption of radiation and would have caused failure internally if the test duration were extended a few seconds. Thus, performance is time-limited by the internal absorption coefficient. Results were obtained for larger configurations and other materials. Typically, Teflon shells may withstand radiant fluxes up to 20 kW/sq cm for about 5 sec and fritted quartz up to 50 kW/sq cm for about 8 sec (corresponding to the Jupiter entry).

  11. Modeling Io's Sublimation-Driven Atmosphere: Gas Dynamics and Radiation Emission

    SciTech Connect

    Walker, Andrew C.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.; Moore, Chris H.; Stewart, Benedicte; Gratiy, Sergey L.; Levin, Deborah A.

    2008-12-31

    Io's sublimation-driven atmosphere is modeled using the direct simulation Monte Carlo method. These rarefied gas dynamics simulations improve upon earlier models by using a three-dimensional domain encompassing the entire planet computed in parallel. The effects of plasma impact heating, planetary rotation, and inhomogeneous surface frost are investigated. Circumplanetary flow is predicted to develop from the warm subsolar region toward the colder night-side. The non-equilibrium thermal structure of the atmosphere, including vibrational and rotational temperatures, is also presented. Io's rotation leads to an asymmetric surface temperature distribution which is found to strengthen circumplanetary flow near the dusk terminator. Plasma heating is found to significantly inflate the atmosphere on both day- and night-sides. The plasma energy flux also causes high temperatures at high altitudes but permits relatively cooler temperatures at low altitudes near the dense subsolar point due to plasma energy depletion. To validate the atmospheric model, a radiative transfer model was developed utilizing the backward Monte Carlo method. The model allows the calculation of the atmospheric radiation from emitting/absorbing and scattering gas using an arbitrary scattering law and an arbitrary surface reflectivity. The model calculates the spectra in the {nu}{sub 2} vibrational band of SO{sub 2} which are then compared to the observational data.

  12. Sublimation epitaxy of AlN on SiC: growth morphology and structural features

    NASA Astrophysics Data System (ADS)

    Kakanakova-Georgieva, A.; Persson, P. O. Å.; Yakimova, R.; Hultman, L.; Janzén, E.

    2004-12-01

    In order to study the development of individual AlN crystallites, sublimation epitaxy of AlN was performed on 4H-SiC, off-axis substrates in an inductively heated setup. Growth process variables like temperature, extrinsic nitrogen pressure and time were changed in an attempt to favor the lateral growth of individual AlN crystallites and thus open possibilities to prepare continuous patterns. Scanning and transmission electron microscopy and cathodoluminescence were used to obtain plan-view and cross-sectional images of the grown patterns and to study their morphology and structural features. The growth at 1900 °C/200 mbar results in AlN pattern consisting of individual single wurzite AlN crystallites with plate-like shape aligned along [ 1 1¯ 0 0] direction. The only defects these AlN crystallites contain are threading dislocations, some of which are terminated by forming half-loops. Because of the uniform distribution of the crystallites and their high structural perfection, this AlN pattern could represent interest as a template for bulk AlN growth. Alternative growth approaches to AlN crystallite formation are possible resulting in variation of the final AlN pattern structure. From a viewpoint of obtaining continuous patterns, the more favorable growth conditions involve applying of increased extrinsic gas pressure, 700 mbar in our case.

  13. Effect of thermal environment evolution on AlN bulk sublimation crystal growth

    NASA Astrophysics Data System (ADS)

    Cai, D.; Zheng, L. L.; Zhang, H.; Zhuang, D.; Herro, Z. G.; Schlesser, R.; Sitar, Z.

    2007-08-01

    To obtain a large and thick AlN single crystal during sublimation growth, it is very important to maintain the thermal environment suitable for growth inside the crucible during a long period of time (>50 h). In this paper, an in-house developed integrated model capable of describing inductive, radiative and conductive heat transfer will be used to simulate the transient behavior of thermal environment inside the crucible during a 40-h experiment growth. Effects of graphite insulation degradation on temperature distribution inside the crucible will be investigated. Simulation results will be compared with the experimental data to study the effects of the insulation degradation-induced particle deposition, geometric variation of source material and crystal size enlargement on the temperature distribution in the crucible and the growth rate. The relationship between graphite insulation degradation and power input change of the induction-heated system will be established. The evolution of temperature difference between the source material and crystal, which is the driving force for growth, will be presented. This study will also provide the explanation of mechanism underling substantial reduction of growth rate after a long experiment run.

  14. Nucleation of AlN on SiC substrates by seeded sublimation growth

    NASA Astrophysics Data System (ADS)

    Lu, P.; Edgar, J. H.; Lee, R. G.; Chaudhuri, J.

    2007-03-01

    The nucleation of aluminum nitride (AlN) on silicon carbide (SiC) seed by sublimation growth was investigated. Silicon-face, 8∘ off-axis 4H-SiC (0 0 0 1) and on-axis 6H-SiC (0 0 0 1) were employed as seeds. Initial growth for 15 min and extended growth for 2 h suggested that 1850 °C was the optimum temperature of AlN crystal growth: on an 8∘ off-axis substrate, AlN grew laterally forming a continuous layer with regular "step" features; on the on-axis substrate, AlN grew vertically as well as laterally, generating an epilayer with hexagonal sub-grains of different sizes. The layer's c-lattice constant was larger than pure AlN, which was caused by the compression of the AlN film and impurities (Si, C) incorporation. Polarity sensitive and defect selective etchings were performed to examine the surface polarity and dislocation density. All the samples had an Al-polar surface and no N-polar inversion domains were observed. Threading dislocations were present regardless of the substrate misorientation. Basal plane dislocations (BPDs) were revealed only on the AlN films on the 8∘ off-axis substrates. The total dislocation density was in the order of 108 cm-2 when the film was 20- 30 μm thick.

  15. Laser Desorption Ionization Mass Spectrometry Imaging of Drosophila Brain Using Matrix Sublimation versus Modification with Nanoparticles.

    PubMed

    Phan, Nhu T N; Mohammadi, Amir Saeid; Dowlatshahi Pour, Masoumeh; Ewing, Andrew G

    2016-02-01

    Laser desorption ionization mass spectrometry (LDI-MS) is used to image brain lipids in the fruit fly, Drosophila, a common invertebrate model organism in biological and neurological studies. Three different sample preparation methods, including sublimation with two common organic matrixes for matrix-assisted laser desorption ionization (MALDI) and surface-assisted laser desorption ionization (SALDI) using gold nanoparticles, are examined for sample profiling and imaging the fly brain. Recrystallization with trifluoroacetic acid following matrix deposition in MALDI is shown to increase the incorporation of biomolecules with one matrix, resulting in more efficient ionization, but not for the other matrix. The key finding here is that the mass fragments observed for the fly brain slices with different surface modifications are significantly different. Thus, these approaches can be combined to provide complementary analysis of chemical composition, particularly for the small metabolites, diacylglycerides, phosphatidylcholines, and triacylglycerides, in the fly brain. Furthermore, imaging appears to be beneficial using modification with gold nanoparticles in place of matrix in this application showing its potential for cellular and subcellular imaging. The imaging protocol developed here with both MALDI and SALDI provides the best and most diverse lipid chemical images of the fly brain to date with LDI. PMID:26705612

  16. Analysis of sublimation-cooled coated mirrors in convective and radiative environments.

    NASA Technical Reports Server (NTRS)

    Howe, J. T.; Green, M. J.

    1973-01-01

    Analytical solutions were obtained for the thermal response of a transpiration- or sublimation-cooled spherical mirror coating exposed to convective and radiative heating. The solutions allow unlimited spectral detail to be accounted for. Results indicate that transpiration-cooled thick coatings (1 cm) may withstand up to 10 kW/sq cm on a steady basis without excessive temperature rise for quartzlike materials with an internal absorption coefficient of 0.01 per cm. On a transient basis, fluxes up to 20 kW/sq cm can be accommodated for a second (cW laser exposure time), 4 kW/sq cm for 5 sec (planetary entry heating time), and of the order of MW/sq cm for millisecond times (short-duration laser bursts) without transpiration cooling for a material with an absorption coefficient of 0.1 per cm. Proportionately higher fluxes can be accommodated with lower absorption coefficients. Thermal stresses produced by the heat pulse are found to be high but within the strength of the materials. The regime in which meaningful solutions may be obtained is mapped in detail.

  17. Main-Belt Comets: Sublimation-Driven Activity in the Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry

    2015-08-01

    Our knowledge of main-belt comets (MBCs), which exhibit comet-like activity likely due to the sublimation of volatile ices, yet orbit in the main asteroid belt, has increased greatly since the discovery of the first known MBC, 133P/Elst-Pizarro, in 1996, and their recognition as a new class of solar system objects after the discovery of two more MBCs in 2005. I will review work that has been done over the last 10 years to improve our understanding of these enigmatic objects, including the development of systematic discovery methods and diagnostics for distinguishing MBCs from disrupted asteroids (which exhibit comet-like activity due to physical disruptions such as impacts or rotational destabilization), and observational characterization of both individual objects and the MBC population as a whole. I will also discuss efforts to understand the dynamical origins and present-day characteristics of these objects, as well as how objects in the asteroid belt might be able to preserve ice over the age of the solar system while still retaining sufficient near-surface volatility to drive observable present-day cometary activity.

  18. Transient temperature phenomena during sublimation growth of silicon carbide single crystals

    NASA Astrophysics Data System (ADS)

    Klein, Olaf; Philip, Peter

    2003-03-01

    In this article, we use numerical simulation to investigate transient temperature phenomena during sublimation growth of SiC single crytals via physical vapor transport (also called the modified Lely method). We consider the evolution of temperatures at the SiC source and at the SiC seed crystal, which are highly relevant to the quality of the grown crystals, but inaccessible to direct measurements. The simulations are based on a transient mathematical model for the heat transport, including heat conduction, radiation, and radio frequency (RF) induction heating. Varying the position of the induction coil as well as the heating power, it is shown that the measurable temperature difference between the bottom and the top of the growth apparatus can usually not be used as a simple indicator for the respective temperature difference between SiC source and seed. Moreover, it is shown that there can be a time lag of 1.5 h between the heating of the temperature measuring points and the heating of the interior of the SiC source.

  19. The impacts of moisture transport on drifting snow sublimation in the saltation layer

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Dai, Xiaoqing; Zhang, Jie

    2016-06-01

    Drifting snow sublimation (DSS) is an important physical process related to moisture and heat transfer that happens in the atmospheric boundary layer, which is of glaciological and hydrological importance. It is also essential in order to understand the mass balance of the Antarctic ice sheets and the global climate system. Previous studies mainly focused on the DSS of suspended snow and ignored that in the saltation layer. Here, a drifting snow model combined with balance equations for heat and moisture is established to simulate the physical DSS process in the saltation layer. The simulated results show that DSS can strongly increase humidity and cooling effects, which in turn can significantly reduce DSS in the saltation layer. However, effective moisture transport can dramatically weaken the feedback effects. Due to moisture advection, DSS rate in the saltation layer can be several orders of magnitude greater than that of the suspended particles. Thus, DSS in the saltation layer has an important influence on the distribution and mass-energy balance of snow cover.

  20. Sublimation and combustion of coal particles in the erosion laser torch

    SciTech Connect

    Bulat, A.; Shumrikov, V.; Osenny, V.

    2005-07-01

    Rate of coal particles' combustion in low-temperature plasma is of interest both from application and scientific points of view. Necessity of knowing parameters of the process of coal particles' combustion in plasma torch with the temperature of 2500-3000 K is governed by arising a number of state-of-the-art technological tasks related to the problems of finding new methods of power production, generation of high-calorific synthetic gases and using carbon as a high temperature structural material in nuclear power engineering. The present work deals with a rate of combustion of the sorbed coal particles in the erosion laser torch formed by means of interaction of pulse laser radiation (wave length {lambda} = 1,06 {mu}m, power density j = 10{sup 5} - 10{sup 7} Wcm{sup 2} with coals of various grades (in the wide range of carbon concentrations (80-95 %)). Physical and mathematical modeling of the process of coal particles' sublimation and combustion in non-equilibrium plasma flows with weight-average temperature of 2500-3000 K showed a good convergence of results for the particles of 10-100 {mu}m diameter and satisfactory one for the particles of {gt} 250{mu}m diameter.

  1. Measuring enthalpy of sublimation of volatiles by means of micro-thermogravimetry: the case of Dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Dirri, F.; Longobardo, A.; Palomba, E.; Zampetti, E.; Biondi, D.; Boccaccini, A.; Saggin, B.; Bearzotti, A.; Macagnano, A.

    2013-09-01

    VISTA (Volatile In Situ Thermogravimetry Analyser) is a thermogravimeter currently under study for the proposed mission MarcoPolo-R [1,2]. In the framework of this project, we developed a set-up to measure the enthalpy of sublimation ΔH of three dicarboxylic acids, i.e. adipic, succinic and oxalic. The obtained results are in good agreement with literature, and this demonstrates the capability of our device to perform this kind of measurements.

  2. Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds.

    PubMed

    Salahinejad, Maryam; Le, Tu C; Winkler, David A

    2013-01-28

    Accurate computational prediction of melting points and aqueous solubilities of organic compounds would be very useful but is notoriously difficult. Predicting the lattice energies of compounds is key to understanding and predicting their melting behavior and ultimately their solubility behavior. We report robust, predictive, quantitative structure-property relationship (QSPR) models for enthalpies of sublimation, crystal lattice energies, and melting points for a very large and structurally diverse set of small organic compounds. Sparse Bayesian feature selection and machine learning methods were employed to select the most relevant molecular descriptors for the model and to generate parsimonious quantitative models. The final enthalpy of sublimation model is a four-parameter multilinear equation that has an r(2) value of 0.96 and an average absolute error of 7.9 ± 0.3 kJ.mol(-1). The melting point model can predict this property with a standard error of 45° ± 1 K and r(2) value of 0.79. Given the size and diversity of the training data, these conceptually transparent and accurate models can be used to predict sublimation enthalpy, lattice energy, and melting points of organic compounds in general.

  3. Volatilization, transport, and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia

    SciTech Connect

    Symonds, R.B.; Rose, W.L.; Reed, M.H.; Lichte, F.E.; Finnegan, D.L.

    1987-08-01

    Condensates, silica tube sublimates and incrustations were sampled from 500-800/sup 0/C fumaroles and lava samples were collected at Merapi Volcano, Indonesia in January-February, 1984. With decreasing temperature (800-500/sup 0/C) there were five sublimate zones found in silica tubes: 1) cristobalite and magnetite; 2) K-Ca sulfate, acmite, halite, sylvite and pyrite; 3) aphthitalite, sphalerite, galena and Cs-K sulfate; 4) Pb-k chloride and Na-K-Fe sulfate; and 5) Zn, Cu and K-Pb sulfates. The incrustations surrounding the fumaroles are also chemically zoned. Bi, Cd, Pb, W, Mo, Zn, Cu, K, Na, V, Fe and Mn are concentrated most in or very close to the vent as expected with cooling, atmospheric contamination and dispersion. Incomplete degassing of shallow magma at 915/sup 0/C is the origin of most of the elements in the Merapi volcanic gas, although it is partly contaminated by particles or wall rock reactions. Devolatilization of a cooling batholith could transport enough acids and metals to a hydrothermal system to play a significant role in forming an ore deposit. However, sublimation from a high temperature, high velocity carrier gas is not efficient enough to form a large ore deposit. Re, Se, Cd and Bi could be used as supporting evidence for magmatic fluid transport in an ore deposit.

  4. Properties of filamentary sublimation residues from dispersions of clay in ice. [on Martian poles, comet nuclei, and icy satellites

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Parker, T. J.; Stephens, J. B.; Fanale, F. P.; Sutton, S.

    1986-01-01

    Results are reported from experimental studies of the formation of ice mixed with mineral particles in an effort to simulate similar processes on natural surfaces such as at the Martian poles, on comet nuclei and on icy satellites. The study consisted of low-pressure, low-temperature sublimations of water ice from dilutions of water-clay (montmorillonite and Cabosil) dispersions of various component ratios. Liquid dispersions were sprayed into liquid nitrogen to form droplets at about -50 C. Both clay-water dispersions left a filamentary residue on the bottom of the Dewar after the water ice had sublimated off. The residue was studied with optical and SEM microscopy, the latter method revealing a high electrical conductivity in the residue. The results suggest that the sublimation of the water ice can leave a surface crust, which may be analogous to processes at the Martian poles and on comet nuclei. The process could proceed by the attachment of water molecules to salt crystals during the hottest part of the Martian year. The residue remaining was found to remain stable up to 370 C, be porous, and remain resilient, which could allow it to insulate ice bodies such as comets in space.

  5. STRUCTURAL CHANGES OF THE SUBLIMATION WALL IN PROTOPLANETARY DISKS DUE TO VARYING ACCRETION ILLUMINATION: A MECHANISM FOR RAPID INFRARED VARIABILITY

    SciTech Connect

    Nagel, E.; Flaherty, K. M.; Muzerolle, J.

    2015-08-01

    We study the changes in the sublimation wall structure due to variable illumination of a stellar hot spot on the dusty surroundings of a young star. The model includes the settling of large grains toward the disk midplane and the effect of the vertical density profile on the shaping of the sublimation wall. From a survey of objects in the young cluster IC 348, we extract three objects (LRLL 32, 40, and 63) that present typical variability in the [3.6] and [4.5] IRAC bands. We use the Spitzer photometry and ground-based 2–5 μm spectra for comparison with the models. Even though there is a correlation between accretion luminosity and dust emission based on the observations, we conclude from the modeling that the systems with lower mass accretion rates (LRLL 32 and 63) cannot be explained simply by a variable hot spot illuminating a sublimation wall. The observed variability amplitude for LRLL 40 (the system with the largest value of the mass accretion rate) can be obtained using the mechanism presented here. When considering a wide range of hot spot sizes and temperatures, the models can reproduce the infrared fluctuations seen in recent surveys, but only with accretion rate fluctuations that are orders of magnitude larger than is typically observed. These results highlight the relevance of accretion as a variability mechanism as well as its limitations in producing the full extent of the observed infrared variability.

  6. Investigating the Persistence of a Snowpack Sublimation Stable Isotope Signal in Tree Xylem Water during the Growing Season

    NASA Astrophysics Data System (ADS)

    Schulze, E. S.; Bowling, D. R.

    2014-12-01

    Previous work identified a riparian meadow in the Rocky Mountains where streamside box elder (Acer negundo) trees did not use stream water, the most reliable and readily available source. A follow-up study showed that the water used by trees appears to be more evaporatively enriched than all available measured sources, including stream water, precipitation-derived soil water, and groundwater. While it is unlikely that there is a missing pool of water these trees are accessing, they may be tapping into a distinct subset of the bulk soil water available, possibly derived from much colder and older snowmelt. In this study, we investigated whether snowpack sublimation and subsequent melt water may impart an enriched isotopic signature that persists throughout the following growing season in less-mobile soil water pools. Profile samples of the snowpack, bulk melt water, and early season soil lysimeter water were collected throughout the winter and analyzed for hydrogen and oxygen stable isotopes. As snow began to melt in the spring, water samples for isotope analysis were taken from soil profiles, stream water, groundwater, and stems. Although sublimation likely occurred at the site, such processes did not impart an evaporative isotope enrichment on the snowpack throughout the season. Both snow pack and melt water remained closely tied to the local meteoric water line as they infiltrated soil. These findings suggest that snowpack sublimation processes preceding melt water infiltration are not the source of evaporative enrichment in tree water at our site.

  7. Coupled fluid-thermal analysis of low-pressure sublimation and condensation with application to freeze-drying

    NASA Astrophysics Data System (ADS)

    Ganguly, Arnab

    Freeze-drying is a low-pressure, low-temperature condensation pumping process widely used in the manufacture of bio-pharmaceuticals for removal of solvents by sublimation. The goal of the process is to provide a stable dosage form by removing the solvent in such a way that the sensitive molecular structure of the active substance is least disturbed. The vacuum environment presents unique challenges for understanding and controlling heat and mass transfer in the process. As a result, the design of equipment and associated processes has been largely empirical, slow and inefficient. A comprehensive simulation framework to predict both, process and equipment performance is critical to improve current practice. A part of the dissertation is aimed at performing coupled fluid-thermal analysis of low-pressure sublimation-condensation processes typical of freeze-drying technologies. Both, experimental and computational models are used to first understand the key heat transfer modes during the process. A modeling and computational framework, validated with experiments for analysis of sublimation, water-vapor flow and condensation in application to pharmaceutical freeze-drying is developed. Augmented with computational fluid dynamics modeling, the simulation framework presented here allows to predict for the first time, dynamic product/process conditions taking into consideration specifics of equipment design. Moreover, by applying the modeling framework to process design based on a design-space approach, it has demonstrated that there is a viable alternative to empiricism.

  8. Volcanic Activity on lo at the Time of the Ulysses Encounter.

    PubMed

    Spencer, J R; Howell, R R; Clark, B E; Klassen, D R; O'connor, D

    1992-09-11

    The population of heavy ions in lo's torus is ultimately derived from lo volcanism. Groundbased infrared observations of lo between October 1991 and March 1992, contemporaneous with the 8 February 1992 Ulysses observations of the lo torus, show that volcanic thermal emission was at the low end of the normal range at all lo longitudes during this period. In particular, the dominant hot spot Loki was quiescent. Resolved images show that there were at least four hot spots on lo's Jupiter-facing hemisphere, including Loki and a long-lived spot on the leading hemisphere (Kanehekili), of comparable 3.5-micrometer brightness but higher temperature.

  9. Characterization of the Sublimation and Vapor Pressure of 2-(2-Nitrovinyl) Furan (G-0) Using Thermogravimetric Analysis: Effects of Complexation with Cyclodextrins.

    PubMed

    Ruz, Vivian; González, Mirtha Mayra; Winant, Danny; Rodríguez, Zenaida; Van den Mooter, Guy

    2015-08-19

    In the present work, the sublimation of crystalline solid 2-(2-nitrovinyl) furan (G-0) in the temperature range of 35 to 60 °C (below the melting point of the drug) was studied using thermogravimetric analysis (TGA). The sublimated product was characterized using Fourier-transformed-infrared spectroscopy (FT-IR) and thin layer chromatography (TLC). The sublimation rate at each temperature was obtained using the slope of the linear regression model and followed apparent zero-order kinetics. The sublimation enthalpy from 35 to 60 °C was obtained from the Eyring equation. The Gückel method was used to estimate the sublimation rate and vapor pressure at 25 °C. Physical mixtures, kneaded and freeze-dried complexes were prepared with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) and analyzed using isothermal TGA at 50 °C. The complexation contributed to reducing the sublimation process. The best results were achieved using freeze-dried complexes with both cyclodextrins.

  10. In-Situ Growth of Yb2O3 Layer for Sublimation Suppression for Yb14MnSb11 Thermoelectric Material for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Opila, Elizabeth J.; Nathal, Michael V.

    2012-01-01

    The compound Yb14MnSb11 is a p-type thermoelectric material of interest to the National Aeronautics and Space Administration (NASA) as a candidate replacement for the state-of-the-art Si-Ge used in current radioisotope thermoelectric generators (RTGs). Ideally, the hot end of this leg would operate at 1000 C in the vacuum of space. Although Yb14MnSb11 shows the potential to double the value of the thermoelectric figure of merit (zT) over that of Si-Ge at 1000 C, it suffers from a high sublimation rate at elevated temperatures and would require a coating in order to survive the required RTG lifetime of 14 years. The purpose of the present work is to measure the sublimation rate of Yb14MnSb11 and to investigate sublimation suppression for this material. This paper reports on the sublimation rate of Yb14MnSb11 at 1000 C (approximately 3 x 10(exp -3) grams per square centimeter hour) and efforts to reduce the sublimation rate with an in situ grown Yb2O3 layer. Despite the success in forming thin, dense, continuous, and adherent oxide scales on Yb14MnSb11, the scales did not prove to be sublimation barriers.

  11. Meteorological conditions associated to high sublimation amounts in semiarid high-elevation Andes decrease the performance of empirical melt models

    NASA Astrophysics Data System (ADS)

    Ayala, Alvaro; Pellicciotti, Francesca; MacDonell, Shelley; McPhee, James; Burlando, Paolo

    2015-04-01

    Empirical melt (EM) models are often preferred to surface energy balance (SEB) models to calculate melt amounts of snow and ice in hydrological modelling of high-elevation catchments. The most common reasons to support this decision are that, in comparison to SEB models, EM models require lower levels of meteorological data, complexity and computational costs. However, EM models assume that melt can be characterized by means of a few index variables only, and their results strongly depend on the transferability in space and time of the calibrated empirical parameters. In addition, they are intrinsically limited in accounting for specific process components, the complexity of which cannot be easily reconciled with the empirical nature of the model. As an example of an EM model, in this study we use the Enhanced Temperature Index (ETI) model, which calculates melt amounts using air temperature and the shortwave radiation balance as index variables. We evaluate the performance of the ETI model on dry high-elevation sites where sublimation amounts - that are not explicitly accounted for the EM model - represent a relevant percentage of total ablation (1.1 to 8.7%). We analyse a data set of four Automatic Weather Stations (AWS), which were collected during the ablation season 2013-14, at elevations between 3466 and 4775 m asl, on the glaciers El Tapado, San Francisco, Bello and El Yeso, which are located in the semiarid Andes of central Chile. We complement our analysis using data from past studies in Juncal Norte Glacier (Chile) and Haut Glacier d'Arolla (Switzerland), during the ablation seasons 2008-09 and 2006, respectively. We use the results of a SEB model, applied to each study site, along the entire season, to calibrate the ETI model. The ETI model was not designed to calculate sublimation amounts, however, results show that their ability is low also to simulate melt amounts at sites where sublimation represents larger percentages of total ablation. In fact, we

  12. Volumetric HiLo microscopy employing an electrically tunable lens.

    PubMed

    Philipp, Katrin; Smolarski, André; Koukourakis, Nektarios; Fischer, Andreas; Stürmer, Moritz; Wallrabe, Ulrike; Czarske, Jürgen W

    2016-06-27

    Electrically tunable lenses exhibit strong potential for fast motion-free axial scanning in a variety of microscopes. However, they also lead to a degradation of the achievable resolution because of aberrations and misalignment between illumination and detection optics that are induced by the scan itself. Additionally, the typically nonlinear relation between actuation voltage and axial displacement leads to over- or under-sampled frame acquisition in most microscopic techniques because of their static depth-of-field. To overcome these limitations, we present an Adaptive-Lens-High-and-Low-frequency (AL-HiLo) microscope that enables volumetric measurements employing an electrically tunable lens. By using speckle-patterned illumination, we ensure stability against aberrations of the electrically tunable lens. Its depth-of-field can be adjusted a-posteriori and hence enables to create flexible scans, which compensates for irregular axial measurement positions. The adaptive HiLo microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 μm and sub-micron lateral resolution over the full scanning range. Proof of concept measurements at home-built specimens as well as zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are shown. PMID:27410654

  13. First light curve and period study of LO Andromedae

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Müyesseroğlu, Z.

    2005-01-01

    New BV light curves and times of minimum light for the short period W UMa system LO And were analyzed to derive the preliminary physical parameters of the system. The light curves were obtained at Ankara University Observatory during 5 nights in 2003. A new ephemeris is determined for the times of primary minimum. The analysis of the light curves is made using the Wilson-Devinney 2003 code. The present solution reveals that LO And has a photometric mass ratio q = 0.371 and is an A-type contact binary. The period of the system is still increasing, which can be attributed to light-time effect and mass transfer between the components. With the assumption of coplanar orbit of the third body the revealed mass is M3 = 0.21M. If the period change dP/dt = 0.0212 sec/yr is caused only by the mass transfer between components (from the lighter component to the heavier) the calculated mass transfer rate is dm/dt = 1.682 10-7M/yr. The absolute radii and masses estimated for the components, based on our photometric solution and the absolute parameters of the systems which have nearly same period are R1 = 1.30R, R2 = 0.85R, M1 = 1.31M, M2 = 0.49M respectively for the primary and secondary components.

  14. Human CD34(lo)CD133(lo) fetal liver cells support the expansion of human CD34(hi)CD133(hi) hematopoietic stem cells.

    PubMed

    Yong, Kylie Su Mei; Keng, Choong Tat; Tan, Shu Qi; Loh, Eva; Chang, Kenneth Te; Tan, Thiam Chye; Hong, Wanjin; Chen, Qingfeng

    2016-09-01

    We have recently discovered a unique CD34(lo)CD133(lo) cell population in the human fetal liver (FL) that gives rise to cells in the hepatic lineage. In this study, we further characterized the biological functions of FL CD34(lo)CD133(lo) cells. Our findings show that these CD34(lo)CD133(lo) cells express markers of both endodermal and mesodermal lineages and have the capability to differentiate into hepatocyte and mesenchymal lineage cells by ex vivo differentiation assays. Furthermore, we show that CD34(lo)CD133(lo) cells express growth factors that are important for human hematopoietic stem cell (HSC) expansion: stem cell factor (SCF), insulin-like growth factor 2 (IGF2), C-X-C motif chemokine 12 (CXCL12), and factors in the angiopoietin-like protein family. Co-culture of autologous FL HSCs and allogenic HSCs derived from cord blood with CD34(lo)CD133(lo) cells supports and expands both types of HSCs.These findings are not only essential for extending our understanding of the HSC niche during the development of embryonic and fetal hematopoiesis but will also potentially benefit adult stem cell transplantations in clinics because expanded HSCs demonstrate the same capacity as primary cells to reconstitute the human immune system and mediate long-term hematopoiesis in vivo. Together, CD34(lo)CD133(lo) cells not only serve as stem/progenitor cells for liver development but are also an essential component of the HSC niche in the human FL. PMID:27593483

  15. Human CD34(lo)CD133(lo) fetal liver cells support the expansion of human CD34(hi)CD133(hi) hematopoietic stem cells.

    PubMed

    Yong, Kylie Su Mei; Keng, Choong Tat; Tan, Shu Qi; Loh, Eva; Chang, Kenneth Te; Tan, Thiam Chye; Hong, Wanjin; Chen, Qingfeng

    2016-09-01

    We have recently discovered a unique CD34(lo)CD133(lo) cell population in the human fetal liver (FL) that gives rise to cells in the hepatic lineage. In this study, we further characterized the biological functions of FL CD34(lo)CD133(lo) cells. Our findings show that these CD34(lo)CD133(lo) cells express markers of both endodermal and mesodermal lineages and have the capability to differentiate into hepatocyte and mesenchymal lineage cells by ex vivo differentiation assays. Furthermore, we show that CD34(lo)CD133(lo) cells express growth factors that are important for human hematopoietic stem cell (HSC) expansion: stem cell factor (SCF), insulin-like growth factor 2 (IGF2), C-X-C motif chemokine 12 (CXCL12), and factors in the angiopoietin-like protein family. Co-culture of autologous FL HSCs and allogenic HSCs derived from cord blood with CD34(lo)CD133(lo) cells supports and expands both types of HSCs.These findings are not only essential for extending our understanding of the HSC niche during the development of embryonic and fetal hematopoiesis but will also potentially benefit adult stem cell transplantations in clinics because expanded HSCs demonstrate the same capacity as primary cells to reconstitute the human immune system and mediate long-term hematopoiesis in vivo. Together, CD34(lo)CD133(lo) cells not only serve as stem/progenitor cells for liver development but are also an essential component of the HSC niche in the human FL.

  16. Human CD34loCD133lo fetal liver cells support the expansion of human CD34hiCD133hi hematopoietic stem cells

    PubMed Central

    Yong, Kylie Su Mei; Keng, Choong Tat; Tan, Shu Qi; Loh, Eva; Chang, Kenneth TE; Tan, Thiam Chye; Hong, Wanjin; Chen, Qingfeng

    2016-01-01

    We have recently discovered a unique CD34loCD133lo cell population in the human fetal liver (FL) that gives rise to cells in the hepatic lineage. In this study, we further characterized the biological functions of FL CD34loCD133lo cells. Our findings show that these CD34loCD133lo cells express markers of both endodermal and mesodermal lineages and have the capability to differentiate into hepatocyte and mesenchymal lineage cells by ex vivo differentiation assays. Furthermore, we show that CD34loCD133lo cells express growth factors that are important for human hematopoietic stem cell (HSC) expansion: stem cell factor (SCF), insulin-like growth factor 2 (IGF2), C-X-C motif chemokine 12 (CXCL12), and factors in the angiopoietin-like protein family. Co-culture of autologous FL HSCs and allogenic HSCs derived from cord blood with CD34loCD133lo cells supports and expands both types of HSCs.These findings are not only essential for extending our understanding of the HSC niche during the development of embryonic and fetal hematopoiesis but will also potentially benefit adult stem cell transplantations in clinics because expanded HSCs demonstrate the same capacity as primary cells to reconstitute the human immune system and mediate long-term hematopoiesis in vivo. Together, CD34loCD133lo cells not only serve as stem/progenitor cells for liver development but are also an essential component of the HSC niche in the human FL. PMID:27593483

  17. Sublimation process and physical properties of vapor grown γ-In2Se3 platelet crystals

    NASA Astrophysics Data System (ADS)

    Ajayakumar, C. J.; Kunjomana, A. G.

    2016-11-01

    Indium selenide (γ-In2Se3) crystals have been grown by the closed tube sublimation process in the absence of seed crystals and chemical transporting agents. The composition, structure and morphology of the samples grown under different vacuum conditions were examined by energy dispersive analysis, X-ray diffraction, and scanning electron microscope. Structural features of the crystals obtained in a vacuum of 10-3 mbar exhibited a few reflections not belonging to γ phase, whereas X-ray diffraction spectra of the crystals deposited under a vacuum of 10-6 mbar revealed evidence of sharp peaks with high intensities of γ-In2Se3 crystalline phase. When growth runs were performed for 72 h, voids were observed on the surface whereas for a duration of 120 h, platelet crystals were obtained. Optical properties of these samples were investigated using the FT-IR and photoluminescence spectroscopy. The average transmittance of the platelets in the visible and near infrared region of solar spectrum was found to be ∼81% and an optical band gap of ∼2.05 eV was computed from the transmission spectrum. Photoluminescence spectra of the grown In2Se3 crystals recorded at room temperature using an excitation laser of wavelength 355 nm showed a peak in the near band edge emission (NBE) corresponding to an energy of 2.01 eV. Under an illumination power of 12 mW/cm2, the photocurrent increased linearly with applied voltage and the dark current was found to be 2.5×10-9 A for 10 V. These results suggest that the as-grown γ-In2Se3 platelets crystallized from vapor deposition, possess superior optoelectronic properties than the other phases for solar cell applications.

  18. CdZnS thin films sublimated by closed space using mechanical mixing: A new approach

    NASA Astrophysics Data System (ADS)

    Mahmood, Waqar; Shah, Nazar Abbas

    2014-06-01

    Cadmium sulfide (CdS) is a prominent material for its tunable band gap used as a window layer in II-VI semiconductor solar cells. The light trapping capability of window layer is one of the powerful tools to enhance the efficiency of the cell. CdS and zinc (Zn) powders were mixed mechanically with different weight percents to make CdZnS (CZS) powder. CZS was deposited onto an ultrasonically cleaned glass substrate using close spaced sublimation (CSS) technique. CZS as-deposited thin films were characterized for structural, surface morphology with energy dispersive X-rays (EDX) and optical properties for the use of window layer in CdS/CdTe based solar cells. The different Zn concentrations in CZS played a vital role on crystallite size in structural analysis and optical properties e.g. transmission, absorption coefficient and energy band gap, etc. The crystallite size of as-deposited CZS thin films were increased as Zn concentration was increased up to certain value. The energy band gap varies from 2.42 eV to 2.57 eV for as-deposited CZS thin films with increasing Zn concentrations and surface morphology changes also. These changes were occurred due to zinc diffusion in CdS thin films. An angle resolved transmission data was taken to check the behavior of CdS and CZS thin film at different angles. A comparative study was carried out between CdS thin films and CZS thin films for the use of good window layer material.

  19. AdS/QCD, Light-Front Holography, and Sublimated Gluons

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    The gauge/gravity duality leads to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian - 'Light-Front Holography', which provides a Lorentz-invariant first-approximation to QCD, and successfully describes the spectroscopy of light-quark meson and baryons, their elastic and transition form factors, and other hadronic properties. The bound-state Schroedinger and Dirac equations of the soft-wall AdS/QCD model predict linear Regge trajectories which have the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. Light-front holography connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable {zeta} in 3+1 space at fixed light-front time. A key feature is the determination of the frame-independent light-front wavefunctions of hadrons - the relativistic analogs of the Schroedinger wavefunctions of atomic physics which allow one to compute form factors, transversity distributions, spin properties of the valence quarks, jet hadronization, and other hadronic observables. One thus obtains a one-parameter color-confining model for hadron physics at the amplitude level. AdS/QCD also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function with an infrared fixed point which agrees with the effective coupling a{sub g1} (Q{sup 2}) extracted from measurements of the Bjorken sum rule below Q{sup 2} < 1 GeV{sup 2}. This is consistent with a flux-tube interpretation of QCD where soft gluons with virtualities Q{sup 2} < 1 GeV{sup 2} are sublimated into a color-confining potential for quarks. We discuss a number of phenomenological hadronic properties which support this picture.

  20. SUBLIMATION-DRIVEN ACTIVITY IN MAIN-BELT COMET 313P/GIBBS

    SciTech Connect

    Hsieh, Henry H.; Hainaut, Olivier; Novaković, Bojan; Bolin, Bryce; Denneau, Larry; Haghighipour, Nader; Kleyna, Jan; Meech, Karen J.; Schunova, Eva; Wainscoat, Richard J.; Fitzsimmons, Alan; Kokotanekova, Rosita; Snodgrass, Colin; Lacerda, Pedro; Micheli, Marco; Moskovitz, Nick; Wasserman, Lawrence; Waszczak, Adam

    2015-02-10

    We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggesting that its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling results showing that the dust emission persists over at least three months during both active periods, where we find start dates for emission no later than 2003 July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of H{sub R} = 17.1 ± 0.3, corresponding to an effective nucleus radius of r{sub e} ∼ 1.00 ± 0.15 km. The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be considered an upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of T{sub l} = 12,000 yr and being located near two three-body mean-motion resonances with Jupiter and Saturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong to the ∼155 Myr old Lixiaohua asteroid family.

  1. Aluminum Nitride-Silicon Carbide Alloy Crystals Grown on SiC Substrates by Sublimation

    SciTech Connect

    Gu, Z; Du, Li; Edgar, J H; Payzant, E Andrew; Walker, Larry R; Liu, R; Engelhard, M H

    2005-01-01

    AlN-SiC alloy crystals, with a thickness greater than 500μm, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8 or 3.68 ) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlNSiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). Xray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 10^6cm-2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.

  2. Effect of impurity incorporation on crystallization in AlN sublimation epitaxy

    NASA Astrophysics Data System (ADS)

    Kakanakova-Georgieva, A.; Gueorguiev, G. K.; Yakimova, R.; Janzén, E.

    2004-11-01

    We have implemented graphite, graphite-tantalum (Ta), and Ta growth environment to the sublimation epitaxy of aluminum nitride (AlN) and have studied development, morphological, and cathodoluminescence emission properties of AlN crystallites. Three apparently different types of crystallites form in the three different types of growth environment, which presumably manifests the relationship between crystallite-habit-type and impurities. Comparison between the cathodoluminescence spectra reveals certain dynamics in the incorporation into AlN of the main residual dopants, oxygen and carbon, when the growth environment changes. At high temperatures, in addition to Al and N2, which constitute the vapor over AlN, vapor molecules of CN, NO, Al2C, and many more can be present in the vapor from which AlN grows and both oxygen and carbon can be incorporated into AlN in varying ratios. Involving calculations of the cohesive energy per atom of such vapor molecules and also of Ta containing molecules, we have considered possible mechanisms how oxygen and carbon get incorporated into AlN and how this kinetics interferes with the growth environment. The positive effect of Ta consists in the marked reduction of residual oxygen and carbon impurities in the vapor from which AlN is growing. However, on the account of this reduction, the overall composition of the vapor changes. We speculate that during AlN nucleation stage small impurity levels may be beneficial in order to provide a better balance between the AlN crystallites development and impurity incorporation issues. We have shown that some impurity containing vapor molecules are acting as essential transport agents and suppliers of nitrogen for the AlN growth.

  3. Aluminum Nitride-Silicon Carbide Alloy Crystals Grown on SiC Substrates by Sublimation

    SciTech Connect

    Gu, Zheng; Du, L; Edgar, James H.; Payzant, Edward A.; Walker, L. R.; Liu, R.; Engelhard, Mark H.

    2005-12-20

    AlN-SiC alloy crystals, with a thickness greater than 500 m, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8? or 3.68?) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlN-SiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 106 cm-2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.

  4. Sublimation-Driven Activity in Main-Belt Comet 313p/Gibbs

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Hainaut, Olivier; Novaković, Bojan; Bolin, Bryce; Denneau, Larry; Fitzsimmons, Alan; Haghighipour, Nader; Kleyna, Jan; Kokotanekova, Rosita; Lacerda, Pedro; Meech, Karen J.; Micheli, Marco; Moskovitz, Nick; Schunova, Eva; Snodgrass, Colin; Wainscoat, Richard J.; Wasserman, Lawrence; Waszczak, Adam

    2015-02-01

    We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggesting that its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling results showing that the dust emission persists over at least three months during both active periods, where we find start dates for emission no later than 2003 July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of HR = 17.1 ± 0.3, corresponding to an effective nucleus radius of re ∼ 1.00 ± 0.15 km. The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be considered an upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of Tl = 12,000 yr and being located near two three-body mean-motion resonances with Jupiter and Saturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong to the ∼155 Myr old Lixiaohua asteroid family.

  5. Risk assessment of Cumberland unit 2 L-O blades

    SciTech Connect

    Lam, T.C.T.; Puri, A.

    1996-12-31

    Concern about the reliability of the 1,300 mw Cumberland steam turbine units after an unexpected blade tip failure in the fall of 1995 caused TVA to conduct an investigation into the current reliability of the L-O blades. A probabilistic model based on the measured frequencies, damping and material fatigue data was generated. The influence of significant erosion damage on the blade natural frequencies and on the local stresses was estimated. A probabilistic model of the local fatigue limit was generated based on test data. Monte Carlo simulation was employed to estimate the probability of blade failure by comparing the dynamic stress with the fatigue limit. Risk assessment of the blade failure is presented.

  6. Responsivity calibration of the LoWEUS spectrometer

    NASA Astrophysics Data System (ADS)

    Lepson, J. K.; Beiersdorfer, P.; Kaita, R.; Majeski, R.; Boyle, D.

    2016-11-01

    We performed an in situ calibration of the relative responsivity function of the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), while operating on the Lithium Tokamak Experiment (LTX) at Princeton Plasma Physics Laboratory. The calibration was accomplished by measuring oxygen lines, which are typically present in LTX plasmas. The measured spectral line intensities of each oxygen charge state were then compared to the calculated emission strengths given in the CHIANTI atomic database. Normalizing the strongest line in each charge state to the CHIANTI predictions, we obtained the differences between the measured and predicted values for the relative strengths of the other lines of a given charge state. We find that a 3rd degree polynomial function provides a good fit to the data points. Our measurements show that the responsivity between about 120 and 300 Å varies by factor of ˜30.

  7. Magnetic retention of LO2 in an accelerating environment

    NASA Astrophysics Data System (ADS)

    Marchetta, Jeffrey G.; Simmons, Benjamin D.; Hochstein, John I.

    2008-04-01

    Recent advances in magnet technology suggest that magnetic positive positioning of liquids may become a viable technology for future spacecraft systems. Preliminary simulation results for a subscale tank are presented which illustrate that a magnet of sufficient strength can retain liquid oxygen (LO2) in an accelerating environment. Development of a new computational model for simulating equilibrium free surface shapes in the presence of a magnetic field is presented. Comparisons of equilibrium simulation predictions to known solutions for simple configurations support the conclusion that the computational model is suitable for continuing the investigation of magnetic propellant storage. Results obtained using the equilibrium simulation are presented to further demonstrate the feasibility of using magnetic retention to manage cryogenic propellants onboard spacecraft.

  8. MaTeLo: Automated Testing Suite for Software Validation

    NASA Astrophysics Data System (ADS)

    Guiotto, A.; Acquaroli, B.; Martelli, A.

    It is universally known that testing has a predominant role when developing software: more and more efforts are spent on testing to detect programming faults, to evaluate the code reliability or performance, to ensure that a critical function of a system meets given requirements. The ratio of time spent on testing should not be neglected and this explains why there is a real need to improve the development process, especially as systems are becoming larger and larger. It is necessary to keep under control the schedule and budget of developments, and controlling the testing phase is a real issue, often underestimated in many industrial sectors. The industry is heightened at different stages regarding testing, and the MaTeLo project is committed to promote the use of statistical tools &methods to answer European industry's needs: • have the ability to choose relevant test cases instead of a human- biased selection • know when to stop testing (definition of a stopping criteria) instead of a vague and informal criteria • adopt an identical strategy for different developments • automate the testing process, and thus to make testing not human error prone MaTeLo (Markov Test Logic) study is a study currently under development in the frame of the IST program of the European Community. The aim of the project is to define, implement and validate a new approach for supporting the software testing activities in various industrial fields. One of the major goals is in particular to provide the software teams with a new tool able to automatically produce and execute the Test Cases starting from the software specifications. Further, the tool is conceived to provide metrics that could help technical staff to determine software quality and to evaluate how much expected results are met. The tool is based on Markov chains theory and belongs to statistical testing software tools family [Runeson] [Whittaker].

  9. Elusive Carbonic Acid: A Determination of its Vapor Pressures and Enthalpy of Sublimation for Mars and Beyond

    NASA Astrophysics Data System (ADS)

    Lewis, Ariel S.; Hudson, R. L.; Moore, M. H.; Cooper, P. D.

    2007-10-01

    Solid H2O and CO2 are present on Mars, some Galilean satellites, comets, and interstellar ices. Laboratory work on frozen H2O-CO2 mixtures shows that they produce H2CO3, carbonic acid, when exposed to either high-energy radiation (keV, MeV) or vacuum-UV photons (eV). While this molecule readily dissociates at 298 K, its stability below about 250 K suggests that it should exist in extraterrestrial environments. Unfortunately, little is known of solid-phase carbonic acid at temperatures relevant to planetary science. Recently we have studied some of the thermodynamic properties of carbonic acid. To synthesize this compound, we first injected a KHCO3 solution onto a substrate, pre-cooled to 15 K, to make a thin icy film. On top of this, an HBr solution was injected to make a second icy film. The substrate then was heated to about 200 K to initiate an acid-base reaction between KHCO3 and HBr, and to sublime the water present into a vacuum chamber. The resulting formation of carbonic acid was confirmed by recording infrared (IR) spectra of the samples before and after warming. The ices then were further heated to 240 - 255 K, and spectra recorded over time. Decreases in carbonic acid's IR bands near 1300 and 1500 cm-1 allowed the vapor pressure of the compound to be measured at several temperatures, from which an enthalpy of sublimation was determined. Comparisons were made to the heats of sublimation for formic and acetic acids, both those measured by us and those already in the literature. This work was supported by the Mars Fundamental Research Program and Goddard Center for Astrobiology. The first author was supported by an award from the Summer Undergraduate Internship in Astrobiology program.

  10. Development of plasma cleaning and plasma enhanced close space sublimation hardware for improving CdS/CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Swanson, Drew

    A scalable photovoltaic manufacturing process that employs a heated pocket deposition technique has been developed at Colorado State University. It allows for the economical manufacturing of single-junction thin-film CdTe solar cells with efficiencies over 13%. New techniques that further increase cell efficiency and reduce production expenses are required to make solar energy more affordable. To address this need a hollow-cathode plasma source was added to the load-lock region of the CSU single-vacuum in-line CdTe-cell fabrication system. This plasma source is used to clean the transparent-conductive-oxide layer of the cell prior to the deposition of the CdS and CdTe layers. Plasma cleaning enables a reduction in CdS thickness by approximately 20 nm, while maintaining an improved cell voltage. Cell current was improved and cell efficiency was increased by 1.5%. Maps generated by scanning white-light interferometry, electroluminescence, and light-beam-induced current all show uniformity improvement with plasma cleaning treatment. To further increase cell efficiency a hollow-cathode plasma-enhanced close space sublimation (PECSS) source was utilized to modify the CdS window layer material as it was being deposited. This was done by integrating PECSS into the CSU inline CdS/CdTe-cell fabricating system and by sublimating the CdS semiconductor material through a plasma discharge. To date oxygenated CdS (CdS:O) cells have been grown by sublimating CdS through a PECSS source operated on oxygen. Data are presented showing that PECSS CdS:O films have increased the band gap of the window layer therefore reducing absorption loss, increasing cell current, and improving efficiency by 1.2%.

  11. Single Nanoparticle Mass Spectrometry as a High Temperature Kinetics Tool: Sublimation, Oxidation, and Emission Spectra of Hot Carbon Nanoparticles.

    PubMed

    Howder, Collin R; Long, Bryan A; Gerlich, Dieter; Alley, Rex N; Anderson, Scott L

    2015-12-17

    In single nanoparticle mass spectrometry, individual charged nanoparticles (NPs) are trapped in a quadrupole ion trap and detected optically, allowing their mass, charge, and optical properties to be monitored continuously. Previous experiments of this type probed NPs that were either fluorescent or large enough to detect by light scattering. Alternatively, small NPs can be heated to temperatures where thermally excited emission is strong enough to allow detection, and this approach should provide a new tool for measurements of sublimation and surface reaction kinetics of materials at high temperatures. As an initial test, we report a study of carbon NPs in the 20-50 nm range, heated by 10.6 μm, 532 nm, or 445 nm lasers. The kinetics for sublimation and oxidation of individual carbon NPs were studied, and a model is presented for the factors that control the NP temperature, including laser heating, and cooling by sublimation, buffer gas collisions, and radiation. The estimated NP temperatures were in the 1700-2000 K range, and the NP absorption cross sections ranged from ∼0.8 to 0.2% of the geometric cross sections for 532 nm and 10.6 μm excitation, respectively. Emission spectra of single NPs and small NP ensembles show a feature in the IR that appears to be the high energy tail of the thermal (blackbody-like) emission expected from hot particles but also a discrete feature peaking around 750 nm. Both the IR tail and 750 nm peak are observed for all particles and for both IR and visible laser excitation. No significant difference was observed between graphite and amorphous carbon NPs. PMID:26513667

  12. Wet etching studies of aluminum nitride bulk crystals and their sublimation growth by microwaves

    NASA Astrophysics Data System (ADS)

    Zhuang, Dejin

    The research described in this dissertation was motivated by the need of bulk AlN single crystals to improve the quality of group III nitride based devices. In this dissertation, first the evolution of semiconductors is reviewed. Second, historical reviews and recent advances of AlN crystal growth are presented. Third, the experimental setup and characterization methods are described. Finally, four papers regarding wet etching and sublimation growth of AlN are attached: (1) AlN bulk crystal growth using microwaves as heat source; (2) a review of wet etching of GaN and AlN; (3) anisotropic etching technique for identifying AlN crystal polarities; and (4) defect-selective etching to reveal dislocations in Al-polar crystals. Single crystalline AIN platelets up to 2 x 3 mm2 and needles 3 mm long were successfully grown by directly heating the source materials with microwaves. The grown crystals were characterized by optical microscopy, photoluminescence (PL), Raman spectroscopy, synchrotron white beam X-ray topography (SWBXT), and defect-selective etching. The grown crystals have good structural quality, with etch pit density as low as 103 cm -2. A peak positioned at 5.5 eV in PL spectra was attributed to magnesium impurities, presumably originating from the source materials. The wet etchings of GaN and AlN by electrochemical etching and defect-selective etching are reviewed. The mechanism of each etching process and etching conditions resulting in highly anisotropic, dopant-type/bandgap selective, defect-selective, and smooth surfaces are discussed. The applications of wet etching techniques in device fabrication and crystal characterization are also reviewed. The anisotropic etching technique for AlN crystals was successfully developed. Aqueous KOH solution did not attack Al-polar surfaces, but produced hexagonal hillocks on N-polar surfaces. The etching results suggested that freely nucleated AlN crystals predominately have the Al polarity facing the source

  13. Basal sublimation and venting of the north seasonal cap of Mars

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Christensen, P. R.

    2007-12-01

    Spots, fans and dark polygonal patterns form during the spring on the southern seasonal cap of Mars as a consequence of 1) the basal sublimation of the translucent and impermeable slab of carbon dioxide and 2) the venting of the CO2 gas loaded with dust and sand size material scoured from the surface of the polar layered deposits. The dark polygons on the cap have a similar formation process as the spots but the dust and sand erupt from elongated vents rather than point sources. In the summer, spiders and etched polygons remain on the southern polar layered deposits. The spiders are shaped by the scouring action of confined CO2 gas flowing between the cap and the basement and converging toward point sources, whereas the etched polygons result form the forced migration of the CO2 gas over longer distances. Comparable observations during the spring near the north pole on the seasonal cap indicate that similar processes occur in both polar regions and that the venting model developed for the south seasonal cap also operates near the north pole. However, spider and etched polygonal features are extremely uncommon on the north substrate, indicating that the conditions for their formation (e.g. mechanical strength of the slab and the substrate, transparency of the seasonal cap) are not met. The continual erosion and re-sedimentation occurring at the surface of the polar layered deposits by the seasonal degassing is a major geomorphological agent shaping the polar regions. The polar layered deposits have been proposed to contain the stratigraphic record of climatic changes and catastrophic events of very high interest for future missions. Our observations suggest that both polar regions deposits may have been locally disrupted by the seasonal sub-ice gas flow and that the stratigraphic record may have been partially lost. The Phoenix landing site might have been affected in the past and the stratigraphic information associated with the original deposition of the polar

  14. Effect of acoustic streaming on the mass transfer from a sublimating sphere

    NASA Astrophysics Data System (ADS)

    Kawahara, N.; Yarin, A. L.; Brenn, G.; Kastner, O.; Durst, F.

    2000-04-01

    particles much smaller than the sound wavelength. Good agreement between experiment and the theory of Yarin et al. is demonstrated. The time-averaged heat and mass transfer rates over a sphere surface are greatest at the sphere's equator and least at its poles in the experiment as predicted by the theory (the ultrasonic standing wave spans the vertical axis passing through the poles). The measured distribution of the mass transfer rate over the sphere surface also agrees with the theoretical predictions, which shows that in strong acoustic fields sublimation (or evaporation) results from the acoustic streaming.

  15. Self-Separation of Sublimation-Grown AlN with AlSiN Buffer Layer

    NASA Astrophysics Data System (ADS)

    Nishino, Katsushi; Nakauchi, Jun; Hayashi, Kotaro; Tsukihara, Masashi

    2013-08-01

    AlN was grown by a sublimation method on 6H-SiC. We found the grown AlN layer is easily separated from the substrate when Si powder is added to the AlN source powder. The formation of AlSiN layer with the Si content of 15% at the AlN/6H-SiC interface was confirmed by energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). This AlSiN layer causes the separation of AlN.

  16. Sublimation rates of carbon monoxide and carbon dioxide from comet nuclei at large distances from the Sun

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    One of the more attractive among the plausible scenarios for the major emission event recently observed on Comet Halley at a heliocentric distance of 14.3 AU is activation of a source of ejecta driven by an icy substance much more volatile than water. As prerequisite for the forthcoming detailed analysis of the imaging observations of this event, a simple model is proposed that yields the sublimation rate versus time at any location on the surface of a rotating cometary nucleus for two candidate ices: carbon monoxide and carbon dioxide. The model's variable parameters are the comet's heliocentric distance r and the Sun's instantaneous zenith angle z.

  17. Low-temperature transport properties of multigraphene films grown on the SiC surface by sublimation

    SciTech Connect

    Lebedev, A. A. Agrinskaya, N. V.; Lebedev, S. P.; Mynbaeva, M. G.; Petrov, V. N.; Smirnov, A. N.; Strel'chuk, A. M.; Titkov, A. N.; Shamshur, D. V.

    2011-05-15

    Multigraphene films grown by sublimation on the surface of a semi-insulating 6H-SiC substrate have been studied. It is shown that pregrowth annealing of the substrate in a quasiclosed growth cell improves the structural quality of a multigraphene film. Ohmic contacts to the film have been fabricated, and the Hall effect has been studied at low temperatures. It is found that a 2D electron gas exists in the films. It is concluded that the conductivity of the film is determined by defects existing within the graphene layer or at the interface between the graphene film and a SiC substrate.

  18. The role of sublimation and condensation on the development of ice sedimentation waves on the North Polar Cap of Mars

    NASA Astrophysics Data System (ADS)

    Herny, C.; Carpy, S.; Bourgeois, O.; Masse, M.; Spiga, A.; Le Mouélic, S.; Perret, L.; Smith, I. B.; Rodriguez, S.

    2015-10-01

    Mass and energy balance of ice sheets are driven by complex interactions between the atmosphere and the cryosphere. For instance, it has been demonstrated that feedbacks between katabatic winds and the cryosphere lead to the formation of sedimentation waves at the surface of Martian and terrestrial ice sheets [1, 2, 3 and 4]. Here we explore the role of sublimation and condensation of water vapor in the development of these sedimentation waves. We conduct this study by complementary observational and numerical investigations on the North Polar Cap of Mars.

  19. Computational and Experimental Investigations Into the Mass Loss of a Carbon Material in the Sublimation Regime of its Thermochemical Destruction

    NASA Astrophysics Data System (ADS)

    Gorskii, V. V.; Zolotarev, S. L.; Olenicheva, A. A.

    2015-01-01

    The authors give results of an experimental investigation into the ablation characteristics of a modern fi ne granular carbon material in the high-enthalpy jet of a TT-1 arc-heated facility [1] ("TsNIImash" Federal State Unitary Enterprise), and also results of computational and experimental investigations into the parameters of the jet of this facility. Data given in the article provide a basis for studying the regularities of the mass loss of the carbon material in a sublimation regime of its thermochemical destructioncpb

  20. An atomic beam of 6Li — 7Li for high resolution spectroscopy from matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Oliveira, A. N.; Sacramento, R. L.; Silva, B. A.; Uhlmann, F. O.; Wolff, W.; Cesar, C. L.

    2016-07-01

    We propose the Matrix Isolation Sublimation (MlSu) technique for generating cold lithium atoms for the measurement of the 6Li - 7Li isotope shift in D1 and D2 transitions. The technique is capable of generating cold 6Li and 7Li beams at 4 K with forward velocity of 125 m/s. Using this beam we offer a distinguished source of lithium atoms for transitions measurements, adding a new possibility to make high resolution spectroscopy towards improving the experimental checks of the theory.

  1. Effective elimination of organic matter interference in boron isotopic analysis by thermal ionization mass spectrometry of coral/foraminifera: micro-sublimation technology combined with ion exchange.

    PubMed

    He, Maoyong; Xiao, Yingkai; Ma, Yunqi; Jin, Zhangdong; Xiao, Jun

    2011-03-30

    In order to better estimate the effectiveness of micro-sublimation technology on the elimination of organic matter interference during boron isotopic analysis, a series of improved experiments was carried out using simple apparatus. Recovery rates after micro-sublimation were measured for boric acid solutions with different B contents or different B/organic matter ratios. The improved micro-sublimation procedure combined with ion-exchange technology was then used to test natural samples (coral and foraminifera) for the separation of boron. Our results show that the time taken for 100% recovery of different amounts of B differed and that the proportions of B/organic matter within the natural organic matter have little effect on the relationship between the recovery rates of B and the micro-sublimation times. The experiments further confirm that the organic matter does indeed have an effect on boron isotope analyses by positive thermal ionization mass spectrometry and that the use of micro-sublimation can effectively remove interferences from the organic matter during boron isotopic analysis. PMID:21337635

  2. Enthalpy of sublimation in the study of the solid state of organic compounds. Application to erythritol and threitol.

    PubMed

    Lopes Jesus, A J; Tomé, Luciana I N; Eusébio, M Ermelinda; Redinha, J S

    2005-09-29

    The enthalpies of sublimation of erythritol and L-threitol have been determined at 298.15 K by calorimetry. The values obtained for the two diastereomers differ from one another by 17 kJ mol(-1). An interpretation of these results is based on the decomposition of this thermodynamic property in a term coming from the intermolecular interactions of the molecules in the crystal (delta(int)H degrees) and another one related with the conformational change of the molecules on going from the crystal lattice to the most stable forms in the gas phase (delta(conf)H degrees). This last term was calculated from the values of the enthalpy of the molecules in the gas state and of the enthalpy of the isolated molecules with the crystal conformation. Both quantities were obtained by density functional theory (DFT) calculations at the B3LYP/6-311G++(d,p) level of theory. The results obtained in this study show that the most important contribution to the differences observed in the enthalpy of sublimation are the differences in the enthalpy of conformational change (13 kJ mol(-1)) rather than different intermolecular forces exhibited in the solid phase. This is explained by the lower enthalpy of threitol in the gas phase relative to erythritol, which is attributed to the higher strength of the intramolecular hydrogen bonds in the former. The comparison of the calculated infrared spectra obtained for the two compounds in the gas phase supports this interpretation.

  3. Redetermination of the crystal structure of boron subphthalocyanine chloride (Cl-BsubPc) enabled by slow train sublimation.

    PubMed

    Virdo, Jessica D; Lough, Alan J; Bender, Timothy P

    2016-04-01

    The crystal structure of boron subphthalocyanine chloride [systematic name: chlorido(subphthalocyaninato)boron], C24H12BClN6, a material of widespread interest in organic electronic device applications, has been redetermined with a higher precision using large single crystals obtained via slow train sublimation. Details are given for the construction and operation of the train sublimation system, which has been designed to reproducibly yield single crystals suitable for diffraction experiments in a manner which approximates the vacuum deposition conditions commonly used to fabricate organic electronic devices. Diffraction experiments were conducted using two crystal samples and four temperatures (90, 123, 147 and 295 K), enabling a discussion of changes in the unit cell and intermolecular interactions with respect to temperature and in comparison to two previously published structures of Cl-BsubPc. The redetermined structure confirms the original structure published 41 years ago [Meller & Ossko (1972). Monatsh. Chem. 103, 150-155], with significantly improved precision for the geometric parameters. Analysis of the crystal structure revealed three intersecting ribbon motifs formed through a combination of π-π and halogen-π (specifically B-Cl...π) interactions. H atoms were refined independently in order to facilitate a thorough discussion of these intermolecular interactions using Hirshfeld surface analysis. PMID:27045180

  4. A centre-triggered magnesium fuelled cathodic arc thruster uses sublimation to deliver a record high specific impulse

    NASA Astrophysics Data System (ADS)

    Neumann, Patrick R. C.; Bilek, Marcela; McKenzie, David R.

    2016-08-01

    The cathodic arc is a high current, low voltage discharge that operates in vacuum and provides a stream of highly ionised plasma from a solid conducting cathode. The high ion velocities, together with the high ionisation fraction and the quasineutrality of the exhaust stream, make the cathodic arc an attractive plasma source for spacecraft propulsion applications. The specific impulse of the cathodic arc thruster is substantially increased when the emission of neutral species is reduced. Here, we demonstrate a reduction of neutral emission by exploiting sublimation in cathode spots and enhanced ionisation of the plasma in short, high-current pulses. This, combined with the enhanced directionality due to the efficient erosion profiles created by centre-triggering, substantially increases the specific impulse. We present experimentally measured specific impulses and jet power efficiencies for titanium and magnesium fuels. Our Mg fuelled source provides the highest reported specific impulse for a gridless ion thruster and is competitive with all flight rated ion thrusters. We present a model based on cathode sublimation and melting at the cathodic arc spot explaining the outstanding performance of the Mg fuelled source. A further significant advantage of an Mg-fuelled thruster is the abundance of Mg in asteroidal material and in space junk, providing an opportunity for utilising these resources in space.

  5. Controlled growth of vertically aligned MoO{sub 3} nanoflakes by plasma assisted paste sublimation process

    SciTech Connect

    Sharma, Rabindar K.; Reddy, G. B.

    2013-11-14

    In this work, we have successfully developed plasma assisted paste sublimation route to deposit vertically aligned MoO{sub 3} nanoflakes (NFs) on nickel coated glass substrate in oxygen plasma ambience with the assistant of Ni thin layer as a catalyst. In our case, sublimation source (Mo strip surface) is resistively heated by flowing current across it. The structural, morphological, and optical properties of NFs have been investigated systematically using x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), High resolution transmission electron microscopy (HRTEM), micro-Raman spectroscopy, and Photoluminescence (PL) spectroscopy. Studies reveal that the presence of oxygen plasma and the nickel thin layer are very essential for the growth of vertically aligned NFs. The observed results divulge that α-MoO{sub 3} NFs are deposited uniformly on large scale with very high aspect (height/thickness) ratio more than 30 and well aligned along [0 k 0] crystallographic direction where k is even (2, 4, 6). Raman spectrum shows a significant size effect on the vibrational property of MoO{sub 3} nanoflakes. The PL spectrum of MoO{sub 3} NFs was recorded at room temperature and four prominent peaks at 365 nm, 395 nm, 452 nm, and 465 nm corresponding to UV-visible region were observed. In this paper, a three step growth strategy for the formation of MoO{sub 3} NFs has been proposed in detail.

  6. Single-crystal field-effect transistors of new Cl₂-NDI polymorph processed by sublimation in air.

    PubMed

    He, Tao; Stolte, Matthias; Burschka, Christian; Hansen, Nis Hauke; Musiol, Thomas; Kälblein, Daniel; Pflaum, Jens; Tao, Xutang; Brill, Jochen; Würthner, Frank

    2015-01-12

    Physical properties of active materials built up from small molecules are dictated by their molecular packing in the solid state. Here we demonstrate for the first time the growth of n-channel single-crystal field-effect transistors and organic thin-film transistors by sublimation of 2,6-dichloro-naphthalene diimide in air. Under these conditions, a new polymorph with two-dimensional brick-wall packing mode (β-phase) is obtained that is distinguished from the previously reported herringbone packing motif obtained from solution (α-phase). We are able to fabricate single-crystal field-effect transistors with electron mobilities in air of up to 8.6 cm(2) V(-1) s(-1) (α-phase) and up to 3.5 cm(2) V(-1) s(-1) (β-phase) on n-octadecyltriethoxysilane-modified substrates. On silicon dioxide, thin-film devices based on β-phase can be manufactured in air giving rise to electron mobilities of 0.37 cm(2) V(-1) s(-1). The simple crystal and thin-film growth procedures by sublimation under ambient conditions avoid elaborate substrate modifications and costly vacuum equipment-based fabrication steps.

  7. Scanning proximal microscopy study of the thin layers of silicon carbide-aluminum nitride solid solution manufactured by fast sublimation epitaxy

    NASA Astrophysics Data System (ADS)

    Dallaeva, D.; Korostylev, E.; Bilalov, B.; Tománek, P.

    2013-04-01

    The objective of the study is a growth of SiC/(SiC)1-x(AlN)x structures by fast sublimation epitaxy of the polycrystalline source of (SiC)1-x(AlN)x and their characterisation by proximal scanning electron microscopy and atomic force microscopy. For that purpose optimal conditions of sublimation process have been defined. Manufactured structures could be used as substrates for wide-band-gap semiconductor devices on the basis of nitrides, including gallium nitride, aluminum nitride and their alloys, as well as for the production of transistors with high mobility of electrons and also for creation of blue and ultraviolet light emitters (light-emitted diodes and laser diodes). The result of analysis shows that increasing of the growth temperature up to 2300 K allows carry out sublimation epitaxy of thin layers of aluminum nitride and its solid solution.

  8. An enhanced model of the contemporary and long-term (200 ka) sublimation of the massive subsurface ice in Beacon Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Sletten, Ronald S.; Hagedorn, Birgit; Hallet, Bernard; McKay, Christopher P.; Stone, John O.

    2015-08-01

    A massive ice body buried under several decimeters of dry regolith in Beacon Valley, Antarctica, is believed to be more than 1 Ma old and perhaps over 8.1 Ma; however, vapor diffusion models suggest that subsurface ice in this region is not stable under current climate conditions. To better understand the controls on sublimation rates and stability of this massive ice, we have modeled vapor diffusion using 12 years of climate and soil temperature data from 1999 to 2011, including field measurements of episodic snow cover and snowmelt events that have not been represented in previous models of ground ice sublimation. The model is then extended to reconstruct the sublimation history over the last 200 ka using paleotemperatures estimated from ice core data from nearby Taylor Dome and a relationship between atmospheric temperature and humidity derived from our meteorological records. The model quantifies the impact of episodic snow events; they account for a nearly 30% reduction in the massive ice loss. The sublimation rate of ground ice averages 0.11 mm a-1 between 1999 and 2011 in Beacon Valley. Parameterized with past environmental conditions and assuming the same regolith thickness, the modeled sublimation rate of ground ice in Beacon Valley averages 0.09 mm a-1 for the last 200 ka, comparable to the long-term average rate estimated independently from various studies based on cosmogenic isotopes. This study provides a realistic estimate of the long-term sublimation history and supports the inference that the buried ice in Beacon Valley is older than 1 Ma.

  9. The not-so-sublime early Earth recorded in Hadean zircons

    NASA Astrophysics Data System (ADS)

    Cavosie, A. J.

    2011-12-01

    oxygen isotope ratios (up to 7.5 %) are evidence that the early formed crust was evolved (granitic), rather than primitive (gabbroic). (4) Variable oxygen and Li isotope ratios in zircon record processes of surface alteration and subsequent magmatic recycling of altered crust, constraining the appearance of low surface temperatures and liquid water oceans by 4.3 to 4.2 Ga. (5) Evidence for the Late Heavy Bombardment has not been identified in Hadean zircons; planar microstructures known to form in shock metamorphosed zircon have not been found in Hadean grains. (6) Other claims, including reports of modern-style plate interactions based on zircon mineral inclusion barometry, and the presence of diamond inclusions in Hadean zircons, remain controversial, and open to interpretation. Many aspects of the Hadean are therefore similar to the Archean; distinguishing the two eons thus remains a challenge. However, the cooling and condensation of liquid surface water and its subsequent effect on magma chemistry, as recorded in Hadean zircons from 4.3 to 4.2 Ga, suggests a global-scale process that created habitats for life, and clearly marked the end of 'hell-like' Hadean surface conditions. As the timescale and processes active on the early Earth become better quantified through careful documentation and measurement of these ancient zircons, the Hadean becomes somewhat less sublime.

  10. Material composition assessment and discovering sublimation activity on asteroids 145 Adeona, 704 Interamnia, 779 Nina, and 1474 Beira

    NASA Astrophysics Data System (ADS)

    Busarev, V. V.; Barabanov, S. I.; Puzin, V. B.

    2016-07-01

    Spectrophotometric observations of 145 Adeona, 704 Interamnia, 779 Nina, and 1474 Beira—asteroids of close primitive types—allowed us to detect similar mineralogical absorption bands in their reflectance spectra centered in the range 0.35 to 0.92 μm; the bands are at 0.38, 0.44, and 0.67-0.71 μm. On the same asteroids, the spectral signs of simultaneous sublimation activity were found for the first time. Namely, there are maxima at ˜0.35-0.60 μm in the reflectance spectra of Adeona, Interamnia, and Nina and at ˜0.55-075 μm in the spectra of Beira. We connect this activity with small heliocentric distances of the asteroids and, consequently, with a high insolation at their surfaces. Examination of the samples of probable analogues allowed us to identify Fe3+ and Fe2+ in the material of these asteroids through the mentioned absorption bands. For analogues, we took powdered samples of carbonaceous chondrites Orgueil (CI), Mighei (CM2), Murchison (CM2), and Boriskino (CM2), as well as hydrosilicates of the serpentine group. Laboratory spectral reflectance study of the samples of low-iron Mg serpentines (<2 wt % FeO) showed that the equivalent width of the absorption band centered at 0.44-0.46 μm strongly correlates with the content of Fe3+ in octahedral and tetrahedral coordinations. Our conclusion is that this absorption band can be used as a qualitative indicator of Fe3+ in the surface matter of asteroids and other solid celestial bodies. The comparison of the listed analog samples and the asteroids by parameters of the spectral features suggests that the silicate component of the asteroids' surface material is a mixture of hydrated and oxidized compounds, including oxides and hydroxides of bivalent and trivalent iron and carbonaceous-chondritic material. At the same time, the sublimation activity of Adeona, Interamnia, Nina, and Beira at high surface temperatures points to a substantial content of water ice in their material. This contradicts the

  11. The role of oxygen in CdS/CdTe solar cells deposited by close-spaced sublimation

    SciTech Connect

    Rose, D.H.; Levi, D.H.; Matson, R.J.

    1996-05-01

    The presence of oxygen during close-spaced sublimation (CSS) of CdTe has been previously reported to be essential for high-efficiency CdS/CdTe solar cells because it increases the acceptor density in the absorber. The authors find that the presence of oxygen during CSS increases the nucleation site density of CdTe, thus decreasing pinhole density and grain size. Photoluminescence showed that oxygen decreases material quality in the bulk of the CdTe film, but positively impacts the critical CdS/CdTe interface. Through device characterization the authors were unable to verify an increase in acceptor density with increased oxygen. These results, along with the achievement of high-efficiency cells (13% AM1.5) without the use of oxygen, led the authors to conclude that the use of oxygen during CSS deposition of CdTe can be useful but is not essential.

  12. Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia

    USGS Publications Warehouse

    Symonds, R.B.; Rose, William I.; Reed, M.H.; Lichte, F.E.; Finnegan, David L.

    1987-01-01

    Condensates, silica tube sublimates and incrustations were sampled from 500-800??C fumaroles and lava samples were collected at Merapi Volcano, Indonesia in Jan.-Feb., 1984. With respect to the magma, Merapi gases are enriched by factors greater than 105 in Se, Re, Bi and Cd; 104-105 in Au, Br, In, Pb and W; 103-104 in Mo, Cl, Cs, S, Sn and Ag; 102-103 in As, Zn, F and Rb; and 1-102 in Cu, K, Na, Sb, Ni, Ga, V, Fe, Mn and Li. The fumaroles are transporting more than 106 grams/day ( g d) of S, Cl and F; 104-106 g/d of Al, Br, Zn, Fe, K and Mg; 103-104 g d of Pb, As, Mo, Mn, V, W and Sr; and less than 103 g d of Ni, Cu, Cr, Ga, Sb, Bi, Cd, Li, Co and U. With decreasing temperature (800-500??C) there were five sublimate zones found in silica tubes: 1) cristobalite and magnetite (first deposition of Si, Fe and Al); 2) K-Ca sulfate, acmite, halite, sylvite and pyrite (maximum deposition of Cl, Na, K, Si, S, Fe, Mo, Br, Al, Rb, Cs, Mn, W, P, Ca, Re, Ag, Au and Co); 3) aphthitalite (K-Na sulfate), sphalerite, galena and Cs-K. sulfate (maximum deposition of Zn, Bi, Cd, Se and In; higher deposition of Pb and Sn); 4) Pb-K chloride and Na-K-Fe sulfate (maximum deposition of Pb, Sn and Cu); and 5) Zn, Cu and K-Pb sulfates (maximum deposition of Pb, Sn, Ti, As and Sb). The incrustations surrounding the fumaroles are also chemically zoned. Bi, Cd, Pb, W, Mo, Zn, Cu, K, Na, V, Fe and Mn are concentrated most in or very close to the vent as expected with cooling, atmospheric contamination and dispersion. The highly volatile elements Br, Cl, As and Sb are transported primarily away from high temperature vents. Ba, Si, P, Al, Ca and Cr are derived from wall rock reactions. Incomplete degassing of shallow magma at 915??C is the origin of most of the elements in the Merapi volcanic gas, although it is partly contaminated by particles or wall rock reactions. The metals are transported predominantly as chloride species. As the gas cools in the fumarolic environment, it becomes saturated

  13. Experimental verification of beta-decay-driven sublimation in deuterium-tritium ice held in spherical fusion targets

    SciTech Connect

    Mruzek, M.T.; Musinski, D.L.; Ankney, J.S.

    1988-04-01

    A nonuniform layer of deuterium-tritium (DT) ice inside a spherical inertial confinement fusion (ICF) target held in an isothermal cryogenic environment should be driven toward uniformity by the beta-decay heat of the tritium. Experiments have been performed at KMS fusion to verify this hypothesis. Two major conclusions may be drawn from the initial results: (1) the beta decay of the tritium does deposit energy in the target, as evidenced by melting of DT ice when the target is well insulated from its surroundings, and (2) solid layers of DT ice sublime because of beta-decay heat. Both conclusions are reinforced by companion studies with nonradioactive hydrogen-deuterium (HD) ice in similar targets held under similar experimental conditions.

  14. Influence of trace precursors on mass transport and growth rate during sublimation deposition of AlN crystal

    NASA Astrophysics Data System (ADS)

    Li, Yanxin; Brenner, Donald W.

    2006-10-01

    A parameter-free model using ab initio chemical potentials is developed to analyze transport and growth rate in sublimation deposition of AlN. The model predicts that spontaneous mass transport is limited by a chemical potential barrier, which in turn determines the range of effective source-crystal temperature drops. The contributions to the barrier from Al and N2, which are the dominant species in the gas phase, almost cancel so that the barrier is sensitive to trace species such as Al3N. This result explains the experimentally observed decrease in growth rate with increasing inlet pressure as being due to a decreasing Al3N concentration. Using first principles chemical potentials may present potential opportunities to study other practical systems in which trace species plays an important role but where transport coefficients have to be determined empirically. Examples include atmospheric transport of contaminants and photosynthetic assimilation of CO2.

  15. AlN bulk single crystal growth on 6H-SiC substrates by sublimation method

    NASA Astrophysics Data System (ADS)

    Nagai, Ichiro; Kato, Tomohisa; Miura, Tomonori; Kamata, Hiroyuki; Naoe, Kunihiro; Sanada, Kazuo; Okumura, Hajime

    2010-09-01

    Large and thick AlN bulk single crystals up to 43 mm in diameter and 10 mm in thickness have been successfully grown on 6H-SiC (0 0 0 1) substrates by the sublimation method using a TaC crucible. Raman spectrum indicates that the polytype of the grown AlN single crystals is a Wurtzite-2H type structure, and the crystals do not include any impurity phases. The quality at the top of the crystal improves as crystal thickness increases along the <0 0 0 1> direction during growth: a low etch pit density (7×10 4 cm -2) and a small full width at half maximum for a 0002 X-ray rocking curve (58 arcsec) have been achieved at a thickness of ˜8 mm. The possible mechanism behind the improvement in the AlN crystal quality is also discussed.

  16. Comparative study of 3C-SiC layers sublimation-grown on a 6H-SiC substrate

    SciTech Connect

    Shustov, D. B.; Lebedev, A. A. Lebedev, S. P.; Nelson, D. K.; Sitnikova, A. A.; Zamoryanskaya, M. V.

    2013-09-15

    n-3C-SiC/n-6H-SiC heterostructures grown by vacuum sublimation on CREE commercial 6H-SiC substrates are studied. Transmission electron microscopy (TEM) demonstrated that a transitional layer of varying thickness, composed of a mixture of 3C- and 6H-SiC polytypes, is formed on the substrate. A 3C polytype layer was obtained on the interlayer. Cathodoluminescence study of the surface of the film demonstrated that defects in the form of inclusions of another phase (6H-polytype), stacking faults, and twin boundaries (separating domains of cubic modification, grown in various orientations) are found on the surface and in the surface layer with a thickness on the order of 100 {mu}m. Varying the growth conditions changes the concentration of various types of defects.

  17. Influences of CO2 sublimation/condensation processes on the long-term evolution of the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Kossacki, K.; Leliwa-Kopystynski, J.

    1992-01-01

    The accumulation process of frozen CO2 within the Martian regolith is analyzed. The boundary conditions are taken to be the periodically variable temperature at the Mars surface and the constant heat flux at the bottom of the regolith layers, some hundred meters thick. The mean value of temperature as well as its amplitude are assumed to be dependent on latitude and could be variable with the geological time scale. The flux of gaseous CO2 within the regolith is controlled by the mechanism of gas transport through the porous medium. An appropriate initial geometry of distribution of pores is assumed. The porosity and flux change due to condensation/sublimation processes. The equations of heat and mass transfer are solved numerically for a given latitude. Next, the local (over the parallel of latitude belt) annual balance of CO2 is calculated. The procedure is repeated over the whole Martian surface and next the total annual net flux is calculated.

  18. Method of fabricating conducting oxide-silicon solar cells utilizing electron beam sublimation and deposition of the oxide

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1979-01-01

    In preparing tin oxide and indium tin oxide-silicon heterojunction solar cells by electron beam sublimation of the oxide and subsequent deposition thereof on the silicon, the engineering efficiency of the resultant cell is enhanced by depositing the oxide at a predetermined favorable angle of incidence. Typically the angle of incidence is between 40.degree. and 70.degree. and preferably between 55.degree. and 65.degree. when the oxide is tin oxide and between 40.degree. and 70.degree. when the oxide deposited is indium tin oxide. gi The Government of the United States of America has rights in this invention pursuant to Department of Energy Contract No. EY-76-C-03-1283.

  19. Sublimation behavior of silicon nitride /Si3N4/ coated silicon germanium /SiGe/ unicouples. [for Radioisotope Thermoelectric Generators

    NASA Technical Reports Server (NTRS)

    Stapfer, G.; Truscello, V. C.

    1975-01-01

    For the Multi-Hundred Watt (MHW) Radioisotope Thermoelectric Generator (RTG), the silicon germanium unicouples are coated with silicon nitride to minimize degradation mechanisms which are directly attributable to material sublimation effects. A program is under way to determine the effective vapor suppression of this coating as a function of temperature and gas environment. The results of weight loss experiments, using Si3N4 coated hot shoes (SiMo), operating over a temperature range from 900 C to 1200 C, are analyzed and discussed. These experiments were conducted both in high vacuum and at different pressures of carbon monoxide (CO) to determine its effect on the coating. Although the results show a favorable vapor suppression at all operating temperatures, the pressure of the CO and the thickness of the coating have a decided effect on the useful lifetime of the coating.

  20. The Role of Sublimation and Condensation in the Dynamics of Aeolian Ice Sedimentation Waves on the North Polar Cap of Mars

    NASA Astrophysics Data System (ADS)

    Herny, C.; Carpy, S.; Bourgeois, O.; Spiga, A.; Rodriguez, S.; Massé, M.; Le Mouélic, S.

    2016-09-01

    We explore the role of sublimation and condensation of water vapor in the development of ice sedimentation waves on the North Polar Cap of Mars. Our observations and simulations are in accordance with the hypothesis that sedimentation waves can migrate upwind or downwind.

  1. Assessing the role of sublimation in the dry snow zone of the Greenland ice sheet in a warming world

    NASA Astrophysics Data System (ADS)

    Cullen, Nicolas J.; Mölg, Thomas; Conway, Jonathan; Steffen, Konrad

    2014-06-01

    Meteorological and glaciological data obtained over an intensive 2 year measurement period (2000-2002) are used to run a physically based climatic mass balance model to characterize a seasonal variability in mass and energy exchanges at Summit, Greenland. The model resolves the full surface energy balance and the subsurface temperature profile by inclusion of energy release from penetrating shortwave radiation. A Monte Carlo approach using 1000 different parameter combinations is adopted to assess model uncertainty, with output compared to measured surface and subsurface temperatures, changes in surface height, and eddy correlation data. The heat exchanges associated with the change in phase of water are very small in all seasons, with the average turbulent latent heat flux equal to 0.4 (±0.2) W m-2. This suggests that the mean annual water vapor gradient is toward the surface, resulting in a mass gain of 4.1 mm WE yr-1. The mass gain represents only a small fraction of the total accumulation (<2%), in part because of the change in sign of the water vapor flux from winter (deposition) to summer (sublimation), but if assumed to be typical of the entire dry snow zone (40% of the total ice sheet area) is equivalent to approximately 5.5 Gt yr-1. A simple experiment based on 2012 atmospheric conditions suggests that mass turnover from water vapor exchanges will likely be enhanced in a warming climate, with sublimation increasing more than deposition. Should the sign of the mean turbulent latent heat flux change due to warming, the present mass gain in the dry snow zone could easily become a mass loss of equal proportion, which would further enhance the negative mass balance of the Greenland ice sheet.

  2. A macroscale mixture theory analysis of deposition and sublimation rates during heat and mass transfer in dry snow

    NASA Astrophysics Data System (ADS)

    Hansen, A. C.; Foslien, W. E.

    2015-09-01

    The microstructure of a dry alpine snowpack is a dynamic environment where microstructural evolution is driven by seasonal density profiles and weather conditions. Notably, temperature gradients on the order of 10-20 K m-1, or larger, are known to produce a faceted snow microstructure exhibiting little strength. However, while strong temperature gradients are widely accepted as the primary driver for kinetic growth, they do not fully account for the range of experimental observations. An additional factor influencing snow metamorphism is believed to be the rate of mass transfer at the macroscale. We develop a mixture theory capable of predicting macroscale deposition and/or sublimation in a snow cover under temperature gradient conditions. Temperature gradients and mass exchange are tracked over periods ranging from 1 to 10 days. Interesting heat and mass transfer behavior is observed near the ground, near the surface, as well as immediately above and below dense ice crusts. Information about deposition (condensation) and sublimation rates may help explain snow metamorphism phenomena that cannot be accounted for by temperature gradients alone. The macroscale heat and mass transfer analysis requires accurate representations of the effective thermal conductivity and the effective mass diffusion coefficient for snow. We develop analytical models for these parameters based on first principles at the microscale. The expressions derived contain no empirical adjustments, and further, provide self consistent values for effective thermal conductivity and the effective diffusion coefficient for the limiting cases of air and solid ice. The predicted values for these macroscale material parameters are also in excellent agreement with numerical results based on microscale finite element analyses of representative volume elements generated from X-ray tomography.

  3. A macroscale mixture theory analysis of deposition and sublimation rates during heat and mass transfer in snow

    NASA Astrophysics Data System (ADS)

    Hansen, A. C.; Foslien, W. E.

    2015-03-01

    The microstructure of a dry alpine snowpack is a dynamic environment where microstructural evolution is driven by seasonal density profiles and weather conditions. Notably, temperature gradients on the order of 10-20 K m-1, or larger, are known to produce a faceted snow microstructure exhibiting little strength. However, while strong temperature gradients are widely accepted as the primary driver for kinetic growth, they do not fully account for the range of experimental observations. An additional factor influencing snow metamorphism is believed to be the rate of mass transfer at the macroscale. We develop a mixture theory capable of predicting macroscale deposition and/or sublimation in a snow cover under temperature gradient conditions. Temperature gradients and mass exchange are tracked over periods ranging from 1 to 10 days. Interesting heat and mass transfer behavior is observed near the ground, near the surface, as well as immediately above and below dense ice crusts. Information about deposition (condensation) and sublimation rates may help explain snow metamorphism phenomena that cannot be accounted for by temperature gradients alone. The macroscale heat and mass transfer analysis requires accurate representations of the thermal conductivity and the effective mass diffusion coefficient for snow. We develop analytical models for these parameters based on first principles at the microscale. The expressions derived contain no empirical adjustments, and further, provide self consistent values for thermal conductivity and the effective diffusion coefficient for the limiting cases of air and solid ice. The predicted values for these macroscale material parameters are also in excellent agreement with numerical results based on microscale finite element analyses of representative volume elements generated from X-ray tomography.

  4. Sorbent, Sublimation, and Icing Modeling Methods: Experimental Validation and Application to an Integrated MTSA Subassembly Thermal Model

    NASA Technical Reports Server (NTRS)

    Bower, Chad; Padilla, Sebastian; Iacomini, Christie; Paul, Heather L.

    2010-01-01

    This paper details the validation of modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly, developed for use in a Portable Life Support System (PLSS). The first core component in the subassembly is a sorbent bed, used to capture and reject metabolically produced carbon dioxide (CO2). The sorbent bed performance can be augmented with a temperature swing driven by a liquid CO2 (LCO2) sublimation heat exchanger (SHX) for cooling the sorbent bed, and a condensing, icing heat exchanger (CIHX) for warming the sorbent bed. As part of the overall MTSA effort, scaled design validation test articles for each of these three components have been independently tested in laboratory conditions. Previously described modeling methodologies developed for implementation in Thermal Desktop and SINDA/FLUINT are reviewed and updated, their application in test article models outlined, and the results of those model correlations relayed. Assessment of the applicability of each modeling methodology to the challenge of simulating the response of the test articles and their extensibility to a full scale integrated subassembly model is given. The independent verified and validated modeling methods are applied to the development of a MTSA subassembly prototype model and predictions of the subassembly performance are given. These models and modeling methodologies capture simulation of several challenging and novel physical phenomena in the Thermal Desktop and SINDA/FLUINT software suite. Novel methodologies include CO2 adsorption front tracking and associated thermal response in the sorbent bed, heat transfer associated with sublimation of entrained solid CO2 in the SHX, and water mass transfer in the form of ice as low as 210 K in the CIHX.

  5. Pedestal Craters in Utopia Planitia and Malea Planum: Evidence for a Past Ice-Rich Substrate from Marginal Sublimation Pits.

    NASA Astrophysics Data System (ADS)

    Kadish, S. J.; Head, J. W.; Barlow, N. G.; Marchant, D. R.

    2008-09-01

    Introduction: Pedestal craters (Pd) are a subclass of impact craters unique to Mars [1] characterized by a crater perched near the center of a pedestal (mesa or plateau) that is surrounded by a quasi-circular, outward-facing scarp. The marginal scarp is usually several crater diameters from the crater rim (Figs. 2,4,5), and tens to over 100 meters above the surrounding plains (Fig. 2). Pd have been interpreted to form by armoring of the proximal substrate during the impact event. Hypotheses for the armoring mechanism include an ejecta covering [e.g., 3], increased ejecta mobilization caused by volatile substrates [4], distal glassy/melt-rich veneers [5], and/or an atmospheric blast/thermal effect [6]. Subsequently, a marginal scarp forms by preferential erosion of the substrate surrounding the armored region, most commonly thought to involve eolian removal of fine-grained, non-armored material [e.g., 3]. An understanding of the distribution of Pd, which form predominantly poleward of ~40°N and S latitude [7-9] (Fig. 1), and the role of redistribution of ice and dust during periods of climate change [e.g., 10-11], suggests that the substrate might have been volatile-rich [8-9, 12-14]. As such, some researchers [e.g., 8-9] have proposed a model for Pd formation that involves impact during periods of higher obliquity, when mid- to high-latitude substrates were characterized by thick deposits of snow and ice [e.g., 15]. Subsequent sublimation of the volatile units, except below the armored regions, yielded the perched Pd. Thus, this model predicts that thick deposits of snow/ice should underlie Pd. This is in contrast to the eolian model [3], which calls primarily for deflation of sand and dust. Here, we show the results of our study [8,16] that has documented and characterized 2461 Pd on Mars equatorward of ~65° N and S latitude (Fig. 1) in order to test these hypotheses for the origin of pedestal craters. In particular, we report on the detection of 50 Pd in Utopia

  6. A SCUBA-2 survey of FeLoBAL QSOs. Are FeLoBALs in a `transition phase' between ULIRGs and QSOs?

    NASA Astrophysics Data System (ADS)

    Violino, Giulio; Coppin, Kristen E. K.; Stevens, Jason A.; Farrah, Duncan; Geach, James E.; Alexander, Dave M.; Hickox, Ryan; Smith, Daniel J. B.; Wardlow, Julie L.

    2016-04-01

    It is thought that a class of broad absorption line (BAL) QSOs, characterized by Fe absorption features in their UV spectra (called `FeLoBALs'), could mark a transition stage between the end of an obscured starburst event and a youthful QSO beginning to shed its dust cocoon, where Fe has been injected into the interstellar medium by the starburst. To test this hypothesis, we have undertaken deep Submillimetre Common-User Bolometer Array 2 (SCUBA-2) 850 μm observations of a sample of 17 FeLoBAL QSOs with 0.89 ≤ z ≤ 2.78 and -23.31 ≤ MB ≤ -28.50 to directly detect an excess in the thermal emission of the dust which would probe enhanced star formation activity. We find that FeLoBALs are not luminous sources in the sub-mm, none of them are individually detected at 850 μm, nor as a population through stacking (Fs = 1.14 ± 0.58 mJy). Statistical and survival analyses reveal that FeLoBALs have sub-mm properties consistent with BAL and non-BAL QSOs with matched redshifts and magnitudes. An Spectral Energy Distribution fitting analysis shows that the far-infrared emission is dominated by active galactic nuclei activity, and a starburst component is required only in 6/17 sources of our sample; moreover the integrated total luminosity of 16/17 sources is L ≥ 1012 L⊙, high enough to classify FeLoBALs as infrared luminous. In conclusion, we do not find any evidence in support of FeLoBAL QSOs being a transition population between an ultraluminous infrared galaxy (ULIRG) and an unobscured QSO; in particular, FeLoBALs are not characterized by a cold starburst which would support this hypothesis.

  7. Resonant tunnelling diode oscillator as an alternative LO for SIS receiver applications

    NASA Technical Reports Server (NTRS)

    Blundell, R.; Papa, D. C.; Brown, E. R.; Parker, C. D.

    1993-01-01

    The resonant tunnelling diode (RTD) oscillator has been demonstrated for the first time as a local oscillator (LO) in a heterodyne receiver. Noise measurements made on a sensitive 200 GHz superconductor-insulator-superconductor receiver using both a multiplied Gunn diode and an RTD oscillator as the LO revealed no difference in receiver noise as a function of oscillator type.

  8. A ROACH Based Data Acquisition System for the Low Frequency All Sky Monitor (LoFASM)

    NASA Astrophysics Data System (ADS)

    Dartez, Louis P.; Jenet, F.; Cohen, S.; Creighton, T. D.; Ford, A.; Garcia, A.; Hicks, B.; Hinojosa, J.; Kassim, N. E.; Longoria, C.; Lunsford, G.; Mata, A.; Miller, R. B.; Price, R. H.; Quintero, L.; Ray, P. S.; Reser, J.; Rivera, J.; Stovall, K.; Taylor, G. B.

    2013-01-01

    The Low Frequency All Sky Monitor (LoFASM) is a distributed array of dipole antennas that are sensitive to radio frequencies from 5 to 88 MHz. The primary science goals will be the detection and study of low-frequency radio transients. LoFASM consists of antennas and front end electronics that were originally developed for the Long Wavelength Array (LWA) by the U.S. Naval Research Lab, the University of New Mexico, Virginia Tech, and the Jet Propulsion Laboratory. LoFASM, funded by the U.S. Department of Defense, will initially consist of 4 stations, each consisting of 12 dual-polarization dipole antenna stands. The signals received by LoFASM are digitized and processed using Reconfigurable Open Architecture Computing Hardware (ROACH) boards. This poster will describe the LoFASM project with an emphasis on the ROACH data processing pipe-line.

  9. Experimental and theoretical simulation of sublimating dusty water ice with implications for D/H ratios of water ice on Comets and Mars

    NASA Astrophysics Data System (ADS)

    Moores, John E.; Brown, Robert H.; Lauretta, Dante S.; Smith, Peter H.

    2012-04-01

    Sublimation experiments have been carried out to determine the effect of the mineral dust content of porous ices on the isotopic composition of the sublimate gas over medium (days to weeks) timescales. Whenever mineral dust of any kind was present, the D/H ratio of the sublimated gas was seen to decrease with time from the bulk ratio. Fractionations of up to 2.5 were observed for dust mixing ratios of 9 wt% and higher of JSC MARS-1 regolith simulant 1-10 μm crushed and sieved fraction. These favored the presence of the light isotope, H2O, in the gas phase. The more dust was added to the mixture, the more pronounced was this effect. Theoretical modeling of gas migration within the porous samples and adsorption on the excavated dust grains was undertaken to explain the results. Adsorption onto the dust grains is able to explain the low D/H ratios in the sublimate gas if adsorption favors retention of HDO over H2O. This leads to significant isotopic enrichment of HDO on the dust over time and depletion in the amount of HDO escaping the system as sublimate gas. This effect is significant for planetary bodies on which water moves mainly through the gas phase and a significant surface reservoir of dust may be found, such as on Comets and Mars. For each of these, inferences about the bulk water D/H ratio as inferred from gas phase measurements needs to be reassessed in light of the volatile cycling history of each body.

  10. Experimental and theoretical simulation of sublimating dusty water ice with implications for D/H ratios of water ice on Comets and Mars

    NASA Astrophysics Data System (ADS)

    Moores, John E.; Brown, Robert H.; Lauretta, Dante S.; Smith, Peter H.

    2012-12-01

    Sublimation experiments have been carried out to determine the effect of the mineral dust content of porous ices on the isotopic composition of the sublimate gas over medium (days to weeks) timescales. Whenever mineral dust of any kind was present, the D/H ratio of the sublimated gas was seen to decrease with time from the bulk ratio. Fractionations of up to 2.5 were observed for dust mixing ratios of 9 wt% and higher of JSC MARS-1 regolith simulant 1-10 μm crushed and sieved fraction. These favored the presence of the light isotope, H2O, in the gas phase. The more dust was added to the mixture, the more pronounced was this effect. Theoretical modeling of gas migration within the porous samples and adsorption on the excavated dust grains was undertaken to explain the results. Adsorption onto the dust grains is able to explain the low D/H ratios in the sublimate gas if adsorption favors retention of HDO over H2O. This leads to significant isotopic enrichment of HDO on the dust over time and depletion in the amount of HDO escaping the system as sublimate gas. This effect is significant for planetary bodies on which water moves mainly through the gas phase and a significant surface reservoir of dust may be found, such as on Comets and Mars. For each of these, inferences about the bulk water D/H ratio as inferred from gas phase measurements needs to be reassessed in light of the volatile cycling history of each body.

  11. Contrast Invariant Interest Point Detection by Zero-Norm LoG Filter.

    PubMed

    Zhenwei Miao; Xudong Jiang; Kim-Hui Yap

    2016-01-01

    The Laplacian of Gaussian (LoG) filter is widely used in interest point detection. However, low-contrast image structures, though stable and significant, are often submerged by the high-contrast ones in the response image of the LoG filter, and hence are difficult to be detected. To solve this problem, we derive a generalized LoG filter, and propose a zero-norm LoG filter. The response of the zero-norm LoG filter is proportional to the weighted number of bright/dark pixels in a local region, which makes this filter be invariant to the image contrast. Based on the zero-norm LoG filter, we develop an interest point detector to extract local structures from images. Compared with the contrast dependent detectors, such as the popular scale invariant feature transform detector, the proposed detector is robust to illumination changes and abrupt variations of images. Experiments on benchmark databases demonstrate the superior performance of the proposed zero-norm LoG detector in terms of the repeatability and matching score of the detected points as well as the image recognition rate under different conditions.

  12. TriLoNet: Piecing Together Small Networks to Reconstruct Reticulate Evolutionary Histories.

    PubMed

    Oldman, James; Wu, Taoyang; van Iersel, Leo; Moulton, Vincent

    2016-08-01

    Phylogenetic networks are a generalization of evolutionary trees that can be used to represent reticulate processes such as hybridization and recombination. Here, we introduce a new approach called TriLoNet (Trinet Level- one Network algorithm) to construct such networks directly from sequence alignments which works by piecing together smaller phylogenetic networks. More specifically, using a bottom up approach similar to Neighbor-Joining, TriLoNet constructs level-1 networks (networks that are somewhat more general than trees) from smaller level-1 networks on three taxa. In simulations, we show that TriLoNet compares well with Lev1athan, a method for reconstructing level-1 networks from three-leaved trees. In particular, in simulations we find that Lev1athan tends to generate networks that overestimate the number of reticulate events as compared with those generated by TriLoNet. We also illustrate TriLoNet's applicability using simulated and real sequence data involving recombination, demonstrating that it has the potential to reconstruct informative reticulate evolutionary histories. TriLoNet has been implemented in JAVA and is freely available at https://www.uea.ac.uk/computing/TriLoNet.

  13. LoCoH: Nonparameteric Kernel Methods for Constructing Home Ranges and Utilization Distributions

    PubMed Central

    Getz, Wayne M.; Fortmann-Roe, Scott; Wilmers, Christopher C.

    2007-01-01

    Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: “fixed sphere-of-influence,” or r-LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an “adaptive sphere-of-influence,” or a-LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a), and compare them to the original “fixed-number-of-points,” or k-LoCoH (all kernels constructed from k-1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a-LoCoH is generally superior to k- and r-LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu). PMID:17299587

  14. LoCoH: Non-parameteric kernel methods for constructing home ranges and utilization distributions

    USGS Publications Warehouse

    Getz, Wayne M.; Fortmann-Roe, Scott; Cross, Paul C.; Lyons, Andrew J.; Ryan, Sadie J.; Wilmers, Christopher C.

    2007-01-01

    Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: ‘‘fixed sphere-of-influence,’’ or r -LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an ‘‘adaptive sphere-of-influence,’’ or a -LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a ), and compare them to the original ‘‘fixed-number-of-points,’’ or k -LoCoH (all kernels constructed from k -1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a -LoCoH is generally superior to k - and r -LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu).

  15. LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions.

    PubMed

    Getz, Wayne M; Fortmann-Roe, Scott; Cross, Paul C; Lyons, Andrew J; Ryan, Sadie J; Wilmers, Christopher C

    2007-02-14

    Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: "fixed sphere-of-influence," or r-LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an "adaptive sphere-of-influence," or a-LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a), and compare them to the original "fixed-number-of-points," or k-LoCoH (all kernels constructed from k-1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a-LoCoH is generally superior to k- and r-LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu).

  16. Higgs boson gluon-fusion production beyond threshold in N3LO QCD

    DOE PAGES

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; Furlan, Elisabetta; Gehrmann, Thomas; Herzog, Franz; Mistlberger, Bernhard

    2015-03-18

    In this study, we compute the gluon fusion Higgs boson cross-section at N3LO through the second term in the threshold expansion. This calculation constitutes a major milestone towards the full N3LO cross section. Our result has the best formal accuracy in the threshold expansion currently available, and includes contributions from collinear regions besides subleading corrections from soft and hard regions, as well as certain logarithmically enhanced contributions for general kinematics. We use our results to perform a critical appraisal of the validity of the threshold approximation at N3LO in perturbative QCD.

  17. A field study of the geomorphic effects of sublimating CO2 blocks on dune slopes at Coral Pink Dunes, Utah.

    NASA Astrophysics Data System (ADS)

    Bourke, Mary; Nield, Jo; Diniega, Serina; Hansen, Candy; McElwaine, Jim

    2016-04-01

    The seasonal sublimation of CO2 ice is an active driver of present-day surface change on Mars. Diniega et al (2013) proposed that a discrete type of Martian gully, found on southern hemisphere dunes, were formed by the movement of CO2 seasonal ice blocks. These 'Linear Gullies' consist primarily of long (100 m - 2.5 km) grooves with near-uniform width (few-10 m wide), and typical depth of <2 m. They are near-linear throughout most of their length but sometimes contains zones of low-to-high sinuosity. They are commonly bounded by levées. The groove is generally prefaced by a small alcove that originates at the dune brink. We present the results of a set of field experiments that were undertaken at the Coral Pink sand dunes, Utah. These are sister experiments to those undertaken in Arizona (Bourke et al, 2016). The experiments were undertaken on an active barchan dune with a 16 m long lee slope (30.3°). Ambient air temperature was 30°C and relative humidity was 25%; sand surface temperatures were 26.5°C. A CO2 ice block (60x205x210 mm) was placed at the dune brink and with a gentle nudge it moved downslope. The dynamics of the block movement were recorded using a pair of high resolution video cameras. Geomorphological observations were noted and topographic change was quantified using a Leica P20 terrestrial laser scanner with a resolution of 0.8 mm at 10 m, and change detection limits less than 3 mm. The block run was repeated a total of 10 times and launched from the same location at the dune brink. The experiment ran for 45 minutes. The block size was reduced to (45 x 190 x 195 mm) by the end of the run series. The resultant geomorphology shows that the separate block runs occupied different tracks leading to a triangular plan form shape with a maximum width of 3.5 m. This is different from the findings in Arizona where a narrower track span was recorded (1.7m) (Bourke et al, 2016). Similar block dynamics were observed at both sites (as blocks moved straight

  18. Sublimation growth of aluminum nitride bulk crystals and high-speed CVD growth of silicon carbide epilayers, and their characterization

    NASA Astrophysics Data System (ADS)

    Lu, Peng

    The effects of process conditions on the material's properties were investigated for the sublimation growth of aluminum nitride and the epitaxial growth of silicon carbide. Since the mid 1990's, these semiconductors have made new types of high power electronics and short wavelength optoelectronics that were never before feasible. The sublimation growth of AlN crystals on SiC seeds was carried out to produce high quality AlN bulk crystals. Si-face, 3.5° off-axis 6H-SiC (0001) and 8° off-axis 4H-SiC (0001) wafers were used as the substrates. An investigation of the initial growth demonstrated 1800--1850°C was the optimum temperature for AlN growth. By optimizing the temperature gradient, large area AlN layer was deposited. Consecutive growths and continuous growth were performed to enlarge the crystal thickness. Single-crystalline AlN layers, each with a thickness of 2 mm and a diameter of 20 mm, were produced. X-ray diffraction confirmed the grown AlN had good crystal quality. Approximately 3--6 at% of Si and 5--8 at% of C were detected in the crystals by x-ray photoelectron spectroscopy, which came from the decomposition of SiC seeds and the degradation of the graphite components in the furnace. Molten KOH/NaOH etching revealed the dislocation density decreased from 108 cm-2 to 106 cm-2 as the AlN layer thickness increased from 30 mum to 2 mm. Epitaxial growth of SiC was carried out in a chemical vapor deposition system. High-quality 6H-SiC and 4H-SiC homoepitaxial films were produced at growth rates up to 80 mum/hr by using a novel single precursor, methyltrichlorosilane (MTS). Inclusions of 3C-SiC were circumvented by employing 8° mis-orientated substrates. Adjusting the H2/Ar flow ratio in the carrier gas effectively changed the C/Si ratio in the gas phase due to the reaction between H2 and the graphite heater; thereby, influencing surface roughness and dislocation density. Low H2/Ar ratios of 0.1 and 0.125 produced smooth surfaces without step

  19. Development of HiLo Microscope and its use in In-Vivo Applications

    NASA Astrophysics Data System (ADS)

    Patel, Shreyas J.

    The functionality of achieving optical sectioning in biomedical research is invaluable as it allows for visualization of a biological sample at different depths while being free of background scattering. Most current microscopy techniques that offer optical sectioning, unfortunately, require complex instrumentation and thus are generally costly. HiLo microscopy, on the other hand, offers the same functionality and advantage at a relatively low cost. Hence, the work described in this thesis involves the design, build, and application of a HiLo microscope. More specifically, a standalone HiLo microscope was built in addition to implementing HiLo microscopy on a standard fluorescence microscope. In HiLo microscopy, optical sectioning is achieved by acquiring two different types of images per focal plane. One image is acquired under uniform illumination and the other is acquired under speckle illumination. These images are processed using an algorithm that extracts in-focus information and removes features and glare that occur as a result of background fluorescence. To show the benefits of the HiLo microscopy, several imaging experiments on various samples were performed under a HiLo microscope and compared against a traditional fluorescence microscope and a confocal microscope, which is considered the gold standard in optical imaging. In-vitro and ex-vivo imaging was performed on a set of pollen grains, and optically cleared mouse brain and heart slices. Each of these experiments showed great reduction in background scattering at different depths under HiLo microscopy. More importantly, HiLo imaging of optically cleared heart slice demonstrated emergence of different vasculature at different depths. Reduction of out-of-focus light increased the spatial resolution and allowed better visualization of capillary vessels. Furthermore, HiLo imaging was tested in an in-vivo model of a rodent dorsal window chamber model. When imaging the same sample under confocal microscope

  20. Effect of Propellant Flowrate and Purity on Carbon Deposition in LO2/Methane Gas Generators

    NASA Technical Reports Server (NTRS)

    Bossard, J. A.; Burkhardt, W. M.; Niiya, K. Y.; Braam, F.

    1989-01-01

    The generation and deposition of carbon was studied in the Carbon Deposition Program using subscale hardware with LO2/Liquid Natural Gas (LNG) and LO2/Methane propellants at low mixture ratios. The purpose of the testing was to evaluate the effect of methane purity and full scale injection density on carbon deposition. The LO2/LNG gas generator/preburner testing was performed at mixture ratios between 0.24 and 0.58 and chamber pressures from 5.8 to 9.4 MPa (840 to 1370 psia). A total of seven 200 second duration tests were performed. The LNG testing occurred at low injection densities, similar to the previous LO2/RP-1, LO2/propane, and LO2/methane testing performed on the carbon deposition program. The current LO2/methane test series occurred at an injection density factor of approximately 10 times higher than the previous testing. The high injection density LO2/methane testing was performed at mixture ratios between from 0.23 to 0.81 and chamber pressures from 6.4 to 15.2 MPa (925 to 2210 psia). A total of nine high injection density tests were performed. The testing performed demonstrated that low purity methane (LNG) did not produce any detectable change in carbon deposition when compared to pure methane. In addition, the C* performance and the combustion gas temperatures measured were similar to those obtained for pure methane. Similar results were obtained testing pure methane at higher propellant injection densities with coarse injector elements.

  1. m-LoCoS UI: A Universal Visible Language for Global Mobile Communication

    NASA Astrophysics Data System (ADS)

    Marcus, Aaron

    The LoCoS universal visible language developed by the graphic/sign designer Yukio Ota in Japan in 1964 may serve as a usable, useful, and appealing basis for a mobile phone application that can provide capabilities for communication and storytelling among people who do not share a spoken language. User-interface design issues including display and input are discussed in conjunction with prototype screens showing the use of LoCoS for a mobile phone.

  2. Measurement Properties of the Low Back Activity Confidence Scale (LoBACS).

    PubMed

    Davenport, Todd E; Cleland, Joshua A; Yamada, Kimiko A; Kulig, Kornelia

    2016-06-01

    The purpose of this study was to determine the measurement properties of the Low Back Activity Confidence Scale (LoBACS) in individuals with post-acute low back pain (LBP) receiving nonsurgical intervention, including construct validity, factorial validity, and internal consistency reliability. Data were analyzed from an existing randomized clinical trial involving 112 patients with LBP. Evidence for convergent validity was observed through significant correlations between LoBACS subscale scores and other function, pain, and psychobehavioral measures. LoBACS subscales accounted for 36% of the unique variance in dependent variable measurements, suggesting a satisfactory level of statistical divergence between the LoBACS and other psychobehavioral measurements in this study. Cronbach's α ranged from .88 to .92 for LoBACS subscales, and item-total correlations exceeded .6, indicating high internal consistency reliability. Principal axis factoring confirmed the hypothesized three-subscale structure by correctly classifying 14 of the 15 items. These findings indicate the LoBACS is valid and internally consistent to measure domain-specific self-efficacy beliefs. PMID:24686745

  3. Osmium conductive metal coating for SEM specimen using sublimated osmium tetroxide in negative glow phase of DC glow discharge.

    PubMed

    Tanaka, A

    1994-08-01

    A new method of osmium conductive metal coating for scanning electron microscopy specimens using osmium tetroxide in direct current glow discharge and its apparatus have been devised. Anode and cathode plates are placed in a gas reactor, sublimated osmium tetroxide is introduced, and glow discharge is generated. As a result, the gas between the electrodes instantaneously becomes plasma. At the specimen surface, which is placed in the negative glow phase on the cathode plate, positively ionized osmium molecules are directly adhered and deposited, thereby leaving a completely amorphous metal coating of osmium. As a result, the formed coating precisely matched the fine structure of the specimen surface, and even when irradiated with a strong electron beam was free of heat damage, electrification and contamination. The secondary electron emission efficiency of the coating was also good. Furthermore, no granularity of the film surface was observed even when viewed at a high magnification. In this way, a superior osmium conductive metal coating was obtained. PMID:7996076

  4. Characterization of CdMnTe films deposited from polycrystalline powder source using closed-space sublimation method

    SciTech Connect

    Lai, Jianming; Wang, Junnan; Wang, Lin; Ji, Huanhuan; Xu, Run; Zhang, Jijun; Huang, Jian; Shen, Yue; Min, Jiahua; Wang, Linjun Xia, Yiben

    2015-09-15

    CdMnTe films were prepared on quartz substrates by closed-space sublimation of polycrystalline Cd{sub 0.74}Mn{sub 0.26}Te powders. This was performed at different substrate temperatures (T{sub s} = 200, 300, 350, and 400 °C). The interfacial adhesion strength between the films and substrates, when fabricated from polycrystalline powders, was greater than that of films grown using a bulk source. X-ray diffraction studies revealed that the as-deposited films had a zinc blende structure with a preferential (111) orientation. Precipitation of Te occurred in the films deposited at T{sub s} = 200 °C, as confirmed using scanning electron microscopy, x-ray diffraction, and Raman spectroscopy. The growth mode and re-evaporation dependence on the value of T{sub s} of the films were investigated. Our results suggested that materials suitable for radiation detection can be grown from a powder source at lower substrate temperatures then when grown from a bulk source.

  5. In-Space Propulsion Engine Architecture Based on Sublimation of Planetary Resources: From Exploration Robots to NED Mitigation

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Mantovani, James G.

    2011-01-01

    Volatile solids occur naturally on most planetary bodies including the Moon, Mars, asteroids and comets. Examples of recent discoveries include water ice, frozen carbon dioxide and hydrocarbons. The ability to utilize readily available resources for in-space propulsion and for powering surface systems during a planetary mission will help minimize the overall cost and extend the op.erational life of a mission. The utilization of volatile solids to achieve these goals is attractive for its simplicity. We have investigated the potential of subliming in situ volatiles and silicate minerals to power propulsion engines for a wide range of in-space applications where environmental conditions are favorable. This paper addresses the' practicality of using planetary solid volatiles as a power source for propulsion and surface systems by presenting results of modeling involving thermodynamic and physical mechanics calculations, and laboratory testing to measure the thrust obtained from ,a volatile solid engine (VSE). Applications of a VSE for planetary exploration are discussed as a means for propulsion and for mechanical actuators and surface mobility platforms.

  6. AlN/air distributed Bragg reflector by GaN sublimation from microcracks of AlN

    NASA Astrophysics Data System (ADS)

    Mitsunari, T.; Tanikawa, T.; Honda, Y.; Yamaguchi, M.; Amano, H.

    2013-05-01

    We report the fabrication of a four-period AlN/air distributed Bragg reflector (DBR) by in-situ GaN sublimation from microcracks of AlN. The GaN/AlN multilayer structure was grown on a stripe-patterned and dot-patterned Si substrate, and subsequently annealed at 1200 °C in H2 and NH3 atmosphere. Microcracks were observed on the surface and side face of the A1N/air DBRs. We achieved an AlN/air structure by the decomposition of GaN from the microcracks of AlN. Partially crack-free AlN layers were observed over a 5×5 μm area in the c-plane of AlN/air DBRs. The root mean square (RMS) values of the surface and back surface of stripe-patterned AlN/air DBRs were 0.94 and 3.3 nm, respectively. The relative reflectivity was measured using a He-Cd laser (442 nm). In some areas, stripe-patterned and dot-patterned AlN/air DBRs showed a high reflectivity of 83.7% and 90.7%, respectively, at the wavelength of 442 nm.

  7. Sublimation in Growth of Aluminum Nitride-silicon carbide Alloy Crystals on SiC (001) substrates

    SciTech Connect

    Gu, Z; Edgar, J H; Payzant, E Andrew; Meyer III, Harry M; Walker, Larry R; Sarua, A; Kuball, M

    2005-06-01

    Thick (up to 1 mm) AlN-SiC alloy crystals were grown on off-axis Si-face 6H-SiC (0001) substrates by the sublimation-recondensation method from a mixture of AlN and SiC powders at 1860-1990 C in a N2 atmosphere. The color of the crystals changed from clear to dark green with increasing growth temperature. Raman spectroscopy and x-ray diffraction (XRD) confirmed an AlN-SiC alloy was formed with the wurtzite structure and good homogeneity. Three broad peaks were detected in the Raman spectra, with one of those related to an AlN-like and another one to a SiC-like mode, both shifted relative to their usual positions in the binary compounds, and the third with possible contributions from both AlN and SiC. Scanning Auger microanalysis (SAM) and electron probe microanalysis (EPMA) demonstrated the alloy crystals had an approximate composition of (AlN)0.75(SiC)0.25 with a stoichiometric ratio of Al:N and Si:C. The substrate misorientation ensured a two-dimensional growth mode confirmed by scanning electron microscopy (SEM).

  8. Spontaneous detachment of a sublimation-Grown AlN layer from a SiC-6H substrate

    SciTech Connect

    Wolfson, A. A.

    2009-06-15

    Growth of thick layers and bulk crystals of AlN is a topical problem for modern science and technology. The main way to solve the problem is to use the sublimation method in which AlN is evaporated at a temperature of about 2000{sup o}C and is epitaxially deposited onto a SiC substrate. A severe difficulty in this case is that the coefficients of thermal expansion of these materials are different, which leads to bending, cracking, and pronounced stresses in the AlN layer upon cooling to room temperature. This communication considers the case of a spontaneous detachment of a crack-free AlN layer from a SiC substrate, which points to the real possibility of developing a growth technology in which their separation becomes inevitable. The following reasons for spontaneous separation of the layer and the substrate are probable: (i) formation of a thin Al layer at the interface and (ii) occurrence of the initial growth stage by the previously described scheme, according to which, the layer and substrate are atomically bound only at separate comparatively sparse areas of nucleation of the growing crystal. Upon cooling, these areas disintegrate and the layer is detached from the substrate. It is unclear so far what specific features and anomalies of the growth process give rise to this result.

  9. Pedestal Craters in Utopia Planitia and Malea Planum: Evidence for a Past Ice-Rich Substrate from Marginal Sublimation Pits.

    NASA Astrophysics Data System (ADS)

    Kadish, S. J.; Head, J. W.; Barlow, N. G.; Marchant, D. R.

    2008-09-01

    Introduction: Pedestal craters (Pd) are a subclass of impact craters unique to Mars [1] characterized by a crater perched near the center of a pedestal (mesa or plateau) that is surrounded by a quasi-circular, outward-facing scarp. The marginal scarp is usually several crater diameters from the crater rim (Figs. 2,4,5), and tens to over 100 meters above the surrounding plains (Fig. 2). Pd have been interpreted to form by armoring of the proximal substrate during the impact event. Hypotheses for the armoring mechanism include an ejecta covering [e.g., 3], increased ejecta mobilization caused by volatile substrates [4], distal glassy/melt-rich veneers [5], and/or an atmospheric blast/thermal effect [6]. Subsequently, a marginal scarp forms by preferential erosion of the substrate surrounding the armored region, most commonly thought to involve eolian removal of fine-grained, non-armored material [e.g., 3]. An understanding of the distribution of Pd, which form predominantly poleward of ~40°N and S latitude [7-9] (Fig. 1), and the role of redistribution of ice and dust during periods of climate change [e.g., 10-11], suggests that the substrate might have been volatile-rich [8-9, 12-14]. As such, some researchers [e.g., 8-9] have proposed a model for Pd formation that involves impact during periods of higher obliquity, when mid- to high-latitude substrates were characterized by thick deposits of snow and ice [e.g., 15]. Subsequent sublimation of the volatile units, except below the armored regions, yielded the perched Pd. Thus, this model predicts that thick deposits of snow/ice should underlie Pd. This is in contrast to the eolian model [3], which calls primarily for deflation of sand and dust. Here, we show the results of our study [8,16] that has documented and characterized 2461 Pd on Mars equatorward of ~65° N and S latitude (Fig. 1) in order to test these hypotheses for the origin of pedestal craters. In particular, we report on the detection of 50 Pd in Utopia

  10. Solid sulfur in vacuum: Sublimation effects on surface microtexture, color and spectral reflectance, and applications to planetary surfaces

    NASA Technical Reports Server (NTRS)

    Nash, D. B.

    1987-01-01

    A form of sulfur that is white at room temperature and very fluffy in texture has been found in laboratory experiments on the effects of vacuum sublimation (evaporation) on solid sulfur. This work is an outgrowth of proton sputtering experiments on sulfur directed toward understanding Jovian magnetospheric effects on the surface of Io. Fluffy white sulfur is formed on the surface of solid yellow, tan, or brown sulfur melt freezes in vacuum by differential (fractional) evaporation of two or more sulfur molecular species present in the original sulfur; S(8) ring sulfur is thought to be the dominant sublimination phase lost to the vacuum sink, and polymeric chain sulfur S(u) the dominant residual phase that remains in place, forming the residual fluffy surface layer. The reflectance spectrum of the original sulfur surface is greaty modified by formation of the fluffy layer: the blue absorption band-edge and shoulder move 0.05 to 0.06 microns toward shorter wavelengths resulting in a permanent increase in reflectivity near 0.42 to 0.46 microns; the UV reflectivity below 0.40 microns is reduced. This form of sulfur should exist in large quantity on the surface of Io, especially in hotspot regions if there is solid free sulfur there that has solidified from a melt. Its color and spectra will indicate relative crystallization age on a scale of days to months and/or surface temperature distribution history.

  11. Effect of the duration of the growth process on the properties of GaN grown by the sublimation method

    SciTech Connect

    Wolfson, A. A.; Mokhov, E. N.

    2009-03-15

    Variation in the structural and morphological features and luminescent characteristics of thick epitaxial GaN layers grown by the sublimation sandwich method with the duration of the crystallization process has been studied. This was, in particular, done by means of scanning electron microscopy in the secondary-electron and color-cathodoluminescence modes. It was found that rather high-quality GaN layers with a thickness of up to 0.5 mm can be grown in a time of about 1.5 h, with their surface hardly exhibiting any luminescence in the visible spectral range. However, making the growth process longer in order to obtain thicker layers impairs the quality of a crystal being grown, which is accompanied by an increase in the intensity of cathodoluminescence from its surface layer in the visible (predominantly yellow) region of the spectrum. Reasons for the poorer quality of GaN layers in this case are discussed. It is suggested that, as the evaporation rate from the source decreases, the amount of active nitrogen near the growth surface becomes lower.

  12. Optical and electrical characterizations of highly efficient CdTe thin film solar cells prepared by close-spaced sublimation

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Yamada, A.; Konagai, M.

    2000-06-01

    The effects of the Cu diffusion on the optical and electrical properties of CdTe thin film solar cells prepared by close-spaced sublimation (CSS) were investigated by capacitance-voltage ( C- V) measurement and low-temperature photoluminescence (PL) measurement. C- V measurement revealed that the net acceptor concentration in the CdTe layer was independent of the heat treatment after screen printing of the Cu-doped graphite electrode for Cu diffusion into the CdTe layer, although it greatly affected the solar cell performance. Furthermore, the depth profile of PL spectrum of CdTe layer implies that the heat treatment for Cu diffusion facilitates the formation of low-resistance contact to CdTe through the formation of a heavily doped (p +) region in the CdTe adjacent to the back electrode, but Cu atoms do not act as effective acceptors in the CdTe layer except the region near the back electrode.

  13. Growth optimization and applicability of thick on-axis SiC layers using sublimation epitaxy in vacuum

    NASA Astrophysics Data System (ADS)

    Jokubavicius, Valdas; Sun, Jianwu; Liu, Xinyu; Yazdi, Gholamreza; Ivanov, Ivan. G.; Yakimova, Rositsa; Syväjärvi, Mikael

    2016-08-01

    We demonstrate growth of thick SiC layers (100-200 μm) on nominally on-axis hexagonal substrates using sublimation epitaxy in vacuum (10-5 mbar) at temperatures varying from 1700 to 1975 °C with growth rates up to 270 μm/h and 70 μm/h for 6H- and 4H-SiC, respectively. The stability of hexagonal polytypes are related to process growth parameters and temperature profile which can be engineered using different thermal insulation materials and adjustment of the induction coil position with respect to the graphite crucible. We show that there exists a range of growth rates for which single-hexagonal polytype free of foreign polytype inclusions can be maintained. Further on, foreign polytypes like 3C-SiC can be stabilized by moving out of the process window. The applicability of on-axis growth is demonstrated by growing a 200 μm thick homoepitaxial 6H-SiC layer co-doped with nitrogen and boron in a range of 1018 cm-3 at a growth rate of about 270 μm/h. Such layers are of interest as a near UV to visible light converters in a monolithic white light emitting diode concept, where subsequent nitride-stack growth benefits from the on-axis orientation of the SiC layer.

  14. CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap

    USGS Publications Warehouse

    Kieffer, H.H.; Christensen, P.R.; Titus, T.N.

    2006-01-01

    The martian polar caps are among the most dynamic regions on Mars, growing substantially in winter as a significant fraction of the atmosphere freezes out in the form of CO2 ice. Unusual dark spots, fans and blotches form as the south-polar seasonal CO2 ice cap retreats during spring and summer. Small radial channel networks are often associated with the location of spots once the ice disappears. The spots have been proposed to be simply bare, defrosted ground; the formation of the channels has remained uncertain. Here we report infrared and visible observations that show that the spots and fans remain at CO2 ice temperatures well into summer, and must be granular materials that have been brought up to the surface of the ice, requiring a complex suite of processes to get them there. We propose that the seasonal ice cap forms an impermeable, translucent slab of CO2 ice that sublimates from the base, building up high-pressure gas beneath the slab. This gas levitates the ice, which eventually ruptures, producing high-velocity CO 2 vents that erupt sand-sized grains in jets to form the spots and erode the channels. These processes are unlike any observed on Earth. ?? 2006 Nature Publishing Group.

  15. CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap.

    PubMed

    Kieffer, Hugh H; Christensen, Philip R; Titus, Timothy N

    2006-08-17

    The martian polar caps are among the most dynamic regions on Mars, growing substantially in winter as a significant fraction of the atmosphere freezes out in the form of CO2 ice. Unusual dark spots, fans and blotches form as the south-polar seasonal CO2 ice cap retreats during spring and summer. Small radial channel networks are often associated with the location of spots once the ice disappears. The spots have been proposed to be simply bare, defrosted ground; the formation of the channels has remained uncertain. Here we report infrared and visible observations that show that the spots and fans remain at CO2 ice temperatures well into summer, and must be granular materials that have been brought up to the surface of the ice, requiring a complex suite of processes to get them there. We propose that the seasonal ice cap forms an impermeable, translucent slab of CO2 ice that sublimates from the base, building up high-pressure gas beneath the slab. This gas levitates the ice, which eventually ruptures, producing high-velocity CO2 vents that erupt sand-sized grains in jets to form the spots and erode the channels. These processes are unlike any observed on Earth.

  16. Plasma assisted growth of MoO3 films on different substrate locations relative to sublimation source

    NASA Astrophysics Data System (ADS)

    Sharma, Rabindar K.; Saini, Sujit K.; Kumar, Prabhat; Singh, Megha; Reddy, G. B.

    2016-05-01

    In the present paper, we reported the role of substrate locations relative to source on the growth of MoO3 films deposited on Ni coated glass substrates using plasma assisted sublimation process (PASP). According to the XRD and SEM results, substrate location is very crucial factor to control the morphology of MoO3 films and the best nanostructure growth (in terms of alignments and features) is obtained in case of Sample B (in which substrate is placed on source). The structural results point out that all films exhibit only orthorhombic phase of molybdenum oxide (i.e. α-MoO3)but the most preferential growth is recorded in Sample B due to the presence of intense peaks crossponding to only (0 k 0) family of crystal planes (k = 2, 4,6..). The Raman analysis again confirms the orthorhombic nature of MoO3 NFs and details of vibrational bondsin Sample B have been given in the present report. The MoO3 NFs show intense PL emission in wavelength range of 300-700 nm with three peaks located at 415, 490, and 523 nm in accordance to the improved crystallinity in Sample B.

  17. Dependence of the concentration of ionized donors on epitaxy temperature for Si:Er/Si layers grown by sublimation molecular-beam epitaxy

    SciTech Connect

    Kuznetsov, V. P.; Shmagin, V. B.; Drozdov, M. N.; Marychev, M. O.; Kudryavtsev, K. E.; Kuznetsov, M. V.; Andreev, B. A.; Kornaukhov, A. V.; Krasilnik, Z. F.

    2011-01-15

    The dependence of the concentrations of the Er impurity and ionized donors on the epitaxy temperature has been studied before and after annealing of Si:Er/Si layers grown by sublimation molecular-beam epitaxy. n-Si:Er layers have been grown in the temperature range 400-800 Degree-Sign C and annealed in hydrogen atmosphere at a temperature of 800 Degree-Sign C for 30 min. The possible nature of the donor centers is discussed.

  18. HiRISE observations of gas sublimation-driven activity in Mars' southern polar regions: III. Models of processes involving translucent ice

    USGS Publications Warehouse

    Portyankina, G.; Markiewicz, W.J.; Thomas, N.; Hansen, C.J.; Milazzo, M.

    2010-01-01

    Enigmatic surface features, known as 'spiders', found at high southern martian latitudes, are probably caused by sublimation-driven erosion under the seasonal carbon dioxide ice cap. The Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) has imaged this terrain in unprecedented details throughout southern spring. It has been postulated [Kieffer, H.H., Titus, T.N., Mullins, K.F., Christensen, P.R., 2000. J. Geophys. Res. 105, 9653-9700] that translucent CO2 slab ice traps gas sublimating at the ice surface boundary. Wherever the pressure is released the escaping gas jet entrains loose surface material and carries it to the top of the ice where it is carried downslope and/or downwind and deposited in a fan shape. Here we model two stages of this scenario: first, the cleaning of CO2 slab ice from dust, and then, the breaking of the slab ice plate under the pressure built below it by subliming ice. Our modeling results and analysis of HiRISE images support the gas jet hypothesis and show that outbursts happen very early in spring. ?? 2009 Elsevier Inc. All rights reserved.

  19. A redetermination of the ice/vapor ratio of Enceladus’ plumes: Implications for sublimation and the lack of a liquid water reservoir

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan W.; Lu, Xinli; McFarquhar, Greg; Wohletz, Kenneth H.

    2009-09-01

    The discovery of plumes of H 2O vapor and ice particles erupting from the south pole of Enceladus, the tiny frigid satellite of Saturn, sparked controversy over whether these plumes are produced by boiling, or by sublimation with subsequent recondensation of the sublimated vapor [Porco, C.C., Helfenstein, P., Thomas, P.C., Ingersoll, A.P., Wisdom, J., West, R., Neukum, G., Denk, T., Wagner, R., Roatsch, T., Kieffer, S., Turtle, E., McEwen, A., Johnson, T.V., Rathbun, J., Veverka, J., Wilson, D., Perry, J., Spitale, J., Brahic, A., Burns, J.A., DelGenio, A.D., Dones, L., Murray, C.D., Squyres, S., 2006. Science 311, 1393-1401]. Porco et al.'s analysis that the masses of ice (I) and vapor (V) in the plume were comparable was taken to argue against the occurrence of sublimation and recondensation, leading to the hypothesis that the reservoir was boiling water, possibly as close as 7 m to the surface. Thus, it has been advocated that Enceladus should be a target for astrobiology exploration. Here we show, with recalculations using the original data and methodologies, as well as with new sensitivity studies, that the mass of ice in the column is significantly less than the mass of water vapor, and that by considering three additional effects, I/V is likely to be <0.2-0.1. This means that the plume is dominated by vapor that the thermodynamics permits to be easily produced by sublimation with recondensation. The low I/V ratio provides no compelling criterion for consideration of a liquid water reservoir. The uncertainties on the I/V ratio have not previously been discussed in the literature. Although the I/V ratio is sensitive to particle sizes and size distributions, the masses of ice (I) and vapor (V) are not comparable in any scenario constrained by available observations. We thus discuss the implications of sublimation from a thermodynamic point of view in a context that has not been presented previously. Constraints on I/V ratio from future spacecraft measurements

  20. HST images of FeLoBAL quasars: Testing quasar-galaxy evolution models

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Hamann, Fred; Villforth, Carolin; Caselli, Paola; Koekemoer, Anton M.; Veilleux, Sylvain

    2016-01-01

    We present preliminary results from an HST imaging study of FeLoBAL quasars, which have extremely low-ionization Broad Absorption Line (BAL) outflows and might be a young quasar population based on their red colors, large far-IR luminosities (suggesting high star formation rates), and powerful outflows. Some models of quasar - host galaxy evolution propose a triggering event, such as a merger, to fuel both a burst of star formation and the quasar/AGN activity. These models suggest young quasars are initially obscured inside the dusty starburst until a "blowout" phase, driven by the starburst or quasar outflows like FeLoBALs, ends the star formation and reveals the visibly luminous quasar. Despite the popularity of this evolution scheme, there is little observational evidence to support the role of mergers in triggering AGN or the youth of dust-reddened quasars (such as FeLoBALs) compared to normal blue quasars.Our Cycle 22 HST program is designed to test the youth of FeLoBAL quasars and the connection of FeLoBALs to mergers. We obtain WFC3/IR F160W images of 10 FeLoBAL quasars at redshift z~0.9 (covering ~8500A in the quasar rest frame). We will compare the host galaxy morphologies and merger signatures of FeLoBALs with normal blue quasars (which are older according to the evolution model) and non-AGN galaxies matched in redshift and stellar mass. If FeLoBAL quasars are indeed in a young evolutionary state, close in time to the initial merging event, they should have stronger merger features compared to blue quasars and non-AGN galaxies. Preliminary results suggest that this is not the case - FeLoBAL quasars appear to reside in faint, compact hosts with weak or absent merger signatures. We discuss the implications of these results for galaxy evolution models and other studies of dust-reddened quasar populations.

  1. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy.

    PubMed

    Lim, Daryl; Ford, Tim N; Chu, Kengyeh K; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish. PMID:21280920

  2. Selenoprotein X Gene Knockdown Aggravated H2O2-Induced Apoptosis in Liver LO2 Cells.

    PubMed

    Tang, Jiayong; Cao, Lei; Li, Qiang; Wang, Longqiong; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Cai, Jingyi; Shang, Haiying; Zhao, Hua

    2016-09-01

    To determine the roles of selenoprotein X gene (Selx) in protecting liver cells against oxidative damage, the influences of Selx knockdown on H2O2-induced apoptosis in human normal hepatocyte (LO2) cells were studied. pSilencer 3.1 was used to develop knockdown vector targeting the 3'-UTR of human Selx. The Selx knockdown and control cells were further exposed to H2O2, and cell viability, cell apoptosis rate, and the expression levels of mRNA and protein of apoptosis-related genes were detected. The results showed that vector targeting the 3'-UTR of Selx successfully silenced mRNA or protein expression of SelX in LO2 cells. Selx knockdown resulted in decreased cell viability, increased percentage of early apoptotic cells, decreased Bcl2A1 and Bcl-2 expression, and increased phosphorylation of P38 in LO2 cells. When Selx knockdown LO2 cells were exposed to H2O2, characteristics of H2O2-induced cell dysfunctions were further exacerbated. Taken together, our findings suggested that SelX played important roles in protecting LO2 cells against oxidative damage and reducing H2O2-induced apoptosis in liver cells.

  3. Laminarin-induced apoptosis in human colon cancer LoVo cells.

    PubMed

    Ji, Chen-Feng; Ji, Yu-Bin

    2014-05-01

    A number of scientific studies have revealed that laminarin has antitumor effects. Therefore, the aim of the present study was to investigate the apoptosis of LoVo cells and the underlying mechanisms induced by laminarin. LoVo cells were treated with various concentrations of laminarin and fluorescence-inverted microscopy was used to observe the morphology of LoVo cells treated with laminarin. In addition, western blotting was performed to analyze the expression levels of death receptor (DR)4, DR5, TNF-related apoptosis-inducing ligand (TRAIL), Fas-associated protein with death domain (FADD), caspase-8, caspase-3, Bid and tBid. Flow cytometry was conducted to analyze the expressions of Bcl-2 and Bax, and spectrophotometry was performed to quantify the activity of caspases-8, -3, -6 and -7. Following the treatment of LoVo cells with laminarin for 24 h, the expression levels of DR4, DR5, TRAIL, FADD, Bid, tBid and Bax were observed to be upregulated, whereas the expression levels of pro-caspase-8, pro-caspase-3 and Bcl-2 were downregulated. In addition, the activities of casapse-8, -3, -6 and -7 were observed to increase, which was a significant difference when compared with those of the control group. Therefore, laminarin is considered to induce the apoptosis of LoVo cells, which may occur via a DR pathway, suggesting that laminarin may be a potent agent for cancer treatment.

  4. An Orientation Dependent Size Illusion Is Underpinned by Processing in the Extrastriate Visual Area, LO1

    PubMed Central

    Mikellidou, Kyriaki; Gouws, André D.; Clawson, Hannah; Thompson, Peter; Morland, Antony B.

    2016-01-01

    We use the simple, but prominent Helmholtz’s squares illusion in which a vertically striped square appears wider than a horizontally striped square of identical physical dimensions to determine whether functional magnetic resonance imaging (fMRI) BOLD responses in V1 underpin illusions of size. We report that these simple stimuli which differ in only one parameter, orientation, to which V1 neurons are highly selective elicited activity in V1 that followed their physical, not perceived size. To further probe the role of V1 in the illusion and investigate plausible extrastriate visual areas responsible for eliciting the Helmholtz squares illusion, we performed a follow-up transcranial magnetic stimulation (TMS) experiment in which we compared perceptual judgments about the aspect ratio of perceptually identical Helmholtz squares when no TMS was applied against selective stimulation of V1, LO1, or LO2. In agreement with fMRI results, we report that TMS of area V1 does not compromise the strength of the illusion. Only stimulation of area LO1, and not LO2, compromised significantly the strength of the illusion, consistent with previous research that LO1 plays a role in the processing of orientation information. These results demonstrate the involvement of a specific extrastriate area in an illusory percept of size. PMID:27733896

  5. Kinetic description of an electron--LO-phonon system with finite phonon lifetime

    SciTech Connect

    Nguyen, V.T.; Mahler, G. )

    1992-02-15

    We study the cooling of an electron plasma from a kinetic point of view. For this purpose, a quantum theory of fluctuations is applied to derive the kinetic equations for an electron--LO-phonon system from various model Hamiltonians. A polarization approximation is provided that goes beyond perturbation theory of the electron-phonon interaction. The description of electron-phonon energy exchange is shown to be impossible with the interacting Hamiltonian in Froehlich's one-phonon form unless dissipation of the bare LO phonon is included. For a Hamiltonian including effects of the scattering of LO phonons by acoustic phonons, kinetic equations are derived. The equation for LO phonons is shown to describe the collective excitations with finite lifetime, in the limiting case of weak damping of the plasmon-phonon coupled modes. A reduction of the cooling rate similar to the hot-phonon'' effect is shown to occur for the case of weak coupling without assuming a steady state of the LO phonons. Finally, an electron-phonon interaction Hamiltonian in two-phonon form is considered and it is shown that electron-phonon energy exchange may be described in the polarization approximation without introducing a finite phonon lifetime.

  6. Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity.

    PubMed

    Levrard, Benjamin; Forget, François; Montmessin, Franck; Laskar, Jacques

    2004-10-28

    Observations from the gamma-ray spectrometer instrument suite on the Mars Odyssey spacecraft have been interpreted as indicating the presence of vast reservoirs of near-surface ice in high latitudes of both martian hemispheres. Ice concentrations are estimated to range from 70 per cent at 60 degrees latitude to 100 per cent near the poles, possibly overlain by a few centimetres of ice-free material in most places. This result is supported by morphological evidence of metres-thick layered deposits that are rich in water-ice and periglacial-like features found only at high latitudes. Diffusive exchange of water between the pore space of the regolith and the atmosphere has been proposed to explain this distribution, but such a degree of concentration is difficult to accommodate with such processes. Alternatively, there are suggestions that ice-rich deposits form by transport of ice from polar reservoirs and direct redeposition in high latitudes during periods of higher obliquity, but these results have been difficult to reproduce with other models. Here we propose instead that, during periods of low obliquity (less than 25 degrees), high-latitude ice deposits form in both hemispheres by direct deposition of ice, as a result of sublimation from an equatorial ice reservoir that formed earlier, during a prolonged high-obliquity excursion. Using the ice accumulation rates estimated from global climate model simulations we show that, over the past ten million years, large variations of Mars' obliquity have allowed the formation of such metres-thick, sedimentary layered deposits in high latitude and polar regions.

  7. Implementation and Evaluation of the Enhanced Header Compression (IPHC) for 6LoWPAN

    NASA Astrophysics Data System (ADS)

    Ludovici, Alessandro; Calveras, Anna; Catalan, Marisa; Gómez, Carles; Paradells, Josep

    6LoWPAN defines how to carry IPv6 packets over IEEE 802.15.4 low power wireless or sensor networks. Limited bandwidth, memory and energy resources require a careful application of IPv6 in a LoWPAN. The IEEE 802.15.4 standard defines a maximum frame size of 127 bytes that decreases to 102 bytes considering the header overhead. A further reduction is due to the security, network and transport protocols header overhead that, in case of IPv6 and UDP, leave only 33 bytes for application data. A compression algorithm is necessary in order to reduce the overhead and save space in data payload. This paper describes and compares the proposed IPv6 header compression mechanisms for 6LoWPAN environments.

  8. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things.

    PubMed

    Augustin, Aloÿs; Yi, Jiazi; Clausen, Thomas; Townsley, William Mark

    2016-09-09

    LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed.

  9. Improving high resolution retinal image quality using speckle illumination HiLo imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-01-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis. PMID:25136486

  10. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things

    PubMed Central

    Augustin, Aloÿs; Yi, Jiazi; Clausen, Thomas; Townsley, William Mark

    2016-01-01

    LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed. PMID:27618064

  11. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things.

    PubMed

    Augustin, Aloÿs; Yi, Jiazi; Clausen, Thomas; Townsley, William Mark

    2016-01-01

    LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed. PMID:27618064

  12. Sublimation of icy aggregates in the coma of comet 67P/Churyumov-Gerasimenko detected with the OSIRIS cameras on boardRosetta

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Vincent, J.-B.; Agarwal, J.; A'Hearn, M. F.; Bertini, I.; Bodewits, D.; Sierks, H.; Lin, Z.-Y.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Barucci, M. A.; Bertaux, J.-L.; Besse, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; Deller, J.; De Cecco, M.; Frattin, E.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Gutiérrez-Marquez, P.; Güttler, C.; Höfner, S.; Hofmann, M.; Hu, X.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Moreno, J. J. Lopez; Lowry, S.; Marzari, F.; Masoumzadeh, N.; Massironi, M.; Moreno, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Pommerol, A.; Preusker, F.; Scholten, F.; Shi, X.; Thomas, N.; Toth, I.; Tubiana, C.

    2016-11-01

    Beginning in March 2014, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comet's dust jets. We analyzed the dust monitoring observations shortly after the southern vernal equinox on May 30 and 31, 2015 with the WAC at the heliocentric distance Rh = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness as a function of the distance of the jet is much steeper than the background coma, which is a first indication of sublimation. We adapted a model of sublimation of icy aggregates and studied the effect as a function of the physical properties of the aggregates (composition and size). The major finding of this article was that through the sublimation of the aggregates of dirty grains (radius a between 5 microm and 50 microm) we were able to completely reproduce the radial brightness profile of a jet beyond 4 km from the nucleus. To reproduce the data we needed to inject a number of aggregates between 8.5 x $10^{13}$ and 8.5 x $10^{10}$ for a = 5 microm and 50 microm respectively, or an initial mass of $H_2O$ ice around 22kg.

  13. The Dust Sublimation Radius as an Outer Envelope to the Bulk of the Narrow Fe Kalpha Line Emission in Type 1 AGNs

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak; Hönig, Sebastian F.; Kishimoto, Makoto

    2015-10-01

    The Fe Kα emission line is the most ubiquitous feature in the X-ray spectra of active galactic nuclei (AGNs), but the origin of its narrow core remains uncertain. Here, we investigate the connection between the sizes of the Fe Kα core emission regions and the measured sizes of the dusty tori in 13 local Type 1 AGNs. The observed Fe Kα emission radii (RFe) are determined from spectrally resolved line widths in X-ray grating spectra, and the dust sublimation radii (Rdust) are measured either from optical/near-infrared (NIR) reverberation time lags or from resolved NIR interferometric data. This direct comparison shows, on an object-by-object basis, that the dust sublimation radius forms an outer envelope to the bulk of the Fe Kα emission. RFe matches Rdust well in the AGNs, with the best constrained line widths currently. In a significant fraction of objects without a clear narrow line core, RFe is similar to, or smaller than, the radius of the optical broad line region. These facts place important constraints on the torus geometries for our sample. Extended tori in which the solid angle of fluorescing gas peaks at well beyond the dust sublimation radius can be ruled out. We also test for luminosity scalings of RFe, finding that the Eddington ratio is not a prime driver in determining the line location in our sample. We also discuss in detail potential caveats of data analysis and instrumental limitations, simplistic line modeling, uncertain black hole masses, and sample selection, showing that none of these is likely to bias our core result. The calorimeter on board Astro-H will soon vastly increase the parameter space over which line measurements can be made, overcoming many of these limitations.

  14. Sublimation of icy aggregates in the coma of comet 67P/Churyumov-Gerasimenko detected with the OSIRIS cameras onboard Rosetta.

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Vincent, J.-B.; Agarwal, J.; A'Hearn, M. F.; Bertini, I.; Bodewits, D.; Sierks, H.; Lin, Z.-Y.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Barucci, M. A.; Bertaux, J.-L.; Besse, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; Deller, J.; De Cecco, M.; Frattin, E.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Gutiérrez-Marquez, P.; Güttler, C.; Höfner, S.; Hofmann, M.; Hu, X.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Moreno, J. J. Lopez; Lowry, S.; Marzari, F.; Masoumzadeh, N.; Massironi, M.; Moreno, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Pommerol, A.; Preusker, F.; Scholten, F.; Shi, X.; Thomas, N.; Toth, I.; Tubiana, C.

    2016-08-01

    Beginning in March 2014, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comet's dust jets. We analyzed the dust monitoring observations shortly after the southern vernal equinox on May 30 and 31, 2015 with the WAC at the heliocentric distance R_h = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness as a function of the distance of the jet is much steeper than the background coma, which is a first indication of sublimation. We adapted a model of sublimation of icy aggregates and studied the effect as a function of the physical properties of the aggregates (composition and size). The major finding of this article was that through the sublimation of the aggregates of dirty grains (radius a between 5μm and 50μm) we were able to completely reproduce the radial brightness profile of a jet beyond 4 km from the nucleus. To reproduce the data we needed to inject a number of aggregates between 8.5 × 1013 and 8.5 × 1010 for a = 5μm and 50μm respectively, or an initial mass of H_2O ice around 22kg.

  15. THE DUST SUBLIMATION RADIUS AS AN OUTER ENVELOPE TO THE BULK OF THE NARROW Fe Kα LINE EMISSION IN TYPE 1 AGNs

    SciTech Connect

    Gandhi, Poshak; Hönig, Sebastian F.; Kishimoto, Makoto

    2015-10-20

    The Fe Kα emission line is the most ubiquitous feature in the X-ray spectra of active galactic nuclei (AGNs), but the origin of its narrow core remains uncertain. Here, we investigate the connection between the sizes of the Fe Kα core emission regions and the measured sizes of the dusty tori in 13 local Type 1 AGNs. The observed Fe Kα emission radii (R{sub Fe}) are determined from spectrally resolved line widths in X-ray grating spectra, and the dust sublimation radii (R{sub dust}) are measured either from optical/near-infrared (NIR) reverberation time lags or from resolved NIR interferometric data. This direct comparison shows, on an object-by-object basis, that the dust sublimation radius forms an outer envelope to the bulk of the Fe Kα emission. R{sub Fe} matches R{sub dust} well in the AGNs, with the best constrained line widths currently. In a significant fraction of objects without a clear narrow line core, R{sub Fe} is similar to, or smaller than, the radius of the optical broad line region. These facts place important constraints on the torus geometries for our sample. Extended tori in which the solid angle of fluorescing gas peaks at well beyond the dust sublimation radius can be ruled out. We also test for luminosity scalings of R{sub Fe}, finding that the Eddington ratio is not a prime driver in determining the line location in our sample. We also discuss in detail potential caveats of data analysis and instrumental limitations, simplistic line modeling, uncertain black hole masses, and sample selection, showing that none of these is likely to bias our core result. The calorimeter on board Astro-H will soon vastly increase the parameter space over which line measurements can be made, overcoming many of these limitations.

  16. Registration of WCL-LO4-Gail lesquerella with improved harvest index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WCL-LO4-Gail lesquerella (Physaria fendleri L.) germplasm line was publicly released jointly by the USDA, Agricultural Research Service and the University of Arizona, in 2012 as part of the new crops breeding program. The germplasm was developed by mass selection originating from lesquerella germpl...

  17. FLOYDS Classification of ASASSN-14lo as a Type Ia Supernova Near Peak

    NASA Astrophysics Data System (ADS)

    Arcavi, Iair; Sand, David; McCully, Curtis; Valenti, Stefano; Hosseinzadeh, Griffin; Howell, D. Andrew

    2014-12-01

    We obtained a spectrum of ASASSN-14lo (ATel #6794) on 2014 December 10 (UT) with the robotic FLOYDS instrument mounted on the Faulkes Telescope North. Using Superfit (Howell et al. 2005, ApJ 634, 1190) we find a good fit to the Type Ia SN 1996X around peak at the redshift of the proposed host galaxy (z=0.01993; NED).

  18. Numerical Investigation of LO2 and LCH4 Storage Tanks on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Moder, Jeff; Barsi, Stephen; Kassemi, Mohammad

    2008-01-01

    Currently NASA is developing technologies to enable human exploration of the lunar surface for duration of up to 210 days. While trade studies are still underway, a cryogenic ascent stage using liquid oxygen (LO2) and liquid methane (LCH4) is being considered for the Altair lunar lander. For a representative Altair cryogenic ascent stage, we present a detailed storage analysis of the LO2 and LCH4 propellant tanks on the lunar surface for durations of up to 210 days. Both the LO2 and LCH4 propellant tanks are assumed to be pressurized with gaseous helium at launch. A two-phase lumped-vapor computational fluid dynamics model has been developed to account for the presence of a noncondensable gas in the ullage. The CFD model is used to simulate the initial pressure response of the propellant tanks while they are subjected to representative heat leak rates on the lunar surface. Once a near stationary state is achieved within the liquid phase, multizone model is used to extrapolate the solution farther in time. For fixed propellant mass and tank size, the long-term pressure response for different helium mass fractions in both the LO2 and LCH4 tanks is examined.

  19. A Simultaneous Discovery: The Case of Johannes Stark and Antonino Lo Surdo

    NASA Astrophysics Data System (ADS)

    Leone, Matteo; Paoletti, Alessandro; Robotti, Nadia

    2004-09-01

    In 1913 the German physicist Johannes Stark (1874 1957) and the Italian physicist Antonino Lo Surdo (1880 1949)discovered virtually simultaneously and independently that hydrogen spectral lines are split into components by an external electric field. Both of their discoveries ensued from studies on the same phenomenon, the Doppler effect in canal rays, but they arose in different theoretical contexts. Stark had been working within the context of the emerging quantum theory, following a research program aimed at studying the effect of an electric field on spectral lines. Lo Surdo had been working within the context of the classical theory, and his was an accidental discovery. Both discoveries, however, played important roles in the history of physics: Stark’s discovery contributed to the establishment of both the old and the new quantum theories; Lo Surdo’s discovery led Antonio Garbasso (1871 1933)to introduce research on the quantum theory into Italian physics. Ironically, soon after their discoveries, both Stark and Lo Surdo rejected developments in modern physics and allied themselves with the political and racial programs of Hitler and Mussolini.

  20. Ka-im's Gift: A St:lo Legend (with Commentary by the Author).

    ERIC Educational Resources Information Center

    Gardner, Ethel B.

    1988-01-01

    Presents a modern retelling of a St:lo (Coast Salish) legend about the origin of a tribal treasure, the wondrous Sxwaixwe mask. Discusses the legend's origins, the process of transforming essentially oral sources into an accessible contemporary form, and the educational value of storytelling. Contains 13 references. (SV)

  1. Structural Validity of the Professional Development Profile of the LoTi Digital-Age Survey

    ERIC Educational Resources Information Center

    Mehta, Vandhana; Hull, Darrell M.

    2013-01-01

    The present study was used to examine the structural construct validity of the Professional Development Profile of the LoTi Digital-Age Survey, a measure of teacher instructional practices with technology in the classroom. Teacher responses ("N" = 2,840) from across the United States were used to assess factor structure of the instrument using…

  2. Properties of low-refractive-index films obtained by the close-spaced vapor transport technique under the sublimation of graphite in a quasi-closed volume

    NASA Astrophysics Data System (ADS)

    Sopinskii, N. V.; Khomchenko, V. S.; Litvin, O. S.; Savin, A. K.; Semenenko, N. A.; Evtukh, A. A.; Sobolevskii, V. P.; Ol'khovik, G. P.

    2011-11-01

    The properties of low-refractive-index carbon films obtained by close-spaced vapor transport at graphite sublimation are studied. The optical properties of the films are investigated by monochromatic multiple-angle ellipsometry, and their morphology is examined by AFM. It is found that the films have a columnar structure with a background surface roughness of about 1 nm. In addition, the surface of the film contains islands up to 50 nm in height with a footprint of ≈200 nm. A low-refractive-index carbon film deposited by close-spaced vapor transport on silicon tips is found to decrease the field emission threshold and drastically raise the current.

  3. First-order feasibility analysis of a space suit radiator concept based on estimation of water mass sublimation using Apollo mission data

    NASA Astrophysics Data System (ADS)

    Metts, Jonathan G.; Klaus, David M.

    2012-01-01

    Thermal control of a space suit during extravehicular activity (EVA) is typically accomplished by sublimating water to provide system cooling. Spacecraft, on the other hand, primarily rely on radiators to dissipate heat. Integrating a radiator into a space suit has been proposed as an alternative design that does not require mass consumption for heat transfer. While providing cooling without water loss offers potential benefits for EVA application, it is not currently practical to rely on a directional, fixed-emissivity radiator to maintain thermal equilibrium of a spacesuit where the radiator orientation, environmental temperature, and crew member metabolic heat load fluctuate unpredictably. One approach that might make this feasible, however, is the use of electrochromic devices that are capable of infrared emissivity modulation and can be actively controlled across the entire suit surface to regulate net heat flux for the system. Integrating these devices onto the irregular, compliant space suit material requires that they be fabricated on a flexible substrate, such as Kapton film. An initial assessment of whether or not this candidate technology presents a feasible design option was conducted by first characterizing the mass of water loss from sublimation that could theoretically be saved if an electrochromic suit radiator was employed for thermal control. This is particularly important for lunar surface exploration, where the expense of transporting water from Earth is excessive, but the technology is potentially beneficial for other space missions as well. In order to define a baseline for this analysis by comparison to actual data, historical documents from the Apollo missions were mined for comprehensive, detailed metabolic data from each lunar surface outing, and related data from NASA's more recent "Advanced Lunar Walkback" tests were also analyzed. This metabolic database was then used to validate estimates for sublimator water consumption during surface

  4. Dependence of the growth rate of an AlN layer on nitrogen pressure in a reactor for sublimation growth of AlN crystals

    SciTech Connect

    Wolfson, A. A. Mokhov, E. N.

    2010-10-15

    The dependence of the layer growth rate on nitrogen pressure in a reactor has been examined in order to analyze the conditions of growth of AlN thick layers and bulk crystals by the sublimation sandwich method. It is shown that the layer growth rate steadily increases as the pressure in the reactor is lowered within the range 1-0.02 bar. This suggests that a key role in the layer growth kinetics is played by the source-to-substrate transfer of the components (Al, N), rather than by their adsorption (desorption) on the substrate surface.

  5. Photoluminescence of GeSi/Si nanoclusters formed by sublimation molecular-beam epitaxy in GeH{sub 4} medium

    SciTech Connect

    Filatov, D. O. Kruglova, M. V.; Isakov, M. A.; Siprova, S. V.; Marychev, M. O.; Shengurov, V. G.; Chalkov, V. Yu.; Denisov, S. A.

    2008-09-15

    The morphology and photoluminescence spectra of GeSi/Si(001) heterostructures with nanoclusters formed by sublimation molecular-beam epitaxy in GeH{sub 4} medium are investigated as functions of growth conditions. It is established that the clusters nucleate by the Stranski-Krastanow mechanism; however, the coalescence processes substantially affect their morphology during further growth. Doubling of photoluminescence lines in nanoclusters associated with the radiative recombination inside the clusters and the blue shift of lines with increasing growth time associated with the Si diffusion from substrate into the clusters are observed. The conditions of forming uniform nanocluster arrays emitting at room temperature are determined.

  6. Forwarding techniques for IP fragmented packets in a real 6LoWPAN network.

    PubMed

    Ludovici, Alessandro; Calveras, Anna; Casademont, Jordi

    2011-01-01

    Wireless Sensor Networks (WSNs) are attracting more and more interest since they offer a low-cost solution to the problem of providing a means to deploy large sensor networks in a number of application domains. We believe that a crucial aspect to facilitate WSN diffusion is to make them interoperable with external IP networks. This can be achieved by using the 6LoWPAN protocol stack. 6LoWPAN enables the transmission of IPv6 packets over WSNs based on the IEEE 802.15.4 standard. IPv6 packet size is considerably larger than that of IEEE 802.15.4 data frame. To overcome this problem, 6LoWPAN introduces an adaptation layer between the network and data link layers, allowing IPv6 packets to be adapted to the lower layer constraints. This adaptation layer provides fragmentation and header compression of IP packets. Furthermore, it also can be involved in routing decisions. Depending on which layer is responsible for routing decisions, 6LoWPAN divides routing in two categories: mesh under if the layer concerned is the adaptation layer and route over if it is the network layer. In this paper we analyze different routing solutions (route over, mesh under and enhanced route over) focusing on how they forward fragments. We evaluate their performance in terms of latency and energy consumption when transmitting IP fragmented packets. All the tests have been performed in a real 6LoWPAN implementation. After consideration of the main problems in forwarding of mesh frames in WSN, we propose and analyze a new alternative scheme based on mesh under, which we call controlled mesh under.

  7. Forwarding techniques for IP fragmented packets in a real 6LoWPAN network.

    PubMed

    Ludovici, Alessandro; Calveras, Anna; Casademont, Jordi

    2011-01-01

    Wireless Sensor Networks (WSNs) are attracting more and more interest since they offer a low-cost solution to the problem of providing a means to deploy large sensor networks in a number of application domains. We believe that a crucial aspect to facilitate WSN diffusion is to make them interoperable with external IP networks. This can be achieved by using the 6LoWPAN protocol stack. 6LoWPAN enables the transmission of IPv6 packets over WSNs based on the IEEE 802.15.4 standard. IPv6 packet size is considerably larger than that of IEEE 802.15.4 data frame. To overcome this problem, 6LoWPAN introduces an adaptation layer between the network and data link layers, allowing IPv6 packets to be adapted to the lower layer constraints. This adaptation layer provides fragmentation and header compression of IP packets. Furthermore, it also can be involved in routing decisions. Depending on which layer is responsible for routing decisions, 6LoWPAN divides routing in two categories: mesh under if the layer concerned is the adaptation layer and route over if it is the network layer. In this paper we analyze different routing solutions (route over, mesh under and enhanced route over) focusing on how they forward fragments. We evaluate their performance in terms of latency and energy consumption when transmitting IP fragmented packets. All the tests have been performed in a real 6LoWPAN implementation. After consideration of the main problems in forwarding of mesh frames in WSN, we propose and analyze a new alternative scheme based on mesh under, which we call controlled mesh under. PMID:22346615

  8. Otra perspectiva sobre lo que los ninos deben estar aprendiendo (Another Look at What Young Children Should Be Learning). ERIC Digest.

    ERIC Educational Resources Information Center

    Katz, Lilian G.

    This Spanish-language ERIC Digest addresses the question of what young children should be learning that will best serve their development and learning in the long term. Two major dimensions of development--normative and dynamic--are explored, and four categories of learning goals are discussed: (1) knowledge; (2) skills; (3) dispositions; and (4)…

  9. Lo Que los Padres y los Maestros Deberian Saber sobre la...Aceleraction (What Parents and Teachers Should Know about Academic Acceleration).

    ERIC Educational Resources Information Center

    Guenther, Alex

    Designed for Spanish-speaking educators and parents, this pamphlet discusses academic acceleration for gifted children. Major types of academic acceleration and their benefits are described. These include: (1) early admission to kindergarten that saves parents of gifted children the expenses of a year of preschool, allows children to be…

  10. First-Principles Simulations for the Initial Stage of Graphene Growth Induced by Si Sublimation from Stepped SiC Surface

    NASA Astrophysics Data System (ADS)

    Ono, Youky; Yamasaki, Takahiro; Ohno, Takahisa

    2015-03-01

    An epitaxial graphene sheet can be obtained by heat sublimation of Si atoms from the stepped SiC surface. Although this method is expected as one of the most encouraging procedure to make clean sheets, its atomic scale growth mechanism is yet not understood in detail. In this study, the initial stage of the graphene growth processes on a stepped SiC(0001) surface are analyzed by first-principles molecular dynamics (FPMD) simulations. A first-principles calculation code ``PHASE'' which is appropriate for efficient large scale parallel calculations is used. Our FPMD simulations proceed as follows. Before the start, some of the Si atoms on the top layer are intentionally removed from the initial SiC substrate to emulate the Si heat sublimation. MD is executed for 1 psec. under the condition of high temperature and then relaxed. Next, additional Si atoms are removed from the 2nd top layer, and then the same MD is repeated again. We tracked the behaver of the redundant C atoms during the series of these procedures. Where, when and how do those C atoms start to re-create the new C-C networks will be discussed in detail by comparing the results from several different patterns of the SiC substrates. A portion of this research was supported by the grant from MEXT's project and carried out in partnership with the University of Tokyo.

  11. Lo que usted necesita saber sobre™ el cáncer de cérvix

    Cancer.gov

    Contiene información sobre las opciones de tratamiento, la obtención de una segunda opinión, los cuidados de seguimiento y las fuentes de apoyo para alguien que ha sido diagnosticado recientemente con cáncer de cérvix o cuello uterino.

  12. Lo que usted necesita saber sobre™ el cáncer de seno

    Cancer.gov

    Contiene información sobre las opciones de tratamiento, los diferentes médicos que tratan el cáncer de seno, la obtención de una segunda opinión, los cuidados de seguimiento y las fuentes de apoyo para alguien que ha sido diagnosticado recientemente con c

  13. Ulysses Radio Occultation Observations of the lo Plasma Torus During the Jupiter Encounter.

    PubMed

    Bird, M K; Asmar, S W; Brenkle, J P; Edenhofer, P; Funke, O; Pätzold, M; Volland, H

    1992-09-11

    Radio signals from Ulysses were used to probe the lo plasma torus (IPT) shortly after the spacecraft's closest approach to Jupiter. The frequencies of the two downlinks at S-band (2.3 gigahertz) and X-band (8.4 gigahertz) were recorded, differenced, and integrated in order to derive the columnar electron density of the IPT. The measurements agree qualitatively with contemporary models of the IPT based on Voyager data, but significant differences are apparent as well. The overall level of the IPT electron density is approximately the same as the prediction, implying that the amount of gas (or plasma) injected from lo is similar to that observed during the Voyager era. On the other hand, the IPT seems to be less extended out of the centrifugal equator, implying a smaller plasma temperature than predicted.

  14. 100-LBF LO2/LCH4 - Reaction Control Engine Technology Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.

  15. Sedimentation survey of Lago Loíza, Trujillo Alto, Puerto Rico, July 2009

    USGS Publications Warehouse

    Soler-López, Luis R.; Licha-Soler, N.A.

    2014-01-01

    Lago Loíza is a reservoir formed at the confluence of Río Gurabo and Río Grande de Loíza in the municipality of Trujillo Alto in central Puerto Rico, about 10 kilometers (km) north of the town of Caguas, about 9 km northwest of Gurabo, and about 3 km south of Trujillo Alto (fig. 1). The Carraizo Dam is owned and operated by the Puerto Rico Aqueduct and Sewer Authority (PRASA), and was constructed in 1953 as a water-supply reservoir for the San Juan Metropolitan area. The dam is a concrete gravity structure that is located in a shallow valley and has a gently sloping left abutment and steep right abutment. Non-overflow sections flank the spillway section. Waterways include an intake structure for the pumping station and power plant, sluiceways, a trash sluice, and a spillway. The reservoir was built to provide a storage capacity of 26.8 million cubic meters (Mm3) of water at the maximum pool elevation of 41.14 meters (m) above mean sea level (msl) for the Sergio Cuevas Filtration Plant that serves the San Juan metropolitan area. The reservoir has a drainage area of 538 square kilometers (km2) and receives an annual mean rainfall that ranges from 1,600 to 5,000 millimeters per year (mm/yr). The principal streams that drain into Lago Loíza are the Río Grande de Loíza, Río Gurabo, and Río Cañas. Two other rivers, the Río Bairoa and Río Cagüitas, discharge into the Río Grande de Loíza just before it enters the reservoir. The combined mean annual runoff of the Río Grande de Loíza and the Río Gurabo for the 1960–2009 period of record is 323 Mm3. Flow from these streams constitutes about 89 percent of the total mean annual inflow of 364 Mm3 to the reservoir (U.S. Geological Survey, 2009). Detailed information about Lago Loíza reservoir structures, historical sediment accumulation, and a dredge conducted in 1999 are available in Soler-López and Gómez-Gómez (2005). During July 8–15, 2009, the U.S. Geological Survey (USGS) Caribbean Water Science

  16. Combination of Vandetanib, Radiotherapy, and Irinotecan in the LoVo Human Colorectal Cancer Xenograft Model

    SciTech Connect

    Wachsberger, Phyllis; Burd, Randy; Ryan, Anderson; Daskalakis, Constantine; Dicker, Adam P.

    2009-11-01

    Purpose: The tumor growth kinetics of the human LoVo colorectal xenograft model was assessed in response to vandetanib, an orally available receptor tyrosine kinase inhibitor, radiotherapy (RT), or irinotecan (CPT-11), as single therapies and in combination. Methods and Materials: LoVo cells were injected subcutaneously into the right hind limb (5x10{sup 6} cells in 100muL phosphate-buffered saline) of athymic NCR NUM mice and tumors were grown to a volume of 200-300 mm{sup 3} before treatment. Vandetanib was administered at 50 mg/kg daily orally for 14 days starting on Day 1. RT was given as three fractions (3x3 Gy) on Days 1, 2, and 3. CPT-11 was given at 15 mg/kg intraperitoneally on Days 1 and 3. Tumor volumes were measured on a daily basis and calculated by measuring tumor diameters with digital calipers in two orthogonal dimensions. Results: All three single treatments (vandetanib, CPT-11, and radiation) significantly slowed LoVo colorectal tumor growth. Vandetanib significantly increased the antitumor effects of CPT-11 and radiation when given in combination with either of these treatments. These treatment combinations resulted in a slow tumor growth rate during the 2 weeks of vandetanib administration. The triple combination of vandetanib, CPT-11, and radiation produced the most marked improvement in response as observed by measurable shrinkage of tumors during the first week of treatment. Conclusions: The tumor growth delay kinetics observed in this study of the LoVo colorectal model suggest concurrent and sustained post-sequencing of vandetanib with cytotoxic therapy may be beneficial in tumors of this type.

  17. N3LO NN interaction adjusted to light nuclei in ab exitu approach

    NASA Astrophysics Data System (ADS)

    Shirokov, A. M.; Shin, I. J.; Kim, Y.; Sosonkina, M.; Maris, P.; Vary, J. P.

    2016-10-01

    We use phase-equivalent transformations to adjust off-shell properties of similarity renormalization group evolved chiral effective field theory NN interaction (Idaho N3LO) to fit selected binding energies and spectra of light nuclei in an ab exitu approach. We then test the transformed interaction on a set of additional observables in light nuclei to verify that it provides reasonable descriptions of these observables with an apparent reduced need for three- and many-nucleon interactions.

  18. Ultra-low-voltage CMOS-based current bleeding mixer with high LO-RF isolation.

    PubMed

    Tan, Gim Heng; Sidek, Roslina Mohd; Ramiah, Harikrishnan; Chong, Wei Keat; Lioe, De Xing

    2014-01-01

    This journal presents an ultra-low-voltage current bleeding mixer with high LO-RF port-to-port isolation, implemented on 0.13 μm standard CMOS technology for ZigBee application. The architecture compliments a modified current bleeding topology, consisting of NMOS-based current bleeding transistor, PMOS-based switching stage, and integrated inductors achieving low-voltage operation and high LO-RF isolation. The mixer exhibits a conversion gain of 7.5 dB at the radio frequency (RF) of 2.4 GHz, an input third-order intercept point (IIP3) of 1 dBm, and a LO-RF isolation measured to 60 dB. The DC power consumption is 572 µW at supply voltage of 0.45 V, while consuming a chip area of 0.97 × 0.88 mm(2). PMID:25197694

  19. A Network Access Control Framework for 6LoWPAN Networks

    PubMed Central

    Oliveira, Luís M. L.; Rodrigues, Joel J. P. C.; de Sousa, Amaro F.; Lloret, Jaime

    2013-01-01

    Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. PMID:23334610

  20. Effects of ADMA on gene expression and metabolism in serum-starved LoVo cells.

    PubMed

    Zheng, Ningning; Wang, Ke; He, Jiaojiao; Qiu, Yunping; Xie, Guoxiang; Su, Mingming; Jia, Wei; Li, Houkai

    2016-05-16

    Serum starvation is a typical way for inducing tumor cell apoptosis and stress. Asymmetric dimethylarginine (ADMA) is an endogenous metabolite. Our previous study reveals the plasma ADMA level is elevated in colon cancer patients, which can attenuate serum starvation-induced apoptosis in LoVo cells. In current study, we evaluated the effects of ADMA on gene expression and metabolism in serum-starved LoVo cells with gene microarray and metabolomic approaches. Our results indicated that 96 h serum starvation induced comprehensive alterations at transcriptional level, and most of them were restored by ADMA. The main signaling pathways induced by serum starvation included cancers-related pathways, pathways in cell death, apoptosis, and cell cycle etc. Meanwhile, the metabolomic data showed serum-starved cells were clearly separated with control cells, but not with ADMA-treated cells in PCA model. The identified differential metabolites indicated serum starvation significantly suppressed TCA cycle, altered glucose and fatty acids metabolism, as well as nucleic acids metabolism. However, very few differential metabolites were identified between ADMA and serum-starved cells. In summary, our current results indicated serum starvation profoundly altered the gene expression and metabolism of LoVo cells, whereas ADMA could restore most of the changes at transcriptional level, but not at metabolic level.

  1. Adenovirus KH901 promotes 5-FU antitumor efficacy and S phase in LoVo cells.

    PubMed

    Peng, Wei; Li, Jin; Yin, X G; Xu, J F; Cheng, L Z

    2012-06-01

    A combination of oncolytic and chemotherapeutic agents has been used to kill cancer cells. However, the effect of oncolytic adenoviruses on the cell cycle remains to be determined. Cytotoxicity assays were performed to determine cell death in cells treated with 5-fluorouracil (5-FU) alone or in combination with the oncolytic adenovirus KH901. Dynamic changes in the cell cycle, cell proliferation, and apoptosis-related proteins including p-AKT, Bcl-2, Bax, and caspase 3 were investigated after treatment with 5-FU with or without KH901. A higher proportion of S-phase cells were observed after treatment with KH901 and 5-FU than with 5-FU alone. p-AKT, Bcl-2, and Bax expression was increased upon treatment with KH901, whereas the expression of caspase-3 was not induced upon treatment with KH901 with or without 5-FU. KH901 exhibited significant potential as an oncolytic adenovirus and increased cell death in combination with 5-FU in LoVo cells, as compared to 5-FU alone. In conclusion, KH901 stimulates LoVo cells to enter the S-phase by activation of p-AKT, which could partly explain its synergistic effect with 5-FU on LoVo cell cytotoxicity.

  2. Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy

    PubMed Central

    Sternberg, Jenna R.; Wyart, Claire; Emiliani, Valentina

    2015-01-01

    Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes. PMID:26625116

  3. Nature of the X(5568) — A critical Laplace sum rule analysis at N2LO

    NASA Astrophysics Data System (ADS)

    Albuquerque, R.; Narison, S.; Rabemananjara, A.; Rabetiarivony, D.

    2016-06-01

    We scrutinize recent QCD spectral sum rules (QSSR) results to lowest order (LO) predicting the masses of the BK molecule and (su)(bd¯) four-quark states. We improve these results by adding NLO and N2LO corrections to the PT contributions giving a more precise meaning on the b-quark mass definition used in the analysis. We extract our optimal predictions using Laplace sum rule (LSR) within the standard stability criteria versus the changes of the external free parameters (τ-sum rule variable, tc continuum threshold and subtraction constant μ). The smallness of the higher order PT corrections justifies (a posteriori) the LO order results ⊕ the uses of the ambiguous heavy quark mass to that order. However, our predicted spectra in the range (5173 ˜ 5226) MeV, summarized in Table 7, for exotic hadrons built with four different flavors (buds), do not support some previous interpretations of the D0 candidate,1 X(5568), as a pure molecule or a four-quark state. If experimentally confirmed, it could result from their mixing with an angle: sin 2𝜃 ≈ 0.15. One can also scan the region (2327 ˜ 2444) MeV (where the Ds0∗(2317) might be a good candidate) and the one (5173 ˜ 5226) MeV for detecting these (cuds) and (buds) unmixed exotic hadrons (if any) via, eventually, their radiative or π+hadrons decays.

  4. Nature of the X(5568) — A critical Laplace sum rule analysis at N2LO

    NASA Astrophysics Data System (ADS)

    Albuquerque, R.; Narison, S.; Rabemananjara, A.; Rabetiarivony, D.

    2016-06-01

    We scrutinize recent QCD spectral sum rules (QSSR) results to lowest order (LO) predicting the masses of the BK molecule and (su)(bd¯) four-quark states. We improve these results by adding NLO and N2LO corrections to the PT contributions giving a more precise meaning on the b-quark mass definition used in the analysis. We extract our optimal predictions using Laplace sum rule (LSR) within the standard stability criteria versus the changes of the external free parameters (τ-sum rule variable, tc continuum threshold and subtraction constant μ). The smallness of the higher order PT corrections justifies (a posteriori) the LO order results ⊕ the uses of the ambiguous heavy quark mass to that order. However, our predicted spectra in the range (5173 ˜ 5226) MeV, summarized in Table 7, for exotic hadrons built with four different flavors (buds), do not support some previous interpretations of the D0 candidate,1 X(5568), as a pure molecule or a four-quark state. If experimentally confirmed, it could result from their mixing with an angle: sin 2𝜃 ≈ 0.15. One can also scan the region (2327 ˜ 2444) MeV (where the Ds0∗(2317) might be a good candidate) and the one (5173 ˜ 5226) MeV for detecting these (cuds) and (buds) unmixed exotic hadrons (if any) via, eventually, their radiative or π+hadrons decays.

  5. Running of the contact interactions in chiral N3LO potentials from subtractive renormalization

    NASA Astrophysics Data System (ADS)

    Batista, E. F.; Szpigel, S.; Timóteo, V. S.

    2015-07-01

    In this work a subtracted kernel renormalization procedure (SKM) is applied to the chiral NN potential up to next-to-next-to-next-to-leading-order (N3 LO) to obtain the running of the renormalized contact strengths with the subtraction scale μ and the phase shifts for all uncoupled waves with contact interaction (S,P,D). We use two potentials constructed within the framework of Weinberg's approach to ChEFT, which provide a very accurate description of NN scattering data below laboratory energies E ∼ 350 MeV, namely Epelbaum, Glöckle and Meissner (N3LO-EGM) and Entem and Machleidt (N3LO-EM). For both potentials, we consider a large cutoff (30 fm-1) and analyze the phases and the running of the contact strengths with the subtraction point μ by making a fit of the K-matrix with five subtractions to the K-matrix from the Nijmegen II potential at low energies (E ≤ 20 MeV).

  6. Magnesium homeostasis in colon carcinoma LoVo cells sensitive or resistant to doxorubicin.

    PubMed

    Castiglioni, Sara; Cazzaniga, Alessandra; Trapani, Valentina; Cappadone, Concettina; Farruggia, Giovanna; Merolle, Lucia; Wolf, Federica I; Iotti, Stefano; Maier, Jeanette A M

    2015-11-13

    Neoplastic cells accumulate magnesium, an event which provides selective advantages and is frequently associated with TRPM7 overexpression. Little is known about magnesium homeostasis in drug-resistant cancer cells. Therefore, we used the colon cancer LoVo cell model and compared doxorubicin-resistant to sensitive cells. In resistant cells the concentration of total magnesium is higher while its influx capacity is lower than in sensitive cells. Accordingly, resistant cells express lower amounts of the TRPM6 and 7, both involved in magnesium transport. While decreased TRPM6 levels are due to transcriptional regulation, post-transcriptional events are involved in reducing the amounts of TRPM7. Indeed, the calpain inhibitor calpeptin markedly increases the levels of TRPM7 in resistant cells. In doxorubicin-sensitive cells, silencing TRPM7 shifts the phenotype to one more similar to resistant cells, since in these cells silencing TRPM7 significantly decreases the influx of magnesium, increases its intracellular concentration and increases resistance to doxorubicin. On the other hand, calpain inhibition upregulates TRPM7, decreases intracellular magnesium and enhances the sensitivity to doxorubicin of resistant LoVo cells. We conclude that in LoVo cells drug resistance is associated with alteration of magnesium homeostasis through modulation of TRPM7. Our data suggest that TRPM7 expression may be an additional undisclosed player in chemoresistance.

  7. Effects of ADMA on gene expression and metabolism in serum-starved LoVo cells

    PubMed Central

    Zheng, Ningning; Wang, Ke; He, Jiaojiao; Qiu, Yunping; Xie, Guoxiang; Su, Mingming; Jia, Wei; Li, Houkai

    2016-01-01

    Serum starvation is a typical way for inducing tumor cell apoptosis and stress. Asymmetric dimethylarginine (ADMA) is an endogenous metabolite. Our previous study reveals the plasma ADMA level is elevated in colon cancer patients, which can attenuate serum starvation-induced apoptosis in LoVo cells. In current study, we evaluated the effects of ADMA on gene expression and metabolism in serum-starved LoVo cells with gene microarray and metabolomic approaches. Our results indicated that 96 h serum starvation induced comprehensive alterations at transcriptional level, and most of them were restored by ADMA. The main signaling pathways induced by serum starvation included cancers-related pathways, pathways in cell death, apoptosis, and cell cycle etc. Meanwhile, the metabolomic data showed serum-starved cells were clearly separated with control cells, but not with ADMA-treated cells in PCA model. The identified differential metabolites indicated serum starvation significantly suppressed TCA cycle, altered glucose and fatty acids metabolism, as well as nucleic acids metabolism. However, very few differential metabolites were identified between ADMA and serum-starved cells. In summary, our current results indicated serum starvation profoundly altered the gene expression and metabolism of LoVo cells, whereas ADMA could restore most of the changes at transcriptional level, but not at metabolic level. PMID:27180883

  8. Ultra-Low-Voltage CMOS-Based Current Bleeding Mixer with High LO-RF Isolation

    PubMed Central

    Tan, Gim Heng; Sidek, Roslina Mohd; Chong, Wei Keat; Lioe, De Xing

    2014-01-01

    This journal presents an ultra-low-voltage current bleeding mixer with high LO-RF port-to-port isolation, implemented on 0.13 μm standard CMOS technology for ZigBee application. The architecture compliments a modified current bleeding topology, consisting of NMOS-based current bleeding transistor, PMOS-based switching stage, and integrated inductors achieving low-voltage operation and high LO-RF isolation. The mixer exhibits a conversion gain of 7.5 dB at the radio frequency (RF) of 2.4 GHz, an input third-order intercept point (IIP3) of 1 dBm, and a LO-RF isolation measured to 60 dB. The DC power consumption is 572 µW at supply voltage of 0.45 V, while consuming a chip area of 0.97 × 0.88 mm2. PMID:25197694

  9. Magnesium homeostasis in colon carcinoma LoVo cells sensitive or resistant to doxorubicin

    PubMed Central

    Castiglioni, Sara; Cazzaniga, Alessandra; Trapani, Valentina; Cappadone, Concettina; Farruggia, Giovanna; Merolle, Lucia; Wolf, Federica I.; Iotti, Stefano; Maier, Jeanette A M

    2015-01-01

    Neoplastic cells accumulate magnesium, an event which provides selective advantages and is frequently associated with TRPM7overexpression. Little is known about magnesium homeostasis in drug-resistant cancer cells. Therefore, we used the colon cancer LoVo cell model and compared doxorubicin-resistant to sensitive cells. In resistant cells the concentration of total magnesium is higher while its influx capacity is lower than in sensitive cells. Accordingly, resistant cells express lower amounts of the TRPM6 and 7, both involved in magnesium transport. While decreased TRPM6 levels are due to transcriptional regulation, post-transcriptional events are involved in reducing the amounts of TRPM7. Indeed, the calpain inhibitor calpeptin markedly increases the levels of TRPM7 in resistant cells. In doxorubicin-sensitive cells, silencing TRPM7 shifts the phenotype to one more similar to resistant cells, since in these cells silencing TRPM7 significantly decreases the influx of magnesium, increases its intracellular concentration and increases resistance to doxorubicin. On the other hand, calpain inhibition upregulates TRPM7, decreases intracellular magnesium and enhances the sensitivity to doxorubicin of resistant LoVo cells. We conclude that in LoVo cells drug resistance is associated with alteration of magnesium homeostasis through modulation of TRPM7. Our data suggest that TRPM7 expression may be an additional undisclosed player in chemoresistance. PMID:26563869

  10. PI3K/Akt pathway involving into apoptosis and invasion in human colon cancer cells LoVo.

    PubMed

    Jiang, Qun Guang; Li, Tai Yuan; Liu, Dong Ning; Zhang, Hai Tao

    2014-05-01

    In this study we determined the effects of Curcumin on human colon cancer cells line LoVo. We found that Curcumin significantly inhibited the proliferation, migration and invasion, and clone formation of LoVo cells in a dose-dependent manner. Curcumin also dose-dependently reduced the phosphorylation of proteins Akt and increased expression levels of the genes caspase-3, cytochrome-c, Bax mRNA in LoVo cells. In addition, Curcumin dose-dependently decreased gene Bcl-2 mRNA expression. Similar results were observed in LoVo cells treated with LY294002. These in vitro studies suggest that Curcumin may play its anti-cancer actions partly via suppressing PI3K/Akt signal pathway in LoVo cells.

  11. Experimental study of the sublimation of ice through an unconsolidated clay layer: Implications for the stability of ice on Mars and the possible diurnal variations in atmospheric water

    NASA Astrophysics Data System (ADS)

    Chevrier, Vincent; Ostrowski, Daniel R.; Sears, Derek W. G.

    2008-08-01

    We have studied the sublimation of ice and water vapor transport through various thicknesses of clay (<63 μm grain size). We experimentally demonstrate that both adsorption and diffusion strongly affect the transport of water, and that the processes of diffusion and adsorption can be separately quantified once the system comes to a steady state. At shallow depths of clay, water vapor transport is determined by diffusion through both the atmosphere and the clay layer, whereas at greater depth the rate of sublimation of the ice is governed only by diffusion through the clay. Using two different models, we determine the diffusion coefficient for water vapor through unconsolidated clay layer to be 1.08±0.04×10 and 1.29±0.06×10ms. We also determined the adsorption isotherms for the clay layer, which follow the Langmuir theory at low water vapor pressure (<100 Pa, where a monolayer of water molecules forms on the surface of the clay) and the BET theory at higher pressure (where multiple water layers form). From our analysis of both types of isotherms we determined the adsorption constants to be α=4.9±1.0×10Pa and c=30±10, respectively, and specific surface areas of 1.10±0.2×10 and 9.0±0.7×10mkg, respectively. Finally, we report a theoretical kinetic model for the simultaneous diffusion and adsorption from which we determine adsorption kinetic constants according to the Langmuir theory of k=2.5±0.5×10s and k=8.7±3.6×10s. If the martian regolith possesses diffusive properties similar to those of the unconsolidated montmorillonite soil we investigated here, it would not represent a significant barrier to the sublimation of subsurface ice. However, at the low subsurface temperatures of high latitude (180 K on average), ice could survive from the last glaciation period (about 300 to 400,000 years ago). Higher subsurface temperatures in the equatorial regions would prevent long-timescale survival of ice in the shallow subsurface. In agreement with previous

  12. G-LoSA: An efficient computational tool for local structure-centric biological studies and drug design.

    PubMed

    Lee, Hui Sun; Im, Wonpil

    2016-04-01

    Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G-LoSA. G-LoSA aligns protein local structures in a sequence order independent way and provides a GA-score, a chemical feature-based and size-independent structure similarity score. Our benchmark validation shows the robust performance of G-LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure-centric comparative biology studies. In particular, G-LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G-LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer-aided drug design. We hope that G-LoSA can be a useful computational method for exploring interesting biological problems through large-scale comparison of protein local structures and facilitating drug discovery research and development. G-LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/. PMID:26813336

  13. The effect of substrate temperature on material properties and the device performance of close-spaced sublimation deposited CdTe/CdS devices

    NASA Astrophysics Data System (ADS)

    Li, X.; Albin, D.; Asher, S.; Moutinho, H.; Keyes, B.; Matson, R.; Hasoon, F.; Sheldon, P.

    1996-01-01

    High-efficiency polycrystalline CdS/CdTe solar cells have been fabricated using CdTe absorber layers deposited by close-spaced sublimation (CSS). CSS employs high substrate temperatures (Tsub) during film growth, which can promote the formation of larger grains and higher Voc's yielding better device performance. However, as Tsub increases beyond 610 °C, voids or pinholes begin to form in the CdTe layer. When the back contact is applied, these voids serve as shunt paths that effectively lower Voc. In this fashion, benefits associated with higher substrate temperatures are seriously compromised. Concurrent with voiding is the observation that higher temperatures promote interdiffusion at the CdS/CdTe interface such that the effective thickness of the CdS layer is reduced. Variations in processing that correct for these detrimental effects have led to a total-area device efficiency of 12%.

  14. Enhanced performance of CdS/CdTe thin-film devices through temperature profiling techniques applied to close-spaced sublimation deposition

    SciTech Connect

    Xiaonan Li; Sheldon, P.; Moutinho, H.; Matson, R.

    1996-05-01

    The authors describe a methodology developed and applied to the close-spaced sublimation technique for thin-film CdTe deposition. The developed temperature profiles consisted of three discrete temperature segments, which the authors called the nucleation, plugging, and annealing temperatures. They have demonstrated that these temperature profiles can be used to grow large-grain material, plug pinholes, and improve CdS/CdTe photovoltaic device performance by about 15%. The improved material and device properties have been obtained while maintaining deposition temperatures compatible with commercially available substrates. This temperature profiling technique can be easily applied to a manufacturing environment by adjusting the temperature as a function of substrate position instead of time.

  15. Influence of substrate temperature on structural and optical properties of bismuth oxide thin films deposited by close-spaced vacuum sublimation

    NASA Astrophysics Data System (ADS)

    Ivashchenko, M. M.; Buryk, I. P.; Latyshev, V. M.; Stepanenko, A. O.; Levchenko, K. S.

    2015-12-01

    Bi2O3 thin films were deposited on ultrasonically-cleaned glass and mica substrates by close-spaced vacuum sublimation technique. Films surface morphology was studied using scanning electron microscopy (SEM). Structural study based on the transmission-electron microscopy (TEM) and selected-area electron diffraction (SAED) analysis has been shown that deposited films were polycrystalline with face-centered cubic structure. Optical study was carried out by spectral photometry analysis in the wavelengths range λ = 320-900 nm using the optical transmittance and absorbance measurements. For determination optical band gap Eg the Tauc plot was used and the band gap energy Eg is determined in the range of 3.50-3.62 eV, respectively. Fourier-transform infra-red (FTIR) analysis shown that obtained films are well-crystalline and have a good optical quality.

  16. Investigation of induced recrystallization and stress in close-spaced sublimated and radio-frequency magnetron sputtered CdTe thin films

    SciTech Connect

    Moutinho, H.R.; Dhere, R.G.; Al-Jassim, M.M.; Levi, D.H.; Kazmerski, L.L.

    1999-07-01

    We have induced recrystallization of small grain CdTe thin films deposited at low temperatures by close-spaced sublimation (CSS), using a standard CdCl{sub 2} annealing treatment. We also studied the changes in the physical properties of CdTe films deposited by radio-frequency magnetron sputtering after the same post-deposition processing. We demonstrated that the effects of CdCl{sub 2} on the physical properties of CdTe films are similar, and independent of the deposition method. The recrystallization process is linked directly to the grain size and stress in the films. These studies indicated the feasibility of using lower-temperature processes in fabricating efficient CSS CdTe solar cells. We believe that, after the optimization of the parameters of the chemical treatment, these films can attain a quality similar to CSS films grown using current standard conditions. {copyright} {ital 1999 American Vacuum Society.}

  17. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1 - C10

    NASA Astrophysics Data System (ADS)

    Acree, William; Chickos, James S.

    2016-09-01

    A compendium of phase change enthalpies published in 2010 is updated to include the period 1880-2015. Phase change enthalpies including fusion, vaporization, and sublimation enthalpies are included for organic, organometallic, and a few inorganic compounds. Part 1 of this compendium includes organic compounds from C1 to C10. Part 2 of this compendium, to be published separately, will include organic and organometallic compounds from C11 to C192. Sufficient data are presently available to permit thermodynamic cycles to be constructed as an independent means of evaluating the reliability of the data. Temperature adjustments of phase change enthalpies from the temperature of measurement to the standard reference temperature, T = 298.15 K, and a protocol for doing so are briefly discussed.

  18. Influence of Secondary Interactions on the Structure, Sublimation Thermodynamics, and Solubility of Salicylate:4-Hydroxybenzamide Cocrystals. Combined Experimental and Theoretical Study.

    PubMed

    Manin, Alex N; Voronin, Alexander P; Shishkina, Anastasia V; Vener, Mikhail V; Churakov, Andrei V; Perlovich, German L

    2015-08-20

    Cocrystal screening of 4-hydroxybenzamide with a number of salicylates (salicylic acid, SA; 4-aminosalicylic acid, PASA; acetylsalicylic acid, ASA; and salicylsalicylic acid, SSA) was conducted to confirm the formation of two cocrystals, [SA+4-OHBZA] (1:1) and [PASA+4-OHBZA] (1:1). Their structures were determined using single-crystal X-ray diffraction, and the hydrogen-bond network topology was studied. Thermodynamic characteristics of salicylic acid cocrystal sublimation were obtained experimentally. It was proved that PASA cocrystallization with 4-OHBZA makes the drug more stable and prevents the irreversible process of decarboxylation of PASA resulting in formation of toxic 3-aminophenol. The pattern of non-covalent interactions in the cocrystals is described quantitatively using solid-state density functional theory followed by Bader analysis of the periodic electron density. It has been found that the total energy of secondary interactions between synthon atoms and the side hydroxyl group of the acid molecule in [SA+4-OHBZA] (1:1) and [PASA+4-OHBZA] (1:1) cocrystals is comparable to the energy of the primary acid-amide heterosynthon. The theoretical value of the sublimation enthalpy of [SA+4-OHBZA], 231 kJ/mol, agrees fairly well with the experimental one, 272 kJ/mol. The dissolution experiments with [SA+4-OHBZA] have proved that the relatively large cocrystal stability in relation to the stability of its components has a negative effect on the dissolution rate and equilibrium solubility. The [PASA+4-OHBZA] (1:1) cocrystal showed an enhancement of apparent solubility compared to that of the corresponding pure active pharmaceutical ingredient, while their intrinsic dissolution rates are comparable.

  19. On the Concentration Unsteadiness of Chemical Vapour Deposition with a Precursor Sublimated from Packed Bed of Solid Source. Problems with Multicomponent Coatings

    NASA Astrophysics Data System (ADS)

    Peev, Georgi; Tsibranska, Irene

    In some CVD processes the precursor is introduced into the reactor as vapor obtained by sublimation from particles of solid source forming packed bed in a column, where through a carrier gas passes. A typical example is the deposition of metal or metal oxide using its carbonyl compound. The study evaluates by mathematical modeling the effect of particle size reduction due to sublimation on the composition of the gas phase entering the reactor. A set of differential equations describing the convective solid to gas mass transfer process in the column is formulated. Equations for precursor equilibrium partial pressure, mass transfer coefficient, diffusivity and axial dispersion coefficient found from literature are added and the model is solved numerically by the method of finite differences. On the example of W(CO)6 the influence of the carrier gas flow rate, temperature and CVD duration on the change of the precursor concentration is revealed. The calculated alterations are significant and may spoil the running experiments. As to prevent this problem three approaches are suggested allowing the maintenance of the reactor inlet precursor concentration in reasonable limits: (i) to use a sufficiently high initial bed for saturation of the carrier gas during the entire particular experiment; (ii) to increase step-by- step in time the bed temperature; (iii) to increase step-by-step in time the carrier gas velocity in the column on the account of its stream by-passing the column. In all three approaches the model allows to calculate the necessary factors, i.e. the sufficient bed height, the temperature and velocity increment in time. Some numerical experiments employing the suggested approaches with approximately constant precursor concentrations are illustrated. Approaches how to proceed when multicomponent coating is to be deposited are discussed. The main conclusion is that the CVD processes should be carefully prepared accounting for a possible unsteadiness and the

  20. Towards an understanding of the molecular mechanism of solvation of drug molecules: a thermodynamic approach by crystal lattice energy, sublimation, and solubility exemplified by hydroxybenzoic acids.

    PubMed

    Perlovich, German L; Volkova, Tatyana V; Bauer-Brandl, Annette

    2006-07-01

    Temperature dependencies of saturated vapor pressure and heat capacities for the 2-, 3-, and 4-hydroxybenzoic acids were measured and thermodynamic functions of sublimation calculated (2-hydroxybenzoic acid: DeltaG(sub) (298) = 38.5 kJ/mol; DeltaH(sub) (298) = 96.6 +/- 0.8 kJ/mol; DeltaS(sub) (298) = 191 +/- 3 J/mol . K; 3-hydroxybenzoic acid: DeltaG(sub) (298) = 50.6 kJ/mol; DeltaH(sub) (298) = 105.2 +/- 0.8 kJ/mol; DeltaS(sub) (298) = 180 +/- 2 J/mol . K; 4-hydroxybenzoic acid: DeltaG(sub) (298) = 55.0 kJ/mol; DeltaH(sub) (298) = 113.3 +/- 0.7 kJ/mol; DeltaS(sub) (298) = 193 +/- 2 J/mol . K). Analysis of crystal lattice packing energies based on geometry optimization of the molecules in the crystal using diffraction data and the program Dmol(3) was carried out. The energetic contributions of van der Waals, Coulombic, and hydrogen bond terms to the total packing energy were analyzed. The fraction of hydrogen bond energy in the packing energy increases as: 3-hydroxybenzoic (29.7%) < 2-hydroxybenzoic (34.7%) < 4-hydroxybenzoic acid (42.0%). Enthalpies of evaporation were estimated from enthalpies of sublimation and fusion. Temperature dependencies of the solubility in n-octanol and n-hexane were measured. The thermodynamic functions of solubility and solvation processes were deduced. Specific and nonspecific solvation terms were distinguished using the transfer from the "inert" n-hexane to the other solvents. The transfer of the molecules from water to n-octanol is enthalpy driven process.

  1. Towards an understanding of the molecular mechanism of solvation of drug molecules: a thermodynamic approach by crystal lattice energy, sublimation, and solubility exemplified by paracetamol, acetanilide, and phenacetin.

    PubMed

    Perlovich, German L; Volkova, Tatyana V; Bauer-Brandl, Annette

    2006-10-01

    Temperature dependencies of saturated vapor pressure for the monoclinic modification of paracetamol (acetaminophen), acetanilide, and phenacetin (acetophenetidin) were measured and thermodynamic functions of sublimation calculated (paracetamol: DeltaGsub298=60.0 kJ/mol; DeltaHsub298=117.9+/-0.7 kJ/mol; DeltaSsub298=190+/-2 J/mol.K; acetanilide: DeltaGsub298=40.5 kJ/mol; DeltaHsub298=99.8+/-0.8 kJ/mol; DeltaSsub298=197+/-2 J/mol.K; phenacetin: DeltaGsub298=52.3 kJ/mol; DeltaHsub298=121.8+/-0.7 kJ/mol; DeltaSsub298=226+/-2 J/mol.K). Analysis of packing energies based on geometry optimization of molecules in the crystal lattices using diffraction data and the program Dmol3 was carried out. Parameters analyzed were: (a) energetic contribution of van der Waals forces and hydrogen bonding to the total packing energy; (b) contributions of fragments of the molecules to the packing energy. The fraction of hydrogen bond energy in the packing energy increases as: phenacetin (17.5%)sublimation and fusion. Activity coefficients of the drugs in n-octanol were calculated from cryoscopic data and by estimation of dilution enthalpy obtained from solubility and calorimetric experiments (for infinite dissolution). Solubility temperature dependencies in n-octanol and n-hexane were measured. The thermodynamic functions of solubility and solvation processes were deduced. Specific and nonspecific solvation terms were distinguished using the transfer from the "inert" n-hexane to the other solvents. The transfer of the molecules from water to n-octanol is enthalpy driven for paracetamol; for acetanilide and phenacetin, entropy driven.

  2. Higgs boson gluon-fusion production beyond threshold in N3LO QCD

    SciTech Connect

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; Furlan, Elisabetta; Gehrmann, Thomas; Herzog, Franz; Mistlberger, Bernhard

    2015-03-18

    In this study, we compute the gluon fusion Higgs boson cross-section at N3LO through the second term in the threshold expansion. This calculation constitutes a major milestone towards the full N3LO cross section. Our result has the best formal accuracy in the threshold expansion currently available, and includes contributions from collinear regions besides subleading corrections from soft and hard regions, as well as certain logarithmically enhanced contributions for general kinematics. We use our results to perform a critical appraisal of the validity of the threshold approximation at N3LO in perturbative QCD.

  3. Resonant behaviour of GaAs LO phonons in a GaAs-AlAs superlattice

    NASA Astrophysics Data System (ADS)

    Zhang, Shulin; T, A. Gant; M, Delaney; M, V. Klein; J, Klem; H, Morkoc

    1988-03-01

    Resonant Raman scattering from GaAs LO phonons in a 59Å GaAs/20Å AlAs superlattice was studied. The relevant intersubband energies were determined. The results suggest that all of the exciton transitions from the hole subbands HH1, LH1, HH2, HH3, LH2 and HH4 to the electron subbands CB1 and CB2 in the energy region covered by our incident dye laser were observed and a justificative analysis may involve effects due to valence band mixing and to 3D electronic miniband structure.

  4. Discussions about the Nature of Science in a Course on the History of Astronomy. (Spanish Title: Discusiones sobre la Naturaleza de la Ciencia en un Curso sobre Historia de la Astronomía.) Discussões sobre a Natureza da Ciência em um Curso sobre a História da Astronomia

    NASA Astrophysics Data System (ADS)

    Pires de Andrade, Victória Flório; L'Astorina, Bruno

    2010-07-01

    There are an increasing number of researches in science education that affirm the importance of discussions on the "nature of science" in basic education level as well as in teacher training. The history of science applied to education is a way to contextualize epistemological discussions, allowing both the understanding of scientific content and learning about science concepts. We present some reasonably consensual definitions on the nature of science that have been widely discussed by the academic community. We show also some episodes in the history of astronomy which can lead to discussions involving some aspects of the nature of science, and how they can do it. Hay un número creciente de investigaciones en la enseñanza de las ciencias que afirman la importancia de debates sobre la "naturaleza de la ciencia" en la educación básica y formación del profesorado. La historia de la ciencia aplicada a la educación es una manera de contextualizar los debates de la epistemología, lo que permite tanto la comprensión de los contenidos científicos como el aprendizaje de conceptos científicos. En esto trabajo, presentamos algunas definiciones bastante consensuales sobre la naturaleza de la ciencia que han sido ampliamente discutidas por la comunidad académica y mostramos cómo algunos episodios en la historia de la astronomía pueden llevar a discusiones sobre algunos aspectos de la naturaleza de la ciencia. Há um número crescente de pesquisas na área de ensino de ciências que afirmam a importância de discussões sobre a "natureza da ciência" na educação básica e na formação de professores. A história da ciência aplicada ao ensino é uma maneira de contextualizar discussões epistemológicas, permitindo tanto a compreensão de conteúdos científicos quanto o aprendizado de noções sobre as ciências. Neste trabalho apresentamos algumas definições razoavelmente consensuais sobre a natureza da ciência que foram amplamente discutidas pela

  5. Pavement crack detection combining non-negative feature with fast LoG in complex scene

    NASA Astrophysics Data System (ADS)

    Wang, Wanli; Zhang, Xiuhua; Hong, Hanyu

    2015-12-01

    Pavement crack detection is affected by much interference in the realistic situation, such as the shadow, road sign, oil stain, salt and pepper noise etc. Due to these unfavorable factors, the exist crack detection methods are difficult to distinguish the crack from background correctly. How to extract crack information effectively is the key problem to the road crack detection system. To solve this problem, a novel method for pavement crack detection based on combining non-negative feature with fast LoG is proposed. The two key novelties and benefits of this new approach are that 1) using image pixel gray value compensation to acquisit uniform image, and 2) combining non-negative feature with fast LoG to extract crack information. The image preprocessing results demonstrate that the method is indeed able to homogenize the crack image with more accurately compared to existing methods. A large number of experimental results demonstrate the proposed approach can detect the crack regions more correctly compared with traditional methods.

  6. Soft Expansion of Double-Real-Virtual Corrections to Higgs Production at N$^3$LO

    SciTech Connect

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; Furlan, Elisabetta; Herzog, Franz; Mistlberger, Bernhard

    2015-05-15

    We present methods to compute higher orders in the threshold expansion for the one-loop production of a Higgs boson in association with two partons at hadron colliders. This process contributes to the N3LO Higgs production cross section beyond the soft-virtual approximation. We use reverse unitarity to expand the phase-space integrals in the small kinematic parameters and to reduce the coefficients of the expansion to a small set of master integrals. We describe two methods for the calculation of the master integrals. The first was introduced for the calculation of the soft triple-real radiation relevant to N3LO Higgs production. The second uses a particular factorization of the three body phase-space measure and the knowledge of the scaling properties of the integral itself. Our result is presented as a Laurent expansion in the dimensional regulator, although some of the master integrals are computed to all orders in this parameter.

  7. Soft Expansion of Double-Real-Virtual Corrections to Higgs Production at N$^3$LO

    DOE PAGES

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; Furlan, Elisabetta; Herzog, Franz; Mistlberger, Bernhard

    2015-05-15

    We present methods to compute higher orders in the threshold expansion for the one-loop production of a Higgs boson in association with two partons at hadron colliders. This process contributes to the N3LO Higgs production cross section beyond the soft-virtual approximation. We use reverse unitarity to expand the phase-space integrals in the small kinematic parameters and to reduce the coefficients of the expansion to a small set of master integrals. We describe two methods for the calculation of the master integrals. The first was introduced for the calculation of the soft triple-real radiation relevant to N3LO Higgs production. The secondmore » uses a particular factorization of the three body phase-space measure and the knowledge of the scaling properties of the integral itself. Our result is presented as a Laurent expansion in the dimensional regulator, although some of the master integrals are computed to all orders in this parameter.« less

  8. LO Peg: surface differential rotation, flares, and spot-topographic evolution

    NASA Astrophysics Data System (ADS)

    Karmakar, Subhajeet; Pandey, J. C.; Savanov, I. S.; Taş, G.; Pandey, S. B.; Misra, K.; Joshi, S.; Dmitrienko, E. S.; Sakamoto, T.; Gehrels, N.; Okajima, T.

    2016-07-01

    Using the wealth of ˜24 yr multiband data, we present an in-depth study of the star-spot cycles, surface differential rotations (SDR), optical flares, evolution of star-spot distributions, and coronal activities on the surface of young, single, main-sequence, ultrafast rotator LO Peg. From the long-term V-band photometry, we derive rotational period of LO Peg to be 0.4231 ± 0.0001 d. Using the seasonal variations on the rotational period, the SDR pattern is investigated, and shows a solar-like pattern of SDR. A cyclic pattern with period of ˜2.7 yr appears to be present in rotational period variation. During the observations, 20 optical flares are detected with a flare frequency of ˜1 flare per two days and with flare energy of ˜1031-34 erg. The surface coverage of cool spots is found to be in the range of ˜9-26 per cent. It appears that the high- and low-latitude spots are interchanging their positions. Quasi-simultaneous observations in X-ray, UV, and optical photometric bands show a signature of an excess of X-ray and UV activities in spotted regions.

  9. The causal role of the occipital face area (OFA) and lateral occipital (LO) cortex in symmetry perception.

    PubMed

    Bona, Silvia; Cattaneo, Zaira; Silvanto, Juha

    2015-01-14

    Symmetry is an important cue in face and object perception. Here we used fMRI-guided transcranial magnetic stimulation (TMS) to shed light on the role of the occipital face area (OFA), a key region in face processing, and the lateral occipital (LO) cortex, a key area in object processing, in symmetry detection. In the first experiment, we applied TMS over the rightOFA, its left homolog (leftOFA), rightLO, and vertex (baseline) while participants were discriminating between symmetric and asymmetric dot patterns. Stimulation of rightOFA and rightLO impaired performance, causally implicating these two regions in detection of symmetry in low-level dot configurations. TMS over rightLO but not rightOFA also significantly impaired detection of nonsymmetric shapes defined by collinear Gabor patches, demonstrating that rightOFA responds to symmetry but not to all cues mediating figure-ground segregation. The second experiment showed a causal role for rightOFA but not rightLO in facial symmetry detection. Overall, our results demonstrate that both the rightOFA and rightLO are sensitive to symmetry in dot patterns, whereas only rightOFA is causally involved in facial symmetry detection.

  10. Cocaine withdrawal in rats selectively bred for low (LoS) versus high (HiS) saccharin intake

    PubMed Central

    Radke, Anna K.; Zlebnik, Natalie E.; Carroll, Marilyn E.

    2014-01-01

    Cocaine use results in anhedonia during withdrawal, but it is not clear how this emotional state interacts with an individual's vulnerability for addiction. Rats selectively bred for high (HiS) or low (LoS) saccharin intake are a well-established model of drug abuse vulnerability, with HiS rats being more likely to consume sweets and drugs of abuse such as cocaine and heroin (Carroll et al. 2002) than LoS rats. This study examined whether the motivational consequences of cocaine withdrawal are differentially expressed in HiS and LoS rats. HiS and LoS rats were trained to respond for a sucrose reward on a progressive ratio (PR) schedule of reinforcement and breakpoints were measured during and after chronic, continuous exposure to cocaine (30 mg/kg/day). Cocaine, but not saline, treatment resulted in lower breakpoints for sucrose during withdrawal in LoS rats only. These results suggest anhedonia during withdrawal is more pronounced in the less vulnerable LoS rats. Fewer motivational deficits during withdrawal may contribute to drug vulnerability in the HiS line. PMID:25482327

  11. Cocaine withdrawal in rats selectively bred for low (LoS) versus high (HiS) saccharin intake.

    PubMed

    Radke, Anna K; Zlebnik, Natalie E; Carroll, Marilyn E

    2015-02-01

    Cocaine use results in anhedonia during withdrawal, but it is not clear how this emotional state interacts with an individual's vulnerability for addiction. Rats selectively bred for high (HiS) or low (LoS) saccharin intake are a well-established model of drug abuse vulnerability, with HiS rats being more likely to consume sweets and drugs of abuse such as cocaine and heroin (Carroll et al., 2002) than LoS rats. This study examined whether the motivational consequences of cocaine withdrawal are differentially expressed in HiS and LoS rats. HiS and LoS rats were trained to respond for a sucrose reward on a progressive ratio (PR) schedule of reinforcement and breakpoints were measured during and after chronic, continuous exposure to cocaine (30 mg/kg/day). Cocaine, but not saline, treatment resulted in lower breakpoints for sucrose during withdrawal in LoS rats only. These results suggest anhedonia during withdrawal is more pronounced in the less vulnerable LoS rats. Fewer motivational deficits during withdrawal may contribute to greater drug vulnerability in the HiS line.

  12. Lo-Cal, Champaign, Illinois solar-energy-system performance evaluation, Jan. 1982 - Apr. 1982

    NASA Astrophysics Data System (ADS)

    Spears, J. W.

    1982-06-01

    Performance data on a solar heated house are given. The Lo-Cal site is a single family residence in Illinois with a direct gain solar heating system equipped with 200 square feet of south facing triple glazed windows and an auxiliary 84,000 Btu hour forced air furnace. For the months of January through April 1982, the solar fraction was found to be 29%, corresponding to a saving of 3107 kWh of conventional fuel. Monthly performance data are tabulated for the overall system, and for the collector and space heating subsystems. Also tabulated are monthly energy savings, weather, and passive system environment data. The building's performance is illustrated by graphs for each month of the daily insolation, auxiliary heat, building temperature, and ambient temperature.

  13. On the Higgs cross section at N3LO+N3LL and its uncertainty

    NASA Astrophysics Data System (ADS)

    Bonvini, Marco; Marzani, Simone; Muselli, Claudio; Rottoli, Luca

    2016-08-01

    We consider the inclusive production of a Higgs boson in gluon-fusion and we study the impact of threshold resummation at next-to-next-to-next-to-leading logarithmic accuracy (N3LL) on the recently computed fixed-order prediction at next-to-next-to-next-to-leading order (N3LO). We propose a conservative, yet robust way of estimating the perturbative uncertainty from missing higher (fixed- or logarithmic-) orders. We compare our results with two other different methods of estimating the uncertainty from missing higher orders: the Cacciari-Houdeau Bayesian approach to theory errors, and the use of algorithms to accelerate the convergence of the perturbative series, as suggested by David and Passarino. We confirm that the best convergence happens at μ R = μ F = m H /2, and we conclude that a reliable estimate of the uncertainty from missing higher orders on the Higgs cross section at 13 TeV is approximately ±4%.

  14. HIEN-LO: An experiment for charge determination of cosmic rays of interplanetary and solar origin

    NASA Technical Reports Server (NTRS)

    Klecker, B.; Hovestadt, D.; Mason, G. M.; Blake, J. B.; Nicholas, J.

    1988-01-01

    The experiment is designed to measure the heavy ion environment at low altitude (HIEN-LO) in the energy range 0.3 to 100 MeV/nucleon. In order to cover this wide energy range a complement of three sensors is used. A large area ion drift chamber and a time-of-flight telescope are used to determine the mass and energy of the incoming cosmic rays. A third omnidirectional counter serves as a proton monitor. The analysis of mass, energy and incoming direction in combination with the directional geomagnetic cut-off allows the determination of the ionic charge of the cosmic rays. The ionic charge in this energy range is of particular interest because it provides clues to the origin of these particles and to the plasma conditions at the acceleration site. The experiment is expected to be flown in 1988/1989.

  15. Vanishing absorption and blueshifted emission in FeLoBAL quasars

    NASA Astrophysics Data System (ADS)

    Rafiee, Alireza; Pirkola, Patrik; Hall, Patrick B.; Galati, Natalee; Rogerson, Jesse; Ameri, Abtin

    2016-07-01

    We study the dramatic decrease in iron absorption strength in the iron low-ionization broad absorption line quasar SDSS J084133.15+200525.8. We report on the continued weakening of absorption in the prototype of this class of variable broad absorption line quasar, FBQS J140806.2+305448. We also report a third example of this class, SDSS J123103.70+392903.6; unlike the other two examples, it has undergone an increase in observed continuum brightness (at 3000 Å rest frame) as well as a decrease in iron absorption strength. These changes could be caused by absorber transverse motion or by ionization variability. We note that the Mg II and UV Fe II lines in several FeLoBAL quasars are blueshifted by thousands of km s-1 relative to the H β emission line peak. We suggest that such emission arises in the outflowing winds normally seen only in absorption.

  16. Screening materials with the XIA UltraLo alpha particle counter at Southern Methodist University

    SciTech Connect

    Nakib, M. Z.; Cooley, J.; Kara, B.; Qiu, H.; Scorza, S.; Guiseppe, V. E.; Rielage, K.; Schnee, R. W.

    2013-08-08

    Southern Methodist University houses one of five existing commercially available UltraLo 1800 production model alpha counters made by XIA LLC. The instrument has an electron drift chamber with a 707 cm{sup 2} or 1800 cm{sup 2} counting region which is determined by selecting the inner electrode size. The SMU team operating this device is part of the SuperCDMS screening working group, and uses the alpha counter to study the background rates from the decay of radon in materials used to construct the SuperCDMS experiment. We have studied four acrylic samples obtained from the MiniCLEAN direct dark matter search with the XIA instrument demonstrating its utility in low background experiments by investigating the plate-out of {sup 210}Pb and comparing the effectiveness of cleaning procedures in removing {sup 222}Rn progenies from the samples.

  17. Bayesian estimation of Karhunen-Loève expansions; A random subspace approach

    NASA Astrophysics Data System (ADS)

    Chowdhary, Kenny; Najm, Habib N.

    2016-08-01

    One of the most widely-used procedures for dimensionality reduction of high dimensional data is Principal Component Analysis (PCA). More broadly, low-dimensional stochastic representation of random fields with finite variance is provided via the well known Karhunen-Loève expansion (KLE). The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L2 sense, i.e., which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition) on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build probabilistic Karhunen-Loève expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.

  18. Downregulation of MDM2 expression by RNAi inhibits LoVo human colorectal adenocarcinoma cells growth and the treatment of LoVo cells with mdm2siRNA3 enhances the sensitivity to cisplatin

    SciTech Connect

    Yu Yan . E-mail: gyfyuyan@hotmail.com; Sun Ping . E-mail: sunny19750502@hotmail.com; Sun Lichun; Liu Guoyi; Chen Guohua . E-mail: olivebranch_82@hotmail.com; Shang Lihua . E-mail: leval1000@sina.com; Wu Hongbo . E-mail: whpwl@sina.com; Hu Jing; Li Yue; Mao Yinling; Sui Guangjie; Sun Xiwen

    2006-01-06

    To investigate the biological effect of mdm2 in human colorectal adenocarcinoma LoVo cells, three mdm2siRNA constructions were recombinated and transient transfected into human colorectal adenocarcinoma LoVo cells with low differentiation character in vitro. The results showed that mdm2siRNA3 reduced mRNA level of mdm2 and protein level of mdm2, leading to proliferation inhibition on LoVo cells, and reduced tumor growth in nude mice. It was found that depletion of MDM2 in this pattern promoted apoptosis of LoVo cells and Cisplatin (DDP) treated in the mdm2siRNA3 transfected cell population would result in a substantial decrease by MTT colorimetry. Decreasing the MDM2 protein level in LoVo cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, which indicated that mdm2 gene played a definite role in the development and aggressiveness of human colon carcinoma. It also could be a therapeutic target in colorectal carcinoma. The synergistic activation of RNAi and cell toxicity agents indicated that the combination of chemotherapy and gene therapy will be a promising approach in the future.

  19. Cutting edge: CXCR4-Lo: molecular cloning and functional expression of a novel human CXCR4 splice variant.

    PubMed

    Gupta, S K; Pillarisetti, K

    1999-09-01

    Human CXCR4 is a specific receptor for the CXC chemokine stromal cell-derived factor-1 (SDF-1) and a coreceptor for T cell line tropic strains of HIV-1. Genetic knockouts of CXCR4 and SDF-1 have delineated their critical role during embryonic cardiogenesis, leukopoiesis, and vasculogenesis. Herein, we used bioinformatics and differential strategies like isoform-specific RT-PCR and Northern blots to identify and clone a novel unspliced isoform of human CXCR4, termed CXCR4-Lo. CXCR4-Lo corresponds to a larger approximately 4. 0-kb mRNA transcript and differs from the known human CXCR4 by the first 9 aa in the functionally important NH2-terminal extracellular domain of the receptor. CXCR4-Lo-transfected rat basophil leukemia-2H3 cells responded to SDF-1 with a transient rise of intracellular Ca2+ concentration and by undergoing chemotaxis. Expression of CXCR4-Lo is noteworthy, as it may have differential affinity as a coreceptor for HIV strains in comparison with CXCR4. Furthermore, CXCR4-Lo may also provide a functional backup to CXCR4 during embryogenesis.

  20. RIN1-Ras-ERK pathway plays an important role in carcinogenesis in colon cancer cell line LoVo.

    PubMed

    Inoue, Takeshi; Goi, Takanori; Hirono, Yasuo; Katayama, Kanji; Yamaguchi, Akio

    2011-01-01

    The RIN1 protein has SH2, three domains, and H-Ras binding domains; thus, it is presumed to be an important molecule in an intracellular signaling pathway. We examined the effect of the introduction of a membrane protein-encoding, mutated (S351A)RIN1 gene into a colon cancer. In the LoVo colon cancer cell line, endogenous RIN1 protein was strongly expressed in the cytoplasmic fraction, and the RIN1 protein in the cytoplasmic fraction was strongly bound to the 14-3-3 protein. In the mutated (S351A)RIN1-transfected LoVo cells, the mutated (S351A)RIN1 protein was identified in the cell membrane, and was bound to HRas protein. Also, in vitro the proliferative capacity of the mutated (S351A)RIN1-transfected LoVo cells was significantly inhibited, compared with that of their empty vector-transfected counterparts. In the mutated (S351A)RIN1-transfected LoVo cells, the phosphorylation of ERK1/2 proteins downstream of the H-Ras molecule was inhibited, compared with the counterparts. This study is the first to show that the localization of RIN1 protein plays an important role in the carcinogenesis in colon cancer cells LoVo (i.e., signal transduction in the Ras-ERK pathway).

  1. Hysteresis and change of transition temperature in thin films of Fe{[Me2Pyrz]3BH}2, a new sublimable spin-crossover molecule.

    PubMed

    Davesne, V; Gruber, M; Studniarek, M; Doh, W H; Zafeiratos, S; Joly, L; Sirotti, F; Silly, M G; Gaspar, A B; Real, J A; Schmerber, G; Bowen, M; Weber, W; Boukari, S; Da Costa, V; Arabski, J; Wulfhekel, W; Beaurepaire, E

    2015-05-21

    Thin films of the spin-crossover (SCO) molecule Fe{[Me2Pyrz]3BH}2 (Fe-pyrz) were sublimed on Si/SiO2 and quartz substrates, and their properties investigated by X-ray absorption and photoemission spectroscopies, optical absorption, atomic force microscopy, and superconducting quantum interference device. Contrary to the previously studied Fe(phen)2(NCS)2, the films are not smooth but granular. The thin films qualitatively retain the typical SCO properties of the powder sample (SCO, thermal hysteresis, soft X-ray induced excited spin-state trapping, and light induced excited spin-state trapping) but present intriguing variations even in micrometer-thick films: the transition temperature decreases when the thickness is decreased, and the hysteresis is affected. We explain this behavior in the light of recent studies focusing on the role of surface energy in the thermodynamics of the spin transition in nano-structures. In the high-spin state at room temperature, the films have a large optical gap (∼5 eV), decreasing at thickness below 50 nm, possibly due to film morphology. PMID:26001468

  2. Structural properties and dielectric function of graphene grown by high-temperature sublimation on 4H-SiC(000-1)

    SciTech Connect

    Bouhafs, C. Darakchieva, V.; Persson, I. L.; Persson, P. O. Å.; Yakimova, R.; Tiberj, A.; Paillet, M.; Zahab, A.-A.; Landois, P.; Juillaguet, S.; Schöche, S.; Schubert, M.

    2015-02-28

    Understanding and controlling growth of graphene on the carbon face (C-face) of SiC presents a significant challenge. In this work, we study the structural, vibrational, and dielectric function properties of graphene grown on the C-face of 4H-SiC by high-temperature sublimation in an argon atmosphere. The effect of growth temperature on the graphene number of layers and crystallite size is investigated and discussed in relation to graphene coverage and thickness homogeneity. An amorphous carbon layer at the interface between SiC and the graphene is identified, and its evolution with growth temperature is established. Atomic force microscopy, micro-Raman scattering spectroscopy, spectroscopic ellipsometry, and high-resolution cross-sectional transmission electron microscopy are combined to determine and correlate thickness, stacking order, dielectric function, and interface properties of graphene. The role of surface defects and growth temperature on the graphene growth mechanism and stacking is discussed, and a conclusion about the critical factors to achieve decoupled graphene layers is drawn.

  3. Electrical Characterization of p-type 3C-SiC Epilayers Grown on n-type 6H-SiC by means of Sublimation Epitaxy

    NASA Astrophysics Data System (ADS)

    Tsirimpis, A.; Krieger, M.; Pensl, G.; Beshkova, M.; Syväjärvi, M.; Yakimova, R.

    2010-11-01

    Epitaxial p-type 3C-SiC layers have been grown on 6H-SiC substrates by means of the sublimation epitaxy method. The growth process was conducted at a source temperature of 2000° C under vacuum conditions (<10-5 mbar). The source material was polycrystalline sintered SiC. The p-type doping was achieved by adding an AlN source. Two samples have been sequentially grown using the same source. Schottky contacts have been prepared and the samples have been characterized by means of current-voltage (I-V) measurements, capacitance-voltage (C-V) analysis, deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS). The results show that boron has been incorporated during the growth. The boron related D-center was found in the DLTS spectra taken on several contacts on both samples. Furthermore, the samples reveal an inhomogeneous distribution of extended defects, which are electrically active and visible in the DLTS spectra.

  4. Single-crystal growth of aluminum nitride on 6H-SiC substrates by an open-system sublimation method

    NASA Astrophysics Data System (ADS)

    Kamata, Hiroyuki; Naoe, Kunihiro; Sanada, Kazuo; Ichinose, Noboru

    2009-02-01

    Single-crystalline aluminum nitride (AlN) has successfully been grown on 6H-SiC (0 0 0 1) substrates by sublimation using an open-system crucible at 2273 K within 30 h. The thickness of the AlN single-crystal layer is about 1 mm. The dislocation density in the vicinity of the crystal surface has been calculated to be less than 10 7 cm -2 from transmission electron microscopy observation and etch pit density measurement of the crystal. Single-crystal growth of AlN has been carried out by varying supersaturation of Al vapor and employing on- and off-axis SiC substrates. Supersaturation of Al vapor has critically influenced the crystalline quality and morphology, while it has not affected the growth rate so much. Thus, precise control of supersaturation is a key to ensuring the quality of AlN single crystals. The quality of the crystals grown on off-axis SiC substrates is superior to that grown on on-axis SiC substrates. Moreover, the quality has been improved as the thickness of the crystals has increased.

  5. The impact of pressure and temperature on growth rate and layer uniformity in the sublimation growth of AlN crystals

    NASA Astrophysics Data System (ADS)

    Gao, B.; Nakano, S.; Kakimoto, K.

    2012-01-01

    To effectively design a large furnace for producing large-size AlN crystals, a fully coupled compressible flow solver was developed to study the sublimation and mass transport processes in AlN crystal growth. Compressible effect, buoyancy effects, flow coupling between aluminum gas and nitrogen gas, and Stefan effect are included. Two sets of experimental data were used to validate the present solver. Simulation results showed that the distributions of Al and N 2 partial pressures are opposite along the axial direction due to constant total pressure and Stefan effect, with the Al and nitrogen partial pressures being highest at the source and seed crystals positions, respectively. The distributions of species inside the growth chamber are obviously two-dimensional, which can curve a flat crystal surface. Simulation results also showed that AlN crystal growth rate can be increased by reducing total pressure or by increasing seed temperature or by increasing source-seed temperature difference. High nitrogen pressure causes decrease in growth rate, but it is beneficial for obtaining uniform growth rate in the radial direction. Results of simulation also showed that there is an optimized temperature difference (40 °C) in the present furnace for obtaining good homogeneity of growth rate.

  6. Structural and optical properties of AgAlTe{sub 2} layers grown on sapphire substrates by closed space sublimation method

    SciTech Connect

    Uruno, A. Usui, A.; Kobayashi, M.

    2014-11-14

    AgAlTe{sub 2} layers were grown on a- and c-plane sapphire substrates using a closed space sublimation method. Grown layers were confirmed to be single phase layers of AgAlTe{sub 2} by X-ray diffraction. AgAlTe{sub 2} layers were grown to have a strong preference for the (112) orientation on both kinds of substrates. The variation in the orientation of grown layers was analyzed in detail using the X-ray diffraction pole figure measurement, which revealed that the AgAlTe{sub 2} had a preferential epitaxial relationship with the c-plane sapphire substrate. The atomic arrangement between the (112) AgAlTe{sub 2} layer and sapphire substrates was compared. It was considered that the high order of the lattice arrangement symmetry probably effectively accommodated the lattice mismatch. The optical properties of the grown layer were also evaluated by transmittance measurements. The bandgap energy was found to be around 2.3 eV, which was in agreement with the theoretical bandgap energy of AgAlTe{sub 2}.

  7. Qualification of a sublimation tool applied to the case of metalorganic chemical vapor deposition of In₂O₃ from In(tmhd)₃ as a solid precursor.

    PubMed

    Szkutnik, P D; Angélidès, L; Todorova, V; Jiménez, C

    2016-02-01

    A solid delivery system consisting of a source canister, a gas management, and temperature controlled enclosure designed and manufactured by Air Liquide Electronics Systems was tested in the context of gas-phase delivery of the In(tmhd)3 solid precursor. The precursor stream was delivered to a thermal metalorganic chemical vapor deposition reactor to quantify deposition yield under various conditions of carrier gas flow and sublimation temperature. The data collected allowed the determination of characteristic parameters such as the maximum precursor flow rate (18.2 mg min(-1) in specified conditions) and the critical mass (defined as the minimum amount of precursor able to attain the maximum flow rate) found to be about 2.4 g, as well as an understanding of the influence of powder distribution inside the canister. Furthermore, this qualification enabled the determination of optimal delivery conditions which allowed for stable and reproducible precursor flow rates over long deposition times (equivalent to more than 47 h of experiment). The resulting In2O3 layers was compared with those elaborated via pulsed liquid injection obtained in the same chemical vapor deposition chamber and under the same deposition conditions. PMID:26931860

  8. Summary of LO2/Ethanol OMS/RCS Technology and Advanced Development 99-2744

    NASA Technical Reports Server (NTRS)

    Curtis, Leslie A.; Hurlbert, Eric A.

    1999-01-01

    NASA is pursuing non-toxic propellant technologies applicable to RLV and Space Shuttle orbital maneuvering system (OMS) and reaction control system (RCS). The primary objectives of making advancements in an OMS/RCS system are improved safety, reliability, and reduced operations and maintenance cost, while meeting basic operational and performance requirements. An OMS/RCS has a high degree of direct interaction with the vehicle and crew and requires subsystem and components that are compatible with integration into the vehicle with regard to external mold-line, power, and thermal control. In July 1997, a Phase I effort for the technology and advanced development of an upgrade of the space shuttle was conducted to define the system architecture, propellant tank, feed system, RCS thrusters, and OMS engine. Phase I of the project ran from July 1997 to October 1998. Phase II is currently being planned for the development and test of full-scale prototype of the system in 1999 and 2000. The choice of pressure-fed liquid oxygen (LO2) and ethanol is the result of numerous trade studies conducted from 1980 to 1996. Liquid oxygen and ethanol are clean burning, high-density propellants that provide a high degree of commonality with other spacecraft subsystems including life support, power, and thermal control, and with future human exploration and development of space missions. The key to this pressure-fed system is the use of subcooled liquid oxygen at 350 psia. In this approach, there is 80 degrees R of subcooling, which means that boil-off will not occur until the temperature has risen 80 R. The sub-cooling results naturally from loading propellants at 163 R, which is the saturation temperature at 14.7 psia, and then pressurizing to 350 psia on the launch pad. Thermal insulation and conditioning techniques are then used to limit the LO2 temperature to 185 R maximum, and maintain the sub-cooling. The other key is the wide temperature range of ethanol, -173 F to +300 F, which

  9. Effects of anaesthesia on proliferation, invasion and apoptosis of LoVo colon cancer cells in vitro.

    PubMed

    Xu, Y J; Li, S Y; Cheng, Q; Chen, W K; Wang, S L; Ren, Y; Miao, C H

    2016-02-01

    Tumour cell proliferation, invasion and apoptosis are crucial steps in tumour metastasis. We evaluated the effect of serum from patients undergoing colon cancer surgery receiving thoracic epidural and propofol anaesthesia on colon cancer cell biology. Patients were randomly assigned to receive propofol anaesthesia with a concomitant thoracic epidural (PEA, n = 20) or sevoflurane anaesthesia with opioid analgesia (SGA, n = 20). Venous blood was obtained before induction of anaesthesia and 24 hours postoperatively. The LoVo colon cancer cells were cultured with patient serum from both groups and the effects on proliferation, invasion and apoptosis were measured. Twenty-four hours after surgery, the absorbance value of LoVo cells at 10% serum concentration from PEA was decreased when compared with SGA (0.302 (0.026) vs 0.391 (0.066), p = 0.005). The inhibitory rate of LoVo cells at 10% serum concentration from PEA was higher than that from SGA (p = 0.004) 24 h after surgery. The number of invasive LoVo cells at 10% serum concentration from PEA was reduced when compared with SGA (44 (4) vs 62 (4), p < 0.001). Exposure of LoVo cells to postoperative serum from patients receiving PEA led to a higher luminescence ratio (apoptosis) than those receiving SGA (0.36 (0.04) vs 0.27 (0.05), p < 0.001). Serum from patients receiving PEA for colon cancer surgery inhibited proliferation and invasion of LoVo cells and induced apoptosis in vitro more than that from patients receiving SGA. Anaesthetic technique might influence the serum milieu in a way that affects cancer cell biology and, thereby, tumour metastastasis.

  10. Ternary Porous Sulfur/Dual-Carbon Architectures for Lithium/Sulfur Batteries Obtained Continuously and on a Large Scale via an Industry-Oriented Spray-Pyrolysis/Sublimation Method.

    PubMed

    Liang, Xin; Kaiser, Mohammad Rejaul; Konstantinov, Konstantin; Tandiono, Richard; Wang, Zhaoxiang; Chen, Chunhua; Liu, Hua-Kun; Dou, Shi-Xue; Wang, Jiazhao

    2016-09-28

    Ternary composites with porous sulfur/dual-carbon architectures have been synthesized by a single-step spray-pyrolysis/sublimation technique, which is an industry-oriented method that features continuous fabrication of products with highly developed porous structures without the need for any further treatments. A double suspension of commercial sulfur and carbon scaffolding particles was dispersed in ethanol/water solution and sprayed at 180 °C using a spray pyrolysis system. In the resultant composites, the sulfur particles were subjected to an ultrashort sublimation process, leading to the development of a highly porous surface, and were meanwhile coated with amorphous carbon, obtained through the pyrolysis of the ethanol, which acts as an adhesive interface to bind together the porous sulfur with the scaffolding carbon particles, to form a ternary composite architecture. This material has an effective conducting-carbon/sulfur-based matrix and interconnected open pores to reduce the diffusion paths of lithium ions, buffer the sulfur volumetric expansion, and absorb electrolyte and polysulfides. Because of the unique chemistry and the structure, the composites show stable cycling performance for 200 cycles and good rate capability of 520 mAh g(-1) at 2 C. This advanced spray-pyrolysis/sublimation method is easy to scale up and shows great potential for commercialization of lithium/sulfur batteries.

  11. Ternary Porous Sulfur/Dual-Carbon Architectures for Lithium/Sulfur Batteries Obtained Continuously and on a Large Scale via an Industry-Oriented Spray-Pyrolysis/Sublimation Method.

    PubMed

    Liang, Xin; Kaiser, Mohammad Rejaul; Konstantinov, Konstantin; Tandiono, Richard; Wang, Zhaoxiang; Chen, Chunhua; Liu, Hua-Kun; Dou, Shi-Xue; Wang, Jiazhao

    2016-09-28

    Ternary composites with porous sulfur/dual-carbon architectures have been synthesized by a single-step spray-pyrolysis/sublimation technique, which is an industry-oriented method that features continuous fabrication of products with highly developed porous structures without the need for any further treatments. A double suspension of commercial sulfur and carbon scaffolding particles was dispersed in ethanol/water solution and sprayed at 180 °C using a spray pyrolysis system. In the resultant composites, the sulfur particles were subjected to an ultrashort sublimation process, leading to the development of a highly porous surface, and were meanwhile coated with amorphous carbon, obtained through the pyrolysis of the ethanol, which acts as an adhesive interface to bind together the porous sulfur with the scaffolding carbon particles, to form a ternary composite architecture. This material has an effective conducting-carbon/sulfur-based matrix and interconnected open pores to reduce the diffusion paths of lithium ions, buffer the sulfur volumetric expansion, and absorb electrolyte and polysulfides. Because of the unique chemistry and the structure, the composites show stable cycling performance for 200 cycles and good rate capability of 520 mAh g(-1) at 2 C. This advanced spray-pyrolysis/sublimation method is easy to scale up and shows great potential for commercialization of lithium/sulfur batteries. PMID:27529563

  12. Karhunen-Loève expansion revisited for vector-valued random fields: Scaling, errors and optimal basis.

    NASA Astrophysics Data System (ADS)

    Perrin, G.; Soize, C.; Duhamel, D.; Funfschilling, C.

    2013-06-01

    Due to scaling effects, when dealing with vector-valued random fields, the classical Karhunen-Loève expansion, which is optimal with respect to the total mean square error, tends to favorize the components of the random field that have the highest signal energy. When these random fields are to be used in mechanical systems, this phenomenon can introduce undesired biases for the results. This paper presents therefore an adaptation of the Karhunen-Loève expansion that allows us to control these biases and to minimize them. This original decomposition is first analyzed from a theoretical point of view, and is then illustrated on a numerical example.

  13. Study of LO-phonon decay in semiconductors for hot carrier solar cell

    NASA Astrophysics Data System (ADS)

    Levard, Hugo; Vidal, Julien; Laribi, Sana; Guillemoles, Jean-François

    2014-03-01

    Knowledge of phonon decay is of crucial importance when studying basic properties of semiconductors, since they are closely related to Raman linewidth and non-equilibrium-hot-carriers cooling. The latter indeed cools down to the bottom of the conduction band within a picosecond range because of electron-phonon interaction. The eventual emitted hot phonons then decay in few picoseconds. The hot carriers cooling can be slowed down by considering the decay rate dependence of phonon on conservation rules, whose tuning may reduce the allowed two-phonon final states density. This is of direct interest for the third generation photovoltaic devices that are Hot Carrier Solar Cells (HCSC), in which the photoexcited carriers are extracted at an energy higher than thermal equilibrium. One of the HCSC main challenges then is to find an absorber material in which the hot phonons has a relaxation time longer than the carriers cooling time, so that we can expect the electron to ``reabsorb'' a phonon, slowing down the electronic cooling. HCSC yield is ultimately limited by LO phonon decay, though. In this work, we present theoretical results obtained from ab initio calculations of phonon lifetime in III-V and IV-IV semiconductors through a three-phonon process. Common approximations in the literature are questioned. In particular, we show that the usual ``zone-center approximation'' is not valid in some specific semiconductors. The analysis allows to correctly investigate phonon decay mechanisms in bulk and nanostructured materials.

  14. Optimized suppression of coherent noise from seismic data using the Karhunen-Loève transform.

    PubMed

    Montagne, Raúl; Vasconcelos, Giovani L

    2006-07-01

    Signals obtained in land seismic surveys are usually contaminated with coherent noise, among which the ground roll (Rayleigh surface waves) is of major concern for it can severely degrade the quality of the information obtained from the seismic record. This paper presents an optimized filter based on the Karhunen-Loève transform for processing seismic images contaminated with ground roll. In this method, the contaminated region of the seismic record, to be processed by the filter, is selected in such way as to correspond to the maximum of a properly defined coherence index. The main advantages of the method are that the ground roll is suppressed with negligible distortion of the remnant reflection signals and that the filtering procedure can be automated. The image processing technique described in this study should also be relevant for other applications where coherent structures embedded in a complex spatiotemporal pattern need to be identified in a more refined way. In particular, it is argued that the method is appropriate for processing optical coherence tomography images whose quality is often degraded by coherent noise (speckle).

  15. 3D Building Modeling in LoD2 Using the CityGML Standard

    NASA Astrophysics Data System (ADS)

    Preka, D.; Doulamis, A.

    2016-10-01

    Over the last decade, scientific research has been increasingly focused on the third dimension in all fields and especially in sciences related to geographic information, the visualization of natural phenomena and the visualization of the complex urban reality. The field of 3D visualization has achieved rapid development and dynamic progress, especially in urban applications, while the technical restrictions on the use of 3D information tend to subside due to advancements in technology. A variety of 3D modeling techniques and standards has already been developed, as they gain more traction in a wide range of applications. Such a modern standard is the CityGML, which is open and allows for sharing and exchanging of 3D city models. Within the scope of this study, key issues for the 3D modeling of spatial objects and cities are considered and specifically the key elements and abilities of CityGML standard, which is used in order to produce a 3D model of 14 buildings that constitute a block at the municipality of Kaisariani, Athens, in Level of Detail 2 (LoD2), as well as the corresponding relational database. The proposed tool is based upon the 3DCityDB package in tandem with a geospatial database (PostgreSQL w/ PostGIS 2.0 extension). The latter allows for execution of complex queries regarding the spatial distribution of data. The system is implemented in order to facilitate a real-life scenario in a suburb of Athens.

  16. Tolerance of the frequency deviation of LO sources at a MIMO system

    NASA Astrophysics Data System (ADS)

    Xiao, Jiangnan; Li, Xingying; Zhang, Zirang; Xu, Yuming; Chen, Long; Yu, Jianjun

    2015-11-01

    We analyze and simulate the tolerance of frequency offset at a W-band optical-wireless transmission system. The transmission system adopts optical polarization division multiplexing (PDM), and multiple-input multiple-output (MIMO) reception. The transmission signal adopts optical quadrature phase shift keying (QPSK) modulation, and the generation of millimeter-wave is based on the optical heterodyning technique. After 20-km single-mode fiber-28 (SMF-28) transmission, tens of Gb/s millimeter-wave signal is delivered. At the receiver, two millimeter-wave signals are down-converted into electrical intermediate-frequency (IF) signals in the analog domain by mixing with two electrical local oscillators (LOs) with different frequencies. We investigate the different frequency LO effect on the 2×2 MIMO system performance for the first time, finding that the process during DSP of implementing frequency offset estimation (FOE) before cascaded multi-modulus-algorithm (CMMA) equalization can get rid of the inter-channel interference (ICI) and improve system bit-error-ratio (BER) performance in this type of transmission system.

  17. Biologically based vision simulation for target-background discrimination and camouflage/LO design

    NASA Astrophysics Data System (ADS)

    Doll, Theodore J.; McWhorter, Shane W.; Schmieder, David E.; Hetzler, Morris C.; Stewart, John M.; Wasilewski, Anthony A.; Owens, William R.; Sheffer, Albert D., Jr.; Galloway, Gregory L.; Harbert, Simeon D.

    1997-06-01

    The Georgia Tech Research Institute has developed an integrated suite of software for Visual and Electro-Optical (VISEO) detection analysis, under the sponsorship of the Army Aviation and Troop Command, Aviation Applied Technology Directorate. The VISEO system is a comprehensive workstation-based tool for multi-spectral signature analysis, LO design, and visualization of targets moving through real measured backgrounds. A key component of the VISEO system is a simulation of real measured backgrounds. A key component of the VISEO system is a simulation of human vision, called the Georgia Tech Vision (GTV) simulation. The algorithms used in the simulation are consistent with neurophysiological evidence concerning the functions of the human visual system, from dynamic light adaptation processes in the retinal receptors and ganglia to the processing of motion, color, and edge information in the striate cortex. The simulation accepts images seen by the naked eye or through direct-view optical systems, as well as images viewed on the displays of IR sensors, image intensifiers and night-vision devices. GTV outputs predicted probabilities that the target is fixated (Pfix) during visual search, and detected (Pd), and also identifies specific features of the target that contribute most to successful search and detection performance. This paper outlines the capabilities and structure of the VISEO system, emphasizing GTV. Example results of visible and IR signature reduction on the basis of VISEO will be shown and described.

  18. Aggregation of LoD 1 building models as an optimization problem

    NASA Astrophysics Data System (ADS)

    Guercke, R.; Götzelmann, T.; Brenner, C.; Sester, M.

    3D city models offered by digital map providers typically consist of several thousands or even millions of individual buildings. Those buildings are usually generated in an automated fashion from high resolution cadastral and remote sensing data and can be very detailed. However, not in every application such a high degree of detail is desirable. One way to remove complexity is to aggregate individual buildings, simplify the ground plan and assign an appropriate average building height. This task is computationally complex because it includes the combinatorial optimization problem of determining which subset of the original set of buildings should best be aggregated to meet the demands of an application. In this article, we introduce approaches to express different aspects of the aggregation of LoD 1 building models in the form of Mixed Integer Programming (MIP) problems. The advantage of this approach is that for linear (and some quadratic) MIP problems, sophisticated software exists to find exact solutions (global optima) with reasonable effort. We also propose two different heuristic approaches based on the region growing strategy and evaluate their potential for optimization by comparing their performance to a MIP-based approach.

  19. Effect of position resolution on LoR discrimination for a dual-head Compton camera

    NASA Astrophysics Data System (ADS)

    Gillam, John E.; Beveridge, Toby E.; Boston, Andrew J.; Boston, Helen C.; Cooper, Reynold J.; Hall, Chris J.; Mather, Andrew R.; Nolan, Paul J.; Lewis, Rob A.

    2007-04-01

    With the current increase in effective germanium semiconductor detection technology, a positron emission tomography system comprising two opposing HPGe detectors is under development. This type of detection offers not only improvement to some aspects of PET, but also the ability to record single-photon information in the detection process. This information can be used in stand-alone imaging, and also as an additional information source in the PET process. Discrimination based on this single-photon information was proposed; however, the effectiveness of this discrimination is dependent on the resolution of the single-photon information. Simulations of the detection system, in which the positional resolution of the interaction information is variable, was conducted. The single-photon information has then been used in the PET imaging process and its effect on image improvement shown. Much like mechanical collimation, electronic collimation may be used to remove false LoRs from an image, at the expense of efficiency. Moreover, unlike mechanical collimation, this trade off may be dynamically adjusted post data acquisition.

  20. Cellular stress induced by photodynamic reaction with CoTPPS and MnTMPyPCl5 in combination with electroporation in human colon adenocarcinoma cell lines (LoVo and LoVoDX).

    PubMed

    Kulbacka, J; Kotulska, M; Rembiałkowska, N; Choromańska, A; Kamińska, I; Garbiec, A; Rossowska, J; Daczewska, M; Jachimska, B; Saczko, J

    2013-11-01

    Two porphyrins, CoTPPS and MnTMPyPCl5, were tested for their photodynamic activity and potential novel use in a therapy of human cancers. We investigated an effect of photodynamic reaction (PDR), electroporation (EP) and their combination (electro-photodynamic reaction [EP-PDR]) on human colon adenocarcinoma cell lines (LoVo and resistant to doxorubicin LoVoDX), human breast adenocarcinoma (wild type MCF-7/WT and resistant to doxorubicin MCF-7/DOX), and human melanoma (Me45). The efficiency of macromolecules transport was examined with cytofluorymetry by assessing the degree of propidium iodide (PI) penetration. Additionally, cellular ultrastructure after EP was evaluated. We determined cyto- and photo-cytotoxic effect on the cells viability (MTT assay) after standard PDR and PDR combined with EP. Intracellular distribution and mitochondrial colocalization of both porphyrins was also performed. The experiments proved that both complexes exhibit desirable photodynamic properties on LoVo LoVoDX cells, and EP effectively supports photodynamic method in this type of cancer. The application of EP provided shorter time of incubation (only 10 min) and enhanced effect of applied therapy. The porphyrins did not affect the MCF-7 and Me45 cell lines.

  1. The LO Model and the Traditional French Organisational Culture: A Paradigmatic Contradiction Leading to a Limited Implementation

    ERIC Educational Resources Information Center

    Belet, Daniel

    2010-01-01

    This article deals with the issue of the very weak implementation of the LO model in France, although it appears as an appealing new management paradigm that can allow companies to better face a fast changing environment. The author argues that there is a strong philosophical contradiction between this innovative management model and the still…

  2. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver.

    PubMed

    Stegmann, Kerstin A; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R; Kennedy, Patrick; Maini, Mala K

    2016-05-23

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56(bright)CD16-CD57-), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6- fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bet(hi)Eomes(lo)(CXCR6-) and T-bet(lo)Eomes(hi)(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bet(hi)Eomes(lo), suggesting its lineage was closer to CXCR6- peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-bet(lo)Eomes(hi) NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity.

  3. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver.

    PubMed

    Stegmann, Kerstin A; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R; Kennedy, Patrick; Maini, Mala K

    2016-01-01

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56(bright)CD16-CD57-), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6- fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bet(hi)Eomes(lo)(CXCR6-) and T-bet(lo)Eomes(hi)(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bet(hi)Eomes(lo), suggesting its lineage was closer to CXCR6- peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-bet(lo)Eomes(hi) NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity. PMID:27210614

  4. High-contrast 3D image acquisition using HiLo microscopy with an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Philipp, Katrin; Smolarski, André; Fischer, Andreas; Koukourakis, Nektarios; Stürmer, Moritz; Wallrabe, Ulricke; Czarske, Jürgen

    2016-04-01

    We present a HiLo microscope with an electrically tunable lens for high-contrast three-dimensional image acquisition. HiLo microscopy combines wide field and speckled illumination images to create optically sectioned images. Additionally, the depth-of-field is not fixed, but can be adjusted between wide field and confocal-like axial resolution. We incorporate an electrically tunable lens in the HiLo microscope for axial scanning, to obtain three-dimensional data without the need of moving neither the sample nor the objective. The used adaptive lens consists of a transparent polydimethylsiloxane (PDMS) membrane into which an annular piezo bending actuator is embedded. A transparent fluid is filled between the membrane and the glass substrate. When actuated, the piezo generates a pressure in the lens which deflects the membrane and thus changes the refractive power. This technique enables a large tuning range of the refractive power between 1/f = (-24 . . . 25) 1/m. As the NA of the adaptive lens is only about 0.05, a fixed high-NA lens is included in the setup to provide high resolution. In this contribution, the scan properties and capabilities of the tunable lens in the HiLo microscope are analyzed. Eventually, exemplary measurements are presented and discussed.

  5. Nonlinear Analysis of the Space Shuttle Superlightweight LO2 Tank. Part 1; Bahavior Under Booster Ascent Loads

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Nemeth, Michael P.; Collins, Timothy J.; Starnes, James H., Jr.

    1998-01-01

    Results of linear bifurcation and nonlinear analyses of the Space Shuttle superlightweight (SLWT) external liquid-oxygen (LO2) tank for an important early booster ascent loading condition are presented. These results for thin-walled linear elastic shells that are subjected to combined mechanical and thermal loads illustrate an important type of response mode that may be encountered in the design of other liquid-fuel launch vehicles. Linear bifurcation analyses are presented that predict several nearly equal eigenvalues that correspond to local buckling modes in the forward ogive section of the LO2 tank. In contrast, the nonlinear response phenomenon is shown to consist of short-wavelength bending deformations in the forward ogive and barrel sections of the LO2 tank that growing amplitude in a stable manner increasing load. Imperfection sensitivity analyses are presented that show that the presence of several nearly equal eigenvalues does not lead to a premature general instability mode for the forward ogive section. For the linear bifurcation and nonlinear analyses, the results show that accurate predictions of the response of the shield generally require a large-scale, high-fidelity finite-element model. Results are also presented that show that the SLWT LO2 tank can support loads in excess of approximately 2.6 times the values of the operational loads considered.

  6. Mode sequence, frequency change of nonsoft phonons, and LO-TO splitting in strained tetragonal BaTiO3

    NASA Astrophysics Data System (ADS)

    Raeliarijaona, Aldo; Fu, Huaxiang

    2015-09-01

    Ultraviolet Raman spectroscopy revealed the existence of an unusual large-frequency shift occurring to a nonsoft mode of E (TO4 ) when BaTiO3 is strained to a SrTiO3 substrate [D. Tenne et al., Science 313, 1614 (2006), 10.1126/science.1130306]. It raised two interesting questions: (i) whether there are other nonsoft modes that possess similar or even larger strain-induced frequency shifts and (ii) how the mode sequence is altered by these shifts in frequency. Note that mode sequence is also pivotal in correctly indexing and assigning the spectroscopy peaks observed in all Raman experiments. By mapping out the evolutions of individual phonon modes as a function of strain using first-principles density functional perturbation calculations, we determine the mode sequence and strain-induced phonon frequency shifts in prototypical BaTiO3. Our study reveals that the mode sequence is drastically different when BaTiO3 is strained to SrTiO3 compared to that in the unstrained structure, caused by multiple mode crossings. Furthermore, we predict that three other nonsoft modes, A1(TO2), E (LO4 ), and A1(TO3), display even larger strain-induced frequency shifts than E (TO4 ). The strain responses of individual modes are found to be highly mode specific, and a mechanism that regulates the magnitude of the frequency shift is provided. As another key outcome of this study, we tackle a long-standing problem of LO-TO splitting in ferroelectrics. A rigorous definition for the LO-TO splitting is formulated, which allows this critical quantity to be calculated quantitatively. The definition immediately reveals a new finding; that is, a large LO-TO splitting not only exists for E (LO4 ), which is previously known and originates from a soft mode, it also occurs for a nonsoft A1(LO3) mode. The LO-TO splitting is shown to decrease drastically with compressive strain, and this decrease cannot be explained by the Born effective charges and high-frequency dielectric constants.

  7. Re-analysis of martian gully orientation and slope for comparison with climate model predictions of freeze-thaw and dry-ice sublimation.

    NASA Astrophysics Data System (ADS)

    Conway, Susan; Harrison, Tanya; Lewis, Stephen; Balme, Matthew; Soare, Richard; Britton, Andrew

    2016-04-01

    Gullies on Mars are kilometre-scale landforms, comprising an erosional alcove and channel and a terminal debris apron/fan. These landforms are similar to features on Earth carved by the flow of liquid water, or by the action of water rich debris flows. The majority gullies on Mars are believed to be (at most) ˜5 Ma old and both erosion and deposition within these features have been observed within the last 10 years of orbital observations. At present liquid water is not thermodynamically stable at the martian surface and many of the recent changes in surface morphology occur during winter and early spring, when temperatures are too low for even metastable liquid water to be produced. Therefore, researchers have proposed an alternative mechanism for gully-formation - the sublimation of solid CO2, which is deposited on the maritan surface every winter. Previous studies have revealed that gully-density and orientation varies systematically with latitude - a fact that led to the development of many climate-based hypotheses for their formation. Here, we use the global database of martian gullies and extract the orientation and slope-angle of gully-hosting-slopes. We find that gully-orientation is more even strongly controlled by latitude than previous studies, where more sparse data were used. From ˜30-40° latitude in both hemispheres, gullies are almost never found on equator-facing slopes, and polewards of 40° gullies have a tendency to be located on equator-facing slopes. We use a 1D version of the LMD Mars climate model physics to simulate surface temperature on slopes up to 35° , oriented to face north or south, for all latitudes (5° spacing), and for orbital obliquities of 5-55° . We otherwise use current orbital conditions (ellipticity, date of perihelion) and we use a constant thermal inertia of the substrate of 1000 Jm‑2K‑1s‑1/2and a bare soil albedo of 0.2. We extracted two pieces of information from a complete annual cycle: (i) The number of

  8. Re-analysis of martian gully orientation and slope for comparison with climate model predictions of freeze-thaw and dry-ice sublimation.

    NASA Astrophysics Data System (ADS)

    Conway, Susan; Harrison, Tanya; Lewis, Stephen; Balme, Matthew; Soare, Richard; Britton, Andrew

    2016-04-01

    Gullies on Mars are kilometre-scale landforms, comprising an erosional alcove and channel and a terminal debris apron/fan. These landforms are similar to features on Earth carved by the flow of liquid water, or by the action of water rich debris flows. The majority gullies on Mars are believed to be (at most) ˜5 Ma old and both erosion and deposition within these features have been observed within the last 10 years of orbital observations. At present liquid water is not thermodynamically stable at the martian surface and many of the recent changes in surface morphology occur during winter and early spring, when temperatures are too low for even metastable liquid water to be produced. Therefore, researchers have proposed an alternative mechanism for gully-formation - the sublimation of solid CO2, which is deposited on the maritan surface every winter. Previous studies have revealed that gully-density and orientation varies systematically with latitude - a fact that led to the development of many climate-based hypotheses for their formation. Here, we use the global database of martian gullies and extract the orientation and slope-angle of gully-hosting-slopes. We find that gully-orientation is more even strongly controlled by latitude than previous studies, where more sparse data were used. From ˜30-40° latitude in both hemispheres, gullies are almost never found on equator-facing slopes, and polewards of 40° gullies have a tendency to be located on equator-facing slopes. We use a 1D version of the LMD Mars climate model physics to simulate surface temperature on slopes up to 35° , oriented to face north or south, for all latitudes (5° spacing), and for orbital obliquities of 5-55° . We otherwise use current orbital conditions (ellipticity, date of perihelion) and we use a constant thermal inertia of the substrate of 1000 Jm-2K-1s-1/2and a bare soil albedo of 0.2. We extracted two pieces of information from a complete annual cycle: (i) The number of hours

  9. Covert processing of visual form in the absence of area LO.

    PubMed

    Kentridge, R W; Heywood, C A; Milner, A D

    2004-01-01

    The patient D.F., who suffers from severe visual form agnosia, has been found to have a bilateral lesion of area LO, an area known to be intimately involved in the perception of object shape. Despite her perceptual impairment, however, D.F. retains residual form processing abilities that can provide distal visuomotor control, for example in the configuration of her grasp when reaching to pick up objects of different shapes and sizes. This dissociation has been interpreted as reflecting the sparing of a dedicated system for processing the physical properties of objects solely for purposes of guiding action. Here we test this hypothesis in two studies designed to examine whether or not spared shape processing capacities might be revealed under other kinds of indirect test conditions. First, we exploited the fact that a redundant shape cue will speed search for a coloured stimulus within an array, and vice versa. Unlike our control subjects, D.F. showed no facilitation effect of either kind. Second, we used two Stroop tasks in which single coloured uppercase letters were presented. Our intention was to determine (a) whether naming the colour would be influenced by whether the letter was the initial letter of the correct or incorrect colour name (e.g. 'R' or 'G'); and (b) whether the reverse might be true, that is that D.F.'s guesses at letter identity might be influenced by their colour. We found no evidence for a Stroop effect of the former (standard) kind in D.F., but we did find evidence for reverse-Stroop effects. This result may reflect a partial sparing of ventral stream areas specialised for letter-form processing.

  10. Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  11. More food, low pollution (mo fo lo Po): a grand challenge for the 21st century.

    PubMed

    Davidson, Eric A; Suddick, Emma C; Rice, Charles W; Prokopy, Linda S

    2015-03-01

    Synthetic nitrogen fertilizer has been a double-edged sword, greatly improving human nutrition during the 20th century but also posing major human health and environmental challenges for the 21st century. In August 2013, about 160 agronomists, scientists, extension agents, crop advisors, economists, social scientists, farmers, representatives of regulatory agencies and nongovernmental organizations (NGOs), and other agricultural experts gathered to discuss the vexing challenge of how to produce more food to nourish a growing population while minimizing pollution to the environment. This collection of 14 papers authored by conference participants provides a much needed analysis of the many technical, economic, and social impediments to improving nitrogen use efficiency (NUE) in crop and animal production systems. These papers demonstrate that the goals of producing more food with low pollution (Mo Fo Lo Po) will not be achieved by technological developments alone but will also require policies that recognize the economic and social factors affecting farmer decision-making. Take-home lessons from this extraordinary interdisciplinary effort include the need (i) to develop partnerships among private and public sectors to demonstrate the most current, economically feasible, best management NUE practices at local and regional scales; (ii) to improve continuing education to private sector retailers and crop advisers; (iii) to tie nutrient management to performance-based indicators on the farm and in the downwind and downstream environment; and (iv) to restore investments in research, education, extension, and human resources that are essential for developing the interdisciplinary knowledge and innovative skills needed to achieve agricultural sustainability goals.

  12. More food, low pollution (mo fo lo Po): a grand challenge for the 21st century.

    PubMed

    Davidson, Eric A; Suddick, Emma C; Rice, Charles W; Prokopy, Linda S

    2015-03-01

    Synthetic nitrogen fertilizer has been a double-edged sword, greatly improving human nutrition during the 20th century but also posing major human health and environmental challenges for the 21st century. In August 2013, about 160 agronomists, scientists, extension agents, crop advisors, economists, social scientists, farmers, representatives of regulatory agencies and nongovernmental organizations (NGOs), and other agricultural experts gathered to discuss the vexing challenge of how to produce more food to nourish a growing population while minimizing pollution to the environment. This collection of 14 papers authored by conference participants provides a much needed analysis of the many technical, economic, and social impediments to improving nitrogen use efficiency (NUE) in crop and animal production systems. These papers demonstrate that the goals of producing more food with low pollution (Mo Fo Lo Po) will not be achieved by technological developments alone but will also require policies that recognize the economic and social factors affecting farmer decision-making. Take-home lessons from this extraordinary interdisciplinary effort include the need (i) to develop partnerships among private and public sectors to demonstrate the most current, economically feasible, best management NUE practices at local and regional scales; (ii) to improve continuing education to private sector retailers and crop advisers; (iii) to tie nutrient management to performance-based indicators on the farm and in the downwind and downstream environment; and (iv) to restore investments in research, education, extension, and human resources that are essential for developing the interdisciplinary knowledge and innovative skills needed to achieve agricultural sustainability goals. PMID:26023950

  13. Selective CdTe Nanoheteroepitaxial Growth on Si(100) Substrates Using the Close-Spaced Sublimation Technique Without the Use of a Mask

    NASA Astrophysics Data System (ADS)

    Diaz, A.; Quinones, S. A.; Ferrer, D. A.

    2013-06-01

    The development of HgCdTe detectors requires high sensitivity, small pixel size, low defect density, long-term thermal-cycling reliability, and large-area substrates. CdTe bulk substrates were initially used for epitaxial growth of HgCdTe films. However, CdTe has a lattice mismatch with long-wavelength infrared (LWIR) and middle-wavelength infrared (MWIR) HgCdTe that results in detrimental dislocation densities above mid-106 cm-2. This work explores the use of CdTe/Si as a possible substrate for HgCdTe detectors. Although there is a 19% lattice mismatch between CdTe and Si, the nanoheteroepitaxy (NHE) technique makes it possible to grow CdTe on Si substrates with fewer defects at the CdTe/Si interface. In this work, Si(100) was patterned using photolithography and dry etching to create 500-nm to 1- μm pillars. CdTe was selectively deposited on the pillar surfaces using the close-spaced sublimation (CSS) technique. Scanning electron microscopy (SEM) was used to characterize the CdTe selective growth and grain morphology, and transmission electron microscopy (TEM) was used to analyze the structure and quality of the grains. CdTe selectivity was achieved for most of the substrate and source temperatures used in this study. The ability to selectively deposit CdTe on patterned Si(100) substrates without the use of a mask or seed layer has not been observed before using the CSS technique. The results from this study confirm that CSS has the potential to be an effective and low-cost technique for selective nanoheteroepitaxial growth of CdTe films on Si(100) substrates for infrared detector applications.

  14. Estradiol agonists inhibit human LoVo colorectal-cancer cell proliferation and migration through p53

    PubMed Central

    Hsu, Hsi-Hsien; Kuo, Wei-Wen; Ju, Da-Tong; Yeh, Yu-Lan; Tu, Chuan-Chou; Tsai, Ying-Lan; Shen, Chia-Yao; Chang, Sheng-Huang; Chung, Li-Chin; Huang, Chih-Yang

    2014-01-01

    AIM: To investigate the effects of 17β-estradiol via estrogen receptors (ER) or direct administration of ER agonists on human colorectal cancer. METHODS: LoVo cells were established from the Bioresource Collection and Research Center and cultured in phenol red-free DMEM (Sigma, United States). To investigate the effects of E2 and/or ER selective agonists on cellular proliferation, LoVo colorectal cells were treated with E2 or ER-selective agonists for 24 h and 48 h and subjected to the MTT (Sigma) assay to find the concentration. And investigate the effects of E2 and/or ER selective agonists on cell used western immunoblotting to find out the diversification of signaling pathways. In order to observe motility and migration the wound healing assay and a transwell chamber (Neuro Probe) plate were tased. For a quantitative measure, we counted the number of migrating cells to the wound area post-wounding for 24 h. We further examined the cellular migration-regulating factors urokinase-type plasminogen activator (u-PA), tissue-type plasminogen activator (t-PA) and matrix metalloproteinase (MMP)-9 in human LoVo cells so gelatin zymography that we used and gelatinolytic activity was visualized by Coomassie blue staining. And these results are presented as means ± SE, and statistical comparisons were made using Student’s t-test. RESULTS: The structure was first compared with E2 and ER agonists. We then treated the LoVo cells with E2 and ER agonists (10-8 mol/L) for 24 h and 48 h and subsequently measured the cell viability using MTT assay. Our results showed that treatment with 17β-estradiol and/or ER agonists in human LoVo colorectal cancer cells activated p53 and then up-regulated p21 and p27 protein levels, subsequently inhibiting the downstream target gene, cyclin D1, which regulates cell proliferation. Taken together, our findings demonstrate the anti-tumorigenesis effects of 17β-estradiol and/or ER agonists and suggest that these compounds may prove to be a

  15. Volatile organic compound fluxes and concentrations in London (ClearfLo)

    NASA Astrophysics Data System (ADS)

    Valach, Amy; Langford, Ben; Nemitz, Eiko; MacKenzie, Rob; Hewitt, Nick

    2014-05-01

    Volatile organic compounds (VOCs) from anthropogenic sources such as fuel combustion or evaporative emissions can directly and indirectly affect human health. Some VOCs, such as benzene and 1,3- butadiene are carcinogens. These and other VOCs contribute to the formation of ozone (O3) and aerosol particles, which have effects on human health and the radiative balance of the atmosphere. Although in the UK VOC emissions are subject to control under European Commission Directive 2008/50/EC and emission reducing technologies have been implemented, urban air pollution remains a concern. Urban air quality is likely to remain a priority since currently >50% of the global population live in urban areas with trends in urbanization and population migration predicted to increase. The ClearfLo project is a large multi-institutional consortium funded by the UK Natural Environment Research Council (NERC) and provides integrated measurements of meteorology, gas phase and particulate composition of the atmosphere over London. Both long term and IOP measurements were made at street and elevated locations at a range of sites across London and its surroundings during 2011 and 2012. Mixing ratios of a selection of nine VOCs were measured using a high sensitivity proton transfer reaction-mass spectrometer (PTR-MS) at a ground level urban background (North Kensington) and kerbside (Marylebone Road) site during the winter IOP. VOC fluxes were measured by virtually disjunct eddy covariance (vDEC) at an elevated urban site (King's College Strand) in Aug-Dec 2012. Our results for the first IOP showed that most of the selected compound concentrations depended on traffic emissions, although there was a marked difference between the urban background and kerbside sites. We identified some temperature effects on VOC concentrations. We also present the first analyses of VOC flux measurements over London. Preliminary analyses indicate most compounds associated with vehicle emissions closely

  16. Cytotoxicity of lymphocytes activated by superantigen toxic-shock-syndrome toxin-1 against colorectal cancer LoVo cells.

    PubMed

    Wang, Wei; Sun, Xuejun; Lu, Le; Zheng, Jian-Bao; Tian, Yong; Wang, Wei

    2013-04-01

    Toxic-shock-syndrome toxin-1 (TSST-1), a superantigen, can stimulate T cell activation and be used for immunotherapy. In this study, we employed the carcinoembryonic antigen (CEA)-positive LoVo cells to test whether retrovirus-mediated TSST-1 expression could activate human T cells and promote cytotoxicity against tumor cells. We first generated plasmids of pLEGFP-N1-5HRE-CEAp-TSST-1-linker-CD80TM containing a fusion gene of the CEA promoter, 5 copies of the hypoxia-response elements (HRE) as an enhancer, the fragments for TSST-1, and the transmembrane domain of CD80 (CD80TM) and control pLEGFP-N1-5HRE-CEAp (without TSST-1) and generated retroviruses of 5HCTC and 5HC, respectively. After infection with 5HC and 5HCTC retroviruses to establish cell lines, the high levels of TSST-1 expression were observed on the membrane and cytoplasm of the 5HCTC-infected LoVo cells, particularly culture under a hypoxic condition, but not on CEA(-) HeLa cells. Furthermore, the TSST-1-expressing LoVo cell lysates, but not the control cell lysates, stimulated human T cell proliferation, and the co-culture of the TSST-1-expressing LoVo, but not control cells, with human peripheral blood mononuclear cells (PBMC) induced a high frequency of TNF-α- and IL-2-secreting T cells in vitro, particularly under hypoxic conditions. More importantly, co-culture of the TSST-1-expressing LoVo cells, particularly under hypoxic conditions, but not control cells, with different numbers of PBMC promoted potent cytotoxicity against LoVo cells in a dose-dependent manner in vitro. These data provide proof of the principle that selective induction of TSST1 expression in CEA(+) colorectal cancer (CRC) cells activates T cells that destroy tumor cells, particularly under a hypoxic condition. Therefore, our findings may aid in the design of new immunotherapy for the intervention of CRC at clinic.

  17. Effect of RNAi-mediated silencing of Livin gene on biological properties of colon cancer cell line LoVo.

    PubMed

    Zou, A M; Wang, H F; Zhu, W F; Wang, F X; Shen, J J

    2014-05-16

    This study aimed to investigate the effect of RNAi-mediated silencing of the Livin gene on biological properties of the colon cancer cell line LoVo. Interference vectors pSilencer4.1-Ll and pSilencer4.1-L2 targeting the Livin gene were constructed and transfected into LoVo cells. The expression of the Livin gene was determined by RT-PCR and Western blotting. The apoptosis, cell cycle, colony formation, proliferation of LoVo cells, as well as their sensitivity to cisplatin, were detected by flow cytometry, colony formation assay and MTT. Livin mRNA and protein expression in LoVo cells could be effectively silenced by pSilencer4.1-Ll but not pSilencer4.1-L2. In the pSilencer4.1-Ll transfection group, the apoptosis rate of LoVo cells was significantly higher than in the control group (24.2 ± 3.2 vs 8.1 ± 1.4%, P < 0.01), and after 72 h, cell proliferation was clearly decreased (about 70% inhibition). Compared with the control group, the colony formation rate in pSilencer4.1-Ll transfection group was obviously decreased (15 ± 4.6 vs 85 ± 5.8%, P < 0.01), with increased proportion of S phase cells (45.7 ± 4.9 vs 28.0 ± 3.0%, P < 0.01), decreased proportion of G1 phase cells (43.0 ± 5.2 vs 62.8 ± 5.1%, P < 0.01), and increased sensitivity to cisplatin (apoptosis rate increased from 43.4 ± 6.9 to 65.3 ± 6.2%, P < 0.01). pSilencer4.1-Ll can effectively silence Livin gene expression in LoVo colon cancer cells, inhibit cell proliferation and colony formation, induce apoptosis, and enhance sensitivity to cisplatin.

  18. 100-Lb(f) LO2/LCH4 Reaction Control Engine Technology Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.

  19. LO phonons in La{sub 1.85}Sr{sub .15}CuO{sub 4}

    SciTech Connect

    Egami, T.; Petrov, Y.; McQueeney, R.J.; Petrov, Y.; Yethiraj, M.; Shirane, G.; Endoh, Y.

    1997-11-01

    Dispersion of the highest energy LO phonons in La{sup 1.85}Sr{sub .15}CuO{sub 4} was studied by neutron inelastic scattering. At T = 10 K the dispersion along (h, 0, 0) is anomalous forming dispersion branches with a discontinuity at h = 1/4. A possible relation of this anomaly to the spin-charge stripes with be discussed.

  20. Design, Calibration, and Expected On-Orbit Performance of the GOES-R MPS-LO Suprathermal Plasma Analyzer Instrument

    NASA Astrophysics Data System (ADS)

    Golightly, M. J.; McGarity, J. O.; Dichter, B. K.; Galica, G. E.

    2015-12-01

    The next generation U.S. geosynchronous weather satellite—GOES series R-U—will include for the first time a suprathermal plasma analyzer. The Magnetospheric Particle Sensor-Low (MPS-LO), an electrostatic analyzer utilizing triquadrispheric geometry (270° turn)deflection electrodes, will measure the flux of electrons and ions with energies between 30 eV - 30 keV in fifteen logarithmically-spaced differential energy channels and arrival direction in twelve angular bins. MPS-LO consists of two sensor heads mounted in a common electronics box. Each sensor head contains a set of deflection electrodes, microchannel plates, and segmented detector anodes. The common electronics box provides the power and I/O interface with a data processing unit, voltage supplies for all of the instrument's electronics, high voltage for the deflection electrodes, in-flight calibration pulsers, and the digital electronics to process signals from sensor heads' detector anodes. Great care was taken in the manufacture and mounting of the triquadrisphere deflection electrodes; each electrode was machined from a single piece of aluminum and specific electrode combinations were mounted with precision machined spacers and matched drilling. The precise fabrication and assembly resulted in near perfect spherical electric fields between the electrodes. The triquadrispheric electrode shape also prevents photons from reaching the detection elements-as a result, MPS-LO is solar blind. The combined field-of-view for the two sensor heads is 180° x 5°, with the larger angle in a plane perpendicular to the spacecraft's orbit and its central axis oriented anti-Earthward. An incident particle's arrival direction is determined in one of twelve 15° x 5° angular zones. A set of shielded anodes is used to measure the background caused by penetrating charged particles that reach the MCPs; this background data is used to correct the MPS-LO data. The instrument's energy resolution ΔE/E is 5.8%.