Sample records for social network evolution

  1. Community evolution mining and analysis in social network

    NASA Astrophysics Data System (ADS)

    Liu, Hongtao; Tian, Yuan; Liu, Xueyan; Jian, Jie

    2017-03-01

    With the development of digital and network technology, various social platforms emerge. These social platforms have greatly facilitated access to information, attracting more and more users. They use these social platforms every day to work, study and communicate, so every moment social platforms are generating massive amounts of data. These data can often be modeled as complex networks, making large-scale social network analysis possible. In this paper, the existing evolution classification model of community has been improved based on community evolution relationship over time in dynamic social network, and the Evolution-Tree structure is proposed which can show the whole life cycle of the community more clearly. The comparative test result shows that the improved model can excavate the evolution relationship of the community well.

  2. Research on social communication network evolution based on topology potential distribution

    NASA Astrophysics Data System (ADS)

    Zhao, Dongjie; Jiang, Jian; Li, Deyi; Zhang, Haisu; Chen, Guisheng

    2011-12-01

    Aiming at the problem of social communication network evolution, first, topology potential is introduced to measure the local influence among nodes in networks. Second, from the perspective of topology potential distribution the method of network evolution description based on topology potential distribution is presented, which takes the artificial intelligence with uncertainty as basic theory and local influence among nodes as essentiality. Then, a social communication network is constructed by enron email dataset, the method presented is used to analyze the characteristic of the social communication network evolution and some useful conclusions are got, implying that the method is effective, which shows that topology potential distribution can effectively describe the characteristic of sociology and detect the local changes in social communication network.

  3. A last updating evolution model for online social networks

    NASA Astrophysics Data System (ADS)

    Bu, Zhan; Xia, Zhengyou; Wang, Jiandong; Zhang, Chengcui

    2013-05-01

    As information technology has advanced, people are turning to electronic media more frequently for communication, and social relationships are increasingly found on online channels. However, there is very limited knowledge about the actual evolution of the online social networks. In this paper, we propose and study a novel evolution network model with the new concept of “last updating time”, which exists in many real-life online social networks. The last updating evolution network model can maintain the robustness of scale-free networks and can improve the network reliance against intentional attacks. What is more, we also found that it has the “small-world effect”, which is the inherent property of most social networks. Simulation experiment based on this model show that the results and the real-life data are consistent, which means that our model is valid.

  4. Understanding the process of social network evolution: Online-offline integrated analysis of social tie formation

    PubMed Central

    Kwak, Doyeon

    2017-01-01

    It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks. PMID:28542367

  5. Understanding the process of social network evolution: Online-offline integrated analysis of social tie formation.

    PubMed

    Kwak, Doyeon; Kim, Wonjoon

    2017-01-01

    It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks.

  6. Evolution of individual versus social learning on social networks

    PubMed Central

    Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo

    2015-01-01

    A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of ‘cultural models’ exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. PMID:25631568

  7. Evolution of individual versus social learning on social networks.

    PubMed

    Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo

    2015-03-06

    A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of 'cultural models' exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Opinion evolution in different social acquaintance networks.

    PubMed

    Chen, Xi; Zhang, Xiao; Wu, Zhan; Wang, Hongwei; Wang, Guohua; Li, Wei

    2017-11-01

    Social acquaintance networks influenced by social culture and social policy have a great impact on public opinion evolution in daily life. Based on the differences between socio-culture and social policy, three different social acquaintance networks (kinship-priority acquaintance network, independence-priority acquaintance network, and hybrid acquaintance network) incorporating heredity proportion p h and variation proportion p v are proposed in this paper. Numerical experiments are conducted to investigate network topology and different phenomena during opinion evolution, using the Deffuant model. We found that in kinship-priority acquaintance networks, similar to the Chinese traditional acquaintance networks, opinions always achieve fragmentation, resulting in the formation of multiple large clusters and many small clusters due to the fact that individuals believe more in their relatives and live in a relatively closed environment. In independence-priority acquaintance networks, similar to Western acquaintance networks, the results are similar to those in the kinship-priority acquaintance network. In hybrid acquaintance networks, similar to the Chinese modern acquaintance networks, only a few clusters are formed indicating that in modern China, opinions are more likely to reach consensus on a large scale. These results are similar to the opinion evolution phenomena in modern society, proving the rationality and applicability of network models combined with social culture and policy. We also found a threshold curve p v +2p h =2.05 in the results for the final opinion clusters and evolution time. Above the threshold curve, opinions could easily reach consensus. Based on the above experimental results, a culture-policy-driven mechanism for the opinion dynamic is worth promoting in this paper, that is, opinion dynamics can be driven by different social cultures and policies through the influence of heredity and variation in interpersonal relationship networks. This finding is of great significance for predicting opinion evolution under different acquaintance networks and formulating reasonable policies based on cultural characteristics to guide public opinion.

  9. Opinion evolution in different social acquaintance networks

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhang, Xiao; Wu, Zhan; Wang, Hongwei; Wang, Guohua; Li, Wei

    2017-11-01

    Social acquaintance networks influenced by social culture and social policy have a great impact on public opinion evolution in daily life. Based on the differences between socio-culture and social policy, three different social acquaintance networks (kinship-priority acquaintance network, independence-priority acquaintance network, and hybrid acquaintance network) incorporating heredity proportion ph and variation proportion pv are proposed in this paper. Numerical experiments are conducted to investigate network topology and different phenomena during opinion evolution, using the Deffuant model. We found that in kinship-priority acquaintance networks, similar to the Chinese traditional acquaintance networks, opinions always achieve fragmentation, resulting in the formation of multiple large clusters and many small clusters due to the fact that individuals believe more in their relatives and live in a relatively closed environment. In independence-priority acquaintance networks, similar to Western acquaintance networks, the results are similar to those in the kinship-priority acquaintance network. In hybrid acquaintance networks, similar to the Chinese modern acquaintance networks, only a few clusters are formed indicating that in modern China, opinions are more likely to reach consensus on a large scale. These results are similar to the opinion evolution phenomena in modern society, proving the rationality and applicability of network models combined with social culture and policy. We also found a threshold curve pv+2 ph=2.05 in the results for the final opinion clusters and evolution time. Above the threshold curve, opinions could easily reach consensus. Based on the above experimental results, a culture-policy-driven mechanism for the opinion dynamic is worth promoting in this paper, that is, opinion dynamics can be driven by different social cultures and policies through the influence of heredity and variation in interpersonal relationship networks. This finding is of great significance for predicting opinion evolution under different acquaintance networks and formulating reasonable policies based on cultural characteristics to guide public opinion.

  10. A generalized theory of preferential linking

    NASA Astrophysics Data System (ADS)

    Hu, Haibo; Guo, Jinli; Liu, Xuan; Wang, Xiaofan

    2014-12-01

    There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals' behaviors and the global organization of social networks.

  11. Dynamic Evolution Model Based on Social Network Services

    NASA Astrophysics Data System (ADS)

    Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen

    2013-11-01

    Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.

  12. Long-Term Evolution of Email Networks: Statistical Regularities, Predictability and Stability of Social Behaviors.

    PubMed

    Godoy-Lorite, Antonia; Guimerà, Roger; Sales-Pardo, Marta

    2016-01-01

    In social networks, individuals constantly drop ties and replace them by new ones in a highly unpredictable fashion. This highly dynamical nature of social ties has important implications for processes such as the spread of information or of epidemics. Several studies have demonstrated the influence of a number of factors on the intricate microscopic process of tie replacement, but the macroscopic long-term effects of such changes remain largely unexplored. Here we investigate whether, despite the inherent randomness at the microscopic level, there are macroscopic statistical regularities in the long-term evolution of social networks. In particular, we analyze the email network of a large organization with over 1,000 individuals throughout four consecutive years. We find that, although the evolution of individual ties is highly unpredictable, the macro-evolution of social communication networks follows well-defined statistical patterns, characterized by exponentially decaying log-variations of the weight of social ties and of individuals' social strength. At the same time, we find that individuals have social signatures and communication strategies that are remarkably stable over the scale of several years.

  13. The dynamic evolution of social ties and user-generated content: a case study on a Douban group

    NASA Astrophysics Data System (ADS)

    Shan, Siqing; Ren, Jie; Li, Cangyan

    2017-11-01

    As platforms based on user-generated content (UGC), social media platforms emphasise the social ties between users and user participation, which promote the communication and propagation of ideas and help to build and maintain relationships. However, many researchers have studied only predefined social networks, such as academic social networks. We believe that there are certain characteristics associated with the network's UGC worth evaluating. We conducted research in communities in which content attracts discussion and new members and examined the evolution patterns of social and content networks in a topic-oriented Douban group. Datasets of user and content information in communities of interest were collected through web crawler software. Networks based on social and content ties were constructed and analysed. We chose scale, density, centrality, average path length and cluster coefficient as measures for exploring the evolution and correlation of both types of networks. These findings are valuable for social media marketing and helpful in directing and controlling public opinion.

  14. Taking sociality seriously: the structure of multi-dimensional social networks as a source of information for individuals

    PubMed Central

    Barrett, Louise; Henzi, S. Peter; Lusseau, David

    2012-01-01

    Understanding human cognitive evolution, and that of the other primates, means taking sociality very seriously. For humans, this requires the recognition of the sociocultural and historical means by which human minds and selves are constructed, and how this gives rise to the reflexivity and ability to respond to novelty that characterize our species. For other, non-linguistic, primates we can answer some interesting questions by viewing social life as a feedback process, drawing on cybernetics and systems approaches and using social network neo-theory to test these ideas. Specifically, we show how social networks can be formalized as multi-dimensional objects, and use entropy measures to assess how networks respond to perturbation. We use simulations and natural ‘knock-outs’ in a free-ranging baboon troop to demonstrate that changes in interactions after social perturbations lead to a more certain social network, in which the outcomes of interactions are easier for members to predict. This new formalization of social networks provides a framework within which to predict network dynamics and evolution, helps us highlight how human and non-human social networks differ and has implications for theories of cognitive evolution. PMID:22734054

  15. Social dilemmas in an online social network: The structure and evolution of cooperation

    NASA Astrophysics Data System (ADS)

    Fu, Feng; Chen, Xiaojie; Liu, Lianghuan; Wang, Long

    2007-11-01

    We investigate two paradigms for studying the evolution of cooperation—Prisoner's Dilemma and Snowdrift game in an online friendship network, obtained from a social networking site. By structural analysis, it is revealed that the empirical social network has small-world and scale-free properties. Besides, it exhibits assortative mixing pattern. Then, we study the evolutionary version of the two types of games on it. It is found that cooperation is substantially promoted with small values of game matrix parameters in both games. Whereas the competent cooperators induced by the underlying network of contacts will be dramatically inhibited with increasing values of the game parameters. Further, we explore the role of assortativity in evolution of cooperation by random edge rewiring. We find that increasing amount of assortativity will to a certain extent diminish the cooperation level. We also show that connected large hubs are capable of maintaining cooperation. The evolution of cooperation on empirical networks is influenced by various network effects in a combined manner, compared with that on model networks. Our results can help understand the cooperative behaviors in human groups and society.

  16. Cooperation prevails when individuals adjust their social ties.

    PubMed

    Santos, Francisco C; Pacheco, Jorge M; Lenaerts, Tom

    2006-10-20

    Conventional evolutionary game theory predicts that natural selection favours the selfish and strong even though cooperative interactions thrive at all levels of organization in living systems. Recent investigations demonstrated that a limiting factor for the evolution of cooperative interactions is the way in which they are organized, cooperators becoming evolutionarily competitive whenever individuals are constrained to interact with few others along the edges of networks with low average connectivity. Despite this insight, the conundrum of cooperation remains since recent empirical data shows that real networks exhibit typically high average connectivity and associated single-to-broad-scale heterogeneity. Here, a computational model is constructed in which individuals are able to self-organize both their strategy and their social ties throughout evolution, based exclusively on their self-interest. We show that the entangled evolution of individual strategy and network structure constitutes a key mechanism for the sustainability of cooperation in social networks. For a given average connectivity of the population, there is a critical value for the ratio W between the time scales associated with the evolution of strategy and of structure above which cooperators wipe out defectors. Moreover, the emerging social networks exhibit an overall heterogeneity that accounts very well for the diversity of patterns recently found in acquired data on social networks. Finally, heterogeneity is found to become maximal when W reaches its critical value. These results show that simple topological dynamics reflecting the individual capacity for self-organization of social ties can produce realistic networks of high average connectivity with associated single-to-broad-scale heterogeneity. On the other hand, they show that cooperation cannot evolve as a result of "social viscosity" alone in heterogeneous networks with high average connectivity, requiring the additional mechanism of topological co-evolution to ensure the survival of cooperative behaviour.

  17. A coevolving model based on preferential triadic closure for social media networks

    PubMed Central

    Li, Menghui; Zou, Hailin; Guan, Shuguang; Gong, Xiaofeng; Li, Kun; Di, Zengru; Lai, Choy-Heng

    2013-01-01

    The dynamical origin of complex networks, i.e., the underlying principles governing network evolution, is a crucial issue in network study. In this paper, by carrying out analysis to the temporal data of Flickr and Epinions–two typical social media networks, we found that the dynamical pattern in neighborhood, especially the formation of triadic links, plays a dominant role in the evolution of networks. We thus proposed a coevolving dynamical model for such networks, in which the evolution is only driven by the local dynamics–the preferential triadic closure. Numerical experiments verified that the model can reproduce global properties which are qualitatively consistent with the empirical observations. PMID:23979061

  18. Social roles and the evolution of networks in extreme and isolated environments

    NASA Technical Reports Server (NTRS)

    Johnson, Jeffrey C.; Boster, James S.; Palinkas, Lawrence A.

    2003-01-01

    This article reports on the evolution of network structure as it relates to formal and informal social roles in well-bounded, isolated groups. Research was conducted at the Amundsen-Scott South Pole Station. Data were collected on crewmembers' networks of social interaction over each of three winter-over periods, when the station is completely isolated. In addition, data were collected on the informal roles played by crewmembers (e.g., instrumental leadership, expressive leadership). The study found that globally coherent networks in winter-over groups were associated with group consensus on the presence of critically important informal social roles (e.g., expressive leadership) where global coherence is the extent to which a network forms a single group composed of a unitary core and periphery as opposed to being factionalized into two or more subgroups. Conversely, the evolution of multiple subgroups was associated with the absence of consensus on critical informal social roles, above all the critically important role of instrumental leader.

  19. Modelling the public opinion transmission on social networks under opinion leaders

    NASA Astrophysics Data System (ADS)

    Li, Zuozhi; Li, Meng; Ji, Wanwan

    2017-06-01

    In this paper, based on Social Network Analysis (SNA), the social network model of opinion leaders influencing the public opinion transmission is explored. The hot event, A Female Driver Was Beaten Due To Lane Change, has characteristics of individual short-term and non-government intervention, which is used to data extraction, and formed of the network structure on opinion leaders influencing the public opinion transmission. And the evolution mechanism are analyzed in the three evolutionary situations. Opinion leaders influence micro-blogging public opinion on social network evolution model shows that this type of network public opinion transmission is largely constrained by opinion leaders, so the opinion leaders behavior supervising on the spread of this public opinion is pivotal, and which has a guiding significance.

  20. Evolution of the social network of scientific collaborations

    NASA Astrophysics Data System (ADS)

    Barabási, A. L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.

    2002-08-01

    The co-authorship network of scientists represents a prototype of complex evolving networks. In addition, it offers one of the most extensive database to date on social networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an 8-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. Three complementary approaches allow us to obtain a detailed characterization. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. In some limits the model can be solved analytically, predicting a two-regime scaling in agreement with the measurements. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically. The combined numerical and analytical results underline the important role internal links play in determining the observed scaling behavior and network topology. The results and methodologies developed in the context of the co-authorship network could be useful for a systematic study of other complex evolving networks as well, such as the world wide web, Internet, or other social networks.

  1. Opinion formation in time-varying social networks: The case of the naming game

    NASA Astrophysics Data System (ADS)

    Maity, Suman Kalyan; Manoj, T. Venkat; Mukherjee, Animesh

    2012-09-01

    We study the dynamics of the naming game as an opinion formation model on time-varying social networks. This agent-based model captures the essential features of the agreement dynamics by means of a memory-based negotiation process. Our study focuses on the impact of time-varying properties of the social network of the agents on the naming game dynamics. In particular, we perform a computational exploration of this model using simulations on top of real networks. We investigate the outcomes of the dynamics on two different types of time-varying data: (1) the networks vary on a day-to-day basis and (2) the networks vary within very short intervals of time (20 sec). In the first case, we find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the naming game in these networks maintains clusters of coexisting opinions indefinitely leading to metastability. In the second case, we investigate the evolution of the naming game in perfect synchronization with the time evolution of the underlying social network shedding new light on the traditional emergent properties of the game that differ largely from what has been reported in the existing literature.

  2. Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure

    NASA Astrophysics Data System (ADS)

    Schleussner, Carl-Friedrich; Donges, Jonathan F.; Engemann, Denis A.; Levermann, Anders

    2016-08-01

    Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.

  3. Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure.

    PubMed

    Schleussner, Carl-Friedrich; Donges, Jonathan F; Engemann, Denis A; Levermann, Anders

    2016-08-11

    Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.

  4. Linking Individual and Collective Behavior in Adaptive Social Networks

    NASA Astrophysics Data System (ADS)

    Pinheiro, Flávio L.; Santos, Francisco C.; Pacheco, Jorge M.

    2016-03-01

    Adaptive social structures are known to promote the evolution of cooperation. However, up to now the characterization of the collective, population-wide dynamics resulting from the self-organization of individual strategies on a coevolving, adaptive network has remained unfeasible. Here we establish a (reversible) link between individual (micro)behavior and collective (macro)behavior for coevolutionary processes. We demonstrate that an adaptive network transforms a two-person social dilemma locally faced by individuals into a collective dynamics that resembles that associated with an N -person coordination game, whose characterization depends sensitively on the relative time scales between the entangled behavioral and network evolutions. In particular, we show that the faster the relative rate of adaptation of the network, the smaller the critical fraction of cooperators required for cooperation to prevail, thus establishing a direct link between network adaptation and the evolution of cooperation. The framework developed here is general and may be readily applied to other dynamical processes occurring on adaptive networks, notably, the spreading of contagious diseases or the diffusion of innovations.

  5. Social network and decision-making in primates: a report on Franco-Japanese research collaborations.

    PubMed

    Sueur, Cédric; Pelé, Marie

    2016-07-01

    Sociality is suggested to evolve as a strategy for animals to cope with challenges in their environment. Within a population, each individual can be seen as part of a network of social interactions that vary in strength, type and dynamics (Sueur et al. 2011a). The structure of this social network can strongly impact upon not only on the fitness of individuals and their decision-making, but also on the ecology of populations and the evolution of a species. Our Franco-Japanese collaboration allowed us to study social networks in several species (Japanese macaques, chimpanzees, colobines, etc.) and on different topics (social epidemiology, social evolution, information transmission). Individual attributes such as stress, rank or age can affect how individuals take decisions and the structure of the social network. This heterogeneity is linked to the assortativity of individuals and to the efficiency of the flow within a network. It is important, therefore, that this heterogeneity is integrated in the process or pattern under study in order to provide a better resolution of investigation and, ultimately, a better understanding of behavioural strategies, social dynamics and social evolution. How social information affects decision-making could be important to understand how social groups make collective decisions and how information may spread throughout the social group. In human beings, road-crossing behaviours in the presence of other individuals is a good way to study the influence of social information on individual behaviour and decision-making, for instance. Culture directly affects which information - personal vs social - individuals prefer to follow. Our collaboration contributed to the understanding of the relative influence of different factors, cultural and ecological, on primate, including human, sociality.

  6. Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation.

    PubMed

    Ubaldi, Enrico; Perra, Nicola; Karsai, Márton; Vezzani, Alessandro; Burioni, Raffaella; Vespignani, Alessandro

    2016-10-24

    The dynamic of social networks is driven by the interplay between diverse mechanisms that still challenge our theoretical and modelling efforts. Amongst them, two are known to play a central role in shaping the networks evolution, namely the heterogeneous propensity of individuals to i) be socially active and ii) establish a new social relationships with their alters. Here, we empirically characterise these two mechanisms in seven real networks describing temporal human interactions in three different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the individuals' social activity and their strategy in choosing ties where to allocate their social interactions can be quantitatively described and encoded in a simple stochastic network modelling framework. The Master Equation of the model can be solved in the asymptotic limit. The analytical solutions provide an explicit description of both the system dynamic and the dynamical scaling laws characterising crucial aspects about the evolution of the networks. The analytical predictions match with accuracy the empirical observations, thus validating the theoretical approach. Our results provide a rigorous dynamical system framework that can be extended to include other processes shaping social dynamics and to generate data driven predictions for the asymptotic behaviour of social networks.

  7. Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation

    NASA Astrophysics Data System (ADS)

    Ubaldi, Enrico; Perra, Nicola; Karsai, Márton; Vezzani, Alessandro; Burioni, Raffaella; Vespignani, Alessandro

    2016-10-01

    The dynamic of social networks is driven by the interplay between diverse mechanisms that still challenge our theoretical and modelling efforts. Amongst them, two are known to play a central role in shaping the networks evolution, namely the heterogeneous propensity of individuals to i) be socially active and ii) establish a new social relationships with their alters. Here, we empirically characterise these two mechanisms in seven real networks describing temporal human interactions in three different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the individuals’ social activity and their strategy in choosing ties where to allocate their social interactions can be quantitatively described and encoded in a simple stochastic network modelling framework. The Master Equation of the model can be solved in the asymptotic limit. The analytical solutions provide an explicit description of both the system dynamic and the dynamical scaling laws characterising crucial aspects about the evolution of the networks. The analytical predictions match with accuracy the empirical observations, thus validating the theoretical approach. Our results provide a rigorous dynamical system framework that can be extended to include other processes shaping social dynamics and to generate data driven predictions for the asymptotic behaviour of social networks.

  8. Impact of Social Reward on the Evolution of the Cooperation Behavior in Complex Networks

    NASA Astrophysics Data System (ADS)

    Wu, Yu'E.; Chang, Shuhua; Zhang, Zhipeng; Deng, Zhenghong

    2017-01-01

    Social reward, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this paper, we study the evolution of cooperation by proposing a reward model in network population, where a third strategy, reward, as an independent yet particular type of cooperation is introduced in 2-person evolutionary games. Specifically, a new kind of role corresponding to reward strategy, reward agents, is defined, which is aimed at increasing the income of cooperators by applying to them a social reward. Results from numerical simulations show that consideration of social reward greatly promotes the evolution of cooperation, which is confirmed for different network topologies and two evolutionary games. Moreover, we explore the microscopic mechanisms for the promotion of cooperation in the three-strategy model. As expected, the reward agents play a vital role in the formation of cooperative clusters, thus resisting the aggression of defectors. Our research might provide valuable insights into further exploring the nature of cooperation in the real world.

  9. Impact of Social Reward on the Evolution of the Cooperation Behavior in Complex Networks

    PubMed Central

    Wu, Yu’e; Chang, Shuhua; Zhang, Zhipeng; Deng, Zhenghong

    2017-01-01

    Social reward, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this paper, we study the evolution of cooperation by proposing a reward model in network population, where a third strategy, reward, as an independent yet particular type of cooperation is introduced in 2-person evolutionary games. Specifically, a new kind of role corresponding to reward strategy, reward agents, is defined, which is aimed at increasing the income of cooperators by applying to them a social reward. Results from numerical simulations show that consideration of social reward greatly promotes the evolution of cooperation, which is confirmed for different network topologies and two evolutionary games. Moreover, we explore the microscopic mechanisms for the promotion of cooperation in the three-strategy model. As expected, the reward agents play a vital role in the formation of cooperative clusters, thus resisting the aggression of defectors. Our research might provide valuable insights into further exploring the nature of cooperation in the real world. PMID:28112276

  10. Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure

    PubMed Central

    Schleussner, Carl-Friedrich; Donges, Jonathan F.; Engemann, Denis A.; Levermann, Anders

    2016-01-01

    Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking. PMID:27510641

  11. Limitation of degree information for analyzing the interaction evolution in online social networks

    NASA Astrophysics Data System (ADS)

    Shang, Ke-Ke; Yan, Wei-Sheng; Xu, Xiao-Ke

    2014-04-01

    Previously many studies on online social networks simply analyze the static topology in which the friend relationship once established, then the links and nodes will not disappear, but this kind of static topology may not accurately reflect temporal interactions on online social services. In this study, we define four types of users and interactions in the interaction (dynamic) network. We found that active, disappeared, new and super nodes (users) have obviously different strength distribution properties and this result also can be revealed by the degree characteristics of the unweighted interaction and friendship (static) networks. However, the active, disappeared, new and super links (interactions) only can be reflected by the strength distribution in the weighted interaction network. This result indicates the limitation of the static topology data on analyzing social network evolutions. In addition, our study uncovers the approximately stable statistics for the dynamic social network in which there are a large variation for users and interaction intensity. Our findings not only verify the correctness of our definitions, but also helped to study the customer churn and evaluate the commercial value of valuable customers in online social networks.

  12. Multiple effect of social influence on cooperation in interdependent network games.

    PubMed

    Jiang, Luo-Luo; Li, Wen-Jing; Wang, Zhen

    2015-10-01

    The social influence exists widely in the human society, where individual decision-making process (from congressional election to electronic commerce) may be affected by the attitude and behavior of others belonging to different social networks. Here, we couple the snowdrift (SD) game and the prisoner's dilemma (PD) game on two interdependent networks, where strategies in both games are associated by social influence to mimick the majority rule. More accurately, individuals' strategies updating refers to social learning (based on payoff difference) and above-mentioned social influence (related with environment of interdependent group), which is controlled by social influence strength s. Setting s = 0 decouples the networks and returns the traditional network game; while its increase involves the interactions between networks. By means of numerous Monte Carlo simulations, we find that such a mechanism brings multiple influence to the evolution of cooperation. Small s leads to unequal cooperation level in both games, because social learning is still the main updating rule for most players. Though intermediate and large s guarantees the synchronized evolution of strategy pairs, cooperation finally dies out and reaches a completely dominance in both cases. Interestingly, these observations are attributed to the expansion of cooperation clusters. Our work may provide a new understanding to the emergence of cooperation in intercorrelated social systems.

  13. Multiple effect of social influence on cooperation in interdependent network games

    NASA Astrophysics Data System (ADS)

    Jiang, Luo-Luo; Li, Wen-Jing; Wang, Zhen

    2015-10-01

    The social influence exists widely in the human society, where individual decision-making process (from congressional election to electronic commerce) may be affected by the attitude and behavior of others belonging to different social networks. Here, we couple the snowdrift (SD) game and the prisoner’s dilemma (PD) game on two interdependent networks, where strategies in both games are associated by social influence to mimick the majority rule. More accurately, individuals’ strategies updating refers to social learning (based on payoff difference) and above-mentioned social influence (related with environment of interdependent group), which is controlled by social influence strength s. Setting s = 0 decouples the networks and returns the traditional network game; while its increase involves the interactions between networks. By means of numerous Monte Carlo simulations, we find that such a mechanism brings multiple influence to the evolution of cooperation. Small s leads to unequal cooperation level in both games, because social learning is still the main updating rule for most players. Though intermediate and large s guarantees the synchronized evolution of strategy pairs, cooperation finally dies out and reaches a completely dominance in both cases. Interestingly, these observations are attributed to the expansion of cooperation clusters. Our work may provide a new understanding to the emergence of cooperation in intercorrelated social systems.

  14. Evolution of the Digital Society Reveals Balance between Viral and Mass Media Influence

    NASA Astrophysics Data System (ADS)

    Kleineberg, Kaj-Kolja; Boguñá, Marián

    2014-07-01

    Online social networks (OSNs) enable researchers to study the social universe at a previously unattainable scale. The worldwide impact and the necessity to sustain the rapid growth of OSNs emphasize the importance of unraveling the laws governing their evolution. Empirical results show that, unlike many real-world growing networked systems, OSNs follow an intricate path that includes a dynamical percolation transition. In light of these results, we present a quantitative two-parameter model that reproduces the entire topological evolution of a quasi-isolated OSN with unprecedented precision from the birth of the network. This allows us to precisely gauge the fundamental macroscopic and microscopic mechanisms involved. Our findings suggest that the coupling between the real preexisting underlying social structure, a viral spreading mechanism, and mass media influence govern the evolution of OSNs. The empirical validation of our model, on a macroscopic scale, reveals that virality is 4-5 times stronger than mass media influence and, on a microscopic scale, individuals have a higher subscription probability if invited by weaker social contacts, in agreement with the "strength of weak ties" paradigm.

  15. Evolution of Cooperation in Adaptive Social Networks

    NASA Astrophysics Data System (ADS)

    Segbroeck, Sven Van; Santos, Francisco C.; Traulsen, Arne; Lenaerts, Tom; Pacheco, Jorge M.

    Humans are organized in societies, a phenomenon that would never have been possible without the evolution of cooperative behavior. Several mechanisms that foster this evolution have been unraveled over the years, with population structure as a prominent promoter of cooperation. Modern networks of exchange and cooperation are, however, becoming increasingly volatile, and less and less based on long-term stable structure. Here, we address how this change of paradigm aspects the evolution of cooperation. We discuss analytical and numerical models in which individuals can break social ties and create new ones. Interactions are modeled as two-player dilemmas of cooperation. Once a link between two individuals has formed, the productivity of this link is evaluated. Links can be broken off at different rates. This individual capacity of forming new links or severing inconvenient ones can effectively change the nature of the game. We address random formation of new links and local linking rules as well as different individual capacities to maintain social interactions. We conclude by discussing how adaptive social networks can become an important step towards more realistic models of cultural dynamics.

  16. Evolution of Cooperation in Social Dilemmas on Complex Networks

    PubMed Central

    Iyer, Swami; Killingback, Timothy

    2016-01-01

    Cooperation in social dilemmas is essential for the functioning of systems at multiple levels of complexity, from the simplest biological organisms to the most sophisticated human societies. Cooperation, although widespread, is fundamentally challenging to explain evolutionarily, since natural selection typically favors selfish behavior which is not socially optimal. Here we study the evolution of cooperation in three exemplars of key social dilemmas, representing the prisoner’s dilemma, hawk-dove and coordination classes of games, in structured populations defined by complex networks. Using individual-based simulations of the games on model and empirical networks, we give a detailed comparative study of the effects of the structural properties of a network, such as its average degree, variance in degree distribution, clustering coefficient, and assortativity coefficient, on the promotion of cooperative behavior in all three classes of games. PMID:26928428

  17. Evolution of opinions on social networks in the presence of competing committed groups.

    PubMed

    Xie, Jierui; Emenheiser, Jeffrey; Kirby, Matthew; Sreenivasan, Sameet; Szymanski, Boleslaw K; Korniss, Gyorgy

    2012-01-01

    Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions A and B, and constituting fractions pA and pB of the total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space (pA,pB) consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.

  18. Evolution of Opinions on Social Networks in the Presence of Competing Committed Groups

    PubMed Central

    Xie, Jierui; Emenheiser, Jeffrey; Kirby, Matthew; Sreenivasan, Sameet; Szymanski, Boleslaw K.; Korniss, Gyorgy

    2012-01-01

    Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions and , and constituting fractions and of the total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point. PMID:22448238

  19. Competition between Homophily and Information Entropy Maximization in Social Networks

    PubMed Central

    Zhao, Jichang; Liang, Xiao; Xu, Ke

    2015-01-01

    In social networks, it is conventionally thought that two individuals with more overlapped friends tend to establish a new friendship, which could be stated as homophily breeding new connections. While the recent hypothesis of maximum information entropy is presented as the possible origin of effective navigation in small-world networks. We find there exists a competition between information entropy maximization and homophily in local structure through both theoretical and experimental analysis. This competition suggests that a newly built relationship between two individuals with more common friends would lead to less information entropy gain for them. We demonstrate that in the evolution of the social network, both of the two assumptions coexist. The rule of maximum information entropy produces weak ties in the network, while the law of homophily makes the network highly clustered locally and the individuals would obtain strong and trust ties. A toy model is also presented to demonstrate the competition and evaluate the roles of different rules in the evolution of real networks. Our findings could shed light on the social network modeling from a new perspective. PMID:26334994

  20. The neural representation of social networks.

    PubMed

    Weaverdyck, Miriam E; Parkinson, Carolyn

    2018-05-24

    The computational demands associated with navigating large, complexly bonded social groups are thought to have significantly shaped human brain evolution. Yet, research on social network representation and cognitive neuroscience have progressed largely independently. Thus, little is known about how the human brain encodes the structure of the social networks in which it is embedded. This review highlights recent work seeking to bridge this gap in understanding. While the majority of research linking social network analysis and neuroimaging has focused on relating neuroanatomy to social network size, researchers have begun to define the neural architecture that encodes social network structure, cognitive and behavioral consequences of encoding this information, and individual differences in how people represent the structure of their social world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Modelling opinion formation driven communities in social networks

    NASA Astrophysics Data System (ADS)

    Iñiguez, Gerardo; Barrio, Rafael A.; Kertész, János; Kaski, Kimmo K.

    2011-09-01

    In a previous paper we proposed a model to study the dynamics of opinion formation in human societies by a co-evolution process involving two distinct time scales of fast transaction and slower network evolution dynamics. In the transaction dynamics we take into account short range interactions as discussions between individuals and long range interactions to describe the attitude to the overall mood of society. The latter is handled by a uniformly distributed parameter α, assigned randomly to each individual, as quenched personal bias. The network evolution dynamics is realised by rewiring the societal network due to state variable changes as a result of transaction dynamics. The main consequence of this complex dynamics is that communities emerge in the social network for a range of values in the ratio between time scales. In this paper we focus our attention on the attitude parameter α and its influence on the conformation of opinion and the size of the resulting communities. We present numerical studies and extract interesting features of the model that can be interpreted in terms of social behaviour.

  2. Perceptions on Social Networking: A Study on Their Operational Relevance for the Navy

    DTIC Science & Technology

    2010-03-01

    in a shared network. VIRT would essentially isolate the “ wheat from the chaff” and present the warfighter with only the relevant tactical...Socialnomics: How social media transforms the way we live and do Business. Hoboken, NJ: Wiley. Rust , S. M. (2006). Collaborative network evolution

  3. Network Literacy: A Role for Libraries?

    ERIC Educational Resources Information Center

    McClure, Charles R.

    1994-01-01

    Explores the impact of electronic networking on social evolution, new notions of literacy, and social equity. Strategies to develop the Internet/NREN as a vehicle for reconnecting segments of society and promoting a network-literate population are needed. The role of libraries and the educational community in accomplishing these objectives must be…

  4. A study of knowledge supernetworks and network robustness in different business incubators

    NASA Astrophysics Data System (ADS)

    Zhang, Haihong; Wu, Wenqing; Zhao, Liming

    2016-04-01

    As the most important intangible resource of the new generation of business incubators, knowledge has been studied extensively, particularly with respect to how it spreads among incubating firms through knowledge networks. However, these homogeneous networks do not adequately describe the heterogeneity of incubating firms in different types of business incubators. To solve the problem of heterogeneity, the notion of a knowledge supernetwork has been used both to construct a knowledge interaction model among incubating firms and to distinguish social network relationships from knowledge network relationships. The process of knowledge interaction and network evolution can then be simulated with a few rules for incubating firms regarding knowledge innovation/absorption, social network connection, and entry and exit, among other aspects. Knowledge and networks have been used as performance indicators to evaluate the evolution of knowledge supernetworks. Moreover, we study the robustness of incubating firms' social networks by employing four types of attack strategies. Based on our simulation results, we conclude that there have been significant knowledge interaction and network evolution among incubating firms on a periodic basis and that both specialized and diversified business incubators have every advantage necessary in terms of both knowledge and networks to cultivate start-up companies. As far as network robustness is concerned, there is no obvious difference between the two types of business incubators with respect to the stability of their network structures, but specialized business incubators have stronger network communication abilities than diversified business incubators.

  5. The Evolution of Networks in Extreme and Isolated Environment

    NASA Technical Reports Server (NTRS)

    Johnson, Jeffrey C.; Boster, James S.; Palinkas, Lawrence A.

    2000-01-01

    This article reports on the evolution of network structure as it relates to the formal and informal aspects of social roles in well bounded, isolated groups. Research was conducted at the Amundsen-Scott South Pole Station over a 3-year period. Data was collected on crewmembers' networks of social interaction and personal advice over each of the 8.5-month winters during a time of complete isolation. In addition, data was collected on informal social role structure (e.g., instrumental leadership, expressive leadership). It was hypothesized that development and maintenance of a cohesive group structure was related to the presence of and group consensus on various informal social roles. The study found that core-periphery structures (i.e., reflecting cohesion) in winter-over groups were associated with the presence of critically important informal social roles (e.g., expressive leadership) and high group consensus on such informal roles. On the other hand, the evolution of clique structures (i.e., lack of cohesion) were associated with the absence of critical roles and a lack of consensus on these roles, particularly the critically important role of instrumental leader.

  6. Social power and opinion formation in complex networks

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2013-02-01

    In this paper we investigate the effects of social power on the evolution of opinions in model networks as well as in a number of real social networks. A continuous opinion formation model is considered and the analysis is performed through numerical simulation. Social power is given to a proportion of agents selected either randomly or based on their degrees. As artificial network structures, we consider scale-free networks constructed through preferential attachment and Watts-Strogatz networks. Numerical simulations show that scale-free networks with degree-based social power on the hub nodes have an optimal case where the largest number of the nodes reaches a consensus. However, given power to a random selection of nodes could not improve consensus properties. Introducing social power in Watts-Strogatz networks could not significantly change the consensus profile.

  7. A model for evolution of overlapping community networks

    NASA Astrophysics Data System (ADS)

    Karan, Rituraj; Biswal, Bibhu

    2017-05-01

    A model is proposed for the evolution of network topology in social networks with overlapping community structure. Starting from an initial community structure that is defined in terms of group affiliations, the model postulates that the subsequent growth and loss of connections is similar to the Hebbian learning and unlearning in the brain and is governed by two dominant factors: the strength and frequency of interaction between the members, and the degree of overlap between different communities. The temporal evolution from an initial community structure to the current network topology can be described based on these two parameters. It is possible to quantify the growth occurred so far and predict the final stationary state to which the network is likely to evolve. Applications in epidemiology or the spread of email virus in a computer network as well as finding specific target nodes to control it are envisaged. While facing the challenge of collecting and analyzing large-scale time-resolved data on social groups and communities one faces the most basic questions: how do communities evolve in time? This work aims to address this issue by developing a mathematical model for the evolution of community networks and studying it through computer simulation.

  8. Networks of Learning

    NASA Astrophysics Data System (ADS)

    Bettencourt, Luis; Kaiser, David

    2004-03-01

    Based on an a historically documented example of scientific discovery - Feynman diagrams as the main calculational tool of theoretical high energy Physics - we map the time evolution of the social network of early adopters through in the US, UK, Japan and the USSR. The spread of the technique for total number of users in each region is then modelled in terms of epidemic models, highlighting parallel and divergent aspects of this analogy. We also show that transient social arrangements develop as the idea is introduced and learned, which later disappear as the technique becomes common knowledge. Such early transient is characterized by abnormally low connectivity distribution powers and by high clustering. This interesting early non-equilibrium stage of network evolution is captured by a new dynamical model for network evolution, which coincides in its long time limit with familiar preferential aggregation dynamics.

  9. Evolution of extortion in the social-influenced prisoner’s dilemma

    NASA Astrophysics Data System (ADS)

    Wang, Zhipeng; Li, Miao; Wang, Dan; Chen, Qinghe

    2016-01-01

    The introduction of extortion strategy has attracted much attention since it dominates any evolutionary opponent in iterated prisoner’s dilemma games. Despite several studies argue that extortion is difficult to survive under strategy imitation and birth-death updating rules in well-mixed populations, it has recently been proven that a myopic best response rule facilitate the evolution of cooperation and extortion. However, such updating rules require a strong assumption of complete knowledge of all players, which is unlikely to hold in social networks in reality. To solve this problem, we introduce the concept of social influence into the model to limit players’ knowledge within their neighborhood. It turns out that this myopia initiated by social influence prevents players from observing superior strategies and therefore enables cooperators and extortioners to be evolutionarily stable. We also suggest that heterogeneous networks contribute to the evolution of cooperation and extortion under such social influence.

  10. Evolution properties of the community members for dynamic networks

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Guo, Qiang; Li, Sheng-Nan; Han, Jing-Ti; Liu, Jian-Guo

    2017-03-01

    The collective behaviors of community members for dynamic social networks are significant for understanding evolution features of communities. In this Letter, we empirically investigate the evolution properties of the new community members for dynamic networks. Firstly, we separate data sets into different slices, and analyze the statistical properties of new members as well as communities they joined in for these data sets. Then we introduce a parameter φ to describe community evolution between different slices and investigate the dynamic community properties of the new community members. The empirical analyses for the Facebook, APS, Enron and Wiki data sets indicate that both the number of new members and joint communities increase, the ratio declines rapidly and then becomes stable over time, and most of the new members will join in the small size communities that is s ≤ 10. Furthermore, the proportion of new members in existed communities decreases firstly and then becomes stable and relatively small for these data sets. Our work may be helpful for deeply understanding the evolution properties of community members for social networks.

  11. Evolution of the social network of scientific collaborations

    NASA Astrophysics Data System (ADS)

    Barabasi, Albert-Laszlo; Jeong, Hawoong; Neda, Zoltan; Ravasz, Erzsebet; Schubert, Andras; Vicsek, Tamas

    2002-03-01

    The co-authorship network of scientists represents a prototype of complex evolving networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an eight-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically.

  12. A Mechanistic Model of Human Recall of Social Network Structure and Relationship Affect.

    PubMed

    Omodei, Elisa; Brashears, Matthew E; Arenas, Alex

    2017-12-07

    The social brain hypothesis argues that the need to deal with social challenges was key to our evolution of high intelligence. Research with non-human primates as well as experimental and fMRI studies in humans produce results consistent with this claim, leading to an estimate that human primary groups should consist of roughly 150 individuals. Gaps between this prediction and empirical observations can be partially accounted for using "compression heuristics", or schemata that simplify the encoding and recall of social information. However, little is known about the specific algorithmic processes used by humans to store and recall social information. We describe a mechanistic model of human network recall and demonstrate its sufficiency for capturing human recall behavior observed in experimental contexts. We find that human recall is predicated on accurate recall of a small number of high degree network nodes and the application of heuristics for both structural and affective information. This provides new insight into human memory, social network evolution, and demonstrates a novel approach to uncovering human cognitive operations.

  13. Complex networks generated by the Penna bit-string model: Emergence of small-world and assortative mixing

    NASA Astrophysics Data System (ADS)

    Li, Chunguang; Maini, Philip K.

    2005-10-01

    The Penna bit-string model successfully encompasses many phenomena of population evolution, including inheritance, mutation, evolution, and aging. If we consider social interactions among individuals in the Penna model, the population will form a complex network. In this paper, we first modify the Verhulst factor to control only the birth rate, and introduce activity-based preferential reproduction of offspring in the Penna model. The social interactions among individuals are generated by both inheritance and activity-based preferential increase. Then we study the properties of the complex network generated by the modified Penna model. We find that the resulting complex network has a small-world effect and the assortative mixing property.

  14. Dynamic social networks facilitate cooperation in the N-player Prisoner’s Dilemma

    NASA Astrophysics Data System (ADS)

    Rezaei, Golriz; Kirley, Michael

    2012-12-01

    Understanding how cooperative behaviour evolves in network communities, where the individual members interact via social dilemma games, is an on-going challenge. In this paper, we introduce a social network based model to investigate the evolution of cooperation in the N-player Prisoner’s Dilemma game. As such, this work complements previous studies focused on multi-player social dilemma games and endogenous networks. Agents in our model, employ different game-playing strategies reflecting varying cognitive capacities. When an agent plays cooperatively, a social link is formed with each of the other N-1 group members. Subsequent cooperative actions reinforce this link. However, when an agent defects, the links in the social network are broken. Computational simulations across a range of parameter settings are used to examine different scenarios: varying population and group sizes; the group formation process (or partner selection); and agent decision-making strategies under varying dilemma constraints (cost-to-benefit ratios), including a “discriminator” strategy where the action is based on a function of the weighted links within an agent’s social network. The simulation results show that the proposed social network model is able to evolve and maintain cooperation. As expected, as the value of N increases the equilibrium proportion of cooperators in the population decreases. In addition, this outcome is dependent on the dilemma constraint (cost-to-benefit ratio). However, in some circumstances the dynamic social network plays an increasingly important role in promoting and sustaining cooperation, especially when the agents adopt the discriminator strategy. The adjustment of social links results in the formation of communities of “like-minded” agents. Subsequently, this local optimal behaviour promotes the evolution of cooperative behaviour at the system level.

  15. The missing link: leadership, identity, and the social brain.

    PubMed

    van Vugt, Mark

    2012-05-01

    How the cohesion of a social network is being maintained in spite of having different layers of social interaction is an important question. I argue that the evolution of both (political) hierarchy and social identity play a crucial role in scaling up and bonding social networks. Together they are missing links in the social brain hypothesis, and further research is needed to understand the functions of leadership and social identity. ©2011 The British Psychological Society.

  16. Evolutionary Games in Multi-Agent Systems of Weighted Social Networks

    NASA Astrophysics Data System (ADS)

    Du, Wen-Bo; Cao, Xian-Bin; Zheng, Hao-Ran; Zhou, Hong; Hu, Mao-Bin

    Much empirical evidence has shown realistic networks are weighted. Compared with those on unweighted networks, the dynamics on weighted network often exhibit distinctly different phenomena. In this paper, we investigate the evolutionary game dynamics (prisoner's dilemma game and snowdrift game) on a weighted social network consisted of rational agents and focus on the evolution of cooperation in the system. Simulation results show that the cooperation level is strongly affected by the weighted nature of the network. Moreover, the variation of time series has also been investigated. Our work may be helpful in understanding the cooperative behavior in the social systems.

  17. Social Networks and Health.

    PubMed

    Perdiaris, Christos; Chardalias, Konstantinos; Magita, Andrianna; Mechili, Aggelos E; Diomidous, Marianna

    2015-01-01

    Nowadays the social networks have been developed into an advanced communications tool, which is important for all people to contact each other. These specific networks do offer lots of options as well as plenty of advantages and disadvantages. The social websites are many in number and titles, such as the facebook, the twitter, the bandoo etc. One of the most important function-mechanisms for the social network websites, are the marketing tools. The future goal is suggested to be the evolution of these programs. The development of these applications, which is going to lead into a new era for the social digital communication between the internet users, all around the globe.

  18. Statistically validated mobile communication networks: the evolution of motifs in European and Chinese data

    NASA Astrophysics Data System (ADS)

    Li, Ming-Xia; Palchykov, Vasyl; Jiang, Zhi-Qiang; Kaski, Kimmo; Kertész, János; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.

    2014-08-01

    Big data open up unprecedented opportunities for investigating complex systems, including society. In particular, communication data serve as major sources for computational social sciences, but they have to be cleaned and filtered as they may contain spurious information due to recording errors as well as interactions, like commercial and marketing activities, not directly related to the social network. The network constructed from communication data can only be considered as a proxy for the network of social relationships. Here we apply a systematic method, based on multiple-hypothesis testing, to statistically validate the links and then construct the corresponding Bonferroni network, generalized to the directed case. We study two large datasets of mobile phone records, one from Europe and the other from China. For both datasets we compare the raw data networks with the corresponding Bonferroni networks and point out significant differences in the structures and in the basic network measures. We show evidence that the Bonferroni network provides a better proxy for the network of social interactions than the original one. Using the filtered networks, we investigated the statistics and temporal evolution of small directed 3-motifs and concluded that closed communication triads have a formation time scale, which is quite fast and typically intraday. We also find that open communication triads preferentially evolve into other open triads with a higher fraction of reciprocated calls. These stylized facts were observed for both datasets.

  19. The evolutionary and ecological consequences of animal social networks: emerging issues.

    PubMed

    Kurvers, Ralf H J M; Krause, Jens; Croft, Darren P; Wilson, Alexander D M; Wolf, Max

    2014-06-01

    The first generation of research on animal social networks was primarily aimed at introducing the concept of social networks to the fields of animal behaviour and behavioural ecology. More recently, a diverse body of evidence has shown that social fine structure matters on a broader scale than initially expected, affecting many key ecological and evolutionary processes. Here, we review this development. We discuss the effects of social network structure on evolutionary dynamics (genetic drift, fixation probabilities, and frequency-dependent selection) and social evolution (cooperation and between-individual behavioural differences). We discuss how social network structure can affect important coevolutionary processes (host-pathogen interactions and mutualisms) and population stability. We also discuss the potentially important, but poorly studied, role of social network structure on dispersal and invasion. Throughout, we highlight important areas for future research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Static, Dynamic and Semantic Dimensions: Towards a Multidisciplinary Approach of Social Networks Analysis

    NASA Astrophysics Data System (ADS)

    Thovex, Christophe; Trichet, Francky

    The objective of our work is to extend static and dynamic models of Social Networks Analysis (SNA), by taking conceptual aspects of enterprises and institutions social graph into account. The originality of our multidisciplinary work is to introduce abstract notions of electro-physic to define new measures in SNA, for new decision-making functions dedicated to Human Resource Management (HRM). This paper introduces a multidimensional system and new measures: (1) a tension measure for social network analysis, (2) an electrodynamic, predictive and semantic system for recommendations on social graphs evolutions and (3) a reactance measure used to evaluate the individual stress at work of the members of a social network.

  1. Structural power and the evolution of collective fairness in social networks.

    PubMed

    Santos, Fernando P; Pacheco, Jorge M; Paiva, Ana; Santos, Francisco C

    2017-01-01

    From work contracts and group buying platforms to political coalitions and international climate and economical summits, often individuals assemble in groups that must collectively reach decisions that may favor each part unequally. Here we quantify to which extent our network ties promote the evolution of collective fairness in group interactions, modeled by means of Multiplayer Ultimatum Games (MUG). We show that a single topological feature of social networks-which we call structural power-has a profound impact on the tendency of individuals to take decisions that favor each part equally. Increased fair outcomes are attained whenever structural power is high, such that the networks that tie individuals allow them to meet the same partners in different groups, thus providing the opportunity to strongly influence each other. On the other hand, the absence of such close peer-influence relationships dismisses any positive effect created by the network. Interestingly, we show that increasing the structural power of a network leads to the appearance of well-defined modules-as found in human social networks that often exhibit community structure-providing an interaction environment that maximizes collective fairness.

  2. Life span in online communities

    NASA Astrophysics Data System (ADS)

    Grabowski, A.; Kosiński, R. A.

    2010-12-01

    Recently online communities have attracted great interest and have become an important medium of information exchange between users. The aim of this work is to introduce a simple model of the evolution of online communities. This model describes (a) the time evolution of users’ activity in a web service, e.g., the time evolution of the number of online friends or written posts, (b) the time evolution of the degree distribution of a social network, and (c) the time evolution of the number of active users of a web service. In the second part of the paper we investigate the influence of the users’ lifespan (i.e., the total time in which they are active in an online community) on the process of rumor propagation in evolving social networks. Viral marketing is an important application of such method of information propagation.

  3. Life span in online communities.

    PubMed

    Grabowski, A; Kosiński, R A

    2010-12-01

    Recently online communities have attracted great interest and have become an important medium of information exchange between users. The aim of this work is to introduce a simple model of the evolution of online communities. This model describes (a) the time evolution of users' activity in a web service, e.g., the time evolution of the number of online friends or written posts, (b) the time evolution of the degree distribution of a social network, and (c) the time evolution of the number of active users of a web service. In the second part of the paper we investigate the influence of the users' lifespan (i.e., the total time in which they are active in an online community) on the process of rumor propagation in evolving social networks. Viral marketing is an important application of such method of information propagation.

  4. Structure and evolution of online social relationships: Heterogeneity in unrestricted discussions.

    PubMed

    Goh, K-I; Eom, Y-H; Jeong, H; Kahng, B; Kim, D

    2006-06-01

    With the advancement in the information age, people are using electronic media more frequently for communications, and social relationships are also increasingly resorting to online channels. While extensive studies on traditional social networks have been carried out, little has been done on online social networks. Here we analyze the structure and evolution of online social relationships by examining the temporal records of a bulletin board system (BBS) in a university. The BBS dataset comprises of 1908 boards, in which a total of 7446 students participate. An edge is assigned to each dialogue between two students, and it is defined as the appearance of the name of a student in the from- and to-field in each message. This yields a weighted network between the communicating students with an unambiguous group association of individuals. In contrast to a typical community network, where intracommunities (intercommunities) are strongly (weakly) tied, the BBS network contains hub members who participate in many boards simultaneously but are strongly tied, that is, they have a large degree and betweenness centrality and provide communication channels between communities. On the other hand, intracommunities are rather homogeneously and weakly connected. Such a structure, which has never been empirically characterized in the past, might provide a new perspective on the social opinion formation in this digital era.

  5. Following the Social Media: Aspect Evolution of Online Discussion

    NASA Astrophysics Data System (ADS)

    Tang, Xuning; Yang, Christopher C.

    Due to the advance of Internet and Web 2.0 technologies, it is easy to extract thousands of threads about a topic of interest from an online forum but it is nontrivial to capture the blueprint of different aspects (i.e., subtopic, or facet) associated with the topic. To better understand and analyze a forum discussion given topic, it is important to uncover the evolution relationships (temporal dependencies) between different topic aspects (i.e. how the discussion topic is evolving). Traditional Topic Detection and Tracking (TDT) techniques usually organize topics as a flat structure but it does not present the evolution relationships between topic aspects. In addition, the properties of short and sparse messages make the content-based TDT techniques difficult to perform well in identifying evolution relationships. The contributions in this paper are two-folded. We formally define a topic aspect evolution graph modeling framework and propose to utilize social network information, content similarity and temporal proximity to model evolution relationships between topic aspects. The experimental results showed that, by incorporating social network information, our technique significantly outperformed content-based technique in the task of extracting evolution relationships between topic aspects.

  6. Social evolution. Genomic signatures of evolutionary transitions from solitary to group living.

    PubMed

    Kapheim, Karen M; Pan, Hailin; Li, Cai; Salzberg, Steven L; Puiu, Daniela; Magoc, Tanja; Robertson, Hugh M; Hudson, Matthew E; Venkat, Aarti; Fischman, Brielle J; Hernandez, Alvaro; Yandell, Mark; Ence, Daniel; Holt, Carson; Yocum, George D; Kemp, William P; Bosch, Jordi; Waterhouse, Robert M; Zdobnov, Evgeny M; Stolle, Eckart; Kraus, F Bernhard; Helbing, Sophie; Moritz, Robin F A; Glastad, Karl M; Hunt, Brendan G; Goodisman, Michael A D; Hauser, Frank; Grimmelikhuijzen, Cornelis J P; Pinheiro, Daniel Guariz; Nunes, Francis Morais Franco; Soares, Michelle Prioli Miranda; Tanaka, Érica Donato; Simões, Zilá Luz Paulino; Hartfelder, Klaus; Evans, Jay D; Barribeau, Seth M; Johnson, Reed M; Massey, Jonathan H; Southey, Bruce R; Hasselmann, Martin; Hamacher, Daniel; Biewer, Matthias; Kent, Clement F; Zayed, Amro; Blatti, Charles; Sinha, Saurabh; Johnston, J Spencer; Hanrahan, Shawn J; Kocher, Sarah D; Wang, Jun; Robinson, Gene E; Zhang, Guojie

    2015-06-05

    The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks. Copyright © 2015, American Association for the Advancement of Science.

  7. Rumor evolution in social networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yichao; Zhou, Shi; Zhang, Zhongzhi; Guan, Jihong; Zhou, Shuigeng

    2013-03-01

    The social network is a main tunnel of rumor spreading. Previous studies concentrated on a static rumor spreading. The content of the rumor is invariable during the whole spreading process. Indeed, the rumor evolves constantly in its spreading process, which grows shorter, more concise, more easily grasped, and told. In an early psychological experiment, researchers found about 70% of details in a rumor were lost in the first six mouth-to-mouth transmissions. Based on these observations, we investigate rumor spreading on social networks, where the content of the rumor is modified by the individuals with a certain probability. In the scenario, they have two choices, to forward or to modify. As a forwarder, an individual disseminates the rumor directly to their neighbors. As a modifier, conversely, an individual revises the rumor before spreading it out. When the rumor spreads on the social networks, for instance, scale-free networks and small-world networks, the majority of individuals actually are infected by the multirevised version of the rumor, if the modifiers dominate the networks. The individuals with more social connections have a higher probability to receive the original rumor. Our observation indicates that the original rumor may lose its influence in the spreading process. Similarly, a true information may turn out to be a rumor as well. Our result suggests the rumor evolution should not be a negligible question, which may provide a better understanding of the generation and destruction of a rumor.

  8. Formation of homophily in academic performance: Students change their friends rather than performance

    PubMed Central

    Smirnov, Ivan

    2017-01-01

    Homophily, the tendency of individuals to associate with others who share similar traits, has been identified as a major driving force in the formation and evolution of social ties. In many cases, it is not clear if homophily is the result of a socialization process, where individuals change their traits according to the dominance of that trait in their local social networks, or if it results from a selection process, in which individuals reshape their social networks so that their traits match those in the new environment. Here we demonstrate the detailed temporal formation of strong homophily in academic achievements of high school and university students. We analyze a unique dataset that contains information about the detailed time evolution of a friendship network of 6,000 students across 42 months. Combining the evolving social network data with the time series of the academic performance (GPA) of individual students, we show that academic homophily is a result of selection: students prefer to gradually reorganize their social networks according to their performance levels, rather than adapting their performance to the level of their local group. We find no signs for a pull effect, where a social environment of good performers motivates bad students to improve their performance. We are able to understand the underlying dynamics of grades and networks with a simple model. The lack of a social pull effect in classical educational settings could have important implications for the understanding of the observed persistence of segregation, inequality and social immobility in societies. PMID:28854202

  9. Making "social" safer: are Facebook and other online networks becoming less hazardous for health professionals?

    PubMed

    George, Daniel R

    2012-01-01

    Major concerns about privacy have limited health professionals' usage of popular social networking sites such as Facebook. However, the landscape of social media is changing in favor of more sophisticated privacy controls that enable users to more carefully manage public and private information. This evolution in technology makes it potentially less hazardous for health professionals to consider accepting colleagues and patients into their online networks, and invites medicine to think constructively about how social media may add value to contemporary healthcare.

  10. A cooperative game framework for detecting overlapping communities in social networks

    NASA Astrophysics Data System (ADS)

    Jonnalagadda, Annapurna; Kuppusamy, Lakshmanan

    2018-02-01

    Community detection in social networks is a challenging and complex task, which received much attention from researchers of multiple domains in recent years. The evolution of communities in social networks happens merely due to the self-interest of the nodes. The interesting feature of community structure in social networks is the multi membership of the nodes resulting in overlapping communities. Assuming the nodes of the social network as self-interested players, the dynamics of community formation can be captured in the form of a game. In this paper, we propose a greedy algorithm, namely, Weighted Graph Community Game (WGCG), in order to model the interactions among the self-interested nodes of the social network. The proposed algorithm employs the Shapley value mechanism to discover the inherent communities of the underlying social network. The experimental evaluation on the real-world and synthetic benchmark networks demonstrates that the performance of the proposed algorithm is superior to the state-of-the-art overlapping community detection algorithms.

  11. Network Structure and Community Evolution on Twitter: Human Behavior Change in Response to the 2011 Japanese Earthquake and Tsunami

    PubMed Central

    Lu, Xin; Brelsford, Christa

    2014-01-01

    To investigate the dynamics of social networks and the formation and evolution of online communities in response to extreme events, we collected three datasets from Twitter shortly before and after the 2011 earthquake and tsunami in Japan. We find that while almost all users increased their online activity after the earthquake, Japanese speakers, who are assumed to be more directly affected by the event, expanded the network of people they interact with to a much higher degree than English speakers or the global average. By investigating the evolution of communities, we find that the behavior of joining or quitting a community is far from random: users tend to stay in their current status and are less likely to join new communities from solitary or shift to other communities from their current community. While non-Japanese speakers did not change their conversation topics significantly after the earthquake, nearly all Japanese users changed their conversations to earthquake-related content. This study builds a systematic framework for investigating human behaviors under extreme events with online social network data and our findings on the dynamics of networks and communities may provide useful insight for understanding how patterns of social interaction are influenced by extreme events. PMID:25346468

  12. Network Structure and Community Evolution on Twitter: Human Behavior Change in Response to the 2011 Japanese Earthquake and Tsunami

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Brelsford, Christa

    2014-10-01

    To investigate the dynamics of social networks and the formation and evolution of online communities in response to extreme events, we collected three datasets from Twitter shortly before and after the 2011 earthquake and tsunami in Japan. We find that while almost all users increased their online activity after the earthquake, Japanese speakers, who are assumed to be more directly affected by the event, expanded the network of people they interact with to a much higher degree than English speakers or the global average. By investigating the evolution of communities, we find that the behavior of joining or quitting a community is far from random: users tend to stay in their current status and are less likely to join new communities from solitary or shift to other communities from their current community. While non-Japanese speakers did not change their conversation topics significantly after the earthquake, nearly all Japanese users changed their conversations to earthquake-related content. This study builds a systematic framework for investigating human behaviors under extreme events with online social network data and our findings on the dynamics of networks and communities may provide useful insight for understanding how patterns of social interaction are influenced by extreme events.

  13. Entropy of dynamical social networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Karsai, Marton; Bianconi, Ginestra

    2012-02-01

    Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.

  14. Effect of users' opinion evolution on information diffusion in online social networks

    NASA Astrophysics Data System (ADS)

    Zhu, Hengmin; Kong, Yuehan; Wei, Jing; Ma, Jing

    2018-02-01

    The process of topic propagation always interweaves information diffusion and opinion evolution, but most previous works studied the models of information diffusion and opinion evolution separately, and seldom focused on their interaction of each other. To shed light on the effect of users' opinion evolution on information diffusion in online social networks, we proposed a model which incorporates opinion evolution into the process of topic propagation. Several real topics propagating on Sina Microblog were collected to analyze individuals' propagation intentions, and different propagation intentions were considered in the model. The topic propagation was simulated to explore the impact of different opinion distributions and intervention with opposite opinion on information diffusion. Results show that the topic with one-sided opinions can spread faster and more widely, and intervention with opposite opinion is an effective measure to guide the topic propagation. The earlier to intervene, the more effectively the topic propagation would be guided.

  15. Social Balance on Networks: The Dynamics of Friendship and Hatred

    NASA Astrophysics Data System (ADS)

    Redner, Sidney

    2006-03-01

    We study the evolution of social networks that contain both friendly and unfriendly pairwise links between individual nodes. The network is endowed with dynamics in which the sense of a link in an imbalanced triad---a triangular loop with 1 or 3 unfriendly links---is reversed to make the triad balanced. Thus an imbalanced triad is analogous to a frustrated plaquette in a random magnet, while a balanced triad fulfills the adage: ``a friend of my friend is my friend; an enemy of my friend is my enemy; a friend of my enemy is my enemy; an enemy of my enemy is my friend.'' With this frustration-reducing dynamics, an infinite network undergoes a dynamic phase transition from a steady state to ``paradise''---all links are friendly---as the propensity for friendly links to be created in an update event passes through 1/2. On the other hand, a finite network always falls into a socially-balanced absorbing state where no imbalanced triads remain. A prominent example of the achievement of social balance is the evolution of pacts and treaties between various European countries during the late 1800's and early 1900's. Here social balance gave rise to the two major alliances that comprised the protagonists of World War I.

  16. Measures of node centrality in mobile social networks

    NASA Astrophysics Data System (ADS)

    Gao, Zhenxiang; Shi, Yan; Chen, Shanzhi

    2015-02-01

    Mobile social networks exploit human mobility and consequent device-to-device contact to opportunistically create data paths over time. While links in mobile social networks are time-varied and strongly impacted by human mobility, discovering influential nodes is one of the important issues for efficient information propagation in mobile social networks. Although traditional centrality definitions give metrics to identify the nodes with central positions in static binary networks, they cannot effectively identify the influential nodes for information propagation in mobile social networks. In this paper, we address the problems of discovering the influential nodes in mobile social networks. We first use the temporal evolution graph model which can more accurately capture the topology dynamics of the mobile social network over time. Based on the model, we explore human social relations and mobility patterns to redefine three common centrality metrics: degree centrality, closeness centrality and betweenness centrality. We then employ empirical traces to evaluate the benefits of the proposed centrality metrics, and discuss the predictability of nodes' global centrality ranking by nodes' local centrality ranking. Results demonstrate the efficiency of the proposed centrality metrics.

  17. Modelling the evolution of a bi-partite network Peer referral in interlocking directorates*

    PubMed Central

    Edling, Christofer

    2010-01-01

    A central part of relational ties between social actors are constituted by shared affiliations and events. The action of joint participation reinforces personal ties between social actors as well as mutually shared values and norms that in turn perpetuate the patterns of social action that define groups. Therefore the study of bipartite networks is central to social science. Furthermore, the dynamics of these processes suggests that bipartite networks should not be considered static structures but rather be studied over time. In order to model the evolution of bipartite networks empirically we introduce a class of models and a Bayesian inference scheme that extends previous stochastic actor-oriented models for unimodal graphs. Contemporary research on interlocking directorates provides an area of research in which it seems reasonable to apply the model. Specifically, we address the question of how tie formation, i.e. director recruitment, contributes to the structural properties of the interlocking directorate network. For boards of directors on the Stockholm stock exchange we propose that a prolific mechanism in tie formation is that of peer referral. The results indicate that such a mechanism is present, generating multiple interlocks between boards. PMID:24944435

  18. Evolution of cooperation under social pressure in multiplex networks

    NASA Astrophysics Data System (ADS)

    Pereda, María

    2016-09-01

    In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence that a particular form of social pressure, "being watched," has on the evolution of cooperative behavior. We study how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner's dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of being vigilant. We analyze these processes on different duplex networks structures and assess the influence of the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex structure, specifically the degree correlations between layers is determinant. Our results give further quantitative insights in the promotion of cooperation under social pressure.

  19. Evolution of cooperation under social pressure in multiplex networks.

    PubMed

    Pereda, María

    2016-09-01

    In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence that a particular form of social pressure, "being watched," has on the evolution of cooperative behavior. We study how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner's dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of being vigilant. We analyze these processes on different duplex networks structures and assess the influence of the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex structure, specifically the degree correlations between layers is determinant. Our results give further quantitative insights in the promotion of cooperation under social pressure.

  20. Social interaction in synthetic and natural microbial communities.

    PubMed

    Xavier, Joao B

    2011-04-12

    Social interaction among cells is essential for multicellular complexity. But how do molecular networks within individual cells confer the ability to interact? And how do those same networks evolve from the evolutionary conflict between individual- and population-level interests? Recent studies have dissected social interaction at the molecular level by analyzing both synthetic and natural microbial populations. These studies shed new light on the role of population structure for the evolution of cooperative interactions and revealed novel molecular mechanisms that stabilize cooperation among cells. New understanding of populations is changing our view of microbial processes, such as pathogenesis and antibiotic resistance, and suggests new ways to fight infection by exploiting social interaction. The study of social interaction is also challenging established paradigms in cancer evolution and immune system dynamics. Finding similar patterns in such diverse systems suggests that the same 'social interaction motifs' may be general to many cell populations.

  1. Emergence, evolution and scaling of online social networks.

    PubMed

    Wang, Le-Zhi; Huang, Zi-Gang; Rong, Zhi-Hai; Wang, Xiao-Fan; Lai, Ying-Cheng

    2014-01-01

    Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan earthquake. We uncover a number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general insights into the control of information spreading on such networks.

  2. Movement Patterns, Social Dynamics, and the Evolution of Cooperation

    PubMed Central

    Smaldino, Paul E.; Schank, Jeffrey C.

    2012-01-01

    The structure of social interactions influences many aspects of social life, including the spread of information and behavior, and the evolution of social phenotypes. After dispersal, organisms move around throughout their lives, and the patterns of their movement influence their social encounters over the course of their lifespan. Though both space and mobility are known to influence social evolution, there is little analysis of the influence of specific movement patterns on evolutionary dynamics. We explored the effects of random movement strategies on the evolution of cooperation using an agent-based prisoner’s dilemma model with mobile agents. This is the first systematic analysis of a model in which cooperators and defectors can use different random movement strategies, which we chose to fall on a spectrum between highly exploratory and highly restricted in their search tendencies. Because limited dispersal and restrictions to local neighborhood size are known to influence the ability of cooperators to effectively assort, we also assessed the robustness of our findings with respect to dispersal and local capacity constraints. We show that differences in patterns of movement can dramatically influence the likelihood of cooperator success, and that the effects of different movement patterns are sensitive to environmental assumptions about offspring dispersal and local space constraints. Since local interactions implicitly generate dynamic social interaction networks, we also measured the average number of unique and total interactions over a lifetime and considered how these emergent network dynamics helped explain the results. This work extends what is known about mobility and the evolution of cooperation, and also has general implications for social models with randomly moving agents. PMID:22838026

  3. From sparse to dense and from assortative to disassortative in online social networks

    PubMed Central

    Li, Menghui; Guan, Shuguang; Wu, Chensheng; Gong, Xiaofeng; Li, Kun; Wu, Jinshan; Di, Zengru; Lai, Choy-Heng

    2014-01-01

    Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents γ are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks. PMID:24798703

  4. From sparse to dense and from assortative to disassortative in online social networks.

    PubMed

    Li, Menghui; Guan, Shuguang; Wu, Chensheng; Gong, Xiaofeng; Li, Kun; Wu, Jinshan; Di, Zengru; Lai, Choy-Heng

    2014-05-06

    Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents γ are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks.

  5. Multi-Topic Tracking Model for dynamic social network

    NASA Astrophysics Data System (ADS)

    Li, Yuhua; Liu, Changzheng; Zhao, Ming; Li, Ruixuan; Xiao, Hailing; Wang, Kai; Zhang, Jun

    2016-07-01

    The topic tracking problem has attracted much attention in the last decades. However, existing approaches rarely consider network structures and textual topics together. In this paper, we propose a novel statistical model based on dynamic bayesian network, namely Multi-Topic Tracking Model for Dynamic Social Network (MTTD). It takes influence phenomenon, selection phenomenon, document generative process and the evolution of textual topics into account. Specifically, in our MTTD model, Gibbs Random Field is defined to model the influence of historical status of users in the network and the interdependency between them in order to consider the influence phenomenon. To address the selection phenomenon, a stochastic block model is used to model the link generation process based on the users' interests to topics. Probabilistic Latent Semantic Analysis (PLSA) is used to describe the document generative process according to the users' interests. Finally, the dependence on the historical topic status is also considered to ensure the continuity of the topic itself in topic evolution model. Expectation Maximization (EM) algorithm is utilized to estimate parameters in the proposed MTTD model. Empirical experiments on real datasets show that the MTTD model performs better than Popular Event Tracking (PET) and Dynamic Topic Model (DTM) in generalization performance, topic interpretability performance, topic content evolution and topic popularity evolution performance.

  6. Good Samaritans in Networks: An Experiment on How Networks Influence Egalitarian Sharing and the Evolution of Inequality

    PubMed Central

    Chiang, Yen-Sheng

    2015-01-01

    The fact that the more resourceful people are sharing with the poor to mitigate inequality—egalitarian sharing—is well documented in the behavioral science research. How inequality evolves as a result of egalitarian sharing is determined by the structure of “who gives whom”. While most prior experimental research investigates allocation of resources in dyads and groups, the paper extends the research of egalitarian sharing to networks for a more generalized structure of social interaction. An agent-based model is proposed to predict how actors, linked in networks, share their incomes with neighbors. A laboratory experiment with human subjects further shows that income distributions evolve to different states in different network topologies. Inequality is significantly reduced in networks where the very rich and the very poor are connected so that income discrepancy is salient enough to motivate the rich to share their incomes with the poor. The study suggests that social networks make a difference in how egalitarian sharing influences the evolution of inequality. PMID:26061642

  7. The Evolution of the Personal Networks of Novice Librarian Researchers

    ERIC Educational Resources Information Center

    Kennedy, Marie R.; Kennedy, David P.; Brancolini, Kristine R.

    2017-01-01

    This article describes for the first time the composition and structure of the personal networks of novice librarian researchers. We used social network analysis to observe if participating in the Institute for Research Design in Librarianship (IRDL) affected the development of the librarians' personal networks and how the networks changed over…

  8. Modeling Dynamic Evolution of Online Friendship Network

    NASA Astrophysics Data System (ADS)

    Wu, Lian-Ren; Yan, Qiang

    2012-10-01

    In this paper, we study the dynamic evolution of friendship network in SNS (Social Networking Site). Our analysis suggests that an individual joining a community depends not only on the number of friends he or she has within the community, but also on the friendship network generated by those friends. In addition, we propose a model which is based on two processes: first, connecting nearest neighbors; second, strength driven attachment mechanism. The model reflects two facts: first, in the social network it is a universal phenomenon that two nodes are connected when they have at least one common neighbor; second, new nodes connect more likely to nodes which have larger weights and interactions, a phenomenon called strength driven attachment (also called weight driven attachment). From the simulation results, we find that degree distribution P(k), strength distribution P(s), and degree-strength correlation are all consistent with empirical data.

  9. Random walks on activity-driven networks with attractiveness

    NASA Astrophysics Data System (ADS)

    Alessandretti, Laura; Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola

    2017-05-01

    Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterized by these two features. We study how these properties affect random-walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first-passage time of the process, and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems, such as heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.

  10. More Questions than Answers: Assessing the Impact of Online Social Networking on a Service-Learning Project

    ERIC Educational Resources Information Center

    Moeller, Mary R.; Nagy, Dianne

    2013-01-01

    This article details the evolution and results of a service-learning project designed to extend cross-cultural relationships via online social networking between students at a U.S. Bureau of Indian Education boarding school and teacher candidates in a required diversity course. The goals for the partnership included helping Native American…

  11. Network Analysis of an Emergent Massively Collaborative Creation on Video Sharing Website

    NASA Astrophysics Data System (ADS)

    Hamasaki, Masahiro; Takeda, Hideaki; Nishimura, Takuichi

    The Web technology enables numerous people to collaborate in creation. We designate it as massively collaborative creation via the Web. As an example of massively collaborative creation, we particularly examine video development on Nico Nico Douga, which is a video sharing website that is popular in Japan. We specifically examine videos on Hatsune Miku, a version of a singing synthesizer application software that has inspired not only song creation but also songwriting, illustration, and video editing. As described herein, creators of interact to create new contents through their social network. In this paper, we analyzed the process of developing thousands of videos based on creators' social networks and investigate relationships among creation activity and social networks. The social network reveals interesting features. Creators generate large and sparse social networks including some centralized communities, and such centralized community's members shared special tags. Different categories of creators have different roles in evolving the network, e.g., songwriters gather more links than other categories, implying that they are triggers to network evolution.

  12. Punctuated equilibrium in the large-scale evolution of programming languages†

    PubMed Central

    Valverde, Sergi; Solé, Ricard V.

    2015-01-01

    The analogies and differences between biological and cultural evolution have been explored by evolutionary biologists, historians, engineers and linguists alike. Two well-known domains of cultural change are language and technology. Both share some traits relating the evolution of species, but technological change is very difficult to study. A major challenge in our way towards a scientific theory of technological evolution is how to properly define evolutionary trees or clades and how to weight the role played by horizontal transfer of information. Here, we study the large-scale historical development of programming languages, which have deeply marked social and technological advances in the last half century. We analyse their historical connections using network theory and reconstructed phylogenetic networks. Using both data analysis and network modelling, it is shown that their evolution is highly uneven, marked by innovation events where new languages are created out of improved combinations of different structural components belonging to previous languages. These radiation events occur in a bursty pattern and are tied to novel technological and social niches. The method can be extrapolated to other systems and consistently captures the major classes of languages and the widespread horizontal design exchanges, revealing a punctuated evolutionary path. PMID:25994298

  13. How People Interact in Evolving Online Affiliation Networks

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros K.; Rybski, Diego; Liljeros, Fredrik; Havlin, Shlomo; Makse, Hernán A.

    2012-07-01

    The study of human interactions is of central importance for understanding the behavior of individuals, groups, and societies. Here, we observe the formation and evolution of networks by monitoring the addition of all new links, and we analyze quantitatively the tendencies used to create ties in these evolving online affiliation networks. We show that an accurate estimation of these probabilistic tendencies can be achieved only by following the time evolution of the network. Inferences about the reason for the existence of links using statistical analysis of network snapshots must therefore be made with great caution. Here, we start by characterizing every single link when the tie was established in the network. This information allows us to describe the probabilistic tendencies of tie formation and extract meaningful sociological conclusions. We also find significant differences in behavioral traits in the social tendencies among individuals according to their degree of activity, gender, age, popularity, and other attributes. For instance, in the particular data sets analyzed here, we find that women reciprocate connections 3 times as much as men and that this difference increases with age. Men tend to connect with the most popular people more often than women do, across all ages. On the other hand, triangular tie tendencies are similar, independent of gender, and show an increase with age. These results require further validation in other social settings. Our findings can be useful to build models of realistic social network structures and to discover the underlying laws that govern establishment of ties in evolving social networks.

  14. Dynamics of social balance on networks

    NASA Astrophysics Data System (ADS)

    Antal, T.; Krapivsky, P. L.; Redner, S.

    2005-09-01

    We study the evolution of social networks that contain both friendly and unfriendly pairwise links between individual nodes. The network is endowed with dynamics in which the sense of a link in an imbalanced triad—a triangular loop with one or three unfriendly links—is reversed to make the triad balanced. With this dynamics, an infinite network undergoes a dynamic phase transition from a steady state to “paradise”—all links are friendly—as the propensity p for friendly links in an update event passes through 1/2 . A finite network always falls into a socially balanced absorbing state where no imbalanced triads remain. If the additional constraint that the number of imbalanced triads in the network not increase in an update is imposed, then the network quickly reaches a balanced final state.

  15. Coevolutionary dynamics of opinion propagation and social balance: The key role of small-worldness

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Chen, Lixue; Sun, Xian; Zhang, Kai; Zhang, Jie; Li, Ping

    2014-03-01

    The propagation of various opinions in social networks, which influences human inter-relationships and even social structure, and hence is a most important part of social life. We have incorporated social balance into opinion propagation in social networks are influenced by social balance. The edges in networks can represent both friendly or hostile relations, and change with the opinions of individual nodes. We introduce a model to characterize the coevolutionary dynamics of these two dynamical processes on Watts-Strogatz (WS) small-world network. We employ two distinct evolution rules (i) opinion renewal; and (ii) relation adjustment. By changing the rewiring probability, and thus the small-worldness of the WS network, we found that the time for the system to reach balanced states depends critically on both the average path length and clustering coefficient of the network, which is different than other networked process like epidemic spreading. In particular, the system equilibrates most quickly when the underlying network demonstrates strong small-worldness, i.e., small average path lengths and large clustering coefficient. We also find that opinion clusters emerge in the process of the network approaching the global equilibrium, and a measure of global contrariety is proposed to quantify the balanced state of a social network.

  16. Genomic signatures of evolutionary transitions from solitary to group living

    PubMed Central

    Kapheim, Karen M.; Pan, Hailin; Li, Cai; Salzberg, Steven L.; Puiu, Daniela; Magoc, Tanja; Robertson, Hugh M.; Hudson, Matthew E.; Venkat, Aarti; Fischman, Brielle J.; Hernandez, Alvaro; Yandell, Mark; Ence, Daniel; Holt, Carson; Yocum, George D.; Kemp, William P.; Bosch, Jordi; Waterhouse, Robert M.; Zdobnov, Evgeny M.; Stolle, Eckart; Kraus, F. Bernhard; Helbing, Sophie; Moritz, Robin F. A.; Glastad, Karl M.; Hunt, Brendan G.; Goodisman, Michael A. D.; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Pinheiro, Daniel Guariz; Nunes, Francis Morais Franco; Soares, Michelle Prioli Miranda; Tanaka, Érica Donato; Simões, Zilá Luz Paulino; Hartfelder, Klaus; Evans, Jay D.; Barribeau, Seth M.; Johnson, Reed M.; Massey, Jonathan H.; Southey, Bruce R.; Hasselmann, Martin; Hamacher, Daniel; Biewer, Matthias; Kent, Clement F.; Zayed, Amro; Blatti, Charles; Sinha, Saurabh; Johnston, J. Spencer; Hanrahan, Shawn J.; Kocher, Sarah D.; Wang, Jun; Robinson, Gene E.; Zhang, Guojie

    2017-01-01

    The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks. PMID:25977371

  17. Language Networks as Complex Systems

    ERIC Educational Resources Information Center

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  18. Asymptotic theory of time varying networks with burstiness and heterogeneous activation patterns

    NASA Astrophysics Data System (ADS)

    Burioni, Raffaella; Ubaldi, Enrico; Vezzani, Alessandro

    2017-05-01

    The recent availability of large-scale, time-resolved and high quality digital datasets has allowed for a deeper understanding of the structure and properties of many real-world networks. The empirical evidence of a temporal dimension prompted the switch of paradigm from a static representation of networks to a time varying one. In this work we briefly review the framework of time-varying-networks in real world social systems, especially focusing on the activity-driven paradigm. We develop a framework that allows for the encoding of three generative mechanisms that seem to play a central role in the social networks’ evolution: the individual’s propensity to engage in social interactions, its strategy in allocate these interactions among its alters and the burstiness of interactions amongst social actors. The functional forms and probability distributions encoding these mechanisms are typically data driven. A natural question arises if different classes of strategies and burstiness distributions, with different local scale behavior and analogous asymptotics can lead to the same long time and large scale structure of the evolving networks. We consider the problem in its full generality, by investigating and solving the system dynamics in the asymptotic limit, for general classes of ties allocation mechanisms and waiting time probability distributions. We show that the asymptotic network evolution is driven by a few characteristics of these functional forms, that can be extracted from direct measurements on large datasets.

  19. Invited Commentary: Evolution of Social Networks, Health, and the Role of Epidemiology.

    PubMed

    Aiello, Allison E

    2017-06-01

    Almost 40 years ago, Berkman and Syme demonstrated that social networks were related to the risk of early mortality (Am J Epidemiol. 1979;109(2):186-204). Their study was highly innovative because they directly measured and quantified social networks in a large prospective population-based survey with mortality follow-up. The results of the study showed robust network gradients, whereby those with fewer networks and weaker social ties had significantly higher mortality rates. The important influence of social networks that Berkman and Syme noted many years ago is likely to heighten in the future, as demographic characteristics shift and individuals become more inclined to socialize through online platforms instead of real-world interactions. Berkman and Syme's research in 1979 continues to play a key role in shaping recent efforts to uncover the influence of social networks on health. Looking back on their findings may help epidemiologists better understand the importance of both online and offline networks for population health today. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. The social brain hypothesis of schizophrenia.

    PubMed

    Burns, Jonathan

    2006-06-01

    The social brain hypothesis is a useful heuristic for understanding schizophrenia. It focuses attention on the core Bleulerian concept of autistic alienation and is consistent with well-replicated findings of social brain dysfunction in schizophrenia as well as contemporary theories of human cognitive and brain evolution. The contributions of Heidegger, Merleau-Ponty and Wittgenstein allow us to arrive at a new "philosophy of interpersonal relatedness", which better reflects the "embodied mind" and signifies the end of Cartesian dualistic thinking. In this paper I review the evolution, development and neurobiology of the social brain - the anatomical and functional substrate for adaptive social behaviour and cognition. Functional imaging identifies fronto-temporal and fronto-parietal cortical networks as comprising the social brain, while the discovery of "mirror neurons" provides an understanding of social cognition at a cellular level. Patients with schizophrenia display abnormalities in a wide range of social cognition tasks such as emotion recognition, theory of mind and affective responsiveness. Furthermore, recent research indicates that schizophrenia is a disorder of functional and structural connectivity of social brain networks. These findings lend support to the claim that schizophrenia represents a costly by-product of social brain evolution in Homo sapiens. Individuals with this disorder find themselves seriously disadvantaged in the social arena and vulnerable to the stresses of their complex social environments. This state of "disembodiment" and interpersonal alienation is the core phenomenon of schizophrenia and the root cause of intolerable suffering in the lives of those affected.

  1. The social brain hypothesis of schizophrenia

    PubMed Central

    BURNS, JONATHAN

    2006-01-01

    The social brain hypothesis is a useful heuristic for understanding schizophrenia. It focuses attention on the core Bleulerian concept of autistic alienation and is consistent with well-replicated findings of social brain dysfunction in schizophrenia as well as contemporary theories of human cognitive and brain evolution. The contributions of Heidegger, Merleau-Ponty and Wittgenstein allow us to arrive at a new "philosophy of interpersonal relatedness", which better reflects the "embodied mind" and signifies the end of Cartesian dualistic thinking. In this paper I review the evolution, development and neurobiology of the social brain - the anatomical and functional substrate for adaptive social behaviour and cognition. Functional imaging identifies fronto-temporal and fronto-parietal cortical networks as comprising the social brain, while the discovery of "mirror neurons" provides an understanding of social cognition at a cellular level. Patients with schizophrenia display abnormalities in a wide range of social cognition tasks such as emotion recognition, theory of mind and affective responsiveness. Furthermore, recent research indicates that schizophrenia is a disorder of functional and structural connectivity of social brain networks. These findings lend support to the claim that schizophrenia represents a costly by-product of social brain evolution in Homo sapiens. Individuals with this disorder find themselves seriously disadvantaged in the social arena and vulnerable to the stresses of their complex social environments. This state of "disembodiment" and interpersonal alienation is the core phenomenon of schizophrenia and the root cause of intolerable suffering in the lives of those affected. PMID:16946939

  2. The Program Management Challenges of Web 2.0

    DTIC Science & Technology

    2010-06-01

    identifying and keeping abreast of the newly emerging technologies; their fast pace of evolution or modification, changing domain focus areas, their varied...definitive experts. No one knows what the future holds for network-centric materiel development . We are in the early stages of the Information Age and...led to the development and evolution of online Web-based communities and services such as auction houses, knowledge portals, social networking sites

  3. Face Patch Resting State Networks Link Face Processing to Social Cognition

    PubMed Central

    Schwiedrzik, Caspar M.; Zarco, Wilbert; Everling, Stefan; Freiwald, Winrich A.

    2015-01-01

    Faces transmit a wealth of social information. How this information is exchanged between face-processing centers and brain areas supporting social cognition remains largely unclear. Here we identify these routes using resting state functional magnetic resonance imaging in macaque monkeys. We find that face areas functionally connect to specific regions within frontal, temporal, and parietal cortices, as well as subcortical structures supporting emotive, mnemonic, and cognitive functions. This establishes the existence of an extended face-recognition system in the macaque. Furthermore, the face patch resting state networks and the default mode network in monkeys show a pattern of overlap akin to that between the social brain and the default mode network in humans: this overlap specifically includes the posterior superior temporal sulcus, medial parietal, and dorsomedial prefrontal cortex, areas supporting high-level social cognition in humans. Together, these results reveal the embedding of face areas into larger brain networks and suggest that the resting state networks of the face patch system offer a new, easily accessible venue into the functional organization of the social brain and into the evolution of possibly uniquely human social skills. PMID:26348613

  4. Does the Type of Event Influence How User Interactions Evolve on Twitter?

    PubMed Central

    del Val, Elena; Rebollo, Miguel; Botti, Vicente

    2015-01-01

    The number of people using on-line social networks as a new way of communication is continually increasing. The messages that a user writes in these networks and his/her interactions with other users leave a digital trace that is recorded. Thanks to this fact and the use of network theory, the analysis of messages, user interactions, and the complex structures that emerge is greatly facilitated. In addition, information generated in on-line social networks is labeled temporarily, which makes it possible to go a step further analyzing the dynamics of the interaction patterns. In this article, we present an analysis of the evolution of user interactions that take place in television, socio-political, conference, and keynote events on Twitter. Interactions have been modeled as networks that are annotated with the time markers. We study changes in the structural properties at both the network level and the node level. As a result of this analysis, we have detected patterns of network evolution and common structural features as well as differences among the events. PMID:25961305

  5. Extended evolution: A conceptual framework for integrating regulatory networks and niche construction

    PubMed Central

    Renn, Jürgen

    2015-01-01

    ABSTRACT This paper introduces a conceptual framework for the evolution of complex systems based on the integration of regulatory network and niche construction theories. It is designed to apply equally to cases of biological, social and cultural evolution. Within the conceptual framework we focus especially on the transformation of complex networks through the linked processes of externalization and internalization of causal factors between regulatory networks and their corresponding niches and argue that these are an important part of evolutionary explanations. This conceptual framework extends previous evolutionary models and focuses on several challenges, such as the path‐dependent nature of evolutionary change, the dynamics of evolutionary innovation and the expansion of inheritance systems. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 565–577, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc. PMID:26097188

  6. Impact of Social Punishment on Cooperative Behavior in Complex Networks

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xia, Cheng-Yi; Meloni, Sandro; Zhou, Chang-Song; Moreno, Yamir

    2013-10-01

    Social punishment is a mechanism by which cooperative individuals spend part of their resources to penalize defectors. In this paper, we study the evolution of cooperation in 2-person evolutionary games on networks when a mechanism for social punishment is introduced. Specifically, we introduce a new kind of role, punisher, which is aimed at reducing the earnings of defectors by applying to them a social fee. Results from numerical simulations show that different equilibria allowing the three strategies to coexist are possible as well as that social punishment further enhance the robustness of cooperation. Our results are confirmed for different network topologies and two evolutionary games. In addition, we analyze the microscopic mechanisms that give rise to the observed macroscopic behaviors in both homogeneous and heterogeneous networks. Our conclusions might provide additional insights for understanding the roots of cooperation in social systems.

  7. Link prediction measures considering different neighbors’ effects and application in social networks

    NASA Astrophysics Data System (ADS)

    Luo, Peng; Wu, Chong; Li, Yongli

    Link prediction measures have been attracted particular attention in the field of mathematical physics. In this paper, we consider the different effects of neighbors in link prediction and focus on four different situations: only consider the individual’s own effects; consider the effects of individual, neighbors and neighbors’ neighbors; consider the effects of individual, neighbors, neighbors’ neighbors, neighbors’ neighbors’ neighbors and neighbors’ neighbors’ neighbors’ neighbors; consider the whole network participants’ effects. Then, according to the four situations, we present our link prediction models which also take the effects of social characteristics into consideration. An artificial network is adopted to illustrate the parameter estimation based on logistic regression. Furthermore, we compare our methods with the some other link prediction methods (LPMs) to examine the validity of our proposed model in online social networks. The results show the superior of our proposed link prediction methods compared with others. In the application part, our models are applied to study the social network evolution and used to recommend friends and cooperators in social networks.

  8. The Evolution of Recent Research on Catalan Literature through the Production of PhD Theses: A Bibliometric and Social Network Analysis

    ERIC Educational Resources Information Center

    Ardanuy, Jordi; Urbano, Cristobal; Quintana, Lluis

    2009-01-01

    Introduction: This paper studies the situation of research on Catalan literature between 1976 and 2003 by carrying out a bibliometric and social network analysis of PhD theses defended in Spain. It has a dual aim: to present interesting results for the discipline and to demonstrate the methodological efficacy of scientometric tools in the…

  9. Burstiness and tie activation strategies in time-varying social networks.

    PubMed

    Ubaldi, Enrico; Vezzani, Alessandro; Karsai, Márton; Perra, Nicola; Burioni, Raffaella

    2017-04-13

    The recent developments in the field of social networks shifted the focus from static to dynamical representations, calling for new methods for their analysis and modelling. Observations in real social systems identified two main mechanisms that play a primary role in networks' evolution and influence ongoing spreading processes: the strategies individuals adopt when selecting between new or old social ties, and the bursty nature of the social activity setting the pace of these choices. We introduce a time-varying network model accounting both for ties selection and burstiness and we analytically study its phase diagram. The interplay of the two effects is non trivial and, interestingly, the effects of burstiness might be suppressed in regimes where individuals exhibit a strong preference towards previously activated ties. The results are tested against numerical simulations and compared with two empirical datasets with very good agreement. Consequently, the framework provides a principled method to classify the temporal features of real networks, and thus yields new insights to elucidate the effects of social dynamics on spreading processes.

  10. Coupling effect of nodes popularity and similarity on social network persistence

    PubMed Central

    Jin, Xiaogang; Jin, Cheng; Huang, Jiaxuan; Min, Yong

    2017-01-01

    Network robustness represents the ability of networks to withstand failures and perturbations. In social networks, maintenance of individual activities, also called persistence, is significant towards understanding robustness. Previous works usually consider persistence on pre-generated network structures; while in social networks, the network structure is growing with the cascading inactivity of existed individuals. Here, we address this challenge through analysis for nodes under a coevolution model, which characterizes individual activity changes under three network growth modes: following the descending order of nodes’ popularity, similarity or uniform random. We show that when nodes possess high spontaneous activities, a popularity-first growth mode obtains highly persistent networks; otherwise, with low spontaneous activities, a similarity-first mode does better. Moreover, a compound growth mode, with the consecutive joining of similar nodes in a short period and mixing a few high popularity nodes, obtains the highest persistence. Therefore, nodes similarity is essential for persistent social networks, while properly coupling popularity with similarity further optimizes the persistence. This demonstrates the evolution of nodes activity not only depends on network topology, but also their connective typology. PMID:28220840

  11. Coupling effect of nodes popularity and similarity on social network persistence

    NASA Astrophysics Data System (ADS)

    Jin, Xiaogang; Jin, Cheng; Huang, Jiaxuan; Min, Yong

    2017-02-01

    Network robustness represents the ability of networks to withstand failures and perturbations. In social networks, maintenance of individual activities, also called persistence, is significant towards understanding robustness. Previous works usually consider persistence on pre-generated network structures; while in social networks, the network structure is growing with the cascading inactivity of existed individuals. Here, we address this challenge through analysis for nodes under a coevolution model, which characterizes individual activity changes under three network growth modes: following the descending order of nodes’ popularity, similarity or uniform random. We show that when nodes possess high spontaneous activities, a popularity-first growth mode obtains highly persistent networks; otherwise, with low spontaneous activities, a similarity-first mode does better. Moreover, a compound growth mode, with the consecutive joining of similar nodes in a short period and mixing a few high popularity nodes, obtains the highest persistence. Therefore, nodes similarity is essential for persistent social networks, while properly coupling popularity with similarity further optimizes the persistence. This demonstrates the evolution of nodes activity not only depends on network topology, but also their connective typology.

  12. Coupling effect of nodes popularity and similarity on social network persistence.

    PubMed

    Jin, Xiaogang; Jin, Cheng; Huang, Jiaxuan; Min, Yong

    2017-02-21

    Network robustness represents the ability of networks to withstand failures and perturbations. In social networks, maintenance of individual activities, also called persistence, is significant towards understanding robustness. Previous works usually consider persistence on pre-generated network structures; while in social networks, the network structure is growing with the cascading inactivity of existed individuals. Here, we address this challenge through analysis for nodes under a coevolution model, which characterizes individual activity changes under three network growth modes: following the descending order of nodes' popularity, similarity or uniform random. We show that when nodes possess high spontaneous activities, a popularity-first growth mode obtains highly persistent networks; otherwise, with low spontaneous activities, a similarity-first mode does better. Moreover, a compound growth mode, with the consecutive joining of similar nodes in a short period and mixing a few high popularity nodes, obtains the highest persistence. Therefore, nodes similarity is essential for persistent social networks, while properly coupling popularity with similarity further optimizes the persistence. This demonstrates the evolution of nodes activity not only depends on network topology, but also their connective typology.

  13. Applying gene regulatory network logic to the evolution of social behavior.

    PubMed

    Baran, Nicole M; McGrath, Patrick T; Streelman, J Todd

    2017-06-06

    Animal behavior is ultimately the product of gene regulatory networks (GRNs) for brain development and neural networks for brain function. The GRN approach has advanced the fields of genomics and development, and we identify organizational similarities between networks of genes that build the brain and networks of neurons that encode brain function. In this perspective, we engage the analogy between developmental networks and neural networks, exploring the advantages of using GRN logic to study behavior. Applying the GRN approach to the brain and behavior provides a quantitative and manipulative framework for discovery. We illustrate features of this framework using the example of social behavior and the neural circuitry of aggression.

  14. Punctuated equilibrium in the large-scale evolution of programming languages.

    PubMed

    Valverde, Sergi; Solé, Ricard V

    2015-06-06

    The analogies and differences between biological and cultural evolution have been explored by evolutionary biologists, historians, engineers and linguists alike. Two well-known domains of cultural change are language and technology. Both share some traits relating the evolution of species, but technological change is very difficult to study. A major challenge in our way towards a scientific theory of technological evolution is how to properly define evolutionary trees or clades and how to weight the role played by horizontal transfer of information. Here, we study the large-scale historical development of programming languages, which have deeply marked social and technological advances in the last half century. We analyse their historical connections using network theory and reconstructed phylogenetic networks. Using both data analysis and network modelling, it is shown that their evolution is highly uneven, marked by innovation events where new languages are created out of improved combinations of different structural components belonging to previous languages. These radiation events occur in a bursty pattern and are tied to novel technological and social niches. The method can be extrapolated to other systems and consistently captures the major classes of languages and the widespread horizontal design exchanges, revealing a punctuated evolutionary path. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Tracking the Evolution of Infrastructure Systems and Mass Responses Using Publically Available Data

    PubMed Central

    Guan, Xiangyang; Chen, Cynthia; Work, Dan

    2016-01-01

    Networks can evolve even on a short-term basis. This phenomenon is well understood by network scientists, but receive little attention in empirical literature involving real-world networks. On one hand, this is due to the deceitfully fixed topology of some networks such as many physical infrastructures, whose evolution is often deemed unlikely to occur in short term; on the other hand, the lack of data prohibits scientists from studying subjects such as social networks that seem likely to evolve on a short-term basis. We show that both networks—the infrastructure network and social network—are able to demonstrate evolutionary dynamics at the system level even in the short-term, characterized by shifting between different phases as predicted in network science. We develop a methodology of tracking the evolutionary dynamics of the two networks by incorporating flows and the microstructure of networks such as motifs. This approach is applied to the human interaction network and two transportation networks (subway and taxi) in the context of Hurricane Sandy, using publically available Twitter data and transportation data. Our result shows that significant changes in the system-level structure of networks can be detected on a continuous basis. This result provides a promising channel for real-time tracking in the future. PMID:27907061

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan; Hagberg, Aric; Hengartner, Nick

    We analyze component evolution in general random intersection graphs (RIGs) and give conditions on existence and uniqueness of the giant component. Our techniques generalize the existing methods for analysis on component evolution in RIGs. That is, we analyze survival and extinction properties of a dependent, inhomogeneous Galton-Watson branching process on general RIGs. Our analysis relies on bounding the branching processes and inherits the fundamental concepts from the study on component evolution in Erdos-Renyi graphs. The main challenge becomes from the underlying structure of RIGs, when the number of offsprings follows a binomial distribution with a different number of nodes andmore » different rate at each step during the evolution. RIGs can be interpreted as a model for large randomly formed non-metric data sets. Besides the mathematical analysis on component evolution, which we provide in this work, we perceive RIGs as an important random structure which has already found applications in social networks, epidemic networks, blog readership, or wireless sensor networks.« less

  17. Two classes of bipartite networks: nested biological and social systems.

    PubMed

    Burgos, Enrique; Ceva, Horacio; Hernández, Laura; Perazzo, R P J; Devoto, Mariano; Medan, Diego

    2008-10-01

    Bipartite graphs have received some attention in the study of social networks and of biological mutualistic systems. A generalization of a previous model is presented, that evolves the topology of the graph in order to optimally account for a given contact preference rule between the two guilds of the network. As a result, social and biological graphs are classified as belonging to two clearly different classes. Projected graphs, linking the agents of only one guild, are obtained from the original bipartite graph. The corresponding evolution of its statistical properties is also studied. An example of a biological mutualistic network is analyzed in detail, and it is found that the model provides a very good fitting of all the main statistical features. The model also provides a proper qualitative description of the same features observed in social webs, suggesting the possible reasons underlying the difference in the organization of these two kinds of bipartite networks.

  18. Multi-Relational Characterization of Dynamic Social Network Communities

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ru; Sundaram, Hari; Kelliher, Aisling

    The emergence of the mediated social web - a distributed network of participants creating rich media content and engaging in interactive conversations through Internet-based communication technologies - has contributed to the evolution of powerful social, economic and cultural change. Online social network sites and blogs, such as Facebook, Twitter, Flickr and LiveJournal, thrive due to their fundamental sense of "community". The growth of online communities offers both opportunities and challenges for researchers and practitioners. Participation in online communities has been observed to influence people's behavior in diverse ways ranging from financial decision-making to political choices, suggesting the rich potential for diverse applications. However, although studies on the social web have been extensive, discovering communities from online social media remains challenging, due to the interdisciplinary nature of this subject. In this article, we present our recent work on characterization of communities in online social media using computational approaches grounded on the observations from social science.

  19. Dynamic Trust Models between Users over Social Networks

    DTIC Science & Technology

    2016-03-30

    SUPPLEMENTARY NOTES 14. ABSTRACT In this project, by focusing on a number of word -of- mouth communication websites, we attempted to...analyzed evolution of trust networks in social media sites from a perspective of mediators. To this end, we proposed two stochastic models that...focusing on a number of word -of- mouth communication websites, we first attempt to construct dynamic trust models between users that enable to explain trust

  20. Gray matter volume of the anterior insular cortex and social networking.

    PubMed

    Spagna, Alfredo; Dufford, Alexander J; Wu, Qiong; Wu, Tingting; Zheng, Weihao; Coons, Edgar E; Hof, Patrick R; Hu, Bin; Wu, Yanhong; Fan, Jin

    2018-05-01

    In human life, social context requires the engagement in complex interactions among individuals as the dynamics of social networks. The evolution of the brain as the neurological basis of the mind must be crucial in supporting social networking. Although the relationship between social networking and the amygdala, a small but core region for emotion processing, has been reported, other structures supporting sophisticated social interactions must be involved and need to be identified. In this study, we examined the relationship between morphology of the anterior insular cortex (AIC), a structure involved in basic and high-level cognition, and social networking. Two independent cohorts of individuals (New York group n = 50, Beijing group n = 100) were recruited. Structural magnetic resonance images were acquired and the social network index (SNI), a composite measure summarizing an individual's network diversity, size, and complexity, was measured. The association between morphological features of the AIC, in addition to amygdala, and the SNI was examined. Positive correlations between the measures of the volume as well as sulcal depth of the AIC and the SNI were found in both groups, while a significant positive correlation between the volume of the amygdala and the SNI was only found in the New York group. The converging results from the two groups suggest that the AIC supports network-level social interactions. © 2018 Wiley Periodicals, Inc.

  1. Locating privileged spreaders on an online social network.

    PubMed

    Borge-Holthoefer, Javier; Rivero, Alejandro; Moreno, Yamir

    2012-06-01

    Social media have provided plentiful evidence of their capacity for information diffusion. Fads and rumors but also social unrest and riots travel fast and affect large fractions of the population participating in online social networks (OSNs). This has spurred much research regarding the mechanisms that underlie social contagion, and also who (if any) can unleash system-wide information dissemination. Access to real data, both regarding topology--the network of friendships--and dynamics--the actual way in which OSNs users interact, is crucial to decipher how the former facilitates the latter's success, understood as efficiency in information spreading. With the quantitative analysis that stems from complex network theory, we discuss who (and why) has privileged spreading capabilities when it comes to information diffusion. This is done considering the evolution of an episode of political protest which took place in Spain, spanning one month in 2011.

  2. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in the evolution of sociality.

    PubMed

    Raulo, Aura; Ruokolainen, Lasse; Lane, Avery; Amato, Katherine; Knight, Rob; Leigh, Steven; Stumpf, Rebecca; White, Bryan; Nelson, Karen E; Baden, Andrea L; Tecot, Stacey R

    2018-03-01

    Vertebrate gut microbiota form a key component of immunity and a dynamic link between an individual and the ecosystem. Microbiota might play a role in social systems as well, because microbes are transmitted during social contact and can affect host behaviour. Combining methods from behavioural and molecular research, we describe the relationship between social dynamics and gut microbiota of a group-living cooperative species of primate, the red-bellied lemur (Eulemur rubriventer). Specifically, we ask whether patterns of social contact (group membership, group size, position in social network, individual sociality) are associated with patterns of gut microbial composition (diversity and similarity) between individuals and across time. Red-bellied lemurs were found to have gut microbiota with slight temporal fluctuations and strong social group-specific composition. Contrary to expectations, individual sociality was negatively associated with gut microbial diversity. However, position within the social network predicted gut microbial composition. These results emphasize the role of the social environment in determining the microbiota of adult animals. Since social transmission of gut microbiota has the potential to enhance immunity, microbiota might have played an escalating role in the evolution of sociality. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  3. Fast Distributed Dynamics of Semantic Networks via Social Media.

    PubMed

    Carrillo, Facundo; Cecchi, Guillermo A; Sigman, Mariano; Slezak, Diego Fernández

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network.

  4. Fast Distributed Dynamics of Semantic Networks via Social Media

    PubMed Central

    Carrillo, Facundo; Cecchi, Guillermo A.; Sigman, Mariano; Fernández Slezak, Diego

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network. PMID:26074953

  5. Peer pressure and incentive mechanisms in social networks

    NASA Astrophysics Data System (ADS)

    Deng, Chuang; Ye, Chao; Wang, Lin; Rong, Zhihai; Wang, Xiaofan

    2018-01-01

    Cooperation can be viewed as a social norm that is expected in our society. In this work, a framework based on spatial public goods game theory is established to study how peer pressure and incentive mechanisms can influence the evolution of cooperation. A unified model with adjustable parameters is developed to represent the effects of pure Personal Mechanism, Personal Mechanism with peer pressure and Social Mechanism, which demonstrates that when the sum of rewards plus the peer pressure felt by defectors is larger than the effective cost of cooperation, cooperation can prevail. As the peer pressure is caused by other cooperators in a game, group size and network structure play an important role. In particular, larger group size and more heterogeneous structured population can make defectors feel more peer pressure, which will promote the evolution and sustainment of cooperation.

  6. SOCIAL SCIENCE EDUCATION CONSORTIUM. PUBLICATION 106, ANTHROPOLOGY.

    ERIC Educational Resources Information Center

    BOHANNAN, PAUL

    A CURRICULUM GUIDE OUTLINES THE MAJOR CONCEPTS, STRUCTURE, AND METHODS OF ANTHROPOLOGY FOR GRADES K-6. THE FOLLOWING UNIT AREAS ARE INCLUDED--(1) NEEDS AND NEED SATISFACTION, (2) HUMAN PERSONALITY, (3) SOCIAL GROUPS, (4) SOCIAL NETWORKS, (5) HUMAN CULTURE, (6) CHANGE AND EVOLUTION, AND (7) CURRENT CULTURAL CHANGES. A SUMMARY CHART PRESENTS A FLOW…

  7. Dynamic social community detection and its applications.

    PubMed

    Nguyen, Nam P; Dinh, Thang N; Shen, Yilin; Thai, My T

    2014-01-01

    Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods.

  8. Dynamic Social Community Detection and Its Applications

    PubMed Central

    Nguyen, Nam P.; Dinh, Thang N.; Shen, Yilin; Thai, My T.

    2014-01-01

    Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods. PMID:24722164

  9. Burstiness and tie activation strategies in time-varying social networks

    NASA Astrophysics Data System (ADS)

    Ubaldi, Enrico; Vezzani, Alessandro; Karsai, Márton; Perra, Nicola; Burioni, Raffaella

    2017-04-01

    The recent developments in the field of social networks shifted the focus from static to dynamical representations, calling for new methods for their analysis and modelling. Observations in real social systems identified two main mechanisms that play a primary role in networks’ evolution and influence ongoing spreading processes: the strategies individuals adopt when selecting between new or old social ties, and the bursty nature of the social activity setting the pace of these choices. We introduce a time-varying network model accounting both for ties selection and burstiness and we analytically study its phase diagram. The interplay of the two effects is non trivial and, interestingly, the effects of burstiness might be suppressed in regimes where individuals exhibit a strong preference towards previously activated ties. The results are tested against numerical simulations and compared with two empirical datasets with very good agreement. Consequently, the framework provides a principled method to classify the temporal features of real networks, and thus yields new insights to elucidate the effects of social dynamics on spreading processes.

  10. Trust and compactness in social network groups.

    PubMed

    De Meo, Pasquale; Ferrara, Emilio; Rosaci, Domenico; Sarné, Giuseppe M L

    2015-02-01

    Understanding the dynamics behind group formation and evolution in social networks is considered an instrumental milestone to better describe how individuals gather and form communities, how they enjoy and share the platform contents, how they are driven by their preferences/tastes, and how their behaviors are influenced by peers. In this context, the notion of compactness of a social group is particularly relevant. While the literature usually refers to compactness as a measure to merely determine how much members of a group are similar among each other, we argue that the mutual trustworthiness between the members should be considered as an important factor in defining such a term. In fact, trust has profound effects on the dynamics of group formation and their evolution: individuals are more likely to join with and stay in a group if they can trust other group members. In this paper, we propose a quantitative measure of group compactness that takes into account both the similarity and the trustworthiness among users, and we present an algorithm to optimize such a measure. We provide empirical results, obtained from the real social networks EPINIONS and CIAO, that compare our notion of compactness versus the traditional notion of user similarity, clearly proving the advantages of our approach.

  11. Decomposition-Based Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Social Networks

    PubMed Central

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms. PMID:24723806

  12. Decomposition-based multiobjective evolutionary algorithm for community detection in dynamic social networks.

    PubMed

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms.

  13. A Qualitative Study of Secondary School Teachers’ Perception of Social Network Analysis Metrics in the Context of Alcohol Consumption among Adolescents

    PubMed Central

    Quiroga, Enedina; Benavides, Carmen; Martín, Vicente

    2017-01-01

    Adolescence is a transitional period during which a number of changes occur. Social relationships established during this period influence adolescent behaviour and affect academic performance or alcohol consumption habits, among other issues. Teachers are very important actors in observing and guiding the evolution of their students, and should therefore have the appropriate knowledge and tools to gain insight into the complex social relationships that exist in their classes. The use of social network analysis (SNA) techniques may be helpful in order to study and monitor the evolution of these social networks. This study tries to understand how teachers perceive SNA metrics from an intuitive point of view. Using this information, useful tools could be created that allow teachers to use SNA techniques to improve their understanding of student relationships. A number of interviews with different teachers were held in secondary schools in Spain, allowing SNA concepts to be related to the everyday terms used by the teachers to characterize their students. Results from the study have an impact on questionnaire design for gathering data from students in order to perform an SNA analysis and on the design of software applications that can help teachers to understand the results of this analysis. PMID:29292718

  14. Model of community emergence in weighted social networks

    NASA Astrophysics Data System (ADS)

    Kumpula, J. M.; Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K.

    2009-04-01

    Over the years network theory has proven to be rapidly expanding methodology to investigate various complex systems and it has turned out to give quite unparalleled insight to their structure, function, and response through data analysis, modeling, and simulation. For social systems in particular the network approach has empirically revealed a modular structure due to interplay between the network topology and link weights between network nodes or individuals. This inspired us to develop a simple network model that could catch some salient features of mesoscopic community and macroscopic topology formation during network evolution. Our model is based on two fundamental mechanisms of network sociology for individuals to find new friends, namely cyclic closure and focal closure, which are mimicked by local search-link-reinforcement and random global attachment mechanisms, respectively. In addition we included to the model a node deletion mechanism by removing all its links simultaneously, which corresponds for an individual to depart from the network. Here we describe in detail the implementation of our model algorithm, which was found to be computationally efficient and produce many empirically observed features of large-scale social networks. Thus this model opens a new perspective for studying such collective social phenomena as spreading, structure formation, and evolutionary processes.

  15. Active influence in dynamical models of structural balance in social networks

    NASA Astrophysics Data System (ADS)

    Summers, Tyler H.; Shames, Iman

    2013-07-01

    We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.

  16. Legitimacy and status groups in financial markets.

    PubMed

    Preda, Alex

    2005-09-01

    Economic sociologists have argued that financial markets should be analysed as uncertainty-processing social networks and intermediary groups. Networks and intermediaries alone cannot confer legitimacy upon financial actors and transactions. Status groups are a solution to this problem. They emphasize reputation, honour and good social behaviour as stabilizers of collective action, as means of social control and as indicators of legitimacy. I examine here the emergence and evolution of status groups of brokers in London, New York and Paris, and show how emphasis on honour was used to legitimize financial transactions. I argue that financial markets should be conceived as networks, intermediary and status groups. In global, automated financial markets status groups like securities analysts are gaining in prominence.

  17. The interplay between social networks and culture: theoretically and among whales and dolphins.

    PubMed

    Cantor, Mauricio; Whitehead, Hal

    2013-05-19

    Culture is increasingly being understood as a driver of mammalian phenotypes. Defined as group-specific behaviour transmitted by social learning, culture is shaped by social structure. However, culture can itself affect social structure if individuals preferentially interact with others whose behaviour is similar, or cultural symbols are used to mark groups. Using network formalism, this interplay can be depicted by the coevolution of nodes and edges together with the coevolution of network topology and transmission patterns. We review attempts to model the links between the spread, persistence and diversity of culture and the network topology of non-human societies. We illustrate these processes using cetaceans. The spread of socially learned begging behaviour within a population of bottlenose dolphins followed the topology of the social network, as did the evolution of the song of the humpback whale between breeding areas. In three bottlenose dolphin populations, individuals preferentially associated with animals using the same socially learned foraging behaviour. Homogeneous behaviour within the tight, nearly permanent social structures of the large matrilineal whales seems to result from transmission bias, with cultural symbols marking social structures. We recommend the integration of studies of culture and society in species for which social learning is an important determinant of behaviour.

  18. The interplay between social networks and culture: theoretically and among whales and dolphins

    PubMed Central

    Cantor, Mauricio; Whitehead, Hal

    2013-01-01

    Culture is increasingly being understood as a driver of mammalian phenotypes. Defined as group-specific behaviour transmitted by social learning, culture is shaped by social structure. However, culture can itself affect social structure if individuals preferentially interact with others whose behaviour is similar, or cultural symbols are used to mark groups. Using network formalism, this interplay can be depicted by the coevolution of nodes and edges together with the coevolution of network topology and transmission patterns. We review attempts to model the links between the spread, persistence and diversity of culture and the network topology of non-human societies. We illustrate these processes using cetaceans. The spread of socially learned begging behaviour within a population of bottlenose dolphins followed the topology of the social network, as did the evolution of the song of the humpback whale between breeding areas. In three bottlenose dolphin populations, individuals preferentially associated with animals using the same socially learned foraging behaviour. Homogeneous behaviour within the tight, nearly permanent social structures of the large matrilineal whales seems to result from transmission bias, with cultural symbols marking social structures. We recommend the integration of studies of culture and society in species for which social learning is an important determinant of behaviour. PMID:23569288

  19. Selection to outsmart the germs: The evolution of disease recognition and social cognition.

    PubMed

    Kessler, Sharon E; Bonnell, Tyler R; Byrne, Richard W; Chapman, Colin A

    2017-07-01

    The emergence of providing care to diseased conspecifics must have been a turning point during the evolution of hominin sociality. On a population level, care may have minimized the costs of socially transmitted diseases at a time of increasing social complexity, although individual care-givers probably incurred increased transmission risks. We propose that care-giving likely originated within kin networks, where the costs may have been balanced by fitness increases obtained through caring for ill kin. We test a novel hypothesis of hominin cognitive evolution in which disease may have selected for the cognitive ability to recognize when a conspecific is infected. Because diseases may produce symptoms that are likely detectable via the perceptual-cognitive pathways integral to social cognition, we suggest that disease recognition and social cognition may have evolved together. Using agent-based modeling, we test 1) under what conditions disease can select for increasing disease recognition and care-giving among kin, 2) whether providing care produces greater selection for cognition than an avoidance strategy, and 3) whether care-giving alters the progression of the disease through the population. The greatest selection was produced by diseases with lower risks to the care-giver and prevalences low enough not to disrupt the kin networks. When care-giving and avoidance strategies were compared, only care-giving reduced the severity of the disease outbreaks and subsequent population crashes. The greatest selection for increased cognitive abilities occurred early in the model runs when the outbreaks and population crashes were most severe. Therefore, over the course of human evolution, repeated introductions of novel diseases into naïve populations could have produced sustained selection for increased disease recognition and care-giving behavior, leading to the evolution of increased cognition, social complexity, and, eventually, medical care in humans. Finally, we lay out predictions derived from our disease recognition hypothesis that we encourage paleoanthropologists, bioarchaeologists, primatologists, and paleogeneticists to test. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Topology Analysis of Social Networks Extracted from Literature

    PubMed Central

    2015-01-01

    In a world where complex networks are an increasingly important part of science, it is interesting to question how the new reading of social realities they provide applies to our cultural background and in particular, popular culture. Are authors of successful novels able to reproduce social networks faithful to the ones found in reality? Is there any common trend connecting an author’s oeuvre, or a genre of fiction? Such an analysis could provide new insight on how we, as a culture, perceive human interactions and consume media. The purpose of the work presented in this paper is to define the signature of a novel’s story based on the topological analysis of its social network of characters. For this purpose, an automated tool was built that analyses the dialogs in novels, identifies characters and computes their relationships in a time-dependent manner in order to assess the network’s evolution over the course of the story. PMID:26039072

  1. The Evolution of Your Success Lies at the Centre of Your Co-Authorship Network

    PubMed Central

    Servia-Rodríguez, Sandra; Noulas, Anastasios; Mascolo, Cecilia; Fernández-Vilas, Ana; Díaz-Redondo, Rebeca P.

    2015-01-01

    Collaboration among scholars and institutions is progressively becoming essential to the success of research grant procurement and to allow the emergence and evolution of scientific disciplines. Our work focuses on analysing if the volume of collaborations of one author together with the relevance of his collaborators is somewhat related to his research performance over time. In order to prove this relation we collected the temporal distributions of scholars’ publications and citations from the Google Scholar platform and the co-authorship network (of Computer Scientists) underlying the well-known DBLP bibliographic database. By the application of time series clustering, social network analysis and non-parametric statistics, we observe that scholars with similar publications (citations) patterns also tend to have a similar centrality in the co-authorship network. To our knowledge, this is the first work that considers success evolution with respect to co-authorship. PMID:25760732

  2. Environmental Certification of Forests: The Evolution of Environmental Governance in a Commodity Network

    ERIC Educational Resources Information Center

    Klooster, Dan

    2005-01-01

    Non-governmental organizations (NGOs) influence social and environmental aspects of commodity production through certification schemes like organic and forest certification. As these become mainstream, however, they are often compromised by the interests of more powerful agents. Utilizing the concept of governance in global commodity networks,…

  3. Experimental resource pulses influence social-network dynamics and the potential for information flow in tool-using crows

    PubMed Central

    St Clair, James J. H.; Burns, Zackory T.; Bettaney, Elaine M.; Morrissey, Michael B.; Otis, Brian; Ryder, Thomas B.; Fleischer, Robert C.; James, Richard; Rutz, Christian

    2015-01-01

    Social-network dynamics have profound consequences for biological processes such as information flow, but are notoriously difficult to measure in the wild. We used novel transceiver technology to chart association patterns across 19 days in a wild population of the New Caledonian crow—a tool-using species that may socially learn, and culturally accumulate, tool-related information. To examine the causes and consequences of changing network topology, we manipulated the environmental availability of the crows' preferred tool-extracted prey, and simulated, in silico, the diffusion of information across field-recorded time-ordered networks. Here we show that network structure responds quickly to environmental change and that novel information can potentially spread rapidly within multi-family communities, especially when tool-use opportunities are plentiful. At the same time, we report surprisingly limited social contact between neighbouring crow communities. Such scale dependence in information-flow dynamics is likely to influence the evolution and maintenance of material cultures. PMID:26529116

  4. Impact of heterogeneous activity and community structure on the evolutionary success of cooperators in social networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-Xi; Rong, Zhihai; Yang, Han-Xin

    2015-01-01

    Recent empirical studies suggest that heavy-tailed distributions of human activities are universal in real social dynamics [L. Muchnik, S. Pei, L. C. Parra, S. D. S. Reis, J. S. Andrade Jr., S. Havlin, and H. A. Makse, Sci. Rep. 3, 1783 (2013), 10.1038/srep01783]. On the other hand, community structure is ubiquitous in biological and social networks [M. E. J. Newman, Nat. Phys. 8, 25 (2012), 10.1038/nphys2162]. Motivated by these facts, we here consider the evolutionary prisoner's dilemma game taking place on top of a real social network to investigate how the community structure and the heterogeneity in activity of individuals affect the evolution of cooperation. In particular, we account for a variation of the birth-death process (which can also be regarded as a proportional imitation rule from a social point of view) for the strategy updating under both weak and strong selection (meaning the payoffs harvested from games contribute either slightly or heavily to the individuals' performance). By implementing comparative studies, where the players are selected either randomly or in terms of their actual activities to play games with their immediate neighbors, we figure out that heterogeneous activity benefits the emergence of collective cooperation in a harsh environment (the action for cooperation is costly) under strong selection, whereas it impairs the formation of altruism under weak selection. Moreover, we find that the abundance of communities in the social network can evidently foster the formation of cooperation under strong selection, in contrast to the games evolving on randomized counterparts. Our results are therefore helpful for us to better understand the evolution of cooperation in real social systems.

  5. The many faces of graph dynamics

    NASA Astrophysics Data System (ADS)

    Pignolet, Yvonne Anne; Roy, Matthieu; Schmid, Stefan; Tredan, Gilles

    2017-06-01

    The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today about the network dynamics: indeed, complex networks in reality are not static, but rather dynamically evolve over time. Our paper is motivated by the empirical observation that network evolution patterns seem far from random, but exhibit structure. Moreover, the specific patterns appear to depend on the network type, contradicting the existence of a ‘one fits it all’ model. However, we still lack observables to quantify these intuitions, as well as metrics to compare graph evolutions. Such observables and metrics are needed for extrapolating or predicting evolutions, as well as for interpolating graph evolutions. To explore the many faces of graph dynamics and to quantify temporal changes, this paper suggests to build upon the concept of centrality, a measure of node importance in a network. In particular, we introduce the notion of centrality distance, a natural similarity measure for two graphs which depends on a given centrality, characterizing the graph type. Intuitively, centrality distances reflect the extent to which (non-anonymous) node roles are different or, in case of dynamic graphs, have changed over time, between two graphs. We evaluate the centrality distance approach for five evolutionary models and seven real-world social and physical networks. Our results empirically show the usefulness of centrality distances for characterizing graph dynamics compared to a null-model of random evolution, and highlight the differences between the considered scenarios. Interestingly, our approach allows us to compare the dynamics of very different networks, in terms of scale and evolution speed.

  6. Construct - A Multi-Agent Network Model for the Co-Evolution of Agents and Socio-Cultural Environments

    DTIC Science & Technology

    2004-05-01

    grounded in structuration theory (Giddens, 1984), social information processing theory (Salancik and Pfeffer, 1978) and symbolic interactionism (Manis...and B. N. Meltzer. Symbolic interaction: A reader in social psychology. Boston: Allyn & Bacon. 1978 Mcpherson, J. M. and L. Smith-Lovin

  7. The SNAP Platform: Social Networking for Academic Purposes

    ERIC Educational Resources Information Center

    Kirkwood, Keith

    2010-01-01

    Purpose: This paper aims to introduce an enterprise-wide Web 2.0 learning support platform--SNAP, developed at Victoria University in Melbourne, Australia. Design/methodology/approach: Pointing to the evolution of the social web, the paper discusses the potential for the development of e-learning platforms that employ constructivist, connectivist,…

  8. The co-evolution of cultures, social network communities, and agent locations in an extension of Axelrod’s model of cultural dissemination

    NASA Astrophysics Data System (ADS)

    Pfau, Jens; Kirley, Michael; Kashima, Yoshihisa

    2013-01-01

    We introduce a variant of the Axelrod model of cultural dissemination in which agents change their physical locations, social links, and cultures. Numerical simulations are used to investigate the evolution of social network communities and the cultural diversity within and between these communities. An analysis of the simulation results shows that an initial peak in the cultural diversity within network communities is evident before agents segregate into a final configuration of culturally homogeneous communities. Larger long-range interaction probabilities facilitate the initial emergence of culturally diverse network communities, which leads to a more pronounced initial peak in cultural diversity within communities. At equilibrium, the number of communities, and hence cultures, increases when the initial cultural diversity increases. However, the number of communities decreases when the lattice size or population density increases. A phase transition between two regimes of initial cultural diversity is evident. For initial diversities below a critical value, a single network community and culture emerges that dominates the population. For initial diversities above the critical value, multiple culturally homogeneous communities emerge. The critical value of initial diversity at which this transition occurs increases with increasing lattice size and population density and generally with increasing absolute population size. We conclude that larger initial diversities promote cultural heterogenization, while larger lattice sizes, population densities, and in fact absolute population sizes promote homogenization.

  9. A mixing evolution model for bidirectional microblog user networks

    NASA Astrophysics Data System (ADS)

    Yuan, Wei-Guo; Liu, Yun

    2015-08-01

    Microblogs have been widely used as a new form of online social networking. Based on the user profile data collected from Sina Weibo, we find that the number of microblog user bidirectional friends approximately corresponds with the lognormal distribution. We then build two microblog user networks with real bidirectional relationships, both of which have not only small-world and scale-free but also some special properties, such as double power-law degree distribution, disassortative network, hierarchical and rich-club structure. Moreover, by detecting the community structures of the two real networks, we find both of their community scales follow an exponential distribution. Based on the empirical analysis, we present a novel evolution network model with mixed connection rules, including lognormal fitness preferential and random attachment, nearest neighbor interconnected in the same community, and global random associations in different communities. The simulation results show that our model is consistent with real network in many topology features.

  10. Early social networks predict survival in wild bottlenose dolphins.

    PubMed

    Stanton, Margaret A; Mann, Janet

    2012-01-01

    A fundamental question concerning group-living species is what factors influence the evolution of sociality. Although several studies link adult social bonds to fitness, social patterns and relationships are often formed early in life and are also likely to have fitness consequences, particularly in species with lengthy developmental periods, extensive social learning, and early social bond-formation. In a longitudinal study of bottlenose dolphins (Tursiops sp.), calf social network structure, specifically the metric eigenvector centrality, predicted juvenile survival in males. Additionally, male calves that died post-weaning had stronger ties to juvenile males than surviving male calves, suggesting that juvenile males impose fitness costs on their younger counterparts. Our study indicates that selection is acting on social traits early in life and highlights the need to examine the costs and benefits of social bonds during formative life history stages.

  11. Modeling rises and falls in money addicted social hierarchies

    NASA Astrophysics Data System (ADS)

    Dybiec, Bartłomiej; Mitarai, Namiko; Sneppen, Kim

    2014-08-01

    The emergence of large communities is inherently associated with the creation of social structures. Connections between individuals are indispensable for cooperative action of agents building social groups. Moreover, social groups usually evolve and their structure changes over time. Consequently, an underlying network connecting individuals is not static, reflecting an ongoing adaptation to new conditions. The evolution of social connections is influenced by the relative position (hierarchy) of individuals building the system as well as by the availability of resources. We explore this aspect of human ambition by modeling the interplay of social networking and an uneven distribution of external resources. The model naturally generates social hierarchies. Remarkably, this social structure exhibits a rise-and-fall behavior. A well pronounced quasi-periodic dynamics, which is closely associated with the dissipation of resources that are needed to sustain the social links, is revealed.

  12. Interactions among human behavior, social networks, and societal infrastructures: A Case Study in Computational Epidemiology

    NASA Astrophysics Data System (ADS)

    Barrett, Christopher L.; Bisset, Keith; Chen, Jiangzhuo; Eubank, Stephen; Lewis, Bryan; Kumar, V. S. Anil; Marathe, Madhav V.; Mortveit, Henning S.

    Human behavior, social networks, and the civil infrastructures are closely intertwined. Understanding their co-evolution is critical for designing public policies and decision support for disaster planning. For example, human behaviors and day to day activities of individuals create dense social interactions that are characteristic of modern urban societies. These dense social networks provide a perfect fabric for fast, uncontrolled disease propagation. Conversely, people’s behavior in response to public policies and their perception of how the crisis is unfolding as a result of disease outbreak can dramatically alter the normally stable social interactions. Effective planning and response strategies must take these complicated interactions into account. In this chapter, we describe a computer simulation based approach to study these issues using public health and computational epidemiology as an illustrative example. We also formulate game-theoretic and stochastic optimization problems that capture many of the problems that we study empirically.

  13. Wild cricket social networks show stability across generations.

    PubMed

    Fisher, David N; Rodríguez-Muñoz, Rolando; Tregenza, Tom

    2016-07-27

    A central part of an animal's environment is its interactions with conspecifics. There has been growing interest in the potential to capture these interactions in the form of a social network. Such networks can then be used to examine how relationships among individuals affect ecological and evolutionary processes. However, in the context of selection and evolution, the utility of this approach relies on social network structures persisting across generations. This is an assumption that has been difficult to test because networks spanning multiple generations have not been available. We constructed social networks for six annual generations over a period of eight years for a wild population of the cricket Gryllus campestris. Through the use of exponential random graph models (ERGMs), we found that the networks in any given year were able to predict the structure of networks in other years for some network characteristics. The capacity of a network model of any given year to predict the networks of other years did not depend on how far apart those other years were in time. Instead, the capacity of a network model to predict the structure of a network in another year depended on the similarity in population size between those years. Our results indicate that cricket social network structure resists the turnover of individuals and is stable across generations. This would allow evolutionary processes that rely on network structure to take place. The influence of network size may indicate that scaling up findings on social behaviour from small populations to larger ones will be difficult. Our study also illustrates the utility of ERGMs for comparing networks, a task for which an effective approach has been elusive.

  14. Selection for territory acquisition is modulated by social network structure in a wild songbird

    PubMed Central

    Farine, D R; Sheldon, B C

    2015-01-01

    The social environment may be a key mediator of selection that operates on animals. In many cases, individuals may experience selection not only as a function of their phenotype, but also as a function of the interaction between their phenotype and the phenotypes of the conspecifics they associate with. For example, when animals settle after dispersal, individuals may benefit from arriving early, but, in many cases, these benefits will be affected by the arrival times of other individuals in their local environment. We integrated a recently described method for calculating assortativity on weighted networks, which is the correlation between an individual's phenotype and that of its associates, into an existing framework for measuring the magnitude of social selection operating on phenotypes. We applied this approach to large-scale data on social network structure and the timing of arrival into the breeding area over three years. We found that late-arriving individuals had a reduced probability of breeding. However, the probability of breeding was also influenced by individuals’ social networks. Associating with late-arriving conspecifics increased the probability of successfully acquiring a breeding territory. Hence, social selection could offset the effects of nonsocial selection. Given parallel theoretical developments of the importance of local network structure on population processes, and increasing data being collected on social networks in free-living populations, the integration of these concepts could yield significant insights into social evolution. PMID:25611344

  15. Social influence in small-world networks

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Mao, Xiao-Ming; Ouyang, Qi

    2002-12-01

    We report on our numerical studies of the Axelrod model for social influence in small-world networks. Our simulation results show that the topology of the network has a crucial effect on the evolution of cultures. As the randomness of the network increases, the system undergoes a transition from a highly fragmented phase to a uniform phase. We also find that the power-law distribution at the transition point, reported by Castellano et al, is not a critical phenomenon; it exists not only at the onset of transition but also for almost any control parameters. All these power-law distributions are stable against perturbations. A mean-field theory is developed to explain these phenomena.

  16. Cooperation and the evolution of intelligence

    PubMed Central

    McNally, Luke; Brown, Sam P.; Jackson, Andrew L.

    2012-01-01

    The high levels of intelligence seen in humans, other primates, certain cetaceans and birds remain a major puzzle for evolutionary biologists, anthropologists and psychologists. It has long been held that social interactions provide the selection pressures necessary for the evolution of advanced cognitive abilities (the ‘social intelligence hypothesis’), and in recent years decision-making in the context of cooperative social interactions has been conjectured to be of particular importance. Here we use an artificial neural network model to show that selection for efficient decision-making in cooperative dilemmas can give rise to selection pressures for greater cognitive abilities, and that intelligent strategies can themselves select for greater intelligence, leading to a Machiavellian arms race. Our results provide mechanistic support for the social intelligence hypothesis, highlight the potential importance of cooperative behaviour in the evolution of intelligence and may help us to explain the distribution of cooperation with intelligence across taxa. PMID:22496188

  17. From degree-correlated to payoff-correlated activity for an optimal resolution of social dilemmas

    NASA Astrophysics Data System (ADS)

    Aleta, Alberto; Meloni, Sandro; Perc, Matjaž; Moreno, Yamir

    2016-12-01

    An active participation of players in evolutionary games depends on several factors, ranging from personal stakes to the properties of the interaction network. Diverse activity patterns thus have to be taken into account when studying the evolution of cooperation in social dilemmas. Here we study the weak prisoner's dilemma game, where the activity of each player is determined in a probabilistic manner either by its degree or by its payoff. While degree-correlated activity introduces cascading failures of cooperation that are particularly severe on scale-free networks with frequently inactive hubs, payoff-correlated activity provides a more nuanced activity profile, which ultimately hinders systemic breakdowns of cooperation. To determine optimal conditions for the evolution of cooperation, we introduce an exponential decay to payoff-correlated activity that determines how fast the activity of a player returns to its default state. We show that there exists an intermediate decay rate at which the resolution of the social dilemma is optimal. This can be explained by the emerging activity patterns of players, where the inactivity of hubs is compensated effectively by the increased activity of average-degree players, who through their collective influence in the network sustain a higher level of cooperation. The sudden drops in the fraction of cooperators observed with degree-correlated activity therefore vanish, and so does the need for the lengthy spatiotemporal reorganization of compact cooperative clusters. The absence of such asymmetric dynamic instabilities thus leads to an optimal resolution of social dilemmas, especially when the conditions for the evolution of cooperation are strongly adverse.

  18. The evolutionary advantage of limited network knowledge.

    PubMed

    Larson, Jennifer M

    2016-06-07

    Groups of individuals have social networks that structure interactions within the groups; evolutionary theory increasingly uses this fact to explain the emergence of cooperation (Eshel and Cavalli-Sforza, 1982; Boyd and Richerson, 1988, 1989; Ohtsuki et al., 2006; Nowak et al., 2010; Van Veelen et al., 2012). This approach has resulted in a number of important insights for the evolution of cooperation in the biological and social sciences, but omits a key function of social networks that has persisted throughout recent evolutionary history (Apicella et al., 2012): their role in transmitting gossip about behavior within a group. Accounting for this well-established role of social networks among rational agents in a setting of indirect reciprocity not only shows a new mechanism by which the structure of networks is fitness-relevant, but also reveals that knowledge of social networks can be fitness-relevant as well. When groups enforce cooperation by sanctioning peers whom gossip reveals to have deviated, individuals in certain peripheral network positions are tempting targets of uncooperative behavior because gossip they share about misbehavior spreads slowly through the network. The ability to identify these individuals creates incentives to behave uncooperatively. Consequently, groups comprised of individuals who knew precise information about their social networks would be at a fitness disadvantage relative to groups of individuals with a coarser knowledge of their networks. Empirical work has consistently shown that modern humans know little about the structure of their own social networks and perform poorly when tasked with learning new ones. This robust empirical regularity may be the product of natural selection in an environment of strong selective pressure at the group level. Imprecise views of networks make enforcing cooperation easier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Social contact patterns can buffer costs of forgetting in the evolution of cooperation.

    PubMed

    Stevens, Jeffrey R; Woike, Jan K; Schooler, Lael J; Lindner, Stefan; Pachur, Thorsten

    2018-06-13

    Analyses of the evolution of cooperation often rely on two simplifying assumptions: (i) individuals interact equally frequently with all social network members and (ii) they accurately remember each partner's past cooperation or defection. Here, we examine how more realistic, skewed patterns of contact-in which individuals interact primarily with only a subset of their network's members-influence cooperation. In addition, we test whether skewed contact patterns can counteract the decrease in cooperation caused by memory errors (i.e. forgetting). Finally, we compare two types of memory error that vary in whether forgotten interactions are replaced with random actions or with actions from previous encounters. We use evolutionary simulations of repeated prisoner's dilemma games that vary agents' contact patterns, forgetting rates and types of memory error. We find that highly skewed contact patterns foster cooperation and also buffer the detrimental effects of forgetting. The type of memory error used also influences cooperation rates. Our findings reveal previously neglected but important roles of contact pattern, type of memory error and the interaction of contact pattern and memory on cooperation. Although cognitive limitations may constrain the evolution of cooperation, social contact patterns can counteract some of these constraints. © 2018 The Author(s).

  20. The Private Lives of Minerals: Social Network Analysis Applied to Mineralogy and Petrology

    NASA Astrophysics Data System (ADS)

    Hazen, R. M.; Morrison, S. M.; Fox, P. A.; Golden, J. J.; Downs, R. T.; Eleish, A.; Prabhu, A.; Li, C.; Liu, C.

    2016-12-01

    Comprehensive databases of mineral species (rruff.info/ima) and their geographic localities and co-existing mineral assemblages (mindat.org) reveal patterns of mineral association and distribution that mimic social networks, as commonly applied to such varied topics as social media interactions, the spread of disease, terrorism networks, and research collaborations. Applying social network analysis (SNA) to common assemblages of rock-forming igneous and regional metamorphic mineral species, we find patterns of cohesion, segregation, density, and cliques that are similar to those of human social networks. These patterns highlight classic trends in lithologic evolution and are illustrated with sociograms, in which mineral species are the "nodes" and co-existing species form "links." Filters based on chemistry, age, structural group, and other parameters highlight visually both familiar and new aspects of mineralogy and petrology. We quantify sociograms with SNA metrics, including connectivity (based on the frequency of co-occurrence of mineral pairs), homophily (the extent to which co-existing mineral species share compositional and other characteristics), network closure (based on the degree of network interconnectivity), and segmentation (as revealed by isolated "cliques" of mineral species). Exploitation of large and growing mineral data resources with SNA offers promising avenues for discovering previously hidden trends in mineral diversity-distribution systematics, as well as providing new pedagogical approaches to teaching mineralogy and petrology.

  1. Consistent individual differences in the social phenotypes of wild great tits, Parus major

    PubMed Central

    Aplin, L.M.; Firth, J.A.; Farine, D.R.; Voelkl, B.; Crates, R.A.; Culina, A.; Garroway, C.J.; Hinde, C.A.; Kidd, L.R.; Psorakis, I.; Milligan, N.D.; Radersma, R.; Verhelst, B.L.; Sheldon, B.C.

    2015-01-01

    Despite growing interest in animal social networks, surprisingly little is known about whether individuals are consistent in their social network characteristics. Networks are rarely repeatedly sampled; yet an assumption of individual consistency in social behaviour is often made when drawing conclusions about the consequences of social processes and structure. A characterization of such social phenotypes is therefore vital to understanding the significance of social network structure for individual fitness outcomes, and for understanding the evolution and ecology of individual variation in social behaviour more broadly. Here, we measured foraging associations over three winters in a large PIT-tagged population of great tits, and used a range of social network metrics to quantify individual variation in social behaviour. We then examined repeatability in social behaviour over both short (week to week) and long (year to year) timescales, and investigated variation in repeatability across age and sex classes. Social behaviours were significantly repeatable across all timescales, with the highest repeatability observed in group size choice and unweighted degree, a measure of gregariousness. By conducting randomizations to control for the spatial and temporal distribution of individuals, we further show that differences in social phenotypes were not solely explained by within-population variation in local densities, but also reflected fine-scale variation in social decision making. Our results provide rare evidence of stable social phenotypes in a wild population of animals. Such stable social phenotypes can be targets of selection and may have important fitness consequences, both for individuals and for their social-foraging associates. PMID:26512142

  2. Evolution of public opinions in closed societies influenced by broadcast media

    NASA Astrophysics Data System (ADS)

    Fan, Kangqi; Pedrycz, Witold

    2017-04-01

    Studies on opinion evolution in a closed society can help people design strategies to emancipate from the control of public opinions and prevent the diffusion of extremism. In this work, the social judgment based opinion (SJBO) dynamics model is extended to explore the collective debates in a closed system that consists of a social network and a broadcast network. The broadcast network is a group of channels through which the so-called broadcast media or mainstream media transmit the same opinion to social agents. Numerical experiments show that the broadcast media can assimilate most of the agents when contrarians are absent. Including agents' diverse attitudes toward the broadcast media, although downsizes the supporters of broadcast media, fails to make contrarians outnumber the supporters. The dominance of broadcast media in a closed system can be overturned by introducing a small number of inflexible contrarians. Influenced by the competition between contrarians and broadcast media, few centrists survive the collective debates. The scale of supporters is maximized when agents neither have their own initial opinions nor have access to the contrarians, whereas the development of contrarians can be boosted when agents start with non-zero opinions and the repulsion to broadcast media is taken into consideration.

  3. Global Social Media Directory. A Resource Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noonan, Christine F.; Piatt, Andrew W.

    Social media platforms are internet-based applications focused on broadcasting user-generated content. While primarily web-based, these services are increasingly available on mobile platforms. Communities and individuals share information, photos, music, videos, provide commentary and ratings/reviews, and more. In essence, social media is about sharing information, consuming information, and repurposing content. Social media technologies identified in this report are centered on social networking services, media sharing, blogging and microblogging. The purpose of this Resource Guide is to provide baseline information about use and application of social media platforms around the globe. It is not intended to be comprehensive as social media evolvesmore » on an almost daily basis. The long-term goal of this work is to identify social media information about all geographic regions and nations. The primary objective is that of understanding the evolution and spread of social networking and user-generated content technologies internationally.« less

  4. Collective Dynamics of Belief Evolution under Cognitive Coherence and Social Conformity.

    PubMed

    Rodriguez, Nathaniel; Bollen, Johan; Ahn, Yong-Yeol

    2016-01-01

    Human history has been marked by social instability and conflict, often driven by the irreconcilability of opposing sets of beliefs, ideologies, and religious dogmas. The dynamics of belief systems has been studied mainly from two distinct perspectives, namely how cognitive biases lead to individual belief rigidity and how social influence leads to social conformity. Here we propose a unifying framework that connects cognitive and social forces together in order to study the dynamics of societal belief evolution. Each individual is endowed with a network of interacting beliefs that evolves through interaction with other individuals in a social network. The adoption of beliefs is affected by both internal coherence and social conformity. Our framework may offer explanations for how social transitions can arise in otherwise homogeneous populations, how small numbers of zealots with highly coherent beliefs can overturn societal consensus, and how belief rigidity protects fringe groups and cults against invasion from mainstream beliefs, allowing them to persist and even thrive in larger societies. Our results suggest that strong consensus may be insufficient to guarantee social stability, that the cognitive coherence of belief-systems is vital in determining their ability to spread, and that coherent belief-systems may pose a serious problem for resolving social polarization, due to their ability to prevent consensus even under high levels of social exposure. We argue that the inclusion of cognitive factors into a social model could provide a more complete picture of collective human dynamics.

  5. Optimal interdependence between networks for the evolution of cooperation.

    PubMed

    Wang, Zhen; Szolnoki, Attila; Perc, Matjaž

    2013-01-01

    Recent research has identified interactions between networks as crucial for the outcome of evolutionary games taking place on them. While the consensus is that interdependence does promote cooperation by means of organizational complexity and enhanced reciprocity that is out of reach on isolated networks, we here address the question just how much interdependence there should be. Intuitively, one might assume the more the better. However, we show that in fact only an intermediate density of sufficiently strong interactions between networks warrants an optimal resolution of social dilemmas. This is due to an intricate interplay between the heterogeneity that causes an asymmetric strategy flow because of the additional links between the networks, and the independent formation of cooperative patterns on each individual network. Presented results are robust to variations of the strategy updating rule, the topology of interdependent networks, and the governing social dilemma, thus suggesting a high degree of universality.

  6. Optimal interdependence between networks for the evolution of cooperation

    PubMed Central

    Wang, Zhen; Szolnoki, Attila; Perc, Matjaž

    2013-01-01

    Recent research has identified interactions between networks as crucial for the outcome of evolutionary games taking place on them. While the consensus is that interdependence does promote cooperation by means of organizational complexity and enhanced reciprocity that is out of reach on isolated networks, we here address the question just how much interdependence there should be. Intuitively, one might assume the more the better. However, we show that in fact only an intermediate density of sufficiently strong interactions between networks warrants an optimal resolution of social dilemmas. This is due to an intricate interplay between the heterogeneity that causes an asymmetric strategy flow because of the additional links between the networks, and the independent formation of cooperative patterns on each individual network. Presented results are robust to variations of the strategy updating rule, the topology of interdependent networks, and the governing social dilemma, thus suggesting a high degree of universality. PMID:23959086

  7. Information-theoretic metamodel of organizational evolution

    NASA Astrophysics Data System (ADS)

    Sepulveda, Alfredo

    2011-12-01

    Social organizations are abstractly modeled by holarchies---self-similar connected networks---and intelligent complex adaptive multiagent systems---large networks of autonomous reasoning agents interacting via scaled processes. However, little is known of how information shapes evolution in such organizations, a gap that can lead to misleading analytics. The research problem addressed in this study was the ineffective manner in which classical model-predict-control methods used in business analytics attempt to define organization evolution. The purpose of the study was to construct an effective metamodel for organization evolution based on a proposed complex adaptive structure---the info-holarchy. Theoretical foundations of this study were holarchies, complex adaptive systems, evolutionary theory, and quantum mechanics, among other recently developed physical and information theories. Research questions addressed how information evolution patterns gleamed from the study's inductive metamodel more aptly explained volatility in organization. In this study, a hybrid grounded theory based on abstract inductive extensions of information theories was utilized as the research methodology. An overarching heuristic metamodel was framed from the theoretical analysis of the properties of these extension theories and applied to business, neural, and computational entities. This metamodel resulted in the synthesis of a metaphor for, and generalization of organization evolution, serving as the recommended and appropriate analytical tool to view business dynamics for future applications. This study may manifest positive social change through a fundamental understanding of complexity in business from general information theories, resulting in more effective management.

  8. Cooperation enhanced by indirect reciprocity in spatial prisoner's dilemma games for social P2P systems

    NASA Astrophysics Data System (ADS)

    Tian, Lin-Lin; Li, Ming-Chu; Wang, Zhen

    2016-11-01

    With the growing interest in social Peer-to-Peer (P2P) applications, relationships of individuals are further exploited to improve the performances of reputation systems. It is an on-going challenge to investigate how spatial reciprocity aids indirect reciprocity in sustaining cooperation in practical P2P environments. This paper describes the construction of an extended prisoner's dilemma game on square lattice networks with three strategies, i.e., defection, unconditional cooperation, and reciprocal cooperation. Reciprocators discriminate partners according to their reputations based on image scoring, where mistakes in judgment of reputations may occur. The independent structures of interaction and learning neighborhood are discussed, with respect to the situation in which learning environments differ from interaction networks. The simulation results have indicated that the incentive mechanism enhances cooperation better in structured peers than among a well-mixed population. Given the realistic condition of inaccurate reputation scores, defection is still successfully held down when the players interact and learn within the unified neighborhoods. Extensive simulations have further confirmed the positive impact of spatial structure on cooperation with different sizes of lattice neighborhoods. And similar conclusions can also be drawn on regular random networks and scale-free networks. Moreover, for the separated structures of the neighborhoods, the interaction network has a critical effect on the evolution dynamics of cooperation and learning environments only have weaker impacts on the process. Our findings further provide some insights concerning the evolution of collective behaviors in social systems.

  9. Predicting Node Degree Centrality with the Node Prominence Profile

    PubMed Central

    Yang, Yang; Dong, Yuxiao; Chawla, Nitesh V.

    2014-01-01

    Centrality of a node measures its relative importance within a network. There are a number of applications of centrality, including inferring the influence or success of an individual in a social network, and the resulting social network dynamics. While we can compute the centrality of any node in a given network snapshot, a number of applications are also interested in knowing the potential importance of an individual in the future. However, current centrality is not necessarily an effective predictor of future centrality. While there are different measures of centrality, we focus on degree centrality in this paper. We develop a method that reconciles preferential attachment and triadic closure to capture a node's prominence profile. We show that the proposed node prominence profile method is an effective predictor of degree centrality. Notably, our analysis reveals that individuals in the early stage of evolution display a distinctive and robust signature in degree centrality trend, adequately predicted by their prominence profile. We evaluate our work across four real-world social networks. Our findings have important implications for the applications that require prediction of a node's future degree centrality, as well as the study of social network dynamics. PMID:25429797

  10. Leveraging social networks for understanding the evolution of epidemics

    PubMed Central

    2011-01-01

    Background To understand how infectious agents disseminate throughout a population it is essential to capture the social model in a realistic manner. This paper presents a novel approach to modeling the propagation of the influenza virus throughout a realistic interconnection network based on actual individual interactions which we extract from online social networks. The advantage is that these networks can be extracted from existing sources which faithfully record interactions between people in their natural environment. We additionally allow modeling the characteristics of each individual as well as customizing his daily interaction patterns by making them time-dependent. Our purpose is to understand how the infection spreads depending on the structure of the contact network and the individuals who introduce the infection in the population. This would help public health authorities to respond more efficiently to epidemics. Results We implement a scalable, fully distributed simulator and validate the epidemic model by comparing the simulation results against the data in the 2004-2005 New York State Department of Health Report (NYSDOH), with similar temporal distribution results for the number of infected individuals. We analyze the impact of different types of connection models on the virus propagation. Lastly, we analyze and compare the effects of adopting several different vaccination policies, some of them based on individual characteristics -such as age- while others targeting the super-connectors in the social model. Conclusions This paper presents an approach to modeling the propagation of the influenza virus via a realistic social model based on actual individual interactions extracted from online social networks. We implemented a scalable, fully distributed simulator and we analyzed both the dissemination of the infection and the effect of different vaccination policies on the progress of the epidemics. The epidemic values predicted by our simulator match real data from NYSDOH. Our results show that our simulator can be a useful tool in understanding the differences in the evolution of an epidemic within populations with different characteristics and can provide guidance with regard to which, and how many, individuals should be vaccinated to slow down the virus propagation and reduce the number of infections. PMID:22784620

  11. Identifying emerging research collaborations and networks: method development.

    PubMed

    Dozier, Ann M; Martina, Camille A; O'Dell, Nicole L; Fogg, Thomas T; Lurie, Stephen J; Rubinstein, Eric P; Pearson, Thomas A

    2014-03-01

    Clinical and translational research is a multidisciplinary, collaborative team process. To evaluate this process, we developed a method to document emerging research networks and collaborations in our medical center to describe their productivity and viability over time. Using an e-mail survey, sent to 1,620 clinical and basic science full- and part-time faculty members, respondents identified their research collaborators. Initial analyses, using Pajek software, assessed the feasibility of using social network analysis (SNA) methods with these data. Nearly 400 respondents identified 1,594 collaborators across 28 medical center departments resulting in 309 networks with 5 or more collaborators. This low-burden approach yielded a rich data set useful for evaluation using SNA to: (a) assess networks at several levels of the organization, including intrapersonal (individuals), interpersonal (social), organizational/institutional leadership (tenure and promotion), and physical/environmental (spatial proximity) and (b) link with other data to assess the evolution of these networks.

  12. Two-population dynamics in a growing network model

    NASA Astrophysics Data System (ADS)

    Ivanova, Kristinka; Iordanov, Ivan

    2012-02-01

    We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.

  13. Signalling chains with probe and adjust learning

    NASA Astrophysics Data System (ADS)

    Gosti, Giorgio

    2018-04-01

    Many models explain the evolution of signalling in repeated stage games on social networks, differently in this study each signalling game evolves a communication strategy to transmit information across the network. Specifically, I formalise signalling chain games as a generalisation of Lewis' signalling games, where a number of players are placed on a chain network and play a signalling game in which they have to propagate information across the network. I show that probe and adjust learning allows the system to develop communication conventions, but it may temporarily perturb the system out of conventions. Through simulations, I evaluate how long the system takes to evolve a signalling convention and the amount of time it stays in it. This discussion presents a mechanism in which simple players can evolve signalling across a social network without necessarily understanding the entire system.

  14. Entangling mobility and interactions in social media.

    PubMed

    Grabowicz, Przemyslaw A; Ramasco, José J; Gonçalves, Bruno; Eguíluz, Víctor M

    2014-01-01

    Daily interactions naturally define social circles. Individuals tend to be friends with the people they spend time with and they choose to spend time with their friends, inextricably entangling physical location and social relationships. As a result, it is possible to predict not only someone's location from their friends' locations but also friendship from spatial and temporal co-occurrence. While several models have been developed to separately describe mobility and the evolution of social networks, there is a lack of studies coupling social interactions and mobility. In this work, we introduce a model that bridges this gap by explicitly considering the feedback of mobility on the formation of social ties. Data coming from three online social networks (Twitter, Gowalla and Brightkite) is used for validation. Our model reproduces various topological and physical properties of the networks not captured by models uncoupling mobility and social interactions such as: i) the total size of the connected components, ii) the distance distribution between connected users, iii) the dependence of the reciprocity on the distance, iv) the variation of the social overlap and the clustering with the distance. Besides numerical simulations, a mean-field approach is also used to study analytically the main statistical features of the networks generated by a simplified version of our model. The robustness of the results to changes in the model parameters is explored, finding that a balance between friend visits and long-range random connections is essential to reproduce the geographical features of the empirical networks.

  15. Evaluating the Social Media Performance of Hospitals in Spain: A Longitudinal and Comparative Study.

    PubMed

    Martinez-Millana, Antonio; Fernandez-Llatas, Carlos; Basagoiti Bilbao, Ignacio; Traver Salcedo, Manuel; Traver Salcedo, Vicente

    2017-05-23

    Social media is changing the way in which citizens and health professionals communicate. Previous studies have assessed the use of Health 2.0 by hospitals, showing clear evidence of growth in recent years. In order to understand if this happens in Spain, it is necessary to assess the performance of health care institutions on the Internet social media using quantitative indicators. The study aimed to analyze how hospitals in Spain perform on the Internet and social media networks by determining quantitative indicators in 3 different dimensions: presence, use, and impact and assess these indicators on the 3 most commonly used social media - Facebook, Twitter, YouTube. Further, we aimed to find out if there was a difference between private and public hospitals in their use of the aforementioned social networks. The evolution of presence, use, and impact metrics is studied over the period 2011- 2015. The population studied accounts for all the hospitals listed in the National Hospitals Catalog (NHC). The percentage of hospitals having Facebook, Twitter, and YouTube profiles has been used to show the presence and evolution of hospitals on social media during this time. Usage was assessed by analyzing the content published on each social network. Impact evaluation was measured by analyzing the trend of subscribers for each social network. Statistical analysis was performed using a lognormal transformation and also using a nonparametric distribution, with the aim of comparing t student and Wilcoxon independence tests for the observed variables. From the 787 hospitals identified, 69.9% (550/787) had an institutional webpage and 34.2% (269/787) had at least one profile in one of the social networks (Facebook, Twitter, and YouTube) in December 2015. Hospitals' Internet presence has increased by more than 450.0% (787/172) and social media presence has increased ten times since 2011. Twitter is the preferred social network for public hospitals, whereas private hospitals showed better performance on Facebook and YouTube. The two-sided Wilcoxon test and t student test at a CI of 95% show that the use of Twitter distribution is higher (P<.001) for private and public hospitals in Spain, whereas other variables show a nonsignificant different distribution. The Internet presence of Spanish hospitals is high; however, their presence on the 3 main social networks is still not as high compared to that of hospitals in the United States and Western Europe. Public hospitals are found to be more active on Twitter, whereas private hospitals show better performance on Facebook and YouTube. This study suggests that hospitals, both public and private, should devote more effort to and be more aware of social media, with a clear strategy as to how they can foment new relationships with patients and citizens. ©Antonio Martinez-Millana, Carlos Fernandez-Llatas, Ignacio Basagoiti Bilbao, Manuel Traver Salcedo, Vicente Traver Salcedo. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 23.05.2017.

  16. Evaluating the Social Media Performance of Hospitals in Spain: A Longitudinal and Comparative Study

    PubMed Central

    2017-01-01

    Background Social media is changing the way in which citizens and health professionals communicate. Previous studies have assessed the use of Health 2.0 by hospitals, showing clear evidence of growth in recent years. In order to understand if this happens in Spain, it is necessary to assess the performance of health care institutions on the Internet social media using quantitative indicators. Objectives The study aimed to analyze how hospitals in Spain perform on the Internet and social media networks by determining quantitative indicators in 3 different dimensions: presence, use, and impact and assess these indicators on the 3 most commonly used social media - Facebook, Twitter, YouTube. Further, we aimed to find out if there was a difference between private and public hospitals in their use of the aforementioned social networks. Methods The evolution of presence, use, and impact metrics is studied over the period 2011- 2015. The population studied accounts for all the hospitals listed in the National Hospitals Catalog (NHC). The percentage of hospitals having Facebook, Twitter, and YouTube profiles has been used to show the presence and evolution of hospitals on social media during this time. Usage was assessed by analyzing the content published on each social network. Impact evaluation was measured by analyzing the trend of subscribers for each social network. Statistical analysis was performed using a lognormal transformation and also using a nonparametric distribution, with the aim of comparing t student and Wilcoxon independence tests for the observed variables. Results From the 787 hospitals identified, 69.9% (550/787) had an institutional webpage and 34.2% (269/787) had at least one profile in one of the social networks (Facebook, Twitter, and YouTube) in December 2015. Hospitals’ Internet presence has increased by more than 450.0% (787/172) and social media presence has increased ten times since 2011. Twitter is the preferred social network for public hospitals, whereas private hospitals showed better performance on Facebook and YouTube. The two-sided Wilcoxon test and t student test at a CI of 95% show that the use of Twitter distribution is higher (P<.001) for private and public hospitals in Spain, whereas other variables show a nonsignificant different distribution. Conclusions The Internet presence of Spanish hospitals is high; however, their presence on the 3 main social networks is still not as high compared to that of hospitals in the United States and Western Europe. Public hospitals are found to be more active on Twitter, whereas private hospitals show better performance on Facebook and YouTube. This study suggests that hospitals, both public and private, should devote more effort to and be more aware of social media, with a clear strategy as to how they can foment new relationships with patients and citizens. PMID:28536091

  17. Social traits, social networks and evolutionary biology.

    PubMed

    Fisher, D N; McAdam, A G

    2017-12-01

    The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  18. Big Science, Nano Science?: Mapping the Evolution and Socio-Cognitive Structure of Nanoscience/Nanotechnology Using Mixed Methods

    ERIC Educational Resources Information Center

    Milojevic, Stasa

    2009-01-01

    This study examines the development of nanoscience/nanotechnology over a 35 year period (1970-2004) by mapping its social and cognitive structures using social network analysis, bibliometrics and document analysis, and following their changes in time. Mapping is performed based on 580,000 journal articles, 240,000 patents and 53,000 research…

  19. A model for the emergence of cooperation, interdependence, and structure in evolving networks.

    PubMed

    Jain, S; Krishna, S

    2001-01-16

    Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.

  20. A model for the emergence of cooperation, interdependence, and structure in evolving networks

    NASA Astrophysics Data System (ADS)

    Jain, Sanjay; Krishna, Sandeep

    2001-01-01

    Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.

  1. Social contagions on time-varying community networks

    NASA Astrophysics Data System (ADS)

    Liu, Mian-Xin; Wang, Wei; Liu, Ying; Tang, Ming; Cai, Shi-Min; Zhang, Hai-Feng

    2017-05-01

    Time-varying community structures exist widely in real-world networks. However, previous studies on the dynamics of spreading seldom took this characteristic into account, especially those on social contagions. To study the effects of time-varying community structures on social contagions, we propose a non-Markovian social contagion model on time-varying community networks based on the activity-driven network model. A mean-field theory is developed to analyze the proposed model. Through theoretical analyses and numerical simulations, two hierarchical features of the behavior adoption processes are found. That is, when community strength is relatively large, the behavior can easily spread in one of the communities, while in the other community the spreading only occurs at higher behavioral information transmission rates. Meanwhile, in spatial-temporal evolution processes, hierarchical orders are observed for the behavior adoption. Moreover, under different information transmission rates, three distinctive patterns are demonstrated in the change of the whole network's final adoption proportion along with the growing community strength. Within a suitable range of transmission rate, an optimal community strength can be found that can maximize the final adoption proportion. Finally, compared with the average activity potential, the promoting or inhibiting of social contagions is much more influenced by the number of edges generated by active nodes.

  2. Properties of on-line social systems

    NASA Astrophysics Data System (ADS)

    Grabowski, A.; Kruszewska, N.; Kosiński, R. A.

    2008-11-01

    We study properties of five different social systems: (i) internet society of friends consisting of over 106 people, (ii) social network consisting of 3 × 104 individuals, who interact in a large virtual world of Massive Multiplayer Online Role Playing Games (MMORPGs), (iii) over 106 users of music community website, (iv) over 5 × 106 users of gamers community server and (v) over 0.25 × 106 users of books admirer website. Individuals included in large social network form an Internet community and organize themselves in groups of different sizes. The destiny of those systems, as well as the method of creating of new connections, are different, however we found that the properties of these networks are very similar. We have found that the network components size distribution follow the power-law scaling form. In all five systems we have found interesting scaling laws concerning human dynamics. Our research has shown how long people are interested in a single task, how much time they devote to it and how fast they are making friends. It is surprising that the time evolution of an individual connectivity is very similar in each system.

  3. Energy model for rumor propagation on social networks

    NASA Astrophysics Data System (ADS)

    Han, Shuo; Zhuang, Fuzhen; He, Qing; Shi, Zhongzhi; Ao, Xiang

    2014-01-01

    With the development of social networks, the impact of rumor propagation on human lives is more and more significant. Due to the change of propagation mode, traditional rumor propagation models designed for word-of-mouth process may not be suitable for describing the rumor spreading on social networks. To overcome this shortcoming, we carefully analyze the mechanisms of rumor propagation and the topological properties of large-scale social networks, then propose a novel model based on the physical theory. In this model, heat energy calculation formula and Metropolis rule are introduced to formalize this problem and the amount of heat energy is used to measure a rumor’s impact on a network. Finally, we conduct track experiments to show the evolution of rumor propagation, make comparison experiments to contrast the proposed model with the traditional models, and perform simulation experiments to study the dynamics of rumor spreading. The experiments show that (1) the rumor propagation simulated by our model goes through three stages: rapid growth, fluctuant persistence and slow decline; (2) individuals could spread a rumor repeatedly, which leads to the rumor’s resurgence; (3) rumor propagation is greatly influenced by a rumor’s attraction, the initial rumormonger and the sending probability.

  4. The Dynamics of Coalition Formation on Complex Networks

    NASA Astrophysics Data System (ADS)

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-08-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.

  5. CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Hudson, Teresa J.; Eswaran, Hari; Brochhausen, Mathias; Hanna, Josh; Hogan, William R.

    2014-01-01

    Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences – a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization. PMID:25405477

  6. Aperiodic dynamics in a deterministic adaptive network model of attitude formation in social groups

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan A.; Grindrod, Peter

    2014-07-01

    Adaptive network models, in which node states and network topology coevolve, arise naturally in models of social dynamics that incorporate homophily and social influence. Homophily relates the similarity between pairs of nodes' states to their network coupling strength, whilst social influence causes coupled nodes' states to convergence. In this paper we propose a deterministic adaptive network model of attitude formation in social groups that includes these effects, and in which the attitudinal dynamics are represented by an activato-inhibitor process. We illustrate that consensus, corresponding to all nodes adopting the same attitudinal state and being fully connected, may destabilise via Turing instability, giving rise to aperiodic dynamics with sensitive dependence on initial conditions. These aperiodic dynamics correspond to the formation and dissolution of sub-groups that adopt contrasting attitudes. We discuss our findings in the context of cultural polarisation phenomena. Social influence. This reflects the fact that people tend to modify their behaviour and attitudes in response to the opinions of others [22-26]. We model social influence via diffusion: agents adjust their state according to a weighted sum (dictated by the evolving network) of the differences between their state and the states of their neighbours. Homophily. This relates the similarity of individuals' states to their frequency and strength of interaction [27]. Thus in our model, homophily drives the evolution of the weighted ‘social' network. A precise formulation of our model is given in Section 2. Social influence and homophily underpin models of social dynamics [21], which cover a wide range of sociological phenomena, including the diffusion of innovations [28-32], complex contagions [33-36], collective action [37-39], opinion dynamics [19,20,40,10,11,13,15,41,16], the emergence of social norms [42-44], group stability [45], social differentiation [46] and, of particular relevance here, cultural dissemination [47,12,48].Combining the effects of social influence and homophily naturally gives rise to an adaptive network, since social influence causes the states of agents that are strongly connected to become more similar, while homophily strengthens connections between agents whose states are already similar.1

  7. Social and place-focused communities in location-based online social networks

    NASA Astrophysics Data System (ADS)

    Brown, Chloë; Nicosia, Vincenzo; Scellato, Salvatore; Noulas, Anastasios; Mascolo, Cecilia

    2013-06-01

    Thanks to widely available, cheap Internet access and the ubiquity of smartphones, millions of people around the world now use online location-based social networking services. Understanding the structural properties of these systems and their dependence upon users' habits and mobility has many potential applications, including resource recommendation and link prediction. Here, we construct and characterise social and place-focused graphs by using longitudinal information about declared social relationships and about users' visits to physical places collected from a popular online location-based social service. We show that although the social and place-focused graphs are constructed from the same data set, they have quite different structural properties. We find that the social and location-focused graphs have different global and meso-scale structure, and in particular that social and place-focused communities have negligible overlap. Consequently, group inference based on community detection performed on the social graph alone fails to isolate place-focused groups, even though these do exist in the network. By studying the evolution of tie structure within communities, we show that the time period over which location data are aggregated has a substantial impact on the stability of place-focused communities, and that information about place-based groups may be more useful for user-centric applications than that obtained from the analysis of social communities alone.

  8. Partner choice cooperation in prisoner's dilemma

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Xu, Zhaojin; Zhang, Lianzhong

    2017-12-01

    In this paper, we investigated the cooperative behavior in prisoner's dilemma when the individual behaviors and interaction structures could coevolve. Here, we study the model that the individuals can imitate the strategy of their neighbors and rewire their social ties throughout evolution, based exclusively on a fitness comparison. We find that the cooperation can be achieved if the time scale of network adaptation is large enough, even when the social dilemma strength is very strong. Detailed investigation shows that the presence or absence of the network adaptation has a profound impact on the collective behavior in the system.

  9. Social cognition on the Internet: testing constraints on social network size

    PubMed Central

    Dunbar, R. I. M.

    2012-01-01

    The social brain hypothesis (an explanation for the evolution of brain size in primates) predicts that humans typically cannot maintain more than 150 relationships at any one time. The constraint is partly cognitive (ultimately determined by some aspect of brain volume) and partly one of time. Friendships (but not necessarily kin relationships) are maintained by investing time in them, and failure to do so results in an inexorable deterioration in the quality of a relationship. The Internet, and in particular the rise of social networking sites (SNSs), raises the possibility that digital media might allow us to circumvent some or all of these constraints. This allows us to test the importance of these constraints in limiting human sociality. Although the recency of SNSs means that there have been relatively few studies, those that are available suggest that, in general, the ability to broadcast to many individuals at once, and the possibilities this provides in terms of continuously updating our understanding of network members’ behaviour and thoughts, do not allow larger networks to be maintained. This may be because only relatively weak quality relationships can be maintained without face-to-face interaction. PMID:22734062

  10. Social cognition on the Internet: testing constraints on social network size.

    PubMed

    Dunbar, R I M

    2012-08-05

    The social brain hypothesis (an explanation for the evolution of brain size in primates) predicts that humans typically cannot maintain more than 150 relationships at any one time. The constraint is partly cognitive (ultimately determined by some aspect of brain volume) and partly one of time. Friendships (but not necessarily kin relationships) are maintained by investing time in them, and failure to do so results in an inexorable deterioration in the quality of a relationship. The Internet, and in particular the rise of social networking sites (SNSs), raises the possibility that digital media might allow us to circumvent some or all of these constraints. This allows us to test the importance of these constraints in limiting human sociality. Although the recency of SNSs means that there have been relatively few studies, those that are available suggest that, in general, the ability to broadcast to many individuals at once, and the possibilities this provides in terms of continuously updating our understanding of network members' behaviour and thoughts, do not allow larger networks to be maintained. This may be because only relatively weak quality relationships can be maintained without face-to-face interaction.

  11. Moran-evolution of cooperation: From well-mixed to heterogeneous complex networks

    NASA Astrophysics Data System (ADS)

    Sarkar, Bijan

    2018-05-01

    Configurational arrangement of network architecture and interaction character of individuals are two most influential factors on the mechanisms underlying the evolutionary outcome of cooperation, which is explained by the well-established framework of evolutionary game theory. In the current study, not only qualitatively but also quantitatively, we measure Moran-evolution of cooperation to support an analytical agreement based on the consequences of the replicator equation in a finite population. The validity of the measurement has been double-checked in the well-mixed network by the Langevin stochastic differential equation and the Gillespie-algorithmic version of Moran-evolution, while in a structured network, the measurement of accuracy is verified by the standard numerical simulation. Considering the Birth-Death and Death-Birth updating rules through diffusion of individuals, the investigation is carried out in the wide range of game environments those relate to the various social dilemmas where we are able to draw a new rigorous mathematical track to tackle the heterogeneity of complex networks. The set of modified criteria reveals the exact fact about the emergence and maintenance of cooperation in the structured population. We find that in general, nature promotes the environment of coexistent traits.

  12. Effect of network topology on the evolutionary ultimatum game based on the net-profit decision

    NASA Astrophysics Data System (ADS)

    Ye, Shun-Qiang; Wang, Lu; Jones, Michael C.; Ye, Ye; Wang, Meng; Xie, Neng-Gang

    2016-04-01

    The ubiquity of altruist behavior amongst humans has long been a significant puzzle in the social sciences. Ultimatum game has proved to be a useful tool for explaining altruistic behavior among selfish individuals. In an ultimatum game where alternating roles exist, we suppose that players make their decisions based on the net profit of their own. In this paper, we specify a player's strategy with two parameters: offer level α ∈ [ 0,1) and net profit acceptance level β ∈ [ - 1,1). By Monte Carlo simulation, we analyze separately the effect of the size of the neighborhood, the small-world property and the heterogeneity of the degree distributions of the networks. Results show that compared with results observed for homogeneous networks, heterogeneous networks lead to more rational outcomes. Moreover, network structure has no effect on the evolution of kindness level, so moderate kindness is adaptable to any social groups and organizations.

  13. Complex Dynamics in Information Sharing Networks

    NASA Astrophysics Data System (ADS)

    Cronin, Bruce

    This study examines the roll-out of an electronic knowledge base in a medium-sized professional services firm over a six year period. The efficiency of such implementation is a key business problem in IT systems of this type. Data from usage logs provides the basis for analysis of the dynamic evolution of social networks around the depository during this time. The adoption pattern follows an "s-curve" and usage exhibits something of a power law distribution, both attributable to network effects, and network position is associated with organisational performance on a number of indicators. But periodicity in usage is evident and the usage distribution displays an exponential cut-off. Further analysis provides some evidence of mathematical complexity in the periodicity. Some implications of complex patterns in social network data for research and management are discussed. The study provides a case study demonstrating the utility of the broad methodological approach.

  14. Characterizing and modeling the dynamics of activity and popularity.

    PubMed

    Zhang, Peng; Li, Menghui; Gao, Liang; Fan, Ying; Di, Zengru

    2014-01-01

    Social media, regarded as two-layer networks consisting of users and items, turn out to be the most important channels for access to massive information in the era of Web 2.0. The dynamics of human activity and item popularity is a crucial issue in social media networks. In this paper, by analyzing the growth of user activity and item popularity in four empirical social media networks, i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links between users and items are more likely to be created by active users and to be acquired by popular items, where user activity and item popularity are measured by the number of cross links associated with users and items. This indicates that users generally trace popular items, overall. However, it is found that the inactive users more severely trace popular items than the active users. Inspired by empirical analysis, we propose an evolving model for such networks, in which the evolution is driven only by two-step random walk. Numerical experiments verified that the model can qualitatively reproduce the distributions of user activity and item popularity observed in empirical networks. These results might shed light on the understandings of micro dynamics of activity and popularity in social media networks.

  15. Characterizing and Modeling the Dynamics of Activity and Popularity

    PubMed Central

    Zhang, Peng; Li, Menghui; Gao, Liang; Fan, Ying; Di, Zengru

    2014-01-01

    Social media, regarded as two-layer networks consisting of users and items, turn out to be the most important channels for access to massive information in the era of Web 2.0. The dynamics of human activity and item popularity is a crucial issue in social media networks. In this paper, by analyzing the growth of user activity and item popularity in four empirical social media networks, i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links between users and items are more likely to be created by active users and to be acquired by popular items, where user activity and item popularity are measured by the number of cross links associated with users and items. This indicates that users generally trace popular items, overall. However, it is found that the inactive users more severely trace popular items than the active users. Inspired by empirical analysis, we propose an evolving model for such networks, in which the evolution is driven only by two-step random walk. Numerical experiments verified that the model can qualitatively reproduce the distributions of user activity and item popularity observed in empirical networks. These results might shed light on the understandings of micro dynamics of activity and popularity in social media networks. PMID:24586586

  16. Accelerating consensus on coevolving networks: The effect of committed individuals

    NASA Astrophysics Data System (ADS)

    Singh, P.; Sreenivasan, S.; Szymanski, B. K.; Korniss, G.

    2012-04-01

    Social networks are not static but, rather, constantly evolve in time. One of the elements thought to drive the evolution of social network structure is homophily—the need for individuals to connect with others who are similar to them. In this paper, we study how the spread of a new opinion, idea, or behavior on such a homophily-driven social network is affected by the changing network structure. In particular, using simulations, we study a variant of the Axelrod model on a network with a homophily-driven rewiring rule imposed. First, we find that the presence of rewiring within the network, in general, impedes the reaching of consensus in opinion, as the time to reach consensus diverges exponentially with network size N. We then investigate whether the introduction of committed individuals who are rigid in their opinion on a particular issue can speed up the convergence to consensus on that issue. We demonstrate that as committed agents are added, beyond a critical value of the committed fraction, the consensus time growth becomes logarithmic in network size N. Furthermore, we show that slight changes in the interaction rule can produce strikingly different results in the scaling behavior of consensus time, Tc. However, the benefit gained by introducing committed agents is qualitatively preserved across all the interaction rules we consider.

  17. Large-scale Heterogeneous Network Data Analysis

    DTIC Science & Technology

    2012-07-31

    Mining (KDD’09), 527-535, 2009. [20] B. Long, Z. M. Zhang, X. Wu, and P. S. Yu . Spectral Clustering for Multi-type Relational Data. In Proceedings of...and Data Mining (KDD’06), 374-383, 2006. [33] Y. Sun, Y. Yu , and J. Han. Ranking-Based Clustering of Heterogeneous Information Networks with Star...publications in 2012 so far:  Yi-Kuang Ko, Jing- Kai Lou, Cheng-Te Li, Shou-de Lin, and Shyh-Kang Jeng. “A Social Network Evolution Model Based on

  18. A scientometrics and social network analysis of Malaysian research in physics

    NASA Astrophysics Data System (ADS)

    Tan, H. X.; Ujum, E. A.; Ratnavelu, K.

    2014-03-01

    This conference proceeding presents an empirical assessment on the domestic publication output and structure of scientific collaboration of Malaysian authors for the field of physics. Journal articles with Malaysian addresses for the subject area "Physics" and other sub-discipline of physics were retrieved from the Thomson Reuters Web of Knowledge database spanning the years 1980 to 2011. A scientometrics and social network analysis of the Malaysian physics field was conducted to examine the publication growth and distribution of domestic collaborative publications; the giant component analysis; and the degree, closeness, and betweenness centralisation scores for the domestic co-authorship networks. Using these methods, we are able to gain insights on the evolution of collaboration and scientometric dimensions of Malaysian research in physics over time.

  19. Skill complementarity enhances heterophily in collaboration networks

    PubMed Central

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Tan, Qun-Zhao; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H. Eugene

    2016-01-01

    Much empirical evidence shows that individuals usually exhibit significant homophily in social networks. We demonstrate, however, skill complementarity enhances heterophily in the formation of collaboration networks, where people prefer to forge social ties with people who have professions different from their own. We construct a model to quantify the heterophily by assuming that individuals choose collaborators to maximize utility. Using a huge database of online societies, we find evidence of heterophily in collaboration networks. The results of model calibration confirm the presence of heterophily. Both empirical analysis and model calibration show that the heterophilous feature is persistent along the evolution of online societies. Furthermore, the degree of skill complementarity is positively correlated with their production output. Our work sheds new light on the scientific research utility of virtual worlds for studying human behaviors in complex socioeconomic systems. PMID:26743687

  20. Effects of adaptive dynamical linking in networked games

    NASA Astrophysics Data System (ADS)

    Yang, Zhihu; Li, Zhi; Wu, Te; Wang, Long

    2013-10-01

    The role of dynamical topologies in the evolution of cooperation has received considerable attention, as some studies have demonstrated that dynamical networks are much better than static networks in terms of boosting cooperation. Here we study a dynamical model of evolution of cooperation on stochastic dynamical networks in which there are no permanent partners to each agent. Whenever a new link is created, its duration is randomly assigned without any bias or preference. We allow the agent to adaptively adjust the duration of each link during the evolution in accordance with the feedback from game interactions. By Monte Carlo simulations, we find that cooperation can be remarkably promoted by this adaptive dynamical linking mechanism both for the game of pairwise interactions, such as the Prisoner's Dilemma game (PDG), and for the game of group interactions, illustrated by the public goods game (PGG). And the faster the adjusting rate, the more successful the evolution of cooperation. We also show that in this context weak selection favors cooperation much more than strong selection does. What is particularly meaningful is that the prosperity of cooperation in this study indicates that the rationality and selfishness of a single agent in adjusting social ties can lead to the progress of altruism of the whole population.

  1. Five rules for the evolution of cooperation.

    PubMed

    Nowak, Martin A

    2006-12-08

    Cooperation is needed for evolution to construct new levels of organization. Genomes, cells, multicellular organisms, social insects, and human society are all based on cooperation. Cooperation means that selfish replicators forgo some of their reproductive potential to help one another. But natural selection implies competition and therefore opposes cooperation unless a specific mechanism is at work. Here I discuss five mechanisms for the evolution of cooperation: kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and group selection. For each mechanism, a simple rule is derived that specifies whether natural selection can lead to cooperation.

  2. Five Rules for the Evolution of Cooperation

    NASA Astrophysics Data System (ADS)

    Nowak, Martin A.

    2006-12-01

    Cooperation is needed for evolution to construct new levels of organization. Genomes, cells, multicellular organisms, social insects, and human society are all based on cooperation. Cooperation means that selfish replicators forgo some of their reproductive potential to help one another. But natural selection implies competition and therefore opposes cooperation unless a specific mechanism is at work. Here I discuss five mechanisms for the evolution of cooperation: kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and group selection. For each mechanism, a simple rule is derived that specifies whether natural selection can lead to cooperation.

  3. Modelling information dissemination under privacy concerns in social media

    NASA Astrophysics Data System (ADS)

    Zhu, Hui; Huang, Cheng; Lu, Rongxing; Li, Hui

    2016-05-01

    Social media has recently become an important platform for users to share news, express views, and post messages. However, due to user privacy preservation in social media, many privacy setting tools are employed, which inevitably change the patterns and dynamics of information dissemination. In this study, a general stochastic model using dynamic evolution equations was introduced to illustrate how privacy concerns impact the process of information dissemination. Extensive simulations and analyzes involving the privacy settings of general users, privileged users, and pure observers were conducted on real-world networks, and the results demonstrated that user privacy settings affect information differently. Finally, we also studied the process of information diffusion analytically and numerically with different privacy settings using two classic networks.

  4. Proceedings of the Fourth International Workshop on a Research Agenda for Maintenance and Evolution of Service-Oriented Systems (MESOA 2010)

    DTIC Science & Technology

    2011-09-01

    service -oriented systems • Software -as-a- Service ( SaaS ) • social network infrastructures • Internet marketing • mobile computing • context awareness...Maintenance and Evolution of Service -Oriented Systems (MESOA 2010), organized by members of the Carnegie Mellon Software Engineering Institute’s...CMU/SEI-2011-SR-008 | 1 1 Workshop Introduction The Software Engineering Institute (SEI) started developing a service -oriented architecture

  5. The hub of a wheel: a neighborhood support network.

    PubMed

    Rosel, N

    1983-01-01

    In a neighborhood where elderly residents have known each other for years, a closely-knit network of mutual assistance and support has developed among a few of the oldest residents. The network and its functions are described in detail, and two features are discussed as being unusual. First, the "old old" people help each other on a daily basis, and second, the routine nature of the assistance is taken for granted by all concerned, except for the author, who observed the evolution of this network over a period of several years. The network's theoretical implications for social integration and its practical implications for the maintenance of independent living are summarized.

  6. Costs for switching partners reduce network dynamics but not cooperative behaviour

    PubMed Central

    Bednarik, Peter; Fehl, Katrin; Semmann, Dirk

    2014-01-01

    Social networks represent the structuring of interactions between group members. Above all, many interactions are profoundly cooperative in humans and other animals. In accordance with this natural observation, theoretical work demonstrates that certain network structures favour the evolution of cooperation. Yet, recent experimental evidence suggests that static networks do not enhance cooperative behaviour in humans. By contrast, dynamic networks do foster cooperation. However, costs associated with dynamism such as time or resource investments in finding and establishing new partnerships have been neglected so far. Here, we show that human participants are much less likely to break links when costs arise for building new links. Especially, when costs were high, the network was nearly static. Surprisingly, cooperation levels in Prisoner's Dilemma games were not affected by reduced dynamism in social networks. We conclude that the mere potential to quit collaborations is sufficient in humans to reach high levels of cooperative behaviour. Effects of self-structuring processes or assortment on the network played a minor role: participants simply adjusted their cooperative behaviour in response to the threats of losing a partner or of being expelled. PMID:25122233

  7. Women Favour Dyadic Relationships, but Men Prefer Clubs: Cross-Cultural Evidence from Social Networking

    PubMed Central

    David-Barrett, Tamas; Rotkirch, Anna; Carney, James; Behncke Izquierdo, Isabel; Krems, Jaimie A.; Townley, Dylan; McDaniell, Elinor; Byrne-Smith, Anna; Dunbar, Robin I. M.

    2015-01-01

    The ability to create lasting, trust-based friendships makes it possible for humans to form large and coherent groups. The recent literature on the evolution of sociality and on the network dynamics of human societies suggests that large human groups have a layered structure generated by emotionally supported social relationships. There are also gender differences in adult social style which may involve different trade-offs between the quantity and quality of friendships. Although many have suggested that females tend to focus on intimate relations with a few other females, while males build larger, more hierarchical coalitions, the existence of such gender differences is disputed and data from adults is scarce. Here, we present cross-cultural evidence for gender differences in the preference for close friendships. We use a sample of ∼112,000 profile pictures from nine world regions posted on a popular social networking site to show that, in self-selected displays of social relationships, women favour dyadic relations, whereas men favour larger, all-male cliques. These apparently different solutions to quality-quantity trade-offs suggest a universal and fundamental difference in the function of close friendships for the two sexes. PMID:25775258

  8. Women favour dyadic relationships, but men prefer clubs: cross-cultural evidence from social networking.

    PubMed

    David-Barrett, Tamas; Rotkirch, Anna; Carney, James; Behncke Izquierdo, Isabel; Krems, Jaimie A; Townley, Dylan; McDaniell, Elinor; Byrne-Smith, Anna; Dunbar, Robin I M

    2015-01-01

    The ability to create lasting, trust-based friendships makes it possible for humans to form large and coherent groups. The recent literature on the evolution of sociality and on the network dynamics of human societies suggests that large human groups have a layered structure generated by emotionally supported social relationships. There are also gender differences in adult social style which may involve different trade-offs between the quantity and quality of friendships. Although many have suggested that females tend to focus on intimate relations with a few other females, while males build larger, more hierarchical coalitions, the existence of such gender differences is disputed and data from adults is scarce. Here, we present cross-cultural evidence for gender differences in the preference for close friendships. We use a sample of ∼112,000 profile pictures from nine world regions posted on a popular social networking site to show that, in self-selected displays of social relationships, women favour dyadic relations, whereas men favour larger, all-male cliques. These apparently different solutions to quality-quantity trade-offs suggest a universal and fundamental difference in the function of close friendships for the two sexes.

  9. The transmission process: A combinatorial stochastic process for the evolution of transmission trees over networks.

    PubMed

    Sainudiin, Raazesh; Welch, David

    2016-12-07

    We derive a combinatorial stochastic process for the evolution of the transmission tree over the infected vertices of a host contact network in a susceptible-infected (SI) model of an epidemic. Models of transmission trees are crucial to understanding the evolution of pathogen populations. We provide an explicit description of the transmission process on the product state space of (rooted planar ranked labelled) binary transmission trees and labelled host contact networks with SI-tags as a discrete-state continuous-time Markov chain. We give the exact probability of any transmission tree when the host contact network is a complete, star or path network - three illustrative examples. We then develop a biparametric Beta-splitting model that directly generates transmission trees with exact probabilities as a function of the model parameters, but without explicitly modelling the underlying contact network, and show that for specific values of the parameters we can recover the exact probabilities for our three example networks through the Markov chain construction that explicitly models the underlying contact network. We use the maximum likelihood estimator (MLE) to consistently infer the two parameters driving the transmission process based on observations of the transmission trees and use the exact MLE to characterize equivalence classes over the space of contact networks with a single initial infection. An exploratory simulation study of the MLEs from transmission trees sampled from three other deterministic and four random families of classical contact networks is conducted to shed light on the relation between the MLEs of these families with some implications for statistical inference along with pointers to further extensions of our models. The insights developed here are also applicable to the simplest models of "meme" evolution in online social media networks through transmission events that can be distilled from observable actions such as "likes", "mentions", "retweets" and "+1s" along with any concomitant comments. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Dynamical origins of the community structure of an online multi-layer society

    NASA Astrophysics Data System (ADS)

    Klimek, Peter; Diakonova, Marina; Eguíluz, Víctor M.; San Miguel, Maxi; Thurner, Stefan

    2016-08-01

    Social structures emerge as a result of individuals managing a variety of different social relationships. Societies can be represented as highly structured dynamic multiplex networks. Here we study the dynamical origins of the specific community structures of a large-scale social multiplex network of a human society that interacts in a virtual world of a massive multiplayer online game. There we find substantial differences in the community structures of different social actions, represented by the various layers in the multiplex network. Community sizes distributions are either fat-tailed or appear to be centered around a size of 50 individuals. To understand these observations we propose a voter model that is built around the principle of triadic closure. It explicitly models the co-evolution of node- and link-dynamics across different layers of the multiplex network. Depending on link and node fluctuation probabilities, the model exhibits an anomalous shattered fragmentation transition, where one layer fragments from one large component into many small components. The observed community size distributions are in good agreement with the predicted fragmentation in the model. This suggests that several detailed features of the fragmentation in societies can be traced back to the triadic closure processes.

  11. Selection Strategies for Social Influence in the Threshold Model

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Panagiotis; Szymanski, Boleslaw; Korniss, Gyorgy

    The ubiquity of online social networks makes the study of social influence extremely significant for its applications to marketing, politics and security. Maximizing the spread of influence by strategically selecting nodes as initiators of a new opinion or trend is a challenging problem. We study the performance of various strategies for selection of large fractions of initiators on a classical social influence model, the Threshold model (TM). Under the TM, a node adopts a new opinion only when the fraction of its first neighbors possessing that opinion exceeds a pre-assigned threshold. The strategies we study are of two kinds: strategies based solely on the initial network structure (Degree-rank, Dominating Sets, PageRank etc.) and strategies that take into account the change of the states of the nodes during the evolution of the cascade, e.g. the greedy algorithm. We find that the performance of these strategies depends largely on both the network structure properties, e.g. the assortativity, and the distribution of the thresholds assigned to the nodes. We conclude that the optimal strategy needs to combine the network specifics and the model specific parameters to identify the most influential spreaders. Supported in part by ARL NS-CTA, ARO, and ONR.

  12. Online Social Networks and Smoking Cessation: A Scientific Research Agenda

    PubMed Central

    Graham, Amanda L; Byron, M. Justin; Niaura, Raymond S; Abrams, David B

    2011-01-01

    Background Smoking remains one of the most pressing public health problems in the United States and internationally. The concurrent evolution of the Internet, social network science, and online communities offers a potential target for high-yield interventions capable of shifting population-level smoking rates and substantially improving public health. Objective Our objective was to convene leading practitioners in relevant disciplines to develop the core of a strategic research agenda on online social networks and their use for smoking cessation, with implications for other health behaviors. Methods We conducted a 100-person, 2-day, multidisciplinary workshop in Washington, DC, USA. Participants worked in small groups to formulate research questions that could move the field forward. Discussions and resulting questions were synthesized by the workshop planning committee. Results We considered 34 questions in four categories (advancing theory, understanding fundamental mechanisms, intervention approaches, and evaluation) to be the most pressing. Conclusions Online social networks might facilitate smoking cessation in several ways. Identifying new theories, translating these into functional interventions, and evaluating the results will require a concerted transdisciplinary effort. This report presents a series of research questions to assist researchers, developers, and funders in the process of efficiently moving this field forward. PMID:22182518

  13. Opinion dynamics in a group-based society

    NASA Astrophysics Data System (ADS)

    Gargiulo, F.; Huet, S.

    2010-09-01

    Many models have been proposed to analyze the evolution of opinion structure due to the interaction of individuals in their social environment. Such models analyze the spreading of ideas both in completely interacting backgrounds and on social networks, where each person has a finite set of interlocutors. In this paper we analyze the reciprocal feedback between the opinions of the individuals and the structure of the interpersonal relationships at the level of community structures. For this purpose we define a group-based random network and we study how this structure co-evolves with opinion dynamics processes. We observe that the adaptive network structure affects the opinion dynamics process helping the consensus formation. The results also show interesting behaviors in regards to the size distribution of the groups and their correlation with opinion structure.

  14. Constructing Social Networks from Unstructured Group Dialog in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Shah, Fahad; Sukthankar, Gita

    Virtual worlds and massively multi-player online games are rich sources of information about large-scale teams and groups, offering the tantalizing possibility of harvesting data about group formation, social networks, and network evolution. However these environments lack many of the cues that facilitate natural language processing in other conversational settings and different types of social media. Public chat data often features players who speak simultaneously, use jargon and emoticons, and only erratically adhere to conversational norms. In this paper, we present techniques for inferring the existence of social links from unstructured conversational data collected from groups of participants in the Second Life virtual world. We present an algorithm for addressing this problem, Shallow Semantic Temporal Overlap (SSTO), that combines temporal and language information to create directional links between participants, and a second approach that relies on temporal overlap alone to create undirected links between participants. Relying on temporal overlap is noisy, resulting in a low precision and networks with many extraneous links. In this paper, we demonstrate that we can ameliorate this problem by using network modularity optimization to perform community detection in the noisy networks and severing cross-community links. Although using the content of the communications still results in the best performance, community detection is effective as a noise reduction technique for eliminating the extra links created by temporal overlap alone.

  15. Information Extraction from Large-Multi-Layer Social Networks

    DTIC Science & Technology

    2015-08-06

    mization [4]. Methods that fall into this category include spec- tral algorithms, modularity methods, and methods that rely on statistical inference...Snijders and Chris Baerveldt, “A multilevel network study of the effects of delinquent behavior on friendship evolution,” Journal of mathematical sociol- ogy...1970. [10] Ulrike Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17, no. 4, pp. 395–416, Dec. 2007. [11] R. A. Fisher, “On

  16. Scientific Collaboration in Chinese Nursing Research: A Social Network Analysis Study.

    PubMed

    Hou, Xiao-Ni; Hao, Yu-Fang; Cao, Jing; She, Yan-Chao; Duan, Hong-Mei

    2016-01-01

    Collaboration has become very important in research and in technological progress. Coauthorship networks in different fields have been intensively studied as an important type of collaboration in recent years. Yet there are few published reports about collaboration in the field of nursing. This article aimed to reveal the status and identify the key features of collaboration in the field of nursing in China. Using data from the top 10 nursing journals in China from 2003 to 2013, we constructed a nursing scientific coauthorship network using social network analysis. We found that coauthorship was a common phenomenon in the Chinese nursing field. A coauthorship network with 228 subnetworks formed by 1428 nodes was constructed. The network was relatively loose, and most subnetworks were of small scales. Scholars from Shanghai and from military medical system were at the center of the Chinese nursing scientific coauthorship network. We identified the authors' positions and influences according to the research output and centralities of each author. We also analyzed the microstructure and the evolution over time of the maximum subnetwork.

  17. Five rules for the evolution of cooperation

    PubMed Central

    Nowak, Martin A.

    2011-01-01

    Cooperation is needed for evolution to construct new levels of organization. The emergence of genomes, cells, multi-cellular organisms, social insects and human society are all based on cooperation. Cooperation means that selfish replicators forgo some of their reproductive potential to help one another. But natural selection implies competition and therefore opposes cooperation unless a specific mechanism is at work. Here I discuss five mechanisms for the evolution of cooperation: kin selection, direct reciprocity, indirect reciprocity, network reciprocity and group selection. For each mechanism, a simple rule is derived which specifies whether natural selection can lead to cooperation. PMID:17158317

  18. The Role of Graphlets in Viral Processes on Networks

    NASA Astrophysics Data System (ADS)

    Khorshidi, Samira; Al Hasan, Mohammad; Mohler, George; Short, Martin B.

    2018-05-01

    Predicting the evolution of viral processes on networks is an important problem with applications arising in biology, the social sciences, and the study of the Internet. In existing works, mean-field analysis based upon degree distribution is used for the prediction of viral spreading across networks of different types. However, it has been shown that degree distribution alone fails to predict the behavior of viruses on some real-world networks and recent attempts have been made to use assortativity to address this shortcoming. In this paper, we show that adding assortativity does not fully explain the variance in the spread of viruses for a number of real-world networks. We propose using the graphlet frequency distribution in combination with assortativity to explain variations in the evolution of viral processes across networks with identical degree distribution. Using a data-driven approach by coupling predictive modeling with viral process simulation on real-world networks, we show that simple regression models based on graphlet frequency distribution can explain over 95% of the variance in virality on networks with the same degree distribution but different network topologies. Our results not only highlight the importance of graphlets but also identify a small collection of graphlets which may have the highest influence over the viral processes on a network.

  19. Common neighbour structure and similarity intensity in complex networks

    NASA Astrophysics Data System (ADS)

    Hou, Lei; Liu, Kecheng

    2017-10-01

    Complex systems as networks always exhibit strong regularities, implying underlying mechanisms governing their evolution. In addition to the degree preference, the similarity has been argued to be another driver for networks. Assuming a network is randomly organised without similarity preference, the present paper studies the expected number of common neighbours between vertices. A symmetrical similarity index is accordingly developed by removing such expected number from the observed common neighbours. The developed index can not only describe the similarities between vertices, but also the dissimilarities. We further apply the proposed index to measure of the influence of similarity on the wring patterns of networks. Fifteen empirical networks as well as artificial networks are examined in terms of similarity intensity and degree heterogeneity. Results on real networks indicate that, social networks are strongly governed by the similarity as well as the degree preference, while the biological networks and infrastructure networks show no apparent similarity governance. Particularly, classical network models, such as the Barabási-Albert model, the Erdös-Rényi model and the Ring Lattice, cannot well describe the social networks in terms of the degree heterogeneity and similarity intensity. The findings may shed some light on the modelling and link prediction of different classes of networks.

  20. A spread willingness computing-based information dissemination model.

    PubMed

    Huang, Haojing; Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network.

  1. A Spread Willingness Computing-Based Information Dissemination Model

    PubMed Central

    Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network. PMID:25110738

  2. A call for innovative social media research in the field of augmentative and alternative communication.

    PubMed

    Hemsley, Bronwyn; Balandin, Susan; Palmer, Stuart; Dann, Stephen

    2017-03-01

    Augmentative and alternative communication (AAC) social media research is relatively new, and is built on a foundation of research on use of the Internet and social media by people with communication disabilities. Although the field is expanding to include a range of people who use AAC, there are limitations and gaps in research that will need to be addressed in order to keep pace with the rapid evolution of social media connectivity in assistive communication technologies. In this paper, we consider the aims, scope, and methodologies of AAC social media research, with a focus on social network sites. Lack of detailed attention to specific social network sites and little use of social media data limits the extent to which findings can be confirmed. Increased use of social media data across a range of platforms, including Instagram and YouTube, would provide important insights into the lives of people who use AAC and the ways in which they and their supporters use social media. New directions for AAC social media research are presented in line with those discussed at the social media research symposium at the International Society for Augmentative and Alternative Communication in Toronto, Canada, on August 12, 2016.

  3. Social media enhances languages differentiation: a mathematical description.

    PubMed

    Vidal-Franco, Ignacio; Guiu-Souto, Jacobo; Muñuzuri, Alberto P

    2017-05-01

    Understanding and predicting the evolution of competing languages is a topic of high interest in a world with more than 6000 languages competing in a highly connected environment. We consider a reasonable mathematical model describing a situation of competition between two languages and analyse the effect of the speakers' connectivity (i.e. social networks). Surprisingly, instead of homogenizing the system, a high degree of connectivity helps to introduce differentiation for the appropriate parameters.

  4. Improving care and wellness in bipolar disorder: origins, evolution and future directions of a collaborative knowledge exchange network

    PubMed Central

    2012-01-01

    The Collaborative RESearch team to study psychosocial factors in bipolar disorder (CREST.BD) is a multidisciplinary, cross-sectoral network dedicated to both fundamental research and knowledge exchange on bipolar disorder (BD). The core mission of the network is to advance the science and understanding of psychological and social issues associated with BD, improve the care and wellness of people living with BD, and strengthen services and supports for these individuals. CREST.BD bridges traditional and newer research approaches, particularly embracing community-based participatory research (CBPR) methods. Membership of CREST is broad, including academic researchers, people with BD, their family members and supports, and a variety of health care providers. Here, we describe the origins, evolution, approach to planning and evaluation and future vision for our network within the landscape of CBPR and integrated knowledge translation (KT), and explore the keys and challenges to success we have encountered working within this framework. PMID:22963889

  5. Prediction of missing links and reconstruction of complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Jun; Zeng, An

    2016-04-01

    Predicting missing links in complex networks is of great significance from both theoretical and practical point of view, which not only helps us understand the evolution of real systems but also relates to many applications in social, biological and online systems. In this paper, we study the features of different simple link prediction methods, revealing that they may lead to the distortion of networks’ structural and dynamical properties. Moreover, we find that high prediction accuracy is not definitely corresponding to a high performance in preserving the network properties when using link prediction methods to reconstruct networks. Our work highlights the importance of considering the feedback effect of the link prediction methods on network properties when designing the algorithms.

  6. Applying Social Network Analysis to Identify the Social Support Needs of Adolescent and Young Adult Cancer Patients and Survivors.

    PubMed

    Koltai, Kolina; Walsh, Casey; Jones, Barbara; Berkelaar, Brenda L

    2018-04-01

    This article examines how theoretical and clinical applications of social network analysis (SNA) can inform opportunities for innovation and advancement of social support programming for adolescent and young adult (AYA) cancer patients and survivors. SNA can help address potential barriers and challenges to initiating and sustaining AYA peer support by helping to identify the diverse psychosocial needs among individuals in the AYA age range; find strategic ways to support and connect AYAs at different phases of the cancer trajectory with resources and services; and increase awareness of psychosocial resources and referrals from healthcare providers. Network perspectives on homophily, proximity, and evolution provide a foundational basis to explore the utility of SNA in AYA clinical care and research initiatives. The uniqueness of the AYA oncology community can also provide insight into extending and developing current SNA theories. Using SNA in AYA psychosocial cancer research has the potential to create new ideas and pathways for supporting AYAs across the continuum of care, while also extending theories of SNA. SNA may also prove to be a useful tool for examining social support resources for AYAs with various chronic health conditions and other like groups.

  7. Our teacher likes you, so I like you: A social network approach to social referencing.

    PubMed

    Hendrickx, Marloes M H G; Mainhard, Tim; Boor-Klip, Henrike J; Brekelmans, Mieke

    2017-08-01

    A teacher is a social referent for peer liking and disliking when students adjust their evaluations of a peer based on their perceptions of teacher liking and disliking for this peer. The present study investigated social referencing as an intra-individual process that occurs over time, using stochastic actor-oriented modeling with RSiena. The co-evolution of peer-perceived teacher liking and disliking networks with peer liking and disliking networks was analyzed in 52 fifth-grade classes in the Netherlands, with 1370 students (M age =10.60). Results showed that when a student viewed the teacher to like a peer, this student would also like this peer. Regarding disliking, there was a stronger effect in the opposite direction, indicating that students' disliking a peer increased the likelihood that they would view the peer as disliked by the teacher as well. In sum, partial evidence for social referencing as an intra-individual process was found. For teachers this implies that the cues they provide regarding their liking of a student, and not necessarily their disliking, may affect individual peers' liking of this student. Copyright © 2017 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  8. Network modularity reveals critical scales for connectivity in ecology and evolution

    USGS Publications Warehouse

    Fletcher, Robert J.; Revell, Andre; Reichert, Brian E.; Kitchens, Wiley M.; Dixon, J.; Austin, James D.

    2013-01-01

    For nearly a century, biologists have emphasized the profound importance of spatial scale for ecology, evolution and conservation. Nonetheless, objectively identifying critical scales has proven incredibly challenging. Here we extend new techniques from physics and social sciences that estimate modularity on networks to identify critical scales for movement and gene flow in animals. Using four species that vary widely in dispersal ability and include both mark-recapture and population genetic data, we identify significant modularity in three species, two of which cannot be explained by geographic distance alone. Importantly, the inclusion of modularity in connectivity and population viability assessments alters conclusions regarding patch importance to connectivity and suggests higher metapopulation viability than when ignoring this hidden spatial scale. We argue that network modularity reveals critical meso-scales that are probably common in populations, providing a powerful means of identifying fundamental scales for biology and for conservation strategies aimed at recovering imperilled species.

  9. The Evolution of Social and Semantic Networks in Epistemic Communities

    ERIC Educational Resources Information Center

    Margolin, Drew Berkley

    2012-01-01

    This study describes and tests a model of scientific inquiry as an evolving, organizational phenomenon. Arguments are derived from organizational ecology and evolutionary theory. The empirical subject of study is an "epistemic community" of scientists publishing on a research topic in physics: the string theoretic concept of…

  10. Personalized Recommendations Based on Users' Information-Centered Social Networks

    ERIC Educational Resources Information Center

    Lee, Danielle

    2013-01-01

    The overwhelming amount of information available today makes it difficult for users to find useful information and as the solution to this information glut problem, recommendation technologies emerged. Among the several streams of related research, one important evolution in technology is to generate recommendations based on users' own social…

  11. Mortality risk and social network position in resident killer whales: sex differences and the importance of resource abundance.

    PubMed

    Ellis, S; Franks, D W; Nattrass, S; Cant, M A; Weiss, M N; Giles, D; Balcomb, K C; Croft, D P

    2017-10-25

    An individual's ecological environment affects their mortality risk, which in turn has fundamental consequences for life-history evolution. In many species, social relationships are likely to be an important component of an individual's environment, and therefore their mortality risk. Here, we examine the relationship between social position and mortality risk in resident killer whales ( Orcinus orca ) using over three decades of social and demographic data. We find that the social position of male, but not female, killer whales in their social unit predicts their mortality risk. More socially integrated males have a significantly lower risk of mortality than socially peripheral males, particularly in years of low prey abundance, suggesting that social position mediates access to resources. Male killer whales are larger and require more resources than females, increasing their vulnerability to starvation in years of low salmon abundance. More socially integrated males are likely to have better access to social information and food-sharing opportunities which may enhance their survival in years of low salmon abundance. Our results show that observable variation in the social environment is linked to variation in mortality risk, and highlight how sex differences in social effects on survival may be linked to sex differences in life-history evolution. © 2017 The Authors.

  12. Mortality risk and social network position in resident killer whales: sex differences and the importance of resource abundance

    PubMed Central

    Franks, D. W.; Nattrass, S.; Weiss, M. N.; Giles, D.; Balcomb, K. C.; Croft, D. P.

    2017-01-01

    An individual's ecological environment affects their mortality risk, which in turn has fundamental consequences for life-history evolution. In many species, social relationships are likely to be an important component of an individual's environment, and therefore their mortality risk. Here, we examine the relationship between social position and mortality risk in resident killer whales (Orcinus orca) using over three decades of social and demographic data. We find that the social position of male, but not female, killer whales in their social unit predicts their mortality risk. More socially integrated males have a significantly lower risk of mortality than socially peripheral males, particularly in years of low prey abundance, suggesting that social position mediates access to resources. Male killer whales are larger and require more resources than females, increasing their vulnerability to starvation in years of low salmon abundance. More socially integrated males are likely to have better access to social information and food-sharing opportunities which may enhance their survival in years of low salmon abundance. Our results show that observable variation in the social environment is linked to variation in mortality risk, and highlight how sex differences in social effects on survival may be linked to sex differences in life-history evolution. PMID:29070720

  13. Digest: Context matters: The effects of light environment and female presence on the structure of wolf spider courtship displays.

    PubMed

    Fialko, Kristina

    2018-05-01

    Does variation in the environment in which a signal is presented affect the components of a complex, ritualized animal display? Using a signal phenotype network, Rosenthal et al. (2018) found that light and female presence alter the structure of wolf spider courtship displays, providing evidence that complex signaling behaviors may be modified depending on the social and environmental context. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  14. Interests diffusion in social networks

    NASA Astrophysics Data System (ADS)

    D'Agostino, Gregorio; D'Antonio, Fulvio; De Nicola, Antonio; Tucci, Salvatore

    2015-10-01

    We provide a model for diffusion of interests in Social Networks (SNs). We demonstrate that the topology of the SN plays a crucial role in the dynamics of the individual interests. Understanding cultural phenomena on SNs and exploiting the implicit knowledge about their members is attracting the interest of different research communities both from the academic and the business side. The community of complexity science is devoting significant efforts to define laws, models, and theories, which, based on acquired knowledge, are able to predict future observations (e.g. success of a product). In the mean time, the semantic web community aims at engineering a new generation of advanced services by defining constructs, models and methods, adding a semantic layer to SNs. In this context, a leapfrog is expected to come from a hybrid approach merging the disciplines above. Along this line, this work focuses on the propagation of individual interests in social networks. The proposed framework consists of the following main components: a method to gather information about the members of the social networks; methods to perform some semantic analysis of the Domain of Interest; a procedure to infer members' interests; and an interests evolution theory to predict how the interests propagate in the network. As a result, one achieves an analytic tool to measure individual features, such as members' susceptibilities and authorities. Although the approach applies to any type of social network, here it is has been tested against the computer science research community. The DBLP (Digital Bibliography and Library Project) database has been elected as test-case since it provides the most comprehensive list of scientific production in this field.

  15. Assortative Mating: Encounter-Network Topology and the Evolution of Attractiveness

    PubMed Central

    Dipple, S.; Jia, T.; Caraco, T.; Korniss, G.; Szymanski, B. K.

    2017-01-01

    We model a social-encounter network where linked nodes match for reproduction in a manner depending probabilistically on each node’s attractiveness. The developed model reveals that increasing either the network’s mean degree or the “choosiness” exercised during pair formation increases the strength of positive assortative mating. That is, we note that attractiveness is correlated among mated nodes. Their total number also increases with mean degree and selectivity during pair formation. By iterating over the model’s mapping of parents onto offspring across generations, we study the evolution of attractiveness. Selection mediated by exclusion from reproduction increases mean attractiveness, but is rapidly balanced by skew in the offspring distribution of highly attractive mated pairs. PMID:28345625

  16. Structure and evolution of a European Parliament via a network and correlation analysis

    NASA Astrophysics Data System (ADS)

    Puccio, Elena; Pajala, Antti; Piilo, Jyrki; Tumminello, Michele

    2016-11-01

    We present a study of the network of relationships among elected members of the Finnish parliament, based on a quantitative analysis of initiative co-signatures, and its evolution over 16 years. To understand the structure of the parliament, we constructed a statistically validated network of members, based on the similarity between the patterns of initiatives they signed. We looked for communities within the network and characterized them in terms of members' attributes, such as electoral district and party. To gain insight on the nested structure of communities, we constructed a hierarchical tree of members from the correlation matrix. Afterwards, we studied parliament dynamics yearly, with a focus on correlations within and between parties, by also distinguishing between government and opposition. Finally, we investigated the role played by specific individuals, at a local level. In particular, whether they act as proponents who gather consensus, or as signers. Our results provide a quantitative background to current theories in political science. From a methodological point of view, our network approach has proven able to highlight both local and global features of a complex social system.

  17. The social brain: allowing humans to boldly go where no other species has been

    PubMed Central

    Frith, Uta; Frith, Chris

    2010-01-01

    The biological basis of complex human social interaction and communication has been illuminated through a coming together of various methods and disciplines. Among these are comparative studies of other species, studies of disorders of social cognition and developmental psychology. The use of neuroimaging and computational models has given weight to speculations about the evolution of social behaviour and culture in human societies. We highlight some networks of the social brain relevant to two-person interactions and consider the social signals between interacting partners that activate these networks. We make a case for distinguishing between signals that automatically trigger interaction and cooperation and ostensive signals that are used deliberately. We suggest that this ostensive signalling is needed for ‘closing the loop’ in two-person interactions, where the partners each know that they have the intention to communicate. The use of deliberate social signals can serve to increase reputation and trust and facilitates teaching. This is likely to be a critical factor in the steep cultural ascent of mankind. PMID:20008394

  18. MyGeneFriends: A Social Network Linking Genes, Genetic Diseases, and Researchers

    PubMed Central

    Allot, Alexis; Chennen, Kirsley; Nevers, Yannis; Poidevin, Laetitia; Kress, Arnaud; Ripp, Raymond; Thompson, Julie Dawn; Poch, Olivier

    2017-01-01

    Background The constant and massive increase of biological data offers unprecedented opportunities to decipher the function and evolution of genes and their roles in human diseases. However, the multiplicity of sources and flow of data mean that efficient access to useful information and knowledge production has become a major challenge. This challenge can be addressed by taking inspiration from Web 2.0 and particularly social networks, which are at the forefront of big data exploration and human-data interaction. Objective MyGeneFriends is a Web platform inspired by social networks, devoted to genetic disease analysis, and organized around three types of proactive agents: genes, humans, and genetic diseases. The aim of this study was to improve exploration and exploitation of biological, postgenomic era big data. Methods MyGeneFriends leverages conventions popularized by top social networks (Facebook, LinkedIn, etc), such as networks of friends, profile pages, friendship recommendations, affinity scores, news feeds, content recommendation, and data visualization. Results MyGeneFriends provides simple and intuitive interactions with data through evaluation and visualization of connections (friendships) between genes, humans, and diseases. The platform suggests new friends and publications and allows agents to follow the activity of their friends. It dynamically personalizes information depending on the user’s specific interests and provides an efficient way to share information with collaborators. Furthermore, the user’s behavior itself generates new information that constitutes an added value integrated in the network, which can be used to discover new connections between biological agents. Conclusions We have developed MyGeneFriends, a Web platform leveraging conventions from popular social networks to redefine the relationship between humans and biological big data and improve human processing of biomedical data. MyGeneFriends is available at lbgi.fr/mygenefriends. PMID:28623182

  19. Sex-based differences in the adaptive value of social behavior contrasted against morphology and environment.

    PubMed

    Vander Wal, E; Festa-Bianchet, M; Réale, D; Coltman, D W; Pelletier, F

    2015-03-01

    The adaptive nature of sociality has long been a central question in ecology and evolution. However, the relative importance of social behavior for fitness, compared to morphology and environment, remains largely unknown. We assessed the importance of sociality for fitness (lamb production and survival) in a population of mark6d bighorn sheep (Ovis canadensis) over 16 years (n = 1022 sheep-years). We constructed social networks from observations (n = 38,350) of group membership (n = 3150 groups). We then tested whether consistent individual differences in social behavior (centrality) exist and evaluated their relative importance compared to factors known to affect fitness: mass, age, parental effects, and population density. Sheep exhibited consistent individual differences in social centrality. Controlling for maternal carryover effects and age, the positive effect of centrality in a social network on adult female lamb production and survival was equal or greater than the effect of body mass or population density. Social centrality had less effect on male survival and no effect on adult male lamb production or lamb survival. Through its effect on lamb production and survival, sociality in fission-fusion animal societies may ultimately influence population dynamics equally or more than morphological or environmental effects.

  20. SSIC model: A multi-layer model for intervention of online rumors spreading

    NASA Astrophysics Data System (ADS)

    Tian, Ru-Ya; Zhang, Xue-Fu; Liu, Yi-Jun

    2015-06-01

    SIR model is a classical model to simulate rumor spreading, while the supernetwork is an effective tool for modeling complex systems. Based on the Opinion SuperNetwork involving Social Sub-network, Environmental Sub-network, Psychological Sub-network, and Viewpoint Sub-network, drawing from the modeling idea of SIR model, this paper designs super SIC model (SSIC model) and its evolution rules, and also analyzes intervention effects on public opinion of four elements of supernetwork, which are opinion agent, opinion environment, agent's psychology and viewpoint. Studies show that, the SSIC model based on supernetwork has effective intervention effects on rumor spreading. It is worth noting that (i) identifying rumor spreaders in Social Sub-network and isolating them can achieve desired intervention results, (ii) improving environmental information transparency so that the public knows as much information as possible to reduce the rumors is a feasible way to intervene, (iii) persuading wavering neutrals has better intervention effects than clarifying rumors already spread everywhere, so rumors should be intervened in properly in time by psychology counseling.

  1. Cooperative behavior cascades in human social networks.

    PubMed

    Fowler, James H; Christakis, Nicholas A

    2010-03-23

    Theoretical models suggest that social networks influence the evolution of cooperation, but to date there have been few experimental studies. Observational data suggest that a wide variety of behaviors may spread in human social networks, but subjects in such studies can choose to befriend people with similar behaviors, posing difficulty for causal inference. Here, we exploit a seminal set of laboratory experiments that originally showed that voluntary costly punishment can help sustain cooperation. In these experiments, subjects were randomly assigned to a sequence of different groups to play a series of single-shot public goods games with strangers; this feature allowed us to draw networks of interactions to explore how cooperative and uncooperative behaviors spread from person to person to person. We show that, in both an ordinary public goods game and in a public goods game with punishment, focal individuals are influenced by fellow group members' contribution behavior in future interactions with other individuals who were not a party to the initial interaction. Furthermore, this influence persists for multiple periods and spreads up to three degrees of separation (from person to person to person to person). The results suggest that each additional contribution a subject makes to the public good in the first period is tripled over the course of the experiment by other subjects who are directly or indirectly influenced to contribute more as a consequence. These results show experimentally that cooperative behavior cascades in human social networks.

  2. Correlates of hepatitis B virus health-related behaviors of Korean Americans: a situation-specific nursing theory.

    PubMed

    Lee, Haeok; Fawcett, Jacqueline; Yang, Jin Hyang; Hann, Hie-Won

    2012-12-01

    The purpose of this article is to explain the evolution of a situation-specific theory developed to enhance understanding of health-related behaviors of Korean Americans (KAs) who have or are at risk for a chronic hepatitis B virus (HBV) infection. The situation-specific theory evolved from an integration of the Network Episode Model, studies of health-related behaviors of people with HBV infection, and our studies of and practice experiences with Asian American individuals with HBV infection. The major concepts of the theory are sociocultural context, social network, individual-level factors, illness experience, and health-related behaviors. The major propositions of the theory are that sociocultural context, social network, and individual-level factors influence the illness experience, and that sociocultural context, social network, individual-level factors, and the illness experience influence health-related behaviors of KAs who have or are at risk for HBV infection. This situation-specific theory represents a translation of abstract concepts into clinical reality. The theory is an explanation of correlates of health-related HBV behaviors of KAs. The next step is to develop and test the effectiveness of a nursing intervention designed to promote behaviors that will enhance the health of KAs who have or are at risk for HBV infection, and that takes into account sociocultural context, social network, individual-level factors, and illness experience. © 2012 Sigma Theta Tau International.

  3. Epidemic dynamics on a risk-based evolving social network

    NASA Astrophysics Data System (ADS)

    Antwi, Shadrack; Shaw, Leah

    2013-03-01

    Social network models have been used to study how behavior affects the dynamics of an infection in a population. Motivated by HIV, we consider how a trade-off between benefits and risks of sexual connections determine network structure and disease prevalence. We define a stochastic network model with formation and breaking of links as changes in sexual contacts. Each node has an intrinsic benefit its neighbors derive from connecting to it. Nodes' infection status is not apparent to others, but nodes with more connections (higher degree) are assumed more likely to be infected. The probability to form and break links is determined by a payoff computed from the benefit and degree-dependent risk. The disease is represented by a SI (susceptible-infected) model. We study network and epidemic evolution via Monte Carlo simulation and analytically predict the behavior with a heterogeneous mean field approach. The dependence of network connectivity and infection threshold on parameters is determined, and steady state degree distribution and epidemic levels are obtained. We also study a situation where system-wide infection levels alter perception of risk and cause nodes to adjust their behavior. This is a case of an adaptive network, where node status feeds back to change network geometry.

  4. Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks.

    PubMed

    Sendiña-Nadal, I; Danziger, M M; Wang, Z; Havlin, S; Boccaletti, S

    2016-02-18

    Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph's hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.

  5. Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Sendiña-Nadal, I.; Danziger, M. M.; Wang, Z.; Havlin, S.; Boccaletti, S.

    2016-02-01

    Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph’s hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.

  6. Analyzing the Dynamics of Communication in Online Social Networks

    NASA Astrophysics Data System (ADS)

    de Choudhury, Munmun; Sundaram, Hari; John, Ajita; Seligmann, Doree Duncan

    This chapter deals with the analysis of interpersonal communication dynamics in online social networks and social media. Communication is central to the evolution of social systems. Today, the different online social sites feature variegated interactional affordances, ranging from blogging, micro-blogging, sharing media elements (i.e., image, video) as well as a rich set of social actions such as tagging, voting, commenting and so on. Consequently, these communication tools have begun to redefine the ways in which we exchange information or concepts, and how the media channels impact our online interactional behavior. Our central hypothesis is that such communication dynamics between individuals manifest themselves via two key aspects: the information or concept that is the content of communication, and the channel i.e., the media via which communication takes place. We present computational models and discuss large-scale quantitative observational studies for both these organizing ideas. First, we develop a computational framework to determine the "interestingness" property of conversations cented around rich media. Second, we present user models of diffusion of social actions and study the impact of homophily on the diffusion process. The outcome of this research is twofold. First, extensive empirical studies on datasets from YouTube have indicated that on rich media sites, the conversations that are deemed "interesting" appear to have consequential impact on the properties of the social network they are associated with: in terms of degree of participation of the individuals in future conversations, thematic diffusion as well as emergent cohesiveness in activity among the concerned participants in the network. Second, observational and computational studies on large social media datasets such as Twitter have indicated that diffusion of social actions in a network can be indicative of future information cascades. Besides, given a topic, these cascades are often a function of attribute homophily existent among the participants. We believe that this chapter can make significant contribution into a better understanding of how we communicate online and how it is redefining our collective sociological behavior.

  7. Network evolution by nonlinear preferential rewiring of edges

    NASA Astrophysics Data System (ADS)

    Xu, Xin-Jian; Hu, Xiao-Ming; Zhang, Li-Jie

    2011-06-01

    The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.

  8. Statistical Mechanics of Temporal and Interacting Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun

    In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide a new framework to quantify the information encoded in these networks and to answer a fundamental problem in network science: how complex are temporal and growing networks. Finally, we consider two examples of critical phenomena in interacting networks. In particular, on one side we investigate the percolation of interacting networks by introducing antagonistic interactions. On the other side, we investigate a model of political election based on the percolation of antagonistic networks. The aim of this research is to show how antagonistic interactions change the physics of critical phenomena on interacting networks. We believe that the work presented in these thesis offers the possibility to appreciate the large variability of problems that can be addressed in the new framework of temporal and interacting networks.

  9. Social Media and Pathology: Where Are We Now and Why Does it Matter?

    PubMed

    Isom, James; Walsh, Meggen; Gardner, Jerad M

    2017-09-01

    Social media has exploded in popularity in recent years. It is a powerful new tool for networking, collaborating, and for the communication and evolution of ideas. It has been increasingly used for business purposes and is now being embraced by physicians including pathologists. Pathology professional organizations and even peer-reviewed pathology journals are now beginning to use social media, as well. There are multiple social media platforms, including Twitter, Facebook, Instagram, LinkedIn, and others. Each platform has different audiences and different ways to share content and interact with other users. This paper discusses the different social media platforms and how they are being used in pathology currently.

  10. Technology Assisted Collaborative and Project-Based Learning; of Blogs, Wikis, and Networking

    ERIC Educational Resources Information Center

    Tinnerman, Larry; Johnson, James; Grimes, Roddran

    2010-01-01

    Throughout America today, public schools are struggling with issues surrounding standards and educational relevance and effectiveness. At the same time, a technological and social evolution is taking place outside of the school building. Students are developing new methods of inquiry and information gathering. If the educational system is to…

  11. The Evolution of South Korea's Broadband Convergence Network, 2004-2007

    ERIC Educational Resources Information Center

    Menon, Siddhartha Shankar

    2010-01-01

    Broadband holds a critical position in the progress of economic and social indicators by connecting consumers, businesses and governments. South Korea has consistently been the global leader in broadband deployment since 1999. In the last ten years the Korean government has pursued several strategies for its broadband policy. The purpose of this…

  12. A Unified Framework for Complex Networks with Degree Trichotomy Based on Markov Chains.

    PubMed

    Hui, David Shui Wing; Chen, Yi-Chao; Zhang, Gong; Wu, Weijie; Chen, Guanrong; Lui, John C S; Li, Yingtao

    2017-06-16

    This paper establishes a Markov chain model as a unified framework for describing the evolution processes in complex networks. The unique feature of the proposed model is its capability in addressing the formation mechanism that can reflect the "trichotomy" observed in degree distributions, based on which closed-form solutions can be derived. Important special cases of the proposed unified framework are those classical models, including Poisson, Exponential, Power-law distributed networks. Both simulation and experimental results demonstrate a good match of the proposed model with real datasets, showing its superiority over the classical models. Implications of the model to various applications including citation analysis, online social networks, and vehicular networks design, are also discussed in the paper.

  13. Neighbourhood reaction in the evolution of cooperation.

    PubMed

    Yang, Guoli; Zhang, Weiming; Xiu, Baoxin

    2015-05-07

    Combining evolutionary games with adaptive networks, an entangled model between strategy evolution and structure adaptation is researched in this paper. We consider a large population of cooperators C and defectors D placed in the networks, playing the repeated prisoner׳s dilemma (PD) games. Because of the conflicts between social welfare and personal rationality, both strategy and structure are allowed to change. In this paper, the dynamics of strategy originates form the partner imitation based on social learning and the dynamics of structure is driven by the active linking and neighbourhood reaction. Notably, the neighbourhood reaction is investigated considering the changes of interfaces between cooperators and defectors, where some neighbours may get away from the interface once the focal agent changes to different strategy. A rich landscape is demonstrated by changing various embedding parameters, which sheds light upon that reacting promptly to the shifted neighbour will promote the prevalence of cooperation. Our model encapsulates the dynamics of strategy, reaction and structure into the evolutionary games, which manifests some intriguing principles in the competition between two groups in natural populations, artificial systems and even human societies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Social Brain Hypothesis: Vocal and Gesture Networks of Wild Chimpanzees

    PubMed Central

    Roberts, Sam G. B.; Roberts, Anna I.

    2016-01-01

    A key driver of brain evolution in primates and humans is the cognitive demands arising from managing social relationships. In primates, grooming plays a key role in maintaining these relationships, but the time that can be devoted to grooming is inherently limited. Communication may act as an additional, more time-efficient bonding mechanism to grooming, but how patterns of communication are related to patterns of sociality is still poorly understood. We used social network analysis to examine the associations between close proximity (duration of time spent within 10 m per hour spent in the same party), grooming, vocal communication, and gestural communication (duration of time and frequency of behavior per hour spent within 10 m) in wild chimpanzees. This study examined hypotheses formulated a priori and the results were not corrected for multiple testing. Chimpanzees had differentiated social relationships, with focal chimpanzees maintaining some level of proximity to almost all group members, but directing gestures at and grooming with a smaller number of preferred social partners. Pairs of chimpanzees that had high levels of close proximity had higher rates of grooming. Importantly, higher rates of gestural communication were also positively associated with levels of proximity, and specifically gestures associated with affiliation (greeting, gesture to mutually groom) were related to proximity. Synchronized low-intensity pant-hoots were also positively related to proximity in pairs of chimpanzees. Further, there were differences in the size of individual chimpanzees' proximity networks—the number of social relationships they maintained with others. Focal chimpanzees with larger proximity networks had a higher rate of both synchronized low- intensity pant-hoots and synchronized high-intensity pant-hoots. These results suggest that in addition to grooming, both gestures and synchronized vocalizations may play key roles in allowing chimpanzees to manage a large and differentiated set of social relationships. Gestures may be important in reducing the aggression arising from being in close proximity to others, allowing for proximity to be maintained for longer and facilitating grooming. Vocalizations may allow chimpanzees to communicate with a larger number of recipients than gestures and the synchronized nature of the pant-hoot calls may facilitate social bonding of more numerous social relationships. As group sizes increased through human evolution, both gestures and synchronized vocalizations may have played important roles in bonding social relationships in a more time-efficient manner than grooming. PMID:27933005

  15. A longitudinal social network analysis of the editorial boards of medical informatics and bioinformatics journals.

    PubMed

    Malin, Bradley; Carley, Kathleen

    2007-01-01

    The goal of this research is to learn how the editorial staffs of bioinformatics and medical informatics journals provide support for cross-community exposure. Models such as co-citation and co-author analysis measure the relationships between researchers; but they do not capture how environments that support knowledge transfer across communities are organized. In this paper, we propose a social network analysis model to study how editorial boards integrate researchers from disparate communities. We evaluate our model by building relational networks based on the editorial boards of approximately 40 journals that serve as research outlets in medical informatics and bioinformatics. We track the evolution of editorial relationships through a longitudinal investigation over the years 2000 through 2005. Our findings suggest that there are research journals that support the collocation of editorial board members from the bioinformatics and medical informatics communities. Network centrality metrics indicate that editorial board members are located in the intersection of the communities and that the number of individuals in the intersection is growing with time. Social network analysis methods provide insight into the relationships between the medical informatics and bioinformatics communities. The number of editorial board members facilitating the publication intersection of the communities has grown, but the intersection remains dependent on a small group of individuals and fragile.

  16. Individual heterogeneity generating explosive system network dynamics.

    PubMed

    Manrique, Pedro D; Johnson, Neil F

    2018-03-01

    Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.

  17. Individual heterogeneity generating explosive system network dynamics

    NASA Astrophysics Data System (ADS)

    Manrique, Pedro D.; Johnson, Neil F.

    2018-03-01

    Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.

  18. Prediction and Characterization of High-Activity Events in Social Media Triggered by Real-World News.

    PubMed

    Kalyanam, Janani; Quezada, Mauricio; Poblete, Barbara; Lanckriet, Gert

    2016-01-01

    On-line social networks publish information on a high volume of real-world events almost instantly, becoming a primary source for breaking news. Some of these real-world events can end up having a very strong impact on on-line social networks. The effect of such events can be analyzed from several perspectives, one of them being the intensity and characteristics of the collective activity that it produces in the social platform. We research 5,234 real-world news events encompassing 43 million messages discussed on the Twitter microblogging service for approximately 1 year. We show empirically that exogenous news events naturally create collective patterns of bursty behavior in combination with long periods of inactivity in the network. This type of behavior agrees with other patterns previously observed in other types of natural collective phenomena, as well as in individual human communications. In addition, we propose a methodology to classify news events according to the different levels of intensity in activity that they produce. In particular, we analyze the most highly active events and observe a consistent and strikingly different collective reaction from users when they are exposed to such events. This reaction is independent of an event's reach and scope. We further observe that extremely high-activity events have characteristics that are quite distinguishable at the beginning stages of their outbreak. This allows us to predict with high precision, the top 8% of events that will have the most impact in the social network by just using the first 5% of the information of an event's lifetime evolution. This strongly implies that high-activity events are naturally prioritized collectively by the social network, engaging users early on, way before they are brought to the mainstream audience.

  19. Uncovering Randomness and Success in Society

    PubMed Central

    Jalan, Sarika; Sarkar, Camellia; Madhusudanan, Anagha; Dwivedi, Sanjiv Kumar

    2014-01-01

    An understanding of how individuals shape and impact the evolution of society is vastly limited due to the unavailability of large-scale reliable datasets that can simultaneously capture information regarding individual movements and social interactions. We believe that the popular Indian film industry, “Bollywood”, can provide a social network apt for such a study. Bollywood provides massive amounts of real, unbiased data that spans more than 100 years, and hence this network has been used as a model for the present paper. The nodes which maintain a moderate degree or widely cooperate with the other nodes of the network tend to be more fit (measured as the success of the node in the industry) in comparison to the other nodes. The analysis carried forth in the current work, using a conjoined framework of complex network theory and random matrix theory, aims to quantify the elements that determine the fitness of an individual node and the factors that contribute to the robustness of a network. The authors of this paper believe that the method of study used in the current paper can be extended to study various other industries and organizations. PMID:24533073

  20. Emergence of Multiplex Communities in Collaboration Networks.

    PubMed

    Battiston, Federico; Iacovacci, Jacopo; Nicosia, Vincenzo; Bianconi, Ginestra; Latora, Vito

    2016-01-01

    Community structures in collaboration networks reflect the natural tendency of individuals to organize their work in groups in order to better achieve common goals. In most of the cases, individuals exploit their connections to introduce themselves to new areas of interests, giving rise to multifaceted collaborations which span different fields. In this paper, we analyse collaborations in science and among movie actors as multiplex networks, where the layers represent respectively research topics and movie genres, and we show that communities indeed coexist and overlap at the different layers of such systems. We then propose a model to grow multiplex networks based on two mechanisms of intra and inter-layer triadic closure which mimic the real processes by which collaborations evolve. We show that our model is able to explain the multiplex community structure observed empirically, and we infer the strength of the two underlying social mechanisms from real-world systems. Being also able to correctly reproduce the values of intra-layer and inter-layer assortativity correlations, the model contributes to a better understanding of the principles driving the evolution of social networks.

  1. Uncovering randomness and success in society.

    PubMed

    Jalan, Sarika; Sarkar, Camellia; Madhusudanan, Anagha; Dwivedi, Sanjiv Kumar

    2014-01-01

    An understanding of how individuals shape and impact the evolution of society is vastly limited due to the unavailability of large-scale reliable datasets that can simultaneously capture information regarding individual movements and social interactions. We believe that the popular Indian film industry, "Bollywood", can provide a social network apt for such a study. Bollywood provides massive amounts of real, unbiased data that spans more than 100 years, and hence this network has been used as a model for the present paper. The nodes which maintain a moderate degree or widely cooperate with the other nodes of the network tend to be more fit (measured as the success of the node in the industry) in comparison to the other nodes. The analysis carried forth in the current work, using a conjoined framework of complex network theory and random matrix theory, aims to quantify the elements that determine the fitness of an individual node and the factors that contribute to the robustness of a network. The authors of this paper believe that the method of study used in the current paper can be extended to study various other industries and organizations.

  2. Discovering Network Structure Beyond Communities

    NASA Astrophysics Data System (ADS)

    Nishikawa, Takashi; Motter, Adilson E.

    2011-11-01

    To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.

  3. Propagation, cascades, and agreement dynamics in complex communication and social networks

    NASA Astrophysics Data System (ADS)

    Lu, Qiming

    Many modern and important technological, social, information and infrastructure systems can be viewed as complex systems with a large number of interacting components. Models of complex networks and dynamical interactions, as well as their applications are of fundamental interests in many aspects. Here, several stylized models of multiplex propagation and opinion dynamics are investigated on complex and empirical social networks. We first investigate cascade dynamics in threshold-controlled (multiplex) propagation on random geometric networks. We find that such local dynamics can serve as an efficient, robust, and reliable prototypical activation protocol in sensor networks in responding to various alarm scenarios. We also consider the same dynamics on a modified network by adding a few long-range communication links, resulting in a small-world network. We find that such construction can further enhance and optimize the speed of the network's response, while keeping energy consumption at a manageable level. We also investigate a prototypical agent-based model, the Naming Game, on two-dimensional random geometric networks. The Naming Game [A. Baronchelli et al., J. Stat. Mech.: Theory Exp. (2006) P06014.] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the Naming Games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially-embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case. When applying the model of Naming Game on empirical social networks, this stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.

  4. The co-evolution of networks and prisoner’s dilemma game by considering sensitivity and visibility

    NASA Astrophysics Data System (ADS)

    Li, Dandan; Ma, Jing; Han, Dun; Sun, Mei; Tian, Lixin; Stanley, H. Eugene

    2017-03-01

    Strategies adopted by individuals in a social network significantly impact the network, and they strongly affect relationships between individuals in the network. Links between individuals also heavily influence their levels of cooperation. Taking into account the evolution of each individual’s connection, we explore how sensitivity and visibility affect the prisoner’s dilemma game. The so-called ‘sensitivity’ and ‘visibility’ respectively present one’s self-protection consciousness and the ability of gaining information. We find that at moderate levels of player sensitivity cooperative behavior increases, but that at high levels it is inhibited. We also find that the heterogeneity of the weight of individuals at the end of the game is higher when sensitivity and visibility are increased, but that the successful-defection-payoff has less impact on the weight of individuals and on the relationship between the heterogeneity of the weight of individuals and the density of cooperators. This framework can be used to clarify the interaction mechanism between the micro-level of individual behavior and the macro-level of individual co-evolutionary processes.

  5. The co-evolution of networks and prisoner's dilemma game by considering sensitivity and visibility.

    PubMed

    Li, Dandan; Ma, Jing; Han, Dun; Sun, Mei; Tian, Lixin; Stanley, H Eugene

    2017-03-24

    Strategies adopted by individuals in a social network significantly impact the network, and they strongly affect relationships between individuals in the network. Links between individuals also heavily influence their levels of cooperation. Taking into account the evolution of each individual's connection, we explore how sensitivity and visibility affect the prisoner's dilemma game. The so-called 'sensitivity' and 'visibility' respectively present one's self-protection consciousness and the ability of gaining information. We find that at moderate levels of player sensitivity cooperative behavior increases, but that at high levels it is inhibited. We also find that the heterogeneity of the weight of individuals at the end of the game is higher when sensitivity and visibility are increased, but that the successful-defection-payoff has less impact on the weight of individuals and on the relationship between the heterogeneity of the weight of individuals and the density of cooperators. This framework can be used to clarify the interaction mechanism between the micro-level of individual behavior and the macro-level of individual co-evolutionary processes.

  6. The co-evolution of networks and prisoner’s dilemma game by considering sensitivity and visibility

    PubMed Central

    Li, Dandan; Ma, Jing; Han, Dun; Sun, Mei; Tian, Lixin; Stanley, H. Eugene

    2017-01-01

    Strategies adopted by individuals in a social network significantly impact the network, and they strongly affect relationships between individuals in the network. Links between individuals also heavily influence their levels of cooperation. Taking into account the evolution of each individual’s connection, we explore how sensitivity and visibility affect the prisoner’s dilemma game. The so-called ‘sensitivity’ and ‘visibility’ respectively present one’s self-protection consciousness and the ability of gaining information. We find that at moderate levels of player sensitivity cooperative behavior increases, but that at high levels it is inhibited. We also find that the heterogeneity of the weight of individuals at the end of the game is higher when sensitivity and visibility are increased, but that the successful-defection-payoff has less impact on the weight of individuals and on the relationship between the heterogeneity of the weight of individuals and the density of cooperators. This framework can be used to clarify the interaction mechanism between the micro-level of individual behavior and the macro-level of individual co-evolutionary processes. PMID:28338070

  7. Emergence and evolution of social self-management of Parkinson’s disease: study protocol for a 3-year prospective cohort study

    PubMed Central

    2014-01-01

    Background Parkinson’s disease affects facial, vocal and trunk muscles. As symptoms progress, facial expression becomes masked, limiting the person’s ability to communicate emotions and intentions to others. As people with the disease live and reside in their homes longer, the burden of caregiving is unmitigated by social and emotional rewards provided by an expressive individual. Little is known about how adults living with Parkinson’s disease manage their social lives and how an inability to be emotionally expressive can affect social connections and health. Because social networks have been shown to be crucial to the overall well-being of people living with chronic diseases, research is needed on how expressive capacity affects life trajectories and health. Methods/Design The overall objective is to understand the emergence and evolution of the trajectories of the self-management of the social lives of people living with Parkinson’s disease. The central hypothesis is that expressive capacity predicts systematic change in the pattern of social self-management and quality of life outcomes. The specific aims of this 3-year longitudinal study of 120 people with the disease and a maximum of 120 care partners are: 1) characterize social self-management trajectories over a 3-year period; 2) estimate the degree to which expressive nonverbal capacity predicts the trajectory; and 3) determine the moderating effect of gender on the association between expressive capacity and change in social self-management. Each participant will be assessed 14 times to detect rapid and non-linear changes in social participation and management of social activities; social network; and social comfort, general health and well-being. Discussion This project will provide evidence to guide the development of interventions for supporting social integration of those living with Parkinson’s disease, thus leading to improved overall health. It focuses on the novel construct of social self-management and known factors—expressive capacity and gender—that contribute to stigmatization. The repeated measures design detects triggers of rapid changes in social and health outcomes. PMID:24885181

  8. Cooperative behavior cascades in human social networks

    PubMed Central

    Fowler, James H.; Christakis, Nicholas A.

    2010-01-01

    Theoretical models suggest that social networks influence the evolution of cooperation, but to date there have been few experimental studies. Observational data suggest that a wide variety of behaviors may spread in human social networks, but subjects in such studies can choose to befriend people with similar behaviors, posing difficulty for causal inference. Here, we exploit a seminal set of laboratory experiments that originally showed that voluntary costly punishment can help sustain cooperation. In these experiments, subjects were randomly assigned to a sequence of different groups to play a series of single-shot public goods games with strangers; this feature allowed us to draw networks of interactions to explore how cooperative and uncooperative behaviors spread from person to person to person. We show that, in both an ordinary public goods game and in a public goods game with punishment, focal individuals are influenced by fellow group members’ contribution behavior in future interactions with other individuals who were not a party to the initial interaction. Furthermore, this influence persists for multiple periods and spreads up to three degrees of separation (from person to person to person to person). The results suggest that each additional contribution a subject makes to the public good in the first period is tripled over the course of the experiment by other subjects who are directly or indirectly influenced to contribute more as a consequence. These results show experimentally that cooperative behavior cascades in human social networks. PMID:20212120

  9. A simple rule for the evolution of cooperation on graphs and social networks.

    PubMed

    Ohtsuki, Hisashi; Hauert, Christoph; Lieberman, Erez; Nowak, Martin A

    2006-05-25

    A fundamental aspect of all biological systems is cooperation. Cooperative interactions are required for many levels of biological organization ranging from single cells to groups of animals. Human society is based to a large extent on mechanisms that promote cooperation. It is well known that in unstructured populations, natural selection favours defectors over cooperators. There is much current interest, however, in studying evolutionary games in structured populations and on graphs. These efforts recognize the fact that who-meets-whom is not random, but determined by spatial relationships or social networks. Here we describe a surprisingly simple rule that is a good approximation for all graphs that we have analysed, including cycles, spatial lattices, random regular graphs, random graphs and scale-free networks: natural selection favours cooperation, if the benefit of the altruistic act, b, divided by the cost, c, exceeds the average number of neighbours, k, which means b/c > k. In this case, cooperation can evolve as a consequence of 'social viscosity' even in the absence of reputation effects or strategic complexity.

  10. Epidemic spreading on evolving signed networks

    NASA Astrophysics Data System (ADS)

    Saeedian, M.; Azimi-Tafreshi, N.; Jafari, G. R.; Kertesz, J.

    2017-02-01

    Most studies of disease spreading consider the underlying social network as obtained without the contagion, though epidemic influences people's willingness to contact others: A "friendly" contact may be turned to "unfriendly" to avoid infection. We study the susceptible-infected disease-spreading model on signed networks, in which each edge is associated with a positive or negative sign representing the friendly or unfriendly relation between its end nodes. In a signed network, according to Heider's theory, edge signs evolve such that finally a state of structural balance is achieved, corresponding to no frustration in physics terms. However, the danger of infection affects the evolution of its edge signs. To describe the coupled problem of the sign evolution and disease spreading, we generalize the notion of structural balance by taking into account the state of the nodes. We introduce an energy function and carry out Monte Carlo simulations on complete networks to test the energy landscape, where we find local minima corresponding to the so-called jammed states. We study the effect of the ratio of initial friendly to unfriendly connections on the propagation of disease. The steady state can be balanced or a jammed state such that a coexistence occurs between susceptible and infected nodes in the system.

  11. How social learning adds up to a culture: from birdsong to human public opinion

    PubMed Central

    Feher, Olga; Fimiarz, Daniel; Conley, Dalton

    2017-01-01

    ABSTRACT Distributed social learning may occur at many temporal and spatial scales, but it rarely adds up to a stable culture. Cultures vary in stability and diversity (polymorphism), ranging from chaotic or drifting cultures, through cumulative polymorphic cultures, to stable monolithic cultures with high conformity levels. What features can sustain polymorphism, preventing cultures from collapsing into either chaotic or highly conforming states? We investigate this question by integrating studies across two quite separate disciplines: the emergence of song cultures in birds, and the spread of public opinion and social conventions in humans. In songbirds, the learning process has been studied in great detail, while in human studies the structure of social networks has been experimentally manipulated on large scales. In both cases, the manner in which communication signals are compressed and filtered – either during learning or while traveling through the social network – can affect culture polymorphism and stability. We suggest a simple mechanism of a shifting balance between converging and diverging social forces to explain these effects. Understanding social forces that shape cultural evolution might be useful for designing agile communication systems, which are stable and polymorphic enough to promote gradual changes in institutional behavior. PMID:28057835

  12. Cooperative networks overcoming defectors by social influence

    NASA Astrophysics Data System (ADS)

    Gomez Portillo, Ignacio

    2014-01-01

    We address the cooperation problem in structured populations by considering the prisoner’s dilemma game as a metaphor of the social interactions between individuals with imitation capacity. We present a new strategy update rule called democratic weighted update where the individual’s behavior is socially influenced by each one of their neighbors. In particular, the capacity of an individual to socially influence other ones is proportional to its accumulated payoff. When in a neighborhood there are cooperators and defectors, the focal player is contradictorily influenced by them and, therefore, the effective social influence is given by the difference of the accumulated payoff of each strategy in its neighborhood. First, by considering the growing process of the network and neglecting mutations, we show the evolution of highly cooperative systems. Then, we broadly show that the social influence allows to overcome the emergence of defectors into highly cooperative systems. In this way, we conclude that in a structured system formed by a growing process, the cooperation evolves if the individuals have an imitation capacity socially influenced by each one of their neighbors. Therefore, here we present a theoretical solution of the cooperation problem among genetically unrelated individuals.

  13. Complex contagions with timers

    NASA Astrophysics Data System (ADS)

    Oh, Se-Wook; Porter, Mason A.

    2018-03-01

    There has been a great deal of effort to try to model social influence—including the spread of behavior, norms, and ideas—on networks. Most models of social influence tend to assume that individuals react to changes in the states of their neighbors without any time delay, but this is often not true in social contexts, where (for various reasons) different agents can have different response times. To examine such situations, we introduce the idea of a timer into threshold models of social influence. The presence of timers on nodes delays adoptions—i.e., changes of state—by the agents, which in turn delays the adoptions of their neighbors. With a homogeneously-distributed timer, in which all nodes have the same amount of delay, the adoption order of nodes remains the same. However, heterogeneously-distributed timers can change the adoption order of nodes and hence the "adoption paths" through which state changes spread in a network. Using a threshold model of social contagions, we illustrate that heterogeneous timers can either accelerate or decelerate the spread of adoptions compared to an analogous situation with homogeneous timers, and we investigate the relationship of such acceleration or deceleration with respect to the timer distribution and network structure. We derive an analytical approximation for the temporal evolution of the fraction of adopters by modifying a pair approximation for the Watts threshold model, and we find good agreement with numerical simulations. We also examine our new timer model on networks constructed from empirical data.

  14. Evolving Technologies Require Educational Policy Change: Music Education for the 21st Century

    ERIC Educational Resources Information Center

    Crawford, Renee

    2013-01-01

    There is growing discussion among education and government authorities on rethinking education in the 21st century. This increasing area of interest has come in response to the evolution of technology and its effect on the future needs and requirements of society. Online applications and social networking capabilities have accelerated in…

  15. First Steps Towards a University Social Network on Personal Learning Environments

    ERIC Educational Resources Information Center

    Marín-Diaz, Veronica; Vázquez Martínez, Ana Isabel; McMullin, Karen Josephine

    2014-01-01

    The evolution of the media and the Internet in education today is an unquestionable reality. At the university level, the use of Web 2.0 tools has become increasingly visible in the new resources that professors have been incorporating both into the classroom and into their research, reinforcing the methodological renewal that the implementation…

  16. [Using web 2.0 technologies and social media for the nephrologist].

    PubMed

    Santoro, Eugenio; Quintaliani, Giuseppe

    2013-01-01

    New media tools such as web 2.0 are increasingly being used in the medical field. RSS feeds, podcasts, blogs, wikis, online social networks and social media have all been proposed as innovative tools for the education and updating of clinicians, nurses, other health workers and medical students because of their ease of access and widespread use. Nephrology is one of the medical fields where these technologies have been successfully applied. Medical journals such as the American Journal Kidney Diseases and the Journal of the American Society of Nephrology, and medical societies such as the American Society of Nephrology, are all using these new and powerful communication tools. In addition, blogs and social networks have been developed to allow physicians to distribute, share and comment medical material concerning issues related to nephrology and kidney disease, including images, videos, slides, scientific abstracts and clinical trials updates. This review provides background information on the evolution of both web 2.0 and the social media and describes some of the most interesting applications of web 2.0 and its correlated tools in the field of nephrology.

  17. Spatial networks

    NASA Astrophysics Data System (ADS)

    Barthélemy, Marc

    2011-02-01

    Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.

  18. Popularity versus similarity in growing networks

    NASA Astrophysics Data System (ADS)

    Krioukov, Dmitri; Papadopoulos, Fragkiskos; Kitsak, Maksim; Serrano, Mariangeles; Boguna, Marian

    2012-02-01

    Preferential attachment is a powerful mechanism explaining the emergence of scaling in growing networks. If new connections are established preferentially to more popular nodes in a network, then the network is scale-free. Here we show that not only popularity but also similarity is a strong force shaping the network structure and dynamics. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which preferential attachment emerges from local optimization processes. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.

  19. MyGeneFriends: A Social Network Linking Genes, Genetic Diseases, and Researchers.

    PubMed

    Allot, Alexis; Chennen, Kirsley; Nevers, Yannis; Poidevin, Laetitia; Kress, Arnaud; Ripp, Raymond; Thompson, Julie Dawn; Poch, Olivier; Lecompte, Odile

    2017-06-16

    The constant and massive increase of biological data offers unprecedented opportunities to decipher the function and evolution of genes and their roles in human diseases. However, the multiplicity of sources and flow of data mean that efficient access to useful information and knowledge production has become a major challenge. This challenge can be addressed by taking inspiration from Web 2.0 and particularly social networks, which are at the forefront of big data exploration and human-data interaction. MyGeneFriends is a Web platform inspired by social networks, devoted to genetic disease analysis, and organized around three types of proactive agents: genes, humans, and genetic diseases. The aim of this study was to improve exploration and exploitation of biological, postgenomic era big data. MyGeneFriends leverages conventions popularized by top social networks (Facebook, LinkedIn, etc), such as networks of friends, profile pages, friendship recommendations, affinity scores, news feeds, content recommendation, and data visualization. MyGeneFriends provides simple and intuitive interactions with data through evaluation and visualization of connections (friendships) between genes, humans, and diseases. The platform suggests new friends and publications and allows agents to follow the activity of their friends. It dynamically personalizes information depending on the user's specific interests and provides an efficient way to share information with collaborators. Furthermore, the user's behavior itself generates new information that constitutes an added value integrated in the network, which can be used to discover new connections between biological agents. We have developed MyGeneFriends, a Web platform leveraging conventions from popular social networks to redefine the relationship between humans and biological big data and improve human processing of biomedical data. MyGeneFriends is available at lbgi.fr/mygenefriends. ©Alexis Allot, Kirsley Chennen, Yannis Nevers, Laetitia Poidevin, Arnaud Kress, Raymond Ripp, Julie Dawn Thompson, Olivier Poch, Odile Lecompte. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 16.06.2017.

  20. Modeling the origins of mammalian sociality: moderate evidence for matrilineal signatures in mouse lemur vocalizations.

    PubMed

    Kessler, Sharon E; Radespiel, Ute; Hasiniaina, Alida I F; Leliveld, Lisette M C; Nash, Leanne T; Zimmermann, Elke

    2014-02-20

    Maternal kin selection is a driving force in the evolution of mammalian social complexity and it requires that kin are distinctive from nonkin. The transition from the ancestral state of asociality to the derived state of complex social groups is thought to have occurred via solitary foraging, in which individuals forage alone, but, unlike the asocial ancestors, maintain dispersed social networks via scent-marks and vocalizations. We hypothesize that matrilineal signatures in vocalizations were an important part of these networks. We used the solitary foraging gray mouse lemur (Microcebus murinus) as a model for ancestral solitary foragers and tested for matrilineal signatures in their calls, thus investigating whether such signatures are already present in solitary foragers and could have facilitated the kin selection thought to have driven the evolution of increased social complexity in mammals. Because agonism can be very costly, selection for matrilineal signatures in agonistic calls should help reduce agonism between unfamiliar matrilineal kin. We conducted this study on a well-studied population of wild mouse lemurs at Ankarafantsika National Park, Madagascar. We determined pairwise relatedness using seven microsatellite loci, matrilineal relatedness by sequencing the mitrochondrial D-loop, and sleeping group associations using radio-telemetry. We recorded agonistic calls during controlled social encounters and conducted a multi-parametric acoustic analysis to determine the spectral and temporal structure of the agonistic calls. We measured 10 calls for each of 16 females from six different matrilineal kin groups. Calls were assigned to their matriline at a rate significantly higher than chance (pDFA: correct = 47.1%, chance = 26.7%, p = 0.03). There was a statistical trend for a negative correlation between acoustic distance and relatedness (Mantel Test: g = -1.61, Z = 4.61, r = -0.13, p = 0.058). Mouse lemur agonistic calls are moderately distinctive by matriline. Because sleeping groups consisted of close maternal kin, both genetics and social learning may have generated these acoustic signatures. As mouse lemurs are models for solitary foragers, we recommend further studies testing whether the lemurs use these calls to recognize kin. This would enable further modeling of how kin recognition in ancestral species could have shaped the evolution of complex sociality.

  1. Determinants of public cooperation in multiplex networks

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Perc, Matjaž; Latora, Vito

    2017-07-01

    Synergies between evolutionary game theory and statistical physics have significantly improved our understanding of public cooperation in structured populations. Multiplex networks, in particular, provide the theoretical framework within network science that allows us to mathematically describe the rich structure of interactions characterizing human societies. While research has shown that multiplex networks may enhance the resilience of cooperation, the interplay between the overlap in the structure of the layers and the control parameters of the corresponding games has not yet been investigated. With this aim, we consider here the public goods game on a multiplex network, and we unveil the role of the number of layers and the overlap of links, as well as the impact of different synergy factors in different layers, on the onset of cooperation. We show that enhanced public cooperation emerges only when a significant edge overlap is combined with at least one layer being able to sustain some cooperation by means of a sufficiently high synergy factor. In the absence of either of these conditions, the evolution of cooperation in multiplex networks is determined by the bounds of traditional network reciprocity with no enhanced resilience. These results caution against overly optimistic predictions that the presence of multiple social domains may in itself promote cooperation, and they help us better understand the complexity behind prosocial behavior in layered social systems.

  2. True and fake information spreading over the Facebook

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Chow, Tommy W. S.; Zhong, Lu; Tian, Zhaoyang; Zhang, Qingpeng; Chen, Guanrong

    2018-09-01

    Social networks have involved more and more users who search for and share information extensively and frequently. Tremendous evidence in Facebook, Twitter, Flickr and Google+ alike shows that such social networks are the major information sources as well as the most effective platforms for information transmission and exchange. The dynamic propagation of various information may gradually disseminate, drastically increase, strongly compete with each other, or slowly decrease. These observations had led to the present study of the spreading process of true and fake information over social networks, particularly the Facebook. Specifically, in this paper the topological structure of two huge-scale Facebook network datasets are investigated regarding their statistical properties. Based on that, an information model for simulating the true and fake information spreading over the Facebook is established. Through controlling the spreading parameters in extensive large-scale simulations, it is found that the final density of stiflers increases with the growth of the spreading rate, while it would decline with the increase of the removal rate. Moreover, it is found that the spreading process of the true-fake information is closely related to the node degrees on the network. Hub-individuals with high degrees have large probabilities to learn hidden information and then spread it. Interestingly, it is found that the spreading rate of the true information but not of the fake information has a great effect on the information spreading process, reflecting the human nature in believing and spreading truths in social activities. The new findings validate the proposed model to be capable of characterizing the dynamic evolution of true and fake information over the Facebook, useful and informative for future social science studies.

  3. Dynamics of Alliance Formation and the Egalitarian Revolution

    PubMed Central

    Gavrilets, Sergey; Duenez-Guzman, Edgar A.; Vose, Michael D.

    2008-01-01

    Background Arguably the most influential force in human history is the formation of social coalitions and alliances (i.e., long-lasting coalitions) and their impact on individual power. Understanding the dynamics of alliance formation and its consequences for biological, social, and cultural evolution is a formidable theoretical challenge. In most great ape species, coalitions occur at individual and group levels and among both kin and non-kin. Nonetheless, ape societies remain essentially hierarchical, and coalitions rarely weaken social inequality. In contrast, human hunter-gatherers show a remarkable tendency to egalitarianism, and human coalitions and alliances occur not only among individuals and groups, but also among groups of groups. These observations suggest that the evolutionary dynamics of human coalitions can only be understood in the context of social networks and cognitive evolution. Methodology/Principal Findings Here, we develop a stochastic model describing the emergence of networks of allies resulting from within-group competition for status or mates between individuals utilizing dyadic information. The model shows that alliances often emerge in a phase transition-like fashion if the group size, awareness, aggressiveness, and persuasiveness of individuals are large and the decay rate of individual affinities is small. With cultural inheritance of social networks, a single leveling alliance including all group members can emerge in several generations. Conclusions/Significance We propose a simple and flexible theoretical approach for studying the dynamics of alliance emergence applicable where game-theoretic methods are not practical. Our approach is both scalable and expandable. It is scalable in that it can be generalized to larger groups, or groups of groups. It is expandable in that it allows for inclusion of additional factors such as behavioral, genetic, social, and cultural features. Our results suggest that a rapid transition from a hierarchical society of great apes to an egalitarian society of hunter-gatherers (often referred to as “egalitarian revolution”) could indeed follow an increase in human cognitive abilities. The establishment of stable group-wide egalitarian alliances creates conditions promoting the origin of cultural norms favoring the group interests over those of individuals. PMID:18827928

  4. An overview of structurally complex network-based modeling of public opinion in the “We the Media” era

    NASA Astrophysics Data System (ADS)

    Wang, Guanghui; Wang, Yufei; Liu, Yijun; Chi, Yuxue

    2018-05-01

    As the transmission of public opinion on the Internet in the “We the Media” era tends to be supraterritorial, concealed and complex, the traditional “point-to-surface” transmission of information has been transformed into “point-to-point” reciprocal transmission. A foundation for studies of the evolution of public opinion and its transmission on the Internet in the “We the Media” era can be laid by converting the massive amounts of fragmented information on public opinion that exists on “We the Media” platforms into structurally complex networks of information. This paper describes studies of structurally complex network-based modeling of public opinion on the Internet in the “We the Media” era from the perspective of the development and evolution of complex networks. The progress that has been made in research projects relevant to the structural modeling of public opinion on the Internet is comprehensively summarized. The review considers aspects such as regular grid-based modeling of the rules that describe the propagation of public opinion on the Internet in the “We the Media” era, social network modeling, dynamic network modeling, and supernetwork modeling. Moreover, an outlook for future studies that address complex network-based modeling of public opinion on the Internet is put forward as a summary from the perspective of modeling conducted using the techniques mentioned above.

  5. The complex network of musical tastes

    NASA Astrophysics Data System (ADS)

    Buldú, Javier M.; Cano, P.; Koppenberger, M.; Almendral, Juan A.; Boccaletti, S.

    2007-06-01

    We present an empirical study of the evolution of a social network constructed under the influence of musical tastes. The network is obtained thanks to the selfless effort of a broad community of users who share playlists of their favourite songs with other users. When two songs co-occur in a playlist a link is created between them, leading to a complex network where songs are the fundamental nodes. In this representation, songs in the same playlist could belong to different musical genres, but they are prone to be linked by a certain musical taste (e.g. if songs A and B co-occur in several playlists, an user who likes A will probably like also B). Indeed, playlist collections such as the one under study are the basic material that feeds some commercial music recommendation engines. Since playlists have an input date, we are able to evaluate the topology of this particular complex network from scratch, observing how its characteristic parameters evolve in time. We compare our results with those obtained from an artificial network defined by means of a null model. This comparison yields some insight on the evolution and structure of such a network, which could be used as ground data for the development of proper models. Finally, we gather information that can be useful for the development of music recommendation engines and give some hints about how top-hits appear.

  6. Bipartite graphs as models of population structures in evolutionary multiplayer games.

    PubMed

    Peña, Jorge; Rochat, Yannick

    2012-01-01

    By combining evolutionary game theory and graph theory, "games on graphs" study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner's dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner's dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures.

  7. Risky business: The impact of climate and climate variability on human population dynamics in Western Europe during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Burke, Ariane; Kageyama, Masa; Latombe, Guilllaume; Fasel, Marc; Vrac, Mathieu; Ramstein, Gilles; James, Patrick M. A.

    2017-05-01

    The extent to which climate change has affected the course of human evolution is an enduring question. The ability to maintain spatially extensive social networks and a fluid social structure allows human foragers to ;map onto; the landscape, mitigating the impact of ecological risk and conferring resilience. But what are the limits of resilience and to which environmental variables are foraging populations sensitive? We address this question by testing the impact of a suite of environmental variables, including climate variability, on the distribution of human populations in Western Europe during the Last Glacial Maximum (LGM). Climate variability affects the distribution of plant and animal resources unpredictably, creating an element of risk for foragers for whom mobility comes at a cost. We produce a model of habitat suitability that allows us to generate predictions about the probable distribution of human populations and discuss the implications of these predictions for the structure of human populations and their social and cultural evolution during the LGM.

  8. Experimentally induced innovations lead to persistent culture via conformity in wild birds

    PubMed Central

    Aplin, L.M.; Farine, D.R.; Morand-Ferron, J.; Cockburn, A.; Thornton, A.; Sheldon, B.C.

    2014-01-01

    In human societies, cultural norms arise when behaviours are transmitted with high-fidelity social learning through social networks1. However a paucity of experimental studies has meant that there is no comparable understanding of the process by which socially transmitted behaviours may spread and persist in animal populations2,3. Here, we introduce alternative novel foraging techniques into replicated wild sub-populations of great tits (Parus major), and employ automated tracking to map the diffusion, establishment and long-term persistence of seeded behaviours. We further use social network analysis to examine social factors influencing diffusion dynamics. From just two trained birds in each sub-population, information spread rapidly through social network ties to reach an average of 75% of individuals, with 508 knowledgeable individuals performing 58,975 solutions. Sub-populations were heavily biased towards the technique originally introduced, resulting in established local arbitrary traditions that were stable over two generations, despite high population turnover. Finally, we demonstrate a strong effect of social conformity, with individuals disproportionately adopting the most frequent local variant when first learning, but then also continuing to favour social over personal information by matching their technique to the majority variant. Cultural conformity is thought to be a key factor in the evolution of complex culture in humans4-7. In providing the first experimental demonstration of conformity in a wild non-primate, and of cultural norms in foraging techniques in any wild animal, our results suggest a much wider evolutionary occurrence of such apparently complex cultural behaviour. PMID:25470065

  9. From sMOOC to tMOOC, Learning towards Professional Transference: ECO European Project

    ERIC Educational Resources Information Center

    Osuna-Acedo, Sara; Marta-Lazo, Carmen; Frau-Meigs, Divina

    2018-01-01

    The evolution of MOOCs in the last decade has been constant and dynamic. The first cMOOC and xMOOC models eventually evolved into different post-MOOC modalities, such as sMOOC, which conjugates interaction among students with a participation model based on social networks. This work is focused on carrying out a systematic review of the…

  10. Fertility, kinship and the evolution of mass ideologies.

    PubMed

    David-Barrett, Tamas; Dunbar, Robin I M

    2017-03-21

    Traditional human societies are organised around kinship, and use kinship networks to generate large scale community projects. This is made possible by a combination of linguistic kin recognition, a uniquely human trait, which is mediated by the reliability of kin as collaborators. When effective fertility falls, this results in two simultaneous effects on social networks: there are fewer kin that can be relied on, and the limiting effect of the local kin-clustering becomes stronger. To capture this phenomenon, we used a model of kinship lineages to build populations with a range of fertility levels combined with a behavioural synchrony model to measure the efficiency of collective action generated on kin networks within populations. Our findings suggest that, whenever effective cooperation depends on kinship, falling fertility creates a crisis when it results in too few kin to join the community project. We conclude that, when societies transition to small effective kin networks, due to falling fertility, increased relative distance to kin due to urbanisation or high mortality due to war or epidemics, they will be able to remain socially cohesive only if they replace disappearing kin networks with quasi-kin alternatives based on membership of guilds or clubs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of node attributes on the temporal dynamics of network structure

    NASA Astrophysics Data System (ADS)

    Momeni, Naghmeh; Fotouhi, Babak

    2017-03-01

    Many natural and social networks evolve in time and their structures are dynamic. In most networks, nodes are heterogeneous, and their roles in the evolution of structure differ. This paper focuses on the role of individual attributes on the temporal dynamics of network structure. We focus on a basic model for growing networks that incorporates node attributes (which we call "quality"), and we focus on the problem of forecasting the structural properties of the network in arbitrary times for an arbitrary initial network. That is, we address the following question: If we are given a certain initial network with given arbitrary structure and known node attributes, then how does the structure change in time as new nodes with given distribution of attributes join the network? We solve the model analytically and obtain the quality-degree joint distribution and degree correlations. We characterize the role of individual attributes in the position of individual nodes in the hierarchy of connections. We confirm the theoretical findings with Monte Carlo simulations.

  12. Protein pheromone expression levels predict and respond to the formation of social dominance networks

    PubMed Central

    Nelson, Adam C.; Cunningham, Christopher B.; Ruff, James S.; Potts, Wayne K.

    2015-01-01

    Communication signals are key regulators of social networks, and are thought to be under selective pressure to honestly reflect social status, including dominance status. The odors of dominants and nondominants differentially influence behavior, and identification of the specific pheromones associated with, and predictive of, dominance status is essential for understanding the mechanisms of network formation and maintenance. In mice, major urinary proteins (MUPs) are excreted in extraordinary large quantities and expression level has been hypothesized to provide an honest signal of dominance status. Here, we evaluate whether MUPs are associated with dominance in wild-derived mice by analyzing expression levels before, during, and after competition for reproductive resources over three days. During competition, dominant males have 24% greater urinary MUP expression than nondominants. The MUP darcin, a pheromone that stimulates female attraction, is predictive of dominance status: dominant males have higher darcin expression before competition. Dominants also have a higher ratio of darcin to other MUPs before and during competition. These differences appear transient, because there are no differences in MUPs or darcin after competition. We also find MUP expression is affected by sire dominance status: socially naive sons of dominant males have lower MUP expression, but this apparent repression is released during competition. A requisite condition for the evolution of communication signals is honesty, and we provide novel insight into pheromones and social networks by showing that MUP and darcin expression is a reliable signal of dominance status, a primary determinant of male fitness in many species. PMID:25867293

  13. Cascading failures and the emergence of cooperation in evolutionary-game based models of social and economical networks.

    PubMed

    Wang, Wen-Xu; Lai, Ying-Cheng; Armbruster, Dieter

    2011-09-01

    We study catastrophic behaviors in large networked systems in the paradigm of evolutionary games by incorporating a realistic "death" or "bankruptcy" mechanism. We find that a cascading bankruptcy process can arise when defection strategies exist and individuals are vulnerable to deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators are the sole survivors, regardless of the game types and of the connection patterns among individuals as determined by the topology of the underlying network. It is necessary that individuals cooperate with each other to survive the catastrophic failures. Cooperation thus becomes the optimal strategy and absolutely outperforms defection in the game evolution with respect to the "death" mechanism. Our results can be useful for understanding large-scale catastrophe in real-world systems and in particular, they may yield insights into significant social and economical phenomena such as large-scale failures of financial institutions and corporations during an economic recession.

  14. Cascading failures and the emergence of cooperation in evolutionary-game based models of social and economical networks

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xu; Lai, Ying-Cheng; Armbruster, Dieter

    2011-09-01

    We study catastrophic behaviors in large networked systems in the paradigm of evolutionary games by incorporating a realistic "death" or "bankruptcy" mechanism. We find that a cascading bankruptcy process can arise when defection strategies exist and individuals are vulnerable to deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators are the sole survivors, regardless of the game types and of the connection patterns among individuals as determined by the topology of the underlying network. It is necessary that individuals cooperate with each other to survive the catastrophic failures. Cooperation thus becomes the optimal strategy and absolutely outperforms defection in the game evolution with respect to the "death" mechanism. Our results can be useful for understanding large-scale catastrophe in real-world systems and in particular, they may yield insights into significant social and economical phenomena such as large-scale failures of financial institutions and corporations during an economic recession.

  15. The importance of mechanisms for the evolution of cooperation

    PubMed Central

    van den Berg, Pieter; Weissing, Franz J.

    2015-01-01

    Studies aimed at explaining the evolution of phenotypic traits have often solely focused on fitness considerations, ignoring underlying mechanisms. In recent years, there has been an increasing call for integrating mechanistic perspectives in evolutionary considerations, but it is not clear whether and how mechanisms affect the course and outcome of evolution. To study this, we compare four mechanistic implementations of two well-studied models for the evolution of cooperation, the Iterated Prisoner's Dilemma (IPD) game and the Iterated Snowdrift (ISD) game. Behavioural strategies are either implemented by a 1 : 1 genotype–phenotype mapping or by a simple neural network. Moreover, we consider two different scenarios for the effect of mutations. The same set of strategies is feasible in all four implementations, but the probability that a given strategy arises owing to mutation is largely dependent on the behavioural and genetic architecture. Our individual-based simulations show that this has major implications for the evolutionary outcome. In the ISD, different evolutionarily stable strategies are predominant in the four implementations, while in the IPD each implementation creates a characteristic dynamical pattern. As a consequence, the evolved average level of cooperation is also strongly dependent on the underlying mechanism. We argue that our findings are of general relevance for the evolution of social behaviour, pleading for the integration of a mechanistic perspective in models of social evolution. PMID:26246554

  16. How social learning adds up to a culture: from birdsong to human public opinion.

    PubMed

    Tchernichovski, Ofer; Feher, Olga; Fimiarz, Daniel; Conley, Dalton

    2017-01-01

    Distributed social learning may occur at many temporal and spatial scales, but it rarely adds up to a stable culture. Cultures vary in stability and diversity (polymorphism), ranging from chaotic or drifting cultures, through cumulative polymorphic cultures, to stable monolithic cultures with high conformity levels. What features can sustain polymorphism, preventing cultures from collapsing into either chaotic or highly conforming states? We investigate this question by integrating studies across two quite separate disciplines: the emergence of song cultures in birds, and the spread of public opinion and social conventions in humans. In songbirds, the learning process has been studied in great detail, while in human studies the structure of social networks has been experimentally manipulated on large scales. In both cases, the manner in which communication signals are compressed and filtered - either during learning or while traveling through the social network - can affect culture polymorphism and stability. We suggest a simple mechanism of a shifting balance between converging and diverging social forces to explain these effects. Understanding social forces that shape cultural evolution might be useful for designing agile communication systems, which are stable and polymorphic enough to promote gradual changes in institutional behavior. © 2017. Published by The Company of Biologists Ltd.

  17. The impact of parent advocacy groups, the Internet, and social networking on rare diseases: the IDEA League and IDEA League United Kingdom example.

    PubMed

    Black, Angela P; Baker, Marie

    2011-04-01

    The development of the Internet and subsequent evolution of social networking has significantly changed the effectiveness of patient advocacy groups for rare diseases. The greatest degree of change has occurred at the patient level, with an increased ability of affected individuals to share experiences and support, and to raise public awareness. Other changes have occurred, not only in the way rare diseases are diagnosed, studied, and treated, but also in how they are addressed at the level of legislation and public policy. The International Dravet syndrome Epilepsy Action League (IDEA League) is the leading patient advocacy organization for Dravet syndrome and related genetic ion-channel epilepsy disorders (hereafter referred to as Dravet syndrome or severe myoclonic epilepsy of infancy, SMEI). The IDEA League's mission encompasses international support and outreach for patients and families, as well as collaboration with physicians, medical education, health care coordination, and research. The IDEA League is an excellent example of the impact of patient advocacy groups, the Internet, and social networking on the landscape of rare diseases. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  18. Evolution of co-management: role of knowledge generation, bridging organizations and social learning.

    PubMed

    Berkes, Fikret

    2009-04-01

    Over a period of some 20 years, different aspects of co-management (the sharing of power and responsibility between the government and local resource users) have come to the forefront. The paper focuses on a selection of these: knowledge generation, bridging organizations, social learning, and the emergence of adaptive co-management. Co-management can be considered a knowledge partnership. Different levels of organization, from local to international, have comparative advantages in the generation and mobilization of knowledge acquired at different scales. Bridging organizations provide a forum for the interaction of these different kinds of knowledge, and the coordination of other tasks that enable co-operation: accessing resources, bringing together different actors, building trust, resolving conflict, and networking. Social learning is one of these tasks, essential both for the co-operation of partners and an outcome of the co-operation of partners. It occurs most efficiently through joint problem solving and reflection within learning networks. Through successive rounds of learning and problem solving, learning networks can incorporate new knowledge to deal with problems at increasingly larger scales, with the result that maturing co-management arrangements become adaptive co-management in time.

  19. Coalmine: an experience in building a system for social media analytics

    NASA Astrophysics Data System (ADS)

    White, Joshua S.; Matthews, Jeanna N.; Stacy, John L.

    2012-06-01

    Social media networks make up a large percentage of the content available on the Internet and most of the time users spend online today is in interacting with them. All of the seemingly small pieces of information added by billions of people result in a enormous rapidly changing dataset. Searching, correlating, and understanding billions of individual posts is a significant technical problem; even the data from a single site such as Twitter can be difficult to manage. In this paper, we present Coalmine a social network data-mining system. We describe the overall architecture of Coalmine including the capture, storage and search components. We also describe our experience with pulling 150-350 GB of Twitter data per day through their REST API. Specifically, we discuss our experience with the evolution of the Twitter data APIs from 2011 to 2012 and present strategies for maximizing the amount of data collected. Finally, we describe our experiences looking for evidence of botnet command and control channels and examining patterns of SPAM in the Twitter dataset.

  20. Reputation-based partner choice promotes cooperation in social networks

    NASA Astrophysics Data System (ADS)

    Fu, Feng; Hauert, Christoph; Nowak, Martin A.; Wang, Long

    2008-08-01

    We investigate the cooperation dynamics attributed to the interplay between the evolution of individual strategies and evolution of individual partnerships. We focus on the effect of reputation on an individual’s partner-switching process. We assume that individuals can either change their strategies by imitating their partners or adjust their partnerships based on local information about reputations. We manipulate the partner switching in two ways; that is, individuals can switch from the lowest reputation partners, either to their partners’ partners who have the highest reputation (i.e., ordering in partnership) or to others randomly chosen from the entire population (i.e., randomness in partnership). We show that when individuals are able to alter their behavioral strategies and their social interaction partnerships on the basis of reputation, cooperation can prevail. We find that the larger temptation to defect and the denser the partner network, the more frequently individuals need to shift their partnerships in order for cooperation to thrive. Furthermore, an increasing tendency of switching to partners’ partners is more likely to lead to a higher level of cooperation. We show that when reputation is absent in such partner-switching processes, cooperation is much less favored than that of the reputation involved. Moreover, we investigate the effect of discounting an individual’s reputation on the evolution of cooperation. Our results highlight the importance of the consideration of reputation (indirect reciprocity) on the promotion of cooperation when individuals can adjust their partnerships.

  1. The evolution of social networks through the implementation of evidence-informed decision-making interventions: a longitudinal analysis of three public health units in Canada.

    PubMed

    Yousefi-Nooraie, Reza; Dobbins, Maureen; Marin, Alexandra; Hanneman, Robert; Lohfeld, Lynne

    2015-12-03

    We studied the evolution of information-seeking networks over a 2-year period during which an organization-wide intervention was implemented to promote evidence-informed decision-making (EIDM) in three public health units in Ontario, Canada. We tested whether engagement of staff in the intervention and their EIDM behavior were associated with being chosen as information source and how the trend of inter-divisional communications and the dominance of experts evolved over time. Local managers at each health unit selected a group of staff to get engage in Knowledge Broker-led workshops and development of evidence summaries to address local public health problems. The staff were invited to answer three online surveys (at baseline and two annual follow-ups) including name generator questions eliciting the list of the staff they would turn to for help integrating research evidence into practice. We used stochastic actor-oriented modeling to study the evolution of networks. We tested the effect of engagement in the intervention, EIDM behavior scores, organizational divisions, and structural dynamics of social networks on the tendency of staff to select information sources, and the change in its trend between year 1 and year 2 of follow-up. In all the three health units, and especially in the two units with higher levels of engagement in the intervention, the network evolved towards a more centralized structure, with an increasing significance of already central staff. The staff showed greater tendencies to seek information from peers with higher EIDM behavior scores. In the public health unit that had highest engagement and stronger leadership support, the engaged staff became more central. In all public health units, the engaged staff showed an increasing tendency towards forming clusters. The staff in the three public health units showed a tendency towards limiting their connections within their divisions. The longitudinal analysis provided us with a means to study the microstructural changes in public health units, clues to the sustainability of the implementation. The hierarchical transformation of networks towards experts and formation of clusters among staff who were engaged in the intervention show how implementing organizational interventions to promote EIDM may affect the knowledge flow and distribution in health care communities, which may lead to unanticipated consequences.

  2. Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism

    NASA Astrophysics Data System (ADS)

    Kurmyshev, Evguenii; Juárez, Héctor A.; González-Silva, Ricardo A.

    2011-08-01

    Bounded confidence models of opinion dynamics in social networks have been actively studied in recent years, in particular, opinion formation and extremism propagation along with other aspects of social dynamics. In this work, after an analysis of limitations of the Deffuant-Weisbuch (DW) bounded confidence, relative agreement model, we propose the mixed model that takes into account two psychological types of individuals. Concord agents (C-agents) are friendly people; they interact in a way that their opinions always get closer. Agents of the other psychological type show partial antagonism in their interaction (PA-agents). Opinion dynamics in heterogeneous social groups, consisting of agents of the two types, was studied on different social networks: Erdös-Rényi random graphs, small-world networks and complete graphs. Limit cases of the mixed model, pure C- and PA-societies, were also studied. We found that group opinion formation is, qualitatively, almost independent of the topology of networks used in this work. Opinion fragmentation, polarization and consensus are observed in the mixed model at different proportions of PA- and C-agents, depending on the value of initial opinion tolerance of agents. As for the opinion formation and arising of “dissidents”, the opinion dynamics of the C-agents society was found to be similar to that of the DW model, except for the rate of opinion convergence. Nevertheless, mixed societies showed dynamics and bifurcation patterns notably different to those of the DW model. The influence of biased initial conditions over opinion formation in heterogeneous social groups was also studied versus the initial value of opinion uncertainty, varying the proportion of the PA- to C-agents. Bifurcation diagrams showed an impressive evolution of collective opinion, in particular, radical changes of left to right consensus or vice versa at an opinion uncertainty value equal to 0.7 in the model with the PA/C mixture of population near 50/50.

  3. Discussing Occupy Wall Street on Twitter: longitudinal network analysis of equality, emotion, and stability of public discussion.

    PubMed

    Wang, Cheng-Jun; Wang, Pian-Pian; Zhu, Jonathan J H

    2013-09-01

    To evaluate the quality of public discussion about social movements on Twitter and to understand the structural features and evolution of longitudinal discussion networks, we analyze tweets about the Occupy Wall Street movement posted over the course of 16 days by investigating the relationship between inequality, emotion, and the stability of online discussion. The results reveal that (1) the discussion is highly unequal for both initiating discussions and receiving conversations; (2) the stability of the discussion is much higher for receivers than for initiators; (3) the inequality of online discussions moderates the stability of online discussions; and (4) on an individual level, there is no significant relationship between emotion and political discussion. The implications help evaluate the quality of public discussion, and to understand the relationship between online discussion and social movements.

  4. Exploring the spiral of silence in adjustable social networks

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Du, Ya-Jun; Li, Xian-Yong; Chen, Xiao-Liang

    2015-03-01

    This study extends the understanding of the spiral of silence theory by taking into account four factors, including the topology of networks, the time factor of information transmission, the node degree of individuals and the freedom of expression. Simulation experiments analyze the silencers, public opinion in steady state and relaxation time in small-world networks, scale-free networks and community-structured networks by adjusting the initial conditions. Results highlight that individuals are easier to keep silent in scale-free network, especially when the individual with big degree and minority opinion starts the discussion. Conversely, there are only a few individuals keep silent in the community-structured network when the two communities hold opposite opinions. Moreover, the number of silencers grows as the degree of coupling increases, and it decreases as the freedom of expression goes up. By analyzing the public opinion evolution, we also find some important conditions, such as the network topology, the potential public opinion distribution, and the status and sides of the first speaker, can drive the minority reversal.

  5. Promoting cooperation by preventing exploitation: The role of network structure

    NASA Astrophysics Data System (ADS)

    Utkovski, Zoran; Stojkoski, Viktor; Basnarkov, Lasko; Kocarev, Ljupco

    2017-08-01

    A growing body of empirical evidence indicates that social and cooperative behavior can be affected by cognitive and neurological factors, suggesting the existence of state-based decision-making mechanisms that may have emerged by evolution. Motivated by these observations, we propose a simple mechanism of anonymous network interactions identified as a form of generalized reciprocity—a concept organized around the premise "help anyone if helped by someone'—and study its dynamics on random graphs. In the presence of such a mechanism, the evolution of cooperation is related to the dynamics of the levels of investments (i.e., probabilities of cooperation) of the individual nodes engaging in interactions. We demonstrate that the propensity for cooperation is determined by a network centrality measure here referred to as neighborhood importance index and discuss relevant implications to natural and artificial systems. To address the robustness of the state-based strategies to an invasion of defectors, we additionally provide an analysis which redefines the results for the case when a fraction of the nodes behave as unconditional defectors.

  6. Evolution of the research collaboration network in a productive department.

    PubMed

    Katerndahl, David

    2012-02-01

    Understanding collaboration networks can facilitate the research growth of new or developing departments. The purpose of this study was to use social network analysis to understand how the research collaboration network evolved within a productive department. Over a 13-year period, a departmental faculty completed an annual survey describing their research collaborations. Data were analyzed using social network analysis. Network measures focused on connectedness, distance, groupings and heterogeneity of distribution, while measures for the research director and external collaboration focused on centrality and roles within the network. Longitudinal patterns of network collaboration were assessed using Simulation Investigation for Empirical Network Analysis software (University of Groningen, Groningen, Netherlands). Based upon the number of active research projects, research development can be divided into three phases. The initial development phase was characterized by increasing centralization and collaboration focused within a single subject area. During the maintenance phase, measures went through cycles, possibly because of changes in faculty composition. While the research director was not a 'key player' within the network during the first several years, external collaboration played a central role during all phases. Longitudinal analysis found that forming ties was more likely when the opportunity for network closure existed and when those around you are principal investigators (PIs). Initial development of research relied heavily upon a centralized network involving external collaboration; a central position of the research director during research development was not important. Changes in collaboration depended upon faculty gender and tenure track as well as transitivity and the 'popularity of PIs'. © 2011 Blackwell Publishing Ltd.

  7. Competitive dynamics of lexical innovations in multi-layer networks

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto

    2014-04-01

    We study the introduction of lexical innovations into a community of language users. Lexical innovations, i.e. new term added to people's vocabulary, plays an important role in the process of language evolution. Nowadays, information is spread through a variety of networks, including, among others, online and offline social networks and the World Wide Web. The entire system, comprising networks of different nature, can be represented as a multi-layer network. In this context, lexical innovations diffusion occurs in a peculiar fashion. In particular, a lexical innovation can undergo three different processes: its original meaning is accepted; its meaning can be changed or misunderstood (e.g. when not properly explained), hence more than one meaning can emerge in the population. Lastly, in the case of a loan word, it can be translated into the population language (i.e. defining a new lexical innovation or using a synonym) or into a dialect spoken by part of the population. Therefore, lexical innovations cannot be considered simply as information. We develop a model for analyzing this scenario using a multi-layer network comprising a social network and a media network. The latter represents the set of all information systems of a society, e.g. television, the World Wide Web and radio. Furthermore, we identify temporal directed edges between the nodes of these two networks. In particular, at each time-step, nodes of the media network can be connected to randomly chosen nodes of the social network and vice versa. In doing so, information spreads through the whole system and people can share a lexical innovation with their neighbors or, in the event they work as reporters, by using media nodes. Lastly, we use the concept of "linguistic sign" to model lexical innovations, showing its fundamental role in the study of these dynamics. Many numerical simulations have been performed to analyze the proposed model and its outcomes.

  8. Older partner selection promotes the prevalence of cooperation in evolutionary games.

    PubMed

    Yang, Guoli; Huang, Jincai; Zhang, Weiming

    2014-10-21

    Evolutionary games typically come with the interplays between evolution of individual strategy and adaptation to network structure. How these dynamics in the co-evolution promote (or obstruct) the cooperation is regarded as an important topic in social, economic, and biological fields. Combining spatial selection with partner choice, the focus of this paper is to identify which neighbour should be selected as a role to imitate during the process of co-evolution. Age, an internal attribute and kind of local piece of information regarding the survivability of the agent, is a significant consideration for the selection strategy. The analysis and simulations presented, demonstrate that older partner selection for strategy imitation could foster the evolution of cooperation. The younger partner selection, however, may decrease the level of cooperation. Our model highlights the importance of agent׳s age on the promotion of cooperation in evolutionary games, both efficiently and effectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Emergence of bursts and communities in evolving weighted networks.

    PubMed

    Jo, Hang-Hyun; Pan, Raj Kumar; Kaski, Kimmo

    2011-01-01

    Understanding the patterns of human dynamics and social interaction and the way they lead to the formation of an organized and functional society are important issues especially for techno-social development. Addressing these issues of social networks has recently become possible through large scale data analysis of mobile phone call records, which has revealed the existence of modular or community structure with many links between nodes of the same community and relatively few links between nodes of different communities. The weights of links, e.g., the number of calls between two users, and the network topology are found correlated such that intra-community links are stronger compared to the weak inter-community links. This feature is known as Granovetter's "The strength of weak ties" hypothesis. In addition to this inhomogeneous community structure, the temporal patterns of human dynamics turn out to be inhomogeneous or bursty, characterized by the heavy tailed distribution of time interval between two consecutive events, i.e., inter-event time. In this paper, we study how the community structure and the bursty dynamics emerge together in a simple evolving weighted network model. The principal mechanisms behind these patterns are social interaction by cyclic closure, i.e., links to friends of friends and the focal closure, links to individuals sharing similar attributes or interests, and human dynamics by task handling process. These three mechanisms have been implemented as a network model with local attachment, global attachment, and priority-based queuing processes. By comprehensive numerical simulations we show that the interplay of these mechanisms leads to the emergence of heavy tailed inter-event time distribution and the evolution of Granovetter-type community structure. Moreover, the numerical results are found to be in qualitative agreement with empirical analysis results from mobile phone call dataset.

  10. Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games

    PubMed Central

    Peña, Jorge; Rochat, Yannick

    2012-01-01

    By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures. PMID:22970237

  11. Comparing pre- and post-copulatory mate competition using social network analysis in wild crickets

    PubMed Central

    Fisher, David N.; Rodríguez-Muñoz, Rolando

    2016-01-01

    Sexual selection results from variation in success at multiple stages in the mating process, including competition before and after mating. The relationship between these forms of competition, such as whether they trade-off or reinforce one another, influences the role of sexual selection in evolution. However, the relationship between these 2 forms of competition is rarely quantified in the wild. We used video cameras to observe competition among male field crickets and their matings in the wild. We characterized pre- and post-copulatory competition as 2 networks of competing individuals. Social network analysis then allowed us to determine 1) the effectiveness of precopulatory competition for avoiding postcopulatory competition, 2) the potential for divergent mating strategies, and 3) whether increased postcopulatory competition reduces the apparent reproductive benefits of male promiscuity. We found 1) limited effectiveness of precopulatory competition for avoiding postcopulatory competition; 2) males do not specifically engage in only 1 type of competition; and 3) promiscuous individuals tend to mate with each other, which will tend to reduce variance in reproductive success in the population and highlights the trade-off inherent in mate guarding. Our results provide novel insights into the works of sexual competition in the wild. Furthermore, our study demonstrates the utility of using network analyses to study competitive interactions, even in species lacking obvious social structure. PMID:27174599

  12. Information-sharing tendency on Twitter and time evolution of tweeting

    NASA Astrophysics Data System (ADS)

    Kwon, H. W.; Kim, H. S.; Lee, K.; Choi, M. Y.

    2013-03-01

    While topics on Twitter may be categorized according to their predictability and sustainability, some topics have characteristics depending on the time scale. Here we propose a good measure for the transition of sustainability, which we call the information-sharing tendency, and find that the unpredictability on Twitter is provoked by the exposure of Twitter users to external environments, e.g., mass media and other social network services. In addition, it is demonstrated that the numbers of articles and comments on on-line newspapers serve as plausible measures of exposure. From such measures of exposure, the time evolution of tweeting can be described, when the information-sharing tendency is known.

  13. Social dynamics of science.

    PubMed

    Sun, Xiaoling; Kaur, Jasleen; Milojević, Staša; Flammini, Alessandro; Menczer, Filippo

    2013-01-01

    The birth and decline of disciplines are critical to science and society. How do scientific disciplines emerge? No quantitative model to date allows us to validate competing theories on the different roles of endogenous processes, such as social collaborations, and exogenous events, such as scientific discoveries. Here we propose an agent-based model in which the evolution of disciplines is guided mainly by social interactions among agents representing scientists. Disciplines emerge from splitting and merging of social communities in a collaboration network. We find that this social model can account for a number of stylized facts about the relationships between disciplines, scholars, and publications. These results provide strong quantitative support for the key role of social interactions in shaping the dynamics of science. While several "science of science" theories exist, this is the first account for the emergence of disciplines that is validated on the basis of empirical data.

  14. Social Dynamics of Science

    PubMed Central

    Sun, Xiaoling; Kaur, Jasleen; Milojević, Staša; Flammini, Alessandro; Menczer, Filippo

    2013-01-01

    The birth and decline of disciplines are critical to science and society. How do scientific disciplines emerge? No quantitative model to date allows us to validate competing theories on the different roles of endogenous processes, such as social collaborations, and exogenous events, such as scientific discoveries. Here we propose an agent-based model in which the evolution of disciplines is guided mainly by social interactions among agents representing scientists. Disciplines emerge from splitting and merging of social communities in a collaboration network. We find that this social model can account for a number of stylized facts about the relationships between disciplines, scholars, and publications. These results provide strong quantitative support for the key role of social interactions in shaping the dynamics of science. While several “science of science” theories exist, this is the first account for the emergence of disciplines that is validated on the basis of empirical data. PMID:23323212

  15. Social Dynamics of Science

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoling; Kaur, Jasleen; Milojević, Staša; Flammini, Alessandro; Menczer, Filippo

    2013-01-01

    The birth and decline of disciplines are critical to science and society. How do scientific disciplines emerge? No quantitative model to date allows us to validate competing theories on the different roles of endogenous processes, such as social collaborations, and exogenous events, such as scientific discoveries. Here we propose an agent-based model in which the evolution of disciplines is guided mainly by social interactions among agents representing scientists. Disciplines emerge from splitting and merging of social communities in a collaboration network. We find that this social model can account for a number of stylized facts about the relationships between disciplines, scholars, and publications. These results provide strong quantitative support for the key role of social interactions in shaping the dynamics of science. While several ``science of science'' theories exist, this is the first account for the emergence of disciplines that is validated on the basis of empirical data.

  16. Disease dynamics and costly punishment can foster socially imposed monogamy.

    PubMed

    Bauch, Chris T; McElreath, Richard

    2016-04-05

    Socially imposed monogamy in humans is an evolutionary puzzle because it requires costly punishment by those who impose the norm. Moreover, most societies were--and are--polygynous; yet many larger human societies transitioned from polygyny to socially imposed monogamy beginning with the advent of agriculture and larger residential groups. We use a simulation model to explore how interactions between group size, sexually transmitted infection (STI) dynamics and social norms can explain the timing and emergence of socially imposed monogamy. Polygyny dominates when groups are too small to sustain STIs. However, in larger groups, STIs become endemic (especially in concurrent polygynist networks) and have an impact on fertility, thereby mediating multilevel selection. Punishment of polygynists improves monogamist fitness within groups by reducing their STI exposure, and between groups by enabling punishing monogamist groups to outcompete polygynists. This suggests pathways for the emergence of socially imposed monogamy, and enriches our understanding of costly punishment evolution.

  17. Disease dynamics and costly punishment can foster socially imposed monogamy

    PubMed Central

    Bauch, Chris T.; McElreath, Richard

    2016-01-01

    Socially imposed monogamy in humans is an evolutionary puzzle because it requires costly punishment by those who impose the norm. Moreover, most societies were—and are—polygynous; yet many larger human societies transitioned from polygyny to socially imposed monogamy beginning with the advent of agriculture and larger residential groups. We use a simulation model to explore how interactions between group size, sexually transmitted infection (STI) dynamics and social norms can explain the timing and emergence of socially imposed monogamy. Polygyny dominates when groups are too small to sustain STIs. However, in larger groups, STIs become endemic (especially in concurrent polygynist networks) and have an impact on fertility, thereby mediating multilevel selection. Punishment of polygynists improves monogamist fitness within groups by reducing their STI exposure, and between groups by enabling punishing monogamist groups to outcompete polygynists. This suggests pathways for the emergence of socially imposed monogamy, and enriches our understanding of costly punishment evolution. PMID:27044573

  18. Quantifying Network Dynamics and Information Flow Across Chinese Social Media During the African Ebola Outbreak.

    PubMed

    Feng, Shihui; Hossain, Liaquat; Crawford, John W; Bossomaier, Terry

    2018-02-01

    Social media provides us with a new platform on which to explore how the public responds to disasters and, of particular importance, how they respond to the emergence of infectious diseases such as Ebola. Provided it is appropriately informed, social media offers a potentially powerful means of supporting both early detection and effective containment of communicable diseases, which is essential for improving disaster medicine and public health preparedness. The 2014 West African Ebola outbreak is a particularly relevant contemporary case study on account of the large number of annual arrivals from Africa, including Chinese employees engaged in projects in Africa. Weibo (Weibo Corp, Beijing, China) is China's most popular social media platform, with more than 2 billion users and over 300 million daily posts, and offers great opportunity to monitor early detection and promotion of public health awareness. We present a proof-of-concept study of a subset of Weibo posts during the outbreak demonstrating potential and identifying priorities for improving the efficacy and accuracy of information dissemination. We quantify the evolution of the social network topology within Weibo relating to the efficacy of information sharing. We show how relatively few nodes in the network can have a dominant influence over both the quality and quantity of the information shared. These findings make an important contribution to disaster medicine and public health preparedness from theoretical and methodological perspectives for dealing with epidemics. (Disaster Med Public Health Preparedness. 2018;12:26-37).

  19. Ecologies, outreach, and the evolution of medical libraries.

    PubMed

    Shen, Bern

    2005-10-01

    What are some of the forces shaping the evolution of medical libraries, and where might they lead? Published literature in the fields of library and information sciences, technology, health services research, and business was consulted. Medical libraries currently have a modest footprint in most consumers' personal health ecologies, the network of resources and activities they use to improve their health. They also occupy a relatively small space in the health care, information, and business ecologies of which they are a part. Several trends in knowledge discovery, technology, and social organizations point to ways in which the roles of medical libraries might grow and become more complex. As medical libraries evolve and reach out to previously underserved communities, an ecological approach can serve as a useful organizing framework for the forces shaping this evolution.

  20. Gene–culture interaction and the evolution of the human sense of fairness

    PubMed Central

    Liu, Tru-Gin; Lu, Yao

    2016-01-01

    How Darwinian evolution would produce creatures with the proclivity of Darwinian generosity, most of them voluntarily giving up the immediate benefit for themselves or their genes, remains a puzzle. This study targets a problem, the origin of human sense of fairness, and uses fairness-related genes and the social manipulation of Darwinian generosity as the key variables underlying the human sense of fairness, inequity aversion, as well as their relationships within cooperation, and the anticipation foresight of the way relationships are affected by resource division, given the assumption of randomly matched partners. Here we suggest a model in which phenotype will gradually converge towards the perfect sense of fairness along with the prospect of cooperation. Later, the sense of fairness will decrease but it is never extinct. Where social manipulation of Darwinian generosity overshadows genetics, the sense of fairness could be acute to the degree of social manipulation. Above all, there still exists a threshold in the degree of social manipulation, beyond which altruism dominates selfishness in human cooperation. Finally, we propose three new directions toward more realistic scenarios stimulated by recent development of the synergy between statistical physics, network science and evolutionary game theory. PMID:27562008

  1. A discrete mathematical model of the dynamic evolution of a transportation network

    NASA Astrophysics Data System (ADS)

    Malinetskii, G. G.; Stepantsov, M. E.

    2009-09-01

    A dynamic model of the evolution of a transportation network is proposed. The main feature of this model is that the evolution of the transportation network is not a process of centralized transportation optimization. Rather, its dynamic behavior is a result of the system self-organization that occurs in the course of the satisfaction of needs in goods transportation and the evolution of the infrastructure of the network nodes. Nonetheless, the possibility of soft control of the network evolution direction is taken into account.

  2. Comments on the use of network structures to analyse commercial companies’ evolution and their impact on economic behaviour

    NASA Astrophysics Data System (ADS)

    Costea, Carmen

    2006-10-01

    Network analysis studies the development of the social structure of relationships around a group or an institutional body, and how it affects beliefs and behaviours. Causal constraints require a special and deeper attention to the social structure. The purpose of this paper is to give a new approach to the idea that this reality should be primarily conceived and investigated from the perspective of the properties of relations between and within units, instead of the properties of these units themselves. The relationship may refer to the exchange of products, labour, information and money. By mapping these relationships, network analysis can help to uncover the emergent and informal communication patterns of commercial companies that may be compared to the formal communication structures. These emergent patterns can be used to explain institutional and individuals’ behaviours. Network analysis techniques focus on the communication structure of an organization that can be subdivided and handled with different approaches. Structural features that can be analysed through the use of network analysis techniques are, for example, the (formal and informal) communication patterns in an organization or the identification of specific groups within an organization. Special attention may be given to specific aspects of communication patterns.

  3. Close Relationships: A Study of Mobile Communication Records

    NASA Astrophysics Data System (ADS)

    Palchykov, Vasyl; Kertész, János; Dunbar, Robin; Kaski, Kimmo

    2013-05-01

    Mobile phone communication as digital service generates ever-increasing datasets of human communication actions, which in turn allow us to investigate the structure and evolution of social interactions and their networks. These datasets can be used to study the structuring of such egocentric networks with respect to the strength of the relationships by assuming direct dependence of the communication intensity on the strength of the social tie. Recently we have discovered that there are significant differences between the first and further "best friends" from the point of view of age and gender preferences. Here we introduce a control parameter p max based on the statistics of communication with the first and second "best friend" and use it to filter the data. We find that when p max is decreased the identification of the "best friend" becomes less ambiguous and the earlier observed effects get stronger, thus corroborating them.

  4. Limited communication capacity unveils strategies for human interaction

    NASA Astrophysics Data System (ADS)

    Miritello, Giovanna; Lara, Rubén; Cebrian, Manuel; Moro, Esteban

    2013-06-01

    Connectivity is the key process that characterizes the structural and functional properties of social networks. However, the bursty activity of dyadic interactions may hinder the discrimination of inactive ties from large interevent times in active ones. We develop a principled method to detect tie de-activation and apply it to a large longitudinal, cross-sectional communication dataset (~19 months, ~20 million people). Contrary to the perception of ever-growing connectivity, we observe that individuals exhibit a finite communication capacity, which limits the number of ties they can maintain active in time. On average men display higher capacity than women, and this capacity decreases for both genders over their lifespan. Separating communication capacity from activity reveals a diverse range of tie activation strategies, from stable to exploratory. This allows us to draw novel relationships between individual strategies for human interaction and the evolution of social networks at global scale.

  5. Limited communication capacity unveils strategies for human interaction

    PubMed Central

    Miritello, Giovanna; Lara, Rubén; Cebrian, Manuel; Moro, Esteban

    2013-01-01

    Connectivity is the key process that characterizes the structural and functional properties of social networks. However, the bursty activity of dyadic interactions may hinder the discrimination of inactive ties from large interevent times in active ones. We develop a principled method to detect tie de-activation and apply it to a large longitudinal, cross-sectional communication dataset (≈19 months, ≈20 million people). Contrary to the perception of ever-growing connectivity, we observe that individuals exhibit a finite communication capacity, which limits the number of ties they can maintain active in time. On average men display higher capacity than women, and this capacity decreases for both genders over their lifespan. Separating communication capacity from activity reveals a diverse range of tie activation strategies, from stable to exploratory. This allows us to draw novel relationships between individual strategies for human interaction and the evolution of social networks at global scale. PMID:23739519

  6. Evolutionary prisoner's dilemma on Newman-Watts social networks with an asymmetric payoff distribution mechanism

    NASA Astrophysics Data System (ADS)

    Du, Wen-Bo; Cao, Xian-Bin; Yang, Han-Xin; Hu, Mao-Bin

    2010-01-01

    In this paper, we introduce an asymmetric payoff distribution mechanism into the evolutionary prisoner's dilemma game (PDG) on Newman-Watts social networks, and study its effects on the evolution of cooperation. The asymmetric payoff distribution mechanism can be adjusted by the parameter α: if α > 0, the rich will exploit the poor to get richer; if α < 0, the rich are forced to offer part of their income to the poor. Numerical results show that the cooperator frequency monotonously increases with α and is remarkably promoted when α > 0. The effects of updating order and self-interaction are also investigated. The co-action of random updating and self-interaction can induce the highest cooperation level. Moreover, we employ the Gini coefficient to investigate the effect of asymmetric payoff distribution on the the system's wealth distribution. This work may be helpful for understanding cooperative behaviour and wealth inequality in society.

  7. Discussing Occupy Wall Street on Twitter: Longitudinal Network Analysis of Equality, Emotion, and Stability of Public Discussion

    PubMed Central

    Wang, Pian-Pian; Zhu, Jonathan J.H.

    2013-01-01

    Abstract To evaluate the quality of public discussion about social movements on Twitter and to understand the structural features and evolution of longitudinal discussion networks, we analyze tweets about the Occupy Wall Street movement posted over the course of 16 days by investigating the relationship between inequality, emotion, and the stability of online discussion. The results reveal that (1) the discussion is highly unequal for both initiating discussions and receiving conversations; (2) the stability of the discussion is much higher for receivers than for initiators; (3) the inequality of online discussions moderates the stability of online discussions; and (4) on an individual level, there is no significant relationship between emotion and political discussion. The implications help evaluate the quality of public discussion, and to understand the relationship between online discussion and social movements. PMID:23656222

  8. The evolution of prompt reaction to adverse ties.

    PubMed

    Van Segbroeck, Sven; Santos, Francisco C; Nowé, Ann; Pacheco, Jorge M; Lenaerts, Tom

    2008-10-17

    In recent years it has been found that the combination of evolutionary game theory with population structures modelled in terms of dynamical graphs, in which individuals are allowed to sever unwanted social ties while keeping the good ones, provides a viable solution to the conundrum of cooperation. It is well known that in reality individuals respond differently to disadvantageous interactions. Yet, the evolutionary mechanism determining the individuals' willingness to sever unfavourable ties remains unclear. We introduce a novel way of thinking about the joint evolution of cooperation and social contacts. The struggle for survival between cooperators and defectors leads to an arms race for swiftness in adjusting social ties, based purely on a self-regarding, individual judgement. Since defectors are never able to establish social ties under mutual agreement, they break adverse ties more rapidly than cooperators, who tend to evolve stable and long-term relations. Ironically, defectors' constant search for partners to exploit leads to heterogeneous networks that improve the survivability of cooperators, compared to the traditional homogenous population assumption. When communities face the prisoner's dilemma, swift reaction to adverse ties evolves when competition is fierce between cooperators and defectors, providing an evolutionary basis for the necessity of individuals to adjust their social ties. Our results show how our innate resilience to change relates to mutual agreement between cooperators and how "loyalty" or persistent social ties bring along an evolutionary disadvantage, both from an individual and group perspective.

  9. Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks

    NASA Astrophysics Data System (ADS)

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2013-09-01

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

  10. Dynamical interplay between awareness and epidemic spreading in multiplex networks.

    PubMed

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2013-09-20

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

  11. Complex quantum network geometries: Evolution and phase transitions

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  12. Complex quantum network geometries: Evolution and phase transitions.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  13. The spread of a novel behavior in wild chimpanzees: New insights into the ape cultural mind.

    PubMed

    Gruber, Thibaud; Poisot, Timothée; Zuberbühler, Klaus; Hoppitt, William; Hobaiter, Catherine

    2015-01-01

    For years, the animal culture debate has been dominated by the puzzling absence of direct evidence for social transmission of behavioral innovations in the flagship species of animal culture, the common chimpanzee. Although social learning of novel behaviors has been documented in captivity, critics argue that these findings lack ecological validity and therefore may not be relevant for understanding the evolution of culture. For the wild, it is possible that group-specific behavioral differences emerge because group members respond individually to unspecified environmental differences, rather than learning from each other. In a recent paper, we used social network analyses in wild chimpanzees (Pan troglodytes schweinfurthii) to provide direct evidence for social transmission of a behavioral innovation, moss-sponging, to extract water from a tree hole. Here, we discuss the implications of our findings and how our new methodological approach could help future studies of social learning and culture in wild apes.

  14. Dynamics of organizational culture: Individual beliefs vs. social conformity.

    PubMed

    Ellinas, Christos; Allan, Neil; Johansson, Anders

    2017-01-01

    The complex nature of organizational culture challenges our ability to infer its underlying dynamics from observational studies. Recent computational studies have adopted a distinctly different view, where plausible mechanisms are proposed to describe a wide range of social phenomena, including the onset and evolution of organizational culture. In this spirit, this work introduces an empirically-grounded, agent-based model which relaxes a set of assumptions that describes past work-(a) omittance of an individual's strive for achieving cognitive coherence; (b) limited integration of important contextual factors-by utilizing networks of beliefs and incorporating social rank into the dynamics. As a result, we illustrate that: (i) an organization may appear to be increasingly coherent in terms of its organizational culture, yet be composed of individuals with reduced levels of coherence; (ii) the components of social conformity-peer-pressure and social rank-are influential at different aggregation levels.

  15. Social judgment theory based model on opinion formation, polarization and evolution

    NASA Astrophysics Data System (ADS)

    Chau, H. F.; Wong, C. Y.; Chow, F. K.; Fung, Chi-Hang Fred

    2014-12-01

    The dynamical origin of opinion polarization in the real world is an interesting topic that physical scientists may help to understand. To properly model the dynamics, the theory must be fully compatible with findings by social psychologists on microscopic opinion change. Here we introduce a generic model of opinion formation with homogeneous agents based on the well-known social judgment theory in social psychology by extending a similar model proposed by Jager and Amblard. The agents’ opinions will eventually cluster around extreme and/or moderate opinions forming three phases in a two-dimensional parameter space that describes the microscopic opinion response of the agents. The dynamics of this model can be qualitatively understood by mean-field analysis. More importantly, first-order phase transition in opinion distribution is observed by evolving the system under a slow change in the system parameters, showing that punctuated equilibria in public opinion can occur even in a fully connected social network.

  16. Dynamics of organizational culture: Individual beliefs vs. social conformity

    PubMed Central

    Allan, Neil; Johansson, Anders

    2017-01-01

    The complex nature of organizational culture challenges our ability to infer its underlying dynamics from observational studies. Recent computational studies have adopted a distinctly different view, where plausible mechanisms are proposed to describe a wide range of social phenomena, including the onset and evolution of organizational culture. In this spirit, this work introduces an empirically-grounded, agent-based model which relaxes a set of assumptions that describes past work–(a) omittance of an individual’s strive for achieving cognitive coherence; (b) limited integration of important contextual factors—by utilizing networks of beliefs and incorporating social rank into the dynamics. As a result, we illustrate that: (i) an organization may appear to be increasingly coherent in terms of its organizational culture, yet be composed of individuals with reduced levels of coherence; (ii) the components of social conformity—peer-pressure and social rank—are influential at different aggregation levels. PMID:28665960

  17. Looking for robust properties in the growth of an academic network: the case of the Uruguayan biological research community.

    PubMed

    Cabana, Alvaro; Mizraji, Eduardo; Pomi, Andrés; Valle-Lisboa, Juan Carlos

    2008-04-01

    Graph-theoretical methods have recently been used to analyze certain properties of natural and social networks. In this work, we have investigated the early stages in the growth of a Uruguayan academic network, the Biology Area of the Programme for the Development of Basic Science (PEDECIBA). This transparent social network is a territory for the exploration of the reliability of clustering methods that can potentially be used when we are confronted with opaque natural systems that provide us with a limited spectrum of observables (happens in research on the relations between brain, thought and language). From our social net, we constructed two different graph representations based on the relationships among researchers revealed by their co-participation in Master's thesis committees. We studied these networks at different times and found that they achieve connectedness early in their evolution and exhibit the small-world property (i.e. high clustering with short path lengths). The data seem compatible with power law distributions of connectivity, clustering coefficients and betweenness centrality. Evidence of preferential attachment of new nodes and of new links between old nodes was also found in both representations. These results suggest that there are topological properties observed throughout the growth of the network that do not depend on the representations we have chosen but reflect intrinsic properties of the academic collective under study. Researchers in PEDECIBA are classified according to their specialties. We analysed the community structure detected by a standard algorithm in both representations. We found that much of the pre-specified structure is recovered and part of the mismatches can be attributed to convergent interests between scientists from different sub-disciplines. This result shows the potentiality of some clustering methods for the analysis of partially known natural systems.

  18. Understanding crowd-powered search groups: a social network perspective.

    PubMed

    Zhang, Qingpeng; Wang, Fei-Yue; Zeng, Daniel; Wang, Tao

    2012-01-01

    Crowd-powered search is a new form of search and problem solving scheme that involves collaboration among a potentially large number of voluntary Web users. Human flesh search (HFS), a particular form of crowd-powered search originated in China, has seen tremendous growth since its inception in 2001. HFS presents a valuable test-bed for scientists to validate existing and new theories in social computing, sociology, behavioral sciences, and so forth. In this research, we construct an aggregated HFS group, consisting of the participants and their relationships in a comprehensive set of identified HFS episodes. We study the topological properties and the evolution of the aggregated network and different sub-groups in the network. We also identify the key HFS participants according to a variety of measures. We found that, as compared with other online social networks, HFS participant network shares the power-law degree distribution and small-world property, but with a looser and more distributed organizational structure, leading to the diversity, decentralization, and independence of HFS participants. In addition, the HFS group has been becoming increasingly decentralized. The comparisons of different HFS sub-groups reveal that HFS participants collaborated more often when they conducted the searches in local platforms or the searches requiring a certain level of professional knowledge background. On the contrary, HFS participants did not collaborate much when they performed the search task in national platforms or the searches with general topics that did not require specific information and learning. We also observed that the key HFS information contributors, carriers, and transmitters came from different groups of HFS participants.

  19. What's Next in Complex Networks? Capturing the Concept of Attacking Play in Invasive Team Sports.

    PubMed

    Ramos, João; Lopes, Rui J; Araújo, Duarte

    2018-01-01

    The evolution of performance analysis within sports sciences is tied to technology development and practitioner demands. However, how individual and collective patterns self-organize and interact in invasive team sports remains elusive. Social network analysis has been recently proposed to resolve some aspects of this problem, and has proven successful in capturing collective features resulting from the interactions between team members as well as a powerful communication tool. Despite these advances, some fundamental team sports concepts such as an attacking play have not been properly captured by the more common applications of social network analysis to team sports performance. In this article, we propose a novel approach to team sports performance centered on sport concepts, namely that of an attacking play. Network theory and tools including temporal and bipartite or multilayered networks were used to capture this concept. We put forward eight questions directly related to team performance to discuss how common pitfalls in the use of network tools for capturing sports concepts can be avoided. Some answers are advanced in an attempt to be more precise in the description of team dynamics and to uncover other metrics directly applied to sport concepts, such as the structure and dynamics of attacking plays. Finally, we propose that, at this stage of knowledge, it may be advantageous to build up from fundamental sport concepts toward complex network theory and tools, and not the other way around.

  20. Anatomy and histology as socially networked learning environments: some preliminary findings.

    PubMed

    Hafferty, Frederic W; Castellani, Brian; Hafferty, Philip K; Pawlina, Wojciech

    2013-09-01

    An exploratory study to better understand the "networked" life of the medical school as a learning environment. In a recent academic year, the authors gathered data during two six-week blocks of a sequential histology and anatomy course at a U.S. medical college. An eight-item questionnaire captured different dimensions of student interactions. The student cohort/network was 48 first-year medical students. Using social network analysis (SNA), the authors focused on (1) the initial structure and the evolution of informal class networks over time, (2) how informal class networks compare to formal in-class small-group assignments in influencing student information gathering, and (3) how peer assignment of professionalism role model status is shaped more by informal than formal ties. In examining these latter two issues, the authors explored not only how formal group assignment persisted over time but also how it functioned to prevent the tendency for groupings based on gender or ethnicity. The study revealed an evolving dynamic between the formal small-group learning structure of the course blocks and the emergence of informal student networks. For example, whereas formal group membership did influence in-class questions and did prevent formation of groups of like gender and ethnicity, outside-class questions and professionalism were influenced more by informal group ties where gender and, to a much lesser extent, ethnicity influence student information gathering. The richness of these preliminary findings suggests that SNA may be a useful tool in examining an array of medical student learning encounters.

  1. Scaling of Directed Dynamical Small-World Networks with Random Responses

    NASA Astrophysics Data System (ADS)

    Zhu, Chen-Ping; Xiong, Shi-Jie; Tian, Ying-Jie; Li, Nan; Jiang, Ke-Sheng

    2004-05-01

    A dynamical model of small-world networks, with directed links which describe various correlations in social and natural phenomena, is presented. Random responses of sites to the input message are introduced to simulate real systems. The interplay of these ingredients results in the collective dynamical evolution of a spinlike variable S(t) of the whole network. The global average spreading length s and average spreading time s are found to scale as p-αln(N with different exponents. Meanwhile, S(t) behaves in a duple scaling form for N≫N*: S˜f(p-βqγt˜), where p and q are rewiring and external parameters, α, β, and γ are scaling exponents, and f(t˜) is a universal function. Possible applications of the model are discussed.

  2. Looking Through a Social Lens: Conceptualising Social Aspects of Knowledge Management for Global Health Practitioners.

    PubMed

    Limaye, Rupali J; Sullivan, Tara M; Dalessandro, Scott; Jenkins, Ann Hendrix

    2017-04-13

    Knowledge management plays a critical role in global health. Global health practitioners require knowledge in every aspect of their jobs, and in resource-scarce contexts, practitioners must be able to rely on a knowledge management system to access the latest research and practice to ensure the highest quality of care. However, we suggest that there is a gap in the way knowledge management is primarily utilized in global health, namely, the systematic incorporation of human and social factors. In this paper, we briefly outline the evolution of knowledge management and then propose a conceptualization of knowledge management that incorporates human and social factors for use within a global health context. Our conceptualization of social knowledge management recognizes the importance of social capital, social learning, social software and platforms, and social networks , all within the context of a larger social system and driven by social benefit . We then outline the limitations and discuss future directions of our conceptualization, and suggest how this new conceptualization is essential for any global health practitioner in the business of managing knowledge.

  3. How mutation affects evolutionary games on graphs

    PubMed Central

    Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E.; Nowak, Martin A.

    2011-01-01

    Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration. PMID:21473871

  4. Predicting the evolution of complex networks via similarity dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping

    2017-01-01

    Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.

  5. Personality, Parasites, Political Attitudes, and Cooperation: A Model of How Infection Prevalence Influences Openness and Social Group Formation.

    PubMed

    Brown, Gordon D A; Fincher, Corey L; Walasek, Lukasz

    2016-01-01

    What is the origin of individual differences in ideology and personality? According to the parasite stress hypothesis, the structure of a society and the values of individuals within it are both influenced by the prevalence of infectious disease within the society's geographical region. High levels of infection threat are associated with more ethnocentric and collectivist social structures and greater adherence to social norms, as well as with socially conservative political ideology and less open but more conscientious personalities. Here we use an agent-based model to explore a specific opportunities-parasites trade-off (OPTO) hypothesis, according to which utility-maximizing agents place themselves at an optimal point on a trade-off between (a) the gains that may be achieved through accessing the resources of geographically or socially distant out-group members through openness to out-group interaction, and (b) the losses arising due to consequently increased risks of exotic infection to which immunity has not been developed. We examine the evolution of cooperation and the formation of social groups within social networks, and we show that the groups that spontaneously form exhibit greater local rather than global cooperative networks when levels of infection are high. It is suggested that the OPTO model offers a first step toward understanding the specific mechanisms through which environmental conditions may influence cognition, ideology, personality, and social organization. Copyright © 2015 The Authors. Topics in Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  6. Evolutionary games on multilayer networks: a colloquium

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wang, Lin; Szolnoki, Attila; Perc, Matjaž

    2015-05-01

    Networks form the backbone of many complex systems, ranging from the Internet to human societies. Accordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it is also a fact that the networks that are an integral part of such models are often interdependent or even interconnected. Networks of networks or multilayer networks are therefore a more apt description of social systems. This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of cooperation as one of the main pillars of modern human societies. We first give an overview of the most significant conceptual differences between single-layer and multilayer networks, and we provide basic definitions and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent populations. The focus is on coupling through the utilities of players, through the flow of information, as well as through the popularity of different strategies on different network layers. The colloquium highlights the importance of pattern formation and collective behavior for the promotion of cooperation under adverse conditions, as well as the synergies between network science and evolutionary game theory.

  7. Generic patterns in the evolution of urban water networks: Evidence from a large Asian city

    NASA Astrophysics Data System (ADS)

    Krueger, Elisabeth; Klinkhamer, Christopher; Urich, Christian; Zhan, Xianyuan; Rao, P. Suresh C.

    2017-03-01

    We examine high-resolution urban infrastructure data using every pipe for the water distribution network (WDN) and sanitary sewer network (SSN) in a large Asian city (≈4 million residents) to explore the structure as well as the spatial and temporal evolution of these infrastructure networks. Network data were spatially disaggregated into multiple subnets to examine intracity topological differences for functional zones of the WDN and SSN, and time-stamped SSN data were examined to understand network evolution over several decades as the city expanded. Graphs were generated using a dual-mapping technique (Hierarchical Intersection Continuity Negotiation), which emphasizes the functional attributes of these networks. Network graphs for WDNs and SSNs are characterized by several network topological metrics, and a double Pareto (power-law) model approximates the node-degree distributions of both water infrastructure networks (WDN and SSN), across spatial and hierarchical scales relevant to urban settings, and throughout their temporal evolution over several decades. These results indicate that generic mechanisms govern the networks' evolution, similar to those of scale-free networks found in nature. Deviations from the general topological patterns are indicative of (1) incomplete establishment of network hierarchies and functional network evolution, (2) capacity for growth (expansion) or densification (e.g., in-fill), and (3) likely network vulnerabilities. We discuss the implications of our findings for the (re-)design of urban infrastructure networks to enhance their resilience to external and internal threats.

  8. Evolvable social agents for bacterial systems modeling.

    PubMed

    Paton, Ray; Gregory, Richard; Vlachos, Costas; Saunders, Jon; Wu, Henry

    2004-09-01

    We present two approaches to the individual-based modeling (IbM) of bacterial ecologies and evolution using computational tools. The IbM approach is introduced, and its important complementary role to biosystems modeling is discussed. A fine-grained model of bacterial evolution is then presented that is based on networks of interactivity between computational objects representing genes and proteins. This is followed by a coarser grained agent-based model, which is designed to explore the evolvability of adaptive behavioral strategies in artificial bacteria represented by learning classifier systems. The structure and implementation of the two proposed individual-based bacterial models are discussed, and some results from simulation experiments are presented, illustrating their adaptive properties.

  9. Leader's opinion priority bounded confidence model for network opinion evolution

    NASA Astrophysics Data System (ADS)

    Zhu, Meixia; Xie, Guangqiang

    2017-08-01

    Aiming at the weight of trust someone given to participate in the interaction in Hegselmann-Krause's type consensus model is the same and virtual social networks among individuals with different level of education, personal influence, etc. For differences between agents, a novelty bounded confidence model was proposed with leader's opinion considered priority. Interaction neighbors can be divided into two kinds. The first kind is made up of "opinion leaders" group, another kind is made up of ordinary people. For different groups to give different weights of trust. We also analyzed the related characteristics of the new model under the symmetrical bounded confidence parameters and combined with the classical HK model were analyzed. Simulation experiment results show that no matter the network size and initial view is subject to uniform distribution or discrete distribution. We can control the "opinion-leader" good change the number of views and values, and even improve the convergence speed. Experiment also found that the choice of "opinion leaders" is not the more the better, the model well explain how the "opinion leader" in the process of the evolution of the public opinion play the role of the leader.

  10. Dynamic Creative Interaction Networks and Team Creativity Evolution: A Longitudinal Study

    ERIC Educational Resources Information Center

    Jiang, Hui; Zhang, Qing-Pu; Zhou, Yang

    2018-01-01

    To assess the dynamical effects of creative interaction networks on team creativity evolution, this paper elaborates a theoretical framework that links the key elements of creative interaction networks, including node, edge and network structure, to creativity in teams. The process of team creativity evolution is divided into four phases,…

  11. From evolution to revolution: understanding mutability in large and disruptive human groups

    NASA Astrophysics Data System (ADS)

    Whitaker, Roger M.; Felmlee, Diane; Verma, Dinesh C.; Preece, Alun; Williams, Grace-Rose

    2017-05-01

    Over the last 70 years there has been a major shift in the threats to global peace. While the 1950's and 1960's were characterised by the cold war and the arms race, many security threats are now characterised by group behaviours that are disruptive, subversive or extreme. In many cases such groups are loosely and chaotically organised, but their ideals are sociologically and psychologically embedded in group members to the extent that the group represents a major threat. As a result, insights into how human groups form, emerge and change are critical, but surprisingly limited insights into the mutability of human groups exist. In this paper we argue that important clues to understand the mutability of groups come from examining the evolutionary origins of human behaviour. In particular, groups have been instrumental in human evolution, used as a basis to derive survival advantage, leaving all humans with a basic disposition to navigate the world through social networking and managing their presence in a group. From this analysis we present five critical features of social groups that govern mutability, relating to social norms, individual standing, status rivalry, ingroup bias and cooperation. We argue that understanding how these five dimensions interact and evolve can provide new insights into group mutation and evolution. Importantly, these features lend themselves to digital modeling. Therefore computational simulation can support generative exploration of groups and the discovery of latent factors, relevant to both internal group and external group modelling. Finally we consider the role of online social media in relation to understanding the mutability of groups. This can play an active role in supporting collective behaviour, and analysis of social media in the context of the five dimensions of group mutability provides a fresh basis to interpret the forces affecting groups.

  12. Network evolution model for supply chain with manufactures as the core.

    PubMed

    Fang, Haiyang; Jiang, Dali; Yang, Tinghong; Fang, Ling; Yang, Jian; Li, Wu; Zhao, Jing

    2018-01-01

    Building evolution model of supply chain networks could be helpful to understand its development law. However, specific characteristics and attributes of real supply chains are often neglected in existing evolution models. This work proposes a new evolution model of supply chain with manufactures as the core, based on external market demand and internal competition-cooperation. The evolution model assumes the external market environment is relatively stable, considers several factors, including specific topology of supply chain, external market demand, ecological growth and flow conservation. The simulation results suggest that the networks evolved by our model have similar structures as real supply chains. Meanwhile, the influences of external market demand and internal competition-cooperation to network evolution are analyzed. Additionally, 38 benchmark data sets are applied to validate the rationality of our evolution model, in which, nine manufacturing supply chains match the features of the networks constructed by our model.

  13. Network evolution model for supply chain with manufactures as the core

    PubMed Central

    Jiang, Dali; Fang, Ling; Yang, Jian; Li, Wu; Zhao, Jing

    2018-01-01

    Building evolution model of supply chain networks could be helpful to understand its development law. However, specific characteristics and attributes of real supply chains are often neglected in existing evolution models. This work proposes a new evolution model of supply chain with manufactures as the core, based on external market demand and internal competition-cooperation. The evolution model assumes the external market environment is relatively stable, considers several factors, including specific topology of supply chain, external market demand, ecological growth and flow conservation. The simulation results suggest that the networks evolved by our model have similar structures as real supply chains. Meanwhile, the influences of external market demand and internal competition-cooperation to network evolution are analyzed. Additionally, 38 benchmark data sets are applied to validate the rationality of our evolution model, in which, nine manufacturing supply chains match the features of the networks constructed by our model. PMID:29370201

  14. BioJazz: in silico evolution of cellular networks with unbounded complexity using rule-based modeling.

    PubMed

    Feng, Song; Ollivier, Julien F; Swain, Peter S; Soyer, Orkun S

    2015-10-30

    Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Homophyly/Kinship Model: Naturally Evolving Networks

    NASA Astrophysics Data System (ADS)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  16. Homophyly/Kinship Model: Naturally Evolving Networks

    PubMed Central

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-01-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network. PMID:26478264

  17. Complex networks with scale-free nature and hierarchical modularity

    NASA Astrophysics Data System (ADS)

    Shekatkar, Snehal M.; Ambika, G.

    2015-09-01

    Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.

  18. Group-based strategy diffusion in multiplex networks with weighted values

    NASA Astrophysics Data System (ADS)

    Yu, Jianyong; Jiang, J. C.; Xiang, Leijun

    2017-03-01

    The information diffusion of multiplex social networks has received increasing interests in recent years. Actually, the multiplex networks are made of many communities, and it should be gotten more attention for the influences of community level diffusion, besides of individual level interactions. In view of this, this work explores strategy interactions and diffusion processes in multiplex networks with weighted values from a new perspective. Two different groups consisting of some agents with different influential strength are firstly built in each layer network, the authority and non-authority groups. The strategy interactions between different groups in intralayer and interlayer networks are performed to explore community level diffusion, by playing two classical strategy games, Prisoner's Dilemma and Snowdrift Game. The impact forces from the different groups and the reactive forces from individual agents are simultaneously taken into account in intralayer and interlayer interactions. This paper reveals and explains the evolutions of cooperation diffusion and the influences of interlayer interaction tight degrees in multiplex networks with weighted values. Some thresholds of critical parameters of interaction degrees and games parameters settings are also discussed in group-based strategy diffusion.

  19. An evolutionary game approach for determination of the structural conflicts in signed networks

    PubMed Central

    Tan, Shaolin; Lü, Jinhu

    2016-01-01

    Social or biochemical networks can often divide into two opposite alliances in response to structural conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization of the structural conflicts in the entire network. Numerical experiments show that the evolutionary game approach is universally efficient in quality and speed to find optimal solutions for all undirected or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks. PMID:26915581

  20. Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.

    PubMed

    Morrison, Erin S; Badyaev, Alexander V

    2018-05-01

    Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  1. Fashion, Cooperation, and Social Interactions

    PubMed Central

    Cao, Zhigang; Gao, Haoyu; Qu, Xinglong; Yang, Mingmin; Yang, Xiaoguang

    2013-01-01

    Fashion plays such a crucial rule in the evolution of culture and society that it is regarded as a second nature to the human being. Also, its impact on economy is quite nontrivial. On what is fashionable, interestingly, there are two viewpoints that are both extremely widespread but almost opposite: conformists think that what is popular is fashionable, while rebels believe that being different is the essence. Fashion color is fashionable in the first sense, and Lady Gaga in the second. We investigate a model where the population consists of the afore-mentioned two groups of people that are located on social networks (a spatial cellular automata network and small-world networks). This model captures two fundamental kinds of social interactions (coordination and anti-coordination) simultaneously, and also has its own interest to game theory: it is a hybrid model of pure competition and pure cooperation. This is true because when a conformist meets a rebel, they play the zero sum matching pennies game, which is pure competition. When two conformists (rebels) meet, they play the (anti-) coordination game, which is pure cooperation. Simulation shows that simple social interactions greatly promote cooperation: in most cases people can reach an extraordinarily high level of cooperation, through a selfish, myopic, naive, and local interacting dynamic (the best response dynamic). We find that degree of synchronization also plays a critical role, but mostly on the negative side. Four indices, namely cooperation degree, average satisfaction degree, equilibrium ratio and complete ratio, are defined and applied to measure people’s cooperation levels from various angles. Phase transition, as well as emergence of many interesting geographic patterns in the cellular automata network, is also observed. PMID:23382799

  2. Macroscopic description of complex adaptive networks coevolving with dynamic node states

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Donges, Jonathan F.; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-05-01

    In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.

  3. Macroscopic description of complex adaptive networks coevolving with dynamic node states.

    PubMed

    Wiedermann, Marc; Donges, Jonathan F; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-05-01

    In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.

  4. The Future of the New Media in the Communication of Science

    NASA Astrophysics Data System (ADS)

    Hanson, Joseph

    2014-03-01

    New media, that which is based around social networks, ubiquitous consumer technology, and today's near-universal access to information, has transformed the way that science is communicated to the scientist and non-scientist alike. We may be in the midst of mankind's greatest shift in information consumption and distribution since the invention of the printing press. Or maybe not. The problem with predicting the future is that it's very hard, and unless you're Isaac Asimov, it's very easy to be wrong. When one predicts the future regarding the internet, that risk becomes almost a certainty. Still, we can apply lessons learned from the near and distant history of science communication to put today's new media evolution into perspective, and to give us clues as to where social media, digital journalism, open access, and online education will lead science communication in years to come. Most importantly, it remains to be seen whether this new media evolution will translate into a shift in how science is viewed by citizens and their policymakers.

  5. Illuminating the dark matter of social neuroscience: Considering the problem of social interaction from philosophical, psychological, and neuroscientific perspectives.

    PubMed

    Przyrembel, Marisa; Smallwood, Jonathan; Pauen, Michael; Singer, Tania

    2012-01-01

    Successful human social interaction depends on our capacity to understand other people's mental states and to anticipate how they will react to our actions. Despite its importance to the human condition, the exact mechanisms underlying our ability to understand another's actions, feelings, and thoughts are still a matter of conjecture. Here, we consider this problem from philosophical, psychological, and neuroscientific perspectives. In a critical review, we demonstrate that attempts to draw parallels across these complementary disciplines is premature: The second-person perspective does not map directly to Interaction or Simulation theories, online social cognition, or shared neural network accounts underlying action observation or empathy. Nor does the third-person perspective map onto Theory-Theory (TT), offline social cognition, or the neural networks that support Theory of Mind (ToM). Moreover, we argue that important qualities of social interaction emerge through the reciprocal interplay of two independent agents whose unpredictable behavior requires that models of their partner's internal state be continually updated. This analysis draws attention to the need for paradigms in social neuroscience that allow two individuals to interact in a spontaneous and natural manner and to adapt their behavior and cognitions in a response contingent fashion due to the inherent unpredictability in another person's behavior. Even if such paradigms were implemented, it is possible that the specific neural correlates supporting such reciprocal interaction would not reflect computation unique to social interaction but rather the use of basic cognitive and emotional processes combined in a unique manner. Finally, we argue that given the crucial role of social interaction in human evolution, ontogeny, and every-day social life, a more theoretically and methodologically nuanced approach to the study of real social interaction will nevertheless help the field of social cognition to evolve.

  6. Visualizando el desarrollo de la nanomedicina en México.

    PubMed

    Robles-Belmont, Eduardo; Gortari-Rabiela, Rebeca de; Galarza-Barrios, Pilar; Siqueiros-García, Jesús Mario; Ruiz-León, Alejandro Arnulfo

    2017-01-01

    In this article we present a set of different visualizations of Mexico's nanomedicine scientific production data. Visualizations were developed using different methodologies for data analysis and visualization such as social network analysis, geography of science maps, and complex network communities analysis. Results are a multi-dimensional overview of the evolution of nanomedicine in Mexico. Moreover, visualizations allowed to identify trends and patterns of collaboration at the national and international level. Trends are also found in the knowledge structure of themes and disciplines. Finally, we identified the scientific communities in Mexico that are responsible for the new knowledge production in this emergent field of science. Copyright: © 2017 SecretarÍa de Salud

  7. The evolution of prompt reaction to adverse ties

    PubMed Central

    2008-01-01

    Background In recent years it has been found that the combination of evolutionary game theory with population structures modelled in terms of dynamical graphs, in which individuals are allowed to sever unwanted social ties while keeping the good ones, provides a viable solution to the conundrum of cooperation. It is well known that in reality individuals respond differently to disadvantageous interactions. Yet, the evolutionary mechanism determining the individuals' willingness to sever unfavourable ties remains unclear. Results We introduce a novel way of thinking about the joint evolution of cooperation and social contacts. The struggle for survival between cooperators and defectors leads to an arms race for swiftness in adjusting social ties, based purely on a self-regarding, individual judgement. Since defectors are never able to establish social ties under mutual agreement, they break adverse ties more rapidly than cooperators, who tend to evolve stable and long-term relations. Ironically, defectors' constant search for partners to exploit leads to heterogeneous networks that improve the survivability of cooperators, compared to the traditional homogenous population assumption. Conclusion When communities face the prisoner's dilemma, swift reaction to adverse ties evolves when competition is fierce between cooperators and defectors, providing an evolutionary basis for the necessity of individuals to adjust their social ties. Our results show how our innate resilience to change relates to mutual agreement between cooperators and how "loyalty" or persistent social ties bring along an evolutionary disadvantage, both from an individual and group perspective. PMID:18928551

  8. Public authority control strategy for opinion evolution in social networks

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Xiong, Xi; Zhang, Minghong; Li, Wei

    2016-08-01

    This paper addresses the need to deal with and control public opinion and rumors. Existing strategies to control public opinion include degree, random, and adaptive bridge control strategies. In this paper, we use the HK model to present a public opinion control strategy based on public authority (PA). This means utilizing the influence of expert or high authority individuals whose opinions we control to obtain the optimum effect in the shortest time possible and thus reach a consensus of public opinion. Public authority (PA) is only influenced by individuals' attributes (age, economic status, and education level) and not their degree distribution; hence, in this paper, we assume that PA complies with two types of public authority distribution (normal and power-law). According to the proposed control strategy, our experiment is based on random, degree, and public authority control strategies in three different social networks (small-world, scale-free, and random) and we compare and analyze the strategies in terms of convergence time (T), final number of controlled agents (C), and comprehensive efficiency (E). We find that different network topologies and the distribution of the PA in the network can influence the final controlling effect. While the effect of PA strategy differs in different network topology structures, all structures achieve comprehensive efficiency with any kind of public authority distribution in any network. Our findings are consistent with several current sociological phenomena and show that in the process of public opinion/rumor control, considerable attention should be paid to high authority individuals.

  9. Public authority control strategy for opinion evolution in social networks.

    PubMed

    Chen, Xi; Xiong, Xi; Zhang, Minghong; Li, Wei

    2016-08-01

    This paper addresses the need to deal with and control public opinion and rumors. Existing strategies to control public opinion include degree, random, and adaptive bridge control strategies. In this paper, we use the HK model to present a public opinion control strategy based on public authority (PA). This means utilizing the influence of expert or high authority individuals whose opinions we control to obtain the optimum effect in the shortest time possible and thus reach a consensus of public opinion. Public authority (PA) is only influenced by individuals' attributes (age, economic status, and education level) and not their degree distribution; hence, in this paper, we assume that PA complies with two types of public authority distribution (normal and power-law). According to the proposed control strategy, our experiment is based on random, degree, and public authority control strategies in three different social networks (small-world, scale-free, and random) and we compare and analyze the strategies in terms of convergence time (T), final number of controlled agents (C), and comprehensive efficiency (E). We find that different network topologies and the distribution of the PA in the network can influence the final controlling effect. While the effect of PA strategy differs in different network topology structures, all structures achieve comprehensive efficiency with any kind of public authority distribution in any network. Our findings are consistent with several current sociological phenomena and show that in the process of public opinion/rumor control, considerable attention should be paid to high authority individuals.

  10. Structuring evolution: biochemical networks and metabolic diversification in birds.

    PubMed

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  11. Evolution of cooperation driven by incremental learning

    NASA Astrophysics Data System (ADS)

    Li, Pei; Duan, Haibin

    2015-02-01

    It has been shown that the details of microscopic rules in structured populations can have a crucial impact on the ultimate outcome in evolutionary games. So alternative formulations of strategies and their revision processes exploring how strategies are actually adopted and spread within the interaction network need to be studied. In the present work, we formulate the strategy update rule as an incremental learning process, wherein knowledge is refreshed according to one's own experience learned from the past (self-learning) and that gained from social interaction (social-learning). More precisely, we propose a continuous version of strategy update rules, by introducing the willingness to cooperate W, to better capture the flexibility of decision making behavior. Importantly, the newly gained knowledge including self-learning and social learning is weighted by the parameter ω, establishing a strategy update rule involving innovative element. Moreover, we quantify the macroscopic features of the emerging patterns to inspect the underlying mechanisms of the evolutionary process using six cluster characteristics. In order to further support our results, we examine the time evolution course for these characteristics. Our results might provide insights for understanding cooperative behaviors and have several important implications for understanding how individuals adjust their strategies under real-life conditions.

  12. Social cognitive theory of gender development and differentiation.

    PubMed

    Bussey, K; Bandura, A

    1999-10-01

    Human differentiation on the basis of gender is a fundamental phenomenon that affects virtually every aspect of people's daily lives. This article presents the social cognitive theory of gender role development and functioning. It specifies how gender conceptions are constructed from the complex mix of experiences and how they operate in concert with motivational and self-regulatory mechanisms to guide gender-linked conduct throughout the life course. The theory integrates psychological and sociostructural determinants within a unified conceptual structure. In this theoretical perspective, gender conceptions and roles are the product of a broad network of social influences operating interdependently in a variety of societal subsystems. Human evolution provides bodily structures and biological potentialities that permit a range of possibilities rather than dictate a fixed type of gender differentiation. People contribute to their self-development and bring about social changes that define and structure gender relationships through their agentic actions within the interrelated systems of influence.

  13. The Mechanosensory Lateral Line System Mediates Activation of Socially-Relevant Brain Regions during Territorial Interactions.

    PubMed

    Butler, Julie M; Maruska, Karen P

    2016-01-01

    Animals use multiple senses during social interactions and must integrate this information in the brain to make context-dependent behavioral decisions. For fishes, the largest group of vertebrates, the mechanosensory lateral line system provides crucial hydrodynamic information for survival behaviors, but little is known about its function in social communication. Our previous work using the African cichlid fish, Astatotilapia burtoni, provided the first empirical evidence that fish use their lateral line system to detect water movements from conspecifics for mutual assessment and behavioral choices. It is unknown, however, where this socially-relevant mechanosensory information is processed in the brain to elicit adaptive behavioral responses. To examine for the first time in any fish species which brain regions receive contextual mechanosensory information, we quantified expression of the immediate early gene cfos as a proxy for neural activation in sensory and socially-relevant brain nuclei from lateral line-intact and -ablated fish following territorial interactions. Our in situ hybridization results indicate that in addition to known lateral line processing regions, socially-relevant mechanosensory information is processed in the ATn (ventromedial hypothalamus homolog), Dl (putative hippocampus homolog), and Vs (putative medial extended amygdala homolog). In addition, we identified a functional network within the conserved social decision-making network (SDMN) whose co-activity corresponds with mutual assessment and behavioral choice. Lateral line-intact and -ablated fight winners had different patterns of co-activity of these function networks and group identity could be determined solely by activation patterns, indicating the importance of mechanoreception to co-activity of the SDMN. These data show for the first time that the mechanosensory lateral line system provides relevant information to conserved decision-making centers of the brain during territorial interactions to mediate crucial behavioral choices such as whether or not to engage in a territorial fight. To our knowledge, this is also the first evidence of a subpallial nucleus receiving mechanosensory input, providing important information for elucidating homologies of decision-making circuits across vertebrates. These novel results highlight the importance of considering multimodal sensory input in mediating context-appropriate behaviors that will provide broad insights on the evolution of decision-making networks across all taxa.

  14. The shifting dynamics of social roles and project ownership over the lifecycle of a community-based participatory research project.

    PubMed

    Salsberg, Jon; Macridis, Soultana; Garcia Bengoechea, Enrique; Macaulay, Ann C; Moore, Spencer

    2017-06-01

    . Community based participatory research (CBPR) is often initiated by academic researchers, yet relies on meaningful community engagement and ownership to have lasting impact. Little is understood about how ownership shifts from academic to community partners. . We examined a CBPR project over its life course and asked: what does the evolution of ownership look like from project initiation by an academic (non-community) champion (T1); to maturation-when the intervention is ready to be deployed (T2); to independence-the time when the original champion steps aside (T3); and finally, to its maintenance-when the community has had an opportunity to function independently of the original academic champion (T4)? . Using sociometric (whole network) social network analysis, knowledge leadership was measured using 'in-degree centrality'. Stakeholder network structure was measured using 'centralisation' and 'core-periphery analysis'. Friedman rank sum test was used to measure change in actor roles over time from T1 to T4. . Project stakeholder roles were observed to shift significantly (P < 0.005) from initiation (T1) to project maintenance (T4). Community stakeholders emerged into positions of knowledge leadership, while the roles of academic partners diminished in importance. The overall stakeholder network demonstrated a structural shift towards a core of densely interacting community stakeholders. . This was the first study to use Social network analysis to document a shift in ownership from academic to community partners, indicating community self-determination over the research process. Further analysis of qualitative data will determine which participatory actions or strategies were responsible for this observed change. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Fractional Dynamics of Network Growth Constrained by Aging Node Interactions

    PubMed Central

    Safdari, Hadiseh; Zare Kamali, Milad; Shirazi, Amirhossein; Khalighi, Moein; Jafari, Gholamreza; Ausloos, Marcel

    2016-01-01

    In many social complex systems, in which agents are linked by non-linear interactions, the history of events strongly influences the whole network dynamics. However, a class of “commonly accepted beliefs” seems rarely studied. In this paper, we examine how the growth process of a (social) network is influenced by past circumstances. In order to tackle this cause, we simply modify the well known preferential attachment mechanism by imposing a time dependent kernel function in the network evolution equation. This approach leads to a fractional order Barabási-Albert (BA) differential equation, generalizing the BA model. Our results show that, with passing time, an aging process is observed for the network dynamics. The aging process leads to a decay for the node degree values, thereby creating an opposing process to the preferential attachment mechanism. On one hand, based on the preferential attachment mechanism, nodes with a high degree are more likely to absorb links; but, on the other hand, a node’s age has a reduced chance for new connections. This competitive scenario allows an increased chance for younger members to become a hub. Simulations of such a network growth with aging constraint confirm the results found from solving the fractional BA equation. We also report, as an exemplary application, an investigation of the collaboration network between Hollywood movie actors. It is undubiously shown that a decay in the dynamics of their collaboration rate is found, even including a sex difference. Such findings suggest a widely universal application of the so generalized BA model. PMID:27171424

  16. Spillover modes in multiplex games: double-edged effects on cooperation and their coevolution.

    PubMed

    Khoo, Tommy; Fu, Feng; Pauls, Scott

    2018-05-02

    In recent years, there has been growing interest in studying games on multiplex networks that account for interactions across linked social contexts. However, little is known about how potential cross-context interference, or spillover, of individual behavioural strategy impact overall cooperation. We consider three plausible spillover modes, quantifying and comparing their effects on the evolution of cooperation. In our model, social interactions take place on two network layers: repeated interactions with close neighbours in a lattice, and one-shot interactions with random individuals. Spillover can occur during the learning process with accidental cross-layer strategy transfer, or during social interactions with errors in implementation. Our analytical results, using extended pair approximation, are in good agreement with extensive simulations. We find double-edged effects of spillover: increasing the intensity of spillover can promote cooperation provided cooperation is favoured in one layer, but too much spillover is detrimental. We also discover a bistability phenomenon: spillover hinders or promotes cooperation depending on initial frequencies of cooperation in each layer. Furthermore, comparing strategy combinations emerging in each spillover mode provides good indication of their co-evolutionary dynamics with cooperation. Our results make testable predictions that inspire future research, and sheds light on human cooperation across social domains.

  17. Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal

    NASA Astrophysics Data System (ADS)

    Zhao, Laijun; Wang, Qin; Cheng, Jingjing; Chen, Yucheng; Wang, Jiajia; Huang, Wei

    2011-07-01

    Rumor is an important form of social interaction, and its spreading has a significant impact on people’s lives. In the age of Web, people are using electronic media more frequently than ever before, and blog has become one of the main online social interactions. Therefore, it is essential to learn the evolution mechanism of rumor spreading on homogeneous network in consideration of the forgetting mechanism of spreaders. Here we study a rumor spreading model on an online social blogging platform called LiveJournal. In comparison with the Susceptible-Infected-Removed (SIR) model, we provide a more detailed and realistic description of rumor spreading process with combination of forgetting mechanism and the SIR model of epidemics. A mathematical model has been presented and numerical solutions of the model were used to analyze the impact factors of rumor spreading, such as the average degree, forgetting rate and stifling rate. Our results show that there exist a threshold of the average degree of LiveJournal and above which the influence of rumor reaches saturation. Forgetting mechanism and stifling rate exert great influence on rumor spreading on online social network. The analysis results can guide people’s behaviors in view of the theoretical and practical aspects.

  18. SCM: A method to improve network service layout efficiency with network evolution.

    PubMed

    Zhao, Qi; Zhang, Chuanhao; Zhao, Zheng

    2017-01-01

    Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of "software defined network + network function virtualization" (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently.

  19. Enhanced use of phylogenetic data to inform public health approaches to HIV among MSM

    PubMed Central

    German, Danielle; Grabowski, Mary Kate; Beyrer, Chris

    2017-01-01

    The multi-dimensional nature and continued evolution of HIV epidemics among men who have sex with men (MSM) requires innovative intervention approaches. Strategies are needed that recognize the individual, social, and structural factors driving HIV transmission; that can pinpoint networks with heightened transmission risk; and that can help target intervention in real-time. HIV phylogenetics is a rapidly evolving field with strong promise for informing innovative responses to the HIV epidemic among MSM. Currently, HIV phylogenetic insights are providing new understandings of characteristics of HIV epidemics involving MSM, social networks influencing transmission, characteristics of HIV transmission clusters involving MSM, targets for antiretroviral and other prevention strategies, and dynamics of emergent epidemics. Maximizing the potential of HIV phylogenetics for HIV responses among MSM will require attention to key methodological challenges and ethical considerations, as well as resolving key implementation and scientific questions. Enhanced and integrated use of HIV surveillance, socio-behavioral, and phylogenetic data resources are becoming increasingly critical for informing public health approaches to HIV among MSM. PMID:27584826

  20. Use of social network sites and instant messaging does not lead to increased offline social network size, or to emotionally closer relationships with offline network members.

    PubMed

    Pollet, Thomas V; Roberts, Sam G B; Dunbar, Robin I M

    2011-04-01

    The effect of Internet use on social relationships is still a matter of intense debate. This study examined the relationships between use of social media (instant messaging and social network sites), network size, and emotional closeness in a sample of 117 individuals aged 18 to 63 years old. Time spent using social media was associated with a larger number of online social network "friends." However, time spent using social media was not associated with larger offline networks, or feeling emotionally closer to offline network members. Further, those that used social media, as compared to non-users of social media, did not have larger offline networks, and were not emotionally closer to offline network members. These results highlight the importance of considering potential time and cognitive constraints on offline social networks when examining the impact of social media use on social relationships.

  1. How a Stressed Local Public System Copes With People in Psychiatric Crisis

    PubMed Central

    Wells, Rebecca; La, Elizabeth Holdsworth; Morrissey, Joseph; Hall, Marissa; Lich, Kristen Hassmiller; Blouin, Rachel

    2012-01-01

    In order to bolster the public mental health safety net, we must first understand how these systems function on a day-to-day basis. This study explored how individual attributes and organizational interdependencies within one predominantly urban US county affected responses to individuals’ needs during psychiatric crises. We interviewed clinicians and managers within the crisis response network about people at immediate risk of psychiatric hospitalization, what had happened to them during their crises, and factors affecting services provided (N = 94 individuals and 9 agencies). Social network diagrams depicted patterns of referrals between agencies. Iterative coding of interview transcripts was used to contextualize the social network findings. Often, agencies saw crises through to resolution. However, providers also limited the types of people they served, leaving many people in crisis in limbo. This study illustrates how attributes of individuals with mental illness, service providers and their interactions, and state and federal policies intersect to shape the trajectories of individuals during psychiatric crises. Understanding both the structures of current local systems and their contexts may support continued evolution toward a more humane and robust safety net for some of our society’s most vulnerable members. PMID:23065371

  2. Networking in 1993.

    ERIC Educational Resources Information Center

    Clement, John; Abrahams, Janice

    1994-01-01

    Describes the growth and evolution of educational networking including the growth in the number of users; networking tools such as Gopher; Internet information resources; problems; evaluations of network use in education; the evolution of educational communities on the Internet; integrating networks into the process of educational change; and the…

  3. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language

    PubMed Central

    Scharff, Constance; Petri, Jana

    2011-01-01

    The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the ‘evo-devo’ conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this ‘deep homology’. Recently, ‘evo-devo’ has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can ‘descend with modification’. PMID:21690130

  4. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language.

    PubMed

    Scharff, Constance; Petri, Jana

    2011-07-27

    The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the 'evo-devo' conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this 'deep homology'. Recently, 'evo-devo' has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can 'descend with modification'.

  5. Evolution of regulatory networks towards adaptability and stability in a changing environment

    NASA Astrophysics Data System (ADS)

    Lee, Deok-Sun

    2014-11-01

    Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.

  6. Social network approaches to recruitment, HIV prevention, medical care, and medication adherence.

    PubMed

    Latkin, Carl A; Davey-Rothwell, Melissa A; Knowlton, Amy R; Alexander, Kamila A; Williams, Chyvette T; Boodram, Basmattee

    2013-06-01

    This article reviews the current issues and advancements in social network approaches to HIV prevention and care. Social network analysis can provide a method to understand health disparities in HIV rates, treatment access, and outcomes. Social network analysis is a valuable tool to link social structural factors to individual behaviors. Social networks provide an avenue for low-cost and sustainable HIV prevention interventions that can be adapted and translated into diverse populations. Social networks can be utilized as a viable approach to recruitment for HIV testing and counseling, HIV prevention interventions, optimizing HIV medical care, and medication adherence. Social network interventions may be face-to-face or through social media. Key issues in designing social network interventions are contamination due to social diffusion, network stability, density, and the choice and training of network members. There are also ethical issues involved in the development and implementation of social network interventions. Social network analyses can also be used to understand HIV transmission dynamics.

  7. Reading wild minds: A computational assay of Theory of Mind sophistication across seven primate species

    PubMed Central

    Devaine, Marie; San-Galli, Aurore; Trapanese, Cinzia; Bardino, Giulia; Hano, Christelle; Saint Jalme, Michel; Bouret, Sebastien

    2017-01-01

    Theory of Mind (ToM), i.e. the ability to understand others' mental states, endows humans with highly adaptive social skills such as teaching or deceiving. Candidate evolutionary explanations have been proposed for the unique sophistication of human ToM among primates. For example, the Machiavellian intelligence hypothesis states that the increasing complexity of social networks may have induced a demand for sophisticated ToM. This type of scenario ignores neurocognitive constraints that may eventually be crucial limiting factors for ToM evolution. In contradistinction, the cognitive scaffolding hypothesis asserts that a species' opportunity to develop sophisticated ToM is mostly determined by its general cognitive capacity (on which ToM is scaffolded). However, the actual relationships between ToM sophistication and either brain volume (a proxy for general cognitive capacity) or social group size (a proxy for social network complexity) are unclear. Here, we let 39 individuals sampled from seven non-human primate species (lemurs, macaques, mangabeys, orangutans, gorillas and chimpanzees) engage in simple dyadic games against artificial ToM players (via a familiar human caregiver). Using computational analyses of primates' choice sequences, we found that the probability of exhibiting a ToM-compatible learning style is mainly driven by species' brain volume (rather than by social group size). Moreover, primates' social cognitive sophistication culminates in a precursor form of ToM, which still falls short of human fully-developed ToM abilities. PMID:29112973

  8. Reading wild minds: A computational assay of Theory of Mind sophistication across seven primate species.

    PubMed

    Devaine, Marie; San-Galli, Aurore; Trapanese, Cinzia; Bardino, Giulia; Hano, Christelle; Saint Jalme, Michel; Bouret, Sebastien; Masi, Shelly; Daunizeau, Jean

    2017-11-01

    Theory of Mind (ToM), i.e. the ability to understand others' mental states, endows humans with highly adaptive social skills such as teaching or deceiving. Candidate evolutionary explanations have been proposed for the unique sophistication of human ToM among primates. For example, the Machiavellian intelligence hypothesis states that the increasing complexity of social networks may have induced a demand for sophisticated ToM. This type of scenario ignores neurocognitive constraints that may eventually be crucial limiting factors for ToM evolution. In contradistinction, the cognitive scaffolding hypothesis asserts that a species' opportunity to develop sophisticated ToM is mostly determined by its general cognitive capacity (on which ToM is scaffolded). However, the actual relationships between ToM sophistication and either brain volume (a proxy for general cognitive capacity) or social group size (a proxy for social network complexity) are unclear. Here, we let 39 individuals sampled from seven non-human primate species (lemurs, macaques, mangabeys, orangutans, gorillas and chimpanzees) engage in simple dyadic games against artificial ToM players (via a familiar human caregiver). Using computational analyses of primates' choice sequences, we found that the probability of exhibiting a ToM-compatible learning style is mainly driven by species' brain volume (rather than by social group size). Moreover, primates' social cognitive sophistication culminates in a precursor form of ToM, which still falls short of human fully-developed ToM abilities.

  9. The Haqqani Nexus and the Evolution of al-Qaida

    DTIC Science & Technology

    2011-07-14

    outgrowth  of  the  operational  “ glocalization ”  of  conflict  long  facilitated by the Haqqani network.47  The paradoxical challenge for Pakistan is that...unification of militant entities. For background on the term  “ glocalization ” see Roland Robertson, Globalization: Social Theory and Global Culture

  10. Challenges for Social Control in Wireless Mobile Grids

    NASA Astrophysics Data System (ADS)

    Balke, Tina; Eymann, Torsten

    The evolution of mobile phones has lead to new wireless mobile grids that lack a central controlling instance and require the cooperation of autonomous entities that can voluntarily commit resources, forming a common pool which can be used in order to achieve common and/or individual goals. The social dilemma in such systems is that it is advantageous for rational users to access the common pool resources without any own commitment, since every commitment has its price (see ? for example). However, if a substantial number of users would follow this selfish strategy, the network itself would be at stake. Thus, the question arises on how cooperation can be fostered in wireless mobile grids. Whereas many papers have dealt with this question from a technical point of view, instead this paper will concentrate on a concept that has lately been discussed a lot with this regard: social control. Thereby social control concepts will be contrasted to technical approaches and resulting challenges (as well as possible solutions to these challenges) for social concepts will be discussed.

  11. Hacking Social Networks: Examining the Viability of Using Computer Network Attack Against Social Networks

    DTIC Science & Technology

    2007-03-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited. HACKING SOCIAL NETWORKS : EXAMINING THE...VIABILITY OF USING COMPUTER NETWORK ATTACK AGAINST SOCIAL NETWORKS by Russell G. Schuhart II March 2007 Thesis Advisor: David Tucker Second Reader...Master’s Thesis 4. TITLE AND SUBTITLE: Hacking Social Networks : Examining the Viability of Using Computer Network Attack Against Social Networks 6. AUTHOR

  12. SCM: A method to improve network service layout efficiency with network evolution

    PubMed Central

    Zhao, Qi; Zhang, Chuanhao

    2017-01-01

    Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of “software defined network + network function virtualization” (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently. PMID:29267299

  13. Selective investment promotes cooperation in public goods game

    NASA Astrophysics Data System (ADS)

    Li, Jing; Wu, Te; Zeng, Gang; Wang, Long

    2012-08-01

    Most previous investigations on spatial Public Goods Game assume that individuals treat neighbors equivalently, which is in sharp contrast with realistic situations, where bias is ubiquitous. We construct a model to study how a selective investment mechanism affects the evolution of cooperation. Cooperators selectively contribute to just a fraction among their neighbors. According to the interaction result, the investment network can be adapted. On selecting investees, three patterns are considered. In the random pattern, cooperators choose their investees among the neighbors equiprobably. In the social-preference pattern, cooperators tend to invest to individuals possessing large social ties. In the wealth-preference pattern, cooperators are more likely to invest to neighbors with higher payoffs. Our result shows robustness of selective investment mechanism that boosts emergence and maintenance of cooperation. Cooperation is more or less hampered under the latter two patterns, and we prove the anti-social-preference or anti-wealth-preference pattern of selecting investees can accelerate cooperation to some extent. Furthermore, the theoretical analysis of our mechanism on double-star networks coincides with simulation results. We hope our finding could shed light on better understanding of the emergence of cooperation among adaptive populations.

  14. Genetics of reproduction and regulation of honeybee (Apis mellifera L.) social behavior.

    PubMed

    Page, Robert E; Rueppell, Olav; Amdam, Gro V

    2012-01-01

    Honeybees form complex societies with a division of labor for reproduction, nutrition, nest construction and maintenance, and defense. How does it evolve? Tasks performed by worker honeybees are distributed in time and space. There is no central control over behavior and there is no central genome on which selection can act and effect adaptive change. For 22 years, we have been addressing these questions by selecting on a single social trait associated with nutrition: the amount of surplus pollen (a source of protein) that is stored in the combs of the nest. Forty-two generations of selection have revealed changes at biological levels extending from the society down to the level of the gene. We show how we constructed this vertical understanding of social evolution using behavioral and anatomical analyses, physiology, genetic mapping, and gene knockdowns. We map out the phenotypic and genetic architectures of food storage and foraging behavior and show how they are linked through broad epistasis and pleiotropy affecting a reproductive regulatory network that influences foraging behavior. This is remarkable because worker honeybees have reduced reproductive organs and are normally sterile; however, the reproductive regulatory network has been co-opted for behavioral division of labor.

  15. The Convergence of Virtual Reality and Social Networks: Threats to Privacy and Autonomy.

    PubMed

    O'Brolcháin, Fiachra; Jacquemard, Tim; Monaghan, David; O'Connor, Noel; Novitzky, Peter; Gordijn, Bert

    2016-02-01

    The rapid evolution of information, communication and entertainment technologies will transform the lives of citizens and ultimately transform society. This paper focuses on ethical issues associated with the likely convergence of virtual realities (VR) and social networks (SNs), hereafter VRSNs. We examine a scenario in which a significant segment of the world's population has a presence in a VRSN. Given the pace of technological development and the popularity of these new forms of social interaction, this scenario is plausible. However, it brings with it ethical problems. Two central ethical issues are addressed: those of privacy and those of autonomy. VRSNs pose threats to both privacy and autonomy. The threats to privacy can be broadly categorized as threats to informational privacy, threats to physical privacy, and threats to associational privacy. Each of these threats is further subdivided. The threats to autonomy can be broadly categorized as threats to freedom, to knowledge and to authenticity. Again, these three threats are divided into subcategories. Having categorized the main threats posed by VRSNs, a number of recommendations are provided so that policy-makers, developers, and users can make the best possible use of VRSNs.

  16. Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks

    PubMed Central

    Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P.; Gerstein, Mark

    2010-01-01

    The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers’ continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems. PMID:20439753

  17. Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks.

    PubMed

    Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P; Gerstein, Mark

    2010-05-18

    The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers' continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems.

  18. Emerging directions in the study of the ecology and evolution of plant-animal mutualistic networks: a review.

    PubMed

    Gu, Hao; Goodale, Eben; Chen, Jin

    2015-03-18

    The study of mutualistic plant and animal networks is an emerging field of ecological research. We reviewed progress in this field over the past 30 years. While earlier studies mostly focused on network structure, stability, and biodiversity maintenance, recent studies have investigated the conservation implications of mutualistic networks, specifically the influence of invasive species and how networks respond to habitat loss. Current research has also focused on evolutionary questions including phylogenetic signal in networks, impact of networks on the coevolution of interacting partners, and network influences on the evolution of interacting species. We outline some directions for future research, particularly the evolution of specialization in mutualistic networks, and provide concrete recommendations for environmental managers.

  19. Opinion formation on social media: An empirical approach

    NASA Astrophysics Data System (ADS)

    Xiong, Fei; Liu, Yun

    2014-03-01

    Opinion exchange models aim to describe the process of public opinion formation, seeking to uncover the intrinsic mechanism in social systems; however, the model results are seldom empirically justified using large-scale actual data. Online social media provide an abundance of data on opinion interaction, but the question of whether opinion models are suitable for characterizing opinion formation on social media still requires exploration. We collect a large amount of user interaction information from an actual social network, i.e., Twitter, and analyze the dynamic sentiments of users about different topics to investigate realistic opinion evolution. We find two nontrivial results from these data. First, public opinion often evolves to an ordered state in which one opinion predominates, but not to complete consensus. Second, agents are reluctant to change their opinions, and the distribution of the number of individual opinion changes follows a power law. Then, we suggest a model in which agents take external actions to express their internal opinions according to their activity. Conversely, individual actions can influence the activity and opinions of neighbors. The probability that an agent changes its opinion depends nonlinearly on the fraction of opponents who have taken an action. Simulation results show user action patterns and the evolution of public opinion in the model coincide with the empirical data. For different nonlinear parameters, the system may approach different regimes. A large decay in individual activity slows down the dynamics, but causes more ordering in the system.

  20. Ising-based model of opinion formation in a complex network of interpersonal interactions

    NASA Astrophysics Data System (ADS)

    Grabowski, A.; Kosiński, R. A.

    2006-03-01

    In our work the process of opinion formation in the human population, treated as a scale-free network, is modeled and investigated numerically. The individuals (nodes of the network) are characterized by their authorities, which influence the interpersonal interactions in the population. Hierarchical, two-level structures of interpersonal interactions and spatial localization of individuals are taken into account. The effect of the mass media, modeled as an external stimulation acting on the social network, on the process of opinion formation is investigated. It was found that in the time evolution of opinions of individuals critical phenomena occur. The first one is observed in the critical temperature of the system TC and is connected with the situation in the community, which may be described by such quantifiers as the economic status of people, unemployment or crime wave. Another critical phenomenon is connected with the influence of mass media on the population. As results from our computations, under certain circumstances the mass media can provoke critical rebuilding of opinions in the population.

  1. Network-based diffusion analysis reveals cultural transmission of lobtail feeding in humpback whales.

    PubMed

    Allen, Jenny; Weinrich, Mason; Hoppitt, Will; Rendell, Luke

    2013-04-26

    We used network-based diffusion analysis to reveal the cultural spread of a naturally occurring foraging innovation, lobtail feeding, through a population of humpback whales (Megaptera novaeangliae) over a period of 27 years. Support for models with a social transmission component was 6 to 23 orders of magnitude greater than for models without. The spatial and temporal distribution of sand lance, a prey species, was also important in predicting the rate of acquisition. Our results, coupled with existing knowledge about song traditions, show that this species can maintain multiple independently evolving traditions in its populations. These insights strengthen the case that cetaceans represent a peak in the evolution of nonhuman culture, independent of the primate lineage.

  2. Structure and Evolution of the Foreign Exchange Networks

    NASA Astrophysics Data System (ADS)

    Kwapień, J.; Gworek, S.; Drożdż, S.

    2009-01-01

    We investigate topology and temporal evolution of the foreign currency exchange market viewed from a weighted network perspective. Based on exchange rates for a set of 46 currencies (including precious metals), we construct different representations of the FX network depending on a choice of the base currency. Our results show that the network structure is not stable in time, but there are main clusters of currencies, which persist for a long period of time despite the fact that their size and content are variable. We find a long-term trend in the network's evolution which affects the USD and EUR nodes. In all the network representations, the USD node gradually loses its centrality, while, on contrary, the EUR node has become slightly more central than it used to be in its early years. Despite this directional trend, the overall evolution of the network is noisy.

  3. Evolutionary Dynamics of Collective Action in Structured Populations

    NASA Astrophysics Data System (ADS)

    Santos, Marta Daniela de Almeida

    The pervasiveness of cooperation in Nature is not easily explained. If evolution is characterized by competition and survival of the fittest, why should selfish individuals cooperate with each other? Evolutionary Game Theory (EGT) provides a suitable mathematical framework to study this problem, central to many areas of science. Conventionally, interactions between individuals are modeled in terms of one-shot, symmetric 2-Person Dilemmas of Cooperation, but many real-life situations involve decisions within groups with more than 2 individuals, which are best-dealt in the framework of N-Person games. In this Thesis, we investigate the evolutionary dynamics of two paradigmatic collective social dilemmas - the N-Person Prisoner's Dilemma (NPD) and the N-Person Snowdrift Game (NSG) on structured populations, modeled by networks with diverse topological properties. Cooperative strategies are just one example of the many traits that can be transmitted on social networks. Several recent studies based on empirical evidence from a medical database have suggested the existence of a 3 degrees of influence rule, according to which not only our "friends", but also our friends' friends, and our friends' friends' friends, have a non-trivial influence on our decisions. We investigate the degree of peer influence that emerges from the spread of cooperative strategies, opinions and diseases on populations with distinct underlying networks of contacts. Our results show that networks naturally entangle individuals into interactions of many-body nature and that for each network class considered different processes lead to identical degrees of influence. None

  4. User Vulnerability and its Reduction on a Social Networking Site

    DTIC Science & Technology

    2014-01-01

    social networking sites bring about new...and explore other users’ profiles and friend networks. Social networking sites have reshaped business models [Vayner- chuk 2009], provided platform... social networking sites is to enable users to be more social, user privacy and security issues cannot be ignored. On one hand, most social networking sites

  5. Social Networks, Social Circles, and Job Satisfaction.

    ERIC Educational Resources Information Center

    Hurlbert, Jeanne S.

    1991-01-01

    Tests the hypothesis that social networks serve as a social resource that effects job satisfaction through the provision of social support. Argues that three types of networks are likely to affect job satisfaction: dense networks, social circles composed of co-workers, and kin-centered networks. (JOW)

  6. Triadic motifs in the dependence networks of virtual societies.

    PubMed

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-10

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  7. Triadic motifs in the dependence networks of virtual societies

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  8. Triadic motifs in the dependence networks of virtual societies

    PubMed Central

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-01-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs. PMID:24912755

  9. Crucial role of strategy updating for coexistence of strategies in interaction networks.

    PubMed

    Zhang, Jianlei; Zhang, Chunyan; Cao, Ming; Weissing, Franz J

    2015-04-01

    Network models are useful tools for studying the dynamics of social interactions in a structured population. After a round of interactions with the players in their local neighborhood, players update their strategy based on the comparison of their own payoff with the payoff of one of their neighbors. Here we show that the assumptions made on strategy updating are of crucial importance for the strategy dynamics. In the first step, we demonstrate that seemingly small deviations from the standard assumptions on updating have major implications for the evolutionary outcome of two cooperation games: cooperation can more easily persist in a Prisoner's Dilemma game, while it can go more easily extinct in a Snowdrift game. To explain these outcomes, we develop a general model for the updating of states in a network that allows us to derive conditions for the steady-state coexistence of states (or strategies). The analysis reveals that coexistence crucially depends on the number of agents consulted for updating. We conclude that updating rules are as important for evolution on a network as network structure and the nature of the interaction.

  10. Crucial role of strategy updating for coexistence of strategies in interaction networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Zhang, Chunyan; Cao, Ming; Weissing, Franz J.

    2015-04-01

    Network models are useful tools for studying the dynamics of social interactions in a structured population. After a round of interactions with the players in their local neighborhood, players update their strategy based on the comparison of their own payoff with the payoff of one of their neighbors. Here we show that the assumptions made on strategy updating are of crucial importance for the strategy dynamics. In the first step, we demonstrate that seemingly small deviations from the standard assumptions on updating have major implications for the evolutionary outcome of two cooperation games: cooperation can more easily persist in a Prisoner's Dilemma game, while it can go more easily extinct in a Snowdrift game. To explain these outcomes, we develop a general model for the updating of states in a network that allows us to derive conditions for the steady-state coexistence of states (or strategies). The analysis reveals that coexistence crucially depends on the number of agents consulted for updating. We conclude that updating rules are as important for evolution on a network as network structure and the nature of the interaction.

  11. A Sensemaking Approach to Visual Analytics of Attribute-Rich Social Networks

    ERIC Educational Resources Information Center

    Gou, Liang

    2012-01-01

    Social networks have become more complex, in particular considering the fact that elements in social networks are not only abstract topological nodes and links, but contain rich social attributes and reflecting diverse social relationships. For example, in a co-authorship social network in a scientific community, nodes in the social network, which…

  12. Evolution of helping and harming in heterogeneous groups.

    PubMed

    Rodrigues, António M M; Gardner, Andy

    2013-08-01

    Social groups are often composed of individuals who differ in many respects. Theoretical studies on the evolution of helping and harming behaviors have largely focused upon genetic differences between individuals. However, nongenetic variation between group members is widespread in natural populations, and may mediate differences in individuals' social behavior. Here, we develop a framework to study how variation in individual quality mediates the evolution of unconditional and conditional social traits. We investigate the scope for the evolution of social traits that are conditional on the quality of the actor and/or recipients. We find that asymmetries in individual quality can lead to the evolution of plastic traits with different individuals expressing helping and harming traits within the same group. In this context, population viscosity can mediate the evolution of social traits, and local competition can promote both helping and harming behaviors. Furthermore, asymmetries in individual quality can lead to the evolution of competition-like traits between clonal individuals. Overall, we highlight the importance of asymmetries in individual quality, including differences in reproductive value and the ability to engage in successful social interactions, in mediating the evolution of helping and harming behaviors. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  13. Social network analysis: Presenting an underused method for nursing research.

    PubMed

    Parnell, James Michael; Robinson, Jennifer C

    2018-06-01

    This paper introduces social network analysis as a versatile method with many applications in nursing research. Social networks have been studied for years in many social science fields. The methods continue to advance but remain unknown to most nursing scholars. Discussion paper. English language and interpreted literature was searched from Ovid Healthstar, CINAHL, PubMed Central, Scopus and hard copy texts from 1965 - 2017. Social network analysis first emerged in nursing literature in 1995 and appears minimally through present day. To convey the versatility and applicability of social network analysis in nursing, hypothetical scenarios are presented. The scenarios are illustrative of three approaches to social network analysis and include key elements of social network research design. The methods of social network analysis are underused in nursing research, primarily because they are unknown to most scholars. However, there is methodological flexibility and epistemological versatility capable of supporting quantitative and qualitative research. The analytic techniques of social network analysis can add new insight into many areas of nursing inquiry, especially those influenced by cultural norms. Furthermore, visualization techniques associated with social network analysis can be used to generate new hypotheses. Social network analysis can potentially uncover findings not accessible through methods commonly used in nursing research. Social networks can be analysed based on individual-level attributes, whole networks and subgroups within networks. Computations derived from social network analysis may stand alone to answer a research question or incorporated as variables into robust statistical models. © 2018 John Wiley & Sons Ltd.

  14. Semantic Networks and Social Networks

    ERIC Educational Resources Information Center

    Downes, Stephen

    2005-01-01

    Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…

  15. An examination of the relationship between athlete leadership and cohesion using social network analysis.

    PubMed

    Loughead, Todd M; Fransen, Katrien; Van Puyenbroeck, Stef; Hoffmann, Matt D; De Cuyper, Bert; Vanbeselaere, Norbert; Boen, Filip

    2016-11-01

    Two studies investigated the structure of different athlete leadership networks and its relationship to cohesion using social network analysis. In Study 1, we examined the relationship between a general leadership quality network and task and social cohesion as measured by the Group Environment Questionnaire (GEQ). In Study 2, we investigated the leadership networks for four different athlete leadership roles (task, motivational, social and external) and their association with task and social cohesion networks. In Study 1, the results demonstrated that the general leadership quality network was positively related to task and social cohesion. The results from Study 2 indicated positive correlations between the four leadership networks and task and social cohesion networks. Further, the motivational leadership network emerged as the strongest predictor of the task cohesion network, while the social leadership network was the strongest predictor of the social cohesion network. The results complement a growing body of research indicating that athlete leadership has a positive association with cohesion.

  16. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    A discussion of the evolution and observable consequences of a network of cosmic strings is given. A simple model for the evolution of the string network is presented, and related to the statistical mechanics of string networks. The model predicts the long string density throughout the history of the universe from a single parameter, which researchers calculate in radiation era simulations. The statistical mechanics arguments indicate a particular thermal form for the spectrum of loops chopped off the network. Detailed numerical simulations of string networks in expanding backgrounds are performed to test the model. Consequences for large scale structure, the microwave and gravity wave backgrounds, nucleosynthesis and gravitational lensing are calculated.

  17. Applications of Social Network Analysis

    NASA Astrophysics Data System (ADS)

    Thilagam, P. Santhi

    A social network [2] is a description of the social structure between actors, mostly persons, groups or organizations. It indicates the ways in which they are connected with each other by some relationship such as friendship, kinship, finance exchange etc. In a nutshell, when the person uses already known/unknown people to create new contacts, it forms social networking. The social network is not a new concept rather it can be formed when similar people interact with each other directly or indirectly to perform particular task. Examples of social networks include a friendship networks, collaboration networks, co-authorship networks, and co-employees networks which depict the direct interaction among the people. There are also other forms of social networks, such as entertainment networks, business Networks, citation networks, and hyperlink networks, in which interaction among the people is indirect. Generally, social networks operate on many levels, from families up to the level of nations and assists in improving interactive knowledge sharing, interoperability and collaboration.

  18. Social Networks and Participation with Others for Youth with Learning, Attention and Autism Spectrum Disorders

    PubMed Central

    Kreider, Consuelo M.; Bendixen, Roxanna M.; Young, Mary Ellen; Prudencio, Stephanie M.; McCarty, Christopher; Mann, William C.

    2015-01-01

    Background Social participation involves activities and roles providing interactions with others, including those within their social networks. Purpose Characterize social networks and participation with others for 36 adolescents, ages 11-16 years, with (n = 19) and without (n = 17) learning disability, attention disorder or high-functioning autism. Methods Social networks were measured using methods of personal network analysis. The Children's Assessment of Participation and Enjoyment With Whom dimension scores was used to measure participation with others. Youth from the clinical group were interviewed regarding their experiences within their social networks. Findings Group differences were observed for six social network variables and in the proportion of overall, physical, recreational, social and informal activities engaged with family and/or friends. Qualitative findings explicated strategies used in building, shaping and maintaining their social networks. Implications Social network factors should be considered when seeking to understand social participation. PMID:26755040

  19. From the History of Science to the History of Knowledge - and Back.

    PubMed

    Renn, Jürgen

    2015-02-01

    The history of science can be better understood against the background of a history of knowledge comprising not only theoretical but also intuitive and practical knowledge. This widening of scope necessitates a more concise definition of the concept of knowledge, relating its cognitive to its material and social dimensions. The history of knowledge comprises the history of institutions in which knowledge is produced and transmitted. This is an essential but hitherto neglected aspect of cultural evolution. Taking this aspect into account one is led to the concept of extended evolution, which integrates the perspectives of niche construction and complex regulative networks. The paper illustrates this concept using four examples: the emergence of language, the Neolithic revolution, the invention of writing and the origin of mechanics.

  20. From the History of Science to the History of Knowledge – and Back

    PubMed Central

    Renn, Jürgen

    2015-01-01

    The history of science can be better understood against the background of a history of knowledge comprising not only theoretical but also intuitive and practical knowledge. This widening of scope necessitates a more concise definition of the concept of knowledge, relating its cognitive to its material and social dimensions. The history of knowledge comprises the history of institutions in which knowledge is produced and transmitted. This is an essential but hitherto neglected aspect of cultural evolution. Taking this aspect into account one is led to the concept of extended evolution, which integrates the perspectives of niche construction and complex regulative networks. The paper illustrates this concept using four examples: the emergence of language, the Neolithic revolution, the invention of writing and the origin of mechanics. PMID:25684777

  1. The Evolution of Peer Run Sober Housing as a Recovery Resource for California Communities

    PubMed Central

    Wittman, Friedner D.; Polcin, Douglas

    2014-01-01

    Sober living houses (SLHs) are alcohol- and drug-free living environments that offer social support to persons attempting to abstain from alcohol and drugs. They use a peer-oriented, social model approach that emphasizes mutual support, financial self-sufficiency, and resident involvement in decision making and management of the facility. Although they represent an important response to the increasing call for more services that help sustain abstinence from drugs and alcohol over time, they are an under recognized and underutilized recovery resource. The purpose of this paper is to trace the evolution of sober living houses in California from the early influences of Alcoholics Anonymous (AA) in the 1930’s to the establishment of current SLH associations, such as the Sober Living Network in Southern California. The paper describes key events and policies that influenced SLHs. Although initial research on outcomes of SLH residents has been very encouraging, there is a need for more research to guide improvement of structure and operations. The paper concludes with a discussion of implications for the growth of recovery services and for community housing policy. PMID:25477748

  2. Trust Maximization in Social Networks

    NASA Astrophysics Data System (ADS)

    Zhan, Justin; Fang, Xing

    Trust is a human-related phenomenon in social networks. Trust research on social networks has gained much attention on its usefulness, and on modeling propagations. There is little focus on finding maximum trust in social networks which is particularly important when a social network is oriented by certain tasks. In this paper, we propose a trust maximization algorithm based on the task-oriented social networks.

  3. Self-determined mechanisms in complex networks

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Jian; Shan, Xiuming; Ren, Yong; Ma, Zhengxin

    2008-03-01

    Self-organized networks are pervasive in communication systems such as the Internet, overlay networks, peer-to-peer networks, and cluster-based services. These networks evolve into complex topologies, under specific driving forces, i.e. user demands, technological innovations, design objectives and so on. Our study focuses on the driving forces behind individual evolutions of network components, and their stimulation and domination to the self-organized networks which are defined as self-determined mechanisms in this paper. Understanding forces underlying the evolution of networks should enable informed design decisions and help to avoid unwanted surprises, such as congestion collapse. A case study on the macroscopic evolution of the Internet topology of autonomous systems under a specific driving force is then presented. Using computer simulations, it is found that the power-law degree distribution can originate from a connection preference to larger numbers of users, and that the small-world property can be caused by rapid growth in the number of users. Our results provide a new feasible perspective to understand intrinsic fundamentals in the topological evolution of complex networks.

  4. Pharmacy, social media, and health: Opportunity for impact.

    PubMed

    Cain, Jeff; Romanelli, Frank; Fox, Brent

    2010-01-01

    To discuss opportunities and challenges for pharmacists' use of social media to affect health care. Not applicable. Evolutions in social media (e.g., Facebook, Twitter, YouTube) are beginning to alter the way society communicates. These new applications promote openness, user-generated content, social networking, and collaboration. The technologies, along with patient behaviors and desires, are stimulating a move toward more open and transparent access to health information. Although social media applications can reach large audiences, they offer message-tailoring capabilities that can effectively target specific populations. Another powerful aspect of social media is that they facilitate the organization of people and distribution of content-two necessary components of public health services. Although implementing health interventions via social media poses challenges, several examples exist that display the potential for pharmacists to use social media in health initiatives. Pharmacists have long played a role in educating patients on matters influencing health care. Social media offer several unique features that may be used to advance the role of pharmacy in health care initiatives. Public familiarity with social media, the economical nature of using social media, and the ability to disseminate information rapidly through social media make these new applications ideal for pharmacists wanting to provide innovative health care on both an individual and public level.

  5. A Comparative View of Face Perception

    PubMed Central

    Leopold, David A.; Rhodes, Gillian

    2010-01-01

    Face perception serves as the basis for much of human social exchange. Diverse information can be extracted about an individual from a single glance at their face, including their identity, emotional state, and direction of attention. Neuropsychological and fMRI experiments reveal a complex network of specialized areas in the human brain supporting these face-reading skills. Here we consider the evolutionary roots of human face perception by exploring the manner in which different animal species view and respond to faces. We focus on behavioral experiments collected from both primates and non-primates, assessing the types of information that animals are able to extract from the faces of their conspecifics, human experimenters, and natural predators. These experiments reveal that faces are an important category of visual stimuli for animals in all major vertebrate taxa, possibly reflecting the early emergence of neural specialization for faces in vertebrate evolution. At the same time, some aspects of facial perception are only evident in primates and a few other social mammals, and may therefore have evolved to suit the needs of complex social communication. Since the human brain likely utilizes both primitive and recently evolved neural specializations for the processing of faces, comparative studies may hold the key to understanding how these parallel circuits emerged during human evolution. PMID:20695655

  6. A comparative view of face perception.

    PubMed

    Leopold, David A; Rhodes, Gillian

    2010-08-01

    Face perception serves as the basis for much of human social exchange. Diverse information can be extracted about an individual from a single glance at their face, including their identity, emotional state, and direction of attention. Neuropsychological and functional magnetic resonance imaging (fMRI) experiments reveal a complex network of specialized areas in the human brain supporting these face-reading skills. Here we consider the evolutionary roots of human face perception by exploring the manner in which different animal species view and respond to faces. We focus on behavioral experiments collected from both primates and nonprimates, assessing the types of information that animals are able to extract from the faces of their conspecifics, human experimenters, and natural predators. These experiments reveal that faces are an important category of visual stimuli for animals in all major vertebrate taxa, possibly reflecting the early emergence of neural specialization for faces in vertebrate evolution. At the same time, some aspects of facial perception are only evident in primates and a few other social mammals, and may therefore have evolved to suit the needs of complex social communication. Because the human brain likely utilizes both primitive and recently evolved neural specializations for the processing of faces, comparative studies may hold the key to understanding how these parallel circuits emerged during human evolution. 2010 APA, all rights reserved

  7. Social networks, social support and psychiatric symptoms: social determinants and associations within a multicultural community population.

    PubMed

    Smyth, Natasha; Siriwardhana, Chesmal; Hotopf, Matthew; Hatch, Stephani L

    2015-07-01

    Little is known about how social networks and social support are distributed within diverse communities and how different types of each are associated with a range of psychiatric symptoms. This study aims to address such shortcomings by: (1) describing the demographic and socioeconomic characteristics of social networks and social support in a multicultural population and (2) examining how each is associated with multiple mental health outcomes. Data is drawn from the South East London Community Health Study; a cross-sectional study of 1,698 adults conducted between 2008 and 2010. The findings demonstrate variation in social networks and social support by socio-demographic factors. Ethnic minority groups reported larger family networks but less perceived instrumental support. Older individuals and migrant groups reported lower levels of particular network and support types. Individuals from lower socioeconomic groups tended to report less social networks and support across the indicators measured. Perceived emotional and instrumental support, family and friend network size emerged as protective factors for common mental disorder, personality dysfunction and psychotic experiences. In contrast, both social networks and social support appear less relevant for hazardous alcohol use. The findings both confirm established knowledge that social networks and social support exert differential effects on mental health and furthermore suggest that the particular type of social support may be important. In contrast, different types of social network appear to impact upon poor mental health in a more uniform way. Future psychosocial strategies promoting mental health should consider which social groups are vulnerable to reduced social networks and poor social support and which diagnostic groups may benefit most.

  8. Stories in Networks and Networks in Stories: A Tri-Modal Model for Mixed-Methods Social Network Research on Teachers

    ERIC Educational Resources Information Center

    Baker-Doyle, Kira J.

    2015-01-01

    Social network research on teachers and schools has risen exponentially in recent years as an innovative method to reveal the role of social networks in education. However, scholars are still exploring ways to incorporate traditional quantitative methods of Social Network Analysis (SNA) with qualitative approaches to social network research. This…

  9. Identifying influencers from sampled social networks

    NASA Astrophysics Data System (ADS)

    Tsugawa, Sho; Kimura, Kazuma

    2018-10-01

    Identifying influencers who can spread information to many other individuals from a social network is a fundamental research task in the network science research field. Several measures for identifying influencers have been proposed, and the effectiveness of these influence measures has been evaluated for the case where the complete social network structure is known. However, it is difficult in practice to obtain the complete structure of a social network because of missing data, false data, or node/link sampling from the social network. In this paper, we investigate the effects of node sampling from a social network on the effectiveness of influence measures at identifying influencers. Our experimental results show that the negative effect of biased sampling, such as sample edge count, on the identification of influencers is generally small. For social media networks, we can identify influencers whose influence is comparable with that of those identified from the complete social networks by sampling only 10%-30% of the networks. Moreover, our results also suggest the possible benefit of network sampling in the identification of influencers. Our results show that, for some networks, nodes with higher influence can be discovered from sampled social networks than from complete social networks.

  10. Social media users have different experiences, motivations, and quality of life.

    PubMed

    Campisi, Jay; Folan, Denis; Diehl, Grace; Kable, Timothy; Rademeyer, Candice

    2015-08-30

    While the number of individuals participating in internet-based social networks has continued to rise, it is unclear how participating in social networks might influence quality of life (QOL). Individuals differ in their experiences, motivations for, and amount of time using internet-based social networks, therefore, we examined if individuals differing in social network user experiences, motivations and frequency of social network also differed in self-reported QOL. Two-hundred and thirty-seven individuals (aged 18-65) were recruited online using the online platform Mechanical Turk (MTurk). All participants completed a web-based survey examining social network use and the World Health Organization Quality of Life Scale Abbreviated Version (WHOQOL-Bref) to assess QOL. Individuals who reported positive associations with the use of social networks demonstrated higher QOL while those reporting negative associates demonstrated lower QOL. Moreover, individuals using social networks to stay connected to friends demonstrated higher QOL while those using social networking for dating purposes reported lower QOL. Frequency of social network use did not relate to QOL. These results suggest that QOL differs among social network users. Thus, participating in social networking may be a way to either promote or detract from QOL. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Stochasticity versus determinism: consequences for realistic gene regulatory network modelling and evolution.

    PubMed

    Jenkins, Dafyd J; Stekel, Dov J

    2010-02-01

    Gene regulation is one important mechanism in producing observed phenotypes and heterogeneity. Consequently, the study of gene regulatory network (GRN) architecture, function and evolution now forms a major part of modern biology. However, it is impossible to experimentally observe the evolution of GRNs on the timescales on which living species evolve. In silico evolution provides an approach to studying the long-term evolution of GRNs, but many models have either considered network architecture from non-adaptive evolution, or evolution to non-biological objectives. Here, we address a number of important modelling and biological questions about the evolution of GRNs to the realistic goal of biomass production. Can different commonly used simulation paradigms, in particular deterministic and stochastic Boolean networks, with and without basal gene expression, be used to compare adaptive with non-adaptive evolution of GRNs? Are these paradigms together with this goal sufficient to generate a range of solutions? Will the interaction between a biological goal and evolutionary dynamics produce trade-offs between growth and mutational robustness? We show that stochastic basal gene expression forces shrinkage of genomes due to energetic constraints and is a prerequisite for some solutions. In systems that are able to evolve rates of basal expression, two optima, one with and one without basal expression, are observed. Simulation paradigms without basal expression generate bloated networks with non-functional elements. Further, a range of functional solutions was observed under identical conditions only in stochastic networks. Moreover, there are trade-offs between efficiency and yield, indicating an inherent intertwining of fitness and evolutionary dynamics.

  12. The Analysis of Duocentric Social Networks: A Primer.

    PubMed

    Kennedy, David P; Jackson, Grace L; Green, Harold D; Bradbury, Thomas N; Karney, Benjamin R

    2015-02-01

    Marriages and other intimate partnerships are facilitated or constrained by the social networks within which they are embedded. To date, methods used to assess the social networks of couples have been limited to global ratings of social network characteristics or network data collected from each partner separately. In the current article, the authors offer new tools for expanding on the existing literature by describing methods of collecting and analyzing duocentric social networks, that is, the combined social networks of couples. They provide an overview of the key considerations for measuring duocentric networks, such as how and why to combine separate network interviews with partners into one shared duocentric network, the number of network members to assess, and the implications of different network operationalizations. They illustrate these considerations with analyses of social network data collected from 57 low-income married couples, presenting visualizations and quantitative measures of network composition and structure.

  13. Multiple Factors-Aware Diffusion in Social Networks

    DTIC Science & Technology

    2015-05-22

    Multiple Factors-Aware Diffusion in Social Networks Chung-Kuang Chou(B) and Ming-Syan Chen Department of Electrical Engineering, National Taiwan...propagates from nodes to nodes over a social network . The behavior that a node adopts an information piece in a social network can be affected by...Twitter dataset. Keywords: Social networks · Diffusion models 1 Introduction Information diffusion in social networks has been an active research field

  14. Systematic review of surveillance by social media platforms for illicit drug use.

    PubMed

    Kazemi, Donna M; Borsari, Brian; Levine, Maureen J; Dooley, Beau

    2017-12-01

    The use of social media (SM) as a surveillance tool of global illicit drug use is limited. To address this limitation, a systematic review of literature focused on the ability of SM to better recognize illicit drug use trends was addressed. A search was conducted in databases: PubMed, CINAHL via Ebsco, PsychINFO via Ebsco, Medline via Ebsco, ERIC, Cochrane Library, Science Direct, ABI/INFORM Complete and Communication and Mass Media Complete. Included studies were original research published in peer-reviewed journals between January 2005 and June 2015 that primarily focused on collecting data from SM platforms to track trends in illicit drug use. Excluded were studies focused on purchasing prescription drugs from illicit online pharmacies. Selected studies used a range of SM tools/applications, including message boards, Twitter and blog/forums/platform discussions. Limitations included relevance, a lack of standardized surveillance systems and a lack of efficient algorithms to isolate relevant items. Illicit drug use is a worldwide problem, and the rise of global social networking sites has led to the evolution of a readily accessible surveillance tool. Systematic approaches need to be developed to efficiently extract and analyze illicit drug content from social networks to supplement effective prevention programs. © The Author 2017. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  15. Earth Regimes Network Evolution Study (ERNESt): Introducing the Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Menrad, Bob

    2016-01-01

    Speaker and Presenter at the Lincoln Laboratory Communications Workshop on April 5, 2016 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. A visual presentation titled Earth Regimes Network Evolution Study (ERNESt).

  16. Major Hurdles for the Evolution of Sociality.

    PubMed

    Korb, Judith; Heinze, Jürgen

    2016-01-01

    Why do most animals live solitarily, while complex social life is restricted to a few cooperatively breeding vertebrates and social insects? Here, we synthesize concepts and theories in social evolution and discuss its underlying ecological causes. Social evolution can be partitioned into (a) formation of stable social groups, (b) evolution of helping, and (c) transition to a new evolutionary level. Stable social groups rarely evolve due to competition over food and/or reproduction. Food competition is overcome in social insects with central-place foraging or bonanza-type food resources, whereas competition over reproduction commonly occurs because staying individuals are rarely sterile. Hence, the evolution of helping is shaped by direct and indirect fitness options and helping is only altruism if it reduces the helper's direct fitness. The helper's capability to gain direct fitness also creates within-colony conflict. This prevents transition to a new evolutionary level.

  17. Social inheritance can explain the structure of animal social networks

    PubMed Central

    Ilany, Amiyaal; Akçay, Erol

    2016-01-01

    The social network structure of animal populations has major implications for survival, reproductive success, sexual selection and pathogen transmission of individuals. But as of yet, no general theory of social network structure exists that can explain the diversity of social networks observed in nature, and serve as a null model for detecting species and population-specific factors. Here we propose a simple and generally applicable model of social network structure. We consider the emergence of network structure as a result of social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds randomly. We compare model output with data from several species, showing that it can generate networks with properties such as those observed in real social systems. Our model demonstrates that important observed properties of social networks, including heritability of network position or assortative associations, can be understood as consequences of social inheritance. PMID:27352101

  18. Establishing the reliability of rhesus macaque social network assessment from video observations

    PubMed Central

    Feczko, Eric; Mitchell, Thomas A. J.; Walum, Hasse; Brooks, Jenna M.; Heitz, Thomas R.; Young, Larry J.; Parr, Lisa A.

    2015-01-01

    Understanding the properties of a social environment is important for understanding the dynamics of social relationships. Understanding such dynamics is relevant for multiple fields, ranging from animal behaviour to social and cognitive neuroscience. To quantify social environment properties, recent studies have incorporated social network analysis. Social network analysis quantifies both the global and local properties of a social environment, such as social network efficiency and the roles played by specific individuals, respectively. Despite the plethora of studies incorporating social network analysis, methods to determine the amount of data necessary to derive reliable social networks are still being developed. Determining the amount of data necessary for a reliable network is critical for measuring changes in the social environment, for example following an experimental manipulation, and therefore may be critical for using social network analysis to statistically assess social behaviour. In this paper, we extend methods for measuring error in acquired data and for determining the amount of data necessary to generate reliable social networks. We derived social networks from a group of 10 male rhesus macaques, Macaca mulatta, for three behaviours: spatial proximity, grooming and mounting. Behaviours were coded using a video observation technique, where video cameras recorded the compound where the 10 macaques resided. We collected, coded and used 10 h of video data to construct these networks. Using the methods described here, we found in our data that 1 h of spatial proximity observations produced reliable social networks. However, this may not be true for other studies due to differences in data acquisition. Our results have broad implications for measuring and predicting the amount of error in any social network, regardless of species. PMID:26392632

  19. Dim Networks: The Utility of Social Network Analysis for Illuminating Partner Security Force Networks

    DTIC Science & Technology

    2015-12-01

    use of social network analysis (SNA) has allowed the military to map dark networks of terrorist organizations and selectively target key elements...data to improve SC. 14. SUBJECT TERMS social network analysis, dark networks, light networks, dim networks, security cooperation, Southeast Asia...task may already exist. Recently, the use of social network analysis (SNA) has allowed the military to map dark networks of terrorist organizations

  20. [Social Networks of Children with Mentally Ill Parents].

    PubMed

    Stiawa, Maja; Kilian, Reinhold

    2017-10-01

    Social Networks of Children with Mentally Ill Parents Mental illness of parents can be a load situation for children. Supporting social relations might be an important source in such a situation. Social relations can be shown by social network analysis. Studies about social networks and mental health indicate differences regarding structure and potential for support when compared with social networks of healthy individuals. If and how mental illness of parents has an impact on their children's network is widely unknown. This systematic review shows methods and results of studies about social networks of children with mentally ill parents. By systematic search in electronic databases as well as manual search, two studies were found who met the target criteria. Both studies were conducted in the USA. Results of studies indicate that parental mental illness affects the state of mental health and social networks of children. Symptomatology of children changed due to perceived social support of network contacts. Impact of social support and strong network contacts seems to depend on age of children and the family situation. That's why support offers should be adapt to children's age. Focusing on social networks as potential resource for support and needs of the family affected seems appropriate during treatment.

  1. Illuminating the dark matter of social neuroscience: Considering the problem of social interaction from philosophical, psychological, and neuroscientific perspectives

    PubMed Central

    Przyrembel, Marisa; Smallwood, Jonathan; Pauen, Michael; Singer, Tania

    2012-01-01

    Successful human social interaction depends on our capacity to understand other people's mental states and to anticipate how they will react to our actions. Despite its importance to the human condition, the exact mechanisms underlying our ability to understand another's actions, feelings, and thoughts are still a matter of conjecture. Here, we consider this problem from philosophical, psychological, and neuroscientific perspectives. In a critical review, we demonstrate that attempts to draw parallels across these complementary disciplines is premature: The second-person perspective does not map directly to Interaction or Simulation theories, online social cognition, or shared neural network accounts underlying action observation or empathy. Nor does the third-person perspective map onto Theory-Theory (TT), offline social cognition, or the neural networks that support Theory of Mind (ToM). Moreover, we argue that important qualities of social interaction emerge through the reciprocal interplay of two independent agents whose unpredictable behavior requires that models of their partner's internal state be continually updated. This analysis draws attention to the need for paradigms in social neuroscience that allow two individuals to interact in a spontaneous and natural manner and to adapt their behavior and cognitions in a response contingent fashion due to the inherent unpredictability in another person's behavior. Even if such paradigms were implemented, it is possible that the specific neural correlates supporting such reciprocal interaction would not reflect computation unique to social interaction but rather the use of basic cognitive and emotional processes combined in a unique manner. Finally, we argue that given the crucial role of social interaction in human evolution, ontogeny, and every-day social life, a more theoretically and methodologically nuanced approach to the study of real social interaction will nevertheless help the field of social cognition to evolve. PMID:22737120

  2. [Use of social and health primary care services for older people with complex needs: Comparison of three types of gerontological coordination].

    PubMed

    de Stampa, M; Bagaragaza, E; Herr, M; Aegerter, P; Vedel, I; Bergman, H; Ankri, J

    2014-10-01

    Older people with complex needs live mainly at home. Several types of gerontological coordinations have been established on the French territory to meet their needs and to implement social and primary health care services. But we do not have any information on the use of these services at home as a function of the coordination method used. We compared the use of home care services for older people with complex needs in three types of coordination with 12 months' follow-up. The three coordinations regrouped a gerontological network with case management (n=105 persons), a nursing home service (SSIAD) with a nurse coordination (n=206 persons) and an informal coordination with a non-professional caregiver (n=117 persons). At t0, the older people addressed to the gerontological network had less access to the services offered at home; those followed by the SSIAD had the highest number of services and of weekly interventions. Hours of weekly services were two-fold higher in those with the informal coordination. At t12, there was an improvement in access to services for the network group with case management and an overall increase in the use of professional services at home with no significant difference between the three groups. The use of social and primary health care services showed differences between the three gerontological coordinations. The one-year evolution in the use of home services was comparable between the groups without an explosion in the number of services in the network group with case management. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. The evolution of generalized reciprocity in social interaction networks.

    PubMed

    Voelkl, Bernhard

    2015-09-01

    Generalized reciprocity has been proposed as a mechanism for enabling continued cooperation between unrelated individuals. It can be described by the simple rule "help somebody if you received help from someone", and as it does not require individual recognition, complex cognition or extended memory capacities, it has the potential to explain cooperation in a large number of organisms. In a panmictic population this mechanism is vulnerable to defection by individuals who readily accept help but do not help themselves. Here, I investigate to what extent the limitation of social interactions to a social neighborhood can lead to conditions that favor generalized reciprocity in the absence of population structuring. It can be shown that cooperation is likely to evolve if one assumes certain sparse interaction graphs, if strategies are discrete, and if spontaneous helping and reciprocating are independently inherited. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Popularity versus similarity in growing networks.

    PubMed

    Papadopoulos, Fragkiskos; Kitsak, Maksim; Serrano, M Ángeles; Boguñá, Marián; Krioukov, Dmitri

    2012-09-27

    The principle that 'popularity is attractive' underlies preferential attachment, which is a common explanation for the emergence of scaling in growing networks. If new connections are made preferentially to more popular nodes, then the resulting distribution of the number of connections possessed by nodes follows power laws, as observed in many real networks. Preferential attachment has been directly validated for some real networks (including the Internet), and can be a consequence of different underlying processes based on node fitness, ranking, optimization, random walks or duplication. Here we show that popularity is just one dimension of attractiveness; another dimension is similarity. We develop a framework in which new connections optimize certain trade-offs between popularity and similarity, instead of simply preferring popular nodes. The framework has a geometric interpretation in which popularity preference emerges from local optimization. As opposed to preferential attachment, our optimization framework accurately describes the large-scale evolution of technological (the Internet), social (trust relationships between people) and biological (Escherichia coli metabolic) networks, predicting the probability of new links with high precision. The framework that we have developed can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.

  5. A genotype network reveals homoplastic cycles of convergent evolution in influenza A (H3N2) haemagglutinin.

    PubMed

    Wagner, Andreas

    2014-07-07

    Networks of evolving genotypes can be constructed from the worldwide time-resolved genotyping of pathogens like influenza viruses. Such genotype networks are graphs where neighbouring vertices (viral strains) differ in a single nucleotide or amino acid. A rich trove of network analysis methods can help understand the evolutionary dynamics reflected in the structure of these networks. Here, I analyse a genotype network comprising hundreds of influenza A (H3N2) haemagglutinin genes. The network is rife with cycles that reflect non-random parallel or convergent (homoplastic) evolution. These cycles also show patterns of sequence change characteristic for strong and local evolutionary constraints, positive selection and mutation-limited evolution. Such cycles would not be visible on a phylogenetic tree, illustrating that genotype network analysis can complement phylogenetic analyses. The network also shows a distinct modular or community structure that reflects temporal more than spatial proximity of viral strains, where lowly connected bridge strains connect different modules. These and other organizational patterns illustrate that genotype networks can help us study evolution in action at an unprecedented level of resolution. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. From Social Integration to Social Isolation: The Relationship Between Social Network Types and Perceived Availability of Social Support in a National Sample of Older Canadians.

    PubMed

    Harasemiw, Oksana; Newall, Nancy; Shooshtari, Shahin; Mackenzie, Corey; Menec, Verena

    2017-01-01

    It is well-documented that social isolation is detrimental to health and well-being. What is less clear is what types of social networks allow older adults to get the social support they need to promote health and well-being. In this study, we identified social network types in a national sample of older Canadians and explored whether they are associated with perceived availability of different types of social support (affectionate, emotional, or tangible, and positive social interactions). Data were drawn from the baseline questionnaire of the Canadian Longitudinal Study on Aging for participants aged 65-85 (unweighted n = 8,782). Cluster analyses revealed six social network groups. Social support generally declined as social networks became more restricted; however, different patterns of social support availability emerged for different social network groups. These findings suggest that certain types of social networks place older adults at risk of not having met specific social support needs.

  7. Functional connectivity associated with social networks in older adults: A resting-state fMRI study.

    PubMed

    Pillemer, Sarah; Holtzer, Roee; Blumen, Helena M

    2017-06-01

    Poor social networks and decreased levels of social support are associated with worse mood, health, and cognition in younger and older adults. Yet, we know very little about the brain substrates associated with social networks and social support, particularly in older adults. This study examined functional brain substrates associated with social networks using the Social Network Index (SNI) and resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI data from 28 non-demented older adults were analyzed with independent components analyses. As expected, four established resting-state networks-previously linked to motor, vision, speech, and other language functions-correlated with the quality (SNI-1: total number of high-contact roles of a respondent) and quantity (SNI-2: total number of individuals in a respondent's social network) of social networks: a sensorimotor, a visual, a vestibular/insular, and a left frontoparietal network. Moreover, SNI-1 was associated with greater functional connectivity in the lateral prefrontal regions of the left frontoparietal network, while SNI-2 was associated with greater functional connectivity in the medial prefrontal regions of this network. Thus, lateral prefrontal regions may be particularly linked to the quality of social networks while medial prefrontal regions may be particularly linked to the quantity of social networks.

  8. Coevolution of Vertex Weights Resolves Social Dilemma in Spatial Networks.

    PubMed

    Shen, Chen; Chu, Chen; Guo, Hao; Shi, Lei; Duan, Jiangyan

    2017-11-09

    In realistic social system, the role or influence of each individual varies and adaptively changes in time in the population. Inspired by this fact, we thus consider a new coevolution setup of game strategy and vertex weight on a square lattice. In detail, we model the structured population on a square lattice, on which the role or influence of each individual is depicted by vertex weight, and the prisoner's dilemma game has been applied to describe the social dilemma of pairwise interactions of players. Through numerical simulation, we conclude that our coevolution setup can promote the evolution of cooperation effectively. Especially, there exists a moderate value of δ for each ε that can warrant an optimal resolution of social dilemma. For a further understanding of these results, we find that intermediate value of δ enables the strongest heterogeneous distribution of vertex weight. We hope our coevolution setup of vertex weight will provide new insight for the future research.

  9. Using hybridization networks to retrace the evolution of Indo-European languages.

    PubMed

    Willems, Matthieu; Lord, Etienne; Laforest, Louise; Labelle, Gilbert; Lapointe, François-Joseph; Di Sciullo, Anna Maria; Makarenkov, Vladimir

    2016-09-06

    Curious parallels between the processes of species and language evolution have been observed by many researchers. Retracing the evolution of Indo-European (IE) languages remains one of the most intriguing intellectual challenges in historical linguistics. Most of the IE language studies use the traditional phylogenetic tree model to represent the evolution of natural languages, thus not taking into account reticulate evolutionary events, such as language hybridization and word borrowing which can be associated with species hybridization and horizontal gene transfer, respectively. More recently, implicit evolutionary networks, such as split graphs and minimal lateral networks, have been used to account for reticulate evolution in linguistics. Striking parallels existing between the evolution of species and natural languages allowed us to apply three computational biology methods for reconstruction of phylogenetic networks to model the evolution of IE languages. We show how the transfer of methods between the two disciplines can be achieved, making necessary methodological adaptations. Considering basic vocabulary data from the well-known Dyen's lexical database, which contains word forms in 84 IE languages for the meanings of a 200-meaning Swadesh list, we adapt a recently developed computational biology algorithm for building explicit hybridization networks to study the evolution of IE languages and compare our findings to the results provided by the split graph and galled network methods. We conclude that explicit phylogenetic networks can be successfully used to identify donors and recipients of lexical material as well as the degree of influence of each donor language on the corresponding recipient languages. We show that our algorithm is well suited to detect reticulate relationships among languages, and present some historical and linguistic justification for the results obtained. Our findings could be further refined if relevant syntactic, phonological and morphological data could be analyzed along with the available lexical data.

  10. Evolutionary transitions in controls reconcile adaptation with continuity of evolution.

    PubMed

    Badyaev, Alexander V

    2018-05-19

    Evolution proceeds by accumulating functional solutions, necessarily forming an uninterrupted lineage from past solutions of ancestors to the current design of extant forms. At the population level, this process requires an organismal architecture in which the maintenance of local adaptation does not preclude the ability to innovate in the same traits and their continuous evolution. Representing complex traits as networks enables us to visualize a fundamental principle that resolves tension between adaptation and continuous evolution: phenotypic states encompassing adaptations traverse the continuous multi-layered landscape of past physical, developmental and functional associations among traits. The key concept that captures such traversing is network controllability - the ability to move a network from one state into another while maintaining its functionality (reflecting evolvability) and to efficiently propagate information or products through the network within a phenotypic state (maintaining its robustness). Here I suggest that transitions in network controllability - specifically in the topology of controls - help to explain how robustness and evolvability are balanced during evolution. I will focus on evolutionary transitions in degeneracy of metabolic networks - a ubiquitous property of phenotypic robustness where distinct pathways achieve the same end product - to suggest that associated changes in network controls is a common rule underlying phenomena as distinct as phenotypic plasticity, organismal accommodation of novelties, genetic assimilation, and macroevolutionary diversification. Capitalizing on well understood principles by which network structure translates into function of control nodes, I show that accumulating redundancy in one type of network controls inevitably leads to the emergence of another type of controls, forming evolutionary cycles of network controllability that, ultimately, reconcile local adaptation with continuity of evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Impact of shill intervention on the evolution of cooperation

    NASA Astrophysics Data System (ADS)

    Sun, Changhao; Duan, Haibin

    2015-09-01

    The practical significance of effective intervention in collective behavior has its roots not only in frequent migration in the modern society, but also in the actual demands of real-world applications for system efficiency improvement. Within the framework of soft control, this paper focuses on an evolutionary public goods game staged on a scale free network and explores the dependence of the evolution of cooperation on the intervention of a fraction of shills, who follow the Fixed-Cost-per-Player paradigm while the locals follow the Fixed-Cost-per-Game paradigm. We demonstrate that higher cooperation levels and better social welfare could be simultaneously induced by tuning the distribution coefficient α, where desirable outcomes are associated with large α > 0 for tense dilemmas while small α < 0 leads to satisfactory results when the enhancement factor γ increases. Moreover, we observe a transition of the composition of equilibrium cooperators from full dominance of shills to co-existence of shills and locals, and the boundary has a positive correlation with α. These results are somehow affected when we attenuate the heterogeneity of the network by relating individual fitness to payoffs averaged over its connectivity. Our findings may not only shed some light on the mechanism behind the evolution of cooperation from the perspective of external intervention, but also provide a feasible way to effectively intervene in the evolutionary outcomes of negative scenarios.

  12. The Molecular Clock of Neutral Evolution Can Be Accelerated or Slowed by Asymmetric Spatial Structure

    PubMed Central

    Allen, Benjamin; Sample, Christine; Dementieva, Yulia; Medeiros, Ruben C.; Paoletti, Christopher; Nowak, Martin A.

    2015-01-01

    Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a “molecular clock” to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution. PMID:25719560

  13. The molecular clock of neutral evolution can be accelerated or slowed by asymmetric spatial structure.

    PubMed

    Allen, Benjamin; Sample, Christine; Dementieva, Yulia; Medeiros, Ruben C; Paoletti, Christopher; Nowak, Martin A

    2015-02-01

    Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a "molecular clock" to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution.

  14. Self-organizing Complex Networks: individual versus global rules

    PubMed Central

    Mahmoodi, Korosh; West, Bruce J.; Grigolini, Paolo

    2017-01-01

    We introduce a form of Self-Organized Criticality (SOC) inspired by the new generation of evolutionary game theory, which ranges from physiology to sociology. The single individuals are the nodes of a composite network, equivalent to two interacting subnetworks, one leading to strategy choices made by the individuals under the influence of the choices of their nearest neighbors and the other measuring the Prisoner's Dilemma Game payoffs of these choices. The interaction between the two networks is established by making the imitation strength K increase or decrease according to whether the last two payoffs increase or decrease upon increasing or decreasing K. Although each of these imitation strengths is selected selfishly, and independently of the others as well, the social system spontaneously evolves toward the state of cooperation. Criticality is signaled by temporal complexity, namely the occurrence of non-Poisson renewal events, the time intervals between two consecutive crucial events being given by an inverse power law index μ = 1.3 rather than by avalanches with an inverse power law distribution as in the original form of SOC. This new phenomenon is herein labeled self-organized temporal criticality (SOTC). We compare this bottom-up self-organization process to the adoption of a global choice rule based on assigning to all the units the same value K, with the time evolution of common K being determined by consciousness of the social benefit, a top-down process implying the action of a leader. In this case self-organization is impeded by large intensity fluctuations and the global social benefit turns out to be much weaker. We conclude that the SOTC model fits the requests of a manifesto recently proposed by a number of European social scientists. PMID:28736534

  15. Understanding complex interactions using social network analysis.

    PubMed

    Pow, Janette; Gayen, Kaberi; Elliott, Lawrie; Raeside, Robert

    2012-10-01

    The aim of this paper is to raise the awareness of social network analysis as a method to facilitate research in nursing research. The application of social network analysis in assessing network properties has allowed greater insight to be gained in many areas including sociology, politics, business organisation and health care. However, the use of social networks in nursing has not received sufficient attention. Review of literature and illustration of the application of the method of social network analysis using research examples. First, the value of social networks will be discussed. Then by using illustrative examples, the value of social network analysis to nursing will be demonstrated. The method of social network analysis is found to give greater insights into social situations involving interactions between individuals and has particular application to the study of interactions between nurses and between nurses and patients and other actors. Social networks are systems in which people interact. Two quantitative techniques help our understanding of these networks. The first is visualisation of the network. The second is centrality. Individuals with high centrality are key communicators in a network. Applying social network analysis to nursing provides a simple method that helps gain an understanding of human interaction and how this might influence various health outcomes. It allows influential individuals (actors) to be identified. Their influence on the formation of social norms and communication can determine the extent to which new interventions or ways of thinking are accepted by a group. Thus, working with key individuals in a network could be critical to the success and sustainability of an intervention. Social network analysis can also help to assess the effectiveness of such interventions for the recipient and the service provider. © 2012 Blackwell Publishing Ltd.

  16. Graduate Employability: The Perspective of Social Network Learning

    ERIC Educational Resources Information Center

    Chen, Yong

    2017-01-01

    This study provides a conceptual framework for understanding how the graduate acquire employability through the social network in the Chinese context, using insights from the social network theory. This paper builds a conceptual model of the relationship among social network, social network learning and the graduate employability, and uses…

  17. Wayfinding in Social Networks

    NASA Astrophysics Data System (ADS)

    Liben-Nowell, David

    With the recent explosion of popularity of commercial social-networking sites like Facebook and MySpace, the size of social networks that can be studied scientifically has passed from the scale traditionally studied by sociologists and anthropologists to the scale of networks more typically studied by computer scientists. In this chapter, I will highlight a recent line of computational research into the modeling and analysis of the small-world phenomenon - the observation that typical pairs of people in a social network are connected by very short chains of intermediate friends - and the ability of members of a large social network to collectively find efficient routes to reach individuals in the network. I will survey several recent mathematical models of social networks that account for these phenomena, with an emphasis on both the provable properties of these social-network models and the empirical validation of the models against real large-scale social-network data.

  18. Evolution of Linux operating system network

    NASA Astrophysics Data System (ADS)

    Xiao, Guanping; Zheng, Zheng; Wang, Haoqin

    2017-01-01

    Linux operating system (LOS) is a sophisticated man-made system and one of the most ubiquitous operating systems. However, there is little research on the structure and functionality evolution of LOS from the prospective of networks. In this paper, we investigate the evolution of the LOS network. 62 major releases of LOS ranging from versions 1.0 to 4.1 are modeled as directed networks in which functions are denoted by nodes and function calls are denoted by edges. It is found that the size of the LOS network grows almost linearly, while clustering coefficient monotonically decays. The degree distributions are almost the same: the out-degree follows an exponential distribution while both in-degree and undirected degree follow power-law distributions. We further explore the functionality evolution of the LOS network. It is observed that the evolution of functional modules is shown as a sequence of seven events (changes) succeeding each other, including continuing, growth, contraction, birth, splitting, death and merging events. By means of a statistical analysis of these events in the top 4 largest components (i.e., arch, drivers, fs and net), it is shown that continuing, growth and contraction events occupy more than 95% events. Our work exemplifies a better understanding and describing of the dynamics of LOS evolution.

  19. Social networks of patients with psychosis: a systematic review.

    PubMed

    Palumbo, Claudia; Volpe, Umberto; Matanov, Aleksandra; Priebe, Stefan; Giacco, Domenico

    2015-10-12

    Social networks are important for mental health outcomes as they can mobilise resources and help individuals to cope with social stressors. Individuals with psychosis may have specific difficulties in establishing and maintaining social relationships which impacts on their well-being and quality of life. There has been a growing interest in developing social network interventions for patients with psychotic disorders. A systematic literature review was conducted to investigate the size of social networks of patients with psychotic disorders, as well as their friendship networks. A systematic electronic search was carried out in MEDLINE, EMBASE and PsychINFO databases using a combination of search terms relating to 'social network', 'friendship' and 'psychotic disorder'. The search identified 23 relevant papers. Out of them, 20 reported patient social network size. Four papers reported the mean number of friends in addition to whole network size, while three further papers focused exclusively on the number of friends. Findings varied substantially across the studies, with a weighted mean size of 11.7 individuals for whole social networks and 3.4 individuals for friendship networks. On average, 43.1 % of the whole social network was composed of family members, while friends accounted for 26.5 %. Studies assessing whole social network size and friendship networks of people with psychosis are difficult to compare as different concepts and methods of assessment were applied. The extent of the overlap between different social roles assessed in the networks was not always clear. Greater conceptual and methodological clarity is needed in order to help the development of effective strategies to increase social resources of patients with psychosis.

  20. Opinion dynamics on interacting networks: media competition and social influence.

    PubMed

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-05-27

    The inner dynamics of the multiple actors of the informations systems - i.e, T.V., newspapers, blogs, social network platforms, - play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist.

  1. Opinion dynamics on interacting networks: media competition and social influence

    NASA Astrophysics Data System (ADS)

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-05-01

    The inner dynamics of the multiple actors of the informations systems - i.e, T.V., newspapers, blogs, social network platforms, - play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist.

  2. Enhanced use of phylogenetic data to inform public health approaches to HIV among men who have sex with men.

    PubMed

    German, Danielle; Grabowski, Mary Kate; Beyrer, Chris

    2017-02-01

    The multidimensional nature and continued evolution of HIV epidemics among men who have sex with men (MSM) requires innovative intervention approaches. Strategies are needed that recognise the individual, social and structural factors driving HIV transmission; that can pinpoint networks with heightened transmission risk; and that can help target intervention in real time. HIV phylogenetics is a rapidly evolving field with strong promise for informing innovative responses to the HIV epidemic among MSM. Currently, HIV phylogenetic insights are providing new understandings of characteristics of HIV epidemics involving MSM, social networks influencing transmission, characteristics of HIV transmission clusters involving MSM, targets for antiretroviral and other prevention strategies and dynamics of emergent epidemics. Maximising the potential of HIV phylogenetics for HIV responses among MSM will require attention to key methodological challenges and ethical considerations, as well as resolving key implementation and scientific questions. Enhanced and integrated use of HIV surveillance, sociobehavioural and phylogenetic data resources are becoming increasingly critical for informing public health approaches to HIV among MSM.

  3. The influence of a demographic change on social relationships among male golden snub-nosed monkeys (Rhinopithecus roxellana).

    PubMed

    Huang, Pengzhen; Zhang, Endi; Chen, Min

    2018-06-05

    It has been suggested that social relationships are more likely to be prone to variation in the dispersing sex than the philopatric sex. However, we know less about the dynamics of all-male groups in male-dispersing species than we do about other types of primate groups. We studied male sociality in a captive group of golden snub-nosed monkeys (Rhinopithecus roxellana), which was composed of a one-male unit (OMU, N = 7) and an all-male unit (AMU, N = 7 or 8), in Shanghai Wild Animal Park, China. Using data collected for 6 months, during which there was a demographic change in the AMU and the alpha male was replaced by a newcomer, we found that a dramatic change in social ranks occurred accompanied by elevated aggression following this social upheaval. A proximity-based social network analysis revealed that members did not associate randomly any more but formed differentiated relationships post-upheaval, resulting in three distinct sub-units in the AMU. In terms of inter-unit interactions, significant changes were found in the affiliations between the male juvenile of OMU and AMU individuals. He interacted with AMU individuals randomly and frequently pre-upheaval, but cut down his affiliations and had a preferred partner post-upheaval, who was a member of the dominant male's sub-unit. Our findings suggest that social networks in the dispersing sex are dynamic structures and vary by some demographic change (e.g., individual immigration) in the studied species. We also put forward that individual dominance could be a criterion when the male juvenile chooses partners before he immigrates into a group. In conclusion, the high level of behavioral flexibility of the dispersing sex could be an evolutional strategy and good for individuals' future dispersing life.

  4. Relationship between Social Networks Adoption and Social Intelligence

    ERIC Educational Resources Information Center

    Gunduz, Semseddin

    2017-01-01

    The purpose of this study was to set forth the relationship between the individuals' states to adopt social networks and social intelligence and analyze both concepts according to various variables. Research data were collected from 1145 social network users in the online media by using the Adoption of Social Network Scale and Social Intelligence…

  5. Social networks and alcohol use disorders: findings from a nationally representative sample

    PubMed Central

    Mowbray, Orion; Quinn, Adam; Cranford, James A.

    2014-01-01

    Background While some argue that social network ties of individuals with alcohol use disorders (AUD) are robust, there is evidence to suggest that individuals with AUDs have few social network ties, which are a known risk factor for health and wellness. Objectives Social network ties to friends, family, co-workers and communities of individuals are compared among individuals with a past-year diagnosis of alcohol dependence or alcohol abuse to individuals with no lifetime diagnosis of AUD. Method Respondents from Wave 2 of the National Epidemiologic Survey on Alcohol Related Conditions (NESARC) were assessed for the presence of past-year alcohol dependence or past-year alcohol abuse, social network ties, sociodemographics and clinical characteristics. Results Bivariate analyses showed that both social network size and social network diversity was significantly smaller among individuals with alcohol dependence, compared to individuals with alcohol abuse or no AUD. When social and clinical factors related to AUD status were controlled, multinomial logistic models showed that social network diversity remained a significant predictor of AUD status, while social network size did not differ among AUD groups. Conclusion Social networks of individuals with AUD may be different than individuals with no AUD, but this claim is dependent on specific AUD diagnosis and how social networks are measured. PMID:24405256

  6. Build your own social network laboratory with Social Lab: a tool for research in social media.

    PubMed

    Garaizar, Pablo; Reips, Ulf-Dietrich

    2014-06-01

    Social networking has surpassed e-mail and instant messaging as the dominant form of online communication (Meeker, Devitt, & Wu, 2010). Currently, all large social networks are proprietary, making it difficult to impossible for researchers to make changes to such networks for the purpose of study design and access to user-generated data from the networks. To address this issue, the authors have developed and present Social Lab, an Internet-based free and open-source social network software system available from http://www.sociallab.es . Having full availability of navigation and communication data in Social Lab allows researchers to investigate behavior in social media on an individual and group level. Automated artificial users ("bots") are available to the researcher to simulate and stimulate social networking situations. These bots respond dynamically to situations as they unfold. The bots can easily be configured with scripts and can be used to experimentally manipulate social networking situations in Social Lab. Examples for setting up, configuring, and using Social Lab as a tool for research in social media are provided.

  7. I Keep my Problems to Myself: Negative Social Network Orientation, Social Resources, and Health-Related Quality of Life in Cancer Survivors

    PubMed Central

    Symes, Yael; Campo, Rebecca A.; Wu, Lisa M.; Austin, Jane

    2016-01-01

    Background Cancer survivors treated with hematopoietic stem cell transplant rely on their social network for successful recovery. However, some survivors have negative attitudes about using social resources (negative social network orientation) that are critical for their recovery. Purpose We examined the association between survivors’ social network orientation and health-related quality of life (HRQoL) and whether it was mediated by social resources (network size, perceived support, and negative and positive support-related social exchanges). Methods In a longitudinal study, 255 survivors completed validated measures of social network orientation, HRQoL, and social resources. Hypotheses were tested using path analysis. Results More negative social network orientation predicted worse HRQoL (p < .001). This association was partially mediated by lower perceived support and more negative social exchanges. Conclusions Survivors with negative social network orientation may have poorer HRQoL in part due to deficits in several key social resources. Findings highlight a subgroup at risk for poor transplant outcomes and can guide intervention development. PMID:26693932

  8. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.

    PubMed

    Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent

    2015-08-01

    The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.

  9. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses

    PubMed Central

    Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent

    2015-01-01

    The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure. PMID:26291697

  10. Gene networks and the evolution of plant morphology.

    PubMed

    Das Gupta, Mainak; Tsiantis, Miltos

    2018-06-06

    Elaboration of morphology depends on the precise orchestration of gene expression by key regulatory genes. The hierarchy and relationship among the participating genes is commonly known as gene regulatory network (GRN). Therefore, the evolution of morphology ultimately occurs by the rewiring of gene network structures or by the co-option of gene networks to novel domains. The availability of high-resolution expression data combined with powerful statistical tools have opened up new avenues to formulate and test hypotheses on how diverse gene networks influence trait development and diversity. Here we summarize recent studies based on both big-data and genetics approaches to understand the evolution of plant form and physiology. We also discuss recent genome-wide investigations on how studying open-chromatin regions may help study the evolution of gene expression patterns. Copyright © 2018. Published by Elsevier Ltd.

  11. Social Network Assessments and Interventions for Health Behavior Change: A Critical Review.

    PubMed

    Latkin, Carl A; Knowlton, Amy R

    2015-01-01

    Social networks provide a powerful approach for health behavior change. This article documents how social network interventions have been successfully used for a range of health behaviors, including HIV risk practices, smoking, exercise, dieting, family planning, bullying, and mental health. We review the literature that suggests the relationship between health behaviors and social network attributes demonstrates a high degree of specificity. The article then examines hypothesized social influence mechanisms including social norms, modeling, and social rewards and the factors of social identity and social rewards that can be employed to sustain social network interventions. Areas of future research avenues are highlighted, including the need to examine and to adjust analytically for contamination and social diffusion, social influence versus differential affiliation, and network change. Use and integration of mhealth and face-to-face networks for promoting health behavior change are also critical research areas.

  12. Exploring mitochondrial evolution and metabolism organization principles by comparative analysis of metabolic networks.

    PubMed

    Chang, Xiao; Wang, Zhuo; Hao, Pei; Li, Yuan-Yuan; Li, Yi-Xue

    2010-06-01

    The endosymbiotic theory proposed that mitochondrial genomes are derived from an alpha-proteobacterium-like endosymbiont, which was concluded from sequence analysis. We rebuilt the metabolic networks of mitochondria and 22 relative species, and studied the evolution of mitochondrial metabolism at the level of enzyme content and network topology. Our phylogenetic results based on network alignment and motif identification supported the endosymbiotic theory from the point of view of systems biology for the first time. It was found that the mitochondrial metabolic network were much more compact than the relative species, probably related to the higher efficiency of oxidative phosphorylation of the specialized organelle, and the network is highly clustered around the TCA cycle. Moreover, the mitochondrial metabolic network exhibited high functional specificity to the modules. This work provided insight to the understanding of mitochondria evolution, and the organization principle of mitochondrial metabolic network at the network level. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Social Network Types and Mental Health Among LGBT Older Adults

    PubMed Central

    Kim, Hyun-Jun; Fredriksen-Goldsen, Karen I.; Bryan, Amanda E. B.; Muraco, Anna

    2017-01-01

    Purpose of the Study: This study was designed to identify social network types among lesbian, gay, bisexual, and transgender (LGBT) older adults and examine the relationship between social network type and mental health. Design and Methods: We analyzed the 2014 survey data of LGBT adults aged 50 and older (N = 2,450) from Aging with Pride: National Health, Aging, and Sexuality/Gender Study. Latent profile analyses were conducted to identify clusters of social network ties based on 11 indicators. Multiple regression analysis was performed to examine the association between social network types and mental health. Results: We found five social network types. Ordered from greatest to least access to family, friend, and other non-family network ties, they were diverse, diverse/no children, immediate family-focused, friend-centered/restricted, and fully restricted. The friend-centered/restricted (33%) and diverse/no children network types (31%) were the most prevalent. Among individuals with the friend-centered/restricted type, access to social networks was limited to friends, and across both types children were not present. The least prevalent type was the fully restricted network type (6%). Social network type was significantly associated with mental health, after controlling for background characteristics and total social network size; those with the fully restricted type showed the poorest mental health. Implications: Unique social network types (diverse/no children and friend-centered/restricted) emerge among LGBT older adults. Moreover, individuals with fully restricted social networks are at particular risk due to heightened health needs and limited social resources. This study highlights the importance of understanding heterogeneous social relations and developing tailored interventions to promote social connectedness and mental health in LGBT older adults. PMID:28087798

  14. Social Network Types and Mental Health Among LGBT Older Adults.

    PubMed

    Kim, Hyun-Jun; Fredriksen-Goldsen, Karen I; Bryan, Amanda E B; Muraco, Anna

    2017-02-01

    This study was designed to identify social network types among lesbian, gay, bisexual, and transgender (LGBT) older adults and examine the relationship between social network type and mental health. We analyzed the 2014 survey data of LGBT adults aged 50 and older (N = 2,450) from Aging with Pride: National Health, Aging, and Sexuality/Gender Study. Latent profile analyses were conducted to identify clusters of social network ties based on 11 indicators. Multiple regression analysis was performed to examine the association between social network types and mental health. We found five social network types. Ordered from greatest to least access to family, friend, and other non-family network ties, they were diverse, diverse/no children, immediate family-focused, friend-centered/restricted, and fully restricted. The friend-centered/restricted (33%) and diverse/no children network types (31%) were the most prevalent. Among individuals with the friend-centered/restricted type, access to social networks was limited to friends, and across both types children were not present. The least prevalent type was the fully restricted network type (6%). Social network type was significantly associated with mental health, after controlling for background characteristics and total social network size; those with the fully restricted type showed the poorest mental health. Unique social network types (diverse/no children and friend-centered/restricted) emerge among LGBT older adults. Moreover, individuals with fully restricted social networks are at particular risk due to heightened health needs and limited social resources. This study highlights the importance of understanding heterogeneous social relations and developing tailored interventions to promote social connectedness and mental health in LGBT older adults. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Trauma-Exposed Latina Immigrants’ Networks: A Social Network Analysis Approach

    PubMed Central

    Hurtado-de-Mendoza, Alejandra; Serrano, Adriana; Gonzales, Felisa A.; Fernandez, Nicole C.; Cabling, Mark; Kaltman, Stacey

    2015-01-01

    Objective Trauma exposure among Latina immigrants is common. Social support networks can buffer the impact of trauma on mental health. This study characterizes the social networks of trauma-exposed Latina immigrants using a social network analysis perspective. Methods In 2011–2012 a convenience sample (n=28) of Latina immigrants with trauma exposure and presumptive depression or posttraumatic stress disorder was recruited from a community clinic in Washington DC. Participants completed a social network assessment and listed up to ten persons in their network (alters). E-Net was used to describe the aggregate structural, interactional, and functional characteristics of networks and Node-XL was used in a case study to diagram one network. Results Most participants listed children (93%), siblings (82%), and friends (71%) as alters, and most alters lived in the US (69%). Perceived emotional support and positive social interaction were higher compared to tangible, language, information, and financial support. A case study illustrates the use of network visualizations to assess the strengths and weaknesses of social networks. Conclusions Targeted social network interventions to enhance supportive networks among trauma-exposed Latina immigrants are warranted. PMID:28078194

  16. Trauma-Exposed Latina Immigrants' Networks: A Social Network Analysis Approach.

    PubMed

    Hurtado-de-Mendoza, Alejandra; Serrano, Adriana; Gonzales, Felisa A; Fernandez, Nicole C; Cabling, Mark; Kaltman, Stacey

    2016-11-01

    Trauma exposure among Latina immigrants is common. Social support networks can buffer the impact of trauma on mental health. This study characterizes the social networks of trauma-exposed Latina immigrants using a social network analysis perspective. In 2011-2012 a convenience sample (n=28) of Latina immigrants with trauma exposure and presumptive depression or posttraumatic stress disorder was recruited from a community clinic in Washington DC. Participants completed a social network assessment and listed up to ten persons in their network (alters). E-Net was used to describe the aggregate structural, interactional, and functional characteristics of networks and Node-XL was used in a case study to diagram one network. Most participants listed children (93%), siblings (82%), and friends (71%) as alters, and most alters lived in the US (69%). Perceived emotional support and positive social interaction were higher compared to tangible, language, information, and financial support. A case study illustrates the use of network visualizations to assess the strengths and weaknesses of social networks. Targeted social network interventions to enhance supportive networks among trauma-exposed Latina immigrants are warranted.

  17. Social Network, Social Support, and Risk of Incident Stroke: The Atherosclerosis Risk in Communities Study

    PubMed Central

    Nagayoshi, Mako; Everson-Rose, Susan A.; Iso, Hiroyasu; Mosley, Thomas H.; Rose, Kathryn M.; Lutsey, Pamela L.

    2014-01-01

    Background and Purpose Having a small social network and lack of social support have been associated with incident coronary heart disease, however epidemiologic evidence for incident stroke is limited. We assessed the longitudinal association of a small social network and lack of social support with risk of incident stroke, and evaluated whether the association was partly mediated by vital exhaustion and inflammation. Methods The Atherosclerosis Risk in Communities (ARIC) Study measured social network and social support in 13,686 men and women (mean, 57±5.7 years, 56% female, 24% black; 76% white) without a history of stroke. Social network was assessed by the 10-item Lubben Social Network Scale, and social support by a 16-item Interpersonal Support Evaluation List-Short Form (ISEL-SF). Results Over a median follow-up of 18.6-years, 905 incident strokes occurred. Relative to participants with a large social network, those with a small social network had a higher risk of stroke [HR (95% CI): 1.44 (1.02–2.04)] after adjustment for demographics, socioeconomic variables and marital status, behavioral risk factors and major stroke risk factors. Vital exhaustion, but not inflammation, partly mediated the association between a small social network and incident stroke. Social support was unrelated to incident stroke. Conclusions In this sample of US community-dwelling men and women, having a small social network was associated with excess risk of incident stroke. As with other cardiovascular conditions, having a small social network may be associated with a modestly increased risk of incident stroke. PMID:25139878

  18. Social network, social support, and risk of incident stroke: Atherosclerosis Risk in Communities study.

    PubMed

    Nagayoshi, Mako; Everson-Rose, Susan A; Iso, Hiroyasu; Mosley, Thomas H; Rose, Kathryn M; Lutsey, Pamela L

    2014-10-01

    Having a small social network and lack of social support have been associated with incident coronary heart disease; however, epidemiological evidence for incident stroke is limited. We assessed the longitudinal association of a small social network and lack of social support with risk of incident stroke and evaluated whether the association was partly mediated by vital exhaustion and inflammation. The Atherosclerosis Risk in Communities study measured social network and social support in 13 686 men and women (mean, 57 years; 56% women; 24% black; 76% white) without a history of stroke. Social network was assessed by the 10-item Lubben Social Network Scale and social support by a 16-item Interpersonal Support Evaluation List-Short Form. During a median follow-up of 18.6 years, 905 incident strokes occurred. Relative to participants with a large social network, those with a small social network had a higher risk of stroke (hazard ratio [95% confidence interval], 1.44 [1.02-2.04]) after adjustment for demographics, socioeconomic variables, marital status, behavioral risk factors, and major stroke risk factors. Vital exhaustion, but not inflammation, partly mediated the association between a small social network and incident stroke. Social support was unrelated to incident stroke. In this sample of US community-dwelling men and women, having a small social network was associated with excess risk of incident stroke. As with other cardiovascular conditions, having a small social network may be associated with a modestly increased risk of incident stroke. © 2014 American Heart Association, Inc.

  19. Promoting Social Network Awareness: A Social Network Monitoring System

    ERIC Educational Resources Information Center

    Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin

    2010-01-01

    To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…

  20. Understanding Social Networks: Theories, Concepts, and Findings

    ERIC Educational Resources Information Center

    Kadushin, Charles

    2012-01-01

    Despite the swift spread of social network concepts and their applications and the rising use of network analysis in social science, there is no book that provides a thorough general introduction for the serious reader. "Understanding Social Networks" fills that gap by explaining the big ideas that underlie the social network phenomenon.…

  1. The Cognitive Social Network in Dreams: Transitivity, Assortativity, and Giant Component Proportion Are Monotonic.

    PubMed

    Han, Hye Joo; Schweickert, Richard; Xi, Zhuangzhuang; Viau-Quesnel, Charles

    2016-04-01

    For five individuals, a social network was constructed from a series of his or her dreams. Three important network measures were calculated for each network: transitivity, assortativity, and giant component proportion. These were monotonically related; over the five networks as transitivity increased, assortativity increased and giant component proportion decreased. The relations indicate that characters appear in dreams systematically. Systematicity likely arises from the dreamer's memory of people and their relations, which is from the dreamer's cognitive social network. But the dream social network is not a copy of the cognitive social network. Waking life social networks tend to have positive assortativity; that is, people tend to be connected to others with similar connectivity. Instead, in our sample of dream social networks assortativity is more often negative or near 0, as in online social networks. We show that if characters appear via a random walk, negative assortativity can result, particularly if the random walk is biased as suggested by remote associations. Copyright © 2015 Cognitive Science Society, Inc.

  2. Social Network Analysis of Biomedical Research Collaboration Networks in a CTSA Institution

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Topaloglu, Umit; Hudson, Teresa; Eswaran, Hari; Hogan, William

    2014-01-01

    BACKGROUND The popularity of social networks has triggered a number of research efforts on network analyses of research collaborations in the Clinical and Translational Science Award (CTSA) community. Those studies mainly focus on the general understanding of collaboration networks by measuring common network metrics. More fundamental questions about collaborations still remain unanswered such as recognizing “influential” nodes and identifying potential new collaborations that are most rewarding. METHODS We analyzed biomedical research collaboration networks (RCNs) constructed from a dataset of research grants collected at a CTSA institution (i.e. University of Arkansas for Medical Sciences (UAMS)) in a comprehensive and systematic manner. First, our analysis covers the full spectrum of a RCN study: from network modeling to network characteristics measurement, from key nodes recognition to potential links (collaborations) suggestion. Second, our analysis employs non-conventional model and techniques including a weighted network model for representing collaboration strength, rank aggregation for detecting important nodes, and Random Walk with Restart (RWR) for suggesting new research collaborations. RESULTS By applying our models and techniques to RCNs at UAMS prior to and after the CTSA, we have gained valuable insights that not only reveal the temporal evolution of the network dynamics but also assess the effectiveness of the CTSA and its impact on a research institution. We find that collaboration networks at UAMS are not scale-free but small-world. Quantitative measures have been obtained to evident that the RCNs at UAMS are moving towards favoring multidisciplinary research. Moreover, our link prediction model creates the basis of collaboration recommendations with an impressive accuracy (AUC: 0.990, MAP@3: 1.48 and MAP@5: 1.522). Last but not least, an open-source visual analytical tool for RCNs is being developed and released through Github. CONCLUSIONS Through this study, we have developed a set of techniques and tools for analyzing research collaboration networks and conducted a comprehensive case study focusing on a CTSA institution. Our findings demonstrate the promising future of these techniques and tools in understanding the generative mechanisms of research collaborations and helping identify beneficial collaborations to members in the research community. PMID:24560679

  3. Mixed-method Exploration of Social Network Links to Participation

    PubMed Central

    Kreider, Consuelo M.; Bendixen, Roxanna M.; Mann, William C.; Young, Mary Ellen; McCarty, Christopher

    2015-01-01

    The people who regularly interact with an adolescent form that youth's social network, which may impact participation. We investigated the relationship of social networks to participation using personal network analysis and individual interviews. The sample included 36 youth, age 11 – 16 years. Nineteen had diagnoses of learning disability, attention disorder, or high-functioning autism and 17 were typically developing. Network analysis yielded 10 network variables, of which 8 measured network composition and 2 measured network structure, with significant links to at least one measure of participation using the Children's Assessment of Participation and Enjoyment (CAPE). Interviews from youth in the clinical group yielded description of strategies used to negotiate social interactions, as well as processes and reasoning used to remain engaged within social networks. Findings contribute to understanding the ways social networks are linked to youth participation and suggest the potential of social network factors for predicting rehabilitation outcomes. PMID:26594737

  4. Reconfiguration and Search of Social Networks

    PubMed Central

    Zhang, Lianming; Peng, Aoyuan

    2013-01-01

    Social networks tend to exhibit some topological characteristics different from regular networks and random networks, such as shorter average path length and higher clustering coefficient, and the node degree of the majority of social networks obeys exponential distribution. Based on the topological characteristics of the real social networks, a new network model which suits to portray the structure of social networks was proposed, and the characteristic parameters of the model were calculated. To find out the relationship between two people in the social network, and using the local information of the social network and the parallel mechanism, a hybrid search strategy based on k-walker random and a high degree was proposed. Simulation results show that the strategy can significantly reduce the average number of search steps, so as to effectively improve the search speed and efficiency. PMID:24574861

  5. Adoption of Social Networking in Education: A Study of the Use of Social Networks by Higher Education Students in Oman

    ERIC Educational Resources Information Center

    Al-Mukhaini, Elham M.; Al-Qayoudhi, Wafa S.; Al-Badi, Ali H.

    2014-01-01

    The use of social networks is a growing phenomenon, being increasingly important in both private and academic life. Social networks are used as tools to enable users to have social interaction. The use of social networks (SNs) complements and enhances the teaching in traditional classrooms. For example, YouTube, Facebook, wikis, and blogs provide…

  6. In silico evolution of biochemical networks

    NASA Astrophysics Data System (ADS)

    Francois, Paul

    2010-03-01

    We use computational evolution to select models of genetic networks that can be built from a predefined set of parts to achieve a certain behavior. Selection is made with the help of a fitness defining biological functions in a quantitative way. This fitness has to be specific to a process, but general enough to find processes common to many species. Computational evolution favors models that can be built by incremental improvements in fitness rather than via multiple neutral steps or transitions through less fit intermediates. With the help of these simulations, we propose a kinetic view of evolution, where networks are rapidly selected along a fitness gradient. This mathematics recapitulates Darwin's original insight that small changes in fitness can rapidly lead to the evolution of complex structures such as the eye, and explain the phenomenon of convergent/parallel evolution of similar structures in independent lineages. We will illustrate these ideas with networks implicated in embryonic development and patterning of vertebrates and primitive insects.

  7. Open Source software and social networks: disruptive alternatives for medical imaging.

    PubMed

    Ratib, Osman; Rosset, Antoine; Heuberger, Joris

    2011-05-01

    In recent decades several major changes in computer and communication technology have pushed the limits of imaging informatics and PACS beyond the traditional system architecture providing new perspectives and innovative approach to a traditionally conservative medical community. Disruptive technologies such as the world-wide-web, wireless networking, Open Source software and recent emergence of cyber communities and social networks have imposed an accelerated pace and major quantum leaps in the progress of computer and technology infrastructure applicable to medical imaging applications. This paper reviews the impact and potential benefits of two major trends in consumer market software development and how they will influence the future of medical imaging informatics. Open Source software is emerging as an attractive and cost effective alternative to traditional commercial software developments and collaborative social networks provide a new model of communication that is better suited to the needs of the medical community. Evidence shows that successful Open Source software tools have penetrated the medical market and have proven to be more robust and cost effective than their commercial counterparts. Developed by developers that are themselves part of the user community, these tools are usually better adapted to the user's need and are more robust than traditional software programs being developed and tested by a large number of contributing users. This context allows a much faster and more appropriate development and evolution of the software platforms. Similarly, communication technology has opened up to the general public in a way that has changed the social behavior and habits adding a new dimension to the way people communicate and interact with each other. The new paradigms have also slowly penetrated the professional market and ultimately the medical community. Secure social networks allowing groups of people to easily communicate and exchange information is a new model that is particularly suitable for some specific groups of healthcare professional and for physicians. It has also changed the expectations of how patients wish to communicate with their physicians. Emerging disruptive technologies and innovative paradigm such as Open Source software are leading the way to a new generation of information systems that slowly will change the way physicians and healthcare providers as well as patients will interact and communicate in the future. The impact of these new technologies is particularly effective in image communication, PACS and teleradiology. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Social Networks and Welfare in Future Animal Management.

    PubMed

    Koene, Paul; Ipema, Bert

    2014-03-17

    It may become advantageous to keep human-managed animals in the social network groups to which they have adapted. Data concerning the social networks of farm animal species and their ancestors are scarce but essential to establishing the importance of a natural social network for farmed animal species. Social Network Analysis (SNA) facilitates the characterization of social networking at group, subgroup and individual levels. SNA is currently used for modeling the social behavior and management of wild animals and social welfare of zoo animals. It has been recognized for use with farm animals but has yet to be applied for management purposes. Currently, the main focus is on cattle, because in large groups (poultry), recording of individuals is expensive and the existence of social networks is uncertain due to on-farm restrictions. However, in many cases, a stable social network might be important to individual animal fitness, survival and welfare. For instance, when laying hens are not too densely housed, simple networks may be established. We describe here small social networks in horses, brown bears, laying hens and veal calves to illustrate the importance of measuring social networks among animals managed by humans. Emphasis is placed on the automatic measurement of identity, location, nearest neighbors and nearest neighbor distance for management purposes. It is concluded that social networks are important to the welfare of human-managed animal species and that welfare management based on automatic recordings will become available in the near future.

  9. The moderating role of attachment anxiety on social network site use intensity and social capital.

    PubMed

    Liu, Haihua; Shi, Junqi; Liu, Yihao; Sheng, Zitong

    2013-02-01

    This study examined the moderating role of attachment anxiety on the relationship between intensity of social network site use and bridging, bonding, and maintained social capital. Data from 322 undergraduate Chinese students were collected. Hierarchical regression analyses showed positive relationships between online intensity of social network site use and the three types of social capital. Moreover, attachment anxiety moderated the effect of intensity of social network site use on social capital. Specifically, for students with lower attachment anxiety, the relationships between intensity of social network site use and bonding and bridging social capital were stronger than those with higher attachment anxiety. The result suggested that social network sites cannot improve highly anxiously attached individuals' social capital effectively; they may need more face-to-face communications.

  10. Is sociality required for the evolution of communicative complexity? Evidence weighed against alternative hypotheses in diverse taxonomic groups

    PubMed Central

    Ord, Terry J.; Garcia-Porta, Joan

    2012-01-01

    Complex social communication is expected to evolve whenever animals engage in many and varied social interactions; that is, sociality should promote communicative complexity. Yet, informal comparisons among phylogenetically independent taxonomic groups seem to cast doubt on the putative role of social factors in the evolution of complex communication. Here, we provide a formal test of the sociality hypothesis alongside alternative explanations for the evolution of communicative complexity. We compiled data documenting variations in signal complexity among closely related species for several case study groups—ants, frogs, lizards and birds—and used new phylogenetic methods to investigate the factors underlying communication evolution. Social factors were only implicated in the evolution of complex visual signals in lizards. Ecology, and to some degree allometry, were most likely explanations for complexity in the vocal signals of frogs (ecology) and birds (ecology and allometry). There was some evidence for adaptive evolution in the pheromone complexity of ants, although no compelling selection pressure was identified. For most taxa, phylogenetic null models were consistently ranked above adaptive models and, for some taxa, signal complexity seems to have accumulated in species via incremental or random changes over long periods of evolutionary time. Becoming social presumably leads to the origin of social communication in animals, but its subsequent influence on the trajectory of signal evolution has been neither clear-cut nor general among taxonomic groups. PMID:22641820

  11. Privacy-Preserving Relationship Path Discovery in Social Networks

    NASA Astrophysics Data System (ADS)

    Mezzour, Ghita; Perrig, Adrian; Gligor, Virgil; Papadimitratos, Panos

    As social networks sites continue to proliferate and are being used for an increasing variety of purposes, the privacy risks raised by the full access of social networking sites over user data become uncomfortable. A decentralized social network would help alleviate this problem, but offering the functionalities of social networking sites is a distributed manner is a challenging problem. In this paper, we provide techniques to instantiate one of the core functionalities of social networks: discovery of paths between individuals. Our algorithm preserves the privacy of relationship information, and can operate offline during the path discovery phase. We simulate our algorithm on real social network topologies.

  12. Rank-dependent deactivation in network evolution.

    PubMed

    Xu, Xin-Jian; Zhou, Ming-Chen

    2009-12-01

    A rank-dependent deactivation mechanism is introduced to network evolution. The growth dynamics of the network is based on a finite memory of individuals, which is implemented by deactivating one site at each time step. The model shows striking features of a wide range of real-world networks: power-law degree distribution, high clustering coefficient, and disassortative degree correlation.

  13. Studies on the population dynamics of a rumor-spreading model in online social networks

    NASA Astrophysics Data System (ADS)

    Dong, Suyalatu; Fan, Feng-Hua; Huang, Yong-Chang

    2018-02-01

    This paper sets up a rumor spreading model in online social networks based on the European fox rabies SIR model. The model considers the impact of changing number of online social network users, combines the transmission dynamics to set up a population dynamics of rumor spreading model in online social networks. Simulation is carried out on online social network, and results show that the new rumor spreading model is in accordance with the real propagation characteristics in online social networks.

  14. Uncertainty about social interactions leads to the evolution of social heuristics.

    PubMed

    van den Berg, Pieter; Wenseleers, Tom

    2018-05-31

    Individuals face many types of social interactions throughout their lives, but they often cannot perfectly assess what the consequences of their actions will be. Although it is known that unpredictable environments can profoundly affect the evolutionary process, it remains unclear how uncertainty about the nature of social interactions shapes the evolution of social behaviour. Here, we present an evolutionary simulation model, showing that even intermediate uncertainty leads to the evolution of simple cooperation strategies that disregard information about the social interaction ('social heuristics'). Moreover, our results show that the evolution of social heuristics can greatly affect cooperation levels, nearly doubling cooperation rates in our simulations. These results provide new insight into why social behaviour, including cooperation in humans, is often observed to be seemingly suboptimal. More generally, our results show that social behaviour that seems maladaptive when considered in isolation may actually be well-adapted to a heterogeneous and uncertain world.

  15. Exploring social structure effect on language evolution based on a computational model

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Minett, James; Wang, William

    2008-06-01

    A compositionality-regularity coevolution model is adopted to explore the effect of social structure on language emergence and maintenance. Based on this model, we explore language evolution in three experiments, and discuss the role of a popular agent in language evolution, the relationship between mutual understanding and social hierarchy, and the effect of inter-community communications and that of simple linguistic features on convergence of communal languages in two communities. This work embodies several important interactions during social learning, and introduces a new approach that manipulates individuals' probabilities to participate in social interactions to study the effect of social structure. We hope it will stimulate further theoretical and empirical explorations on language evolution in a social environment.

  16. Social disadvantage and borderline personality disorder: A study of social networks.

    PubMed

    Beeney, Joseph E; Hallquist, Michael N; Clifton, Allan D; Lazarus, Sophie A; Pilkonis, Paul A

    2018-01-01

    Examining differences in social integration, social support, and relationship characteristics in social networks may be critical for understanding the character and costs of the social difficulties experienced of borderline personality disorder (BPD). We conducted an ego-based (self-reported, individual) social network analysis of 142 participants recruited from clinical and community sources. Each participant listed the 30 most significant people (called alters) in their social network, then rated each alter in terms of amount of contact, social support, attachment strength and negative interactions. In addition, measures of social integration were determined using participant's report of the connection between people in their networks. BPD was associated with poorer social support, more frequent negative interactions, and less social integration. Examination of alter-by-BPD interactions indicated that whereas participants with low BPD symptoms had close relationships with people with high centrality within their networks, participants with high BPD symptoms had their closest relationships with people less central to their networks. The results suggest that individuals with BPD are at a social disadvantage: Those with whom they are most closely linked (including romantic partners) are less socially connected (i.e., less central) within their social network. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. A model for the multiplex dynamics of two-mode and one-mode networks, with an application to employment preference, friendship, and advice

    PubMed Central

    Snijders, Tom A.B.; Lomi, Alessandro; Torló, Vanina Jasmine

    2012-01-01

    We propose a new stochastic actor-oriented model for the co-evolution of two-mode and one-mode networks. The model posits that activities of a set of actors, represented in the two-mode network, co-evolve with exchanges and interactions between the actors, as represented in the one-mode network. The model assumes that the actors, not the activities, have agency. The empirical value of the model is demonstrated by examining how employment preferences co-evolve with friendship and advice relations in a group of seventy-five MBA students. The analysis shows that activity in the two-mode network, as expressed by number of employment preferences, is related to activity in the friendship network, as expressed by outdegrees. Further, advice ties between students lead to agreement with respect to employment preferences. In addition, considering the multiplexity of advice and friendship ties yields a better understanding of the dynamics of the advice relation: tendencies to reciprocation and homophily in advice relations are mediated to an important extent by friendship relations. The discussion pays attention to the implications of this study in the broader context of current efforts to model the co-evolutionary dynamics of social networks and individual behavior. PMID:23690653

  18. [Coauthorship networks and institutional collaboration in Revista de Neurología].

    PubMed

    González-Alcaide, G; Alonso-Arroyo, A; González de Dios, J; Sempere, A P; Valderrama-Zurián, J C; Aleixandre-Benavent, R

    Scientific cooperation is essential for the advance of science. Bibliometrics and social network analysis offer evaluation indicators to analyse collaboration in scientific papers. The aim of this study is to characterize scientific collaboration patterns in Revista de Neurología between 2002 and 2006. Coauthorships and institutional relationships of papers published in Revista de Neurología have been identified. Collaboration Index, the most productive authors' and institutional collaboration patterns and the types of institutional collaborations have been quantified. Also, it has been constructed the coauthorship networks and the institutional collaboration network. Networks have been identified and represented using Access and Pajek software tools. The Collaboration Index was 4.01. 56.54% of papers involved institutional collaboration. The collaboration between institutions of the same country prevails (52.7%), followed by collaborations between departments, services or units of the same institution (40.47%) and international collaboration (6.83%). 45 coauthorship networks involving 149 investigators with a high intensity of collaboration and a large institutional network involved 80 centres were observed. Revista de Neurología covers scientific production of a high number of research groups. It has been observed a positive evolution in the collaboration patterns over the time. Nevertheless, it is essential to encourage inter-regional and international collaboration.

  19. The ART of Social Networking: How SART member clinics are connecting with patients online

    PubMed Central

    OMURTAG, Kenan; JIMENEZ, Patricia T.; RATTS, Valerie; ODEM, Randall; COOPER, Amber R.

    2013-01-01

    Objective To study and describe the use of social networking websites among SART member clinics Design Cross-sectional study Setting University Based Practice Patients Not Applicable Interventions Not Applicable Main Outcome Measure Prevalence of social networking websites among SART member clinics and evaluation of content, volume and location (i.e mandated state, region) using multivariate regression analysis Results 384 SART registered clinics and 1,382 social networking posts were evaluated. Of the clinics, 96% have a website and 30% link to a social networking website. The majority of clinics (89%) with social networking websites were affiliated with non-academic centers. Social networking posts mostly provide information (31%) and/or advertise (28%), while the remaining offer support (19%) or are irrelevant (17%) to the target audience. Only 5% of posts involved patients requesting information. Clinic volume correlates with the presence of a clinic website and a social networking website (p<0.001). Conclusion Almost all SART member clinics have a website. Nearly one-third of these clinics host a social networking website like Facebook, Twitter and/or a Web-log (“blog”). Larger volume clinics commonly host social networking websites. These sites provide new ways to communicate with patients, but clinics should maintain policies on the incorporation of social networks into practice. PMID:22088209

  20. Myths on Bi-direction Communication of Web 2.0 Based Social Networks: Is Social Network Truly Interactive?

    DTIC Science & Technology

    2011-03-10

    more and more social interactions are happening on the on-line. Especially recent uptake of the social network sites (SNSs), such as Facebook (http...results give overviews on social interactions on a popular social network site . As each twitter account has different characteristics based on...the public and individuals post their private stories on their blogs and share their interests using social network sites . On the other hand, people

Top