NASA Astrophysics Data System (ADS)
Barbier, Geoffrey; Liu, Huan
The rise of online social media is providing a wealth of social network data. Data mining techniques provide researchers and practitioners the tools needed to analyze large, complex, and frequently changing social media data. This chapter introduces the basics of data mining, reviews social media, discusses how to mine social media data, and highlights some illustrative examples with an emphasis on social networking sites and blogs.
Discovery of Information Diffusion Process in Social Networks
NASA Astrophysics Data System (ADS)
Kim, Kwanho; Jung, Jae-Yoon; Park, Jonghun
Information diffusion analysis in social networks is of significance since it enables us to deeply understand dynamic social interactions among users. In this paper, we introduce approaches to discovering information diffusion process in social networks based on process mining. Process mining techniques are applied from three perspectives: social network analysis, process discovery and community recognition. We then present experimental results by using a real-life social network data. The proposed techniques are expected to employ as new analytical tools in online social networks such as blog and wikis for company marketers, politicians, news reporters and online writers.
Mining of the social network extraction
NASA Astrophysics Data System (ADS)
Nasution, M. K. M.; Hardi, M.; Syah, R.
2017-01-01
The use of Web as social media is steadily gaining ground in the study of social actor behaviour. However, information in Web can be interpreted in accordance with the ability of the method such as superficial methods for extracting social networks. Each method however has features and drawbacks: it cannot reveal the behaviour of social actors, but it has the hidden information about them. Therefore, this paper aims to reveal such information in the social networks mining. Social behaviour could be expressed through a set of words extracted from the list of snippets.
Recommending Learning Activities in Social Network Using Data Mining Algorithms
ERIC Educational Resources Information Center
Mahnane, Lamia
2017-01-01
In this paper, we show how data mining algorithms (e.g. Apriori Algorithm (AP) and Collaborative Filtering (CF)) is useful in New Social Network (NSN-AP-CF). "NSN-AP-CF" processes the clusters based on different learning styles. Next, it analyzes the habits and the interests of the users through mining the frequent episodes by the…
A planetary nervous system for social mining and collective awareness
NASA Astrophysics Data System (ADS)
Giannotti, F.; Pedreschi, D.; Pentland, A.; Lukowicz, P.; Kossmann, D.; Crowley, J.; Helbing, D.
2012-11-01
We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how powerful is the knowledge of our society we can achieve by leveraging our wisdom as a crowd, and how important is that everybody participates both as a consumer and as a producer of the social knowledge, for it to become a trustable, accessible, safe and useful public good.
Estimating the Importance of Terrorists in a Terror Network
NASA Astrophysics Data System (ADS)
Elhajj, Ahmed; Elsheikh, Abdallah; Addam, Omar; Alzohbi, Mohamad; Zarour, Omar; Aksaç, Alper; Öztürk, Orkun; Özyer, Tansel; Ridley, Mick; Alhajj, Reda
While criminals may start their activities at individual level, the same is in general not true for terrorists who are mostly organized in well established networks. The effectiveness of a terror network could be realized by watching many factors, including the volume of activities accomplished by its members, the capabilities of its members to hide, and the ability of the network to grow and to maintain its influence even after the loss of some members, even leaders. Social network analysis, data mining and machine learning techniques could play important role in measuring the effectiveness of a network in general and in particular a terror network in support of the work presented in this chapter. We present a framework that employs clustering, frequent pattern mining and some social network analysis measures to determine the effectiveness of a network. The clustering and frequent pattern mining techniques start with the adjacency matrix of the network. For clustering, we utilize entries in the table by considering each row as an object and each column as a feature. Thus features of a network member are his/her direct neighbors. We maintain the weight of links in case of weighted network links. For frequent pattern mining, we consider each row of the adjacency matrix as a transaction and each column as an item. Further, we map entries into a 0/1 scale such that every entry whose value is greater than zero is assigned the value one; entries keep the value zero otherwise. This way we can apply frequent pattern mining algorithms to determine the most influential members in a network as well as the effect of removing some members or even links between members of a network. We also investigate the effect of adding some links between members. The target is to study how the various members in the network change role as the network evolves. This is measured by applying some social network analysis measures on the network at each stage during the development. We report some interesting results related to two benchmark networks: the first is 9/11 and the second is Madrid bombing.
NASA Astrophysics Data System (ADS)
Chen, Zigang; Li, Lixiang; Peng, Haipeng; Liu, Yuhong; Yang, Yixian
2018-04-01
Community mining for complex social networks with link and attribute information plays an important role according to different application needs. In this paper, based on our proposed general non-negative matrix factorization (GNMF) algorithm without dimension matching constraints in our previous work, we propose the joint GNMF with graph Laplacian (LJGNMF) to implement community mining of complex social networks with link and attribute information according to different application needs. Theoretical derivation result shows that the proposed LJGNMF is fully compatible with previous methods of integrating traditional NMF and symmetric NMF. In addition, experimental results show that the proposed LJGNMF can meet the needs of different community minings by adjusting its parameters, and the effect is better than traditional NMF in the community vertices attributes entropy.
Integrating Entropy and Closed Frequent Pattern Mining for Social Network Modelling and Analysis
NASA Astrophysics Data System (ADS)
Adnan, Muhaimenul; Alhajj, Reda; Rokne, Jon
The recent increase in the explicitly available social networks has attracted the attention of the research community to investigate how it would be possible to benefit from such a powerful model in producing effective solutions for problems in other domains where the social network is implicit; we argue that social networks do exist around us but the key issue is how to realize and analyze them. This chapter presents a novel approach for constructing a social network model by an integrated framework that first preparing the data to be analyzed and then applies entropy and frequent closed patterns mining for network construction. For a given problem, we first prepare the data by identifying items and transactions, which arc the basic ingredients for frequent closed patterns mining. Items arc main objects in the problem and a transaction is a set of items that could exist together at one time (e.g., items purchased in one visit to the supermarket). Transactions could be analyzed to discover frequent closed patterns using any of the well-known techniques. Frequent closed patterns have the advantage that they successfully grab the inherent information content of the dataset and is applicable to a broader set of domains. Entropies of the frequent closed patterns arc used to keep the dimensionality of the feature vectors to a reasonable size; it is a kind of feature reduction process. Finally, we analyze the dynamic behavior of the constructed social network. Experiments were conducted on a synthetic dataset and on the Enron corpus email dataset. The results presented in the chapter show that social networks extracted from a feature set as frequent closed patterns successfully carry the community structure information. Moreover, for the Enron email dataset, we present an analysis to dynamically indicate the deviations from each user's individual and community profile. These indications of deviations can be very useful to identify unusual events.
Digital Social Network Mining for Topic Discovery
NASA Astrophysics Data System (ADS)
Moradianzadeh, Pooya; Mohi, Maryam; Sadighi Moshkenani, Mohsen
Networked computers are expanding more and more around the world, and digital social networks becoming of great importance for many people's work and leisure. This paper mainly focused on discovering the topic of exchanging information in digital social network. In brief, our method is to use a hierarchical dictionary of related topics and words that mapped to a graph. Then, with comparing the extracted keywords from the context of social network with graph nodes, probability of relation between context and desired topics will be computed. This model can be used in many applications such as advertising, viral marketing and high-risk group detection.
Aydin, Cem Iskender; Ozkaynak, Begum; Rodríguez-Labajos, Beatriz; Yenilmez, Taylan
2017-01-01
This paper examines conflicts that occur between mining companies and civil society organizations (CSOs) around the world and offers an innovative analysis of mining conflicts from a social network perspective. The analysis showed that, as the number of CSOs involved in a conflict increased, its outcome was more likely to be perceived as a success in terms of environmental justice (EJ); if a CSO was connected to other central CSOs, the average perception of EJ success was likely to increase; and as network distance between two conflicts increased (or decreased), they were more likely to lead to different (or similar) EJ outcomes. Such network effects in mining conflicts have policy implications for EJ movements. It would be a strategic move on the part of successful CSOs to become involved in other major conflicts and disseminate information about how they achieved greater EJ success.
Aydin, Cem Iskender; Ozkaynak, Begum; Rodríguez-Labajos, Beatriz
2017-01-01
This paper examines conflicts that occur between mining companies and civil society organizations (CSOs) around the world and offers an innovative analysis of mining conflicts from a social network perspective. The analysis showed that, as the number of CSOs involved in a conflict increased, its outcome was more likely to be perceived as a success in terms of environmental justice (EJ); if a CSO was connected to other central CSOs, the average perception of EJ success was likely to increase; and as network distance between two conflicts increased (or decreased), they were more likely to lead to different (or similar) EJ outcomes. Such network effects in mining conflicts have policy implications for EJ movements. It would be a strategic move on the part of successful CSOs to become involved in other major conflicts and disseminate information about how they achieved greater EJ success. PMID:28686618
Community evolution mining and analysis in social network
NASA Astrophysics Data System (ADS)
Liu, Hongtao; Tian, Yuan; Liu, Xueyan; Jian, Jie
2017-03-01
With the development of digital and network technology, various social platforms emerge. These social platforms have greatly facilitated access to information, attracting more and more users. They use these social platforms every day to work, study and communicate, so every moment social platforms are generating massive amounts of data. These data can often be modeled as complex networks, making large-scale social network analysis possible. In this paper, the existing evolution classification model of community has been improved based on community evolution relationship over time in dynamic social network, and the Evolution-Tree structure is proposed which can show the whole life cycle of the community more clearly. The comparative test result shows that the improved model can excavate the evolution relationship of the community well.
Data Mining and Privacy of Social Network Sites' Users: Implications of the Data Mining Problem.
Al-Saggaf, Yeslam; Islam, Md Zahidul
2015-08-01
This paper explores the potential of data mining as a technique that could be used by malicious data miners to threaten the privacy of social network sites (SNS) users. It applies a data mining algorithm to a real dataset to provide empirically-based evidence of the ease with which characteristics about the SNS users can be discovered and used in a way that could invade their privacy. One major contribution of this article is the use of the decision forest data mining algorithm (SysFor) to the context of SNS, which does not only build a decision tree but rather a forest allowing the exploration of more logic rules from a dataset. One logic rule that SysFor built in this study, for example, revealed that anyone having a profile picture showing just the face or a picture showing a family is less likely to be lonely. Another contribution of this article is the discussion of the implications of the data mining problem for governments, businesses, developers and the SNS users themselves.
Large-scale Heterogeneous Network Data Analysis
2012-07-31
Mining (KDD’09), 527-535, 2009. [20] B. Long, Z. M. Zhang, X. Wu, and P. S. Yu . Spectral Clustering for Multi-type Relational Data. In Proceedings of...and Data Mining (KDD’06), 374-383, 2006. [33] Y. Sun, Y. Yu , and J. Han. Ranking-Based Clustering of Heterogeneous Information Networks with Star...publications in 2012 so far: Yi-Kuang Ko, Jing- Kai Lou, Cheng-Te Li, Shou-de Lin, and Shyh-Kang Jeng. “A Social Network Evolution Model Based on
Pattern Mining for Extraction of mentions of Adverse Drug Reactions from User Comments
Nikfarjam, Azadeh; Gonzalez, Graciela H.
2011-01-01
Rapid growth of online health social networks has enabled patients to communicate more easily with each other. This way of exchange of opinions and experiences has provided a rich source of information about drugs and their effectiveness and more importantly, their possible adverse reactions. We developed a system to automatically extract mentions of Adverse Drug Reactions (ADRs) from user reviews about drugs in social network websites by mining a set of language patterns. The system applied association rule mining on a set of annotated comments to extract the underlying patterns of colloquial expressions about adverse effects. The patterns were tested on a set of unseen comments to evaluate their performance. We reached to precision of 70.01% and recall of 66.32% and F-measure of 67.96%. PMID:22195162
Mining the Temporal Dimension of the Information Propagation
NASA Astrophysics Data System (ADS)
Berlingerio, Michele; Coscia, Michele; Giannotti, Fosca
In the last decade, Social Network Analysis has been a field in which the effort devoted from several researchers in the Data Mining area has increased very fast. Among the possible related topics, the study of the information propagation in a network attracted the interest of many researchers, also from the industrial world. However, only a few answers to the questions “How does the information propagates over a network, why and how fast?” have been discovered so far. On the other hand, these answers are of large interest, since they help in the tasks of finding experts in a network, assessing viral marketing strategies, identifying fast or slow paths of the information inside a collaborative network. In this paper we study the problem of finding frequent patterns in a network with the help of two different techniques: TAS (Temporally Annotated Sequences) mining, aimed at extracting sequential patterns where each transition between two events is annotated with a typical transition time that emerges from input data, and Graph Mining, which is helpful for locally analyzing the nodes of the networks with their properties. Finally we show preliminary results done in the direction of mining the information propagation over a network, performed on two well known email datasets, that show the power of the combination of these two approaches.
Exploring context and content links in social media: a latent space method.
Qi, Guo-Jun; Aggarwal, Charu; Tian, Qi; Ji, Heng; Huang, Thomas S
2012-05-01
Social media networks contain both content and context-specific information. Most existing methods work with either of the two for the purpose of multimedia mining and retrieval. In reality, both content and context information are rich sources of information for mining, and the full power of mining and processing algorithms can be realized only with the use of a combination of the two. This paper proposes a new algorithm which mines both context and content links in social media networks to discover the underlying latent semantic space. This mapping of the multimedia objects into latent feature vectors enables the use of any off-the-shelf multimedia retrieval algorithms. Compared to the state-of-the-art latent methods in multimedia analysis, this algorithm effectively solves the problem of sparse context links by mining the geometric structure underlying the content links between multimedia objects. Specifically for multimedia annotation, we show that an effective algorithm can be developed to directly construct annotation models by simultaneously leveraging both context and content information based on latent structure between correlated semantic concepts. We conduct experiments on the Flickr data set, which contains user tags linked with images. We illustrate the advantages of our approach over the state-of-the-art multimedia retrieval techniques.
NASA Astrophysics Data System (ADS)
Kim, Daehoon; Kim, Daeyong; Hwang, Eenjun; Choi, Hong-Gu
2013-12-01
With the rapid proliferation of social network services (SNS), it has become common for people to express their thoughts or opinions on various subjects, such as political events, movies, or commercial products, using short comments. Though the comments reflect personal opinion or preferences, collectively, these represent public opinion or trends. Mining public opinion or trends from a collection of user comments made on SNS could be very useful for many applications. One interesting application is to predict the box office performance of a new movie from user comments made on the movie's trailer. Such a prediction is, nevertheless, a very complicated task because many factors can have an influence on it. In this paper, we propose a scheme for mining public opinion from a collection of user comments, easily available on social networks, on the trailer of a new movie. Next, we predict whether the movie will be a box office hit, based on public opinion and other properties such as the leading actors, director, and their past works. Through various experiments, we show that our scheme can produce satisfactory results.
Chirico, Peter G.; Malpeli, Katherine C.
2014-01-01
The relationship between natural resources and armed conflict gained public and political attention in the 1990s, when it became evident that the mining and trading of diamonds were connected with brutal rebellions in several African nations. Easily extracted resources such as alluvial diamonds and gold have been and continue to be exploited by rebel groups to fund their activities. Artisanal and small-scale miners operating under a quasi-legal status often mine these mineral deposits. While many African countries have legalized artisanal mining and established flow chains through which production is intended to travel, informal trading networks frequently emerge in which miners seek to evade taxes and fees by selling to unauthorized buyers. These networks have the potential to become international in scope, with actors operating in multiple countries. The lack of government control over the artisanal mining sector and the prominence of informal trade networks can have severe social, political, and economic consequences. In the past, mineral extraction fuelled violent civil wars in Sierra Leone, Liberia, and Angola, and it continues to do so today in several other countries. The significant influence of the informal network that surrounds artisanal mining is therefore an important security concern that can extend across borders and have far-reaching impacts.
Social networks to biological networks: systems biology of Mycobacterium tuberculosis.
Vashisht, Rohit; Bhardwaj, Anshu; Osdd Consortium; Brahmachari, Samir K
2013-07-01
Contextualizing relevant information to construct a network that represents a given biological process presents a fundamental challenge in the network science of biology. The quality of network for the organism of interest is critically dependent on the extent of functional annotation of its genome. Mostly the automated annotation pipelines do not account for unstructured information present in volumes of literature and hence large fraction of genome remains poorly annotated. However, if used, this information could substantially enhance the functional annotation of a genome, aiding the development of a more comprehensive network. Mining unstructured information buried in volumes of literature often requires manual intervention to a great extent and thus becomes a bottleneck for most of the automated pipelines. In this review, we discuss the potential of scientific social networking as a solution for systematic manual mining of data. Focusing on Mycobacterium tuberculosis, as a case study, we discuss our open innovative approach for the functional annotation of its genome. Furthermore, we highlight the strength of such collated structured data in the context of drug target prediction based on systems level analysis of pathogen.
Network-based modeling and intelligent data mining of social media for improving care.
Akay, Altug; Dragomir, Andrei; Erlandsson, Bjorn-Erik
2015-01-01
Intelligently extracting knowledge from social media has recently attracted great interest from the Biomedical and Health Informatics community to simultaneously improve healthcare outcomes and reduce costs using consumer-generated opinion. We propose a two-step analysis framework that focuses on positive and negative sentiment, as well as the side effects of treatment, in users' forum posts, and identifies user communities (modules) and influential users for the purpose of ascertaining user opinion of cancer treatment. We used a self-organizing map to analyze word frequency data derived from users' forum posts. We then introduced a novel network-based approach for modeling users' forum interactions and employed a network partitioning method based on optimizing a stability quality measure. This allowed us to determine consumer opinion and identify influential users within the retrieved modules using information derived from both word-frequency data and network-based properties. Our approach can expand research into intelligently mining social media data for consumer opinion of various treatments to provide rapid, up-to-date information for the pharmaceutical industry, hospitals, and medical staff, on the effectiveness (or ineffectiveness) of future treatments.
Huesch, Marco D
2017-12-01
Surveillance of the safety of prescribed drugs after marketing approval has been secured remains fraught with complications. Formal ascertainment by providers and reporting to adverse-event registries, formal surveys by manufacturers, and mining of electronic medical records are all well-known approaches with varying degrees of difficulty, cost, and success. Novel approaches may be a useful adjunct, especially approaches that mine or sample internet-based methods such as online social networks. A novel commercial software-as-a-service data-mining product supplied by Sysomos from Datasift/Facebook was used to mine all mentions on Facebook of statins and stain-related side effects in the US in the 1-month period 9 January 2017 through 8 February 2017. A total of 4.3% of all 25,700 mentions of statins also mentioned typical stain-related side effects. Multiple methodological weaknesses stymie interpretation of this percentage, which is however not inconsistent with estimates that 5-20% of patients taking statins will experience typical side effects at some time. Future work on pharmacovigilance may be informed by this novel commercial tool, but the inability to mine the full text of a posting poses serious challenges to content categorization.
Unsupervised user similarity mining in GSM sensor networks.
Shad, Shafqat Ali; Chen, Enhong
2013-01-01
Mobility data has attracted the researchers for the past few years because of its rich context and spatiotemporal nature, where this information can be used for potential applications like early warning system, route prediction, traffic management, advertisement, social networking, and community finding. All the mentioned applications are based on mobility profile building and user trend analysis, where mobility profile building is done through significant places extraction, user's actual movement prediction, and context awareness. However, significant places extraction and user's actual movement prediction for mobility profile building are a trivial task. In this paper, we present the user similarity mining-based methodology through user mobility profile building by using the semantic tagging information provided by user and basic GSM network architecture properties based on unsupervised clustering approach. As the mobility information is in low-level raw form, our proposed methodology successfully converts it to a high-level meaningful information by using the cell-Id location information rather than previously used location capturing methods like GPS, Infrared, and Wifi for profile mining and user similarity mining.
Functional connectivity mapping of regions associated with self- and other-processing.
Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B
2015-04-01
Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing. © 2014 Wiley Periodicals, Inc.
Analysing Customer Opinions with Text Mining Algorithms
NASA Astrophysics Data System (ADS)
Consoli, Domenico
2009-08-01
Knowing what the customer thinks of a particular product/service helps top management to introduce improvements in processes and products, thus differentiating the company from their competitors and gain competitive advantages. The customers, with their preferences, determine the success or failure of a company. In order to know opinions of the customers we can use technologies available from the web 2.0 (blog, wiki, forums, chat, social networking, social commerce). From these web sites, useful information must be extracted, for strategic purposes, using techniques of sentiment analysis or opinion mining.
Effects of Epilepsy on Language Functions: Scoping Review and Data Mining Findings.
Dutta, Manaswita; Murray, Laura; Miller, Wendy; Groves, Doyle
2018-03-01
This study involved a scoping review to identify possible gaps in the empirical description of language functioning in epilepsy in adults. With access to social network data, data mining was used to determine if individuals with epilepsy are expressing language-related concerns. For the scoping review, scientific databases were explored to identify pertinent articles. Findings regarding the nature of epilepsy etiologies, patient characteristics, tested language modalities, and language measures were compiled. Data mining focused on social network databases to obtain a set of relevant language-related posts. The search yielded 66 articles. Epilepsy etiologies except temporal lobe epilepsy and older adults were underrepresented. Most studies utilized aphasia tests and primarily assessed single-word productions; few studies included healthy control groups. Data mining revealed several posts regarding epilepsy-related language problems, including word retrieval, reading, writing, verbal memory difficulties, and negative effects of epilepsy treatment on language. Our findings underscore the need for future specification of the integrity of language in epilepsy, particularly with respect to discourse and high-level language abilities. Increased awareness of epilepsy-related language issues and understanding the patients' perspectives about their language concerns will allow researchers and speech-language pathologists to utilize appropriate assessments and improve quality of care.
ERIC Educational Resources Information Center
Sathick, Javubar; Venkat, Jaya
2015-01-01
Mining social web data is a challenging task and finding user interest for personalized and non-personalized recommendation systems is another important task. Knowledge sharing among web users has become crucial in determining usage of web data and personalizing content in various social websites as per the user's wish. This paper aims to design a…
An algorithm of opinion leaders mining based on signed network
NASA Astrophysics Data System (ADS)
Cao, Linlin; Zheng, Mingchun; Zhang, Yuanyuan; Zhang, Fuming
2018-04-01
With the rapid development of mobile Internet, user gradually become the leader of social media, the abruptly rise of new media has changed the traditional information's dissemination pattern and regularity. There is new era significance of opinion leaders, gatekeepers in the classical theory of mass communication, and it has further expansion and extension to a certain extent. In the existing mining of opinion leaders, it is mainly from the research of network structure and user behavior without considering an important attribute: whether the user has a real impact. In this paper, we take the symbolic network as the research tool, by giving symbol which correspondingly represents support or oppose to the link about point of view relationship between users and combining traditional algorithms of mining with symbolism which can describe the change of view between users, we will get the opinion leader who has real impact on users, then the result is more accurate and effective.
Neural Networks In Mining Sciences - General Overview And Some Representative Examples
NASA Astrophysics Data System (ADS)
Tadeusiewicz, Ryszard
2015-12-01
The many difficult problems that must now be addressed in mining sciences make us search for ever newer and more efficient computer tools that can be used to solve those problems. Among the numerous tools of this type, there are neural networks presented in this article - which, although not yet widely used in mining sciences, are certainly worth consideration. Neural networks are a technique which belongs to so called artificial intelligence, and originates from the attempts to model the structure and functioning of biological nervous systems. Initially constructed and tested exclusively out of scientific curiosity, as computer models of parts of the human brain, neural networks have become a surprisingly effective calculation tool in many areas: in technology, medicine, economics, and even social sciences. Unfortunately, they are relatively rarely used in mining sciences and mining technology. The article is intended to convince the readers that neural networks can be very useful also in mining sciences. It contains information how modern neural networks are built, how they operate and how one can use them. The preliminary discussion presented in this paper can help the reader gain an opinion whether this is a tool with handy properties, useful for him, and what it might come in useful for. Of course, the brief introduction to neural networks contained in this paper will not be enough for the readers who get convinced by the arguments contained here, and want to use neural networks. They will still need a considerable portion of detailed knowledge so that they can begin to independently create and build such networks, and use them in practice. However, an interested reader who decides to try out the capabilities of neural networks will also find here links to references that will allow him to start exploration of neural networks fast, and then work with this handy tool efficiently. This will be easy, because there are currently quite a few ready-made computer programs, easily available, which allow their user to quickly and effortlessly create artificial neural networks, run them, train and use in practice. The key issue is the question how to use these networks in mining sciences. The fact that this is possible and desirable is shown by convincing examples included in the second part of this study. From the very rich literature on the various applications of neural networks, we have selected several works that show how and what neural networks are used in the mining industry, and what has been achieved thanks to their use. The review of applications will continue in the next article, filed already for publication in the journal "Archives of Mining Sciences". Only studying these two articles will provide sufficient knowledge for initial guidance in the area of issues under consideration here.
Unsupervised User Similarity Mining in GSM Sensor Networks
Shad, Shafqat Ali; Chen, Enhong
2013-01-01
Mobility data has attracted the researchers for the past few years because of its rich context and spatiotemporal nature, where this information can be used for potential applications like early warning system, route prediction, traffic management, advertisement, social networking, and community finding. All the mentioned applications are based on mobility profile building and user trend analysis, where mobility profile building is done through significant places extraction, user's actual movement prediction, and context awareness. However, significant places extraction and user's actual movement prediction for mobility profile building are a trivial task. In this paper, we present the user similarity mining-based methodology through user mobility profile building by using the semantic tagging information provided by user and basic GSM network architecture properties based on unsupervised clustering approach. As the mobility information is in low-level raw form, our proposed methodology successfully converts it to a high-level meaningful information by using the cell-Id location information rather than previously used location capturing methods like GPS, Infrared, and Wifi for profile mining and user similarity mining. PMID:23576905
Massive Social Network Analysis: Mining Twitter for Social Good
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ediger, David; Jiang, Karl; Riedy, Edward J.
Social networks produce an enormous quantity of data. Facebook consists of over 400 million active users sharing over 5 billion pieces of information each month. Analyzing this vast quantity of unstructured data presents challenges for software and hardware. We present GraphCT, a Graph Characterization Tooklit for massive graphs representing social network data. On a 128-processor Cray XMT, GraphCT estimates the betweenness centrality of an artificially generated (R-MAT) 537 million vertex, 8.6 billion edge graph in 55 minutes. We use GraphCT to analyze public data from Twitter, a microblogging network. Twitter's message connections appear primarily tree-structured as a news dissemination system.more » Within the public data, however, are clusters of conversations. Using GraphCT, we can rank actors within these conversations and help analysts focus attention on a much smaller data subset.« less
ERIC Educational Resources Information Center
Chen, Chih-Ming; Chang, Chia-Cheng
2014-01-01
Many studies have identified web-based cooperative learning as an increasingly popular educational paradigm with potential to increase learner satisfaction and interactions. However, peer-to-peer interaction often suffers barriers owing to a failure to explore useful social interaction information in web-based cooperative learning environments.…
Fuzzy Modelling for Human Dynamics Based on Online Social Networks
Cuenca-Jara, Jesus; Valdes-Vela, Mercedes; Skarmeta, Antonio F.
2017-01-01
Human mobility mining has attracted a lot of attention in the research community due to its multiple implications in the provisioning of innovative services for large metropolises. In this scope, Online Social Networks (OSN) have arisen as a promising source of location data to come up with new mobility models. However, the human nature of this data makes it rather noisy and inaccurate. In order to deal with such limitations, the present work introduces a framework for human mobility mining based on fuzzy logic. Firstly, a fuzzy clustering algorithm extracts the most active OSN areas at different time periods. Next, such clusters are the building blocks to compose mobility patterns. Furthermore, a location prediction service based on a fuzzy rule classifier has been developed on top of the framework. Finally, both the framework and the predictor has been tested with a Twitter and Flickr dataset in two large cities. PMID:28837120
Fuzzy Modelling for Human Dynamics Based on Online Social Networks.
Cuenca-Jara, Jesus; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F
2017-08-24
Human mobility mining has attracted a lot of attention in the research community due to its multiple implications in the provisioning of innovative services for large metropolises. In this scope, Online Social Networks (OSN) have arisen as a promising source of location data to come up with new mobility models. However, the human nature of this data makes it rather noisy and inaccurate. In order to deal with such limitations, the present work introduces a framework for human mobility mining based on fuzzy logic. Firstly, a fuzzy clustering algorithm extracts the most active OSN areas at different time periods. Next, such clusters are the building blocks to compose mobility patterns. Furthermore, a location prediction service based on a fuzzy rule classifier has been developed on top of the framework. Finally, both the framework and the predictor has been tested with a Twitter and Flickr dataset in two large cities.
Information filtering via biased random walk on coupled social network.
Nie, Da-Cheng; Zhang, Zi-Ke; Dong, Qiang; Sun, Chongjing; Fu, Yan
2014-01-01
The recommender systems have advanced a great deal in the past two decades. However, most researchers focus their attentions on mining the similarities among users or objects in recommender systems and overlook the social influence which plays an important role in users' purchase process. In this paper, we design a biased random walk algorithm on coupled social networks which gives recommendation results based on both social interests and users' preference. Numerical analyses on two real data sets, Epinions and Friendfeed, demonstrate the improvement of recommendation performance by taking social interests into account, and experimental results show that our algorithm can alleviate the user cold-start problem more effectively compared with the mass diffusion and user-based collaborative filtering methods.
Information Filtering via Biased Random Walk on Coupled Social Network
Dong, Qiang; Fu, Yan
2014-01-01
The recommender systems have advanced a great deal in the past two decades. However, most researchers focus their attentions on mining the similarities among users or objects in recommender systems and overlook the social influence which plays an important role in users' purchase process. In this paper, we design a biased random walk algorithm on coupled social networks which gives recommendation results based on both social interests and users' preference. Numerical analyses on two real data sets, Epinions and Friendfeed, demonstrate the improvement of recommendation performance by taking social interests into account, and experimental results show that our algorithm can alleviate the user cold-start problem more effectively compared with the mass diffusion and user-based collaborative filtering methods. PMID:25147867
Interaction mining and skill-dependent recommendations for multi-objective team composition
Dorn, Christoph; Skopik, Florian; Schall, Daniel; Dustdar, Schahram
2011-01-01
Web-based collaboration and virtual environments supported by various Web 2.0 concepts enable the application of numerous monitoring, mining and analysis tools to study human interactions and team formation processes. The composition of an effective team requires a balance between adequate skill fulfillment and sufficient team connectivity. The underlying interaction structure reflects social behavior and relations of individuals and determines to a large degree how well people can be expected to collaborate. In this paper we address an extended team formation problem that does not only require direct interactions to determine team connectivity but additionally uses implicit recommendations of collaboration partners to support even sparsely connected networks. We provide two heuristics based on Genetic Algorithms and Simulated Annealing for discovering efficient team configurations that yield the best trade-off between skill coverage and team connectivity. Our self-adjusting mechanism aims to discover the best combination of direct interactions and recommendations when deriving connectivity. We evaluate our approach based on multiple configurations of a simulated collaboration network that features close resemblance to real world expert networks. We demonstrate that our algorithm successfully identifies efficient team configurations even when removing up to 40% of experts from various social network configurations. PMID:22298939
Processable English: The Theory Behind the PENG System
2009-06-01
implicit - is often buried amongst masses of irrelevant data. Heralding from unstructured sources such as natural language documents, email, audio ...estimation and prediction, data-mining, social network analysis, and semantic search and visualisation . This report describes the theoretical
Katsahian, Sandrine; Simond Moreau, Erica; Leprovost, Damien; Lardon, Jeremy; Bousquet, Cedric; Kerdelhué, Gaétan; Abdellaoui, Redhouane; Texier, Nathalie; Burgun, Anita; Boussadi, Abdelali; Faviez, Carole
2015-01-01
Suspected adverse drug reactions (ADR) reported by patients through social media can be a complementary tool to already existing ADRs signal detection processes. However, several studies have shown that the quality of medical information published online varies drastically whatever the health topic addressed. The aim of this study is to use an existing rating tool on a set of social network web sites in order to assess the capabilities of these tools to guide experts for selecting the most adapted social network web site to mine ADRs. First, we reviewed and rated 132 Internet forums and social networks according to three major criteria: the number of visits, the notoriety of the forum and the number of messages posted in relation with health and drug therapy. Second, the pharmacist reviewed the topic-oriented message boards with a small number of drug names to ensure that they were not off topic. Six experts have been chosen to assess the selected internet forums using a French scoring tool: Net scoring. Three different scores and the agreement between experts according to each set of scores using weighted kappa pooled using mean have been computed. Three internet forums were chosen at the end of the selection step. Some criteria get high score (scores 3-4) no matter the website evaluated like accessibility (45-46) or design (34-36), at the opposite some criteria always have bad scores like quantitative (40-42) and ethical aspect (43-44), hyperlinks actualization (30-33). Kappa were positives but very small which corresponds to a weak agreement between experts. The personal opinion of the expert seems to have a major impact, undermining the relevance of the criterion. Our future work is to collect results given by this evaluation grid and proposes a new scoring tool for Internet social networks assessment.
Kamel Boulos, Maged N; Sanfilippo, Antonio P; Corley, Courtney D; Wheeler, Steve
2010-10-01
This paper explores Technosocial Predictive Analytics (TPA) and related methods for Web "data mining" where users' posts and queries are garnered from Social Web ("Web 2.0") tools such as blogs, micro-blogging and social networking sites to form coherent representations of real-time health events. The paper includes a brief introduction to commonly used Social Web tools such as mashups and aggregators, and maps their exponential growth as an open architecture of participation for the masses and an emerging way to gain insight about people's collective health status of whole populations. Several health related tool examples are described and demonstrated as practical means through which health professionals might create clear location specific pictures of epidemiological data such as flu outbreaks. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Survey of Knowledge Representation and Reasoning Systems
2009-07-01
processing large volumes of unstructured information such as natural language documents, email, audio , images and video [Ferrucci et al. 2006]. Using this...information we hope to obtain improved es- timation and prediction, data-mining, social network analysis, and semantic search and visualisation . Knowledge
RADSS: an integration of GIS, spatial statistics, and network service for regional data mining
NASA Astrophysics Data System (ADS)
Hu, Haitang; Bao, Shuming; Lin, Hui; Zhu, Qing
2005-10-01
Regional data mining, which aims at the discovery of knowledge about spatial patterns, clusters or association between regions, has widely applications nowadays in social science, such as sociology, economics, epidemiology, crime, and so on. Many applications in the regional or other social sciences are more concerned with the spatial relationship, rather than the precise geographical location. Based on the spatial continuity rule derived from Tobler's first law of geography: observations at two sites tend to be more similar to each other if the sites are close together than if far apart, spatial statistics, as an important means for spatial data mining, allow the users to extract the interesting and useful information like spatial pattern, spatial structure, spatial association, spatial outlier and spatial interaction, from the vast amount of spatial data or non-spatial data. Therefore, by integrating with the spatial statistical methods, the geographical information systems will become more powerful in gaining further insights into the nature of spatial structure of regional system, and help the researchers to be more careful when selecting appropriate models. However, the lack of such tools holds back the application of spatial data analysis techniques and development of new methods and models (e.g., spatio-temporal models). Herein, we make an attempt to develop such an integrated software and apply it into the complex system analysis for the Poyang Lake Basin. This paper presents a framework for integrating GIS, spatial statistics and network service in regional data mining, as well as their implementation. After discussing the spatial statistics methods involved in regional complex system analysis, we introduce RADSS (Regional Analysis and Decision Support System), our new regional data mining tool, by integrating GIS, spatial statistics and network service. RADSS includes the functions of spatial data visualization, exploratory spatial data analysis, and spatial statistics. The tool also includes some fundamental spatial and non-spatial database in regional population and environment, which can be updated by external database via CD or network. Utilizing this data mining and exploratory analytical tool, the users can easily and quickly analyse the huge mount of the interrelated regional data, and better understand the spatial patterns and trends of the regional development, so as to make a credible and scientific decision. Moreover, it can be used as an educational tool for spatial data analysis and environmental studies. In this paper, we also present a case study on Poyang Lake Basin as an application of the tool and spatial data mining in complex environmental studies. At last, several concluding remarks are discussed.
A Local Scalable Distributed Expectation Maximization Algorithm for Large Peer-to-Peer Networks
NASA Technical Reports Server (NTRS)
Bhaduri, Kanishka; Srivastava, Ashok N.
2009-01-01
This paper offers a local distributed algorithm for expectation maximization in large peer-to-peer environments. The algorithm can be used for a variety of well-known data mining tasks in a distributed environment such as clustering, anomaly detection, target tracking to name a few. This technology is crucial for many emerging peer-to-peer applications for bioinformatics, astronomy, social networking, sensor networks and web mining. Centralizing all or some of the data for building global models is impractical in such peer-to-peer environments because of the large number of data sources, the asynchronous nature of the peer-to-peer networks, and dynamic nature of the data/network. The distributed algorithm we have developed in this paper is provably-correct i.e. it converges to the same result compared to a similar centralized algorithm and can automatically adapt to changes to the data and the network. We show that the communication overhead of the algorithm is very low due to its local nature. This monitoring algorithm is then used as a feedback loop to sample data from the network and rebuild the model when it is outdated. We present thorough experimental results to verify our theoretical claims.
A Privacy Preservation Model for Health-Related Social Networking Sites.
Li, Jingquan
2015-07-08
The increasing use of social networking sites (SNS) in health care has resulted in a growing number of individuals posting personal health information online. These sites may disclose users' health information to many different individuals and organizations and mine it for a variety of commercial and research purposes, yet the revelation of personal health information to unauthorized individuals or entities brings a concomitant concern of greater risk for loss of privacy among users. Many users join multiple social networks for different purposes and enter personal and other specific information covering social, professional, and health domains into other websites. Integration of multiple online and real social networks makes the users vulnerable to unintentional and intentional security threats and misuse. This paper analyzes the privacy and security characteristics of leading health-related SNS. It presents a threat model and identifies the most important threats to users and SNS providers. Building on threat analysis and modeling, this paper presents a privacy preservation model that incorporates individual self-protection and privacy-by-design approaches and uses the model to develop principles and countermeasures to protect user privacy. This study paves the way for analysis and design of privacy-preserving mechanisms on health-related SNS.
A Privacy Preservation Model for Health-Related Social Networking Sites
2015-01-01
The increasing use of social networking sites (SNS) in health care has resulted in a growing number of individuals posting personal health information online. These sites may disclose users' health information to many different individuals and organizations and mine it for a variety of commercial and research purposes, yet the revelation of personal health information to unauthorized individuals or entities brings a concomitant concern of greater risk for loss of privacy among users. Many users join multiple social networks for different purposes and enter personal and other specific information covering social, professional, and health domains into other websites. Integration of multiple online and real social networks makes the users vulnerable to unintentional and intentional security threats and misuse. This paper analyzes the privacy and security characteristics of leading health-related SNS. It presents a threat model and identifies the most important threats to users and SNS providers. Building on threat analysis and modeling, this paper presents a privacy preservation model that incorporates individual self-protection and privacy-by-design approaches and uses the model to develop principles and countermeasures to protect user privacy. This study paves the way for analysis and design of privacy-preserving mechanisms on health-related SNS. PMID:26155953
VisualUrText: A Text Analytics Tool for Unstructured Textual Data
NASA Astrophysics Data System (ADS)
Zainol, Zuraini; Jaymes, Mohd T. H.; Nohuddin, Puteri N. E.
2018-05-01
The growing amount of unstructured text over Internet is tremendous. Text repositories come from Web 2.0, business intelligence and social networking applications. It is also believed that 80-90% of future growth data is available in the form of unstructured text databases that may potentially contain interesting patterns and trends. Text Mining is well known technique for discovering interesting patterns and trends which are non-trivial knowledge from massive unstructured text data. Text Mining covers multidisciplinary fields involving information retrieval (IR), text analysis, natural language processing (NLP), data mining, machine learning statistics and computational linguistics. This paper discusses the development of text analytics tool that is proficient in extracting, processing, analyzing the unstructured text data and visualizing cleaned text data into multiple forms such as Document Term Matrix (DTM), Frequency Graph, Network Analysis Graph, Word Cloud and Dendogram. This tool, VisualUrText, is developed to assist students and researchers for extracting interesting patterns and trends in document analyses.
NASA Astrophysics Data System (ADS)
Hirdt, J. A.; Brown, D. A.
2016-01-01
The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.
Social Trust Prediction Using Heterogeneous Networks
HUANG, JIN; NIE, FEIPING; HUANG, HENG; TU, YI-CHENG; LEI, YU
2014-01-01
Along with increasing popularity of social websites, online users rely more on the trustworthiness information to make decisions, extract and filter information, and tag and build connections with other users. However, such social network data often suffer from severe data sparsity and are not able to provide users with enough information. Therefore, trust prediction has emerged as an important topic in social network research. Traditional approaches are primarily based on exploring trust graph topology itself. However, research in sociology and our life experience suggest that people who are in the same social circle often exhibit similar behaviors and tastes. To take advantage of the ancillary information for trust prediction, the challenge then becomes what to transfer and how to transfer. In this article, we address this problem by aggregating heterogeneous social networks and propose a novel joint social networks mining (JSNM) method. Our new joint learning model explores the user-group-level similarity between correlated graphs and simultaneously learns the individual graph structure; therefore, the shared structures and patterns from multiple social networks can be utilized to enhance the prediction tasks. As a result, we not only improve the trust prediction in the target graph but also facilitate other information retrieval tasks in the auxiliary graphs. To optimize the proposed objective function, we use the alternative technique to break down the objective function into several manageable subproblems. We further introduce the auxiliary function to solve the optimization problems with rigorously proved convergence. The extensive experiments have been conducted on both synthetic and real- world data. All empirical results demonstrate the effectiveness of our method. PMID:24729776
Social Trust Prediction Using Heterogeneous Networks.
Huang, Jin; Nie, Feiping; Huang, Heng; Tu, Yi-Cheng; Lei, Yu
2013-11-01
Along with increasing popularity of social websites, online users rely more on the trustworthiness information to make decisions, extract and filter information, and tag and build connections with other users. However, such social network data often suffer from severe data sparsity and are not able to provide users with enough information. Therefore, trust prediction has emerged as an important topic in social network research. Traditional approaches are primarily based on exploring trust graph topology itself. However, research in sociology and our life experience suggest that people who are in the same social circle often exhibit similar behaviors and tastes. To take advantage of the ancillary information for trust prediction, the challenge then becomes what to transfer and how to transfer. In this article, we address this problem by aggregating heterogeneous social networks and propose a novel joint social networks mining (JSNM) method. Our new joint learning model explores the user-group-level similarity between correlated graphs and simultaneously learns the individual graph structure; therefore, the shared structures and patterns from multiple social networks can be utilized to enhance the prediction tasks. As a result, we not only improve the trust prediction in the target graph but also facilitate other information retrieval tasks in the auxiliary graphs. To optimize the proposed objective function, we use the alternative technique to break down the objective function into several manageable subproblems. We further introduce the auxiliary function to solve the optimization problems with rigorously proved convergence. The extensive experiments have been conducted on both synthetic and real- world data. All empirical results demonstrate the effectiveness of our method.
Towards a C2 Poly-Visualization Tool: Leveraging the Power of Social-Network Analysis and GIS
2011-06-01
from Magsino.14 AutoMap, a product of CASOS at Carnegie Mellon University, is a text-mining tool that enables the extraction of network data from...enables community leaders to prepare for biological attacks using computational models. BioWar is a CASOS package that combines many factors into a...models, demographically accurate agent modes, wind dispersion models, and an error-diagnostic model. Construct, also developed by CASOS , is a
Three Interaction Patterns on Asynchronous Online Discussion Behaviours: A Methodological Comparison
ERIC Educational Resources Information Center
Jo, I.; Park, Y.; Lee, H.
2017-01-01
An asynchronous online discussion (AOD) is one format of instructional methods that facilitate student-centered learning. In the wealth of AOD research, this study evaluated how students' behavior on AOD influences their academic outcomes. This case study compared the differential analytic methods including web log mining, social network analysis…
2007-01-28
is interested in B2B and B2C e-commerce, enterprise resource planning, e-procurement, supply-chain management, data mining, and knowledge discovery... social networking tools, collaborative spaces, knowledge management, “connecting-enabling” protocols like RSS, and other tools. The intent of the ILE...delivered to them, what learning pedagogy is appropriate for them, the optimal level of social interaction for learning, and available resources
Text Mining of UU-ITE Implementation in Indonesia
NASA Astrophysics Data System (ADS)
Hakim, Lukmanul; Kusumasari, Tien F.; Lubis, Muharman
2018-04-01
At present, social media and networks act as one of the main platforms for sharing information, idea, thought and opinions. Many people share their knowledge and express their views on the specific topics or current hot issues that interest them. The social media texts have rich information about the complaints, comments, recommendation and suggestion as the automatic reaction or respond to government initiative or policy in order to overcome certain issues.This study examines the sentiment from netizensas part of citizen who has vocal sound about the implementation of UU ITE as the first cyberlaw in Indonesia as a means to identify the current tendency of citizen perception. To perform text mining techniques, this study used Twitter Rest API while R programming was utilized for the purpose of classification analysis based on hierarchical cluster.
Medical Concept Normalization in Social Media Posts with Recurrent Neural Networks.
Tutubalina, Elena; Miftahutdinov, Zulfat; Nikolenko, Sergey; Malykh, Valentin
2018-06-12
Text mining of scientific libraries and social media has already proven itself as a reliable tool for drug repurposing and hypothesis generation. The task of mapping a disease mention to a concept in a controlled vocabulary, typically to the standard thesaurus in the Unified Medical Language System (UMLS), is known as medical concept normalization. This task is challenging due to the differences in the use of medical terminology between health care professionals and social media texts coming from the lay public. To bridge this gap, we use sequence learning with recurrent neural networks and semantic representation of one- or multi-word expressions: we develop end-to-end architectures directly tailored to the task, including bidirectional Long Short-Term Memory, Gated Recurrent Units with an attention mechanism, and additional semantic similarity features based on UMLS. Our evaluation against a standard benchmark shows that recurrent neural networks improve results over an effective baseline for classification based on convolutional neural networks. A qualitative examination of mentions discovered in a dataset of user reviews collected from popular online health information platforms as well as a quantitative evaluation both show improvements in the semantic representation of health-related expressions in social media. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Green, H. D.; Contractor, N. S.; Yao, Y.
2006-12-01
A knowledge network is a multi-dimensional network created from the interactions and interconnections among the scientists, documents, data, analytic tools, and interactive collaboration spaces (like forums and wikis) associated with a collaborative environment. CI-KNOW is a suite of software tools that leverages automated data collection, social network theories, analysis techniques and algorithms to infer an individual's interests and expertise based on their interactions and activities within a knowledge network. The CI-KNOW recommender system mines the knowledge network associated with a scientific community's use of cyberinfrastructure tools and uses relational metadata to record connections among entities in the knowledge network. Recent developments in social network theories and methods provide the backbone for a modular system that creates recommendations from relational metadata. A network navigation portlet allows users to locate colleagues, documents, data or analytic tools in the knowledge network and to explore their networks through a visual, step-wise process. An internal auditing portlet offers administrators diagnostics to assess the growth and health of the entire knowledge network. The first instantiation of the prototype CI-KNOW system is part of the Environmental Cyberinfrastructure Demonstration project at the National Center for Supercomputing Applications, which supports the activities of hydrologic and environmental science communities (CLEANER and CUAHSI) under the umbrella of the WATERS network environmental observatory planning activities (http://cleaner.ncsa.uiuc.edu). This poster summarizes the key aspects of the CI-KNOW system, highlighting the key inputs, calculation mechanisms, and output modalities.
Alanis-Lobato, Gregorio
2015-01-01
High-throughput detection of protein interactions has had a major impact in our understanding of the intricate molecular machinery underlying the living cell, and has permitted the construction of very large protein interactomes. The protein networks that are currently available are incomplete and a significant percentage of their interactions are false positives. Fortunately, the structural properties observed in good quality social or technological networks are also present in biological systems. This has encouraged the development of tools, to improve the reliability of protein networks and predict new interactions based merely on the topological characteristics of their components. Since diseases are rarely caused by the malfunction of a single protein, having a more complete and reliable interactome is crucial in order to identify groups of inter-related proteins involved in disease etiology. These system components can then be targeted with minimal collateral damage. In this article, an important number of network mining tools is reviewed, together with resources from which reliable protein interactomes can be constructed. In addition to the review, a few representative examples of how molecular and clinical data can be integrated to deepen our understanding of pathogenesis are discussed.
Fast Ss-Ilm a Computationally Efficient Algorithm to Discover Socially Important Locations
NASA Astrophysics Data System (ADS)
Dokuz, A. S.; Celik, M.
2017-11-01
Socially important locations are places which are frequently visited by social media users in their social media lifetime. Discovering socially important locations provide several valuable information about user behaviours on social media networking sites. However, discovering socially important locations are challenging due to data volume and dimensions, spatial and temporal calculations, location sparseness in social media datasets, and inefficiency of current algorithms. In the literature, several studies are conducted to discover important locations, however, the proposed approaches do not work in computationally efficient manner. In this study, we propose Fast SS-ILM algorithm by modifying the algorithm of SS-ILM to mine socially important locations efficiently. Experimental results show that proposed Fast SS-ILM algorithm decreases execution time of socially important locations discovery process up to 20 %.
2018-01-01
Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter, and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events. PMID:29614060
Costa, Daniel G; Duran-Faundez, Cristian; Andrade, Daniel C; Rocha-Junior, João B; Peixoto, João Paulo Just
2018-04-03
Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter , and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events.
da Silva, Aleksandra do Socorro; de Brito, Silvana Rossy; Vijaykumar, Nandamudi Lankalapalli; da Rocha, Cláudio Alex Jorge; Monteiro, Maurílio de Abreu; Costa, João Crisóstomo Weyl Albuquerque; Francês, Carlos Renato Lisboa
2016-01-01
The published literature reveals several arguments concerning the strategic importance of information and communication technology (ICT) interventions for developing countries where the digital divide is a challenge. Large-scale ICT interventions can be an option for countries whose regions, both urban and rural, present a high number of digitally excluded people. Our goal was to monitor and identify problems in interventions aimed at certification for a large number of participants in different geographical regions. Our case study is the training at the Telecentros.BR, a program created in Brazil to install telecenters and certify individuals to use ICT resources. We propose an approach that applies social network analysis and mining techniques to data collected from Telecentros.BR dataset and from the socioeconomics and telecommunications infrastructure indicators of the participants’ municipalities. We found that (i) the analysis of interactions in different time periods reflects the objectives of each phase of training, highlighting the increased density in the phase in which participants develop and disseminate their projects; (ii) analysis according to the roles of participants (i.e., tutors or community members) reveals that the interactions were influenced by the center (or region) to which the participant belongs (that is, a community contained mainly members of the same region and always with the presence of tutors, contradicting expectations of the training project, which aimed for intense collaboration of the participants, regardless of the geographic region); (iii) the social network of participants influences the success of the training: that is, given evidence that the degree of the community member is in the highest range, the probability of this individual concluding the training is 0.689; (iv) the North region presented the lowest probability of participant certification, whereas the Northeast, which served municipalities with similar characteristics, presented high probability of certification, associated with the highest degree in social networking platform. PMID:26727472
da Silva, Aleksandra do Socorro; de Brito, Silvana Rossy; Vijaykumar, Nandamudi Lankalapalli; da Rocha, Cláudio Alex Jorge; Monteiro, Maurílio de Abreu; Costa, João Crisóstomo Weyl Albuquerque; Francês, Carlos Renato Lisboa
2016-01-01
The published literature reveals several arguments concerning the strategic importance of information and communication technology (ICT) interventions for developing countries where the digital divide is a challenge. Large-scale ICT interventions can be an option for countries whose regions, both urban and rural, present a high number of digitally excluded people. Our goal was to monitor and identify problems in interventions aimed at certification for a large number of participants in different geographical regions. Our case study is the training at the Telecentros.BR, a program created in Brazil to install telecenters and certify individuals to use ICT resources. We propose an approach that applies social network analysis and mining techniques to data collected from Telecentros.BR dataset and from the socioeconomics and telecommunications infrastructure indicators of the participants' municipalities. We found that (i) the analysis of interactions in different time periods reflects the objectives of each phase of training, highlighting the increased density in the phase in which participants develop and disseminate their projects; (ii) analysis according to the roles of participants (i.e., tutors or community members) reveals that the interactions were influenced by the center (or region) to which the participant belongs (that is, a community contained mainly members of the same region and always with the presence of tutors, contradicting expectations of the training project, which aimed for intense collaboration of the participants, regardless of the geographic region); (iii) the social network of participants influences the success of the training: that is, given evidence that the degree of the community member is in the highest range, the probability of this individual concluding the training is 0.689; (iv) the North region presented the lowest probability of participant certification, whereas the Northeast, which served municipalities with similar characteristics, presented high probability of certification, associated with the highest degree in social networking platform.
Distributed communications and control network for robotic mining
NASA Technical Reports Server (NTRS)
Schiffbauer, William H.
1989-01-01
The application of robotics to coal mining machines is one approach pursued to increase productivity while providing enhanced safety for the coal miner. Toward that end, a network composed of microcontrollers, computers, expert systems, real time operating systems, and a variety of program languages are being integrated that will act as the backbone for intelligent machine operation. Actual mining machines, including a few customized ones, have been given telerobotic semiautonomous capabilities by applying the described network. Control devices, intelligent sensors and computers onboard these machines are showing promise of achieving improved mining productivity and safety benefits. Current research using these machines involves navigation, multiple machine interaction, machine diagnostics, mineral detection, and graphical machine representation. Guidance sensors and systems employed include: sonar, laser rangers, gyroscopes, magnetometers, clinometers, and accelerometers. Information on the network of hardware/software and its implementation on mining machines are presented. Anticipated coal production operations using the network are discussed. A parallelism is also drawn between the direction of present day underground coal mining research to how the lunar soil (regolith) may be mined. A conceptual lunar mining operation that employs a distributed communication and control network is detailed.
Toward edge minability for role mining in bipartite networks
NASA Astrophysics Data System (ADS)
Dong, Lijun; Wang, Yi; Liu, Ran; Pi, Benjie; Wu, Liuyi
2016-11-01
Bipartite network models have been extensively used in information security to automatically generate role-based access control (RBAC) from dataset. This process is called role mining. However, not all the topologies of bipartite networks are suitable for role mining; some edges may even reduce the quality of role mining. This causes unnecessary time consumption as role mining is NP-hard. Therefore, to promote the quality of role mining results, the capability that an edge composes roles with other edges, called the minability of edge, needs to be identified. We tackle the problem from an angle of edge importance in complex networks; that is an edge easily covered by roles is considered to be more important. Based on this idea, the k-shell decomposition of complex networks is extended to reveal the different minability of edges. By this way, a bipartite network can be quickly purified by excluding the low-minability edges from role mining, and thus the quality of role mining can be effectively improved. Extensive experiments via the real-world datasets are conducted to confirm the above claims.
The Intelligent System of Cardiovascular Disease Diagnosis Based on Extension Data Mining
NASA Astrophysics Data System (ADS)
Sun, Baiqing; Li, Yange; Zhang, Lin
This thesis gives the general definition of the concepts of extension knowledge, extension data mining and extension data mining theorem in high dimension space, and also builds the IDSS integrated system by the rough set, expert system and neural network, develops the relevant computer software. From the diagnosis tests, according to the common diseases of myocardial infarctions, angina pectoris and hypertension, and made the test result with physicians, the results shows that the sensitivity, specific and accuracy diagnosis by the IDSS are all higher than the physicians. It can improve the rate of the accuracy diagnosis of physician with the auxiliary help of this system, which have the obvious meaning in low the mortality, disability rate and high the survival rate, and has strong practical values and further social benefits.
Microcomputer network for control of a continuous mining machine. Information circular/1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiffbauer, W.H.
1993-01-01
The paper details a microcomputer-based control and monitoring network that was developed in-house by the U.S. Bureau of Mines, and installed on a Joy 14 continuous mining machine. The network consists of microcomputers that are connected together via a single twisted pair cable. Each microcomputer was developed to provide a particular function in the control process. Machine-mounted microcomputers in conjunction with the appropriate sensors provide closed-loop control of the machine, navigation, and environmental monitoring. Off-the-machine microcomputers provide remote control of the machine, sensor status, and a connection to the network so that external computers can access network data and controlmore » the continuous mining machine. Although the network was installed on a Joy 14 continuous mining machine, its use extends beyond it. Its generic structure lends itself to installation onto most mining machine types.« less
Social networks: Evolving graphs with memory dependent edges
NASA Astrophysics Data System (ADS)
Grindrod, Peter; Parsons, Mark
2011-10-01
The plethora of digital communication technologies, and their mass take up, has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the existence or otherwise of certain infinite products and series involving age dependent model parameters. We show how to differentiate between the alternatives based on a finite set of observations. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.
Managing biological networks by using text mining and computer-aided curation
NASA Astrophysics Data System (ADS)
Yu, Seok Jong; Cho, Yongseong; Lee, Min-Ho; Lim, Jongtae; Yoo, Jaesoo
2015-11-01
In order to understand a biological mechanism in a cell, a researcher should collect a huge number of protein interactions with experimental data from experiments and the literature. Text mining systems that extract biological interactions from papers have been used to construct biological networks for a few decades. Even though the text mining of literature is necessary to construct a biological network, few systems with a text mining tool are available for biologists who want to construct their own biological networks. We have developed a biological network construction system called BioKnowledge Viewer that can generate a biological interaction network by using a text mining tool and biological taggers. It also Boolean simulation software to provide a biological modeling system to simulate the model that is made with the text mining tool. A user can download PubMed articles and construct a biological network by using the Multi-level Knowledge Emergence Model (KMEM), MetaMap, and A Biomedical Named Entity Recognizer (ABNER) as a text mining tool. To evaluate the system, we constructed an aging-related biological network that consist 9,415 nodes (genes) by using manual curation. With network analysis, we found that several genes, including JNK, AP-1, and BCL-2, were highly related in aging biological network. We provide a semi-automatic curation environment so that users can obtain a graph database for managing text mining results that are generated in the server system and can navigate the network with BioKnowledge Viewer, which is freely available at http://bioknowledgeviewer.kisti.re.kr.
LavaNet—Neural network development environment in a general mine planning package
NASA Astrophysics Data System (ADS)
Kapageridis, Ioannis Konstantinou; Triantafyllou, A. G.
2011-04-01
LavaNet is a series of scripts written in Perl that gives access to a neural network simulation environment inside a general mine planning package. A well known and a very popular neural network development environment, the Stuttgart Neural Network Simulator, is used as the base for the development of neural networks. LavaNet runs inside VULCAN™—a complete mine planning package with advanced database, modelling and visualisation capabilities. LavaNet is taking advantage of VULCAN's Perl based scripting environment, Lava, to bring all the benefits of neural network development and application to geologists, mining engineers and other users of the specific mine planning package. LavaNet enables easy development of neural network training data sets using information from any of the data and model structures available, such as block models and drillhole databases. Neural networks can be trained inside VULCAN™ and the results be used to generate new models that can be visualised in 3D. Direct comparison of developed neural network models with conventional and geostatistical techniques is now possible within the same mine planning software package. LavaNet supports Radial Basis Function networks, Multi-Layer Perceptrons and Self-Organised Maps.
Exploiting Social Media Sensor Networks through Novel Data Fusion Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouri, Tina
Unprecedented amounts of data are continuously being generated by sensors (“hard” data) and by humans (“soft” data), and this data needs to be exploited to its full potential. The first step in exploiting this data is determine how the hard and soft data are related to each other. In this project we fuse hard and soft data, using the attributes of each (e.g., time and space), to gain more information about interesting events. Next, we attempt to use social networking textual data to predict the present (i.e., predict that an interesting event is occurring and details about the event) usingmore » data mining, machine learning, natural language processing, and text analysis techniques.« less
Highlighting Relationships of a Smartphone's Social Ecosystem in Potentially Large Investigations.
Andriotis, Panagiotis; Oikonomou, George; Tryfonas, Theo; Li, Shancang
2016-09-01
Social media networks are becoming increasingly popular because they can satisfy diverse needs of individuals (both personal and professional). Modern mobile devices are empowered with increased capabilities, taking advantage of the technological progress that makes them smarter than their predecessors. Thus, a smartphone user is not only the phone owner, but also an entity that may have different facets and roles in various social media networks. We believe that these roles can be aggregated in a single social ecosystem, which can be derived by the smartphone. In this paper, we present our concept of the social ecosystem in contemporary devices and we attempt to distinguish the different communities that occur from the integration of social networking in our lives. In addition, we propose techniques to highlight major actors within the ecosystem. Moreover, we demonstrate our suggested visualization scheme, which illustrates the linking of entities that live in separate communities using data taken from the smartphone. Finally, we extend our concept to include various parallel ecosystems during potentially large investigations and we link influential entities in a vertical fashion. We particularly examine cases where data aggregation is performed by specific applications, producing volumes of textual data that can be analyzed with text mining methods. Our analysis demonstrates the risks of the rising "bring your own device" trend in enterprise environments.
FIR: An Effective Scheme for Extracting Useful Metadata from Social Media.
Chen, Long-Sheng; Lin, Zue-Cheng; Chang, Jing-Rong
2015-11-01
Recently, the use of social media for health information exchange is expanding among patients, physicians, and other health care professionals. In medical areas, social media allows non-experts to access, interpret, and generate medical information for their own care and the care of others. Researchers paid much attention on social media in medical educations, patient-pharmacist communications, adverse drug reactions detection, impacts of social media on medicine and healthcare, and so on. However, relatively few papers discuss how to extract useful knowledge from a huge amount of textual comments in social media effectively. Therefore, this study aims to propose a Fuzzy adaptive resonance theory network based Information Retrieval (FIR) scheme by combining Fuzzy adaptive resonance theory (ART) network, Latent Semantic Indexing (LSI), and association rules (AR) discovery to extract knowledge from social media. In our FIR scheme, Fuzzy ART network firstly has been employed to segment comments. Next, for each customer segment, we use LSI technique to retrieve important keywords. Then, in order to make the extracted keywords understandable, association rules mining is presented to organize these extracted keywords to build metadata. These extracted useful voices of customers will be transformed into design needs by using Quality Function Deployment (QFD) for further decision making. Unlike conventional information retrieval techniques which acquire too many keywords to get key points, our FIR scheme can extract understandable metadata from social media.
NASA Astrophysics Data System (ADS)
Kamil, P. I.; Pratama, A. J.; Hidayatulloh, A.
2016-05-01
Social media has been part of our daily life for years, and now it has become a treasure trove of data for social scientists to mine. Using our own data mining engine we downloaded 1500 Instagram posts related to the Nepal earthquake in April 2015, a disaster which caused tremendous losses counted in human lives and infrastructures. We predicted that the social media will be a place where people respond and express themselves emotionally in light of a disaster of such massive scale, a "megadeath" event. We ended up with data on 1017 posts tracked with the hashtag #prayfornepal, consisting of the post's date, time, geolocation, image, post ID, username and ID, caption, and hashtag. We categorized the posts into 7 categories and found that most of the photos (30,29%) are related to Nepal but not directly related to the disasters, which reflects death imprint, one of psychosocial responses after a megadeath event. Other analyses were done to compare each photo category, including geo-location, hashtag network and caption network which will be visualized with ArcGIS, NodeXL, Gephi, and our own word cloud engine to examine other digital reactions to Nepal Earthquake in Instagram. This study can give an overview of how community reacts to a disaster in digital world and utilize it for disaster response and awareness.
Considine, Robyn; Tynan, Ross; James, Carole; Wiggers, John; Lewin, Terry; Inder, Kerry; Perkins, David; Handley, Tonelle; Kelly, Brian
2017-01-01
Evidence regarding the extent of mental health problems and the associated characteristics within an employee population is necessary to inform appropriate and tailored workplace mental health programs. Mental health within male dominated industries (such as mining) has received recent public attention, chiefly through observations regarding suicide in such populations in Australia and internationally. Currently there is limited empirical evidence regarding the mental health needs in the mining industry as an exemplar of a male dominated workforce, and the relative contribution to such problems of individual, socio-economic and workplace factors. This study aimed to investigate the mental health and associated characteristics among employees in the Australian coal mining industry with a specific focus on identifying modifiable work characteristics. A cross-sectional study was conducted among employees (n = 1457) across eight coal mines stratified by key mine characteristics (state, mine type and employee commute arrangements). Participants completed measures of psychological distress (K10+) and key variables across four categories (socio-demographic characteristics, health history, current health behaviours, work attitudes and characteristics). Psychological distress levels within this sample were significantly higher in comparison with a community sample of employed Australians. The following factors contributed significantly to levels of psychological distress using hierarchical linear regression analysis: lower social networks; a past history of depression, anxiety or drug/alcohol problems; high recent alcohol use; work role (managers) and a set of work characteristics (level of satisfaction with work, financial factors and job insecurity; perception of lower workplace support for people with mental health problems. This is the first study to examine the characteristics associated with mental health problems in the Australian coal mining industry. The findings indicate the salience of mental health needs in this population, and the associated interplay of personal, social and work characteristics. The work characteristics associated with psychological distress are modifiable and can guide an industry response, as well as help inform the understanding of the role of workplace factors in mental health problems in a male dominated workforce more generally.
James, Carole; Wiggers, John; Lewin, Terry; Inder, Kerry; Perkins, David; Handley, Tonelle
2017-01-01
Background Evidence regarding the extent of mental health problems and the associated characteristics within an employee population is necessary to inform appropriate and tailored workplace mental health programs. Mental health within male dominated industries (such as mining) has received recent public attention, chiefly through observations regarding suicide in such populations in Australia and internationally. Currently there is limited empirical evidence regarding the mental health needs in the mining industry as an exemplar of a male dominated workforce, and the relative contribution to such problems of individual, socio-economic and workplace factors. This study aimed to investigate the mental health and associated characteristics among employees in the Australian coal mining industry with a specific focus on identifying modifiable work characteristics. Methods A cross-sectional study was conducted among employees (n = 1457) across eight coal mines stratified by key mine characteristics (state, mine type and employee commute arrangements). Participants completed measures of psychological distress (K10+) and key variables across four categories (socio-demographic characteristics, health history, current health behaviours, work attitudes and characteristics). Results Psychological distress levels within this sample were significantly higher in comparison with a community sample of employed Australians. The following factors contributed significantly to levels of psychological distress using hierarchical linear regression analysis: lower social networks; a past history of depression, anxiety or drug/alcohol problems; high recent alcohol use; work role (managers) and a set of work characteristics (level of satisfaction with work, financial factors and job insecurity; perception of lower workplace support for people with mental health problems. Conclusion This is the first study to examine the characteristics associated with mental health problems in the Australian coal mining industry. The findings indicate the salience of mental health needs in this population, and the associated interplay of personal, social and work characteristics. The work characteristics associated with psychological distress are modifiable and can guide an industry response, as well as help inform the understanding of the role of workplace factors in mental health problems in a male dominated workforce more generally. PMID:28045935
NASA Astrophysics Data System (ADS)
Acosta, Jose A.; Faz, Ángel; Zornoza, Raúl; Martínez-Martínez, Silvia; Kabas, Sebla; Bech, Jaume
2015-04-01
Fragmented structures create metaphorical wounds in the landscape altering the ecological and cultural processes associated with it, as it can be seen in many mine areas. Therefore it is advisable to organize the reclamation plan in the beginning of mine operating to provide spatial and functional integration of the landscape based on scientific arguments and with all possible legal and administrative means, which is generally the case of the Strategic Environmental Assessment. However, there are many abandon mine areas where no reclamation plan has been carried out, such as the case of Mining District of Sierra Minera Cartagena-La Unión, SE Spain. In these cases it is vital to respond in a sustainable manner for healing the landscape wounds of post-mining activities. Reclamation activities of a post-mining district includes not only the mine soils also all land uses around them, for this reason on necessary create practical solutions for returning the functions of ecologic and cultural processes of the area. Greenway approach shows the main veins which are crucial for keeping alive and sustaining the mentioned processes of the area. Therefore the main objectives of this study are to 1) develop an integrated local greenway network to be able to preserve significant resources and values of the district, and to 2) develop this greenway network as a part of reclamation process for degraded areas. Landscape assessments revealed the most valuable and potential connectivity resources of the area. These clustering and linear patterns of resource concentrations include mountain range and valleys, natural drainage network, legally protected areas and cultural-historical resources. Conservation areas, cultural-educational resources of post-mining activities and the riverbeds have been the main building stones for the greenway corridor. The multifunctional greenway approach serves as landscape reclamation and planning tool in a degraded area by showing the priority zones for reclamation and having the landscape planners to be more decent in these vital veins that help to return the ecological and social functions and interrelations back. Conservation and benefitting of significant resources can be provided simultaneously and this guides to land managers for making land use decisions and implementing the linkage designs. Protection of the corridors has to be provided through a combination of land acquisition, land-use regulation and policies to avoid inappropriate land use developments in the corridors.
MINE: Module Identification in Networks
2011-01-01
Background Graphical models of network associations are useful for both visualizing and integrating multiple types of association data. Identifying modules, or groups of functionally related gene products, is an important challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when applied to dense networks of experimentally derived interaction data. To address this problem, we have developed an agglomerative clustering method that is able to identify highly modular sets of gene products within highly interconnected molecular interaction networks. Results MINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity clusters when applied to the C. elegans protein-protein interaction network. The algorithm generally achieves superior geometric accuracy and modularity for annotated functional categories. In comparison with the most closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing topological properties. Conclusions MINE was created in response to the challenge of discovering high quality modules of gene products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional annotations in protein-protein interaction networks from both S. cerevisiae and C. elegans. PMID:21605434
Jurca, Gabriela; Addam, Omar; Aksac, Alper; Gao, Shang; Özyer, Tansel; Demetrick, Douglas; Alhajj, Reda
2016-04-26
Breast cancer is a serious disease which affects many women and may lead to death. It has received considerable attention from the research community. Thus, biomedical researchers aim to find genetic biomarkers indicative of the disease. Novel biomarkers can be elucidated from the existing literature. However, the vast amount of scientific publications on breast cancer make this a daunting task. This paper presents a framework which investigates existing literature data for informative discoveries. It integrates text mining and social network analysis in order to identify new potential biomarkers for breast cancer. We utilized PubMed for the testing. We investigated gene-gene interactions, as well as novel interactions such as gene-year, gene-country, and abstract-country to find out how the discoveries varied over time and how overlapping/diverse are the discoveries and the interest of various research groups in different countries. Interesting trends have been identified and discussed, e.g., different genes are highlighted in relationship to different countries though the various genes were found to share functionality. Some text analysis based results have been validated against results from other tools that predict gene-gene relations and gene functions.
A microcomputer network for control of a continuous mining machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiffbauer, W.H.
1993-12-31
This report details a microcomputer-based control and monitoring network that was developed in-house by the U.S. Bureau of Mines and installed on a continuous mining machine. The network consists of microcomputers that are connected together via a single twisted-pair cable. Each microcomputer was developed to provide a particular function in the control process. Machine-mounted microcomputers, in conjunction with the appropriate sensors, provide closed-loop control of the machine, navigation, and environmental monitoring. Off-the-machine microcomputers provide remote control of the machine, sensor status, and a connection to the network so that external computers can access network data and control the continuous miningmore » machine. Because of the network`s generic structure, it can be installed on most mining machines.« less
Weber, Griffin M; Barnett, William; Conlon, Mike; Eichmann, David; Kibbe, Warren; Falk-Krzesinski, Holly; Halaas, Michael; Johnson, Layne; Meeks, Eric; Mitchell, Donald; Schleyer, Titus; Stallings, Sarah; Warden, Michael; Kahlon, Maninder
2011-12-01
Research-networking tools use data-mining and social networking to enable expertise discovery, matchmaking and collaboration, which are important facets of team science and translational research. Several commercial and academic platforms have been built, and many institutions have deployed these products to help their investigators find local collaborators. Recent studies, though, have shown the growing importance of multiuniversity teams in science. Unfortunately, the lack of a standard data-exchange model and resistance of universities to share information about their faculty have presented barriers to forming an institutionally supported national network. This case report describes an initiative, which, in only 6 months, achieved interoperability among seven major research-networking products at 28 universities by taking an approach that focused on addressing institutional concerns and encouraging their participation. With this necessary groundwork in place, the second phase of this effort can begin, which will expand the network's functionality and focus on the end users.
Wu, Zhenyu; Zou, Ming
2014-10-01
An increasing number of users interact, collaborate, and share information through social networks. Unprecedented growth in social networks is generating a significant amount of unstructured social data. From such data, distilling communities where users have common interests and tracking variations of users' interests over time are important research tracks in fields such as opinion mining, trend prediction, and personalized services. However, these tasks are extremely difficult considering the highly dynamic characteristics of the data. Existing community detection methods are time consuming, making it difficult to process data in real time. In this paper, dynamic unstructured data is modeled as a stream. Tag assignments stream clustering (TASC), an incremental scalable community detection method, is proposed based on locality-sensitive hashing. Both tags and latent interactions among users are incorporated in the method. In our experiments, the social dynamic behaviors of users are first analyzed. The proposed TASC method is then compared with state-of-the-art clustering methods such as StreamKmeans and incremental k-clique; results indicate that TASC can detect communities more efficiently and effectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Abbe, Adeline; Falissard, Bruno
2017-10-23
Internet is a particularly dynamic way to quickly capture the perceptions of a population in real time. Complementary to traditional face-to-face communication, online social networks help patients to improve self-esteem and self-help. The aim of this study was to use text mining on material from an online forum exploring patients' concerns about treatment (antidepressants and anxiolytics). Concerns about treatment were collected from discussion titles in patients' online community related to antidepressants and anxiolytics. To examine the content of these titles automatically, we used text mining methods, such as word frequency in a document-term matrix and co-occurrence of words using a network analysis. It was thus possible to identify topics discussed on the forum. The forum included 2415 discussions on antidepressants and anxiolytics over a period of 3 years. After a preprocessing step, the text mining algorithm identified the 99 most frequently occurring words in titles, among which were escitalopram, withdrawal, antidepressant, venlafaxine, paroxetine, and effect. Patients' concerns were related to antidepressant withdrawal, the need to share experience about symptoms, effects, and questions on weight gain with some drugs. Patients' expression on the Internet is a potential additional resource in addressing patients' concerns about treatment. Patient profiles are close to that of patients treated in psychiatry. ©Adeline Abbe, Bruno Falissard. Originally published in JMIR Mental Health (http://mental.jmir.org), 23.10.2017.
A data mining approach to intelligence operations
NASA Astrophysics Data System (ADS)
Memon, Nasrullah; Hicks, David L.; Harkiolakis, Nicholas
2008-03-01
In this paper we examine the latest thinking, approaches and methodologies in use for finding the nuggets of information and subliminal (and perhaps intentionally hidden) patterns and associations that are critical to identify criminal activity and suspects to private and government security agencies. An emphasis in the paper is placed on Social Network Analysis and Investigative Data Mining, and the use of these technologies in the counterterrorism domain. Tools and techniques from both areas are described, along with the important tasks for which they can be used to assist with the investigation and analysis of terrorist organizations. The process of collecting data about these organizations is also considered along with the inherent difficulties that are involved.
Miyazaki, Yusuke; Teramura, Akinori; Senou, Hiroshi
2016-01-01
An apparent illegal introduction of Lepomis macrochirus macrochirus from Yokohama City, Kanagawa Prefecture, Japan, is reported based on a juvenile specimen and a photograph of two adults collected on 14 June 2015 and deposited in the Kangawa Prefectural Museum of Natural History. The specimens and photographs were initially reported on the internet-based social networking site, Twitter. Two specimens of Carassius auratus, including an aquarium form, were also reported at the same locality and date, suggesting that the illegal introductions originated from an aquarium release. Our report demonstrates an example of web data mining in the discipline of Citizen Science.
NASA Astrophysics Data System (ADS)
Rudzinski, Lukasz; Lizurek, Grzegorz; Plesiewicz, Beata
2014-05-01
On 19th March 2013 tremor shook the surface of Polkowice town were "Rudna" mine is located. This event of ML=4.2 was third most powerful seismic event recorded in Legnica Głogów Copper District (LGCD). Citizens of the area reported that felt tremors were bigger and last longer than any other ones felt in last couple years. The event was studied with use of two different networks: underground network of "Rudna" mine and surface local network run by IGF PAS (LUMINEOS network). The first one is composed of 32 vertical seismometers at mining level, except 5 sensors placed in elevator shafts, seismometers location depth varies from 300 down to 1000 meters below surface. The seismometers used in this network are vertical short period Willmore MkII and MkIII sensors, with the frequency band from 1Hz to 100Hz. At the beginning of 2013th the local surface network of the Institute of Geophysics Polish Academy of Sciences (IGF PAS) with acronym LUMINEOS was installed under agreement with KGHM SA and "Rudna" mine officials. This network at the moment of the March 19th 2013 event was composed of 4 short-period one-second triaxial seismometers LE-3D/1s manufactured by Lenartz Electronics. Analysis of spectral parameters of the records from in mine seismic system and surface LUMINEOS network along with broadband station KSP record were carried out. Location of the event was close to the Rudna Główna fault zone, the nodal planes orientations determined with two different approaches were almost parallel to the strike of the fault. The mechanism solutions were also obtained in form of Full Moment Tensor inversion from P wave amplitude pulses of underground records and waveform inversion of surface network seismograms. Final results of the seismic analysis along with macroseismic survey and observed effects from the destroyed part of the mining panel indicate that the mechanism of the event was thrust faulting on inactive tectonic fault. The results confirm that the fault zones are the areas of higher risk, even in case of carefully taken mining operations.
NASA Astrophysics Data System (ADS)
Ponomarev, Vasily
SPLDESS development with the elements of a multimedia illustration of traditional hypertext search results by Internet search engine provides research of information propagation innovative effect during the public access information-recruiting networks of information kiosks formation at the experimental stage with the mirrors at the constantly updating portal for Internet users. Author of this publication put the emphasis on a condition of pertinent search engine results of the total answer by the user inquiries, that provide the politically correct and not usurping socially-network data mining effect at urgent monitoring. Development of the access by devices of the new communication types with the newest technologies of data transmission, multimedia and an information exchange from the first innovation line usage support portal is presented also (including the device of social-psycho-linguistic determination according the author's conception).
Fast Katz and Commuters: Efficient Estimation of Social Relatedness in Large Networks
NASA Astrophysics Data System (ADS)
Esfandiar, Pooya; Bonchi, Francesco; Gleich, David F.; Greif, Chen; Lakshmanan, Laks V. S.; On, Byung-Won
Motivated by social network data mining problems such as link prediction and collaborative filtering, significant research effort has been devoted to computing topological measures including the Katz score and the commute time. Existing approaches typically approximate all pairwise relationships simultaneously. In this paper, we are interested in computing: the score for a single pair of nodes, and the top-k nodes with the best scores from a given source node. For the pairwise problem, we apply an iterative algorithm that computes upper and lower bounds for the measures we seek. This algorithm exploits a relationship between the Lanczos process and a quadrature rule. For the top-k problem, we propose an algorithm that only accesses a small portion of the graph and is related to techniques used in personalized PageRank computing. To test the scalability and accuracy of our algorithms we experiment with three real-world networks and find that these algorithms run in milliseconds to seconds without any preprocessing.
Fast katz and commuters : efficient estimation of social relatedness in large networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
On, Byung-Won; Lakshmanan, Laks V. S.; Greif, Chen
Motivated by social network data mining problems such as link prediction and collaborative filtering, significant research effort has been devoted to computing topological measures including the Katz score and the commute time. Existing approaches typically approximate all pairwise relationships simultaneously. In this paper, we are interested in computing: the score for a single pair of nodes, and the top-k nodes with the best scores from a given source node. For the pairwise problem, we apply an iterative algorithm that computes upper and lower bounds for the measures we seek. This algorithm exploits a relationship between the Lanczos process and amore » quadrature rule. For the top-k problem, we propose an algorithm that only accesses a small portion of the graph and is related to techniques used in personalized PageRank computing. To test the scalability and accuracy of our algorithms we experiment with three real-world networks and find that these algorithms run in milliseconds to seconds without any preprocessing.« less
Coalmine: an experience in building a system for social media analytics
NASA Astrophysics Data System (ADS)
White, Joshua S.; Matthews, Jeanna N.; Stacy, John L.
2012-06-01
Social media networks make up a large percentage of the content available on the Internet and most of the time users spend online today is in interacting with them. All of the seemingly small pieces of information added by billions of people result in a enormous rapidly changing dataset. Searching, correlating, and understanding billions of individual posts is a significant technical problem; even the data from a single site such as Twitter can be difficult to manage. In this paper, we present Coalmine a social network data-mining system. We describe the overall architecture of Coalmine including the capture, storage and search components. We also describe our experience with pulling 150-350 GB of Twitter data per day through their REST API. Specifically, we discuss our experience with the evolution of the Twitter data APIs from 2011 to 2012 and present strategies for maximizing the amount of data collected. Finally, we describe our experiences looking for evidence of botnet command and control channels and examining patterns of SPAM in the Twitter dataset.
All-Optical Fibre Networks For Coal Mines
NASA Astrophysics Data System (ADS)
Zientkiewicz, Jacek K.
1987-09-01
A topic of the paper is fiber-optic integrated network (FOIN) suited to the most hostile environments existing in coal mines. The use of optical fibres for transmission of mine instrumentation data offers the prospects of improved safety and immunity to electromagnetic interference (EMI). The feasibility of optically powered sensors has opened up new opportunities for research into optical signal processing architectures. This article discusses a new fibre-optic sensor network involving a time domain multiplexing(TDM)scheme and optical signal processing techniques. The pros and cons of different FOIN topologies with respect to coal mine applications are considered. The emphasis has been placed on a recently developed all-optical fibre network using spread spectrum code division multiple access (COMA) techniques. The all-optical networks have applications in explosive environments where electrical isolation is required.
Song, Juyoung; Song, Tae Min; Seo, Dong-Chul; Jin, Jae Hyun
2016-12-01
To investigate online search activity of suicide-related words in South Korean adolescents through data mining of social media Web sites as the suicide rate in South Korea is one of the highest in the world. Out of more than 2.35 billion posts for 2 years from January 1, 2011 to December 31, 2012 on 163 social media Web sites in South Korea, 99,693 suicide-related documents were retrieved by Crawler and analyzed using text mining and opinion mining. These data were further combined with monthly employment rate, monthly rental prices index, monthly youth suicide rate, and monthly number of reported bully victims to fit multilevel models as well as structural equation models. The link from grade pressure to suicide risk showed the largest standardized path coefficient (beta = .357, p < .001) in structural models and a significant random effect (p < .01) in multilevel models. Depression was a partial mediator between suicide risk and grade pressure, low body image, victims of bullying, and concerns about disease. The largest total effect was observed in the grade pressure to depression to suicide risk. The multilevel models indicate about 27% of the variance in the daily suicide-related word search activity is explained by month-to-month variations. A lower employment rate, a higher rental prices index, and more bullying were associated with an increased suicide-related word search activity. Academic pressure appears to be the biggest contributor to Korean adolescents' suicide risk. Real-time suicide-related word search activity monitoring and response system needs to be developed. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Providing Focus via a Social Media Exploitation Strategy
2014-06-01
networking sites, video/photo sharing websites, forums, message boards, blogs and user -generated content in general as a way to determine the volume...that are constantly being updated by users around the world provide an excellent near-real time sensor. This sensor can be used to alert analysts...using the platform is to mine the profiles provided by the various platforms. At a minimum, users require a username, but there is usually a large
A novel data-mining approach leveraging social media to monitor consumer opinion of sitagliptin.
Akay, Altug; Dragomir, Andrei; Erlandsson, Björn-Erik
2015-01-01
A novel data mining method was developed to gauge the experience of the drug Sitagliptin (trade name Januvia) by patients with diabetes mellitus type 2. To this goal, we devised a two-step analysis framework. Initial exploratory analysis using self-organizing maps was performed to determine structures based on user opinions among the forum posts. The results were a compilation of user's clusters and their correlated (positive or negative) opinion of the drug. Subsequent modeling using network analysis methods was used to determine influential users among the forum members. These findings can open new avenues of research into rapid data collection, feedback, and analysis that can enable improved outcomes and solutions for public health and important feedback for the manufacturer.
Influence of Applying Additional Forcing Fans for the Air Distribution in Ventilation Network
NASA Astrophysics Data System (ADS)
Szlązak, Nikodem; Obracaj, Dariusz; Korzec, Marek
2016-09-01
Mining progress in underground mines cause the ongoing movement of working areas. Consequently, it becomes necessary to adapt the ventilation network of a mine to direct airflow into newly-opened districts. For economic reasons, opening new fields is often achieved via underground workings. Length of primary intake and return routes increases and also increases the total resistance of a complex ventilation network. The development of a subsurface structure can make it necessary to change the air distribution in a ventilation network. Increasing airflow into newly-opened districts is necessary. In mines where extraction does not entail gas-related hazards, there is possibility of implementing a push-pull ventilation system in order to supplement airflows to newly developed mining fields. This is achieved by installing subsurface fan stations with forcing fans at the bottom of downcast shaft. In push-pull systems with multiple main fans, it is vital to select forcing fans with characteristic curves matching those of the existing exhaust fans to prevent undesirable mutual interaction. In complex ventilation networks it is necessary to calculate distribution of airflow (especially in networks with a large number of installed fans). In the article the influence of applying additional forcing fans for the air distribution in ventilation network for underground mine were considered. There are also analysed the extent of overpressure caused by the additional forcing fan in branches of the ventilation network (the operating range of additional forcing fan). Possibilities of increasing airflow rate in working areas were conducted.
Barnett, William; Conlon, Mike; Eichmann, David; Kibbe, Warren; Falk-Krzesinski, Holly; Halaas, Michael; Johnson, Layne; Meeks, Eric; Mitchell, Donald; Schleyer, Titus; Stallings, Sarah; Warden, Michael; Kahlon, Maninder
2011-01-01
Research-networking tools use data-mining and social networking to enable expertise discovery, matchmaking and collaboration, which are important facets of team science and translational research. Several commercial and academic platforms have been built, and many institutions have deployed these products to help their investigators find local collaborators. Recent studies, though, have shown the growing importance of multiuniversity teams in science. Unfortunately, the lack of a standard data-exchange model and resistance of universities to share information about their faculty have presented barriers to forming an institutionally supported national network. This case report describes an initiative, which, in only 6 months, achieved interoperability among seven major research-networking products at 28 universities by taking an approach that focused on addressing institutional concerns and encouraging their participation. With this necessary groundwork in place, the second phase of this effort can begin, which will expand the network's functionality and focus on the end users. PMID:22037890
Maier, Raina M.; Díaz-Barriga, Fernando; Field, James A.; Hopkins, James; Klein, Bern; Poulton, Mary M.
2016-01-01
Increasing global demand for metals is straining the ability of the mining industry to physically keep up with demand (physical scarcity). On the other hand, social issues including the environmental and human health consequences of mining as well as the disparity in income distribution from mining revenues are disproportionately felt at the local community level. This has created social rifts, particularly in the developing world, between affected communities and both industry and governments. Such rifts can result in a disruption of the steady supply of metals (situational scarcity). Here we discuss the importance of mining in relationship to poverty, identify steps that have been taken to create a framework for socially responsible mining, and then discuss the need for academia to work in partnership with communities, government, and industry to develop trans-disciplinary research-based step change solutions to the intertwined problems of physical and situational scarcity. PMID:24552962
Gutberlet, J
2015-11-01
Solid waste is a major urban challenge worldwide and reclaiming the resources embedded in waste streams, involving organized recyclers, is a smart response to it. Informal and organized recyclers, mostly in the global south, already act as important urban miners in resource recovery. The paper describes the complex operations of recycling cooperatives and draws attention to their economic, environmental, and social contributions. A detailed discussion based on empirical data from the recycling network COOPCENT-ABC in metropolitan São Paulo, Brazil, contextualizes this form of urban mining. The analysis is situated within Social and Solidarity Economy (SSE) and Ecological Economy (EE) theory. Current challenges related to planning, public policy, and the implementation of cooperative recycling are analysed on the level of individual recyclers, cooperatives, municipalities and internationally. There are still many hurdles for the informal, organized recycling sector to become recognized as a key player in efficient material separation and to up-scale these activities for an effective contribution to the SSE and EE. Policies need to be in place to guarantee fair and safe work relations. There is a win-win situation where communities and the environment will benefit from organized urban mining. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nampa, I. W.; Markus, J. E. R.; Mudita, I. W.; Natonis, R. L.; Bunga, W.; Kaho, N. R.
2018-03-01
When the price of manganese ores in 2012, mining activities declined or even terminated. Ex-miners lose an important source of income, but they did not have any other alternative except going back to slash and burn cultivation, producing enough only for their own food. Their hope for a better live was gone and at the same time they faced stigmatisation as causing environmental degradation from the rest of the community. We carried out this case study to followex-miners in the Tubuhue village who organised themselves to do post-mining rehabilitation by turning the former mining site into an area of productive farming. In-depth interview, field observation and focus group discussion were conducted from 2015 to 2017. We found that during the period of mining boom, slash and burn cultivation decrease significantly but began to increase after no mining activities. Various social transformations took place along with this land use change, but the most important was the miners’ decision to do mining as an organised activity. A strong leader of this organization played a pivotal role in turning the former mining site into an area of productive sedentary farming. This was carried out by organizing the ex-miners into farmers groups and together, constructing drip and sprinkler irrigation networks to water their crops using rain water collected in the mining holes that they had turned into small check-dams. The leader expected that this farming could provide an alternative for ex-miners to obtain cash income to limit them going back doing swidden farming.
Combining complex networks and data mining: Why and how
NASA Astrophysics Data System (ADS)
Zanin, M.; Papo, D.; Sousa, P. A.; Menasalvas, E.; Nicchi, A.; Kubik, E.; Boccaletti, S.
2016-05-01
The increasing power of computer technology does not dispense with the need to extract meaningful information out of data sets of ever growing size, and indeed typically exacerbates the complexity of this task. To tackle this general problem, two methods have emerged, at chronologically different times, that are now commonly used in the scientific community: data mining and complex network theory. Not only do complex network analysis and data mining share the same general goal, that of extracting information from complex systems to ultimately create a new compact quantifiable representation, but they also often address similar problems too. In the face of that, a surprisingly low number of researchers turn out to resort to both methodologies. One may then be tempted to conclude that these two fields are either largely redundant or totally antithetic. The starting point of this review is that this state of affairs should be put down to contingent rather than conceptual differences, and that these two fields can in fact advantageously be used in a synergistic manner. An overview of both fields is first provided, some fundamental concepts of which are illustrated. A variety of contexts in which complex network theory and data mining have been used in a synergistic manner are then presented. Contexts in which the appropriate integration of complex network metrics can lead to improved classification rates with respect to classical data mining algorithms and, conversely, contexts in which data mining can be used to tackle important issues in complex network theory applications are illustrated. Finally, ways to achieve a tighter integration between complex networks and data mining, and open lines of research are discussed.
Investigation into the effect of infrastructure on fly-in fly-out mining workers.
Perring, Adam; Pham, Kieu; Snow, Steve; Buys, Laurie
2014-12-01
To explore fly-in fly-out (FIFO) mining workers' attitudes towards the leisure time they spend in mining camps, the recreational and social aspects of mining camp culture, the camps' communal and recreational infrastructure and activities, and implications for health. In-depth semistructured interviews. Individual interviews at locations convenient for each participant. A total of seven participants, one female and six males. The age group varied within 20-59 years. Marital status varied across participants. A qualitative approach was used to interview participants, with responses thematically analysed. Findings highlight how the recreational infrastructure and activities at mining camps impact participants' enjoyment of the camps and their feelings of community and social inclusion. Three main areas of need were identified in the interviews, as follows: (i) on-site facilities and activities; (ii) the role of infrastructure in facilitating a sense of community; and (iii) barriers to social interaction. Recreational infrastructure and activities enhance the experience of FIFO workers at mining camps. The availability of quality recreational facilities helps promote social interaction, provides for greater social inclusion and improves the experience of mining camps for their temporary FIFO residents. The infrastructure also needs to allow for privacy and individual recreational activities, which participants identified as important emotional needs. Developing appropriate recreational infrastructure at mining camps would enhance social interactions among FIFO workers, improve their well-being and foster a sense of community. Introducing infrastructure to promote social and recreational activities could also reduce alcohol-related social exclusion. © 2014 National Rural Health Alliance Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamel Boulos, Maged; Sanfilippo, Antonio P.; Corley, Courtney D.
2010-03-17
This paper explores techno-social predictive analytics (TPA) and related methods for Web “data mining” where users’ posts and queries are garnered from Social Web (“Web 2.0”) tools such as blogs, microblogging and social networking sites to form coherent representations of real-time health events. The paper includes a brief introduction to commonly used Social Web tools such as mashups and aggregators, and maps their exponential growth as an open architecture of participation for the masses and an emerging way to gain insight about people’s collective health status of whole populations. Several health related tool examples are described and demonstrated as practicalmore » means through which health professionals might create clear location specific pictures of epidemiological data such as flu outbreaks.« less
Li, Jin; Wang, Limei; Guo, Maozu; Zhang, Ruijie; Dai, Qiguo; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Xuan, Ping; Zhang, Mingming
2015-01-01
In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein-protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene-gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining.
Kreula, Sanna M; Kaewphan, Suwisa; Ginter, Filip; Jones, Patrik R
2018-01-01
The increasing move towards open access full-text scientific literature enhances our ability to utilize advanced text-mining methods to construct information-rich networks that no human will be able to grasp simply from 'reading the literature'. The utility of text-mining for well-studied species is obvious though the utility for less studied species, or those with no prior track-record at all, is not clear. Here we present a concept for how advanced text-mining can be used to create information-rich networks even for less well studied species and apply it to generate an open-access gene-gene association network resource for Synechocystis sp. PCC 6803, a representative model organism for cyanobacteria and first case-study for the methodology. By merging the text-mining network with networks generated from species-specific experimental data, network integration was used to enhance the accuracy of predicting novel interactions that are biologically relevant. A rule-based algorithm (filter) was constructed in order to automate the search for novel candidate genes with a high degree of likely association to known target genes by (1) ignoring established relationships from the existing literature, as they are already 'known', and (2) demanding multiple independent evidences for every novel and potentially relevant relationship. Using selected case studies, we demonstrate the utility of the network resource and filter to ( i ) discover novel candidate associations between different genes or proteins in the network, and ( ii ) rapidly evaluate the potential role of any one particular gene or protein. The full network is provided as an open-source resource.
Wikipedia mining of hidden links between political leaders
NASA Astrophysics Data System (ADS)
Frahm, Klaus M.; Jaffrès-Runser, Katia; Shepelyansky, Dima L.
2016-12-01
We describe a new method of reduced Google matrix which allows to establish direct and hidden links between a subset of nodes of a large directed network. This approach uses parallels with quantum scattering theory, developed for processes in nuclear and mesoscopic physics and quantum chaos. The method is applied to the Wikipedia networks in different language editions analyzing several groups of political leaders of USA, UK, Germany, France, Russia and G20. We demonstrate that this approach allows to recover reliably direct and hidden links among political leaders. We argue that the reduced Google matrix method can form the mathematical basis for studies in social and political sciences analyzing Leader-Members eXchange (LMX).
Maritime In Situ Sensing Inter-Operable Networks (MISSION)
2013-09-30
creating acoustic communications (acomms) technologies enabling underwater sensor networks and distributed systems. Figure 1. Project MISSION...Marn, S. Ramp, F. Bahr, “Implementation of an Underwater Wireless Sensor Network in San Francisco Bay,” Proc. 10th International Mine Warfare...NILUS – An Underwater Acoustic Sensor Network Demonstrator System,” Proc. 10th International Mine Warfare Technology Symposium, Monterey, CA, May 7
Van Landeghem, Sofie; De Bodt, Stefanie; Drebert, Zuzanna J; Inzé, Dirk; Van de Peer, Yves
2013-03-01
Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein-protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies.
Researching Mental Health Disorders in the Era of Social Media: Systematic Review
Vadillo, Miguel A; Curcin, Vasa
2017-01-01
Background Mental illness is quickly becoming one of the most prevalent public health problems worldwide. Social network platforms, where users can express their emotions, feelings, and thoughts, are a valuable source of data for researching mental health, and techniques based on machine learning are increasingly used for this purpose. Objective The objective of this review was to explore the scope and limits of cutting-edge techniques that researchers are using for predictive analytics in mental health and to review associated issues, such as ethical concerns, in this area of research. Methods We performed a systematic literature review in March 2017, using keywords to search articles on data mining of social network data in the context of common mental health disorders, published between 2010 and March 8, 2017 in medical and computer science journals. Results The initial search returned a total of 5386 articles. Following a careful analysis of the titles, abstracts, and main texts, we selected 48 articles for review. We coded the articles according to key characteristics, techniques used for data collection, data preprocessing, feature extraction, feature selection, model construction, and model verification. The most common analytical method was text analysis, with several studies using different flavors of image analysis and social interaction graph analysis. Conclusions Despite an increasing number of studies investigating mental health issues using social network data, some common problems persist. Assembling large, high-quality datasets of social media users with mental disorder is problematic, not only due to biases associated with the collection methods, but also with regard to managing consent and selecting appropriate analytics techniques. PMID:28663166
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockie, S.; Franettovich, M.; Petkova-Timmer, V.
Two social impact assessment (SIA) studies of Central Queensland's Coppabella coal mine were undertaken in 2002-2003 and 2006-2007. As ex post studies of actual change, these provide a reference point for predictive assessments of proposed resource extraction projects at other sites, while the longitudinal element added by the second study illustrates how impacts associated with one mine may vary over time due to changing economic and social conditions. It was found that the traditional coupling of local economic vitality and community development to the life cycle of resource projects - the resource community cycle - was mediated by labour recruitmentmore » and social infrastructure policies that reduced the emphasis on localised employment and investment strategies. and by the cumulative impacts of multiple mining projects within relative proximity to each other. The resource community cycle was accelerated and local communities forced to consider ways of attracting secondary investment and/or alternative industries early in the operational life of the Coppabella mine in order to secure significant economic benefits and to guard against the erosion of social capital and the ability to cope with future downturns in the mining sector.« less
Air Pollution Monitoring and Mining Based on Sensor Grid in London
Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John
2008-01-01
In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a two-layer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm. PMID:27879895
Air Pollution Monitoring and Mining Based on Sensor Grid in London.
Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John
2008-06-01
In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.
A new multi-scale method to reveal hierarchical modular structures in biological networks.
Jiao, Qing-Ju; Huang, Yan; Shen, Hong-Bin
2016-11-15
Biological networks are effective tools for studying molecular interactions. Modular structure, in which genes or proteins may tend to be associated with functional modules or protein complexes, is a remarkable feature of biological networks. Mining modular structure from biological networks enables us to focus on a set of potentially important nodes, which provides a reliable guide to future biological experiments. The first fundamental challenge in mining modular structure from biological networks is that the quality of the observed network data is usually low owing to noise and incompleteness in the obtained networks. The second problem that poses a challenge to existing approaches to the mining of modular structure is that the organization of both functional modules and protein complexes in networks is far more complicated than was ever thought. For instance, the sizes of different modules vary considerably from each other and they often form multi-scale hierarchical structures. To solve these problems, we propose a new multi-scale protocol for mining modular structure (named ISIMB) driven by a node similarity metric, which works in an iteratively converged space to reduce the effects of the low data quality of the observed network data. The multi-scale node similarity metric couples both the local and the global topology of the network with a resolution regulator. By varying this resolution regulator to give different weightings to the local and global terms in the metric, the ISIMB method is able to fit the shape of modules and to detect them on different scales. Experiments on protein-protein interaction and genetic interaction networks show that our method can not only mine functional modules and protein complexes successfully, but can also predict functional modules from specific to general and reveal the hierarchical organization of protein complexes.
Opinion data mining based on DNA method and ORA software
NASA Astrophysics Data System (ADS)
Tian, Ru-Ya; Wu, Lei; Liang, Xiao-He; Zhang, Xue-Fu
2018-01-01
Public opinion, especially the online public opinion is a critical issue when it comes to mining its characteristics. Because it can be formed directly and intensely in a short time, and may lead to the outbreak of online group events, and the formation of online public opinion crisis. This may become the pushing hand of a public crisis event, or even have negative social impacts, which brings great challenges to the government management. Data from the mass media which reveal implicit, previously unknown, and potentially valuable information, can effectively help us to understand the evolution law of public opinion, and provide a useful reference for rumor intervention. Based on the Dynamic Network Analysis method, this paper uses ORA software to mine characteristics of public opinion information, opinion topics, and public opinion agents through a series of indicators, and quantitatively analyzed the relationships between them. The results show that through the analysis of the 8 indexes associating with opinion data mining, we can have a basic understanding of the public opinion characteristics of an opinion event, such as who is important in the opinion spreading process, the information grasping condition, and the opinion topics release situation.
Quantifying discrepancies in opinion spectra from online and offline networks.
Lee, Deokjae; Hahn, Kyu S; Yook, Soon-Hyung; Park, Juyong
2015-01-01
Online social media such as Twitter are widely used for mining public opinions and sentiments on various issues and topics. The sheer volume of the data generated and the eager adoption by the online-savvy public are helping to raise the profile of online media as a convenient source of news and public opinions on social and political issues as well. Due to the uncontrollable biases in the population who heavily use the media, however, it is often difficult to measure how accurately the online sphere reflects the offline world at large, undermining the usefulness of online media. One way of identifying and overcoming the online-offline discrepancies is to apply a common analytical and modeling framework to comparable data sets from online and offline sources and cross-analyzing the patterns found therein. In this paper we study the political spectra constructed from Twitter and from legislators' voting records as an example to demonstrate the potential limits of online media as the source for accurate public opinion mining, and how to overcome the limits by using offline data simultaneously.
Patterns of solidarity: A case study of self-organization in underground mining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaught, C.
1991-01-01
This case study in underground coal mining is informed by some notions of scholars who have written in widely divergent traditions and disciplines. Two major themes dealt with are labor's subjective moment and workplace culture. Regarding the subjective moment of labor, it is argued that there is an expressive element in work which defies reductions to some exchange principle. The struggle, for those articulating capitalist work processes, is to keep this purposive activity from being diverted totally to alien ends. The mediating element in this struggle, which structural Marxists have ignored in their analyses of capitalist workplaces, is culture. Theremore » is created a network of lasting relationships in the work group over and above any interdependence engendered by the division of labor. This shared culture allows for a collective recognition of the common product of group work, the shared nature of a particular work process, even the liberating potential of social relations themselves. The group's internalization of these social facts provides a base from which workers can mount an unceasing effort to control their workplace.« less
Quantifying Discrepancies in Opinion Spectra from Online and Offline Networks
Lee, Deokjae; Hahn, Kyu S.; Yook, Soon-Hyung; Park, Juyong
2015-01-01
Online social media such as Twitter are widely used for mining public opinions and sentiments on various issues and topics. The sheer volume of the data generated and the eager adoption by the online-savvy public are helping to raise the profile of online media as a convenient source of news and public opinions on social and political issues as well. Due to the uncontrollable biases in the population who heavily use the media, however, it is often difficult to measure how accurately the online sphere reflects the offline world at large, undermining the usefulness of online media. One way of identifying and overcoming the online–offline discrepancies is to apply a common analytical and modeling framework to comparable data sets from online and offline sources and cross-analyzing the patterns found therein. In this paper we study the political spectra constructed from Twitter and from legislators' voting records as an example to demonstrate the potential limits of online media as the source for accurate public opinion mining, and how to overcome the limits by using offline data simultaneously. PMID:25915931
Towards Large-scale Twitter Mining for Drug-related Adverse Events.
Bian, Jiang; Topaloglu, Umit; Yu, Fan
2012-10-29
Drug-related adverse events pose substantial risks to patients who consume post-market or Drug-related adverse events pose substantial risks to patients who consume post-market or investigational drugs. Early detection of adverse events benefits not only the drug regulators, but also the manufacturers for pharmacovigilance. Existing methods rely on patients' "spontaneous" self-reports that attest problems. The increasing popularity of social media platforms like the Twitter presents us a new information source for finding potential adverse events. Given the high frequency of user updates, mining Twitter messages can lead us to real-time pharmacovigilance. In this paper, we describe an approach to find drug users and potential adverse events by analyzing the content of twitter messages utilizing Natural Language Processing (NLP) and to build Support Vector Machine (SVM) classifiers. Due to the size nature of the dataset (i.e., 2 billion Tweets), the experiments were conducted on a High Performance Computing (HPC) platform using MapReduce, which exhibits the trend of big data analytics. The results suggest that daily-life social networking data could help early detection of important patient safety issues.
Integrated environmental impact assessment: a Canadian example.
Kwiatkowski, Roy E.; Ooi, Maria
2003-01-01
The Canadian federal process for environmental impact assessment (EIA) integrates health, social, and environmental aspects into either a screening, comprehensive study, or a review by a public panel, depending on the expected severity of potential adverse environmental effects. In this example, a Public Review Panel considered a proposed diamond mining project in Canada's northern territories, where 50% of the population are Aboriginals. The Panel specifically instructed the project proposer to determine how to incorporate traditional knowledge into the gathering of baseline information, preparing impact prediction, and planning mitigation and monitoring. Traditional knowledge is defined as the knowledge, innovations and practices of indigenous and/or local communities developed from experience gained over the centuries and adapted to local culture and environment. The mining company was asked to consider in its EIA: health, demographics, social and cultural patterns; services and infrastructure; local, regional and territorial economy; land and resource use; employment, education and training; government; and other matters. Cooperative efforts between government, industry and the community led to a project that coordinated the concerns of all interested stakeholders and the needs of present and future generations, thereby meeting the goals of sustainable development. The mitigation measures that were implemented take into account: income and social status, social support networks, education, employment and working conditions, physical environments, personal health practices and coping skills, and health services. PMID:12894328
NASA Astrophysics Data System (ADS)
Shyu, Mei-Ling; Huang, Zifang; Luo, Hongli
In recent years, pervasive computing infrastructures have greatly improved the interaction between human and system. As we put more reliance on these computing infrastructures, we also face threats of network intrusion and/or any new forms of undesirable IT-based activities. Hence, network security has become an extremely important issue, which is closely connected with homeland security, business transactions, and people's daily life. Accurate and efficient intrusion detection technologies are required to safeguard the network systems and the critical information transmitted in the network systems. In this chapter, a novel network intrusion detection framework for mining and detecting sequential intrusion patterns is proposed. The proposed framework consists of a Collateral Representative Subspace Projection Modeling (C-RSPM) component for supervised classification, and an inter-transactional association rule mining method based on Layer Divided Modeling (LDM) for temporal pattern analysis. Experiments on the KDD99 data set and the traffic data set generated by a private LAN testbed show promising results with high detection rates, low processing time, and low false alarm rates in mining and detecting sequential intrusion detections.
A systematic approach to analyze the social determinants of cardiovascular disease.
Martínez-García, Mireya; Salinas-Ortega, Magaly; Estrada-Arriaga, Iván; Hernández-Lemus, Enrique; García-Herrera, Rodrigo; Vallejo, Maite
2018-01-01
Cardiovascular diseases are the leading cause of human mortality worldwide. Among the many factors associated with the etiology, incidence, and evolution of such diseases; social and environmental issues constitute an important and often overlooked component. Understanding to a greater extent the scope to which such social determinants of cardiovascular diseases (SDCVD) occur as well as the connections among them would be useful for public health policy making. Here, we will explore the historical trends and associations among the main SDCVD in the published literature. Our aim will be finding meaningful relations among those that will help us to have an integrated view on this complex phenomenon by providing historical context and a relational framework. To uncover such relations, we used a data mining approach to the current literature, followed by network analysis of the interrelationships discovered. To this end, we systematically mined the PubMed/MEDLINE database for references of published studies on the subject, as outlined by the World Health Organization's framework on social determinants of health. The analyzed structured corpus consisted in circa 1190 articles categorized by means of the Medical Subheadings (MeSH) content-descriptor. The use of data analytics techniques allowed us to find a number of non-trivial connections among SDCVDs. Such relations may be relevant to get a deeper understanding of the social and environmental issues associated with cardiovascular disease and are often overlooked by traditional literature survey approaches, such as systematic reviews and meta-analyses.
A systematic approach to analyze the social determinants of cardiovascular disease
Martínez-García, Mireya; Salinas-Ortega, Magaly; Estrada-Arriaga, Iván; Hernández-Lemus, Enrique; García-Herrera, Rodrigo
2018-01-01
Cardiovascular diseases are the leading cause of human mortality worldwide. Among the many factors associated with the etiology, incidence, and evolution of such diseases; social and environmental issues constitute an important and often overlooked component. Understanding to a greater extent the scope to which such social determinants of cardiovascular diseases (SDCVD) occur as well as the connections among them would be useful for public health policy making. Here, we will explore the historical trends and associations among the main SDCVD in the published literature. Our aim will be finding meaningful relations among those that will help us to have an integrated view on this complex phenomenon by providing historical context and a relational framework. To uncover such relations, we used a data mining approach to the current literature, followed by network analysis of the interrelationships discovered. To this end, we systematically mined the PubMed/MEDLINE database for references of published studies on the subject, as outlined by the World Health Organization’s framework on social determinants of health. The analyzed structured corpus consisted in circa 1190 articles categorized by means of the Medical Subheadings (MeSH) content-descriptor. The use of data analytics techniques allowed us to find a number of non-trivial connections among SDCVDs. Such relations may be relevant to get a deeper understanding of the social and environmental issues associated with cardiovascular disease and are often overlooked by traditional literature survey approaches, such as systematic reviews and meta-analyses. PMID:29370200
Software tool for data mining and its applications
NASA Astrophysics Data System (ADS)
Yang, Jie; Ye, Chenzhou; Chen, Nianyi
2002-03-01
A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.
Kreula, Sanna M.; Kaewphan, Suwisa; Ginter, Filip
2018-01-01
The increasing move towards open access full-text scientific literature enhances our ability to utilize advanced text-mining methods to construct information-rich networks that no human will be able to grasp simply from ‘reading the literature’. The utility of text-mining for well-studied species is obvious though the utility for less studied species, or those with no prior track-record at all, is not clear. Here we present a concept for how advanced text-mining can be used to create information-rich networks even for less well studied species and apply it to generate an open-access gene-gene association network resource for Synechocystis sp. PCC 6803, a representative model organism for cyanobacteria and first case-study for the methodology. By merging the text-mining network with networks generated from species-specific experimental data, network integration was used to enhance the accuracy of predicting novel interactions that are biologically relevant. A rule-based algorithm (filter) was constructed in order to automate the search for novel candidate genes with a high degree of likely association to known target genes by (1) ignoring established relationships from the existing literature, as they are already ‘known’, and (2) demanding multiple independent evidences for every novel and potentially relevant relationship. Using selected case studies, we demonstrate the utility of the network resource and filter to (i) discover novel candidate associations between different genes or proteins in the network, and (ii) rapidly evaluate the potential role of any one particular gene or protein. The full network is provided as an open-source resource. PMID:29844966
Van Landeghem, Sofie; De Bodt, Stefanie; Drebert, Zuzanna J.; Inzé, Dirk; Van de Peer, Yves
2013-01-01
Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein–protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies. PMID:23532071
A Closed Network Queue Model of Underground Coal Mining Production, Failure, and Repair
NASA Technical Reports Server (NTRS)
Lohman, G. M.
1978-01-01
Underground coal mining system production, failures, and repair cycles were mathematically modeled as a closed network of two queues in series. The model was designed to better understand the technological constraints on availability of current underground mining systems, and to develop guidelines for estimating the availability of advanced mining systems and their associated needs for spares as well as production and maintenance personnel. It was found that: mine performance is theoretically limited by the maintainability ratio, significant gains in availability appear possible by means of small improvements in the time between failures the number of crews and sections should be properly balanced for any given maintainability ratio, and main haulage systems closest to the mine mouth require the most attention to reliability.
Unsupervised Tensor Mining for Big Data Practitioners.
Papalexakis, Evangelos E; Faloutsos, Christos
2016-09-01
Multiaspect data are ubiquitous in modern Big Data applications. For instance, different aspects of a social network are the different types of communication between people, the time stamp of each interaction, and the location associated to each individual. How can we jointly model all those aspects and leverage the additional information that they introduce to our analysis? Tensors, which are multidimensional extensions of matrices, are a principled and mathematically sound way of modeling such multiaspect data. In this article, our goal is to popularize tensors and tensor decompositions to Big Data practitioners by demonstrating their effectiveness, outlining challenges that pertain to their application in Big Data scenarios, and presenting our recent work that tackles those challenges. We view this work as a step toward a fully automated, unsupervised tensor mining tool that can be easily and broadly adopted by practitioners in academia and industry.
ERIC Educational Resources Information Center
Schoech, Dick; Quinn, Andrew; Rycraft, Joan R.
2000-01-01
Examines the historical and larger context of data mining and describes data mining processes, techniques, and tools. Illustrates these using a child welfare dataset concerning the employee turnover that is mined, using logistic regression and a Bayesian neural network. Discusses the data mining process, the resulting models, their predictive…
Sanda, M-A; Johansson, J; Johansson, B; Abrahamsson, L
2011-10-01
The purpose of this article is to develop knowledge and learning on the best way to automate organisational activities in deep mines that could lead to the creation of harmony between the human, technical and the social system, towards increased productivity. The findings showed that though the introduction of high-level technological tools in the work environment disrupted the social relations developed over time amongst the employees in most situations, the technological tools themselves became substitute social collaborative partners to the employees. It is concluded that, in developing a digitised mining production system, knowledge of the social collaboration between the humans (miners) and the technology they use for their work must be developed. By implication, knowledge of the human's subject-oriented and object-oriented activities should be considered as an important integral resource for developing a better technological, organisational and human interactive subsystem when designing the intelligent automation and digitisation systems for deep mines. STATEMENT OF RELEVANCE: This study focused on understanding the social collaboration between humans and the technologies they use to work in underground mines. The learning provides an added knowledge in designing technologies and work organisations that could better enhance the human-technology interactive and collaborative system in the automation and digitisation of underground mines.
Correlations between Community Structure and Link Formation in Complex Networks
Liu, Zhen; He, Jia-Lin; Kapoor, Komal; Srivastava, Jaideep
2013-01-01
Background Links in complex networks commonly represent specific ties between pairs of nodes, such as protein-protein interactions in biological networks or friendships in social networks. However, understanding the mechanism of link formation in complex networks is a long standing challenge for network analysis and data mining. Methodology/Principal Findings Links in complex networks have a tendency to cluster locally and form so-called communities. This widely existed phenomenon reflects some underlying mechanism of link formation. To study the correlations between community structure and link formation, we present a general computational framework including a theory for network partitioning and link probability estimation. Our approach enables us to accurately identify missing links in partially observed networks in an efficient way. The links having high connection likelihoods in the communities reveal that links are formed preferentially to create cliques and accordingly promote the clustering level of the communities. The experimental results verify that such a mechanism can be well captured by our approach. Conclusions/Significance Our findings provide a new insight into understanding how links are created in the communities. The computational framework opens a wide range of possibilities to develop new approaches and applications, such as community detection and missing link prediction. PMID:24039818
IA-Regional-Radio - Social Network for Radio Recommendation
NASA Astrophysics Data System (ADS)
Dziczkowski, Grzegorz; Bougueroua, Lamine; Wegrzyn-Wolska, Katarzyna
This chapter describes the functions of a system proposed for the music hit recommendation from social network data base. This system carries out the automatic collection, evaluation and rating of music reviewers and the possibility for listeners to rate musical hits and recommendations deduced from auditor's profiles in the form of regional Internet radio. First, the system searches and retrieves probable music reviews from the Internet. Subsequently, the system carries out an evaluation and rating of those reviews. From this list of music hits, the system directly allows notation from our application. Finally, the system automatically creates the record list diffused each day depending on the region, the year season, the day hours and the age of listeners. Our system uses linguistics and statistic methods for classifying music opinions and data mining techniques for recommendation part needed for recorded list creation. The principal task is the creation of popular intelligent radio adaptive on auditor's age and region - IA-Regional-Radio.
Exploiting Recurring Structure in a Semantic Network
NASA Technical Reports Server (NTRS)
Wolfe, Shawn R.; Keller, Richard M.
2004-01-01
With the growing popularity of the Semantic Web, an increasing amount of information is becoming available in machine interpretable, semantically structured networks. Within these semantic networks are recurring structures that could be mined by existing or novel knowledge discovery methods. The mining of these semantic structures represents an interesting area that focuses on mining both for and from the Semantic Web, with surprising applicability to problems confronting the developers of Semantic Web applications. In this paper, we present representative examples of recurring structures and show how these structures could be used to increase the utility of a semantic repository deployed at NASA.
Application and Exploration of Big Data Mining in Clinical Medicine.
Zhang, Yue; Guo, Shu-Li; Han, Li-Na; Li, Tie-Ling
2016-03-20
To review theories and technologies of big data mining and their application in clinical medicine. Literatures published in English or Chinese regarding theories and technologies of big data mining and the concrete applications of data mining technology in clinical medicine were obtained from PubMed and Chinese Hospital Knowledge Database from 1975 to 2015. Original articles regarding big data mining theory/technology and big data mining's application in the medical field were selected. This review characterized the basic theories and technologies of big data mining including fuzzy theory, rough set theory, cloud theory, Dempster-Shafer theory, artificial neural network, genetic algorithm, inductive learning theory, Bayesian network, decision tree, pattern recognition, high-performance computing, and statistical analysis. The application of big data mining in clinical medicine was analyzed in the fields of disease risk assessment, clinical decision support, prediction of disease development, guidance of rational use of drugs, medical management, and evidence-based medicine. Big data mining has the potential to play an important role in clinical medicine.
Study on hydraulic characteristics of mine dust-proof water supply network
NASA Astrophysics Data System (ADS)
Deng, Quanlong; Jiang, Zhongan; Han, Shuo; Fu, Enqi
2018-01-01
In order to study the hydraulic characteristics of mine dust-proof water supply network and obtain the change rule of water consumption and water pressure, according to the similarity principle and the fluid continuity equation and energy equation, the similarity criterion of mine dust-proof water supply network is deduced, and a similar model of dust-proof water supply network is established based on the prototype of Kailuan Group, the characteristics of hydraulic parameters in water supply network are studied experimentally. The results show that water pressure at each point is a dynamic process, and there is a negative correlation between water pressure and water consumption. With the increase of water consumption, the pressure of water points show a decreasing trend. According to the structure of the pipe network and the location of the water point, the influence degree on the pressure of each point is different.
Construct mine environment monitoring system based on wireless mesh network
NASA Astrophysics Data System (ADS)
Chen, Xin; Ge, Gengyu; Liu, Yinmei; Cheng, Aimin; Wu, Jun; Fu, Jun
2018-04-01
The system uses wireless Mesh network as a network transmission medium, and strive to establish an effective and reliable underground environment monitoring system. The system combines wireless network technology and embedded technology to monitor the internal data collected in the mine and send it to the processing center for analysis and environmental assessment. The system can be divided into two parts: the main control network module and the data acquisition terminal, and the SPI bus technology is used for mutual communication between them. Multi-channel acquisition and control interface design Data acquisition and control terminal in the analog signal acquisition module, digital signal acquisition module, and digital signal output module. The main control network module running Linux operating system, in which the transplant SPI driver, USB card driver and AODV routing protocol. As a result, the internal data collection and reporting of the mine are realized.
Knowledge Discovery from Massive Healthcare Claims Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandola, Varun; Sukumar, Sreenivas R; Schryver, Jack C
The role of big data in addressing the needs of the present healthcare system in US and rest of the world has been echoed by government, private, and academic sectors. There has been a growing emphasis to explore the promise of big data analytics in tapping the potential of the massive healthcare data emanating from private and government health insurance providers. While the domain implications of such collaboration are well known, this type of data has been explored to a limited extent in the data mining community. The objective of this paper is two fold: first, we introduce the emergingmore » domain of big"healthcare claims data to the KDD community, and second, we describe the success and challenges that we encountered in analyzing this data using state of art analytics for massive data. Specically, we translate the problem of analyzing healthcare data into some of the most well-known analysis problems in the data mining community, social network analysis, text mining, and temporal analysis and higher order feature construction, and describe how advances within each of these areas can be leveraged to understand the domain of healthcare. Each case study illustrates a unique intersection of data mining and healthcare with a common objective of improving the cost-care ratio by mining for opportunities to improve healthcare operations and reducing hat seems to fall under fraud, waste,and abuse.« less
Evaluating Social Media Networks in Medicines Safety Surveillance: Two Case Studies.
Coloma, Preciosa M; Becker, Benedikt; Sturkenboom, Miriam C J M; van Mulligen, Erik M; Kors, Jan A
2015-10-01
There is growing interest in whether social media can capture patient-generated information relevant for medicines safety surveillance that cannot be found in traditional sources. The aim of this study was to evaluate the potential contribution of mining social media networks for medicines safety surveillance using the following associations as case studies: (1) rosiglitazone and cardiovascular events (i.e. stroke and myocardial infarction); and (2) human papilloma virus (HPV) vaccine and infertility. We collected publicly accessible, English-language posts on Facebook, Google+, and Twitter until September 2014. Data were queried for co-occurrence of keywords related to the drug/vaccine and event of interest within a post. Messages were analysed with respect to geographical distribution, context, linking to other web content, and author's assertion regarding the supposed association. A total of 2537 posts related to rosiglitazone/cardiovascular events and 2236 posts related to HPV vaccine/infertility were retrieved, with the majority of posts representing data from Twitter (98 and 85%, respectively) and originating from users in the US. Approximately 21% of rosiglitazone-related posts and 84% of HPV vaccine-related posts referenced other web pages, mostly news items, law firms' websites, or blogs. Assertion analysis predominantly showed affirmation of the association of rosiglitazone/cardiovascular events (72%; n = 1821) and of HPV vaccine/infertility (79%; n = 1758). Only ten posts described personal accounts of rosiglitazone/cardiovascular adverse event experiences, and nine posts described HPV vaccine problems related to infertility. Publicly available data from the considered social media networks were sparse and largely untrackable for the purpose of providing early clues of safety concerns regarding the prespecified case studies. Further research investigating other case studies and exploring other social media platforms are necessary to further characterise the usefulness of social media for safety surveillance.
Researching Mental Health Disorders in the Era of Social Media: Systematic Review.
Wongkoblap, Akkapon; Vadillo, Miguel A; Curcin, Vasa
2017-06-29
Mental illness is quickly becoming one of the most prevalent public health problems worldwide. Social network platforms, where users can express their emotions, feelings, and thoughts, are a valuable source of data for researching mental health, and techniques based on machine learning are increasingly used for this purpose. The objective of this review was to explore the scope and limits of cutting-edge techniques that researchers are using for predictive analytics in mental health and to review associated issues, such as ethical concerns, in this area of research. We performed a systematic literature review in March 2017, using keywords to search articles on data mining of social network data in the context of common mental health disorders, published between 2010 and March 8, 2017 in medical and computer science journals. The initial search returned a total of 5386 articles. Following a careful analysis of the titles, abstracts, and main texts, we selected 48 articles for review. We coded the articles according to key characteristics, techniques used for data collection, data preprocessing, feature extraction, feature selection, model construction, and model verification. The most common analytical method was text analysis, with several studies using different flavors of image analysis and social interaction graph analysis. Despite an increasing number of studies investigating mental health issues using social network data, some common problems persist. Assembling large, high-quality datasets of social media users with mental disorder is problematic, not only due to biases associated with the collection methods, but also with regard to managing consent and selecting appropriate analytics techniques. ©Akkapon Wongkoblap, Miguel A Vadillo, Vasa Curcin. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 29.06.2017.
Xie, Jiaheng; Liu, Xiao; Dajun Zeng, Daniel
2018-01-01
Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers' e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media. Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network. Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed. Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Mining Adverse Drug Reactions in Social Media with Named Entity Recognition and Semantic Methods.
Chen, Xiaoyi; Deldossi, Myrtille; Aboukhamis, Rim; Faviez, Carole; Dahamna, Badisse; Karapetiantz, Pierre; Guenegou-Arnoux, Armelle; Girardeau, Yannick; Guillemin-Lanne, Sylvie; Lillo-Le-Louët, Agnès; Texier, Nathalie; Burgun, Anita; Katsahian, Sandrine
2017-01-01
Suspected adverse drug reactions (ADR) reported by patients through social media can be a complementary source to current pharmacovigilance systems. However, the performance of text mining tools applied to social media text data to discover ADRs needs to be evaluated. In this paper, we introduce the approach developed to mine ADR from French social media. A protocol of evaluation is highlighted, which includes a detailed sample size determination and evaluation corpus constitution. Our text mining approach provided very encouraging preliminary results with F-measures of 0.94 and 0.81 for recognition of drugs and symptoms respectively, and with F-measure of 0.70 for ADR detection. Therefore, this approach is promising for downstream pharmacovigilance analysis.
A deployment of broadband seismic stations in two deep gold mines, South Africa
McGarr, Arthur F.; Boettcher, Margaret S.; Fletcher, Jon Peter B.; Johnston, Malcolm J.; Durrheim, R.; Spottiswoode, S.; Milev, A.
2009-01-01
In-mine seismic networks throughout the TauTona and Mponeng gold mines provide precise locations and seismic source parameters of earthquakes. They also support small-scale experimental projects, including NELSAM (Natural Earthquake Laboratory in South African Mines), which is intended to record, at close hand, seismic rupture of a geologic fault that traverses the project region near the deepest part of TauTona. To resolve some questions regarding the in-mine and NELSAM networks, we deployed four portable broadband seismic stations at deep sites within TauTona and Mponeng for one week during September 2007 and recorded ground acceleration. Moderately large earthquakes within our temporary network were recorded with sufficiently high signal-to-noise that we were able to integrate the acceleration to ground velocity and displacement, from which moment tensors could be determined. We resolved the questions concerning the NELSAM and in-mine networks by using these moment tensors to calculate synthetic seismograms at various network recording sites for comparison with the ground motion recorded at the same locations. We also used the peak velocity of the S wave pulse, corrected for attenuation with distance, to estimate the maximum slip within the rupture zone of an earthquake. We then combined the maximum slip and seismic moment with results from laboratory friction experiments to estimate maximum slip rates within the same high-slip patches of the rupture zone. For the four largest earthquakes recorded within our network, all with magnitudes near 2, these inferred maximum slips range from 4 to 27 mm and the corresponding maximum slip rates range from 1 to 6 m/s. These results, in conjunction with information from previous ground motion studies, indicate that underground support should be capable of withstanding peak ground velocities of at least 5 m/s.
NASA Astrophysics Data System (ADS)
Syarif, Andi Erwin; Hatori, Tsuyoshi
2017-06-01
Creating a soft-landing path for mine closure is key to the sustainability of the mining region. In this research, we presents a case of mine closure in Soroako, a small mining town in the north-east of South Sulawesi province, in the center of Sulawesi Island in Indonesia. Especially we investigates corporate social responsibility (CSR) programs of a mining company, PT Vale Indonesia Tbk (PTVI), towards a soft-landing of mine closure in this region. The data of the CSR programs are gathered from in-depth interviews, the annual reports and managerial reports. Furthermore we presents an integrated view of CSR to close mining in a sustainable manner. We then evaluate CSR strategies of the company and its performance from this viewpoint. Based on these steps, the way to improve the CSR mine closure scenario for enhancing the regional sustainability is discussed and recommended.
Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting
2016-01-01
Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes’ placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper. PMID:26828500
Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting
2016-01-28
Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes' placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper.
Hamm, V; Collon-Drouaillet, P; Fabriol, R
2008-02-19
The flooding of abandoned mines in the Lorraine Iron Basin (LIB) over the past 25 years has degraded the quality of the groundwater tapped for drinking water. High concentrations of dissolved sulphate have made the water unsuitable for human consumption. This problematic issue has led to the development of numerical tools to support water-resource management in mining contexts. Here we examine two modelling approaches using different numerical tools that we tested on the Saizerais flooded iron-ore mine (Lorraine, France). A first approach considers the Saizerais Mine as a network of two chemical reactors (NCR). The second approach is based on a physically distributed pipe network model (PNM) built with EPANET 2 software. This approach considers the mine as a network of pipes defined by their geometric and chemical parameters. Each reactor in the NCR model includes a detailed chemical model built to simulate quality evolution in the flooded mine water. However, in order to obtain a robust PNM, we simplified the detailed chemical model into a specific sulphate dissolution-precipitation model that is included as sulphate source/sink in both a NCR model and a pipe network model. Both the NCR model and the PNM, based on different numerical techniques, give good post-calibration agreement between the simulated and measured sulphate concentrations in the drinking-water well and overflow drift. The NCR model incorporating the detailed chemical model is useful when a detailed chemical behaviour at the overflow is needed. The PNM incorporating the simplified sulphate dissolution-precipitation model provides better information of the physics controlling the effect of flow and low flow zones, and the time of solid sulphate removal whereas the NCR model will underestimate clean-up time due to the complete mixing assumption. In conclusion, the detailed NCR model will give a first assessment of chemical processes at overflow, and in a second time, the PNM model will provide more detailed information on flow and chemical behaviour (dissolved sulphate concentrations, remaining mass of solid sulphate) in the network. Nevertheless, both modelling methods require hydrological and chemical parameters (recharge flow rate, outflows, volume of mine voids, mass of solids, kinetic constants of the dissolution-precipitation reactions), which are commonly not available for a mine and therefore call for calibration data.
Boschen, Rachel E; Rowden, Ashley A; Clark, Malcolm R; Pallentin, Arne; Gardner, Jonathan P A
2016-04-01
Mining of seafloor massive sulfides (SMS) is imminent, but the ecology of assemblages at SMS deposits is poorly known. Proposed conservation strategies include protected areas to preserve biodiversity at risk from mining impacts. Determining site suitability requires biological characterisation of the mine site and protected area(s). Video survey of a proposed mine site and protected area off New Zealand revealed unique megafaunal assemblages at the mine site. Significant relationships were identified between assemblage structure and environmental conditions, including hydrothermal features. Unique assemblages occurred at both active and inactive chimneys and are particularly at risk from mining-related impacts. The occurrence of unique assemblages at the mine site suggests that the proposed protected area is insufficient alone and should instead form part of a network. These results provide support for including hydrothermally active and inactive features within networks of protected areas and emphasise the need for quantitative survey data of proposed sites. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Semantic web for integrated network analysis in biomedicine.
Chen, Huajun; Ding, Li; Wu, Zhaohui; Yu, Tong; Dhanapalan, Lavanya; Chen, Jake Y
2009-03-01
The Semantic Web technology enables integration of heterogeneous data on the World Wide Web by making the semantics of data explicit through formal ontologies. In this article, we survey the feasibility and state of the art of utilizing the Semantic Web technology to represent, integrate and analyze the knowledge in various biomedical networks. We introduce a new conceptual framework, semantic graph mining, to enable researchers to integrate graph mining with ontology reasoning in network data analysis. Through four case studies, we demonstrate how semantic graph mining can be applied to the analysis of disease-causal genes, Gene Ontology category cross-talks, drug efficacy analysis and herb-drug interactions analysis.
2012-03-01
responsible for self -organizing an appropriate network infrastructure with multi-hop connection between sensor nodes. The network is self - healing ...a self -destruct mechanism that will flood the casing with water in the event that the mine is separated from its mooring. Provided that this does...mechanically severed from its mooring cable, would then initiate its self -destruct sequence whereby the mine is flooded. Then, depending upon the type of
Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining.
Cheng, Wenlong; Zhao, Mingbo; Xiong, Naixue; Chui, Kwok Tai
2017-07-15
Parsimony, including sparsity and low-rank, has shown great importance for data mining in social networks, particularly in tasks such as segmentation and recognition. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with convex l ₁-norm or nuclear norm constraints. However, the obtained results by convex optimization are usually suboptimal to solutions of original sparse or low-rank problems. In this paper, a novel robust subspace segmentation algorithm has been proposed by integrating l p -norm and Schatten p -norm constraints. Our so-obtained affinity graph can better capture local geometrical structure and the global information of the data. As a consequence, our algorithm is more generative, discriminative and robust. An efficient linearized alternating direction method is derived to realize our model. Extensive segmentation experiments are conducted on public datasets. The proposed algorithm is revealed to be more effective and robust compared to five existing algorithms.
Application and Exploration of Big Data Mining in Clinical Medicine
Zhang, Yue; Guo, Shu-Li; Han, Li-Na; Li, Tie-Ling
2016-01-01
Objective: To review theories and technologies of big data mining and their application in clinical medicine. Data Sources: Literatures published in English or Chinese regarding theories and technologies of big data mining and the concrete applications of data mining technology in clinical medicine were obtained from PubMed and Chinese Hospital Knowledge Database from 1975 to 2015. Study Selection: Original articles regarding big data mining theory/technology and big data mining's application in the medical field were selected. Results: This review characterized the basic theories and technologies of big data mining including fuzzy theory, rough set theory, cloud theory, Dempster–Shafer theory, artificial neural network, genetic algorithm, inductive learning theory, Bayesian network, decision tree, pattern recognition, high-performance computing, and statistical analysis. The application of big data mining in clinical medicine was analyzed in the fields of disease risk assessment, clinical decision support, prediction of disease development, guidance of rational use of drugs, medical management, and evidence-based medicine. Conclusion: Big data mining has the potential to play an important role in clinical medicine. PMID:26960378
NASA Astrophysics Data System (ADS)
Jurzina, Tatyana; Egorova, Natalia; Zaruba, Natalia; Kosinskij, Peter
2017-11-01
Modern conditions of the Russian economy do especially relevant questions of social responsibility of industrial business of the mining region for sustainable social and economic development of rural territories that demands search of the new strategy, tools, ways for positioning and increase in competitiveness of the enterprises, which are carrying out the entrepreneurial activity in this territory. The article opens problems of an influence of the industrial enterprises on the territory of presence, reasons the theoretical base directed to the formation of practical tools (mechanism) providing realization of social responsibility of business for sustainable social and economic development of rural territories of the mining region.
Building a glaucoma interaction network using a text mining approach.
Soliman, Maha; Nasraoui, Olfa; Cooper, Nigel G F
2016-01-01
The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of relations that could not be found in existing interaction databases and that were found to be new, in addition to a smaller subnetwork consisting of interconnected clusters of seven glaucoma genes. Future improvements can be applied towards obtaining a better version of this network.
Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il
2014-07-21
Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.
Wang, Gang; Zhao, Zhikai; Ning, Yongjie
2018-05-28
As the application of a coal mine Internet of Things (IoT), mobile measurement devices, such as intelligent mine lamps, cause moving measurement data to be increased. How to transmit these large amounts of mobile measurement data effectively has become an urgent problem. This paper presents a compressed sensing algorithm for the large amount of coal mine IoT moving measurement data based on a multi-hop network and total variation. By taking gas data in mobile measurement data as an example, two network models for the transmission of gas data flow, namely single-hop and multi-hop transmission modes, are investigated in depth, and a gas data compressed sensing collection model is built based on a multi-hop network. To utilize the sparse characteristics of gas data, the concept of total variation is introduced and a high-efficiency gas data compression and reconstruction method based on Total Variation Sparsity based on Multi-Hop (TVS-MH) is proposed. According to the simulation results, by using the proposed method, the moving measurement data flow from an underground distributed mobile network can be acquired and transmitted efficiently.
Subramani, Suresh; Kalpana, Raja; Monickaraj, Pankaj Moses; Natarajan, Jeyakumar
2015-04-01
The knowledge on protein-protein interactions (PPI) and their related pathways are equally important to understand the biological functions of the living cell. Such information on human proteins is highly desirable to understand the mechanism of several diseases such as cancer, diabetes, and Alzheimer's disease. Because much of that information is buried in biomedical literature, an automated text mining system for visualizing human PPI and pathways is highly desirable. In this paper, we present HPIminer, a text mining system for visualizing human protein interactions and pathways from biomedical literature. HPIminer extracts human PPI information and PPI pairs from biomedical literature, and visualize their associated interactions, networks and pathways using two curated databases HPRD and KEGG. To our knowledge, HPIminer is the first system to build interaction networks from literature as well as curated databases. Further, the new interactions mined only from literature and not reported earlier in databases are highlighted as new. A comparative study with other similar tools shows that the resultant network is more informative and provides additional information on interacting proteins and their associated networks. Copyright © 2015 Elsevier Inc. All rights reserved.
Practical skills of the future innovator
NASA Astrophysics Data System (ADS)
Kaurov, Vitaliy
2015-03-01
Physics graduates face and often are disoriented by the complex and turbulent world of startups, incubators, emergent technologies, big data, social network engineering, and so on. In order to build the curricula that foster the skills necessary to navigate this world, we will look at the experiences at the Wolfram Science Summer School that gathers annually international students for already more than a decade. We will look at the examples of projects and see the development of such skills as innovative thinking, data mining, machine learning, cloud technologies, device connectivity and the Internet of things, network analytics, geo-information systems, formalized computable knowledge, and the adjacent applied research skills from graph theory to image processing and beyond. This should give solid ideas to educators who will build standard curricula adapted for innovation and entrepreneurship education.
Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks
Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao
2009-01-01
Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines. PMID:22574048
Anchor-free localization method for mobile targets in coal mine wireless sensor networks.
Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao
2009-01-01
Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes' location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines.
NASA Astrophysics Data System (ADS)
Scheele, C. J.; Huang, Q.
2016-12-01
In the past decade, the rise in social media has led to the development of a vast number of social media services and applications. Disaster management represents one of such applications leveraging massive data generated for event detection, response, and recovery. In order to find disaster relevant social media data, current approaches utilize natural language processing (NLP) methods based on keywords, or machine learning algorithms relying on text only. However, these approaches cannot be perfectly accurate due to the variability and uncertainty in language used on social media. To improve current methods, the enhanced text-mining framework is proposed to incorporate location information from social media and authoritative remote sensing datasets for detecting disaster relevant social media posts, which are determined by assessing the textual content using common text mining methods and how the post relates spatiotemporally to the disaster event. To assess the framework, geo-tagged Tweets were collected for three different spatial and temporal disaster events: hurricane, flood, and tornado. Remote sensing data and products for each event were then collected using RealEarthTM. Both Naive Bayes and Logistic Regression classifiers were used to compare the accuracy within the enhanced text-mining framework. Finally, the accuracies from the enhanced text-mining framework were compared to the current text-only methods for each of the case study disaster events. The results from this study address the need for more authoritative data when using social media in disaster management applications.
NASA Astrophysics Data System (ADS)
Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Chang, Kyung Hwan; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie
2017-08-01
The aim of this study is an integrated research for text-based data mining and toxicity prediction modeling system for clinical decision support system based on big data in radiation oncology as a preliminary research. The structured and unstructured data were prepared by treatment plans and the unstructured data were extracted by dose-volume data image pattern recognition of prostate cancer for research articles crawling through the internet. We modeled an artificial neural network to build a predictor model system for toxicity prediction of organs at risk. We used a text-based data mining approach to build the artificial neural network model for bladder and rectum complication predictions. The pattern recognition method was used to mine the unstructured toxicity data for dose-volume at the detection accuracy of 97.9%. The confusion matrix and training model of the neural network were achieved with 50 modeled plans (n = 50) for validation. The toxicity level was analyzed and the risk factors for 25% bladder, 50% bladder, 20% rectum, and 50% rectum were calculated by the artificial neural network algorithm. As a result, 32 plans could cause complication but 18 plans were designed as non-complication among 50 modeled plans. We integrated data mining and a toxicity modeling method for toxicity prediction using prostate cancer cases. It is shown that a preprocessing analysis using text-based data mining and prediction modeling can be expanded to personalized patient treatment decision support based on big data.
Privacy Preserving Sequential Pattern Mining in Data Stream
NASA Astrophysics Data System (ADS)
Huang, Qin-Hua
The privacy preserving data mining technique researches have gained much attention in recent years. For data stream systems, wireless networks and mobile devices, the related stream data mining techniques research is still in its' early stage. In this paper, an data mining algorithm dealing with privacy preserving problem in data stream is presented.
NASA Astrophysics Data System (ADS)
Petropoulos, G.; Partsinevelos, P.; Mitraka, Z.
2012-04-01
Surface mining has been shown to cause intensive environmental degradation in terms of landscape, vegetation and biological communities. Nowadays, the commercial availability of remote sensing imagery at high spatiotemporal scales, has improved dramatically our ability to monitor surface mining activity and evaluate its impact on the environment and society. In this study we investigate the potential use of Landsat TM imagery combined with diverse classification techniques, namely artificial neural networks and support vector machines for delineating mining exploration and assessing its effect on vegetation in various surface mining sites in the Greek island of Milos. Assessment of the mining impact in the study area is validated through the analysis of available QuickBird imagery acquired nearly concurrently to the TM overpasses. Results indicate the capability of the TM sensor combined with the image analysis applied herein as a potential economically viable solution to provide rapidly and at regular time intervals information on mining activity and its impact to the local environment. KEYWORDS: mining environmental impact, remote sensing, image classification, change detection, land reclamation, support vector machines, neural networks
The ``battle of gold'' under the light of green economics: a case study from Greece
NASA Astrophysics Data System (ADS)
Damigos, D.; Kaliampakos, D.
2006-05-01
Mining firms stimulate local and national economies but this comes at a certain cost. In the light of increasing public concern, external costs of environmental degradation and social disruption are no longer of pure academic interest. The assessment of mining projects on the grounds of sustainable development is critical in order to decide whether the exploitation of mineral resources is socially desirable. In practice, few steps have been taken towards this end. In this paper, a case study is illustrated that provides the means for evaluating the social worthiness of mining projects. The analysis, which is the first of its kind in Greece, deals with a major problem of the mining industry: the gold debate on the grounds of green economics. The assessment is based on the social cost benefit approach. Well-established techniques (e.g. benefit transfer) and innovative approaches have been adopted to overcome various practical problems
Mining integrated semantic networks for drug repositioning opportunities
Mullen, Joseph; Tipney, Hannah
2016-01-01
Current research and development approaches to drug discovery have become less fruitful and more costly. One alternative paradigm is that of drug repositioning. Many marketed examples of repositioned drugs have been identified through serendipitous or rational observations, highlighting the need for more systematic methodologies to tackle the problem. Systems level approaches have the potential to enable the development of novel methods to understand the action of therapeutic compounds, but requires an integrative approach to biological data. Integrated networks can facilitate systems level analyses by combining multiple sources of evidence to provide a rich description of drugs, their targets and their interactions. Classically, such networks can be mined manually where a skilled person is able to identify portions of the graph (semantic subgraphs) that are indicative of relationships between drugs and highlight possible repositioning opportunities. However, this approach is not scalable. Automated approaches are required to systematically mine integrated networks for these subgraphs and bring them to the attention of the user. We introduce a formal framework for the definition of integrated networks and their associated semantic subgraphs for drug interaction analysis and describe DReSMin, an algorithm for mining semantically-rich networks for occurrences of a given semantic subgraph. This algorithm allows instances of complex semantic subgraphs that contain data about putative drug repositioning opportunities to be identified in a computationally tractable fashion, scaling close to linearly with network data. We demonstrate the utility of our approach by mining an integrated drug interaction network built from 11 sources. This work identified and ranked 9,643,061 putative drug-target interactions, showing a strong correlation between highly scored associations and those supported by literature. We discuss the 20 top ranked associations in more detail, of which 14 are novel and 6 are supported by the literature. We also show that our approach better prioritizes known drug-target interactions, than other state-of-the art approaches for predicting such interactions. PMID:26844016
Polish Geophysical Solid Earth Infrastructure Contributing to EPOS
NASA Astrophysics Data System (ADS)
Debski, W.; Mutke, G.; Suchcicki, J.; Jozwiak, W.; Wiejacz, P.; Trojanowski, J.
2012-04-01
In this poster we present the current state of the main polish solid-earth-orientated infrastructures and shortly described history of their development, current state, and some plans for their future development. The presen- tation concentrates only on the classical infrastructure leaving aside for the while the the geodetic-orientated infrastructure, like GPS network and the GPS processing data centers, gravimetric infrastructure and others of this type. Polish broadband seismic infrastructure consists of 7 permanent broadband stations incorporated into the VEBSN initiative running at the polish territory and one operated in collaboration with NORSAR is settled at the Hornsund (Svalbard) polish polar station. All stations are equipped with STS-2 seismometers and polish MK-6 seismic stations providing 120 dB dynamics 100Hz sampling and data transmission in a real time to processing center. Besides this permanent broadband seismic network (PLSN) the Central Institute of Mining is running the permanent regional, short period network at the Upper Silesia area dedicated to the detailed monitoring of seismicity induced by the black coal mining activity in this area. The network consists of As the mining activity is the main source of seismicity in Poland also all mines are running underground short period networks, like for example Rudna-Polkowice copper mine seismic network consisting of 64 underground located short period seimometers. In that area, especially around the Zelazny Most: the huge post-floating artificial lake the, IGF PAS is running the local seismic array consisting of 4 short period seismometers. Besides these permanent network IGF PAN is running the portable seismic network for detailed mapping a possible natural seismic activity in selected regions of Poland. Important contribution to classical geophysical observation in the electro-magnetic field are provided by three permanent geomagnetic observatories (one at Hornsund) and supporting set of 10 portable, high-accuracy magnetoteluric stations.
Quantum solution to a class of two-party private summation problems
NASA Astrophysics Data System (ADS)
Shi, Run-Hua; Zhang, Shun
2017-09-01
In this paper, we define a class of special two-party private summation (S2PPS) problems and present a common quantum solution to S2PPS problems. Compared to related classical solutions, our solution has advantages of higher security and lower communication complexity, and especially it can ensure the fairness of two parties without the help of a third party. Furthermore, we investigate the practical applications of our proposed S2PPS protocol in many privacy-preserving settings with big data sets, including private similarity decision, anonymous authentication, social networks, secure trade negotiation, secure data mining.
Cooper, Crispin H V; Fone, David L; Chiaradia, Alain J F
2014-04-11
There is now a substantial body of research suggesting that social cohesion, a collective characteristic measured by the levels of trust, reciprocity and formation of strong social bonds within communities, is an important factor in determining health. Of particular interest is the extent to which factors in the built environment facilitate, or impede, the development of social bonds. Severance is a characteristic of physical environments which is hypothesized to inhibit cohesion. In the current study we test a number of characteristics of spatial networks which could be hypothesized to relate either to severance, or directly to community cohesion. Particular focus is given to our most promising variable for further analysis (Convex Hull Maximum Radius 600 m). In the current study we analysed social cohesion as measured at Enumeration District level, aggregated from a survey of 10,892 individuals aged 18 to 74 years in the Caerphilly Health and Social Needs Cohort Study, 2001. In a data mining process we test 16 network variables on multiple scales. The variable showing the most promise is validated in a test on an independent data set. We then conduct a multivariate regression also including Townsend deprivation scores and urban/rural status as predictor variables for social cohesion. We find convex hull maximum radius at a 600 m scale to have a small but highly significant correlation with social cohesion on both data sets. Deprivation has a stronger effect. Splitting the analysis by tertile of deprivation, we find that the effect of severance as measured by this variable is strongest in the most deprived areas. A range of spatial scales are tested, with the strongest effects being observed at scales that match typical walking distances. We conclude that physical connectivity as measured in this paper has a significant effect on social cohesion, and that our measure is unlikely to proxy either deprivation or the urban/rural status of communities. Possible mechanisms for the effect include intrinsic navigability of areas, and the existence of a focal route on which people can meet on foot. Further investigation may lead to much stronger predictive models of social cohesion.
Measuring the impact of spatial network layout on community social cohesion: a cross-sectional study
2014-01-01
Background There is now a substantial body of research suggesting that social cohesion, a collective characteristic measured by the levels of trust, reciprocity and formation of strong social bonds within communities, is an important factor in determining health. Of particular interest is the extent to which factors in the built environment facilitate, or impede, the development of social bonds. Severance is a characteristic of physical environments which is hypothesized to inhibit cohesion. In the current study we test a number of characteristics of spatial networks which could be hypothesized to relate either to severance, or directly to community cohesion. Particular focus is given to our most promising variable for further analysis (Convex Hull Maximum Radius 600 m). Methods In the current study we analysed social cohesion as measured at Enumeration District level, aggregated from a survey of 10,892 individuals aged 18 to 74 years in the Caerphilly Health and Social Needs Cohort Study, 2001. In a data mining process we test 16 network variables on multiple scales. The variable showing the most promise is validated in a test on an independent data set. We then conduct a multivariate regression also including Townsend deprivation scores and urban/rural status as predictor variables for social cohesion. Results We find convex hull maximum radius at a 600 m scale to have a small but highly significant correlation with social cohesion on both data sets. Deprivation has a stronger effect. Splitting the analysis by tertile of deprivation, we find that the effect of severance as measured by this variable is strongest in the most deprived areas. A range of spatial scales are tested, with the strongest effects being observed at scales that match typical walking distances. Conclusion We conclude that physical connectivity as measured in this paper has a significant effect on social cohesion, and that our measure is unlikely to proxy either deprivation or the urban/rural status of communities. Possible mechanisms for the effect include intrinsic navigability of areas, and the existence of a focal route on which people can meet on foot. Further investigation may lead to much stronger predictive models of social cohesion. PMID:24725759
Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series.
Rubiolo, Mariano; Milone, Diego H; Stegmayer, Georgina
2015-01-01
Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.
Optimizing Functional Network Representation of Multivariate Time Series
NASA Astrophysics Data System (ADS)
Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; Pozo, Francisco Del; Menasalvas, Ernestina; Boccaletti, Stefano
2012-09-01
By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks.
Optimizing Functional Network Representation of Multivariate Time Series
Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; Pozo, Francisco del; Menasalvas, Ernestina; Boccaletti, Stefano
2012-01-01
By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks. PMID:22953051
NASA Astrophysics Data System (ADS)
Shyu, Mei-Ling; Sainani, Varsha
The increasing number of network security related incidents have made it necessary for the organizations to actively protect their sensitive data with network intrusion detection systems (IDSs). IDSs are expected to analyze a large volume of data while not placing a significantly added load on the monitoring systems and networks. This requires good data mining strategies which take less time and give accurate results. In this study, a novel data mining assisted multiagent-based intrusion detection system (DMAS-IDS) is proposed, particularly with the support of multiclass supervised classification. These agents can detect and take predefined actions against malicious activities, and data mining techniques can help detect them. Our proposed DMAS-IDS shows superior performance compared to central sniffing IDS techniques, and saves network resources compared to other distributed IDS with mobile agents that activate too many sniffers causing bottlenecks in the network. This is one of the major motivations to use a distributed model based on multiagent platform along with a supervised classification technique.
Advancing Science through Mining Libraries, Ontologies, and Communities*
Evans, James A.; Rzhetsky, Andrey
2011-01-01
Life scientists today cannot hope to read everything relevant to their research. Emerging text-mining tools can help by identifying topics and distilling statements from books and articles with increased accuracy. Researchers often organize these statements into ontologies, consistent systems of reality claims. Like scientific thinking and interchange, however, text-mined information (even when accurately captured) is complex, redundant, sometimes incoherent, and often contradictory: it is rooted in a mixture of only partially consistent ontologies. We review work that models scientific reason and suggest how computational reasoning across ontologies and the broader distribution of textual statements can assess the certainty of statements and the process by which statements become certain. With the emergence of digitized data regarding networks of scientific authorship, institutions, and resources, we explore the possibility of accounting for social dependences and cultural biases in reasoning models. Computational reasoning is starting to fill out ontologies and flag internal inconsistencies in several areas of bioscience. In the not too distant future, scientists may be able to use statements and rich models of the processes that produced them to identify underexplored areas, resurrect forgotten findings and ideas, deconvolute the spaghetti of underlying ontologies, and synthesize novel knowledge and hypotheses. PMID:21566119
Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko
2016-06-01
Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Adverse Drug Event Discovery Using Biomedical Literature: A Big Data Neural Network Adventure
Badger, Jonathan; LaRose, Eric; Shirzadi, Ehsan; Mahnke, Andrea; Mayer, John; Ye, Zhan; Page, David; Peissig, Peggy
2017-01-01
Background The study of adverse drug events (ADEs) is a tenured topic in medical literature. In recent years, increasing numbers of scientific articles and health-related social media posts have been generated and shared daily, albeit with very limited use for ADE study and with little known about the content with respect to ADEs. Objective The aim of this study was to develop a big data analytics strategy that mines the content of scientific articles and health-related Web-based social media to detect and identify ADEs. Methods We analyzed the following two data sources: (1) biomedical articles and (2) health-related social media blog posts. We developed an intelligent and scalable text mining solution on big data infrastructures composed of Apache Spark, natural language processing, and machine learning. This was combined with an Elasticsearch No-SQL distributed database to explore and visualize ADEs. Results The accuracy, precision, recall, and area under receiver operating characteristic of the system were 92.7%, 93.6%, 93.0%, and 0.905, respectively, and showed better results in comparison with traditional approaches in the literature. This work not only detected and classified ADE sentences from big data biomedical literature but also scientifically visualized ADE interactions. Conclusions To the best of our knowledge, this work is the first to investigate a big data machine learning strategy for ADE discovery on massive datasets downloaded from PubMed Central and social media. This contribution illustrates possible capacities in big data biomedical text analysis using advanced computational methods with real-time update from new data published on a daily basis. PMID:29222076
A big picture look at big coal: Teaching students to link societal and environmental issues
NASA Astrophysics Data System (ADS)
Sojka, S. L.
2014-12-01
The environmental impact of coal mining and burning of coal is evident and generally easy to understand. However, students often struggle to understand the social impacts of coal mining. A jigsaw activity culminating in a mock town hall meeting helps students link social, economic and environmental impacts of coal mining. Students are divided into four groups and assigned the task of researching the environmental, social, economic or health impacts of coal mining in West Virginia. When students have completed the research, they are assigned a role for the town hall. Roles include local community members, direct employees of the coal industry, business owners from industries related to coal mining, and environmentalists. One student from each research area is assigned to each role, forcing students to consider environmental, social, health and economic aspects of coal mining in choosing an appropriate position for their role. Students have 30 minutes to prepare their positions and then present for 2-5 minutes in the simulated town hall. We then have open class discussion and review the positions. Finally, students are required to write a letter to the editor of the local paper. The specific topic for the town hall and letters can be varied based on current events and could include new regulations on power plants, mine safety, government funding of alternative energy supplies or a range of other topics. This approach forces students to consider all aspects of the issue. In addition, because students have to assume a role, they are more aware of the direct impact that coal mining has on individuals' lives.
A Social Movements' Perspective on Human Rights Impact of Mining Liberalization in the Philippines.
Aytin, Andrew
2016-02-01
When it comes to minerals like gold, copper, or nickel, the Philippines ranks among the world's richest countries, but it has continued to perform poorly in terms of human and economic development. In the belief that foreign investments will bring development, the government in 1995 liberalized its mining industry allowing full foreign ownership and control of the mining activities. After almost two decades of mining liberalization, the country has never achieved its goal of development but is now reeling from the adverse impacts of large-scale corporate mining on the environment and lives of mining-affected communities. Moreover, human rights violations against anti-mining activists and environmental advocates have escalated at an alarming rate making the country one of the most dangerous places for land and environmental defenders. But social movements are now taking big steps to empower the people, especially the mining-affected communities, to confront the adverse impacts of corporate mining and to reverse the current path of the mining industry to one that aims to achieve national industrialization where national development is prioritized over transnational corporations' interests. © The Author(s) 2016.
Coal mining, social injustice and health: a universal conflict of power and priorities.
Morrice, Emily; Colagiuri, Ruth
2013-01-01
Given the current insatiable demand for coal to build and fuel the world's burgeoning cities the debate about mining-related social, environmental and health injustices remains eminently salient. Furthermore, the core issues appear universally consistent. This paper combines the theoretical base for defining these injustices with reports in the international health literature about the impact of coal mining on local communities. It explores and analyses mechanisms of coal mining related injustice, conflicting priorities and power asymmetries between political and industry interests versus inhabitants of mining communities, and asks what would be required for considerations of health to take precedence over wealth. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mining transportation information from social media for planned and unplanned events.
DOT National Transportation Integrated Search
2016-05-01
The objective of this project is on mining social media data to deduce useful travelers information with : a special emphasis under events, including both planned events (such as sporting games), and : unplanned events (such as traffic accidents)....
Private and social costs of surface mine reforestation performance criteria.
Sullivan, Jay; Amacher, Gregory S
2010-02-01
We study the potentially unnecessary costs imposed by strict performance standards for forest restoration of surface coal mines in the Appalachian region under the Surface Mining Control and Reclamation Act of 1977 (SMCRA) that can vary widely across states. Both the unnecessary private costs to the mine operator and costs to society (social costs) are reported for two performance standards, a ground cover requirement, and a seedling survival target. These standards are examined using numerical analyses under a range of site productivity class and market conditions. We show that a strict (90%) ground cover standard may produce an unnecessary private cost of more than $700/ha and a social cost ranging from $428/ha to $710/ha, as compared with a 70% standard. A strict tree survival standard of 1235 trees/ha, as compared with the more typical 1087 trees/ha standard, may produce an unnecessary private cost of approximately $200/ha, and a social cost in the range of $120 to $208/ha. We conclude that strict performance standards may impose substantial unnecessary private costs and social costs, that strict performance standards may be discouraging the choice of forestry as a post-mining land use, and that opportunities exist for reform of reforestation performance standards. Our study provides a basis for evaluating tradeoffs between regulatory efficiency and optimal reforestation effort.
Fischer, Georg
2014-01-01
This article deals with the "discovery" of Brazilian iron ore from two perspectives. The first examines the increasing emphasis of the geosciences and their practical application and global reach since the second half of the nineteenth century. While in Brazil economic geology was integrated step by step into state institutions, at the global level it experienced its moment of triumph with the 11th International Geological Congress in 1910. The second deals with a specific social network with a decisive role in the race for Brazilian iron ore: with transnational experts juggling between the logic of the market and that of the academy. The article reveals the importance of local negotiations in the incorporation of the subsoil of Minas Gerais into the global space of mining.
Lightweight monitoring and control system for coal mine safety using REST style.
Cheng, Bo; Cheng, Xin; Chen, Junliang
2015-01-01
The complex environment of a coal mine requires the underground environment, devices and miners to be constantly monitored to ensure safe coal production. However, existing coal mines do not meet these coverage requirements because blind spots occur when using a wired network. In this paper, we develop a Web-based, lightweight remote monitoring and control platform using a wireless sensor network (WSN) with the REST style to collect temperature, humidity and methane concentration data in a coal mine using sensor nodes. This platform also collects information on personnel positions inside the mine. We implement a RESTful application programming interface (API) that provides access to underground sensors and instruments through the Web such that underground coal mine physical devices can be easily interfaced to remote monitoring and control applications. We also implement three different scenarios for Web-based, lightweight remote monitoring and control of coal mine safety and measure and analyze the system performance. Finally, we present the conclusions from this study and discuss future work. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Localisation of an Unknown Number of Land Mines Using a Network of Vapour Detectors
Chhadé, Hiba Haj; Abdallah, Fahed; Mougharbel, Imad; Gning, Amadou; Julier, Simon; Mihaylova, Lyudmila
2014-01-01
We consider the problem of localising an unknown number of land mines using concentration information provided by a wireless sensor network. A number of vapour sensors/detectors, deployed in the region of interest, are able to detect the concentration of the explosive vapours, emanating from buried land mines. The collected data is communicated to a fusion centre. Using a model for the transport of the explosive chemicals in the air, we determine the unknown number of sources using a Principal Component Analysis (PCA)-based technique. We also formulate the inverse problem of determining the positions and emission rates of the land mines using concentration measurements provided by the wireless sensor network. We present a solution for this problem based on a probabilistic Bayesian technique using a Markov chain Monte Carlo sampling scheme, and we compare it to the least squares optimisation approach. Experiments conducted on simulated data show the effectiveness of the proposed approach. PMID:25384008
2016-09-26
Intelligent Automation Incorporated Enhancements for a Dynamic Data Warehousing and Mining ...Enhancements for a Dynamic Data Warehousing and Mining System for N00014-16-P-3014 Large-Scale Human Social Cultural Behavioral (HSBC) Data 5b. GRANT NUMBER...Representative Media Gallery View. We perform Scraawl’s NER algorithm to the text associated with YouTube post, which classifies the named entities into
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julia, J; Nyblade, A; Gok, R
2009-07-06
In this project, we are developing and exploiting a unique seismic dataset to address the characteristics of small seismic events and the associated seismic signals observed at local (< 200 km) and regional (< 2000 km) distances. The dataset is being developed using mining-induced events from three deep gold mines in South Africa recorded on in-mine networks (< 1 km) composed of tens of high-frequency sensors, a network of four broadband stations installed as part of this project at the surface around the mines (1-10 km), and a network of existing broadband seismic stations at local/regional distances (50-1000 km) frommore » the mines. Data acquisition has now been completed and includes: (1) {approx}2 years (2007 and 2008) of continuous recording by the surface broadband array, and (2) tens of thousands of mine tremors in the -3.4 < ML < 4.4 local magnitude range. Events with positive magnitudes are generally well recorded by the surface-mine stations, while magnitudes of 3.0 and larger are seen at regional distances (up to {approx} 600 km) in high-pass filtered recordings. We have now completed the quality control of the in-mine data gathered at the three gold mines included in this project. The quality control consisted of: (1) identification and analysis of outliers among the P- and S-wave travel-time picks reported by the in-mine network operator and (2) verification of sensor orientations. The outliers have been identified through a 'Wadati filter' that searches for the largest subset of P- and S-wave travel-time picks consistent with a medium of uniform wave-speed. They have observed that outliers are generally picked at a few select stations. They have also detected that trigger times were mistakenly reported as origin times by the in-mine network operator, and corrections have been obtained from the intercept times in the Wadati diagrams. Sensor orientations have been verified through rotations into the local ray-coordinate system and, when possible, corrected by correlating waveforms obtained from theoretical and empirical rotation angles. Full moment tensor solutions have been obtained for selected events within the Savuka network volume, with moment magnitudes in the 0.5 < M{sub W} < 2.6 range. The solutions were obtained by inverting P-, SV-, and SH-spectral amplitudes measured on the theoretically rotated waveforms with visually assigned polarities. Most of the solutions have a non-zero implosive contribution (47 out of 76), while a small percentage is purely deviatoric (10 out of 76). The deviatoric moment tensors range from pure double couple to pure non-double couple mechanisms. We have also calibrated the regional stations for seismic coda-derived source spectra and moment magnitude using the envelope methodology of Mayeda et al. (2003). they tie the coda M{sub w} to independent values from waveform modeling. The resulting coda-based source spectra of shallow mining-related events show significant spectral peaking that is not seen in deeper tectonic earthquakes. This coda peaking may be an independent method of identifying shallow events and is similar to coda peaking with previously observed for Nevada explosions, where the frequency of the observed spectral peak correlates with the depth of burial (Murphy et al., 2009).« less
Huang, Yuecheng; Cheng, Wuyi; Luo, Sida; Luo, Yun; Ma, Chengchen; He, Tailin
2016-01-01
The features of the asynchronous correlation between accident indices and the factors that influence accidents can provide an effective reference for warnings of coal mining accidents. However, what are the features of this correlation? To answer this question, data from the China coal price index and the number of deaths from coal mining accidents were selected as the sample data. The fluctuation modes of the asynchronous correlation between the two data sets were defined according to the asynchronous correlation coefficients, symbolization, and sliding windows. We then built several directed and weighted network models, within which the fluctuation modes and the transformations between modes were represented by nodes and edges. Then, the features of the asynchronous correlation between these two variables could be studied from a perspective of network topology. We found that the correlation between the price index and the accidental deaths was asynchronous and fluctuating. Certain aspects, such as the key fluctuation modes, the subgroups characteristics, the transmission medium, the periodicity and transmission path length in the network, were analyzed by using complex network theory, analytical methods and spectral analysis method. These results provide a scientific reference for generating warnings for coal mining accidents based on economic indices.
Bottom-up responses to environmental and social impact assessments: A case study from Guatemala
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilar-Støen, Mariel, E-mail: mariel.stoen@sum.uio.no; Hirsch, Cecilie; Department of International Environment and Development, Norwegian University of Life Sciences
In this article we take a closer look at resistance to the practice of Environmental Impact Assessment (EIA) in mining and energy projects in Guatemala. Collectivities resisting mining and hydropower projects in Guatemala are increasingly using the evaluations of EIAs conducted by international independent professionals. Reaching out to international experts is facilitated by local communities' engagements in transnational networks bringing together activists, NGOs, scientists, journalists and others. We argue that resistance movements resort to international professionals to challenge the limits imposed on them by the national legislation and institutional arrangements as well as by the way in which EIAs aremore » performed in the country. Further, the engagements in networks that facilitate access to knowledge contribute to strengthen the legitimacy of communities' claims. Challenges to and complaints about EIAs are ways in which affected communities try to reclaim their right to participate in decision-making related to their local environment and the development of their communities. Both complaints about EIAs and the use of transnational networks to attain better participation in decision making processes at local levels, illustrated in this study for Guatemala, are common responses to the advancement of extractive industries and hydropower development across Latin America. The widespread of initiatives to challenge EIAs involving international experts in the region show that EIAs have become a sort of a transnational battleground. - Highlights: • Communities’ opposition to extractive projects is rooted in lack of participation in decision-making, including EIAs • Experts’ evaluations of approved EIAs confirm communities’ claims of poor practices in the public sector • Research presented here shows that local communities linked to transnational networks are able to scale up their demands.« less
Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il
2014-01-01
Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037
Technology Transfer at Edgar Mine: Phase 1; October 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad R.; Bauer, Stephen; Nakagawa, Masami
The objective of this project is to study the flow of fluid through the fractures and to characterize the efficiency of heat extraction (heat transfer) from the test rock mass in the Edgar Mine, managed by Colorado School of Mines in Idaho Springs, CO. The experiment consists of drilling into the wall of the mine and fracturing the rock, characterizing the size and nature of the fracture network, circulating fluid through the network, and measuring the efficiency of heat extraction from the 'reservoir' by monitoring the temperature of the 'produced' fluid with time. This is a multi-year project performed asmore » a collaboration between the National Renewable Energy Laboratory, Colorado School of Mines and Sandia National Laboratories and carried out in phases. This report summarizes Phase 1: Selection and characterization of the location for the experiment, and outlines the steps for Phase 2: Circulation Experiments.« less
Mining the management literature for insights into implementing evidence-based change in healthcare.
Harlos, Karen; Tetroe, Jacqueline; Graham, Ian D; Bird, Madeleine; Robinson, Nicole
2012-08-01
We synthesized the management and health literatures for insights into implementing evidence-based change in healthcare drawn from industry-specific data. Because change principles based on evidence often fail to be translated into organizational practice or policy, we sought studies at the nexus of organizational change and knowledge translation. We reviewed five top management journals to identify an initial pool of 3,091 studies, which yielded a final sample of 100 studies. Data were abstracted, verified by the original authors and revised before entry into a database. We employed a systematic narrative synthesis approach using words and text to distill data and explain relationships. We categorized studies by varying levels of relevance for knowledge translation as (1) primary, direct; (2) intermediate; and (3) secondary, indirect. We also identified recurring categories of change-related organizational factors. The current analysis examines these factors in studies of primary relevance to knowledge translation, which we also coded for intervention readiness to reflect how readily change can be implemented. Preliminary Results centred on five change-related categories: Tailoring the Intervention Message; Institutional Links/Social Networks; Training; Quality of Work Relationships; and Fit to Organization. In particular, networks across institutional and individual levels appeared as prominent pathways for changing healthcare organizations. Power dynamics, positive social relations and team structures also played key roles in implementing change and translating it into practice. We analyzed journals in which first authors of these studies typically publish, and found evidence that management and health sciences remain divided. Bridging these disciplines through research syntheses promises a wealth of evidence and insights, well worth mining in the search for change that works in healthcare transformation. Copyright © 2012 Longwoods Publishing.
Mining the Management Literature for Insights into Implementing Evidence-Based Change in Healthcare
Harlos, Karen; Tetroe, Jacqueline; Graham, Ian D.; Bird, Madeleine; Robinson, Nicole
2012-01-01
Objective: We synthesized the management and health literatures for insights into implementing evidence-based change in healthcare drawn from industry-specific data. Because change principles based on evidence often fail to be translated into organizational practice or policy, we sought studies at the nexus of organizational change and knowledge translation. Methods: We reviewed five top management journals to identify an initial pool of 3,091 studies, which yielded a final sample of 100 studies. Data were abstracted, verified by the original authors and revised before entry into a database. We employed a systematic narrative synthesis approach using words and text to distill data and explain relationships. We categorized studies by varying levels of relevance for knowledge translation as (1) primary, direct; (2) intermediate; and (3) secondary, indirect. We also identified recurring categories of change-related organizational factors. The current analysis examines these factors in studies of primary relevance to knowledge translation, which we also coded for intervention readiness to reflect how readily change can be implemented. Preliminary Results and Conclusions: Results centred on five change-related categories: Tailoring the Intervention Message; Institutional Links/Social Networks; Training; Quality of Work Relationships; and Fit to Organization. In particular, networks across institutional and individual levels appeared as prominent pathways for changing healthcare organizations. Power dynamics, positive social relations and team structures also played key roles in implementing change and translating it into practice. We analyzed journals in which first authors of these studies typically publish, and found evidence that management and health sciences remain divided. Bridging these disciplines through research syntheses promises a wealth of evidence and insights, well worth mining in the search for change that works in healthcare transformation. PMID:23968602
Qian, Dawen; Yan, Changzhen; Xing, Zanpin; Xiu, Lina
2017-10-14
The Muli coal mine is the largest open-cast coal mine in the Qinghai-Tibet Plateau, and it consists of two independent mining sites named Juhugeng and Jiangcang. It has received much attention due to the ecological problems caused by rapid expansion in recent years. The objective of this paper was to monitor the mining area and its surrounding land cover over the period 1976-2016 utilizing Landsat images, and the network structure of land cover changes was determined to visualize the relationships and pattern of the mining-induced land cover changes. In addition, the responses of the surrounding landscape pattern were analysed by constructing gradient transects. The results show that the mining area was increasing in size, especially after 2000 (increased by 71.68 km 2 ), and this caused shrinkage of the surrounding lands, including alpine meadow wetland (53.44 km 2 ), alpine meadow (6.28 km 2 ) and water (6.24 km 2 ). The network structure of the mining area revealed the changes in lands surrounding the mining area. The impact of mining development on landscape patterns was mainly distributed within a range of 1-6 km. Alpine meadow wetland was most affected in Juhugeng, while alpine meadow was most affected in Jiangcang. The results of this study provide a reference for the ecological assessment and restoration of the Muli coal mine land.
Tracing Potential School Shooters in the Digital Sphere
NASA Astrophysics Data System (ADS)
Veijalainen, Jari; Semenov, Alexander; Kyppö, Jorma
There are over 300 known school shooting cases in the world and over ten known cases where the perpetrator(s) have been prohibited to perform the attack at the last moment or earlier. Interesting from our point of view is that in many cases the perpetrators have expressed their views in social media or on their web page well in advance, and often also left suicide messages in blogs and other forums before their attack, along the planned date and place. This has become more common towards the end of this decennium. In some cases this has made it possible to prevent the attack. In this paper we will look at the possibilities to find commonalities of the perpetrators, beyond the fact that they are all males from eleven to roughly 25 years old, and possibilities to follow their traces in the digital sphere in order to cut the dangerous development towards an attack. Should this not be possible, then an attack should be averted before it happens. We are especially interested in the multimedia data mining methods and social network mining and analysis that can be used to detect the possible perpetrators in time. We also present in this paper a probabilistic model that can be used to evaluate the success/failure rate of the detection of the possible perpetrators.
Numerical Study on 4-1 Coal Seam of Xiaoming Mine in Ascending Mining
Tianwei, Lan; Hongwei, Zhang; Sheng, Li; Weihua, Song; Batugin, A. C.; Guoshui, Tang
2015-01-01
Coal seams ascending mining technology is very significant, since it influences the safety production and the liberation of dull coal, speeds up the construction of energy, improves the stability of stope, and reduces or avoids deep hard rock mining induced mine disaster. Combined with the Xiaoming ascending mining mine 4-1, by numerical calculation, the paper analyses ascending mining 4-1 factors, determines the feasibility of ascending mining 4-1 coalbed, and proposes roadway layout program about working face, which has broad economic and social benefits. PMID:25866840
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julia, J; Nyblade, A A; Gok, R
2008-07-08
In this project, we are developing and exploiting a unique seismic data set to address the characteristics of small seismic events and the associated seismic signals observed at local (< 200 km) and regional (< 2000 km) distances. The dataset is being developed using mining-induced events from 3 deep gold mines in South Africa recorded on inmine networks (< 1 km) comprised of tens of high-frequency sensors, a network of 4 broadband stations installed as part of this project at the surface around the mines (1-10 km), and a network of existing broadband seismic stations at local/regional distances (50-1000 km)more » from the mines. After 1 year of seismic monitoring of mine activity (2007), over 10,000 events in the range -3.4 < ML < 4.4 have been catalogued and recorded by the in-mine networks. Events with positive magnitudes are generally well recorded by the surface-mine stations, while magnitudes 3.0 and larger are seen at regional distances (up to {approx}600 km) in high-pass filtered recordings. We have analyzed in-mine recordings in detail at one of the South African mines (Savuka) to (i) improve on reported hypocentral locations, (ii) verify sensor orientations, and (iii) determine full moment tensor solutions. Hypocentral relocations on all catalogued events have been obtained from P- and S-wave travel-times reported by the mine network operator through an automated procedure that selects travel-times falling on Wadati lines with slopes in the 0.6-0.7 range; sensor orientations have been verified and, when possible, corrected by correlating P-, SV-, and SH-waveforms obtained from theoretical and empirical (polarization filter) rotation angles; full moment tensor solutions have been obtained by inverting P-, SV-, and SH- spectral amplitudes measured on the theoretically rotated waveforms with visually assigned polarities. The relocation procedure has revealed that origin times often necessitate a negative correction of a few tenths of second and that hypocentral locations may move a few hundreds of meters. The full moment tensor determination has revealed that the most common focal mechanism (47 out of 82 solutions for events in the 0.2 < ML < 4.1 range) consists of a similar percentage of isotropic (implosive) and deviatoric components, with a normal fault-type best double couple. We have also calibrated the regional stations for seismic coda derived source spectra and moment magnitude using the envelope methodology of Mayeda et al (2003). We tie the coda Mw to independent values from waveform modeling. The resulting coda-based source spectra of shallow mining-related events show significant spectral peaking that is not seen in deeper tectonic earthquakes. This coda peaking may be an independent method of identifying shallow events and is similar to coda peaking previously observed for Nevada explosions, where the frequency of the observed spectral peak correlates with depth of burial (Murphy et al., 2008).« less
Flexible sampling large-scale social networks by self-adjustable random walk
NASA Astrophysics Data System (ADS)
Xu, Xiao-Ke; Zhu, Jonathan J. H.
2016-12-01
Online social networks (OSNs) have become an increasingly attractive gold mine for academic and commercial researchers. However, research on OSNs faces a number of difficult challenges. One bottleneck lies in the massive quantity and often unavailability of OSN population data. Sampling perhaps becomes the only feasible solution to the problems. How to draw samples that can represent the underlying OSNs has remained a formidable task because of a number of conceptual and methodological reasons. Especially, most of the empirically-driven studies on network sampling are confined to simulated data or sub-graph data, which are fundamentally different from real and complete-graph OSNs. In the current study, we propose a flexible sampling method, called Self-Adjustable Random Walk (SARW), and test it against with the population data of a real large-scale OSN. We evaluate the strengths of the sampling method in comparison with four prevailing methods, including uniform, breadth-first search (BFS), random walk (RW), and revised RW (i.e., MHRW) sampling. We try to mix both induced-edge and external-edge information of sampled nodes together in the same sampling process. Our results show that the SARW sampling method has been able to generate unbiased samples of OSNs with maximal precision and minimal cost. The study is helpful for the practice of OSN research by providing a highly needed sampling tools, for the methodological development of large-scale network sampling by comparative evaluations of existing sampling methods, and for the theoretical understanding of human networks by highlighting discrepancies and contradictions between existing knowledge/assumptions of large-scale real OSN data.
Exploring the Role of Intrinsic Nodal Activation on the Spread of Influence in Complex Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visweswara Sathanur, Arun; Halappanavar, Mahantesh; Shi, Yi
In many complex networked systems such as online social networks, at any given time, activity originates at certain nodes and subsequently spreads on the network through influence. To model the spread of influence in such a scenario, we consider the problem of identification of influential entities in a complex network when nodal activation can happen through two different mechanisms. The first mode of activation is due mechanisms intrinsic to the node. The second mechanism is through the influence of connected neighbors. In this work, we present a simple probabilistic formulation that models such self-evolving systems where information diffusion occurs primarilymore » because of the intrinsic activity of users and the spread of activity occurs due to influence. We provide an algorithm to mine for the influential seeds in such a scenario by modifying the well-known influence maximization framework with the independent cascade diffusion model. We provide small motivating examples to provide an intuitive understanding of the effect of including the intrinsic activation mechanism. We sketch a proof of the submodularity of the influence function under the new formulation and demonstrate the same with larger graphs. We then show by means of additional experiments on a real-world twitter dataset how the formulation can be applied to real-world social media datasets. Finally we derive a computationally efficient centrality metric that takes into account, both the mechanisms of activation and provides for an accurate as well as computationally efficient alternative approach to the problem of identifying influencers under intrinsic activation.« less
HPC-NMF: A High-Performance Parallel Algorithm for Nonnegative Matrix Factorization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kannan, Ramakrishnan; Sukumar, Sreenivas R.; Ballard, Grey M.
NMF is a useful tool for many applications in different domains such as topic modeling in text mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community, there is a lack of efficient distributed algorithms to solve the problem for big data sets. We propose a high-performance distributed-memory parallel algorithm that computes the factorization by iteratively solving alternating non-negative least squares (NLS) subproblems formore » $$\\WW$$ and $$\\HH$$. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). As opposed to previous implementation, our algorithm is also flexible: It performs well for both dense and sparse matrices, and allows the user to choose any one of the multiple algorithms for solving the updates to low rank factors $$\\WW$$ and $$\\HH$$ within the alternating iterations.« less
Visual Based Retrieval Systems and Web Mining--Introduction.
ERIC Educational Resources Information Center
Iyengar, S. S.
2001-01-01
Briefly discusses Web mining and image retrieval techniques, and then presents a summary of articles in this special issue. Articles focus on Web content mining, artificial neural networks as tools for image retrieval, content-based image retrieval systems, and personalizing the Web browsing experience using media agents. (AEF)
Zounemat-Kermani, Mohammad; Ramezani-Charmahineh, Abdollah; Adamowski, Jan; Kisi, Ozgur
2018-06-13
Chlorination, the basic treatment utilized for drinking water sources, is widely used for water disinfection and pathogen elimination in water distribution networks. Thereafter, the proper prediction of chlorine consumption is of great importance in water distribution network performance. In this respect, data mining techniques-which have the ability to discover the relationship between dependent variable(s) and independent variables-can be considered as alternative approaches in comparison to conventional methods (e.g., numerical methods). This study examines the applicability of three key methods, based on the data mining approach, for predicting chlorine levels in four water distribution networks. ANNs (artificial neural networks, including the multi-layer perceptron neural network, MLPNN, and radial basis function neural network, RBFNN), SVM (support vector machine), and CART (classification and regression tree) methods were used to estimate the concentration of residual chlorine in distribution networks for three villages in Kerman Province, Iran. Produced water (flow), chlorine consumption, and residual chlorine were collected daily for 3 years. An assessment of the studied models using several statistical criteria (NSC, RMSE, R 2 , and SEP) indicated that, in general, MLPNN has the greatest capability for predicting chlorine levels followed by CART, SVM, and RBF-ANN. Weaker performance of the data-driven methods in the water distribution networks, in some cases, could be attributed to improper chlorination management rather than the methods' capability.
20 CFR 410.560 - Overpayments.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Overpayments. 410.560 Section 410.560 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV... this paragraph. (Sec. 204, Social Security Act, as amended, and sec. 413, Federal Coal Mine Health and...
NASA Astrophysics Data System (ADS)
Masaitis, A.
2014-12-01
Every year, all around the world, global environmental change affects the human habitat. This is effect enhanced by the mining operation, and creates new challenges in relationship between the mining and local community. The purpose of this project are developed the Stakeholders engagement evaluation plan which is currently developed in University of Nevada, Reno for the Emigrant mining project, located in the central Nevada, USA, and belong to the Newmont Mining Corporation, one of the gold production leader worldwide. The needs for this project is to create the open dialog between Newmont mining company and all interested parties which have social or environmental impacts from the Emigrant mine. Identification of the stakeholders list is first and one of the most difficult steps in the developing of mine social responsibility. Stakeholders' engagement evaluation plan must be based on the timing and available resources of the mining company, understanding the goals for the engagement, and on analyzes of the possible risks from engagement. In conclusion, the Stakeholders engagement evaluation plan includes: first, determinations of the stakeholders list, which must include any interested or effected by the mine projects groups, for example: state and local government representatives, people from local communities, business partners, environmental NGOs, indigenous people, and academic groups. The contacts and availability for communication is critical for Stakeholders engagement. Next, is to analyze characteristics of all these parties and determinate the level of interest and level of their influence on the project. The next step includes the Stakeholders matrix and mapping development, where all these information will be put together.After that, must be chosen the methods for stakeholders' engagement. The methods usually depends from the goals of engagement (create the dialog lines, collect the data, determinations of the local issues and concerns, or establish the negotiation process) and available resources as a time, people, budget. Is it very important here to recognize the possible risks from the engagement and establish the key massage for stakeholders. Finally, the engagement plan should be evaluated and can be implementing for the new social responsibility practice development.
Developing an Intelligent System for Diagnosis of Asthma Based on Artificial Neural Network.
Alizadeh, Behrouz; Safdari, Reza; Zolnoori, Maryam; Bashiri, Azadeh
2015-08-01
Lack of proper diagnosis and inadequate treatment of asthma, leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different modes was made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. So considering the data mining approaches due to the nature of medical data is necessary.
Lotfian, Reza; Najafi, Mehdi
2018-02-26
Background Every year, many mining accidents occur in underground mines all over the world resulting in the death and maiming of many miners and heavy financial losses to mining companies. Underground mining accounts for an increasing share of these events due to their special circumstances and the risks of working therein. Thus, the optimal location of emergency stations within the network of an underground mine in order to provide medical first aid and transport injured people at the right time, plays an essential role in reducing deaths and disabilities caused by accidents Objective The main objective of this study is to determine the location of emergency stations (ES) within the network of an underground coal mine in order to minimize the outreach time for the injured. Methods A three-objective mathematical model is presented for placement of ES facility location selection and allocation of facilities to the injured in various stopes. Results Taking into account the radius of influence for each ES, the proposed model is capable to reduce the maximum time for provision of emergency services in the event of accident for each stope. In addition, the coverage or lack of coverage of each stope by any of the emergency facility is determined by means of Floyd-Warshall algorithm and graph. To solve the problem, a global criterion method using GAMS software is used to evaluate the accuracy and efficiency of the model. Conclusions 7 locations were selected from among 46 candidates for the establishment of emergency facilities in Tabas underground coal mine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
He, Jieyue; Wang, Chunyan; Qiu, Kunpu; Zhong, Wei
2014-01-01
Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. The algorithm of probability graph isomorphism evaluation based on circuit simulation method excludes most of subgraphs which are not probability isomorphism and reduces the search space of the probability isomorphism subgraphs using the mismatch values in the node voltage set. It is an innovative way to find the frequent probability patterns, which can be efficiently applied to probability motif discovery problems in the further studies.
2014-01-01
Background Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. Methods In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. Results The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. Conclusions The algorithm of probability graph isomorphism evaluation based on circuit simulation method excludes most of subgraphs which are not probability isomorphism and reduces the search space of the probability isomorphism subgraphs using the mismatch values in the node voltage set. It is an innovative way to find the frequent probability patterns, which can be efficiently applied to probability motif discovery problems in the further studies. PMID:25350277
Psycho-social aspects of productivity in underground coal mining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akin, G.
1981-10-01
The psychosocial aspects of productivity in underground coal mining were investigated. The following topics were studied: (1) labor productivity in deep mines and the explanations for productivity changes; (2) current concepts and research on psychosocial factors in productivity; (3) a survey of experiments in productivity improvement (4) the impact of the introduction of new technology on the social system and the way that it accomplishes production (5) a clinical study of a coal mining operation, model described how production is actually accomplished by workers at the coal face; and (6) implications and recommendations for new technology design, implementation and ongoingmore » management.« less
Text and Structural Data Mining of Influenza Mentions in Web and Social Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corley, Courtney D.; Cook, Diane; Mikler, Armin R.
Text and structural data mining of Web and social media (WSM) provides a novel disease surveillance resource and can identify online communities for targeted public health communications (PHC) to assure wide dissemination of pertinent information. WSM that mention influenza are harvested over a 24-week period, 5-October-2008 to 21-March-2009. Link analysis reveals communities for targeted PHC. Text mining is shown to identify trends in flu posts that correlate to real-world influenza-like-illness patient report data. We also bring to bear a graph-based data mining technique to detect anomalies among flu blogs connected by publisher type, links, and user-tags.
Data Mining for Financial Applications
NASA Astrophysics Data System (ADS)
Kovalerchuk, Boris; Vityaev, Evgenii
This chapter describes Data Mining in finance by discussing financial tasks, specifics of methodologies and techniques in this Data Mining area. It includes time dependence, data selection, forecast horizon, measures of success, quality of patterns, hypothesis evaluation, problem ID, method profile, attribute-based and relational methodologies. The second part of the chapter discusses Data Mining models and practice in finance. It covers use of neural networks in portfolio management, design of interpretable trading rules and discovering money laundering schemes using decision rules and relational Data Mining methodology.
20 CFR 410.101 - Introduction.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV.... The regulations in this part 410 (Regulation No. 10 of the Social Security Administration) relate to the provisions of part B (Black Lung Benefits) of title IV of the Federal Coal Mine Health and Safety...
Braithwaite, Jeffrey
2015-01-01
Objectives To assess non-health literature, identify key strategies in promoting more networked teams and groups, apply external ideas to healthcare, and build a model based on these strategies. Design A systematic review of the literature outside of healthcare. Method Searches guided by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) of ABI/INFORM Global, CINAHL, IBSS, MEDLINE and Psychinfo databases following a mind-mapping exercise generating key terms centred on the core construct of gaps across organisational social structures that uncovered 842 empirical articles of which 116 met the inclusion criteria. Data extraction and content analysis via data mining techniques were performed on these articles. Results The research involved subjects in 40 countries, with 32 studies enrolling participants in multiple countries. There were 40 studies conducted wholly or partly in the USA, 46 wholly or partly in continental Europe, 29 wholly or partly in Asia and 12 wholly or partly in Russia or Russian federated countries. Methods employed included 30 mixed or triangulated social science study designs, 39 qualitative studies, 13 experimental studies and 34 questionnaire-based studies, where the latter was mostly to gather data for social network analyses. Four recurring factors underpin a model for promoting networked behaviours and fortifying cross-group cooperation: appreciating the characteristics and nature of gaps between groups; using the leverage of boundary-spanners to bridge two or more groups; applying various mechanisms to stimulate interactive relationships; and mobilising those who can exert positive external influences to promote connections while minimising the impact of those who exacerbate divides. Conclusions The literature assessed is rich and varied. An evidence-oriented model and strategies for promoting more networked systems are now available for application to healthcare. While caution needs to be exercised in translating outside ideas and studies, drawing on non-health ideas is useful in providing insights into other sectors. PMID:26408280
pH in streams draining small mined and unmined watersheds in the coal region of Appalachia
Kenneth L. Dyer; Willie R. Curtis
1983-01-01
To better evaluate the effects of surface mining for coal in first-order watersheds in Appalachia, a network of 421 water-quality sampling stations was established in 136 counties in nine states in 1977 and sampled on approximately a monthly basis until August 1979. Three categories of watersheds were sampled: (1) unmined, (2) mined after January 1972, and (3) mined...
Constructing and Classifying Email Networks from Raw Forensic Images
2016-09-01
data mining for sequence and pattern mining ; in medical imaging for image segmentation; and in computer vision for object recognition” [28]. 2.3.1...machine learning and data mining suite that is written in Python. It provides a platform for experiment selection, recommendation systems, and...predictivemod- eling. The Orange library is a hierarchically-organized toolbox of data mining components. Data filtering and probability assessment are at the
20 CFR 410.412 - “Total disability” defined.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 410.412 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF... requiring the skills and abilities comparable to those of any work in a mine or mines in which he previously... area of his residence requiring the skills and abilities comparable to those of any work in a mine or...
Accidents in Coal Mining from Perspective of Risk Theory
NASA Astrophysics Data System (ADS)
Khamidullina, E. A.; Timofeeva, S. S.; Smirnov, G. I.
2017-11-01
Introduction. The indicators of the safety system quality in the technosphere include risk indicators. The purpose of this work is to assess the social risk of coal mining since coal mining is associated with specific working conditions, and any emergency situation immediately jeopardizes thelives of many people at the same time. Methods. The work is based on the analysis of statistical information. Results and discussion. The F/N curve of coal mining for the 70-year period (1943-2012) was constructed, and the normative values of the social risk of Russia and other industrialized countries were discussed. Judging by the F/N diagram, only the frequency of accidents with a large number of deaths can correspond to the normative level indicating an exceptionally high level of coal mining risk.
Schoech, D; Quinn, A; Rycraft, J R
2000-01-01
Data mining is the sifting through of voluminous data to extract knowledge for decision making. This article illustrates the context, concepts, processes, techniques, and tools of data mining, using statistical and neural network analyses on a dataset concerning employee turnover. The resulting models and their predictive capability, advantages and disadvantages, and implications for decision support are highlighted.
Dynamics of person-to-person interactions from distributed RFID sensor networks.
Cattuto, Ciro; Van den Broeck, Wouter; Barrat, Alain; Colizza, Vittoria; Pinton, Jean-François; Vespignani, Alessandro
2010-07-15
Digital networks, mobile devices, and the possibility of mining the ever-increasing amount of digital traces that we leave behind in our daily activities are changing the way we can approach the study of human and social interactions. Large-scale datasets, however, are mostly available for collective and statistical behaviors, at coarse granularities, while high-resolution data on person-to-person interactions are generally limited to relatively small groups of individuals. Here we present a scalable experimental framework for gathering real-time data resolving face-to-face social interactions with tunable spatial and temporal granularities. We use active Radio Frequency Identification (RFID) devices that assess mutual proximity in a distributed fashion by exchanging low-power radio packets. We analyze the dynamics of person-to-person interaction networks obtained in three high-resolution experiments carried out at different orders of magnitude in community size. The data sets exhibit common statistical properties and lack of a characteristic time scale from 20 seconds to several hours. The association between the number of connections and their duration shows an interesting super-linear behavior, which indicates the possibility of defining super-connectors both in the number and intensity of connections. Taking advantage of scalability and resolution, this experimental framework allows the monitoring of social interactions, uncovering similarities in the way individuals interact in different contexts, and identifying patterns of super-connector behavior in the community. These results could impact our understanding of all phenomena driven by face-to-face interactions, such as the spreading of transmissible infectious diseases and information.
Liakopoulos, Alexandros; Lemière, Bruno; Michael, Konstantinos; Crouzet, Catherine; Laperche, Valérie; Romaidis, Ioannis; Drougas, Iakovos; Lassin, Arnault
2010-11-01
The Kirki project aimed to identify, among the mining waste abandoned at a mine and processing plant, the most critical potential pollution sources, the exposed milieus and the main pathways for contamination of a littoral area. This was accompanied by the definition of a monitoring network and remedial options. For this purpose, field analytical methods were extensively used to allow a more precise identification of the source, to draw relevant conceptual models and outline a monitoring network. Data interpretation was based on temporal series and on a geographical model. A classification method for mining waste was established, based on data on pollutant contents and emissions, and their long-term pollution potential. Mining waste present at the Kirki mine and plant sites comprises (A) extraction waste, mainly metal sulfide-rich rocks; (B) processing waste, mainly tailings, with iron and sulfides, sulfates or other species, plus residues of processing reagents; and (C) other waste, comprising leftover processing reagents and Pb-Zn concentrates. Critical toxic species include cadmium and cyanide. The stormy rainfall regime and hilly topography favour the flush release of large amounts of pollutants. The potential impacts and remedial options vary greatly. Type C waste may generate immediate and severe chemical hazards, and should be dealt with urgently by careful removal, as it is localised in a few spots. Type B waste has significant acid mine drainage potential and contains significant amounts of bioavailable heavy metals and metalloids, but they may also be released in solid form into the surface water through dam failure. The most urgent action is thus dams consolidation. Type A waste is by far the most bulky, and it cannot be economically removed. Unfortunately, it is also the most prone to acid mine drainage (seepage pH 1 to 2). This requires neutralisation to prevent acid water accelerating heavy metals and metalloids transfer. All waste management options require the implementation of a monitoring network for the design of a remediation plan, efficiency control, and later, community alert in case of accidental failure of mitigation/remediation measures. A network design strategy based on field measurements, laboratory validation and conceptual models is proposed.
Data mining the EXFOR database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, David A.; Hirdt, John; Herman, Michal
2013-12-13
The EXFOR database contains the largest collection of experimental nuclear reaction data available as well as this data's bibliographic information and experimental details. We created an undirected graph from the EXFOR datasets with graph nodes representing single observables and graph links representing the connections of various types between these observables. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. Analysing this abstract graph, we are able to address very specific questions such as 1) what observables are being used as reference measurements by the experimental community? 2) are thesemore » observables given the attention needed by various standards organisations? 3) are there classes of observables that are not connected to these reference measurements? In addressing these questions, we propose several (mostly cross section) observables that should be evaluated and made into reaction reference standards.« less
Ontology-based topic clustering for online discussion data
NASA Astrophysics Data System (ADS)
Wang, Yongheng; Cao, Kening; Zhang, Xiaoming
2013-03-01
With the rapid development of online communities, mining and extracting quality knowledge from online discussions becomes very important for the industrial and marketing sector, as well as for e-commerce applications and government. Most of the existing techniques model a discussion as a social network of users represented by a user-based graph without considering the content of the discussion. In this paper we propose a new multilayered mode to analysis online discussions. The user-based and message-based representation is combined in this model. A novel frequent concept sets based clustering method is used to cluster the original online discussion network into topic space. Domain ontology is used to improve the clustering accuracy. Parallel methods are also used to make the algorithms scalable to very large data sets. Our experimental study shows that the model and algorithms are effective when analyzing large scale online discussion data.
Huang, Yuecheng; Cheng, Wuyi; Luo, Sida; Luo, Yun; Ma, Chengchen; He, Tailin
2016-01-01
The features of the asynchronous correlation between accident indices and the factors that influence accidents can provide an effective reference for warnings of coal mining accidents. However, what are the features of this correlation? To answer this question, data from the China coal price index and the number of deaths from coal mining accidents were selected as the sample data. The fluctuation modes of the asynchronous correlation between the two data sets were defined according to the asynchronous correlation coefficients, symbolization, and sliding windows. We then built several directed and weighted network models, within which the fluctuation modes and the transformations between modes were represented by nodes and edges. Then, the features of the asynchronous correlation between these two variables could be studied from a perspective of network topology. We found that the correlation between the price index and the accidental deaths was asynchronous and fluctuating. Certain aspects, such as the key fluctuation modes, the subgroups characteristics, the transmission medium, the periodicity and transmission path length in the network, were analyzed by using complex network theory, analytical methods and spectral analysis method. These results provide a scientific reference for generating warnings for coal mining accidents based on economic indices. PMID:27902748
Adverse Drug Event Discovery Using Biomedical Literature: A Big Data Neural Network Adventure.
P Tafti, Ahmad; Badger, Jonathan; LaRose, Eric; Shirzadi, Ehsan; Mahnke, Andrea; Mayer, John; Ye, Zhan; Page, David; Peissig, Peggy
2017-12-08
The study of adverse drug events (ADEs) is a tenured topic in medical literature. In recent years, increasing numbers of scientific articles and health-related social media posts have been generated and shared daily, albeit with very limited use for ADE study and with little known about the content with respect to ADEs. The aim of this study was to develop a big data analytics strategy that mines the content of scientific articles and health-related Web-based social media to detect and identify ADEs. We analyzed the following two data sources: (1) biomedical articles and (2) health-related social media blog posts. We developed an intelligent and scalable text mining solution on big data infrastructures composed of Apache Spark, natural language processing, and machine learning. This was combined with an Elasticsearch No-SQL distributed database to explore and visualize ADEs. The accuracy, precision, recall, and area under receiver operating characteristic of the system were 92.7%, 93.6%, 93.0%, and 0.905, respectively, and showed better results in comparison with traditional approaches in the literature. This work not only detected and classified ADE sentences from big data biomedical literature but also scientifically visualized ADE interactions. To the best of our knowledge, this work is the first to investigate a big data machine learning strategy for ADE discovery on massive datasets downloaded from PubMed Central and social media. This contribution illustrates possible capacities in big data biomedical text analysis using advanced computational methods with real-time update from new data published on a daily basis. ©Ahmad P Tafti, Jonathan Badger, Eric LaRose, Ehsan Shirzadi, Andrea Mahnke, John Mayer, Zhan Ye, David Page, Peggy Peissig. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 08.12.2017.
Fernandes, Christabelle E G; Malik, Ashish; Jineesh, V K; Fernandes, Sheryl O; Das, Anindita; Pandey, Sunita S; Kanolkar, Geeta; Sujith, P P; Velip, Dhillan M; Shaikh, Shagufta; Helekar, Samita; Gonsalves, Maria Judith; Nair, Shanta; LokaBharathi, P A
2015-08-01
The coastal waters of Goa and Ratnagiri lying on the West coast of India are influenced by terrestrial influx. However, Goa is influenced anthropogenically by iron-ore mining, while Ratnagiri is influenced by deposition of heavy minerals containing iron brought from the hinterlands. We hypothesize that there could be a shift in biological response along with changes in network of interactions between environmental and biological variables in these mining and non-mining impacted regions, lying 160 nmi apart. Biological and environmental parameters were analyzed during pre-monsoon season. Except silicates, the measured parameters were higher at Goa and related significantly, suggesting bacteria centric, detritus-driven region. At Ratnagiri, phytoplankton biomass related positively with silicate suggesting a region dominated by primary producers. This dominance perhaps got reflected as a higher tertiary yield. Thus, even though the regions are geographically proximate, the different biological response could be attributed to the differences in the web of interactions between the measured variables.
NASA Technical Reports Server (NTRS)
Stolzer, Alan J.; Halford, Carl
2007-01-01
In a previous study, multiple regression techniques were applied to Flight Operations Quality Assurance-derived data to develop parsimonious model(s) for fuel consumption on the Boeing 757 airplane. The present study examined several data mining algorithms, including neural networks, on the fuel consumption problem and compared them to the multiple regression results obtained earlier. Using regression methods, parsimonious models were obtained that explained approximately 85% of the variation in fuel flow. In general data mining methods were more effective in predicting fuel consumption. Classification and Regression Tree methods reported correlation coefficients of .91 to .92, and General Linear Models and Multilayer Perceptron neural networks reported correlation coefficients of about .99. These data mining models show great promise for use in further examining large FOQA databases for operational and safety improvements.
Kim, Tae-Goun
2009-10-01
This article develops a dynamic model of efficient use of exhaustible marine sand resources in the context of marine mining externalities. The classical Hotelling extraction model is applied to sand mining in Ongjin, Korea and extended to include the estimated marginal external costs that mining imposes on marine fisheries. The socially efficient sand extraction plan is compared with the extraction paths suggested by scientific research. If marginal environmental costs are correctly estimated, the developed efficient extraction plan considering the resource rent may increase the social welfare and reduce the conflicts among the marine sand resource users. The empirical results are interpreted with an emphasis on guidelines for coastal resource management policy.
Zhang, Daoqiang; Tu, Liyang; Zhang, Long-Jiang; Jie, Biao; Lu, Guang-Ming
2018-06-01
Hepatic encephalopathy (HE), as a complication of cirrhosis, is a serious brain disease, which may lead to death. Accurate diagnosis of HE and its intermediate stage, i.e., minimal HE (MHE), is very important for possibly early diagnosis and treatment. Brain connectivity network, as a simple representation of brain interaction, has been widely used for the brain disease (e.g., HE and MHE) analysis. However, those studies mainly focus on finding disease-related abnormal connectivity between brain regions, although a large number of studies have indicated that some brain diseases are usually related to local structure of brain connectivity network (i.e., subnetwork), rather than solely on some single brain regions or connectivities. Also, mining such disease-related subnetwork is a challenging task because of the complexity of brain network. To address this problem, we proposed a novel frequent-subnetwork-based method to mine disease-related subnetworks for MHE classification. Specifically, we first mine frequent subnetworks from both groups, i.e., MHE patients and non-HE (NHE) patients, respectively. Then we used the graph-kernel based method to select the most discriminative subnetworks for subsequent classification. We evaluate our proposed method on a MHE dataset with 77 cirrhosis patients, including 38 MHE patients and 39 NHE patients. The results demonstrate that our proposed method can not only obtain the improved classification performance in comparison with state-of-the-art network-based methods, but also identify disease-related subnetworks which can help us better understand the pathology of the brain diseases.
The Evaluation of Land Ecological Safety of Chengchao Iron Mine Based on PSR and MEM
NASA Astrophysics Data System (ADS)
Jin, Xiangdong; Chen, Yong
2018-01-01
Land ecological security is of vital importance to local security and sustainable development of mining activities. The study has analyzed the potential causal chains between the land ecological security of Iron Mine mining environment, mine resource and the social-economic background. On the base of Pressure-State-Response model, the paper set up a matter element evaluation model of land ecological security, and applies it in Chengchao iron mine. The evaluation result proves to be effective in land ecological evaluation.
Classification of Traffic Related Short Texts to Analyse Road Problems in Urban Areas
NASA Astrophysics Data System (ADS)
Saldana-Perez, A. M. M.; Moreno-Ibarra, M.; Tores-Ruiz, M.
2017-09-01
The Volunteer Geographic Information (VGI) can be used to understand the urban dynamics. In the classification of traffic related short texts to analyze road problems in urban areas, a VGI data analysis is done over a social media's publications, in order to classify traffic events at big cities that modify the movement of vehicles and people through the roads, such as car accidents, traffic and closures. The classification of traffic events described in short texts is done by applying a supervised machine learning algorithm. In the approach users are considered as sensors which describe their surroundings and provide their geographic position at the social network. The posts are treated by a text mining process and classified into five groups. Finally, the classified events are grouped in a data corpus and geo-visualized in the study area, to detect the places with more vehicular problems.
Improved mine blast algorithm for optimal cost design of water distribution systems
NASA Astrophysics Data System (ADS)
Sadollah, Ali; Guen Yoo, Do; Kim, Joong Hoon
2015-12-01
The design of water distribution systems is a large class of combinatorial, nonlinear optimization problems with complex constraints such as conservation of mass and energy equations. Since feasible solutions are often extremely complex, traditional optimization techniques are insufficient. Recently, metaheuristic algorithms have been applied to this class of problems because they are highly efficient. In this article, a recently developed optimizer called the mine blast algorithm (MBA) is considered. The MBA is improved and coupled with the hydraulic simulator EPANET to find the optimal cost design for water distribution systems. The performance of the improved mine blast algorithm (IMBA) is demonstrated using the well-known Hanoi, New York tunnels and Balerma benchmark networks. Optimization results obtained using IMBA are compared to those using MBA and other optimizers in terms of their minimum construction costs and convergence rates. For the complex Balerma network, IMBA offers the cheapest network design compared to other optimization algorithms.
Underwater target classification using wavelet packets and neural networks.
Azimi-Sadjadi, M R; Yao, D; Huang, Q; Dobeck, G J
2000-01-01
In this paper, a new subband-based classification scheme is developed for classifying underwater mines and mine-like targets from the acoustic backscattered signals. The system consists of a feature extractor using wavelet packets in conjunction with linear predictive coding (LPC), a feature selection scheme, and a backpropagation neural-network classifier. The data set used for this study consists of the backscattered signals from six different objects: two mine-like targets and four nontargets for several aspect angles. Simulation results on ten different noisy realizations and for signal-to-noise ratio (SNR) of 12 dB are presented. The receiver operating characteristic (ROC) curve of the classifier generated based on these results demonstrated excellent classification performance of the system. The generalization ability of the trained network was demonstrated by computing the error and classification rate statistics on a large data set. A multiaspect fusion scheme was also adopted in order to further improve the classification performance.
A Novel Method for Mining SaaS Software Tag via Community Detection in Software Services Network
NASA Astrophysics Data System (ADS)
Qin, Li; Li, Bing; Pan, Wei-Feng; Peng, Tao
The number of online software services based on SaaS paradigm is increasing. However, users usually find it hard to get the exact software services they need. At present, tags are widely used to annotate specific software services and also to facilitate the searching of them. Currently these tags are arbitrary and ambiguous since mostly of them are generated manually by service developers. This paper proposes a method for mining tags from the help documents of software services. By extracting terms from the help documents and calculating the similarity between the terms, we construct a software similarity network where nodes represent software services, edges denote the similarity relationship between software services, and the weights of the edges are the similarity degrees. The hierarchical clustering algorithm is used for community detection in this software similarity network. At the final stage, tags are mined for each of the communities and stored as ontology.
A spatial assessment framework for evaluating flood risk under extreme climates.
Chen, Yun; Liu, Rui; Barrett, Damian; Gao, Lei; Zhou, Mingwei; Renzullo, Luigi; Emelyanova, Irina
2015-12-15
Australian coal mines have been facing a major challenge of increasing risk of flooding caused by intensive rainfall events in recent years. In light of growing climate change concerns and the predicted escalation of flooding, estimating flood inundation risk becomes essential for understanding sustainable mine water management in the Australian mining sector. This research develops a spatial multi-criteria decision making prototype for the evaluation of flooding risk at a regional scale using the Bowen Basin and its surroundings in Queensland as a case study. Spatial gridded data, including climate, hydrology, topography, vegetation and soils, were collected and processed in ArcGIS. Several indices were derived based on time series of observations and spatial modeling taking account of extreme rainfall, evapotranspiration, stream flow, potential soil water retention, elevation and slope generated from a digital elevation model (DEM), as well as drainage density and proximity extracted from a river network. These spatial indices were weighted using the analytical hierarchy process (AHP) and integrated in an AHP-based suitability assessment (AHP-SA) model under the spatial risk evaluation framework. A regional flooding risk map was delineated to represent likely impacts of criterion indices at different risk levels, which was verified using the maximum inundation extent detectable by a time series of remote sensing imagery. The result provides baseline information to help Bowen Basin coal mines identify and assess flooding risk when making adaptation strategies and implementing mitigation measures in future. The framework and methodology developed in this research offers the Australian mining industry, and social and environmental studies around the world, an effective way to produce reliable assessment on flood risk for managing uncertainty in water availability under climate change. Copyright © 2015. Published by Elsevier B.V.
Recognizing explosion sites with a self-organizing network for unsupervised learning
NASA Astrophysics Data System (ADS)
Tarvainen, Matti
1999-06-01
A self-organizing neural network model has been developed for identifying mining explosion locations in different environments in Finland and adjacent areas. The main advantage of the method is its ability to automatically find a suitable network structure and naturally correctly identify explosions as such. The explosion site recognition was done using extracted waveform attributes of various kind event records from the small-aperture array FINESS in Finland. The recognition was done by using P-S phase arrival differences and rough azimuth estimates to provide a first robust epicentre location. This, in turn, leads to correct mining district identification where more detailed tuning was performed using different phase amplitude and signal-to-noise attributes. The explosions studied here originated in mines and quarries located in Finland, coast of Estonia and in the St. Petersburg area, Russia. Although the Helsinki bulletins in 1995 and 1996 listed 1649 events in these areas, analysis was restricted to the 380 (ML≥2) events which, besides, were found in the reviewed event bulletins (REB) of the CTBTO/UN prototype international data centre (pIDC) in Arlington, VA, USA. These 380 events with different attributes were selected for the learning stage. Because no `ground-truth' information was available the corresponding mining, `code' coordinates used earlier to compile Helsinki bulletins were utilized instead. The novel self-organizing method was tested on 18 new event recordings in the mentioned area in January-February 1997, out of which 15 were connected to correct mines. The misconnected three events were those which did not have all matching attributes in the self-organizing maps (SOMs) network.
Ndlovu, Ntombizodwa; Murray, Jill; Seopela, Simon
2006-01-01
After the Anglo-Boer (South African) War (1899-1902), there was a shortage of unskilled labor on the South African gold mines. Chinese men were imported to make up for the deficit. This article reviews the records of indentured Chinese mine workers examined for repatriation in 1905. The records tell of high proportions of social disorders, respiratory diseases, musculoskeletal disorders, opium addiction, and injury. These reflect the social and physical conditions to which these men were exposed in the mines.
CrosstalkNet: A Visualization Tool for Differential Co-expression Networks and Communities.
Manem, Venkata; Adam, George Alexandru; Gruosso, Tina; Gigoux, Mathieu; Bertos, Nicholas; Park, Morag; Haibe-Kains, Benjamin
2018-04-15
Variations in physiological conditions can rewire molecular interactions between biological compartments, which can yield novel insights into gain or loss of interactions specific to perturbations of interest. Networks are a promising tool to elucidate intercellular interactions, yet exploration of these large-scale networks remains a challenge due to their high dimensionality. To retrieve and mine interactions, we developed CrosstalkNet, a user friendly, web-based network visualization tool that provides a statistical framework to infer condition-specific interactions coupled with a community detection algorithm for bipartite graphs to identify significantly dense subnetworks. As a case study, we used CrosstalkNet to mine a set of 54 and 22 gene-expression profiles from breast tumor and normal samples, respectively, with epithelial and stromal compartments extracted via laser microdissection. We show how CrosstalkNet can be used to explore large-scale co-expression networks and to obtain insights into the biological processes that govern cross-talk between different tumor compartments. Significance: This web application enables researchers to mine complex networks and to decipher novel biological processes in tumor epithelial-stroma cross-talk as well as in other studies of intercompartmental interactions. Cancer Res; 78(8); 2140-3. ©2018 AACR . ©2018 American Association for Cancer Research.
Ren, Peng; Qian, Jiansheng
2016-01-01
This study proposes a novel power-efficient and anti-fading clustering based on a cross-layer that is specific to the time-varying fading characteristics of channels in the monitoring of coal mine faces with wireless sensor networks. The number of active sensor nodes and a sliding window are set up such that the optimal number of cluster heads (CHs) is selected in each round. Based on a stable expected number of CHs, we explore the channel efficiency between nodes and the base station by using a probe frame and the joint surplus energy in assessing the CH selection. Moreover, the sending power of a node in different periods is regulated by the signal fade margin method. The simulation results demonstrate that compared with several common algorithms, the power-efficient and fading-aware clustering with a cross-layer (PEAFC-CL) protocol features a stable network topology and adaptability under signal time-varying fading, which effectively prolongs the lifetime of the network and reduces network packet loss, thus making it more applicable to the complex and variable environment characteristic of a coal mine face. PMID:27338380
Mactaggart, Fiona; McDermott, Liane; Tynan, Anna; Gericke, Christian
2016-08-01
It is recognised internationally that rural communities often experience greater barriers to accessing services and have poorer health outcomes compared to urban communities. In some settings, health disparities may be further exacerbated by mining activity, which can affect the social, physical and economic environment in which rural communities reside. Direct environmental health impacts are often associated with mining activity and are frequently investigated. However, there is evidence of broader, indirect health and well-being implications emerging in the literature. This systematic review examines these health and well-being outcomes in communities living in proximity to mining in high-income countries, and, in doing so, discusses their possible determinants. Four databases were systematically searched. Articles were selected if adult residents in mining communities were studied and outcomes were related to health or individual or community-level well-being. A narrative synthesis was conducted. Sixteen publications were included. Evidence of increased prevalence of chronic diseases and poor self-reported health status was reported in the mining communities. Relationship breakdown and poor family health, lack of social connectedness and decreased access to health services were also reported. Changes to the physical landscape; risky health behaviours; shift work of partners in the mine industry; social isolation and cyclical nature of 'boom and bust' activity contributed to poorer outcomes in the communities. This review highlights the broader health and well-being outcomes associated with mining activity that should be monitored and addressed in addition to environmental health impacts to support co-existence of mining activities and rural communities. © 2016 National Rural Health Alliance Inc.
A Human Sensor Network Framework in Support of Near Real Time Situational Geophysical Modeling
NASA Astrophysics Data System (ADS)
Aulov, O.; Price, A.; Smith, J. A.; Halem, M.
2013-12-01
The area of Disaster Management is well established among Federal Agencies such as FEMA, EPA, NOAA and NASA. These agencies have well formulated frameworks for response and mitigation based on near real time satellite and conventional observing networks for assimilation into geophysical models. Forecasts from these models are used to communicate with emergency responders and the general public. More recently, agencies have started using social media to broadcast warnings and alerts to potentially affected communities. In this presentation, we demonstrate the added benefits of mining and assimilating the vast amounts of social media data available from heterogeneous hand held devices and social networks into established operational geophysical modeling frameworks as they apply to the five cornerstones of disaster management - Prevention, Mitigation, Preparedness, Response and Recovery. Often, in situations of extreme events, social media provide the earliest notification of adverse extreme events. However, various forms of social media data also can provide useful geolocated and time stamped in situ observations, complementary to directly sensed conventional observations. We use the concept of a Human Sensor Network where one views social media users as carrying field deployed "sensors" whose posts are the remotely "sensed instrument measurements.' These measurements can act as 'station data' providing the resolution and coverage needed for extreme event specific modeling and validation. Here, we explore the use of social media through the use of a Human Sensor Network (HSN) approach as another data input source for assimilation into geophysical models. Employing the HSN paradigm can provide useful feedback in near real-time, but presents software challenges for rapid access, quality filtering and transforming massive social media data into formats consistent with the operational models. As a use case scenario, we demonstrate the value of HSN for disaster management and mitigation in the wake of Hurricane Sandy. Hurricane Sandy devastated multiple regions along the Atlantic coast causing damage estimated at $68 billion to the Eastern United States. We developed a framework consisting of a set of APIs that harvested over 8 million tweets and 370 thousand Instagram photos mentioning Hurricane Sandy over 4 days from Oct. 29 -Nov. 1, 2012. The flexibility of the framework allows for easy integration with such geophysical models such as GNOME, SLOSH, HySplit, and WRF. We use ElasticSearch, a RESTful, distributed search engine based on Apache Lucene, as the underlying platform for indexing, filtering and extracting feature content from the Twitter and Instagram metadata. We identify microscale events and visually present time varying correlation results of forecasts from the NOAA operational surge model SLOSH with those obtained from our SM database on a Google Earth based map. We are exploring the benefits of our framework to illuminate gaps in our understanding of the use of such data in geophysical models.
Trend Motif: A Graph Mining Approach for Analysis of Dynamic Complex Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, R; McCallen, S; Almaas, E
2007-05-28
Complex networks have been used successfully in scientific disciplines ranging from sociology to microbiology to describe systems of interacting units. Until recently, studies of complex networks have mainly focused on their network topology. However, in many real world applications, the edges and vertices have associated attributes that are frequently represented as vertex or edge weights. Furthermore, these weights are often not static, instead changing with time and forming a time series. Hence, to fully understand the dynamics of the complex network, we have to consider both network topology and related time series data. In this work, we propose a motifmore » mining approach to identify trend motifs for such purposes. Simply stated, a trend motif describes a recurring subgraph where each of its vertices or edges displays similar dynamics over a userdefined period. Given this, each trend motif occurrence can help reveal significant events in a complex system; frequent trend motifs may aid in uncovering dynamic rules of change for the system, and the distribution of trend motifs may characterize the global dynamics of the system. Here, we have developed efficient mining algorithms to extract trend motifs. Our experimental validation using three disparate empirical datasets, ranging from the stock market, world trade, to a protein interaction network, has demonstrated the efficiency and effectiveness of our approach.« less
MET network in PubMed: a text-mined network visualization and curation system.
Dai, Hong-Jie; Su, Chu-Hsien; Lai, Po-Ting; Huang, Ming-Siang; Jonnagaddala, Jitendra; Rose Jue, Toni; Rao, Shruti; Chou, Hui-Jou; Milacic, Marija; Singh, Onkar; Syed-Abdul, Shabbir; Hsu, Wen-Lian
2016-01-01
Metastasis is the dissemination of a cancer/tumor from one organ to another, and it is the most dangerous stage during cancer progression, causing more than 90% of cancer deaths. Improving the understanding of the complicated cellular mechanisms underlying metastasis requires investigations of the signaling pathways. To this end, we developed a METastasis (MET) network visualization and curation tool to assist metastasis researchers retrieve network information of interest while browsing through the large volume of studies in PubMed. MET can recognize relations among genes, cancers, tissues and organs of metastasis mentioned in the literature through text-mining techniques, and then produce a visualization of all mined relations in a metastasis network. To facilitate the curation process, MET is developed as a browser extension that allows curators to review and edit concepts and relations related to metastasis directly in PubMed. PubMed users can also view the metastatic networks integrated from the large collection of research papers directly through MET. For the BioCreative 2015 interactive track (IAT), a curation task was proposed to curate metastatic networks among PubMed abstracts. Six curators participated in the proposed task and a post-IAT task, curating 963 unique metastatic relations from 174 PubMed abstracts using MET.Database URL: http://btm.tmu.edu.tw/metastasisway. © The Author(s) 2016. Published by Oxford University Press.
An economic and financial exploratory
NASA Astrophysics Data System (ADS)
Cincotti, S.; Sornette, D.; Treleaven, P.; Battiston, S.; Caldarelli, G.; Hommes, C.; Kirman, A.
2012-11-01
This paper describes the vision of a European Exploratory for economics and finance using an interdisciplinary consortium of economists, natural scientists, computer scientists and engineers, who will combine their expertise to address the enormous challenges of the 21st century. This Academic Public facility is intended for economic modelling, investigating all aspects of risk and stability, improving financial technology, and evaluating proposed regulatory and taxation changes. The European Exploratory for economics and finance will be constituted as a network of infrastructure, observatories, data repositories, services and facilities and will foster the creation of a new cross-disciplinary research community of social scientists, complexity scientists and computing (ICT) scientists to collaborate in investigating major issues in economics and finance. It is also considered a cradle for training and collaboration with the private sector to spur spin-offs and job creations in Europe in the finance and economic sectors. The Exploratory will allow Social Scientists and Regulators as well as Policy Makers and the private sector to conduct realistic investigations with real economic, financial and social data. The Exploratory will (i) continuously monitor and evaluate the status of the economies of countries in their various components, (ii) use, extend and develop a large variety of methods including data mining, process mining, computational and artificial intelligence and every other computer and complex science techniques coupled with economic theory and econometric, and (iii) provide the framework and infrastructure to perform what-if analysis, scenario evaluations and computational, laboratory, field and web experiments to inform decision makers and help develop innovative policy, market and regulation designs.
A study of mining-induced seismicity in Czech mines with longwall coal exploitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holub, K.
2007-01-15
A review is performed for the data of local and regional seismographical networks installed in mines of the Ostrava-Karvina Coal Basin (Czech Republic), where underground anthracite mining is carried out and dynamic events occur in the form of rockbursts. The seismological and seismoacoustic observations data obtained in panels that are in limiting state are analyzed. This aggregate information is a basic for determining hazardous zones and assigning rockburst prevention measures.
A Comparative Study of Data Mining Techniques on Football Match Prediction
NASA Astrophysics Data System (ADS)
Rosli, Che Mohamad Firdaus Che Mohd; Zainuri Saringat, Mohd; Razali, Nazim; Mustapha, Aida
2018-05-01
Data prediction have become a trend in today’s business or organization. This paper is set to predict match outcomes for association football from the perspective of football club managers and coaches. This paper explored different data mining techniques used for predicting the match outcomes where the target class is win, draw and lose. The main objective of this research is to find the most accurate data mining technique that fits the nature of football data. The techniques tested are Decision Trees, Neural Networks, Bayesian Network, and k-Nearest Neighbors. The results from the comparative experiments showed that Decision Trees produced the highest average prediction accuracy in the domain of football match prediction by 99.56%.
Platinum and Gold Mining in South Africa: The Context of the Marikana Massacre.
Cairncross, Eugene; Kisting, Sophia
2016-02-01
Mining is a source of extraordinary wealth, but its benefits often do not accrue to the workers and communities most involved. This paper presents two case studies of mining in South Africa to reflect on the history and legacy of mining both through observation and through the voices of affected communities. Interviews and observations on field visits to the platinum and gold mining areas of South Africa in the immediate aftermath of the Marikana massacre highlight this legacy--including vast quantities of tailings dumps and waste rock, lakes of polluted water and a devastated physical and social environment, high unemployment, high rates of occupational injury and disease including silicosis with co-morbidities, absent social security, and disrupted rural and agricultural communities. Exploitative conditions of work and the externalization of the health and environmental costs of mining will require international solidarity, robust independent trade unions, and a commitment to human rights. © The Author(s) 2016.
Pérez-Ostalé, E; Grande, J A; Valente, T; de la Torre, M L; Santisteban, M; Fernández, P; Diaz-Curiel, J
2016-01-01
In the Iberian Pyrite Belt (IPB), southwest Spain, a prolonged and intense mining activity of more than 4,500 years has resulted in almost a hundred mines scattered through the region. After years of inactivity, these mines are still causing high levels of hydrochemical degradation in the fluvial network. This situation represents a unique scenario in the world, taking into consideration its magnitude and intensity of the contamination processes. In order to obtain a benchmark regarding the degree of acid mine drainage (AMD) pollution in the aquatic environment, the relationship between the areas occupied by the sulfide mines and the characteristics of the respective effluents after rainfall was analysed. The methodology developed, which includes the design of a sampling network, analytical treatment and cluster analysis, is a useful tool for diagnosing the contamination level by AMD in an entire metallogenic province, at the scale of each mining group. The results presented the relationship between sulfate, total dissolved solids and electrical conductivity, as well as other parameters that are typically associated with AMD and the major elements that compose the polymetallic sulfides of IPB. This analysis also indicates the low level of proximity between the affectation area and the other variables.
Identification of Social and Environmental Conflicts Resulting from Open-Cast Mining
NASA Astrophysics Data System (ADS)
Górniak-Zimroz, Justyna; Pactwa, Katarzyna
2016-10-01
Open-cast mining is related to interference in the natural environment. It also affects human health and quality of life. This influence is, among others, dependent on the type of extracted materials, size of deposit, methods of mining and mineral processing, as well as, equally important, sensitivity of the environment within which mining is planned. The negative effects of mining include deformations of land surface or contamination of soils, air and water. What is more, in many cases, mining for minerals leads to clearing of housing and transport infrastructures located within the mining area, a decrease in values of the properties in the immediate vicinity of a deposit, and an increase in stress levels in local residents exposed to noise. The awareness of negative consequences of taking up open-cast mining activity leads to conflicts between a mining entrepreneur and self-government authorities, society or nongovernment organisations. The article attempts to identify potential social and environmental conflicts that may occur in relation to a planned mining activity. The results of the analyses were interpreted with respect to the deposits which were or have been mined. That enabled one to determine which facilities exclude mineral mining and which allow it. The research took the non-energy mineral resources into consideration which are included in the group of solid minerals located in one of the districts of Lower Silesian Province (SW Poland). The spatial analyses used the tools available in the geographical information systems
Social license to operate: case from brazilian mining industry
NASA Astrophysics Data System (ADS)
Santiago, Ana Lúcia F.; Demajorovic, Jacques; Aledo, Antonio
2015-04-01
The approach of the Social License to Operate (SLO) emerges as an important element in academic discussions and business practices related to extractive industries. It appears that in productive activities with great potential to produce economic, social and environmental impacts, conventional approaches based on legal compliance no longer sufficient to legitimize the actions of companies and engagement stakeholders. Studies highlight the need of mining activities receiving a SLO "issued" by companies stakeholders, including society, government, non-governmental organizations, media and communities. However, local communities appears as major stakeholders in governance arrangements, by virtue of its proximity to extractive areas and ability to affect the company's results. Stakeholders with unmet expectations can generate conflicts and risks to the company, the knowledge of these expectations and an awareness of company managers of the importance of Social License to Operate (SLO), can generate strategies and mitigating actions to prevent and or minimize possible conflicts. The concept of SLO arises in engineering extractive industry, when you need to respond to social challenges, beyond the usual environmental challenges, technological and management. According to Franks and Cohen (2012) there is a tendency of engineering sectors, sustainability, environmental, safety and especially in risk mappings, treat the technological issues in a neutral manner, separating the technological research projects of social influences. I want to contribute to the advancement of the debate on stakeholder engagement and adopting as focus on the company's relationship with the community, the aim of this study was to understand how a social project held by one of the largest mining companies in Brazil contributed to the process of SLO. This methodological procedure adopted was a qualitative, descriptive, and exploratory interviews with the communities located in rural areas of direct influence of the company's approach. The results show that the strategy adopted by the company contributed to the process of SLO, furthermore it is necessary adopt strong methodologies that facilitate the engagement processes of the other company's stakeholders, as well as the challenge to keep on local legitimacy earned. Key words: Mining, social license to operate (SLO), social impact, corporate social responsibility, stakeholders. References: * FRANKS, DANIEL M.; COHEN, TAMAR. Social Licence in Design: Constructive technology assessment within a mineral research and development institution. Centre for Social Responsibility in Mining, Sustainable Minerals Institute, University of Queensland, Australia. 79 122 Technological Forecasting & Social Change. 2012.
Hur, Junguk; Özgür, Arzucan; He, Yongqun
2018-06-07
Adverse drug reactions (ADRs), also called as drug adverse events (AEs), are reported in the FDA drug labels; however, it is a big challenge to properly retrieve and analyze the ADRs and their potential relationships from textual data. Previously, we identified and ontologically modeled over 240 drugs that can induce peripheral neuropathy through mining public drug-related databases and drug labels. However, the ADR mechanisms of these drugs are still unclear. In this study, we aimed to develop an ontology-based literature mining system to identify ADRs from drug labels and to elucidate potential mechanisms of the neuropathy-inducing drugs (NIDs). We developed and applied an ontology-based SciMiner literature mining strategy to mine ADRs from the drug labels provided in the Text Analysis Conference (TAC) 2017, which included drug labels for 53 neuropathy-inducing drugs (NIDs). We identified an average of 243 ADRs per NID and constructed an ADR-ADR network, which consists of 29 ADR nodes and 149 edges, including only those ADR-ADR pairs found in at least 50% of NIDs. Comparison to the ADR-ADR network of non-NIDs revealed that the ADRs such as pruritus, pyrexia, thrombocytopenia, nervousness, asthenia, acute lymphocytic leukaemia were highly enriched in the NID network. Our ChEBI-based ontology analysis identified three benzimidazole NIDs (i.e., lansoprazole, omeprazole, and pantoprazole), which were associated with 43 ADRs. Based on ontology-based drug class effect definition, the benzimidazole drug group has a drug class effect on all of these 43 ADRs. Many of these 43 ADRs also exist in the enriched NID ADR network. Our Ontology of Adverse Events (OAE) classification further found that these 43 benzimidazole-related ADRs were distributed in many systems, primarily in behavioral and neurological, digestive, skin, and immune systems. Our study demonstrates that ontology-based literature mining and network analysis can efficiently identify and study specific group of drugs and their associated ADRs. Furthermore, our analysis of drug class effects identified 3 benzimidazole drugs sharing 43 ADRs, leading to new hypothesis generation and possible mechanism understanding of drug-induced peripheral neuropathy.
Ontology-based literature mining of E. coli vaccine-associated gene interaction networks.
Hur, Junguk; Özgür, Arzucan; He, Yongqun
2017-03-14
Pathogenic Escherichia coli infections cause various diseases in humans and many animal species. However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections. To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli vaccine-associated gene interaction networks. In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO, INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics (i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and interaction types. Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created. From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction types are indirect in that the two genes participated in the specified interaction process in a required but indirect process. Our centrality analysis of these gene interaction networks identified top ranked E. coli genes and 6 INO interaction types (e.g., regulation and gene expression). Vaccine-related E. coli gene-gene interaction network was constructed using ontology-based literature mining strategy, which identified important E. coli vaccine genes and their interactions with other genes through specific interaction types.
2011-01-01
Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5. Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing. PMID:21849043
NASA Astrophysics Data System (ADS)
Ciesłik, Tobiasz; Górniak-Zimroz, Justyna
2018-01-01
Opencast mining of large-area lignite deposits impacts the environment, and the health and life of people living in the vicinity of the conducted mining activity. Therefore, the attempt was made to develop a methodology for identification of environmental and social changes in the Bogatynia municipality (south-western Poland), resulting from functioning of Turow lignite mine within its area. During the study of changes occurring over the years, the development of mining pit was noticed, as well as the transformations of this area and impact of the mining plant on the selected elements of environment and surrounding areas. Analogue and digital data were used for the preparation of cartographic compilations, the usefulness of which was analyzed in accordance with the guidelines contained in the standard [1]. The conducted cartographic studies allowed to learn the history of the mine together with identification of changes taking place in the municipality Bogatynia. The obtained results show the form and condition of the objects in the analyzed year, allowing for the interpretation of changes that occurred in the surrounding areas of the Turow mine. Due to the conducted activity of the mine and Turow power plant, both negative and positive aspects were noted in connection with the carrying out of mining activity in the Bogatynia municipality.
Digital Family History Data Mining with Neural Networks: A Pilot Study.
Hoyt, Robert; Linnville, Steven; Thaler, Stephen; Moore, Jeffrey
2016-01-01
Following the passage of the Health Information Technology for Economic and Clinical Health (HITECH) Act of 2009, electronic health records were widely adopted by eligible physicians and hospitals in the United States. Stage 2 meaningful use menu objectives include a digital family history but no stipulation as to how that information should be used. A variety of data mining techniques now exist for these data, which include artificial neural networks (ANNs) for supervised or unsupervised machine learning. In this pilot study, we applied an ANN-based simulation to a previously reported digital family history to mine the database for trends. A graphical user interface was created to display the input of multiple conditions in the parents and output as the likelihood of diabetes, hypertension, and coronary artery disease in male and female offspring. The results of this pilot study show promise in using ANNs to data mine digital family histories for clinical and research purposes.
A Comparative Study to Predict Student’s Performance Using Educational Data Mining Techniques
NASA Astrophysics Data System (ADS)
Uswatun Khasanah, Annisa; Harwati
2017-06-01
Student’s performance prediction is essential to be conducted for a university to prevent student fail. Number of student drop out is one of parameter that can be used to measure student performance and one important point that must be evaluated in Indonesia university accreditation. Data Mining has been widely used to predict student’s performance, and data mining that applied in this field usually called as Educational Data Mining. This study conducted Feature Selection to select high influence attributes with student performance in Department of Industrial Engineering Universitas Islam Indonesia. Then, two popular classification algorithm, Bayesian Network and Decision Tree, were implemented and compared to know the best prediction result. The outcome showed that student’s attendance and GPA in the first semester were in the top rank from all Feature Selection methods, and Bayesian Network is outperforming Decision Tree since it has higher accuracy rate.
A Review of Financial Accounting Fraud Detection based on Data Mining Techniques
NASA Astrophysics Data System (ADS)
Sharma, Anuj; Kumar Panigrahi, Prabin
2012-02-01
With an upsurge in financial accounting fraud in the current economic scenario experienced, financial accounting fraud detection (FAFD) has become an emerging topic of great importance for academic, research and industries. The failure of internal auditing system of the organization in identifying the accounting frauds has lead to use of specialized procedures to detect financial accounting fraud, collective known as forensic accounting. Data mining techniques are providing great aid in financial accounting fraud detection, since dealing with the large data volumes and complexities of financial data are big challenges for forensic accounting. This paper presents a comprehensive review of the literature on the application of data mining techniques for the detection of financial accounting fraud and proposes a framework for data mining techniques based accounting fraud detection. The systematic and comprehensive literature review of the data mining techniques applicable to financial accounting fraud detection may provide a foundation to future research in this field. The findings of this review show that data mining techniques like logistic models, neural networks, Bayesian belief network, and decision trees have been applied most extensively to provide primary solutions to the problems inherent in the detection and classification of fraudulent data.
NASA Astrophysics Data System (ADS)
Efremenko, Vladimir; Belyaevsky, Roman; Skrebneva, Evgeniya
2017-11-01
In article the analysis of electric power consumption and problems of power saving on coal mines are considered. Nowadays the share of conditionally constant costs of electric power for providing safe working conditions underground on coal mines is big. Therefore, the power efficiency of underground coal mining depends on electric power expense of the main technological processes and size of conditionally constant costs. The important direction of increase of power efficiency of coal mining is forecasting of a power consumption and monitoring of electric power expense. One of the main approaches to reducing of electric power costs is increase in accuracy of the enterprise demand in the wholesale electric power market. It is offered to use artificial neural networks to forecasting of day-ahead power consumption with hourly breakdown. At the same time use of neural and indistinct (hybrid) systems on the principles of fuzzy logic, neural networks and genetic algorithms is more preferable. This model allows to do exact short-term forecasts at a small array of input data. A set of the input parameters characterizing mining-and-geological and technological features of the enterprise is offered.
Seismic activity in the Sunnyside mining district, Carbon and Emery Counties, Utah, during 1968
Dunrud, C. Richard; Maberry, John O.; Hernandez, Jerome H.
1970-01-01
More than 20,000 local earth tremors were recorded by the seismic monitoring network in the Sunnyside mining district during 1968. This is about 40 percent of the number of tremors recorded by the network in 1967. In 1968 a total of 281 tremors were of sufficient magnitude to be located accurately--about 50 percent of the number of tremors in 1967 that were located accurately. As in previous years, nearly all the earth tremors originated near, or within a few thousand feet of, the mine workings. This distribution indicates that mine-induced stress changes caused most of the seismic activity. However, over periods of weeks and months there were significant changes in the distribution of seismic activity caused by tremors that were not directly related to mining but probably were caused by adjustment of natural stresses 6r by a complex combination of both natural and mine-induced stress changes. In 1968 the distribution of tremor hypocenters varied considerably with time, relative to active mining areas and to faults present in the mine workings. During the first 6 months, most tremors originated along or near faults that trend close to or through the active mine workings. However, in the last 6 months, the tremor hypocenters tended to concentrate in the rock mass closer to, or around, the active mining areas. This shift in concentration of seismic activity with time has been noted throughout the district many times since recording began in 1963, and is apparently caused by spontaneous releases of stored strain energy resulting from mine-induced stress changes. These spontaneous releases of strain energy, together with rock creep, apparently are the mechanism of adjustment within the rock mass toward equilibrium conditions, which are continually disrupted by mining. Although potentially hazardous bumps were rare in the Sunnyside mining district during 1968, smaller bumps and rock falls were more common in a given active mining area whenever hypocenters of larger-magnitude earth tremors concentrated near it.
Neural networks for data mining electronic text collections
NASA Astrophysics Data System (ADS)
Walker, Nicholas; Truman, Gregory
1997-04-01
The use of neural networks in information retrieval and text analysis has primarily suffered from the issues of adequate document representation, the ability to scale to very large collections, dynamism in the face of new information and the practical difficulties of basing the design on the use of supervised training sets. Perhaps the most important approach to begin solving these problems is the use of `intermediate entities' which reduce the dimensionality of document representations and the size of documents collections to manageable levels coupled with the use of unsupervised neural network paradigms. This paper describes the issues, a fully configured neural network-based text analysis system--dataHARVEST--aimed at data mining text collections which begins this process, along with the remaining difficulties and potential ways forward.
Analysis of the seismicity in the region of Mirovo salt mine after 8 years monitoring
NASA Astrophysics Data System (ADS)
Dimitrova, Liliya; Solakov, Dimcho; Simeonova, Stela; Aleksandrova, Irena; Georgieva, Gergana
2015-04-01
Mirovo salt deposit is situated in the NE part of Bulgaria and 5 kilometers away from the town of Provadiya. The mine is in operation since 1956. The salt is produced by dilution and extraction of the brine to the surface. A system of chambers-pillars is formed within the salt body as a result of the applied technology. The mine is situated in a seismically quiet part of the state. The region is characterized with complex geological structure and several faults. During the last 3 decades a large number of small and moderate earthquakes (M<4.5) are realized in the close vicinity of the salt deposit. Local seismological network (LSN) is deployed in the region to monitor the local seismicity. It consists of 6 three component digital stations. A real-time data transfer from LSN stations to National Data Center (in Sofia) is implemented using the VPN and MAN networks of the Bulgarian Telecommunication Company. Common processing and interpretation of the data from LSN and the national seismic network is performed. Real-time and interactive data processing are performed by the Seismic Network Data Processor (SNDP) software package. More than 700 earthquakes are registered by the LSN within 30km region around the mine during the 8 years monitoring. First we processed the data and compile a catalogue of the earthquakes occur within the studied region (30km around the salt mine). Spatial pattern of seismicity is analyzed. A large number of the seismic events occurred within the northern and north-western part of the salt body. Several earthquakes occurred in close vicinity of the mine. Concerning that the earthquakes could be tectonic and/or induced an attempt is made to find criteria to distinguish natural from induced seismicity. To characterize and distinguish the main processes active in the area we also made waveform and spectral analysis of a number of earthquakes.
NASA Astrophysics Data System (ADS)
Nevalainen, Jouni; Kozlovskaya, Elena
2016-04-01
We present results of a seismic travel-time tomography applied to microseismic data from the Pyhäsalmi mine, Finland. The data about microseismic events in the mine is recorded since 2002 when the passive microseismic monitoring network was installed in the mine. Since that over 130000 microseismic events have been observed. The first target of our study was to test can the passive microseismic monitoring data be used with travel-time tomography. In this data set the source-receiver geometry is based on non-even distribution of natural and mine-induced events inside and in the vicinity of the mine and hence, is a non-ideal one for the travel-time tomography. The tomographic inversion procedure was tested with the synthetic data and real source-receiver geometry from Pyhäsalmi mine and with the real travel-time data of the first arrivals of P-waves from the microseismic events. The results showed that seismic tomography is capable to reveal differences in seismic velocities in the mine area corresponding to different rock types. For example, the velocity contrast between the ore body and surrounding rock is detectable. The velocity model recovered agrees well with the known geological structures in the mine area. The second target of the study was to apply the travel-time tomography to microseismic monitoring data recorded during different time periods in order to track temporal changes in seismic velocities within the mining area as the excavation proceeds. The result shows that such a time-lapse travel-time tomography can recover such changes. In order to obtain good ray coverage and good resolution, the time interval for a single tomography round need to be selected taking into account the number of events and their spatial distribution. The third target was to compare and analyze mine-induced event locations, seismic tomography results and mining technological data (for example, mine excavation plans) in order to understand the influence of mining technology to mining-induced seismicity. Acknowledgements: This study has been supported by ERDF SEISLAB project and Pyhäsalmi Mine Ltd.
Paradox in AI - AI 2.0: The Way to Machine Consciousness
NASA Astrophysics Data System (ADS)
Palensky, Peter; Bruckner, Dietmar; Tmej, Anna; Deutsch, Tobias
Artificial Intelligence, the big promise of the last millennium, has apparently made its way into our daily lives. Cell phones with speech control, evolutionary computing in data mining or power grids, optimized via neural network, show its applicability in industrial environments. The original expectation of true intelligence and thinking machines lies still ahead of us. Researchers are, however, optimistic as never before. This paper tries to compare the views, challenges and approaches of several disciplines: engineering, psychology, neuroscience, philosophy. It gives a short introduction to Psychoanalysis, discusses the term consciousness, social implications of intelligent machines, related theories, and expectations and shall serve as a starting point for first attempts of combining these diverse thoughts.
NASA Astrophysics Data System (ADS)
Masaitis, Alexandra
2014-05-01
New economic, environmental and social challenges for the mining industry in the USA show the need to implement "responsible" mining practices that include improved community involvement. Conflicts which occur in the US territory and with US mining companies around the world are now common between the mining proponents, NGO's and communities. These conflicts can sometimes be alleviated by early development of modes of communication, and a formal discussion format that allows airing of concerns and potential resolution of problems. One of the methods that can formalize this process is to establish a Good Neighbor Agreement (GNA), which deals specifically with challenges in relationships between mining operations and the local communities. It is a new practice related to mining operations that are oriented toward social needs and concerns of local communities that arise during the normal life of a mine, which can achieve sustainable mining practices. The GNA project being currently developed at the University of Nevada, USA in cooperation with the Newmont Mining Corporation has a goal of creating an open company/community dialog that will help identify and address sociological and environmental concerns associated with mining. Discussion: The Good Neighbor Agreement currently evolving will address the following: 1. Identify spheres of possible cooperation between mining companies, government organizations, and NGO's. 2. Provide an economically viable mechanism for developing a partnership between mining operations and the local communities that will increase mining industry's accountability and provide higher levels of confidence for the community that a mine is operated in a safe and sustainable manner. Implementation of the GNA can help identify and evaluate conflict criteria in mining/community relationships; determine the status of concerns; determine the role and responsibilities of stakeholders; analyze problem resolution feasibility; maintain the community involvement and support through economic benefits and environmental safeguards; develop options for the concerns resolution. Difficulties in establishing the GNA standards include lack of insurance/bonding policies, and by the lack of audit and monitoring that could determine the level of exposure of the local community and the environment to the contaminants released at the mine sites. Since many problems of mines can occur during closure and post-closure, GNA's should address those issues also. The goal of the GNA is to have open access for the public to the safety, health, and environmental information pertaining to the mining operation, as well as to educate the local communities about mining practices that promote mutual acknowledgment of the need to build a relationship amenable to each other's needs. Frequent conflicts between mining companies and surrounding communities lead to work disruptions or even mine closures and show the necessity of a less confrontational approach to environmental and social justice. The Good Neighbor Agreement is a unique way to provide the benefits for the both mining operations and local community to provide a mechanism for risk redaction and communication that offer the potential to protect both mining and community interests.
Song, Min
2016-01-01
In biomedicine, scientific literature is a valuable source for knowledge discovery. Mining knowledge from textual data has become an ever important task as the volume of scientific literature is growing unprecedentedly. In this paper, we propose a framework for examining a certain disease based on existing information provided by scientific literature. Disease-related entities that include diseases, drugs, and genes are systematically extracted and analyzed using a three-level network-based approach. A paper-entity network and an entity co-occurrence network (macro-level) are explored and used to construct six entity specific networks (meso-level). Important diseases, drugs, and genes as well as salient entity relations (micro-level) are identified from these networks. Results obtained from the literature-based literature mining can serve to assist clinical applications. PMID:27195695
Data Streams: An Overview and Scientific Applications
NASA Astrophysics Data System (ADS)
Aggarwal, Charu C.
In recent years, advances in hardware technology have facilitated the ability to collect data continuously. Simple transactions of everyday life such as using a credit card, a phone, or browsing the web lead to automated data storage. Similarly, advances in information technology have lead to large flows of data across IP networks. In many cases, these large volumes of data can be mined for interesting and relevant information in a wide variety of applications. When the volume of the underlying data is very large, it leads to a number of computational and mining challenges: With increasing volume of the data, it is no longer possible to process the data efficiently by using multiple passes. Rather, one can process a data item at most once. This leads to constraints on the implementation of the underlying algorithms. Therefore, stream mining algorithms typically need to be designed so that the algorithms work with one pass of the data. In most cases, there is an inherent temporal component to the stream mining process. This is because the data may evolve over time. This behavior of data streams is referred to as temporal locality. Therefore, a straightforward adaptation of one-pass mining algorithms may not be an effective solution to the task. Stream mining algorithms need to be carefully designed with a clear focus on the evolution of the underlying data. Another important characteristic of data streams is that they are often mined in a distributed fashion. Furthermore, the individual processors may have limited processing and memory. Examples of such cases include sensor networks, in which it may be desirable to perform in-network processing of data stream with limited processing and memory [1, 2]. This chapter will provide an overview of the key challenges in stream mining algorithms which arise from the unique setup in which these problems are encountered. This chapter is organized as follows. In the next section, we will discuss the generic challenges that stream mining poses to a variety of data management and data mining problems. The next section also deals with several issues which arise in the context of data stream management. In Sect. 3, we discuss several mining algorithms on the data stream model. Section 4 discusses various scientific applications of data streams. Section 5 discusses the research directions and conclusions.
International SUSMIN-project aims at sustainable gold mining in EU
NASA Astrophysics Data System (ADS)
Backnäs, Soile; Neitola, Raisa; Turunen, Kaisa; Lima, Alexandre; Fiúza, António; Szlachta, Malgorzata; Wójtowicz, Patryk; Maftei, Raluca; Munteanu, Marian; Alakangas, Lena; Baciu, Calin; Fernández, Dámaris
2015-04-01
Although the gold demand has been constantly increasing in past years, the commodity findings have been decreasing and the extraction of gold has complicated due to increasing complexity and decreasing grade of the ores. Additionally, even gold mining could increase economical development, it has also challenges in eco-efficiency and extraction methods (e.g. cyanide). Thus, the novel energy and resource-efficient methods and technologies for mineral processing should be developed to concentrate selectively different gold bearing minerals. Furthermore, technologies for efficient treatment of mine waters, sustainable management of wastes, and methods to diminish environmental and social impacts of mining are needed. These problems will be addressed by the three year long project SUSMIN. The SUSMIN-project identifies and evaluates environmental impacts and economical challenges of gold mining within EU. The objective of the project is to increase the transnational cooperation and to support environmentally, socially and economically sustainable viable gold production. The focus is to develop and test geophysical techniques for gold exploration, eco-efficient ore beneficiation methods and alternatives for cyanide leaching. Additionally, the research will improve treatment methods for mine waters by the development and testing of advanced adsorbents. The research on socio-economic issues pursues to develop tools for enhancing the mechanisms of the corporate social responsibility as well as community engagement and management of the relations with the stakeholders. Moreover, with the environmental risk assessment and better knowledge of the geochemistry and long-term transformation of the contaminants in mining wastes and mine waters, the mining companies are able to predict and prevent the impacts to the surrounding environment, resulting in an improved environmental management solution. The SUSMIN consortium led by Geological Survey of Finland (GTK) includes seven research partners from six EU member states Finland, Sweden, Portugal, Romania, Poland and Ireland. Additionally eight globally on mining industry working industry partners will contribute in the SUSMIN consortium, so implementation of results from the project will translate into direct and significant economic benefits.
Hur, Junguk; Özgür, Arzucan; Xiang, Zuoshuang; He, Yongqun
2015-01-01
Literature mining of gene-gene interactions has been enhanced by ontology-based name classifications. However, in biomedical literature mining, interaction keywords have not been carefully studied and used beyond a collection of keywords. In this study, we report the development of a new Interaction Network Ontology (INO) that classifies >800 interaction keywords and incorporates interaction terms from the PSI Molecular Interactions (PSI-MI) and Gene Ontology (GO). Using INO-based literature mining results, a modified Fisher's exact test was established to analyze significantly over- and under-represented enriched gene-gene interaction types within a specific area. Such a strategy was applied to study the vaccine-mediated gene-gene interactions using all PubMed abstracts. The Vaccine Ontology (VO) and INO were used to support the retrieval of vaccine terms and interaction keywords from the literature. INO is aligned with the Basic Formal Ontology (BFO) and imports terms from 10 other existing ontologies. Current INO includes 540 terms. In terms of interaction-related terms, INO imports and aligns PSI-MI and GO interaction terms and includes over 100 newly generated ontology terms with 'INO_' prefix. A new annotation property, 'has literature mining keywords', was generated to allow the listing of different keywords mapping to the interaction types in INO. Using all PubMed documents published as of 12/31/2013, approximately 266,000 vaccine-associated documents were identified, and a total of 6,116 gene-pairs were associated with at least one INO term. Out of 78 INO interaction terms associated with at least five gene-pairs of the vaccine-associated sub-network, 14 terms were significantly over-represented (i.e., more frequently used) and 17 under-represented based on our modified Fisher's exact test. These over-represented and under-represented terms share some common top-level terms but are distinct at the bottom levels of the INO hierarchy. The analysis of these interaction types and their associated gene-gene pairs uncovered many scientific insights. INO provides a novel approach for defining hierarchical interaction types and related keywords for literature mining. The ontology-based literature mining, in combination with an INO-based statistical interaction enrichment test, provides a new platform for efficient mining and analysis of topic-specific gene interaction networks.
Determining Plant – Leaf Miner – Parasitoid Interactions: A DNA Barcoding Approach
Derocles, Stéphane A. P.; Evans, Darren M.; Nichols, Paul C.; Evans, S. Aifionn; Lunt, David H.
2015-01-01
A major challenge in network ecology is to describe the full-range of species interactions in a community to create highly-resolved food-webs. We developed a molecular approach based on DNA full barcoding and mini-barcoding to describe difficult to observe plant – leaf miner – parasitoid interactions, consisting of animals commonly regarded as agricultural pests and their natural enemies. We tested the ability of universal primers to amplify the remaining DNA inside leaf miner mines after the emergence of the insect. We compared the results of a) morphological identification of adult specimens; b) identification based on the shape of the mines; c) the COI Mini-barcode (130 bp) and d) the COI full barcode (658 bp) fragments to accurately identify the leaf-miner species. We used the molecular approach to build and analyse a tri-partite ecological network of plant – leaf miner – parasitoid interactions. We were able to detect the DNA of leaf-mining insects within their feeding mines on a range of host plants using mini-barcoding primers: 6% for the leaves collected empty and 33% success after we observed the emergence of the leaf miner. We suggest that the low amplification success of leaf mines collected empty was mainly due to the time since the adult emerged and discuss methodological improvements. Nevertheless our approach provided new species-interaction data for the ecological network. We found that the 130 bp fragment is variable enough to identify all the species included in this study. Both COI fragments reveal that some leaf miner species could be composed of cryptic species. The network built using the molecular approach was more accurate in describing tri-partite interactions compared with traditional approaches based on morphological criteria. PMID:25710377
Industrial Internet of Things: (IIoT) applications in underground coal mines.
Zhou, C; Damiano, N; Whisner, B; Reyes, M
2017-12-01
The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure.
Neural network analysis of electrodynamic activity of yeast cells around 1 kHz
NASA Astrophysics Data System (ADS)
Janca, R.
2011-12-01
This paper deals with data analysis of electrodynamic activity of two mutants of yeast cells, cell cycle of which is synchronized and non-synchronized, respectively. We used data already published by Jelinek et al. and treat them with data mining method based on the multilayer neural network. Intersection of data mining and statistical distribution of the noise shows significant difference between synchronized and non-synchronized yeasts not only in total power, but also discrete frequencies.
Application of a Hidden Bayes Naive Multiclass Classifier in Network Intrusion Detection
ERIC Educational Resources Information Center
Koc, Levent
2013-01-01
With increasing Internet connectivity and traffic volume, recent intrusion incidents have reemphasized the importance of network intrusion detection systems for combating increasingly sophisticated network attacks. Techniques such as pattern recognition and the data mining of network events are often used by intrusion detection systems to classify…
Topic Models for Link Prediction in Document Networks
ERIC Educational Resources Information Center
Kataria, Saurabh
2012-01-01
Recent explosive growth of interconnected document collections such as citation networks, network of web pages, content generated by crowd-sourcing in collaborative environments, etc., has posed several challenging problems for data mining and machine learning community. One central problem in the domain of document networks is that of "link…
Mine Burial Expert System for Change of MIW Doctrine
2011-09-01
allowed the mine to move vertically and horizontally, as well as rotate about the y axis. The first of these second generation impact models was...bearing strength and use multilayered sediments. Although they improve the knowledge of mine movement in two dimensions and rotation in one direction...conditional independence. Bayesian networks were originally developed 24 to handle uncertainty in a quantitative manner. They are statistical models
NASA Astrophysics Data System (ADS)
Mao, H.; Bhaduri, B. L.
2016-12-01
Understanding public opinions on climate change is important for policy making. Public opinion, however, is typically measured with national surveys, which are often too expensive and thus being updated at a low frequency. Twitter has become a major platform for people to express their opinions on social and political issues. Our work attempts to understand if Twitter data can provide complimentary insights about climate change perceptions. Since the nature of social media is real-time, this data source can especially help us understand how public opinion changes over time in response to climate events and hazards, which though is very difficult to be captured by manual surveys. We use the Twitter Streaming API to collect tweets that contain keywords, "climate change" or "#climatechange". Traditional machine-learning based opinion mining algorithms require a significant amount of labeled data. Data labeling is notoriously time consuming. To address this problem, we use hashtags (a significant feature used to mark topics of tweets) to annotate tweets automatically. For example, hashtags, #climatedenial and #climatescam, are negative opinion labels, while #actonclimate and #climateaction are positive. Following this method, we can obtain a large amount of training data without human labor. This labeled dataset is used to train a deep convolutional neural network that classifies tweets into positive (i.e. believe in climate change) and negative (i.e. do not believe). Based on the positive/negative tweets obtained, we will further analyze risk perceptions and opinions towards policy support. In addition, we analyze twitter user profiles to understand the demographics of proponents and opponents of climate change. Deep learning techniques, especially convolutional deep neural networks, have achieved much success in computer vision. In this work, we propose a convolutional neural network architecture for understanding opinions within text. This method is compared with lexicon-based opinion analysis approaches. Results and the advantages/limitations of this method are to be discussed.
Social cost of land mines in four countries: Afghanistan, Bosnia, Cambodia, and Mozambique.
Andersson, N.; da Sousa, C. P.; Paredes, S.
1995-01-01
OBJECTIVES--To document the effects of land mines on the health and social conditions of communities in four affected countries. DESIGN--A cross design of cluster survey and rapid appraisal methods including a household questionnaire and qualitative data from key informants, institutional reviews, and focus groups of survivors of land mines from the same communities. SETTING--206 communities, 37 in Afghanistan, 66 in Bosnia, 38 in Cambodia, and 65 in Mozambique. SUBJECTS--174,489 people living in 32,904 households in the selected communities. MAIN OUTCOME MEASURES--Effects of land mines on food security, residence, livestock, and land use; risk factors: extent of individual land mine injuries; physical, psychological, social, and economic costs of injuries during medical care and rehabilitation. RESULTS--Between 25% and 87% of households had daily activities affected by land mines. Based on expected production without the mines, agricultural production could increase by 88-200% in different regions of Afghanistan, 11% in Bosnia, 135% in Cambodia, and 3.6% in Mozambique. A total of 54,554 animals was lost because of land mines, with a minimum cash value of $6.5m, or nearly $200 per household. Overall, 6% of households (1964) reported a land mine victim; a third of victims died in the blast. One in 10 of the victims was a child. The most frequent activities associated with land mine incidents were agricultural or pastoral, except in Bosnia where more than half resulted from military activities, usually during patrols. Incidences have more than doubled between 1980-3 and 1990-3, excluding the incidents in Bosnia. Some 22% of victims (455/2100) were from households reporting attempts to remove land mines; in these households there was a greatly increased risk of injury (odds ratio 4.2 and risk difference 19% across the four countries). Lethality of the mines varied; in Bosnia each blast killed an average of 0.54 people and injured 1.4, whereas in Mozambique each blast killed 1.45 people and wounded 1.27. Households with a land mine victim were 40% more likely to experience difficulty in providing food for the family. Family relationships were affected for around one in every four victims and relationships with colleagues in 40%. CONCLUSIONS--Land mines seriously undermine the economy and food security in affected countries; they kill and maim civilians at an increasing rate. The expense of medical care and rehabilitation add economic disability to the physical burden. Awareness of land mines can be targeted at high risk attitudes, such as those associated with tampering with mines. PMID:7549685
Social cost of land mines in four countries: Afghanistan, Bosnia, Cambodia, and Mozambique.
Andersson, N; da Sousa, C P; Paredes, S
1995-09-16
To document the effects of land mines on the health and social conditions of communities in four affected countries. A cross design of cluster survey and rapid appraisal methods including a household questionnaire and qualitative data from key informants, institutional reviews, and focus groups of survivors of land mines from the same communities. 206 communities, 37 in Afghanistan, 66 in Bosnia, 38 in Cambodia, and 65 in Mozambique. 174,489 people living in 32,904 households in the selected communities. Effects of land mines on food security, residence, livestock, and land use; risk factors: extent of individual land mine injuries; physical, psychological, social, and economic costs of injuries during medical care and rehabilitation. Between 25% and 87% of households had daily activities affected by land mines. Based on expected production without the mines, agricultural production could increase by 88-200% in different regions of Afghanistan, 11% in Bosnia, 135% in Cambodia, and 3.6% in Mozambique. A total of 54,554 animals was lost because of land mines, with a minimum cash value of $6.5m, or nearly $200 per household. Overall, 6% of households (1964) reported a land mine victim; a third of victims died in the blast. One in 10 of the victims was a child. The most frequent activities associated with land mine incidents were agricultural or pastoral, except in Bosnia where more than half resulted from military activities, usually during patrols. Incidences have more than doubled between 1980-3 and 1990-3, excluding the incidents in Bosnia. Some 22% of victims (455/2100) were from households reporting attempts to remove land mines; in these households there was a greatly increased risk of injury (odds ratio 4.2 and risk difference 19% across the four countries). Lethality of the mines varied; in Bosnia each blast killed an average of 0.54 people and injured 1.4, whereas in Mozambique each blast killed 1.45 people and wounded 1.27. Households with a land mine victim were 40% more likely to experience difficulty in providing food for the family. Family relationships were affected for around one in every four victims and relationships with colleagues in 40%. Land mines seriously undermine the economy and food security in affected countries; they kill and maim civilians at an increasing rate. The expense of medical care and rehabilitation add economic disability to the physical burden. Awareness of land mines can be targeted at high risk attitudes, such as those associated with tampering with mines.
A "Social Bitcoin" could sustain a democratic digital world
NASA Astrophysics Data System (ADS)
Kleineberg, Kaj-Kolja; Helbing, Dirk
2016-12-01
A multidimensional financial system could provide benefits for individuals, companies, and states. Instead of top-down control, which is destined to eventually fail in a hyperconnected world, a bottom-up creation of value can unleash creative potential and drive innovations. Multiple currency dimensions can represent different externalities and thus enable the design of incentives and feedback mechanisms that foster the ability of complex dynamical systems to self-organize and lead to a more resilient society and sustainable economy. Modern information and communication technologies play a crucial role in this process, as Web 2.0 and online social networks promote cooperation and collaboration on unprecedented scales. Within this contribution, we discuss how one dimension of a multidimensional currency system could represent socio-digital capital (Social Bitcoins) that can be generated in a bottom-up way by individuals who perform search and navigation tasks in a future version of the digital world. The incentive to mine Social Bitcoins could sustain digital diversity, which mitigates the risk of totalitarian control by powerful monopolies of information and can create new business opportunities needed in times where a large fraction of current jobs is estimated to disappear due to computerisation.
Social voting advice applications-definitions, challenges, datasets and evaluation.
Katakis, Ioannis; Tsapatsoulis, Nicolas; Mendez, Fernando; Triga, Vasiliki; Djouvas, Constantinos
2014-07-01
Voting advice applications (VAAs) are online tools that have become increasingly popular and purportedly aid users in deciding which party/candidate to vote for during an election. In this paper we present an innovation to current VAA design which is based on the introduction of a social network element. We refer to this new type of online tool as a social voting advice application (SVAA). SVAAs extend VAAs by providing (a) community-based recommendations, (b) comparison of users' political opinions, and (c) a channel of user communication. In addition, SVAAs enriched with data mining modules, can operate as citizen sensors recording the sentiment of the electorate on issues and candidates. Drawing on VAA datasets generated by the Preference Matcher research consortium, we evaluate the results of the first VAA-Choose4Greece-which incorporated social voting features and was launched during the landmark Greek national elections of 2012. We demonstrate how an SVAA can provide community based features and, at the same time, serve as a citizen sensor. Evaluation of the proposed techniques is realized on a series of datasets collected from various VAAs, including Choose4Greece. The collection is made available online in order to promote research in the field.
Diversification of the Higher Mining Education Financing in Globalization Era
NASA Astrophysics Data System (ADS)
Frolova, Victoria; Dolina, Olga; Shpil'kina, Tatyana
2017-11-01
In the current conditions of global competition, the development of new mining technologies, the requirements to labor resources, their skills and creative potential are increasing. The tasks facing the mining industry cannot be solved without highly qualified personnel, especially managers, engineers and technicians, specialists who possess the knowledge and competences necessary for the development of science and technology of mining, and ensuring mining industrial safety. The authors analyze personnel problems and financing of mining higher education, conclude that there is a need to develop social partnership and diversify the sources of funding for training, advanced training and retraining of personnel for mining and processing of solid mineral deposits.
Finding user personal interests by tweet-mining using advanced machine learning algorithm in R
NASA Astrophysics Data System (ADS)
Krithika, L. B.; Roy, P.; Asha Jerlin, M.
2017-11-01
The social-media plays a key role in every individual’s life by anyone’s personal views about their liking-ness/disliking-ness. This methodology is a sharp departure from the traditional techniques of inferring interests of a user from the tweets that he/she posts or receives. It is showed that the topics of interest inferred by the proposed methodology are far superior than the topics extracted by state-of-the-art techniques such as using topic models (Labelled LDA) on tweets. Based upon the proposed methodology, a system has been built, “Who is interested in what”, which can infer the interests of millions of Twitter users. A novel mechanism is proposed to infer topics of interest of individual users in the twitter social network. It has been observed that in twitter, a user generally follows experts on various topics of his/her interest in order to acquire information on those topics. A methodology based on social annotations is used to first deduce the topical expertise of popular twitter users and then transitively infer the interests of the users who follow them.
Milanez, Bruno
2015-01-01
In this article, I argue that attempting to solve real problems is a possible approach to bring social and natural sciences together, and suggest that - as Environmental Impact Assessment necessarily brings together social and environmental issues - this debate is a strong candidate for such a task. The argument is based on a general discussion about the possibilities and limitations of Environmental Impact Assessments, the social-environmental impacts of mining activities and three case studies. The analysis of the cases indicates possibilities and limitations of the dialogue between scientists from various areas - and of the collaboration with social movements and affected communities - in avoiding negative impacts of mining projects and, eventually, increasing their sustainability.
Outdoor (222)Rn-concentrations in Germany - part 2 - former mining areas.
Kümmel, M; Dushe, C; Müller, S; Gehrcke, K
2014-06-01
In the German Federal States of Saxony, Saxony-Anhalt and Thuringia, centuries of mining and milling activities resulted in numerous residues with increased levels of natural radioactivity such as waste rock dumps and tailings ponds. These may have altered potential radiation exposures of the population significantly. Especially waste rock dumps from old mining activities as well as 20th century uranium mining may, due to their radon ((222)Rn) exhalation capacity, lead to significant radiation exposures. They often lie close to or within residential areas. In order to study the impact on the natural radon level, the Federal Office for Radiation Protection (BfS) has run networks of radon measurement points in 16 former mining areas, together with 2 networks in regions not influenced by mining for comparison purposes. Representative overviews of the long-term outdoor radon concentrations could be established including estimates of regional background concentrations. Former mining and milling activities did not result in large-area impacts on the outdoor radon level. However, significantly increased radon concentrations were observed in close vicinity of shafts and large waste rock dumps. They are partly located in residential areas and need to be considered under radiation protection aspects. Examples are given that illustrate the consequences of the Wismut Ltd. Company's reclamation activities on the radon situation. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Auslander, Gail K.; Rosenne, Hadas
2016-01-01
Although research studies are important for social work students, the students rarely like research classes or see their value. At the Hebrew University of Jerusalem, one group of BSW students was encouraged to carry out the required research in their field work setting, the Hadassah University Medical Center. Students used data mining, that is,…
NASA Astrophysics Data System (ADS)
Frahm, Klaus M.; El Zant, Samer; Jaffrès-Runser, Katia; Shepelyansky, Dima L.
2017-09-01
Geopolitics focuses on political power in relation to geographic space. Interactions among world countries have been widely studied at various scales, observing economic exchanges, world history or international politics among others. This work exhibits the potential of Wikipedia mining for such studies. Indeed, Wikipedia stores valuable fine-grained dependencies among countries by linking webpages together for diverse types of interactions (not only related to economical, political or historical facts). We mine herein the Wikipedia networks of several language editions using the recently proposed method of reduced Google matrix analysis. This approach allows to establish direct and hidden links between a subset of nodes that belong to a much larger directed network. Our study concentrates on 40 major countries chosen worldwide. Our aim is to offer a multicultural perspective on their interactions by comparing networks extracted from five different Wikipedia language editions, emphasizing English, Russian and Arabic ones. We demonstrate that this approach allows to recover meaningful direct and hidden links among the 40 countries of interest.
The application of data mining techniques to oral cancer prognosis.
Tseng, Wan-Ting; Chiang, Wei-Fan; Liu, Shyun-Yeu; Roan, Jinsheng; Lin, Chun-Nan
2015-05-01
This study adopted an integrated procedure that combines the clustering and classification features of data mining technology to determine the differences between the symptoms shown in past cases where patients died from or survived oral cancer. Two data mining tools, namely decision tree and artificial neural network, were used to analyze the historical cases of oral cancer, and their performance was compared with that of logistic regression, the popular statistical analysis tool. Both decision tree and artificial neural network models showed superiority to the traditional statistical model. However, as to clinician, the trees created by the decision tree models are relatively easier to interpret compared to that of the artificial neural network models. Cluster analysis also discovers that those stage 4 patients whose also possess the following four characteristics are having an extremely low survival rate: pN is N2b, level of RLNM is level I-III, AJCC-T is T4, and cells mutate situation (G) is moderate.
Wavelet-based higher-order neural networks for mine detection in thermal IR imagery
NASA Astrophysics Data System (ADS)
Baertlein, Brian A.; Liao, Wen-Jiao
2000-08-01
An image processing technique is described for the detection of miens in RI imagery. The proposed technique is based on a third-order neural network, which processes the output of a wavelet packet transform. The technique is inherently invariant to changes in signature position, rotation and scaling. The well-known memory limitations that arise with higher-order neural networks are addressed by (1) the data compression capabilities of wavelet packets, (2) protections of the image data into a space of similar triangles, and (3) quantization of that 'triangle space'. Using these techniques, image chips of size 28 by 28, which would require 0(109) neural net weights, are processed by a network having 0(102) weights. ROC curves are presented for mine detection in real and simulated imagery.
Web mining in soft computing framework: relevance, state of the art and future directions.
Pal, S K; Talwar, V; Mitra, P
2002-01-01
The paper summarizes the different characteristics of Web data, the basic components of Web mining and its different types, and the current state of the art. The reason for considering Web mining, a separate field from data mining, is explained. The limitations of some of the existing Web mining methods and tools are enunciated, and the significance of soft computing (comprising fuzzy logic (FL), artificial neural networks (ANNs), genetic algorithms (GAs), and rough sets (RSs) are highlighted. A survey of the existing literature on "soft Web mining" is provided along with the commercially available systems. The prospective areas of Web mining where the application of soft computing needs immediate attention are outlined with justification. Scope for future research in developing "soft Web mining" systems is explained. An extensive bibliography is also provided.
Modeling epidemics on adaptively evolving networks: A data-mining perspective.
Kattis, Assimakis A; Holiday, Alexander; Stoica, Ana-Andreea; Kevrekidis, Ioannis G
2016-01-01
The exploration of epidemic dynamics on dynamically evolving ("adaptive") networks poses nontrivial challenges to the modeler, such as the determination of a small number of informative statistics of the detailed network state (that is, a few "good observables") that usefully summarize the overall (macroscopic, systems-level) behavior. Obtaining reduced, small size accurate models in terms of these few statistical observables--that is, trying to coarse-grain the full network epidemic model to a small but useful macroscopic one--is even more daunting. Here we describe a data-based approach to solving the first challenge: the detection of a few informative collective observables of the detailed epidemic dynamics. This is accomplished through Diffusion Maps (DMAPS), a recently developed data-mining technique. We illustrate the approach through simulations of a simple mathematical model of epidemics on a network: a model known to exhibit complex temporal dynamics. We discuss potential extensions of the approach, as well as possible shortcomings.
Coalition FORCEnet Implementation Analysis
2006-09-01
C2 grid, and Engagement grid. As a result, enabled Network- Centric warfare for Coalition Forces shows a significant increase in capabilities. Joint...209 14. SUBJECT TERMS FORCEnet, Coalition Forces, AUSCANNZUKUS, Network- Centric Warfare (NCW), Data Mining, EXTEND Modeling, Expeditionary...NETWORK- CENTRIC WARFARE AND FORCENET .....................................................................................................1 B
Social impact assessment in mining projects in Northern Finland: Comparing practice to theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suopajärvi, Leena, E-mail: leena.suopajarvi@ulapland.fi
The paper discusses social impact assessments (SIA) for mining projects in light of the international principles and guidelines for such assessments and the academic literature in the field. The data consist of environmental impact assessment (EIA) programmes and reports for six mining projects that have started up in northern Finland in the 2000s. A first observation is that the role of the SIAs in the EIA programmes and reports studied was quite minor: measured in number of pages, the assessments account for three or four percent of the total. This study analyses the data collection, research methodology and conceptual premisesmore » used in the SIAs. It concludes that the assessments do not fully meet the high standards of the international principles and guidelines set out for them: for example, elderly men are over-represented in the data and no efforts were made to identify and bring to the fore vulnerable groups. Moreover, the reliability of the assessments is difficult to gauge, because the qualitative methods are not described and where quantitative methods were used, details such as non-response rates to questionnaires are not discussed. At the end of the paper, the SIAs are discussed in terms of Jürgen Habermas' theory of knowledge interests, with the conclusion that the assessments continue the empirical analytical tradition of the social sciences and exhibit a technical knowledge interest. -- Highlights: • Paper investigates social impact assessments in Finnish mining projects. • Role of social impact assessment is minor in whole EIA-process. • Mining SIAs give the voice for elderly men, vulnerable groups are not identified. • Assessment of SIAs is difficult because of lacking transparency in reporting. • SIAs belong to empirical analytical tradition with technical knowledge interest.« less
Fighting Networks: The Defining Challenge of Irregular Warfare
2011-06-01
Terror on the Internet, describes the collection of this information as “data mining ,” and describes extensive research, information sharing using...suicide bombings. The first, a dramatically increased use of mines and IEDs, reflects both their ability to emplace such explosive devices stealthfully, as...well as the Russian reliance on more static positions supported by road arteries. The ‘ mine warfare’ employed by the Chechen fighters presented
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parwatiningtyas, Diyan, E-mail: diane.tyas@gmail.com, E-mail: erlinunindra@gmail.com; Ambarsari, Erlin Windia, E-mail: diane.tyas@gmail.com, E-mail: erlinunindra@gmail.com; Marlina, Dwi, E-mail: diane.tyas@gmail.com, E-mail: erlinunindra@gmail.com
Indonesia has a wealth of natural assets is so large to be managed and utilized, either from its own local government and local communities, especially in the mining sector. However, mining activities can change the state of the surface layer of the earth that have a high impact disaster risk. This could threaten the safety and disrupt human life, environmental damage, loss of property, and the psychological impact, sulking to the rule of law no 24 of 2007. That's why we strive to manage and minimize the risk of mine disasters in the region, how to use the method ofmore » calculation of Amplification Factor (AF) from the analysis based microtremor sulking Kanai and Nakamura, and decision systems were tested by analysis of ANP. Based on the amplification factor and Analytical Network Processing (ANP) obtained, some points showed instability in the surface layer of a mining area include the site of the TP-7, TP-8, TP-9, TP-10, (Birowo2). If in terms of structure, location indicated unstable due to have a sloping surface layer, resulting in the occurrence of landslides and earthquake risk is high. In the meantime, other areas of the mine site can be said to be a stable area.« less
NASA Astrophysics Data System (ADS)
Parwatiningtyas, Diyan; Ambarsari, Erlin Windia; Marlina, Dwi; Wiratomo, Yogi
2014-03-01
Indonesia has a wealth of natural assets is so large to be managed and utilized, either from its own local government and local communities, especially in the mining sector. However, mining activities can change the state of the surface layer of the earth that have a high impact disaster risk. This could threaten the safety and disrupt human life, environmental damage, loss of property, and the psychological impact, sulking to the rule of law no 24 of 2007. That's why we strive to manage and minimize the risk of mine disasters in the region, how to use the method of calculation of Amplification Factor (AF) from the analysis based microtremor sulking Kanai and Nakamura, and decision systems were tested by analysis of ANP. Based on the amplification factor and Analytical Network Processing (ANP) obtained, some points showed instability in the surface layer of a mining area include the site of the TP-7, TP-8, TP-9, TP-10, (Birowo2). If in terms of structure, location indicated unstable due to have a sloping surface layer, resulting in the occurrence of landslides and earthquake risk is high. In the meantime, other areas of the mine site can be said to be a stable area.
Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media
Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang
2016-01-01
Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users’ spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last. PMID:27999398
Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media.
Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang
2016-12-20
Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users' spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last.
A Novel Higher Order Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Xu, Shuxiang
2010-05-01
In this paper a new Higher Order Neural Network (HONN) model is introduced and applied in several data mining tasks. Data Mining extracts hidden patterns and valuable information from large databases. A hyperbolic tangent function is used as the neuron activation function for the new HONN model. Experiments are conducted to demonstrate the advantages and disadvantages of the new HONN model, when compared with several conventional Artificial Neural Network (ANN) models: Feedforward ANN with the sigmoid activation function; Feedforward ANN with the hyperbolic tangent activation function; and Radial Basis Function (RBF) ANN with the Gaussian activation function. The experimental results seem to suggest that the new HONN holds higher generalization capability as well as abilities in handling missing data.
Huang, Ganlin; Ali, Saleem
2015-01-19
This study employed rapid evaluation methods to investigate how the leading industries of mining and tourism impact sustainability as manifest through social, economic and environmental dimensions in Yunnan, China. Within the social context, we also consider the differentiated impact on gender ratio-which is a salient feature of sustained development trajectories. Our results indicate that mining areas performed better than tourism areas in economic aspects but fell behind in social development, especially regarding the issue of gender balance. Conclusions on environmental status cannot be drawn due to a lack of data. The results from the environmental indicators are mixed. Our study demonstrates that rapid evaluation using currently available data can provide a means of greater understanding regarding local sustainability and highlights areas that need attention from policy makers, agencies and academia.
Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers.
Alonso, Roberto; Monroy, Raúl; Trejo, Luis A
2016-08-17
The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.
Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers
Alonso, Roberto; Monroy, Raúl; Trejo, Luis A.
2016-01-01
The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers. PMID:27548169
Braithwaite, Jeffrey
2015-09-24
To assess non-health literature, identify key strategies in promoting more networked teams and groups, apply external ideas to healthcare, and build a model based on these strategies. A systematic review of the literature outside of healthcare. Searches guided by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) of ABI/INFORM Global, CINAHL, IBSS, MEDLINE and Psychinfo databases following a mind-mapping exercise generating key terms centred on the core construct of gaps across organisational social structures that uncovered 842 empirical articles of which 116 met the inclusion criteria. Data extraction and content analysis via data mining techniques were performed on these articles. The research involved subjects in 40 countries, with 32 studies enrolling participants in multiple countries. There were 40 studies conducted wholly or partly in the USA, 46 wholly or partly in continental Europe, 29 wholly or partly in Asia and 12 wholly or partly in Russia or Russian federated countries. Methods employed included 30 mixed or triangulated social science study designs, 39 qualitative studies, 13 experimental studies and 34 questionnaire-based studies, where the latter was mostly to gather data for social network analyses. Four recurring factors underpin a model for promoting networked behaviours and fortifying cross-group cooperation: appreciating the characteristics and nature of gaps between groups; using the leverage of boundary-spanners to bridge two or more groups; applying various mechanisms to stimulate interactive relationships; and mobilising those who can exert positive external influences to promote connections while minimising the impact of those who exacerbate divides. The literature assessed is rich and varied. An evidence-oriented model and strategies for promoting more networked systems are now available for application to healthcare. While caution needs to be exercised in translating outside ideas and studies, drawing on non-health ideas is useful in providing insights into other sectors. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
This report presents a description and evaluation of the ground water and surface water monitoring program associated with the Bunker Hill Mining and Metallurgical Complex Superfund Site (Bunker Hill) Operable Unit (OU) 2.
Map of impact by acid mine drainage in the river network of The Iberian Pyrite Belt (Sw Spain).
Grande, J A; Santisteban, M; de la Torre, M L; Dávila, J M; Pérez-Ostalé, E
2018-05-01
The Iberian Pyrite Belt (IPB), in the southwest of Europe, is characterized by high levels of contamination by acid mine drainage (AMD) in a large extent of its river network. In this scenario, it is necessary to characterize the degree of pollution of the mining leachates in the AMD-generating sources as well as of the main receiving watercourses. A map of impact of each basin was developed, based on the model proposed by Grande (2011) and the European Directive 98/83/EC that defines the quality standards for drinking water. The results indicate that practically all the mining leachates exceeded the maximum concentrations established by Directive 98/83/CE for Fe and Cd, almost 90% exceeded the limit for Mn and 82% for Al. Likewise, Fe, Cd, and Mn caused 'extremely high' degradation in most sampled leachates. Similarly, these metals, in addition to Pb, produced more pollution in watercourses located downstream of exploitations. Copyright © 2018 Elsevier Ltd. All rights reserved.
A New Data Mining Scheme Using Artificial Neural Networks
Kamruzzaman, S. M.; Jehad Sarkar, A. M.
2011-01-01
Classification is one of the data mining problems receiving enormous attention in the database community. Although artificial neural networks (ANNs) have been successfully applied in a wide range of machine learning applications, they are however often regarded as black boxes, i.e., their predictions cannot be explained. To enhance the explanation of ANNs, a novel algorithm to extract symbolic rules from ANNs has been proposed in this paper. ANN methods have not been effectively utilized for data mining tasks because how the classifications were made is not explicitly stated as symbolic rules that are suitable for verification or interpretation by human experts. With the proposed approach, concise symbolic rules with high accuracy, that are easily explainable, can be extracted from the trained ANNs. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and the accuracy. The effectiveness of the proposed approach is clearly demonstrated by the experimental results on a set of benchmark data mining classification problems. PMID:22163866
Knowledge mining from clinical datasets using rough sets and backpropagation neural network.
Nahato, Kindie Biredagn; Harichandran, Khanna Nehemiah; Arputharaj, Kannan
2015-01-01
The availability of clinical datasets and knowledge mining methodologies encourages the researchers to pursue research in extracting knowledge from clinical datasets. Different data mining techniques have been used for mining rules, and mathematical models have been developed to assist the clinician in decision making. The objective of this research is to build a classifier that will predict the presence or absence of a disease by learning from the minimal set of attributes that has been extracted from the clinical dataset. In this work rough set indiscernibility relation method with backpropagation neural network (RS-BPNN) is used. This work has two stages. The first stage is handling of missing values to obtain a smooth data set and selection of appropriate attributes from the clinical dataset by indiscernibility relation method. The second stage is classification using backpropagation neural network on the selected reducts of the dataset. The classifier has been tested with hepatitis, Wisconsin breast cancer, and Statlog heart disease datasets obtained from the University of California at Irvine (UCI) machine learning repository. The accuracy obtained from the proposed method is 97.3%, 98.6%, and 90.4% for hepatitis, breast cancer, and heart disease, respectively. The proposed system provides an effective classification model for clinical datasets.
Wavefront cellular learning automata.
Moradabadi, Behnaz; Meybodi, Mohammad Reza
2018-02-01
This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.
Wavefront cellular learning automata
NASA Astrophysics Data System (ADS)
Moradabadi, Behnaz; Meybodi, Mohammad Reza
2018-02-01
This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.
Data Mining for Web Site Evaluation: An Exploration of Site Usage by Graduate Social Work Students
ERIC Educational Resources Information Center
Santhiveeran, Janaki
2006-01-01
This paper evaluates the actual use of a course Website by graduate social work students. The study utilized data mining techniques to discover meaningful trends by using the data from server logs. The course Website was accessed 24,730 times by all 49 graduate students during a semester. The students utilized the course Website 23 hours a day, 7…
Cumulative Risk and Impact Modeling on Environmental Chemical and Social Stressors.
Huang, Hongtai; Wang, Aolin; Morello-Frosch, Rachel; Lam, Juleen; Sirota, Marina; Padula, Amy; Woodruff, Tracey J
2018-03-01
The goal of this review is to identify cumulative modeling methods used to evaluate combined effects of exposures to environmental chemicals and social stressors. The specific review question is: What are the existing quantitative methods used to examine the cumulative impacts of exposures to environmental chemical and social stressors on health? There has been an increase in literature that evaluates combined effects of exposures to environmental chemicals and social stressors on health using regression models; very few studies applied other data mining and machine learning techniques to this problem. The majority of studies we identified used regression models to evaluate combined effects of multiple environmental and social stressors. With proper study design and appropriate modeling assumptions, additional data mining methods may be useful to examine combined effects of environmental and social stressors.
Pollet, Thomas V; Roberts, Sam G B; Dunbar, Robin I M
2011-04-01
The effect of Internet use on social relationships is still a matter of intense debate. This study examined the relationships between use of social media (instant messaging and social network sites), network size, and emotional closeness in a sample of 117 individuals aged 18 to 63 years old. Time spent using social media was associated with a larger number of online social network "friends." However, time spent using social media was not associated with larger offline networks, or feeling emotionally closer to offline network members. Further, those that used social media, as compared to non-users of social media, did not have larger offline networks, and were not emotionally closer to offline network members. These results highlight the importance of considering potential time and cognitive constraints on offline social networks when examining the impact of social media use on social relationships.
Numerical linear algebra in data mining
NASA Astrophysics Data System (ADS)
Eldén, Lars
Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.
Influence versus intent for predictive analytics in situation awareness
NASA Astrophysics Data System (ADS)
Cui, Biru; Yang, Shanchieh J.; Kadar, Ivan
2013-05-01
Predictive analytics in situation awareness requires an element to comprehend and anticipate potential adversary activities that might occur in the future. Most work in high level fusion or predictive analytics utilizes machine learning, pattern mining, Bayesian inference, and decision tree techniques to predict future actions or states. The emergence of social computing in broader contexts has drawn interests in bringing the hypotheses and techniques from social theory to algorithmic and computational settings for predictive analytics. This paper aims at answering the question on how influence and attitude (some interpreted such as intent) of adversarial actors can be formulated and computed algorithmically, as a higher level fusion process to provide predictions of future actions. The challenges in this interdisciplinary endeavor include drawing existing understanding of influence and attitude in both social science and computing fields, as well as the mathematical and computational formulation for the specific context of situation to be analyzed. The study of `influence' has resurfaced in recent years due to the emergence of social networks in the virtualized cyber world. Theoretical analysis and techniques developed in this area are discussed in this paper in the context of predictive analysis. Meanwhile, the notion of intent, or `attitude' using social theory terminologies, is a relatively uncharted area in the computing field. Note that a key objective of predictive analytics is to identify impending/planned attacks so their `impact' and `threat' can be prevented. In this spirit, indirect and direct observables are drawn and derived to infer the influence network and attitude to predict future threats. This work proposes an integrated framework that jointly assesses adversarial actors' influence network and their attitudes as a function of past actions and action outcomes. A preliminary set of algorithms are developed and tested using the Global Terrorism Database (GTD). Our results reveals the benefits to perform joint predictive analytics with both attitude and influence. At the same time, we discover significant challenges in deriving influence and attitude from indirect observables for diverse adversarial behavior. These observations warrant further investigation of optimal use of influence and attitude for predictive analytics, as well as the potential inclusion of other environmental or capability elements for the actors.
Establishing Reliable miRNA-Cancer Association Network Based on Text-Mining Method
Yang, Zhaowan; Fang, Ming; Zhang, Libin; Zhou, Yanhong
2014-01-01
Associating microRNAs (miRNAs) with cancers is an important step of understanding the mechanisms of cancer pathogenesis and finding novel biomarkers for cancer therapies. In this study, we constructed a miRNA-cancer association network (miCancerna) based on more than 1,000 miRNA-cancer associations detected from millions of abstracts with the text-mining method, including 226 miRNA families and 20 common cancers. We further prioritized cancer-related miRNAs at the network level with the random-walk algorithm, achieving a relatively higher performance than previous miRNA disease networks. Finally, we examined the top 5 candidate miRNAs for each kind of cancer and found that 71% of them are confirmed experimentally. miCancerna would be an alternative resource for the cancer-related miRNA identification. PMID:24895499
Predicting the survival of diabetes using neural network
NASA Astrophysics Data System (ADS)
Mamuda, Mamman; Sathasivam, Saratha
2017-08-01
Data mining techniques at the present time are used in predicting diseases of health care industries. Neural Network is one among the prevailing method in data mining techniques of an intelligent field for predicting diseases in health care industries. This paper presents a study on the prediction of the survival of diabetes diseases using different learning algorithms from the supervised learning algorithms of neural network. Three learning algorithms are considered in this study: (i) The levenberg-marquardt learning algorithm (ii) The Bayesian regulation learning algorithm and (iii) The scaled conjugate gradient learning algorithm. The network is trained using the Pima Indian Diabetes Dataset with the help of MATLAB R2014(a) software. The performance of each algorithm is further discussed through regression analysis. The prediction accuracy of the best algorithm is further computed to validate the accurate prediction
Staccini, P; Douali, N
2014-08-15
To provide a review of the current excellent research published in the field of Consumer Health Informatics. We searched MEDLINE® and WEB OF SCIENCE® databases for papers published in 2013 in relation with Consumer Health Informatics. The authors identified 16 candidate best papers, which were then reviewed by four reviewers. Five out of the 16 candidate papers were selected as best papers. One paper presents the key features of a system to automate the collection of web-based social media content for subsequent semantic annotation. This paper emphasizes the importance of mining social media to collect novel data from which new findings in drug abuse research were uncovered. The second paper presents a practical method to predict how a community structure would impact the spreading of information within the community. The third paper presents a method for improving the quality of online health communities. The fourth presents a new social network to allow the monitoring of the evolution of individuals' health status and diagnostic deficiencies, difficulties or barriers in rehabilitation. The last paper reports on teenage patients' perception on privacy and social media. Selected papers not only show the value of using social media in the medical field but how to use these media to detect emergent diseases or risks, inform patients, promote disease prevention, and follow patients' opinion on healthcare resources.
Social Media and Patient Health Outcomes
2014-01-01
Summary Objectives To provide a review of the current excellent research published in the field of Consumer Health Informatics. Method We searched MEDLINE® and WEB OF SCIENCE® databases for papers published in 2013 in relation with Consumer Health Informatics. The authors identified 16 candidate best papers, which were then reviewed by four reviewers. Results Five out of the 16 candidate papers were selected as best papers. One paper presents the key features of a system to automate the collection of web-based social media content for subsequent semantic annotation. This paper emphasizes the importance of mining social media to collect novel data from which new findings in drug abuse research were uncovered. The second paper presents a practical method to predict how a community structure would impact the spreading of information within the community. The third paper presents a method for improving the quality of online health communities. The fourth presents a new social network to allow the monitoring of the evolution of individuals’ health status and diagnostic deficiencies, difficulties or barriers in rehabilitation. The last paper reports on teenage patients’ perception on privacy and social media. Conclusion Selected papers not only show the value of using social media in the medical field but how to use these media to detect emergent diseases or risks, inform patients, promote disease prevention, and follow patients’ opinion on healthcare resources. PMID:25123742
SALSA: A Novel Dataset for Multimodal Group Behavior Analysis.
Alameda-Pineda, Xavier; Staiano, Jacopo; Subramanian, Ramanathan; Batrinca, Ligia; Ricci, Elisa; Lepri, Bruno; Lanz, Oswald; Sebe, Nicu
2016-08-01
Studying free-standing conversational groups (FCGs) in unstructured social settings (e.g., cocktail party ) is gratifying due to the wealth of information available at the group (mining social networks) and individual (recognizing native behavioral and personality traits) levels. However, analyzing social scenes involving FCGs is also highly challenging due to the difficulty in extracting behavioral cues such as target locations, their speaking activity and head/body pose due to crowdedness and presence of extreme occlusions. To this end, we propose SALSA, a novel dataset facilitating multimodal and Synergetic sociAL Scene Analysis, and make two main contributions to research on automated social interaction analysis: (1) SALSA records social interactions among 18 participants in a natural, indoor environment for over 60 minutes, under the poster presentation and cocktail party contexts presenting difficulties in the form of low-resolution images, lighting variations, numerous occlusions, reverberations and interfering sound sources; (2) To alleviate these problems we facilitate multimodal analysis by recording the social interplay using four static surveillance cameras and sociometric badges worn by each participant, comprising the microphone, accelerometer, bluetooth and infrared sensors. In addition to raw data, we also provide annotations concerning individuals' personality as well as their position, head, body orientation and F-formation information over the entire event duration. Through extensive experiments with state-of-the-art approaches, we show (a) the limitations of current methods and (b) how the recorded multiple cues synergetically aid automatic analysis of social interactions. SALSA is available at http://tev.fbk.eu/salsa.
Learning Relational Policies from Electronic Health Record Access Logs
Malin, Bradley; Nyemba, Steve; Paulett, John
2011-01-01
Modern healthcare organizations (HCOs) are composed of complex dynamic teams to ensure clinical operations are executed in a quick and competent manner. At the same time, the fluid nature of such environments hinders administrators' efforts to define access control policies that appropriately balance patient privacy and healthcare functions. Manual efforts to define these policies are labor-intensive and error-prone, often resulting in systems that endow certain care providers with overly broad access to patients' medical records while restricting other providers from legitimate and timely use. In this work, we propose an alternative method to generate these policies by automatically mining usage patterns from electronic health record (EHR) systems. EHR systems are increasingly being integrated into clinical environments and our approach is designed to be generalizable across HCOs, thus assisting in the design and evaluation of local access control policies. Our technique, which is grounded in data mining and social network analysis theory, extracts a statistical model of the organization from the access logs of its EHRs. In doing so, our approach enables the review of predefined policies, as well as the discovery of unknown behaviors. We evaluate our approach with five months of access logs from the Vanderbilt University Medical Center and confirm the existence of stable social structures and intuitive business operations. Additionally, we demonstrate that there is significant turnover in the interactions between users in the HCO and that policies learned at the department level afford greater stability over time. PMID:21277996
Social network approaches to recruitment, HIV prevention, medical care, and medication adherence.
Latkin, Carl A; Davey-Rothwell, Melissa A; Knowlton, Amy R; Alexander, Kamila A; Williams, Chyvette T; Boodram, Basmattee
2013-06-01
This article reviews the current issues and advancements in social network approaches to HIV prevention and care. Social network analysis can provide a method to understand health disparities in HIV rates, treatment access, and outcomes. Social network analysis is a valuable tool to link social structural factors to individual behaviors. Social networks provide an avenue for low-cost and sustainable HIV prevention interventions that can be adapted and translated into diverse populations. Social networks can be utilized as a viable approach to recruitment for HIV testing and counseling, HIV prevention interventions, optimizing HIV medical care, and medication adherence. Social network interventions may be face-to-face or through social media. Key issues in designing social network interventions are contamination due to social diffusion, network stability, density, and the choice and training of network members. There are also ethical issues involved in the development and implementation of social network interventions. Social network analyses can also be used to understand HIV transmission dynamics.
Birth Attendants and Midwifery Practice in Early Twentieth-century Derbyshire
Reid, Alice
2012-01-01
Summary The 1902 Midwives Act introduced training and supervision for midwives in England and Wales, outlawing uncertified-and-untrained midwives (handywomen) and phasing out certified-but-untrained (bona fide) midwives. This paper compares the numbers and practices of these two different types of birth attendant with each other, with qualified and certified midwives and with doctors in early twentieth-century Derbyshire during this period of change, and examines the spatial and social factors influencing women's choice of birth attendant. It finds that the new legislation did not entirely eliminate continuity in traditional practices and allegiance, and that both social and spatial factors governed the choice of delivery attendant, with fewer midwives available in rural areas and a surviving network of untrained bona fide midwives in mining communities. Within this spatial pattern, however, although wealthier women were more likely to have chosen a doctor or a qualified midwife, familiarity and loyalty allowed bona fide midwives to maintain their case loads.
Van Tuan, Ta
2010-08-01
The study explores the meanings of sex among migrant coal miners in Vietnam and identifies contextual factors influencing engagement in unsafe sexual practices. Findings reveal that sex carries a number of social meanings in the lives of migrant miners: sex is relaxation and reward for their risk and hard work; access to sex is an incentive for miners to continue working in the mine; sex strengthens identity and social networks; sex helps miners to affirm manhood, group membership and masculinity; and sex workers are confidants with whom they can share their problems. Facing accidents at work on a daily basis, miners are less inclined to worry about the long-term risks of HIV infection. In addition, being excluded from access to relevant information, miners feel distant from HIV infection. Findings suggest that interventions on sexual behaviour and practices should be sensitive to the concepts of risk and meanings of sex among migrant groups such as coal miners.
Grassroots Participation, Peer Education, and HIV Prevention by Sex Workers in South Africa
Campbell, Catherine; Mzaidume, Zodwa
2001-01-01
Objectives. This microqualitative case study of a community-based peer education program led by sex workers at a South African mine examined the role of grassroots participation in sexual health promotion. Methods. The study involved in-depth interviews with 30 members of the target community. The interviews were analyzed in terms of social capital, empowerment, and identity. Results. The study yielded a detailed analysis of the way in which community dynamics have shaped the peer education program's development in a deprived, violent community where existing norms and networks are inconsistent with ideal criteria for participatory health promotion. Conclusions. Much remains to be learned about the complexities of translating theoretically and politically vital notions of “community participation” into practice among hard-to-reach groups. The fabric of local community life is shaped by nonlocal structural conditions of poverty and sexual inequality in ways that challenge those seeking to theorize the role of social capital in community development in general and in sexual health promotion in particular. PMID:11726380
NASA Astrophysics Data System (ADS)
Wasilewski, Stanisław
2012-12-01
A stoppage of the main ventilation fan constitutes a disturbance of ventilation conditions of a deepmine and its effects can cause serious hazards by generating transient states of air and gas flow. Main ventilation fans are the basic deep-mine facilities; therefore, under mining regulations it is only allowed to stop them with the consent and under the conditions specified by the mine maintenance manager. The stoppage of the main ventilation fan may be accompanied by transient air parameters, including the air pressure and flow patterns. There is even the likelihood of reversing the direction of air flow, which, in case of methane mines, can pose a major hazard, particularly in sections of the mine with fire fields or large goaf areas. At the same time, stoppages of deep-mine main ventilation fans create interesting research conditions, which if conducted under the supervision of the monitoring systems, can provide much information about the transient processes of pressure, air and gas flow in underground workings. This article is a discussion of air parameter observations in mine workings made as part of such experiments. It also presents the procedure of the experiments, conducted in three mines. They involved the observation of transient processes of mine air parameters, and most interestingly, the recording of pressure and air and gas flow in the workings of the mine ventilation networks by mine monitoring systems and using specialist recording instruments. In mining practice, both in Poland and elsewhere, software tools and computer modelling methods are used to try and reproduce the conditions prior to and during disasters based on the existing network model and monitoring system data. The use of these tools to simulate the alternatives of combating and liquidation of the gas-fire hazard after its occurrence is an important issue. Measurement data collected during the experiments provides interesting research material for the verification and validation of the software tools used for the simulation of processes occurring in deep-mine ventilation systems.
Huang, Ganlin; Ali, Saleem
2015-01-01
This study employed rapid evaluation methods to investigate how the leading industries of mining and tourism impact sustainability as manifest through social, economic and environmental dimensions in Yunnan, China. Within the social context, we also consider the differentiated impact on gender ratio—which is a salient feature of sustained development trajectories. Our results indicate that mining areas performed better than tourism areas in economic aspects but fell behind in social development, especially regarding the issue of gender balance. Conclusions on environmental status cannot be drawn due to a lack of data. The results from the environmental indicators are mixed. Our study demonstrates that rapid evaluation using currently available data can provide a means of greater understanding regarding local sustainability and highlights areas that need attention from policy makers, agencies and academia. PMID:25607602
2007-03-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited. HACKING SOCIAL NETWORKS : EXAMINING THE...VIABILITY OF USING COMPUTER NETWORK ATTACK AGAINST SOCIAL NETWORKS by Russell G. Schuhart II March 2007 Thesis Advisor: David Tucker Second Reader...Master’s Thesis 4. TITLE AND SUBTITLE: Hacking Social Networks : Examining the Viability of Using Computer Network Attack Against Social Networks 6. AUTHOR
Intelligent On-Board Processing in the Sensor Web
NASA Astrophysics Data System (ADS)
Tanner, S.
2005-12-01
Most existing sensing systems are designed as passive, independent observers. They are rarely aware of the phenomena they observe, and are even less likely to be aware of what other sensors are observing within the same environment. Increasingly, intelligent processing of sensor data is taking place in real-time, using computing resources on-board the sensor or the platform itself. One can imagine a sensor network consisting of intelligent and autonomous space-borne, airborne, and ground-based sensors. These sensors will act independently of one another, yet each will be capable of both publishing and receiving sensor information, observations, and alerts among other sensors in the network. Furthermore, these sensors will be capable of acting upon this information, perhaps altering acquisition properties of their instruments, changing the location of their platform, or updating processing strategies for their own observations to provide responsive information or additional alerts. Such autonomous and intelligent sensor networking capabilities provide significant benefits for collections of heterogeneous sensors within any environment. They are crucial for multi-sensor observations and surveillance, where real-time communication with external components and users may be inhibited, and the environment may be hostile. In all environments, mission automation and communication capabilities among disparate sensors will enable quicker response to interesting, rare, or unexpected events. Additionally, an intelligent network of heterogeneous sensors provides the advantage that all of the sensors can benefit from the unique capabilities of each sensor in the network. The University of Alabama in Huntsville (UAH) is developing a unique approach to data processing, integration and mining through the use of the Adaptive On-Board Data Processing (AODP) framework. AODP is a key foundation technology for autonomous internetworking capabilities to support situational awareness by sensors and their on-board processes. The two primary research areas for this project are (1) the on-board processing and communications framework itself, and (2) data mining algorithms targeted to the needs and constraints of the on-board environment. The team is leveraging its experience in on-board processing, data mining, custom data processing, and sensor network design. Several unique UAH-developed technologies are employed in the AODP project, including EVE, an EnVironmEnt for on-board processing, and the data mining tools included in the Algorithm Development and Mining (ADaM) toolkit.
Forecasting of Energy Expenditure of Induced Seismicity with Use of Artificial Neural Network
NASA Astrophysics Data System (ADS)
Cichy, Tomasz; Banka, Piotr
2017-12-01
Coal mining in many Polish mines in the Upper Silesian Coal Basin is accompanied by high levels of induced seismicity. In mining plants, the methods of shock monitoring are improved, allowing for more accurate localization of the occurring phenomena and determining their seismic energy. Equally important is the development of ways of forecasting seismic hazards that may occur while implementing mine design projects. These methods, depending on the length of time for which the forecasts are made, can be divided into: longterm, medium-term, short-term and so-called alarm. Long-term forecasts are particularly useful for the design of seam exploitations. The paper presents a method of predicting changes in energy expenditure of shock using a properly trained artificial neural network. This method allows to make long-term forecasts at the stage of the mine’s exploitation design, thus enabling the mining work plans to be reviewed to minimize the potential for tremors. The information given at the input of the neural network is indicative of the specific energy changes of the elastic deformation occurring in the selected, thick, resistant rock layers (tremor-prone layers). Energy changes, taking place in one or more tremor-prone layers are considered. These indicators describe only the specific energy changes of the elastic deformation accumulating in the rock as a consequence of the mining operation, but does not determine the amount of energy released during the destruction of a given volume of rock. In this process, the potential energy of elastic strain transforms into other, non-measurable energy types, including the seismic energy of recorded tremors. In this way, potential energy changes affect the observed induced seismicity. The parameters used are characterized by increases (declines) of specific energy with separation to occur before the hypothetical destruction of the rock and after it. Additional input information is an index characterizing the rate of tectonic faults. This parameter was not included in previous research by authors. At the output of the artificial neural network, the values of the energy density of the mining tremors [J/m3] are obtained. An example of the predicted change in seismicity induced for a highly threatened region is presented. Relatively good predicted and observed energy expenditure of tremors was obtained. The presented method can complement existing methods (analytical and geophysical) forecasting seismic hazard. This method can be used primarily in those areas where the seismic level is determined by the configuration of the edges and residues in the operating seam, as well as in adjacent seams, and to a lesser extent, the geological structure of the rock The method is local, it means that the artificial neural network prediction can only be performed for the region from which the data have been used for its originated learning. The developed method cannot be used in areas where mining is just beginning and it is not possible to predict the level of seismicity induced in areas where no mining tremors have been recorded so far.
A Medical Center Network for Optimized Lung Cancer Biospecimen Banking
2017-10-01
10 7 4.903 10 8 0.300 3 No - Quit Smoking 75 AR Asbestos, Coal mining, Second-hand smoke Asbestos, Coal mining, Second- hand smoke S0004 Squamous...Cell Carcinoma Stage IIB Y N 1.942 100 75 5 10 7 4.903 10 8 0.300 3 No - Quit Smoking 75 AR Asbestos, Coal mining, Second-hand smoke Asbestos... Coal mining, Second- hand smoke S0006 Adenocarcinoma Stage IB Y N 0.38 80 40 0 2 3 0.310 2 4 No - Quit Smoking 37 None None S0007 Squamous Cell
A Medical Center Network for Optimized Lung Cancer Biospecimen Banking
2015-10-01
Y N 1.942 20 80 5 10 7 4.903 10 8 0.300 3 No - Quit Smoking 75 AR Asbestos , Coal mining, Second- hand smoke Asbestos , Coal mining, Second...hand smoke S0004 Squamous Cell Carcinoma Stage IIB Y N 1.942 100 75 5 10 7 4.903 10 8 0.300 3 No - Quit Smoking 75 AR Asbestos , Coal mining, Second...hand smoke Asbestos , Coal mining, Second- hand smoke S0006 Adenocarcinoma Stage IB Y N 0.38 80 40 0 2 3 0.310 2 4 No - Quit Smoking 37 None None
Method of locating underground mines fires
Laage, Linneas; Pomroy, William
1992-01-01
An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.
Scott, Greg
2008-02-01
This article examines the ethical implications of using respondent-driven sampling (RDS) to conduct HIV behaviour surveillance among injection drug users (IDUs) in Chicago. Ethnographic inquiry illustrates how the design and implementation of RDS invites if not promotes manifold violations of federal guidelines governing human research subject protections. Post hoc structured interviews with approximately 13% (n=70) of the behaviour surveillance sample (N=529) focused on how RDS's "dual incentive" structure affected participants' social, economic, and cultural milieu. Triangulated methods include interviews with owners of 20 "shooting galleries", unofficial and illegal locales where IDUs congregate and 400 h of traditional ethnographic observation of individual IDUs and IDU networks. "Consensus analysis" allows identification of key cultural domains that define the RDS coupon market. The study reveals the power of RDS to foment a stratified market of research participation that reinforces pre-existing economic and social inequalities among IDUs. Participants co-opted RDS to develop various "underground" revenue-generating modalities that produced differential risks and benefits among participants. Deleterious outcomes include false advertising regarding the study's risks and benefits, exploitation of relative economic deprivation, generation of sero-discordant social networks, and interpersonal and organised conflict, coercion, and violence. Although RDS may involve serious ethical violations it remains the best available means for accruing a representative sample of hidden populations. It is critical, however, to supplement RDS with research into (1) the subjects' cultural, social, economic, and political contexts, (2) the potential human subjects violations that participants experience, and (3) how these two issues might affect data integrity and interpretation.
NASA Astrophysics Data System (ADS)
Moyle, Steve
Collaborative Data Mining is a setting where the Data Mining effort is distributed to multiple collaborating agents - human or software. The objective of the collaborative Data Mining effort is to produce solutions to the tackled Data Mining problem which are considered better by some metric, with respect to those solutions that would have been achieved by individual, non-collaborating agents. The solutions require evaluation, comparison, and approaches for combination. Collaboration requires communication, and implies some form of community. The human form of collaboration is a social task. Organizing communities in an effective manner is non-trivial and often requires well defined roles and processes. Data Mining, too, benefits from a standard process. This chapter explores the standard Data Mining process CRISP-DM utilized in a collaborative setting.
Sustainable Bauxite Mining — A Global Perspective
NASA Astrophysics Data System (ADS)
Wagner, Christian
In 2008 the International Aluminium Institute commissioned its fourth sustainable bauxite mining report with the aim to collect global data on the environmental, social and economic impacts of bauxite mining operations and their rehabilitation programmes. The report shows that bauxite mining has become sustainable and land area footprint neutral;it is a relatively small land use operation when compared to most other types of mining. All operations have clearly defined rehabilitation objectives, fully integrated rehabilitation programmes, and written rehabilitation procedures. The rehabilitation objectives can be summarized as follows: "The bauxite mining operations aim to restore pre-mining environment and the respective conditions; this can be a self-sustaining ecosystem consisting of native flora and fauna or any other land-use to the benefit of the local community".
Text mining for metabolic pathways, signaling cascades, and protein networks.
Hoffmann, Robert; Krallinger, Martin; Andres, Eduardo; Tamames, Javier; Blaschke, Christian; Valencia, Alfonso
2005-05-10
The complexity of the information stored in databases and publications on metabolic and signaling pathways, the high throughput of experimental data, and the growing number of publications make it imperative to provide systems to help the researcher navigate through these interrelated information resources. Text-mining methods have started to play a key role in the creation and maintenance of links between the information stored in biological databases and its original sources in the literature. These links will be extremely useful for database updating and curation, especially if a number of technical problems can be solved satisfactorily, including the identification of protein and gene names (entities in general) and the characterization of their types of interactions. The first generation of openly accessible text-mining systems, such as iHOP (Information Hyperlinked over Proteins), provides additional functions to facilitate the reconstruction of protein interaction networks, combine database and text information, and support the scientist in the formulation of novel hypotheses. The next challenge is the generation of comprehensive information regarding the general function of signaling pathways and protein interaction networks.
User Vulnerability and its Reduction on a Social Networking Site
2014-01-01
social networking sites bring about new...and explore other users’ profiles and friend networks. Social networking sites have reshaped business models [Vayner- chuk 2009], provided platform... social networking sites is to enable users to be more social, user privacy and security issues cannot be ignored. On one hand, most social networking sites
System Analysis of LWDH Related Genes Based on Text Mining in Biological Networks
Miao, Yingbo; Zhang, Liangcai; Wang, Yang; Feng, Rennan; Yang, Lei; Zhang, Shihua; Jiang, Yongshuai; Liu, Guiyou
2014-01-01
Liuwei-dihuang (LWDH) is widely used in traditional Chinese medicine (TCM), but its molecular mechanism about gene interactions is unclear. LWDH genes were extracted from the existing literatures based on text mining technology. To simulate the complex molecular interactions that occur in the whole body, protein-protein interaction networks (PPINs) were constructed and the topological properties of LWDH genes were analyzed. LWDH genes have higher centrality properties and may play important roles in the complex biological network environment. It was also found that the distances within LWDH genes are smaller than expected, which means that the communication of LWDH genes during the biological process is rapid and effectual. At last, a comprehensive network of LWDH genes, including the related drugs and regulatory pathways at both the transcriptional and posttranscriptional levels, was constructed and analyzed. The biological network analysis strategy used in this study may be helpful for the understanding of molecular mechanism of TCM. PMID:25243143
Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle.
Gibbs, David L; Shmulevich, Ilya
2017-06-01
The Influence Maximization Problem (IMP) aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at: https://github.com/gibbsdavidl/miergolf.
NASA Lunabotics Mining Competition for Universities: Results and Lessons Learned
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Murphy, Gloria A.
2011-01-01
Space Mining for resources such as water ice, and regolith, which contain many elements in the form of metals, minerals, volatiles and other compounds, is a necessary step in Space Resource Utilization. One of the primary goals is to extract propellants from the regolith such as oxygen and hydrogen which could then be used for in-space transportation. In addition, the space mining system can be used for various construction tasks that can benefit human and robotic exploration as well as scientific investigations based on the exposed topography. The National Aeronautics & Space Administration (NASA) Lunabotics Mining Competition is a university-level competition designed to engage and retain students in science, technology, engineering and mathematics (STEM). NASA will directly benefit from the competition by encouraging the development of innovative lunar excavation concepts from universities which may result in clever ideas and solutions which could be applied to an actual lunar excavation device or payload. The challenge is for students to design and build a remote controlled or autonomous excavator, called a lunabot, that can collect and deposit a minimum of 10 kilograms of lunar simulant within 15 minutes. The complexities of the challenge include the abrasive characteristics of the lunar simulant, the weight and size limitations of the lunabot, and the ability to control the lunabot from a remote control center. This paper will present the results of the first and second annual Lunabotics Mining Competitions held in May 2010 and May 2011. In 2010, 22 United States (US) universities competed, and in May 2011 the competition was opened to international participation, with 46 Universities expected to attend. There are 12 international teams and 34 US teams. This combined total directly inspired an estimated 544 university students. More students and the public were engaged via internet broadcasting and social networking media. The various designs will be cataloged and categorized to provide information to future Lunabotics mining robot designers and competitors. It is also expected to be of value for actual future space missions, as knowledge is gained from testing many innovative prototypes in simulated lunar regolith.
Social Networks, Social Circles, and Job Satisfaction.
ERIC Educational Resources Information Center
Hurlbert, Jeanne S.
1991-01-01
Tests the hypothesis that social networks serve as a social resource that effects job satisfaction through the provision of social support. Argues that three types of networks are likely to affect job satisfaction: dense networks, social circles composed of co-workers, and kin-centered networks. (JOW)
A Sensemaking Approach to Visual Analytics of Attribute-Rich Social Networks
ERIC Educational Resources Information Center
Gou, Liang
2012-01-01
Social networks have become more complex, in particular considering the fact that elements in social networks are not only abstract topological nodes and links, but contain rich social attributes and reflecting diverse social relationships. For example, in a co-authorship social network in a scientific community, nodes in the social network, which…
NASA Astrophysics Data System (ADS)
Aldeen Yousra, S.; Mazleena, Salleh
2018-05-01
Recent advancement in Information and Communication Technologies (ICT) demanded much of cloud services to sharing users’ private data. Data from various organizations are the vital information source for analysis and research. Generally, this sensitive or private data information involves medical, census, voter registration, social network, and customer services. Primary concern of cloud service providers in data publishing is to hide the sensitive information of individuals. One of the cloud services that fulfill the confidentiality concerns is Privacy Preserving Data Mining (PPDM). The PPDM service in Cloud Computing (CC) enables data publishing with minimized distortion and absolute privacy. In this method, datasets are anonymized via generalization to accomplish the privacy requirements. However, the well-known privacy preserving data mining technique called K-anonymity suffers from several limitations. To surmount those shortcomings, I propose a new heuristic anonymization framework for preserving the privacy of sensitive datasets when publishing on cloud. The advantages of K-anonymity, L-diversity and (α, k)-anonymity methods for efficient information utilization and privacy protection are emphasized. Experimental results revealed the superiority and outperformance of the developed technique than K-anonymity, L-diversity, and (α, k)-anonymity measure.
CANFAR+Skytree: A Cloud Computing and Data Mining System for Astronomy
NASA Astrophysics Data System (ADS)
Ball, N. M.
2013-10-01
This is a companion Focus Demonstration article to the CANFAR+Skytree poster (Ball 2013, this volume), demonstrating the usage of the Skytree machine learning software on the Canadian Advanced Network for Astronomical Research (CANFAR) cloud computing system. CANFAR+Skytree is the world's first cloud computing system for data mining in astronomy.
NASA Astrophysics Data System (ADS)
McCullough, Claire L.; Novobilski, Andrew J.; Fesmire, Francis M.
2006-04-01
Faculty from the University of Tennessee at Chattanooga and the University of Tennessee College of Medicine, Chattanooga Unit, have used data mining techniques and neural networks to examine a set of fourteen features, data items, and HUMINT assessments for 2,148 emergency room patients with symptoms possibly indicative of Acute Coronary Syndrome. Specifically, the authors have generated Bayesian networks describing linkages and causality in the data, and have compared them with neural networks. The data includes objective information routinely collected during triage and the physician's initial case assessment, a HUMINT appraisal. Both the neural network and the Bayesian network were used to fuse the disparate types of information with the goal of forecasting thirty-day adverse patient outcome. This paper presents details of the methods of data fusion including both the data mining techniques and the neural network. Results are compared using Receiver Operating Characteristic curves describing the outcomes of both methods, both using only objective features and including the subjective physician's assessment. While preliminary, the results of this continuing study are significant both from the perspective of potential use of the intelligent fusion of biomedical informatics to aid the physician in prescribing treatment necessary to prevent serious adverse outcome from ACS and as a model of fusion of objective data with subjective HUMINT assessment. Possible future work includes extension of successfully demonstrated intelligent fusion methods to other medical applications, and use of decision level fusion to combine results from data mining and neural net approaches for even more accurate outcome prediction.
A science-based, watershed strategy to support effective remediation of abandoned mine lands
Buxton, Herbert T.; Nimick, David A.; Von Guerard, Paul; Church, Stan E.; Frazier, Ann G.; Gray, John R.; Lipin, Bruce R.; Marsh, Sherman P.; Woodward, Daniel F.; Kimball, Briant A.; Finger, Susan E.; Ischinger, Lee S.; Fordham, John C.; Power, Martha S.; Bunch, Christine M.; Jones, John W.
1997-01-01
A U.S. Geological Survey Abandoned Mine Lands Initiative will develop a strategy for gathering and communicating the scientific information needed to formulate effective and cost-efficient remediation of abandoned mine lands. A watershed approach will identify, characterize, and remediate contaminated sites that have the most profound effect on water and ecosystem quality within a watershed. The Initiative will be conducted during 1997 through 2001 in two pilot watersheds, the Upper Animas River watershed in Colorado and the Boulder River watershed in Montana. Initiative efforts are being coordinated with the U.S. Forest Service, Bureau of Land Management, National Park Service, and other stakeholders which are using the resulting scientific information to design and implement remediation activities. The Initiative has the following eight objective-oriented components: estimate background (pre-mining) conditions; define baseline (current) conditions; identify target sites (major contaminant sources); characterize target sites and processes affecting contaminant dispersal; characterize ecosystem health and controlling processes at target sites; develop remediation goals and monitoring network; provide an integrated, quality-assured and accessible data network; and document lessons learned for future applications of the watershed approach.
Zhou, C.; Damiano, N.; Whisner, B.; Reyes, M.
2017-01-01
The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure. PMID:29348699
Social network analysis: Presenting an underused method for nursing research.
Parnell, James Michael; Robinson, Jennifer C
2018-06-01
This paper introduces social network analysis as a versatile method with many applications in nursing research. Social networks have been studied for years in many social science fields. The methods continue to advance but remain unknown to most nursing scholars. Discussion paper. English language and interpreted literature was searched from Ovid Healthstar, CINAHL, PubMed Central, Scopus and hard copy texts from 1965 - 2017. Social network analysis first emerged in nursing literature in 1995 and appears minimally through present day. To convey the versatility and applicability of social network analysis in nursing, hypothetical scenarios are presented. The scenarios are illustrative of three approaches to social network analysis and include key elements of social network research design. The methods of social network analysis are underused in nursing research, primarily because they are unknown to most scholars. However, there is methodological flexibility and epistemological versatility capable of supporting quantitative and qualitative research. The analytic techniques of social network analysis can add new insight into many areas of nursing inquiry, especially those influenced by cultural norms. Furthermore, visualization techniques associated with social network analysis can be used to generate new hypotheses. Social network analysis can potentially uncover findings not accessible through methods commonly used in nursing research. Social networks can be analysed based on individual-level attributes, whole networks and subgroups within networks. Computations derived from social network analysis may stand alone to answer a research question or incorporated as variables into robust statistical models. © 2018 John Wiley & Sons Ltd.
Semantic Networks and Social Networks
ERIC Educational Resources Information Center
Downes, Stephen
2005-01-01
Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…
Diamonds, a resource curse? The case of Kono District in Sierra Leone
NASA Astrophysics Data System (ADS)
Wilson, Sigismond Ayodele
Using an actor-oriented approach to political ecology integrated with theory on the social production of scale, this dissertation examines the extent to which diamond exploitation constitutes a resource curse in Sierra Leone, with Kono District as a case-study. It uses social survey methods and remote sensing analysis of Landsat images to (1) evaluate the role of Sierra Leone's diamonds in economic development from a historical lens, (2) examine the extent to which a weak regulatory state apparatus makes a rich diamond endowment more of a curse than a blessing, (3) determine whether geographically diffuse and remotely-located diamonds are more a liability than an asset, and (4) assess whether environmental conditions are worse in diamond than in non-diamond chiefdoms. Results of the study showed that the contribution of diamonds to national economic growth declined precipitously following the politicization of diamonds and growing informalization of mining under the leadership of Siaka Stevens. Growing disenchantment combined with grievances over access to diamond resources and rights, culminating in a civil war fuelled by conflict diamonds. Findings indicated that actors capitalized on a weak regulatory state to fulfill their agendas. Illicit diamond exploitation was mainly driven by corruption, economic constraints and perverse economic incentives. Preferential land allocation to industrial mining following World Bank Group-directed national mining policy reforms and the weakness of the state in ensuring companies' adherence to mining clauses precipitated corporation-community conflicts. Study findings showed that the resource curse was acute on diggers who received less than 1 a day unlike their South American counterparts who made at least 7 daily. Results from the study demonstrate that the spatiality of diamonds also contributed to the resource curse. Illicit diamond mining was more acute in remotely located mining sites than in extractive sites closer to towns, and spatial proximity to Guinea and Liberia facilitated diamond smuggling. Remote sensing analysis and social surveys revealed that negative environmental impacts were more manifested in the diamond mining chiefdoms than in non-mining areas, confirming the environment as major dimensions of the resource curse. The environmental impacts of diamond mining had broader implications as the forest, land, and water were affected. Transformation of fertile lands (wetlands) to mining lands, and without required reclamation, had negative consequences on the agricultural productivity of local residents in mining areas. Examination of power relations constituted the pros and cons of managing diamond exploitation. Policy makers should employ broad-based strategies to empower mining communities so that they can elect credible local governments. Clearly demarcated industrial and artisanal mining zones and equity and transparency in the distribution of mineral revenues could minimize potential conflicts between corporations and mining companies.
Loughead, Todd M; Fransen, Katrien; Van Puyenbroeck, Stef; Hoffmann, Matt D; De Cuyper, Bert; Vanbeselaere, Norbert; Boen, Filip
2016-11-01
Two studies investigated the structure of different athlete leadership networks and its relationship to cohesion using social network analysis. In Study 1, we examined the relationship between a general leadership quality network and task and social cohesion as measured by the Group Environment Questionnaire (GEQ). In Study 2, we investigated the leadership networks for four different athlete leadership roles (task, motivational, social and external) and their association with task and social cohesion networks. In Study 1, the results demonstrated that the general leadership quality network was positively related to task and social cohesion. The results from Study 2 indicated positive correlations between the four leadership networks and task and social cohesion networks. Further, the motivational leadership network emerged as the strongest predictor of the task cohesion network, while the social leadership network was the strongest predictor of the social cohesion network. The results complement a growing body of research indicating that athlete leadership has a positive association with cohesion.
Applications of Social Network Analysis
NASA Astrophysics Data System (ADS)
Thilagam, P. Santhi
A social network [2] is a description of the social structure between actors, mostly persons, groups or organizations. It indicates the ways in which they are connected with each other by some relationship such as friendship, kinship, finance exchange etc. In a nutshell, when the person uses already known/unknown people to create new contacts, it forms social networking. The social network is not a new concept rather it can be formed when similar people interact with each other directly or indirectly to perform particular task. Examples of social networks include a friendship networks, collaboration networks, co-authorship networks, and co-employees networks which depict the direct interaction among the people. There are also other forms of social networks, such as entertainment networks, business Networks, citation networks, and hyperlink networks, in which interaction among the people is indirect. Generally, social networks operate on many levels, from families up to the level of nations and assists in improving interactive knowledge sharing, interoperability and collaboration.
Obiri, Samuel; Mattah, Precious A D; Mattah, Memuna M; Armah, Frederick A; Osae, Shiloh; Adu-kumi, Sam; Yeboah, Philip O
2016-01-26
Gold mining has played an important role in Ghana's economy, however the negative environmental and socio-economic effects on the host communities associated with gold mining have overshadowed these economic gains. It is within this context that this paper assessed in an integrated manner the environmental and socio-economic impacts of artisanal gold mining in the Tarkwa Nsuaem Municipality from a natural and social science perspective. The natural science group collected 200 random samples on bi-weekly basis between January to October 2013 from water bodies in the study area for analysis in line with methods outlined by the American Water Works Association, while the social science team interviewed 250 residents randomly selected for interviews on socio-economic issues associated with mining. Data from the socio-economic survey was analyzed using logistic regression with SPSS version 17. The results of the natural science investigation revealed that the levels of heavy metals in water samples from the study area in most cases exceeded GS 175-1/WHO permissible guideline values, which are in tandem with the results of inhabitants' perceptions of water quality survey (as 83% of the respondents are of the view that water bodies in the study area are polluted). This calls for cost-benefits analysis of mining before new mining leases are granted by the relevant authorities.
Obiri, Samuel; Mattah, Precious A. D.; Mattah, Memuna M.; Armah, Frederick A.; Osae, Shiloh; Adu-kumi, Sam; Yeboah, Philip O.
2016-01-01
Gold mining has played an important role in Ghana’s economy, however the negative environmental and socio-economic effects on the host communities associated with gold mining have overshadowed these economic gains. It is within this context that this paper assessed in an integrated manner the environmental and socio-economic impacts of artisanal gold mining in the Tarkwa Nsuaem Municipality from a natural and social science perspective. The natural science group collected 200 random samples on bi-weekly basis between January to October 2013 from water bodies in the study area for analysis in line with methods outlined by the American Water Works Association, while the social science team interviewed 250 residents randomly selected for interviews on socio-economic issues associated with mining. Data from the socio-economic survey was analyzed using logistic regression with SPSS version 17. The results of the natural science investigation revealed that the levels of heavy metals in water samples from the study area in most cases exceeded GS 175-1/WHO permissible guideline values, which are in tandem with the results of inhabitants’ perceptions of water quality survey (as 83% of the respondents are of the view that water bodies in the study area are polluted). This calls for cost-benefits analysis of mining before new mining leases are granted by the relevant authorities. PMID:26821039
Wilson, Mark L; Renne, Elisha; Roncoli, Carla; Agyei-Baffour, Peter; Tenkorang, Emmanuel Yamoah
2015-07-15
This article is one of three synthesis reports resulting from an integrated assessment (IA) of artisanal and small-scale gold mining (ASGM) in Ghana. Given the complexities that involve multiple drivers and diverse disciplines influencing ASGM, an IA framework was used to analyze economic, social, health, and environmental data and to co-develop evidence-based responses in collaboration with pertinent stakeholders. We look at both micro- and macro-economic processes surrounding ASGM, including causes, challenges, and consequences. At the micro-level, social and economic evidence suggests that the principal reasons whereby most people engage in ASGM involve "push" factors aimed at meeting livelihood goals. ASGM provides an important source of income for both proximate and distant communities, representing a means of survival for impoverished farmers as well as an engine for small business growth. However, miners and their families often end up in a "poverty trap" of low productivity and indebtedness, which reduce even further their economic options. At a macro level, Ghana's ASGM activities contribute significantly to the national economy even though they are sometimes operating illegally and at a disadvantage compared to large-scale industrial mining companies. Nevertheless, complex issues of land tenure, social stability, mining regulation and taxation, and environmental degradation undermine the viability and sustainability of ASGM as a livelihood strategy. Although more research is needed to understand these complex relationships, we point to key findings and insights from social science and economics research that can guide policies and actions aimed to address the unique challenges of ASGM in Ghana and elsewhere.
Wilson, Mark L.; Renne, Elisha; Roncoli, Carla; Agyei-Baffour, Peter; Yamoah Tenkorang, Emmanuel
2015-01-01
This article is one of three synthesis reports resulting from an integrated assessment (IA) of artisanal and small-scale gold mining (ASGM) in Ghana. Given the complexities that involve multiple drivers and diverse disciplines influencing ASGM, an IA framework was used to analyze economic, social, health, and environmental data and to co-develop evidence-based responses in collaboration with pertinent stakeholders. We look at both micro- and macro-economic processes surrounding ASGM, including causes, challenges, and consequences. At the micro-level, social and economic evidence suggests that the principal reasons whereby most people engage in ASGM involve “push” factors aimed at meeting livelihood goals. ASGM provides an important source of income for both proximate and distant communities, representing a means of survival for impoverished farmers as well as an engine for small business growth. However, miners and their families often end up in a “poverty trap” of low productivity and indebtedness, which reduce even further their economic options. At a macro level, Ghana’s ASGM activities contribute significantly to the national economy even though they are sometimes operating illegally and at a disadvantage compared to large-scale industrial mining companies. Nevertheless, complex issues of land tenure, social stability, mining regulation and taxation, and environmental degradation undermine the viability and sustainability of ASGM as a livelihood strategy. Although more research is needed to understand these complex relationships, we point to key findings and insights from social science and economics research that can guide policies and actions aimed to address the unique challenges of ASGM in Ghana and elsewhere. PMID:26184277
Kreider, Consuelo M.; Bendixen, Roxanna M.; Young, Mary Ellen; Prudencio, Stephanie M.; McCarty, Christopher; Mann, William C.
2015-01-01
Background Social participation involves activities and roles providing interactions with others, including those within their social networks. Purpose Characterize social networks and participation with others for 36 adolescents, ages 11-16 years, with (n = 19) and without (n = 17) learning disability, attention disorder or high-functioning autism. Methods Social networks were measured using methods of personal network analysis. The Children's Assessment of Participation and Enjoyment With Whom dimension scores was used to measure participation with others. Youth from the clinical group were interviewed regarding their experiences within their social networks. Findings Group differences were observed for six social network variables and in the proportion of overall, physical, recreational, social and informal activities engaged with family and/or friends. Qualitative findings explicated strategies used in building, shaping and maintaining their social networks. Implications Social network factors should be considered when seeking to understand social participation. PMID:26755040
Trust Maximization in Social Networks
NASA Astrophysics Data System (ADS)
Zhan, Justin; Fang, Xing
Trust is a human-related phenomenon in social networks. Trust research on social networks has gained much attention on its usefulness, and on modeling propagations. There is little focus on finding maximum trust in social networks which is particularly important when a social network is oriented by certain tasks. In this paper, we propose a trust maximization algorithm based on the task-oriented social networks.
Fault Diagnosis Method for a Mine Hoist in the Internet of Things Environment.
Li, Juanli; Xie, Jiacheng; Yang, Zhaojian; Li, Junjie
2018-06-13
To reduce the difficulty of acquiring and transmitting data in mining hoist fault diagnosis systems and to mitigate the low efficiency and unreasonable reasoning process problems, a fault diagnosis method for mine hoisting equipment based on the Internet of Things (IoT) is proposed in this study. The IoT requires three basic architectural layers: a perception layer, network layer, and application layer. In the perception layer, we designed a collaborative acquisition system based on the ZigBee short distance wireless communication technology for key components of the mine hoisting equipment. Real-time data acquisition was achieved, and a network layer was created by using long-distance wireless General Packet Radio Service (GPRS) transmission. The transmission and reception platforms for remote data transmission were able to transmit data in real time. A fault diagnosis reasoning method is proposed based on the improved Dezert-Smarandache Theory (DSmT) evidence theory, and fault diagnosis reasoning is performed. Based on interactive technology, a humanized and visualized fault diagnosis platform is created in the application layer. The method is then verified. A fault diagnosis test of the mine hoisting mechanism shows that the proposed diagnosis method obtains complete diagnostic data, and the diagnosis results have high accuracy and reliability.
2014-03-27
0.8.0. The virtual machine’s network adapter was set to internal network only to keep any outside traffic from interfering. A MySQL -based query...primary output of Fullstats is the ARFF file format, intended for use with the WEKA Java -based data mining software developed at the University of Waikato
Smyth, Natasha; Siriwardhana, Chesmal; Hotopf, Matthew; Hatch, Stephani L
2015-07-01
Little is known about how social networks and social support are distributed within diverse communities and how different types of each are associated with a range of psychiatric symptoms. This study aims to address such shortcomings by: (1) describing the demographic and socioeconomic characteristics of social networks and social support in a multicultural population and (2) examining how each is associated with multiple mental health outcomes. Data is drawn from the South East London Community Health Study; a cross-sectional study of 1,698 adults conducted between 2008 and 2010. The findings demonstrate variation in social networks and social support by socio-demographic factors. Ethnic minority groups reported larger family networks but less perceived instrumental support. Older individuals and migrant groups reported lower levels of particular network and support types. Individuals from lower socioeconomic groups tended to report less social networks and support across the indicators measured. Perceived emotional and instrumental support, family and friend network size emerged as protective factors for common mental disorder, personality dysfunction and psychotic experiences. In contrast, both social networks and social support appear less relevant for hazardous alcohol use. The findings both confirm established knowledge that social networks and social support exert differential effects on mental health and furthermore suggest that the particular type of social support may be important. In contrast, different types of social network appear to impact upon poor mental health in a more uniform way. Future psychosocial strategies promoting mental health should consider which social groups are vulnerable to reduced social networks and poor social support and which diagnostic groups may benefit most.
ERIC Educational Resources Information Center
Baker-Doyle, Kira J.
2015-01-01
Social network research on teachers and schools has risen exponentially in recent years as an innovative method to reveal the role of social networks in education. However, scholars are still exploring ways to incorporate traditional quantitative methods of Social Network Analysis (SNA) with qualitative approaches to social network research. This…
Identifying influencers from sampled social networks
NASA Astrophysics Data System (ADS)
Tsugawa, Sho; Kimura, Kazuma
2018-10-01
Identifying influencers who can spread information to many other individuals from a social network is a fundamental research task in the network science research field. Several measures for identifying influencers have been proposed, and the effectiveness of these influence measures has been evaluated for the case where the complete social network structure is known. However, it is difficult in practice to obtain the complete structure of a social network because of missing data, false data, or node/link sampling from the social network. In this paper, we investigate the effects of node sampling from a social network on the effectiveness of influence measures at identifying influencers. Our experimental results show that the negative effect of biased sampling, such as sample edge count, on the identification of influencers is generally small. For social media networks, we can identify influencers whose influence is comparable with that of those identified from the complete social networks by sampling only 10%-30% of the networks. Moreover, our results also suggest the possible benefit of network sampling in the identification of influencers. Our results show that, for some networks, nodes with higher influence can be discovered from sampled social networks than from complete social networks.
Social media users have different experiences, motivations, and quality of life.
Campisi, Jay; Folan, Denis; Diehl, Grace; Kable, Timothy; Rademeyer, Candice
2015-08-30
While the number of individuals participating in internet-based social networks has continued to rise, it is unclear how participating in social networks might influence quality of life (QOL). Individuals differ in their experiences, motivations for, and amount of time using internet-based social networks, therefore, we examined if individuals differing in social network user experiences, motivations and frequency of social network also differed in self-reported QOL. Two-hundred and thirty-seven individuals (aged 18-65) were recruited online using the online platform Mechanical Turk (MTurk). All participants completed a web-based survey examining social network use and the World Health Organization Quality of Life Scale Abbreviated Version (WHOQOL-Bref) to assess QOL. Individuals who reported positive associations with the use of social networks demonstrated higher QOL while those reporting negative associates demonstrated lower QOL. Moreover, individuals using social networks to stay connected to friends demonstrated higher QOL while those using social networking for dating purposes reported lower QOL. Frequency of social network use did not relate to QOL. These results suggest that QOL differs among social network users. Thus, participating in social networking may be a way to either promote or detract from QOL. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The Analysis of Duocentric Social Networks: A Primer.
Kennedy, David P; Jackson, Grace L; Green, Harold D; Bradbury, Thomas N; Karney, Benjamin R
2015-02-01
Marriages and other intimate partnerships are facilitated or constrained by the social networks within which they are embedded. To date, methods used to assess the social networks of couples have been limited to global ratings of social network characteristics or network data collected from each partner separately. In the current article, the authors offer new tools for expanding on the existing literature by describing methods of collecting and analyzing duocentric social networks, that is, the combined social networks of couples. They provide an overview of the key considerations for measuring duocentric networks, such as how and why to combine separate network interviews with partners into one shared duocentric network, the number of network members to assess, and the implications of different network operationalizations. They illustrate these considerations with analyses of social network data collected from 57 low-income married couples, presenting visualizations and quantitative measures of network composition and structure.
NASA Astrophysics Data System (ADS)
Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng
2016-04-01
Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.
Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng
2016-01-01
Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146
Multiple Factors-Aware Diffusion in Social Networks
2015-05-22
Multiple Factors-Aware Diffusion in Social Networks Chung-Kuang Chou(B) and Ming-Syan Chen Department of Electrical Engineering, National Taiwan...propagates from nodes to nodes over a social network . The behavior that a node adopts an information piece in a social network can be affected by...Twitter dataset. Keywords: Social networks · Diffusion models 1 Introduction Information diffusion in social networks has been an active research field
Exploring the impact of big data in economic geology using cloud-based synthetic sensor networks
NASA Astrophysics Data System (ADS)
Klump, J. F.; Robertson, J.
2015-12-01
In a market demanding lower resource prices and increasing efficiencies, resources companies are increasingly looking to the realm of real-time, high-frequency data streams to better measure and manage their minerals processing chain, from pit to plant to port. Sensor streams can include real-time drilling engineering information, data streams from mining trucks, and on-stream sensors operating in the plant feeding back rich chemical information. There are also many opportunities to deploy new sensor streams - unlike environmental monitoring networks, the mine environment is not energy- or bandwidth-limited. Although the promised efficiency dividends are inviting, the path to achieving these is difficult to see for most companies. As well as knowing where to invest in new sensor technology and how to integrate the new data streams, companies must grapple with risk-laden changes to their established methods of control to achieve maximum gains. What is required is a sandbox data environment for the development of analysis and control strategies at scale, allowing companies to de-risk proposed changes before actually deploying them to a live mine environment. In this presentation we describe our approach to simulating real-time scaleable data streams in a mine environment. Our sandbox consists of three layers: (a) a ground-truth layer that contains geological models, which can be statistically based on historical operations data, (b) a measurement layer - a network of RESTful synthetic sensor microservices which can simulate measurements of ground-truth properties, and (c) a control layer, which integrates the sensor streams and drives the measurement and optimisation strategies. The control layer could be a new machine learner, or simply a company's existing data infrastructure. Containerisation allows rapid deployment of large numbers of sensors, as well as service discovery to form a dynamic network of thousands of sensors, at a far lower cost than physically building the network.
NASA Astrophysics Data System (ADS)
Atkins, Patrick R.; Bayliss, Chris; Ward, Sam
In 1990, the International Aluminum Institute began a program to report on the bauxite mining and rehabilitation activities of the worldwide industry. A survey process was initiated and reports were published in 1992, 2000 and 2004. The most recent report includes extensive data on mines representing over 70% of the world's output of bauxite and includes a more detailed focus on the social and economic as well as the environmental performance of the industry.
Social inheritance can explain the structure of animal social networks
Ilany, Amiyaal; Akçay, Erol
2016-01-01
The social network structure of animal populations has major implications for survival, reproductive success, sexual selection and pathogen transmission of individuals. But as of yet, no general theory of social network structure exists that can explain the diversity of social networks observed in nature, and serve as a null model for detecting species and population-specific factors. Here we propose a simple and generally applicable model of social network structure. We consider the emergence of network structure as a result of social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds randomly. We compare model output with data from several species, showing that it can generate networks with properties such as those observed in real social systems. Our model demonstrates that important observed properties of social networks, including heritability of network position or assortative associations, can be understood as consequences of social inheritance. PMID:27352101
The synergic role of sociotechnical and personal characteristics on work injuries in mines.
Paul, P S; Maiti, J
2008-05-01
Occupational injuries in mines are attributed to many factors. In this study, an attempt was made to identify the various factors related to work injuries in mines and to estimate their effects on work injuries to mine workers. An accident path model was developed to estimate the pattern and strength of relationships amongst the personal and sociotechnical variables in accident/injury occurrences. The input data for the model were the correlation matrix of 18 variables, which were collected from the case study mines. The case study results showed that there are sequential interactions amongst the sociotechnical and personal factors leading to accidents/injuries in mines. Amongst the latent endogenous constructs, job dissatisfaction and safe work behaviour show a significant positive and negative direct relationship with work injury, respectively. However, the construct safety environment has a significant negative indirect relationship with work injury. The safety environment is negatively affected by work hazards and positively affected by social support. The safety environment also shows a significant negative relationship with job stress and job dissatisfaction. However, negative personality has no significant direct or indirect effect on work injury, but it has a significant negative relationship with safe work behaviour. The endogenous construct negative personality is positively influenced by job stress and negatively influenced by social support.
Establishing the reliability of rhesus macaque social network assessment from video observations
Feczko, Eric; Mitchell, Thomas A. J.; Walum, Hasse; Brooks, Jenna M.; Heitz, Thomas R.; Young, Larry J.; Parr, Lisa A.
2015-01-01
Understanding the properties of a social environment is important for understanding the dynamics of social relationships. Understanding such dynamics is relevant for multiple fields, ranging from animal behaviour to social and cognitive neuroscience. To quantify social environment properties, recent studies have incorporated social network analysis. Social network analysis quantifies both the global and local properties of a social environment, such as social network efficiency and the roles played by specific individuals, respectively. Despite the plethora of studies incorporating social network analysis, methods to determine the amount of data necessary to derive reliable social networks are still being developed. Determining the amount of data necessary for a reliable network is critical for measuring changes in the social environment, for example following an experimental manipulation, and therefore may be critical for using social network analysis to statistically assess social behaviour. In this paper, we extend methods for measuring error in acquired data and for determining the amount of data necessary to generate reliable social networks. We derived social networks from a group of 10 male rhesus macaques, Macaca mulatta, for three behaviours: spatial proximity, grooming and mounting. Behaviours were coded using a video observation technique, where video cameras recorded the compound where the 10 macaques resided. We collected, coded and used 10 h of video data to construct these networks. Using the methods described here, we found in our data that 1 h of spatial proximity observations produced reliable social networks. However, this may not be true for other studies due to differences in data acquisition. Our results have broad implications for measuring and predicting the amount of error in any social network, regardless of species. PMID:26392632
2015-12-01
use of social network analysis (SNA) has allowed the military to map dark networks of terrorist organizations and selectively target key elements...data to improve SC. 14. SUBJECT TERMS social network analysis, dark networks, light networks, dim networks, security cooperation, Southeast Asia...task may already exist. Recently, the use of social network analysis (SNA) has allowed the military to map dark networks of terrorist organizations
[Social Networks of Children with Mentally Ill Parents].
Stiawa, Maja; Kilian, Reinhold
2017-10-01
Social Networks of Children with Mentally Ill Parents Mental illness of parents can be a load situation for children. Supporting social relations might be an important source in such a situation. Social relations can be shown by social network analysis. Studies about social networks and mental health indicate differences regarding structure and potential for support when compared with social networks of healthy individuals. If and how mental illness of parents has an impact on their children's network is widely unknown. This systematic review shows methods and results of studies about social networks of children with mentally ill parents. By systematic search in electronic databases as well as manual search, two studies were found who met the target criteria. Both studies were conducted in the USA. Results of studies indicate that parental mental illness affects the state of mental health and social networks of children. Symptomatology of children changed due to perceived social support of network contacts. Impact of social support and strong network contacts seems to depend on age of children and the family situation. That's why support offers should be adapt to children's age. Focusing on social networks as potential resource for support and needs of the family affected seems appropriate during treatment.
Impacts of surface gold mining on land use systems in Western Ghana.
Schueler, Vivian; Kuemmerle, Tobias; Schröder, Hilmar
2011-07-01
Land use conflicts are becoming increasingly apparent from local to global scales. Surface gold mining is an extreme source of such a conflict, but mining impacts on local livelihoods often remain unclear. Our goal here was to assess land cover change due to gold surface mining in Western Ghana, one of the world's leading gold mining regions, and to study how these changes affected land use systems. We used Landsat satellite images from 1986-2002 to map land cover change and field interviews with farmers to understand the livelihood implications of mining-related land cover change. Our results showed that surface mining resulted in deforestation (58%), a substantial loss of farmland (45%) within mining concessions, and widespread spill-over effects as relocated farmers expand farmland into forests. This points to rapidly eroding livelihood foundations, suggesting that the environmental and social costs of Ghana's gold boom may be much higher than previously thought.
EvoGraph: On-The-Fly Efficient Mining of Evolving Graphs on GPU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen
With the prevalence of the World Wide Web and social networks, there has been a growing interest in high performance analytics for constantly-evolving dynamic graphs. Modern GPUs provide massive AQ1 amount of parallelism for efficient graph processing, but the challenges remain due to their lack of support for the near real-time streaming nature of dynamic graphs. Specifically, due to the current high volume and velocity of graph data combined with the complexity of user queries, traditional processing methods by first storing the updates and then repeatedly running static graph analytics on a sequence of versions or snapshots are deemed undesirablemore » and computational infeasible on GPU. We present EvoGraph, a highly efficient and scalable GPU- based dynamic graph analytics framework.« less
Overview of bureau research directed towards surface powered haulage safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, J.P.; Aldinger, J.A.
1995-12-31
Surface mining operations, including mills and preparation plants, employ over 260,000 people. This represents a significant contribution to our nation`s economy and an important source of skilled and well-paying jobs. As mine production has shifted from underground to surface, and with continuing advances in underground mine safety, surface mining has unfortunately become the leader in mine fatalities. In 1994 surface mining accidents accounted for 49% of all mine fatalities, followed by underground mining with 37% and mills and preparation plants with 14%. The U.S. Bureau of Mines (USBM) has targeted surface mining as an important research priority to reduce themore » social and economic costs associated with fatalities and lost-work-time injuries. USBM safety research focuses on the development of technologies that can enhance productivity and reduce mining costs through a reduction in the number and severity of mining accidents. This report summarizes a number of completed and ongoing research programs directed towards surface powered haulage--the single largest category of fatalities in surface mining and a major cause of lost workdays. Research products designed for industry are highlighted and future USBM surface mining safety research is discussed.« less
Harasemiw, Oksana; Newall, Nancy; Shooshtari, Shahin; Mackenzie, Corey; Menec, Verena
2017-01-01
It is well-documented that social isolation is detrimental to health and well-being. What is less clear is what types of social networks allow older adults to get the social support they need to promote health and well-being. In this study, we identified social network types in a national sample of older Canadians and explored whether they are associated with perceived availability of different types of social support (affectionate, emotional, or tangible, and positive social interactions). Data were drawn from the baseline questionnaire of the Canadian Longitudinal Study on Aging for participants aged 65-85 (unweighted n = 8,782). Cluster analyses revealed six social network groups. Social support generally declined as social networks became more restricted; however, different patterns of social support availability emerged for different social network groups. These findings suggest that certain types of social networks place older adults at risk of not having met specific social support needs.
Functional connectivity associated with social networks in older adults: A resting-state fMRI study.
Pillemer, Sarah; Holtzer, Roee; Blumen, Helena M
2017-06-01
Poor social networks and decreased levels of social support are associated with worse mood, health, and cognition in younger and older adults. Yet, we know very little about the brain substrates associated with social networks and social support, particularly in older adults. This study examined functional brain substrates associated with social networks using the Social Network Index (SNI) and resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI data from 28 non-demented older adults were analyzed with independent components analyses. As expected, four established resting-state networks-previously linked to motor, vision, speech, and other language functions-correlated with the quality (SNI-1: total number of high-contact roles of a respondent) and quantity (SNI-2: total number of individuals in a respondent's social network) of social networks: a sensorimotor, a visual, a vestibular/insular, and a left frontoparietal network. Moreover, SNI-1 was associated with greater functional connectivity in the lateral prefrontal regions of the left frontoparietal network, while SNI-2 was associated with greater functional connectivity in the medial prefrontal regions of this network. Thus, lateral prefrontal regions may be particularly linked to the quality of social networks while medial prefrontal regions may be particularly linked to the quantity of social networks.
ERIC Educational Resources Information Center
Raju, Dheeraj; Schumacker, Randall
2015-01-01
The study used earliest available student data from a flagship university in the southeast United States to build data mining models like logistic regression with different variable selection methods, decision trees, and neural networks to explore important student characteristics associated with retention leading to graduation. The decision tree…
NASA Astrophysics Data System (ADS)
Bailly, J. S.; Delenne, C.; Chahinian, N.; Bringay, S.; Commandré, B.; Chaumont, M.; Derras, M.; Deruelle, L.; Roche, M.; Rodriguez, F.; Subsol, G.; Teisseire, M.
2017-12-01
In France, local government institutions must establish a detailed description of wastewater networks. The information should be available, but it remains fragmented (different formats held by different stakeholders) and incomplete. In the "Cart'Eaux" project, a multidisciplinary team, including an industrial partner, develops a global methodology using Machine Learning and Data Mining approaches applied to various types of large data to recover information in the aim of mapping urban sewage systems for hydraulic modelling. Deep-learning is first applied using a Convolution Neural Network to localize manhole covers on 5 cm resolution aerial RGB images. The detected manhole covers are then automatically connected using a tree-shaped graph constrained by industry rules. Based on a Delaunay triangulation, connections are chosen to minimize a cost function depending on pipe length, slope and possible intersection with roads or buildings. A stochastic version of this algorithm is currently being developed to account for positional uncertainty and detection errors, and generate sets of probable networks. As more information is required for hydraulic modeling (slopes, diameters, materials, etc.), text data mining is used to extract network characteristics from data posted on the Web or available through governmental or specific databases. Using an appropriate list of keywords, the web is scoured for documents which are saved in text format. The thematic entities are identified and linked to the surrounding spatial and temporal entities. The methodology is developed and tested on two towns in southern France. The primary results are encouraging: 54% of manhole covers are detected with few false detections, enabling the reconstruction of probable networks. The data mining results are still being investigated. It is clear at this stage that getting numerical values on specific pipes will be challenging. Thus, when no information is found, decision rules will be used to assign admissible numerical values to enable the final hydraulic modelling. Consequently, sensitivity analysis of the hydraulic model will be performed to take into account the uncertainty associated with each piece of information. Project funded by the European Regional Development Fund and the Occitanie Region.
Pincebourde, Sylvain; Casas, Jérôme
2016-01-01
Gas composition is an important component of any micro-environment. Insects, as the vast majority of living organisms, depend on O2 and CO2 concentrations in the air they breathe. Low O2 (hypoxia), and high CO2 (hypercarbia) levels can have a dramatic effect. For phytophagous insects that live within plant tissues (endophagous lifestyle), gas is exchanged between ambient air and the atmosphere within the insect habitat. The insect larva contributes to the modification of this environment by expiring CO2. Yet, knowledge on the gas exchange network in endophagous insects remains sparse. Our study identified mechanisms that modulate gas composition in the habitat of endophagous insects. Our aim was to show that the mere position of the insect larva within plant tissues could be used as a proxy for estimating risk of occurrence of hypoxia and hypercarbia, despite the widely diverse life history traits of these organisms. We developed a conceptual framework for a gas diffusion network determining gas composition in endophagous insect habitats. We applied this framework to mines, galls and insect tunnels (borers) by integrating the numerous obstacles along O2 and CO2 pathways. The nature and the direction of gas transfers depended on the physical structure of the insect habitat, the photosynthesis activity as well as stomatal behavior in plant tissues. We identified the insect larva position within the gas diffusion network as a predictor of risk exposure to hypoxia and hypercarbia. We ranked endophagous insect habitats in terms of risk of exposure to hypoxia and/or hypercarbia, from the more to the less risky as cambium mines>borer tunnels≫galls>bark mines>mines in aquatic plants>upper and lower surface mines. Furthermore, we showed that the photosynthetically active tissues likely assimilate larval CO2 produced. In addition, temperature of the microhabitat and atmospheric CO2 alter gas composition in the insect habitat. We predict that (i) hypoxia indirectly favors the evolution of cold-tolerant gallers, which do not perform well at high temperatures, and (ii) normoxia (ambient O2 level) in mines allows miners to develop at high temperatures. Little is known, however, about physiological and morphological adaptations to hypoxia and hypercarbia in endophagous insects. Endophagy strongly constrains the diffusion processes with cascading consequences on the evolutionary ecology of endophagous insects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Understanding complex interactions using social network analysis.
Pow, Janette; Gayen, Kaberi; Elliott, Lawrie; Raeside, Robert
2012-10-01
The aim of this paper is to raise the awareness of social network analysis as a method to facilitate research in nursing research. The application of social network analysis in assessing network properties has allowed greater insight to be gained in many areas including sociology, politics, business organisation and health care. However, the use of social networks in nursing has not received sufficient attention. Review of literature and illustration of the application of the method of social network analysis using research examples. First, the value of social networks will be discussed. Then by using illustrative examples, the value of social network analysis to nursing will be demonstrated. The method of social network analysis is found to give greater insights into social situations involving interactions between individuals and has particular application to the study of interactions between nurses and between nurses and patients and other actors. Social networks are systems in which people interact. Two quantitative techniques help our understanding of these networks. The first is visualisation of the network. The second is centrality. Individuals with high centrality are key communicators in a network. Applying social network analysis to nursing provides a simple method that helps gain an understanding of human interaction and how this might influence various health outcomes. It allows influential individuals (actors) to be identified. Their influence on the formation of social norms and communication can determine the extent to which new interventions or ways of thinking are accepted by a group. Thus, working with key individuals in a network could be critical to the success and sustainability of an intervention. Social network analysis can also help to assess the effectiveness of such interventions for the recipient and the service provider. © 2012 Blackwell Publishing Ltd.
Hydrochemical characterization of a mine water geothermal energy resource in NW Spain.
Loredo, C; Ordóñez, A; Garcia-Ordiales, E; Álvarez, R; Roqueñi, N; Cienfuegos, P; Peña, A; Burnside, N M
2017-01-15
Abandoned and flooded mine networks provide underground reservoirs of mine water that can be used as a renewable geothermal energy source. A complete hydrochemical characterization of mine water is required to optimally design the geothermal installation, understand the hydraulic behavior of the water in the reservoir and prevent undesired effects such as pipe clogging via mineral precipitation. Water pumped from the Barredo-Figaredo mining reservoir (Asturias, NW Spain), which is currently exploited for geothermal use, has been studied and compared to water from a separate, nearby mountain mine and a river that receives mine water discharge and partially infiltrates into the mine workings. Although the hydrochemistry was altered during the flooding process, the deep mine waters are currently near neutral, net alkaline, high metal waters of Na-HCO 3 type. Isotopic values suggest that mine waters are closely related to modern meteoric water, and likely correspond to rapid infiltration. Suspended and dissolved solids, and particularly iron content, of mine water results in some scaling and partial clogging of heat exchangers, but water temperature is stable (22°C) and increases with depth, so, considering the available flow (>100Ls -1 ), the Barredo-Figaredo mining reservoir represents a sustainable, long-term resource for geothermal use. Copyright © 2016 Elsevier B.V. All rights reserved.
Graduate Employability: The Perspective of Social Network Learning
ERIC Educational Resources Information Center
Chen, Yong
2017-01-01
This study provides a conceptual framework for understanding how the graduate acquire employability through the social network in the Chinese context, using insights from the social network theory. This paper builds a conceptual model of the relationship among social network, social network learning and the graduate employability, and uses…
Economic Impacts of Surface Mining on Household Drinking Water Supplies
This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...
Caxaj, C Susana; Berman, Helene; Varcoe, Colleen; Ray, Susan L; Restoulec, Jean-Paul
2014-06-01
This article examines the influence of a large-scale mining operation on the health of the community of San Miguel Ixtahuacán, Guatemala. An anti-colonial narrative approach informed by participatory action research principles was employed. Data collection included focus groups and one-on-one interviews from August to November of 2011. Over this period, we interviewed 15 Mam Mayan men and 41 women (n = 56) between the ages of 18 and 64 including health care workers, educators, spiritual leaders, agricultural workers and previous mine employees from 13 villages within the municipality. Participants' accounts pointed to community health experiences of social unravelling characterized by overlapping narratives of a climate of fear and discord and embodied expressions of distress. These findings reveal the interconnected mechanisms by which local mining operations influenced the health of the community, specifically, by introducing new threats to the safety and mental wellbeing of local residents. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Stress monitoring versus microseismic ruptures in an active deep mine
NASA Astrophysics Data System (ADS)
Tonnellier, Alice; Bouffier, Christian; Bigarré, Pascal; Nyström, Anders; Österberg, Anders; Fjellström, Peter
2015-04-01
Nowadays, underground mining industry has developed high-technology mass mining methods to optimise the productivity at deep levels. Such massive extraction induces high-level stress redistribution generating seismic events around the mining works, threatening safety and economics. For this reason mining irregular deep ore bodies calls for steadily enhanced scientific practises and technologies to guarantee the mine environment to be safer and stable for the miners and the infrastructures. INERIS, within the framework of the FP7 European project I2Mine and in partnership with the Swedish mining company Boliden, has developed new methodologies in order to monitor both quasi-static stress changes and ruptures in a seismic prone area. To this purpose, a unique local permanent microseismic and stress monitoring network has been installed into the deep-working Garpenberg mine situated to the north of Uppsala (Sweden). In this mine, ore is extracted using sublevel stoping with paste fill production/distribution system and long-hole drilling method. This monitoring network has been deployed between about 1100 and 1250 meter depth. It consists in six 1-component and five 3-component microseismic probes (14-Hz geophones) deployed in the Lappberget area, in addition to three 3D stress monitoring cells that focus on a very local exploited area. Objective is three-fold: to quantify accurately quasi-static stress changes and freshly-induced stress gradients with drift development in the orebody, to study quantitatively those stress changes versus induced detected and located microseismic ruptures, and possibly to identify quasi-static stress transfer from those seismic ruptures. Geophysical and geotechnical data are acquired continuously and automatically transferred to INERIS datacenter through the web. They are made available on a secured web cloud monitoring infrastructure called e.cenaris and completed with mine data. Such interface enables the visualisation of the monitoring data coming from the mine in quasi-real time and facilitates information exchanges and decision making for experts and stakeholders. On the basis of these data acquisition and sharing, preliminary analysis has been started to highlight whether stress variations and seismic sources behaviour might be directly bound with mine working evolution and could improve the knowledge on the equilibrium states inside the mine. Knowing such parameters indeed will be a potential solution to understand better the response of deep mining activities to the exploitation solicitations and to develop, if possible, methods to prevent from major hazards such as rock bursts and other ground failure phenomena.
Seismic activity in the Sunnyside mining district, Utah, during 1967
Barnes, Barton K.; Dunrud, C. Richard; Hernandez, Jerome
1969-01-01
A seismic monitoring network near Sunnyside, Utah, consisting of a triangular array of seismometer stations that encompasses most of the mine workings in the district, recorded over 50,000 local earth tremors during 1967. About 540 of the tremors were of sufficient magnitude to be accurately located. Most of these were located within 2-3 miles of mine workings and were also near known or suspected faults. The district-wide seismic activity generally consisted of two different patterns--a periodic increase in the daily number of tremors at weekly intervals, and also a less regular and longer term increase and decrease of seismic activity that occurred over a period of weeks or even months. The shorter and more regular pattern can be correlated with the mine work week and seems to result from mining. The longer term activity, however, does not correlate with known mining causes sad therefore seems to be .caused by natural stresses.
NASA Astrophysics Data System (ADS)
Liben-Nowell, David
With the recent explosion of popularity of commercial social-networking sites like Facebook and MySpace, the size of social networks that can be studied scientifically has passed from the scale traditionally studied by sociologists and anthropologists to the scale of networks more typically studied by computer scientists. In this chapter, I will highlight a recent line of computational research into the modeling and analysis of the small-world phenomenon - the observation that typical pairs of people in a social network are connected by very short chains of intermediate friends - and the ability of members of a large social network to collectively find efficient routes to reach individuals in the network. I will survey several recent mathematical models of social networks that account for these phenomena, with an emphasis on both the provable properties of these social-network models and the empirical validation of the models against real large-scale social-network data.
Social networks of patients with psychosis: a systematic review.
Palumbo, Claudia; Volpe, Umberto; Matanov, Aleksandra; Priebe, Stefan; Giacco, Domenico
2015-10-12
Social networks are important for mental health outcomes as they can mobilise resources and help individuals to cope with social stressors. Individuals with psychosis may have specific difficulties in establishing and maintaining social relationships which impacts on their well-being and quality of life. There has been a growing interest in developing social network interventions for patients with psychotic disorders. A systematic literature review was conducted to investigate the size of social networks of patients with psychotic disorders, as well as their friendship networks. A systematic electronic search was carried out in MEDLINE, EMBASE and PsychINFO databases using a combination of search terms relating to 'social network', 'friendship' and 'psychotic disorder'. The search identified 23 relevant papers. Out of them, 20 reported patient social network size. Four papers reported the mean number of friends in addition to whole network size, while three further papers focused exclusively on the number of friends. Findings varied substantially across the studies, with a weighted mean size of 11.7 individuals for whole social networks and 3.4 individuals for friendship networks. On average, 43.1 % of the whole social network was composed of family members, while friends accounted for 26.5 %. Studies assessing whole social network size and friendship networks of people with psychosis are difficult to compare as different concepts and methods of assessment were applied. The extent of the overlap between different social roles assessed in the networks was not always clear. Greater conceptual and methodological clarity is needed in order to help the development of effective strategies to increase social resources of patients with psychosis.
Knowledge Discovery in Medical Mining by using Genetic Algorithms and Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Srivathsa, P. K.
2011-12-01
Medical Data mining could be thought of as the search for relationships and patterns within the medical data, which facilitates the acquisition of useful knowledge for effective medical diagnosis. Consequently, the predictability of disease will become more effective and the early detection of disease certainly facilitates an increased exposure to required patient care with focused treatment, economic feasibility and improved cure rates. So, the present investigation is carried on medical data(PIMA) using DM and GA based Neural Network technique and the results predict that the methodology is not only reliable but also helps in furthering the scope of the subject.
NASA Astrophysics Data System (ADS)
Dobra, R.; Pasculescu, D.; Risteiu, M.; Buica, G.; Jevremović, V.
2017-06-01
This paper describe some possibilities to minimize voltages switching-off risks from the mining power networks, in case of insulated resistance faults by using a predictive diagnose method. The cables from the neutral insulated power networks (underground mining) are designed to provide a flexible electrical connection between portable or mobile equipment and a point of supply, including main feeder cable for continuous miners, pump cable, and power supply cable. An electronic protection for insulated resistance of mining power cables can be made using this predictive strategy. The main role of electronic relays for insulation resistance degradation of the electrical power cables, from neutral insulated power networks, is to provide a permanent measurement of the insulated resistance between phases and ground, in order to switch-off voltage when the resistance value is below a standard value. The automat system of protection is able to signalize the failure and the human operator will be early informed about the switch-off power and will have time to take proper measures to fix the failure. This logic for fast and automat switch-off voltage without aprioristic announcement is suitable for the electrical installations, realizing so a protection against fires and explosion. It is presented an algorithm and an anticipative relay for insulated resistance control from three-phase low voltage installations with insulated neutral connection.
2015-01-01
Background Sufficient knowledge of molecular and genetic interactions, which comprise the entire basis of the functioning of living systems, is one of the necessary requirements for successfully answering almost any research question in the field of biology and medicine. To date, more than 24 million scientific papers can be found in PubMed, with many of them containing descriptions of a wide range of biological processes. The analysis of such tremendous amounts of data requires the use of automated text-mining approaches. Although a handful of tools have recently been developed to meet this need, none of them provide error-free extraction of highly detailed information. Results The ANDSystem package was developed for the reconstruction and analysis of molecular genetic networks based on an automated text-mining technique. It provides a detailed description of the various types of interactions between genes, proteins, microRNA's, metabolites, cellular components, pathways and diseases, taking into account the specificity of cell lines and organisms. Although the accuracy of ANDSystem is comparable to other well known text-mining tools, such as Pathway Studio and STRING, it outperforms them in having the ability to identify an increased number of interaction types. Conclusion The use of ANDSystem, in combination with Pathway Studio and STRING, can improve the quality of the automated reconstruction of molecular and genetic networks. ANDSystem should provide a useful tool for researchers working in a number of different fields, including biology, biotechnology, pharmacology and medicine. PMID:25881313
Relationship between Social Networks Adoption and Social Intelligence
ERIC Educational Resources Information Center
Gunduz, Semseddin
2017-01-01
The purpose of this study was to set forth the relationship between the individuals' states to adopt social networks and social intelligence and analyze both concepts according to various variables. Research data were collected from 1145 social network users in the online media by using the Adoption of Social Network Scale and Social Intelligence…
Social networks and alcohol use disorders: findings from a nationally representative sample
Mowbray, Orion; Quinn, Adam; Cranford, James A.
2014-01-01
Background While some argue that social network ties of individuals with alcohol use disorders (AUD) are robust, there is evidence to suggest that individuals with AUDs have few social network ties, which are a known risk factor for health and wellness. Objectives Social network ties to friends, family, co-workers and communities of individuals are compared among individuals with a past-year diagnosis of alcohol dependence or alcohol abuse to individuals with no lifetime diagnosis of AUD. Method Respondents from Wave 2 of the National Epidemiologic Survey on Alcohol Related Conditions (NESARC) were assessed for the presence of past-year alcohol dependence or past-year alcohol abuse, social network ties, sociodemographics and clinical characteristics. Results Bivariate analyses showed that both social network size and social network diversity was significantly smaller among individuals with alcohol dependence, compared to individuals with alcohol abuse or no AUD. When social and clinical factors related to AUD status were controlled, multinomial logistic models showed that social network diversity remained a significant predictor of AUD status, while social network size did not differ among AUD groups. Conclusion Social networks of individuals with AUD may be different than individuals with no AUD, but this claim is dependent on specific AUD diagnosis and how social networks are measured. PMID:24405256
Build your own social network laboratory with Social Lab: a tool for research in social media.
Garaizar, Pablo; Reips, Ulf-Dietrich
2014-06-01
Social networking has surpassed e-mail and instant messaging as the dominant form of online communication (Meeker, Devitt, & Wu, 2010). Currently, all large social networks are proprietary, making it difficult to impossible for researchers to make changes to such networks for the purpose of study design and access to user-generated data from the networks. To address this issue, the authors have developed and present Social Lab, an Internet-based free and open-source social network software system available from http://www.sociallab.es . Having full availability of navigation and communication data in Social Lab allows researchers to investigate behavior in social media on an individual and group level. Automated artificial users ("bots") are available to the researcher to simulate and stimulate social networking situations. These bots respond dynamically to situations as they unfold. The bots can easily be configured with scripts and can be used to experimentally manipulate social networking situations in Social Lab. Examples for setting up, configuring, and using Social Lab as a tool for research in social media are provided.
Symes, Yael; Campo, Rebecca A.; Wu, Lisa M.; Austin, Jane
2016-01-01
Background Cancer survivors treated with hematopoietic stem cell transplant rely on their social network for successful recovery. However, some survivors have negative attitudes about using social resources (negative social network orientation) that are critical for their recovery. Purpose We examined the association between survivors’ social network orientation and health-related quality of life (HRQoL) and whether it was mediated by social resources (network size, perceived support, and negative and positive support-related social exchanges). Methods In a longitudinal study, 255 survivors completed validated measures of social network orientation, HRQoL, and social resources. Hypotheses were tested using path analysis. Results More negative social network orientation predicted worse HRQoL (p < .001). This association was partially mediated by lower perceived support and more negative social exchanges. Conclusions Survivors with negative social network orientation may have poorer HRQoL in part due to deficits in several key social resources. Findings highlight a subgroup at risk for poor transplant outcomes and can guide intervention development. PMID:26693932
Implications of Emerging Data Mining
NASA Astrophysics Data System (ADS)
Kulathuramaiyer, Narayanan; Maurer, Hermann
Data Mining describes a technology that discovers non-trivial hidden patterns in a large collection of data. Although this technology has a tremendous impact on our lives, the invaluable contributions of this invisible technology often go unnoticed. This paper discusses advances in data mining while focusing on the emerging data mining capability. Such data mining applications perform multidimensional mining on a wide variety of heterogeneous data sources, providing solutions to many unresolved problems. This paper also highlights the advantages and disadvantages arising from the ever-expanding scope of data mining. Data Mining augments human intelligence by equipping us with a wealth of knowledge and by empowering us to perform our daily tasks better. As the mining scope and capacity increases, users and organizations become more willing to compromise privacy. The huge data stores of the ‚master miners` allow them to gain deep insights into individual lifestyles and their social and behavioural patterns. Data integration and analysis capability of combining business and financial trends together with the ability to deterministically track market changes will drastically affect our lives.
Social Network Assessments and Interventions for Health Behavior Change: A Critical Review.
Latkin, Carl A; Knowlton, Amy R
2015-01-01
Social networks provide a powerful approach for health behavior change. This article documents how social network interventions have been successfully used for a range of health behaviors, including HIV risk practices, smoking, exercise, dieting, family planning, bullying, and mental health. We review the literature that suggests the relationship between health behaviors and social network attributes demonstrates a high degree of specificity. The article then examines hypothesized social influence mechanisms including social norms, modeling, and social rewards and the factors of social identity and social rewards that can be employed to sustain social network interventions. Areas of future research avenues are highlighted, including the need to examine and to adjust analytically for contamination and social diffusion, social influence versus differential affiliation, and network change. Use and integration of mhealth and face-to-face networks for promoting health behavior change are also critical research areas.
Sustainable Mineral-Intensive Growth in Odisha, India
NASA Astrophysics Data System (ADS)
Nayak, S.
2012-04-01
The focus of the work is to highlight the present environmental and social impacts of extensive mining on the health of the common people of Odisha. The mining activities have created havoc impact to the environment and social life of the state. Odisha has huge deposits of ores and minerals of chromite, nickel, bauxite, iron, coal, copper, manganese, graphite, vanadium etc. The mining activities have encouraged rapid urbanization and at the same time have altered the topography of these areas and extensively degraded the forest land. For long term sustainable development of the society, it is necessary to take a balanced and integrated approach towards environmental protection and economic advancement. Industries should aim at achieving their goals, through a system of permits based on best available techniques, which gives emphasis on integrated prevention and control of consumption of energy and water as well as pollution of water, air and soil. The rapid industrial growth has brought promising opportunities for economic development and poverty reduction in Odisha but at the same time has caused extensive environmental degradation. The best management practices to deal with environmental and social impacts on mineral-intensive growth are suggested in this work. In addition to lean technology, economic implications of the introduction of environmental technologies for mining activities are also discussed.
Social Network Types and Mental Health Among LGBT Older Adults
Kim, Hyun-Jun; Fredriksen-Goldsen, Karen I.; Bryan, Amanda E. B.; Muraco, Anna
2017-01-01
Purpose of the Study: This study was designed to identify social network types among lesbian, gay, bisexual, and transgender (LGBT) older adults and examine the relationship between social network type and mental health. Design and Methods: We analyzed the 2014 survey data of LGBT adults aged 50 and older (N = 2,450) from Aging with Pride: National Health, Aging, and Sexuality/Gender Study. Latent profile analyses were conducted to identify clusters of social network ties based on 11 indicators. Multiple regression analysis was performed to examine the association between social network types and mental health. Results: We found five social network types. Ordered from greatest to least access to family, friend, and other non-family network ties, they were diverse, diverse/no children, immediate family-focused, friend-centered/restricted, and fully restricted. The friend-centered/restricted (33%) and diverse/no children network types (31%) were the most prevalent. Among individuals with the friend-centered/restricted type, access to social networks was limited to friends, and across both types children were not present. The least prevalent type was the fully restricted network type (6%). Social network type was significantly associated with mental health, after controlling for background characteristics and total social network size; those with the fully restricted type showed the poorest mental health. Implications: Unique social network types (diverse/no children and friend-centered/restricted) emerge among LGBT older adults. Moreover, individuals with fully restricted social networks are at particular risk due to heightened health needs and limited social resources. This study highlights the importance of understanding heterogeneous social relations and developing tailored interventions to promote social connectedness and mental health in LGBT older adults. PMID:28087798
Social Network Types and Mental Health Among LGBT Older Adults.
Kim, Hyun-Jun; Fredriksen-Goldsen, Karen I; Bryan, Amanda E B; Muraco, Anna
2017-02-01
This study was designed to identify social network types among lesbian, gay, bisexual, and transgender (LGBT) older adults and examine the relationship between social network type and mental health. We analyzed the 2014 survey data of LGBT adults aged 50 and older (N = 2,450) from Aging with Pride: National Health, Aging, and Sexuality/Gender Study. Latent profile analyses were conducted to identify clusters of social network ties based on 11 indicators. Multiple regression analysis was performed to examine the association between social network types and mental health. We found five social network types. Ordered from greatest to least access to family, friend, and other non-family network ties, they were diverse, diverse/no children, immediate family-focused, friend-centered/restricted, and fully restricted. The friend-centered/restricted (33%) and diverse/no children network types (31%) were the most prevalent. Among individuals with the friend-centered/restricted type, access to social networks was limited to friends, and across both types children were not present. The least prevalent type was the fully restricted network type (6%). Social network type was significantly associated with mental health, after controlling for background characteristics and total social network size; those with the fully restricted type showed the poorest mental health. Unique social network types (diverse/no children and friend-centered/restricted) emerge among LGBT older adults. Moreover, individuals with fully restricted social networks are at particular risk due to heightened health needs and limited social resources. This study highlights the importance of understanding heterogeneous social relations and developing tailored interventions to promote social connectedness and mental health in LGBT older adults. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A Predictive Model of Daily Seismic Activity Induced by Mining, Developed with Data Mining Methods
NASA Astrophysics Data System (ADS)
Jakubowski, Jacek
2014-12-01
The article presents the development and evaluation of a predictive classification model of daily seismic energy emissions induced by longwall mining in sector XVI of the Piast coal mine in Poland. The model uses data on tremor energy, basic characteristics of the longwall face and mined output in this sector over the period from July 1987 to March 2011. The predicted binary variable is the occurrence of a daily sum of tremor seismic energies in a longwall that is greater than or equal to the threshold value of 105 J. Three data mining analytical methods were applied: logistic regression,neural networks, and stochastic gradient boosted trees. The boosted trees model was chosen as the best for the purposes of the prediction. The validation sample results showed its good predictive capability, taking the complex nature of the phenomenon into account. This may indicate the applied model's suitability for a sequential, short-term prediction of mining induced seismic activity.
Trauma-Exposed Latina Immigrants’ Networks: A Social Network Analysis Approach
Hurtado-de-Mendoza, Alejandra; Serrano, Adriana; Gonzales, Felisa A.; Fernandez, Nicole C.; Cabling, Mark; Kaltman, Stacey
2015-01-01
Objective Trauma exposure among Latina immigrants is common. Social support networks can buffer the impact of trauma on mental health. This study characterizes the social networks of trauma-exposed Latina immigrants using a social network analysis perspective. Methods In 2011–2012 a convenience sample (n=28) of Latina immigrants with trauma exposure and presumptive depression or posttraumatic stress disorder was recruited from a community clinic in Washington DC. Participants completed a social network assessment and listed up to ten persons in their network (alters). E-Net was used to describe the aggregate structural, interactional, and functional characteristics of networks and Node-XL was used in a case study to diagram one network. Results Most participants listed children (93%), siblings (82%), and friends (71%) as alters, and most alters lived in the US (69%). Perceived emotional support and positive social interaction were higher compared to tangible, language, information, and financial support. A case study illustrates the use of network visualizations to assess the strengths and weaknesses of social networks. Conclusions Targeted social network interventions to enhance supportive networks among trauma-exposed Latina immigrants are warranted. PMID:28078194
Trauma-Exposed Latina Immigrants' Networks: A Social Network Analysis Approach.
Hurtado-de-Mendoza, Alejandra; Serrano, Adriana; Gonzales, Felisa A; Fernandez, Nicole C; Cabling, Mark; Kaltman, Stacey
2016-11-01
Trauma exposure among Latina immigrants is common. Social support networks can buffer the impact of trauma on mental health. This study characterizes the social networks of trauma-exposed Latina immigrants using a social network analysis perspective. In 2011-2012 a convenience sample (n=28) of Latina immigrants with trauma exposure and presumptive depression or posttraumatic stress disorder was recruited from a community clinic in Washington DC. Participants completed a social network assessment and listed up to ten persons in their network (alters). E-Net was used to describe the aggregate structural, interactional, and functional characteristics of networks and Node-XL was used in a case study to diagram one network. Most participants listed children (93%), siblings (82%), and friends (71%) as alters, and most alters lived in the US (69%). Perceived emotional support and positive social interaction were higher compared to tangible, language, information, and financial support. A case study illustrates the use of network visualizations to assess the strengths and weaknesses of social networks. Targeted social network interventions to enhance supportive networks among trauma-exposed Latina immigrants are warranted.
Nagayoshi, Mako; Everson-Rose, Susan A.; Iso, Hiroyasu; Mosley, Thomas H.; Rose, Kathryn M.; Lutsey, Pamela L.
2014-01-01
Background and Purpose Having a small social network and lack of social support have been associated with incident coronary heart disease, however epidemiologic evidence for incident stroke is limited. We assessed the longitudinal association of a small social network and lack of social support with risk of incident stroke, and evaluated whether the association was partly mediated by vital exhaustion and inflammation. Methods The Atherosclerosis Risk in Communities (ARIC) Study measured social network and social support in 13,686 men and women (mean, 57±5.7 years, 56% female, 24% black; 76% white) without a history of stroke. Social network was assessed by the 10-item Lubben Social Network Scale, and social support by a 16-item Interpersonal Support Evaluation List-Short Form (ISEL-SF). Results Over a median follow-up of 18.6-years, 905 incident strokes occurred. Relative to participants with a large social network, those with a small social network had a higher risk of stroke [HR (95% CI): 1.44 (1.02–2.04)] after adjustment for demographics, socioeconomic variables and marital status, behavioral risk factors and major stroke risk factors. Vital exhaustion, but not inflammation, partly mediated the association between a small social network and incident stroke. Social support was unrelated to incident stroke. Conclusions In this sample of US community-dwelling men and women, having a small social network was associated with excess risk of incident stroke. As with other cardiovascular conditions, having a small social network may be associated with a modestly increased risk of incident stroke. PMID:25139878
Nagayoshi, Mako; Everson-Rose, Susan A; Iso, Hiroyasu; Mosley, Thomas H; Rose, Kathryn M; Lutsey, Pamela L
2014-10-01
Having a small social network and lack of social support have been associated with incident coronary heart disease; however, epidemiological evidence for incident stroke is limited. We assessed the longitudinal association of a small social network and lack of social support with risk of incident stroke and evaluated whether the association was partly mediated by vital exhaustion and inflammation. The Atherosclerosis Risk in Communities study measured social network and social support in 13 686 men and women (mean, 57 years; 56% women; 24% black; 76% white) without a history of stroke. Social network was assessed by the 10-item Lubben Social Network Scale and social support by a 16-item Interpersonal Support Evaluation List-Short Form. During a median follow-up of 18.6 years, 905 incident strokes occurred. Relative to participants with a large social network, those with a small social network had a higher risk of stroke (hazard ratio [95% confidence interval], 1.44 [1.02-2.04]) after adjustment for demographics, socioeconomic variables, marital status, behavioral risk factors, and major stroke risk factors. Vital exhaustion, but not inflammation, partly mediated the association between a small social network and incident stroke. Social support was unrelated to incident stroke. In this sample of US community-dwelling men and women, having a small social network was associated with excess risk of incident stroke. As with other cardiovascular conditions, having a small social network may be associated with a modestly increased risk of incident stroke. © 2014 American Heart Association, Inc.
A Framework for Achieving Situational Awareness during Crisis based on Twitter Analysis
NASA Astrophysics Data System (ADS)
Zielinski, Andrea; Tokarchuk, Laurissa; Middleton, Stuart; Chaves, Fernando
2013-04-01
Decision Support Systems for Natural Crisis Management increasingly employ Web 2.0 and 3.0 technologies for future collaborative decision making, including the use of social networks like Twitter. However, human sensor data is not readily accessible and interpretable, since the texts are unstructured, noisy and available in various languages. The present work focusses on the detection of crisis events in a multilingual setting as part of the FP7-funded EU project TRIDEC and is motivated by the goal to establish a Tsunami warning system for the Mediterranean. It is integrated into a dynamic spatial-temporal decision making component with a command and control unit's graphical user interface that presents all relevant information to the human operator to support critical decision-support. To this end, a tool for the interactive visualization of geospatial data is implemented: All tweets with an exact timestamp or geo-location are monitored on the map in real-time so that the operator on duty can get an overall picture of the situation. Apart from the human sensor data, the seismic sensor data will appear also on the same screen. Signs of abnormal activity from twitter usage in social networks as well as in sensor networks devices can then be used to trigger official warning alerts according to the CAP message standard. Whenever a certain threshold of relevant tweets in a HASC region (Hierarchical Administrative Subdivision Code) is exceeded, the twitter activity in this administrative region will be shown on a map. We believe that the following functionalities are crucial for monitoring crisis, making use of text mining and network analysis techniques: Focussed crawling, trustworthyness analysis geo-parsing, and multilingual tweet classification. In the first step, the Twitter Streaming API accesses the social data, using an adaptive keyword list (focussed crawling). Then, tweets are filtered and aggregated to form counts for a certain time-span (e.g., an interval of 1-2 minutes). Particularly, we investigate the following novel techniques that help to fulfill this task: trustworthyness analysis (linkage analysis and user network analysis), geo-parsing (locating the event in space), and multilingual tweet classification (filtering out of noisy tweets for various Mediterranean languages). Lastly, an aberration algorithm looks for spikes in the temporal stream of twitter data.
Amateur astronomers in support of observing campaigns
NASA Astrophysics Data System (ADS)
Yanamandra-Fisher, P.
2014-07-01
The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access, and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: - the establishment of a network of astronomers and related professionals that can be galvanized into action on short notice to support observing campaigns; - assist in various science investigations pertinent to the campaign; - provide an alert-sounding mechanism should the need arise; - immediate outreach and dissemination of results via our media/blogger members; - provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been identified: (1) C/2013 A1 (C/Siding Spring) and (2) 67P/Churyumov-Gerasimenko (CG). The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA (Pro-Am Collaborative Astronomy) portal that currently is focused on comets: from supporting observing campaigns for current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers. The recent observation of comet 67P, at a magnitude of 21.2, from Siding Spring, Australia, via robotic telescope network, also detected several asteroids in a crowded star field (SSI, Press Release, May 2014). These may be useful in support of the ESA/Gaia mission, which will characterize asteroids and comets to a magnitude of 20. While its network of amateur astronomers has already been established (Thuillot, 2005, ESASP, 576), such observations by robotic telescope networks can provide both astrometry and subsequent science analysis of the data acquired. An additional benefit of amateur network will be to unequivocally recognize asteroids and comets via complementary imaging that is not possible for the mission itself.
Mining Top K Spread Sources for a Specific Topic and a Given Node.
Liu, Weiwei; Deng, Zhi-Hong; Cao, Longbing; Xu, Xiaoran; Liu, He; Gong, Xiuwen
2015-11-01
In social networks, nodes (or users) interested in specific topics are often influenced by others. The influence is usually associated with a set of nodes rather than a single one. An interesting but challenging task for any given topic and node is to find the set of nodes that represents the source or trigger for the topic and thus identify those nodes that have the greatest influence on the given node as the topic spreads. We find that it is an NP-hard problem. This paper proposes an effective framework to deal with this problem. First, the topic propagation is represented as the Bayesian network. We then construct the propagation model by a variant of the voter model. The probability transition matrix (PTM) algorithm is presented to conduct the probability inference with the complexity O(θ(3)log2θ), while θ is the number nodes in the given graph. To evaluate the PTM algorithm, we conduct extensive experiments on real datasets. The experimental results show that the PTM algorithm is both effective and efficient.
Public health intelligence and the detection of potential pandemics.
French, Martin; Mykhalovskiy, Eric
2013-02-01
This article considers contemporary developments in public health intelligence (PHI), especially their focus on health events of pandemic potential. It argues that the sociological study of PHI can yield important insights for the sociology of pandemics. PHI aims to detect health events as (or even before) they unfold. Whilst its apparatuses envelope traditional public health activities, such as epidemiological surveillance, they increasingly extend to non-traditional public health activities such as data-mining in electronically mediated social networks. With a focus on non-traditional PHI activities, the article first situates the study of PHI in relation to the sociology of public health. It then discusses the conceptualisation and actualisation of pandemics, reflecting on how public health professionals and organisations must equip themselves with diverse allies in order to realise the claims they make about pandemic phenomena. Finally, using the analytic tools of actor-network theory, sites for future empirical research that can contribute to the sociology of pandemics are suggested. © 2012 The Authors. Sociology of Health & Illness © 2012 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.
Promoting Social Network Awareness: A Social Network Monitoring System
ERIC Educational Resources Information Center
Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin
2010-01-01
To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…
Understanding Social Networks: Theories, Concepts, and Findings
ERIC Educational Resources Information Center
Kadushin, Charles
2012-01-01
Despite the swift spread of social network concepts and their applications and the rising use of network analysis in social science, there is no book that provides a thorough general introduction for the serious reader. "Understanding Social Networks" fills that gap by explaining the big ideas that underlie the social network phenomenon.…
Han, Hye Joo; Schweickert, Richard; Xi, Zhuangzhuang; Viau-Quesnel, Charles
2016-04-01
For five individuals, a social network was constructed from a series of his or her dreams. Three important network measures were calculated for each network: transitivity, assortativity, and giant component proportion. These were monotonically related; over the five networks as transitivity increased, assortativity increased and giant component proportion decreased. The relations indicate that characters appear in dreams systematically. Systematicity likely arises from the dreamer's memory of people and their relations, which is from the dreamer's cognitive social network. But the dream social network is not a copy of the cognitive social network. Waking life social networks tend to have positive assortativity; that is, people tend to be connected to others with similar connectivity. Instead, in our sample of dream social networks assortativity is more often negative or near 0, as in online social networks. We show that if characters appear via a random walk, negative assortativity can result, particularly if the random walk is biased as suggested by remote associations. Copyright © 2015 Cognitive Science Society, Inc.
Protein interaction networks from literature mining
NASA Astrophysics Data System (ADS)
Ihara, Sigeo
2005-03-01
The ability to accurately predict and understand physiological changes in the biological network system in response to disease or drug therapeutics is of crucial importance in life science. The extensive amount of gene expression data generated from even a single microarray experiment often proves difficult to fully interpret and comprehend the biological significance. An increasing knowledge of protein interactions stored in the PubMed database, as well as the advancement of natural language processing, however, makes it possible to construct protein interaction networks from the gene expression information that are essential for understanding the biological meaning. From the in house literature mining system we have developed, the protein interaction network for humans was constructed. By analysis based on the graph-theoretical characterization of the total interaction network in literature, we found that the network is scale-free and semantic long-ranged interactions (i.e. inhibit, induce) between proteins dominate in the total interaction network, reducing the degree exponent. Interaction networks generated based on scientific text in which the interaction event is ambiguously described result in disconnected networks. In contrast interaction networks based on text in which the interaction events are clearly stated result in strongly connected networks. The results of protein-protein interaction networks obtained in real applications from microarray experiments are discussed: For example, comparisons of the gene expression data indicative of either a good or a poor prognosis for acute lymphoblastic leukemia with MLL rearrangements, using our system, showed newly discovered signaling cross-talk.
Mixed-method Exploration of Social Network Links to Participation
Kreider, Consuelo M.; Bendixen, Roxanna M.; Mann, William C.; Young, Mary Ellen; McCarty, Christopher
2015-01-01
The people who regularly interact with an adolescent form that youth's social network, which may impact participation. We investigated the relationship of social networks to participation using personal network analysis and individual interviews. The sample included 36 youth, age 11 – 16 years. Nineteen had diagnoses of learning disability, attention disorder, or high-functioning autism and 17 were typically developing. Network analysis yielded 10 network variables, of which 8 measured network composition and 2 measured network structure, with significant links to at least one measure of participation using the Children's Assessment of Participation and Enjoyment (CAPE). Interviews from youth in the clinical group yielded description of strategies used to negotiate social interactions, as well as processes and reasoning used to remain engaged within social networks. Findings contribute to understanding the ways social networks are linked to youth participation and suggest the potential of social network factors for predicting rehabilitation outcomes. PMID:26594737
Nikitina, Nataliya
2014-01-01
It is noted that over the last few years the implementation of several mineral exploration, development and mining projects has been suspended and even completely stopped due to resistance from local communities. The key concerns of local residents typically include perceived or real impact of mining enterprises on the environment, unfair distribution of profits from mining and exploration activities, insufficient contributions to local government budgets and lack of transparency regarding ultimate ownership of companies conducting exploration and mining. The article looks at social conflicts of this kind and suggests some alternative solutions that could prevent such conflicts at the stage of granting exploration and mining rights. PMID:25158138
Reconfiguration and Search of Social Networks
Zhang, Lianming; Peng, Aoyuan
2013-01-01
Social networks tend to exhibit some topological characteristics different from regular networks and random networks, such as shorter average path length and higher clustering coefficient, and the node degree of the majority of social networks obeys exponential distribution. Based on the topological characteristics of the real social networks, a new network model which suits to portray the structure of social networks was proposed, and the characteristic parameters of the model were calculated. To find out the relationship between two people in the social network, and using the local information of the social network and the parallel mechanism, a hybrid search strategy based on k-walker random and a high degree was proposed. Simulation results show that the strategy can significantly reduce the average number of search steps, so as to effectively improve the search speed and efficiency. PMID:24574861
Vulnerability assessment and risk perception: the case of the Arieş River Middle Basin
NASA Astrophysics Data System (ADS)
Ozunu, Al.; Botezan, C.
2012-04-01
Vulnerability assessment is influenced by a number of factors, including risk perception. This paper investigates the vulnerability of people living in the middle basin of the Aries river region, a former mining area, to natural and technologic hazards. The mining industry lead to significant environmental changes, which combined with the social problems caused by its decline (high unemployment rate, low income and old age) raised the level of the vulnerability in the area. This case study is unique, as it includes an evaluation of risk perception and its influence on the social vulnerability and resilience of local communities to disasters. Key words: vulnerability assessment, natural hazards, social vulnerability, risk perception
ERIC Educational Resources Information Center
Al-Mukhaini, Elham M.; Al-Qayoudhi, Wafa S.; Al-Badi, Ali H.
2014-01-01
The use of social networks is a growing phenomenon, being increasingly important in both private and academic life. Social networks are used as tools to enable users to have social interaction. The use of social networks (SNs) complements and enhances the teaching in traditional classrooms. For example, YouTube, Facebook, wikis, and blogs provide…
NASA Astrophysics Data System (ADS)
Stack, J. R.; Guthrie, R. S.; Cramer, M. A.
2009-05-01
The purpose of this paper is to outline the requisite technologies and enabling capabilities for network-centric sensor data analysis within the mine warfare community. The focus includes both automated processing and the traditional humancentric post-mission analysis (PMA) of tactical and environmental sensor data. This is motivated by first examining the high-level network-centric guidance and noting the breakdown in the process of distilling actionable requirements from this guidance. Examples are provided that illustrate the intuitive and substantial capability improvement resulting from processing sensor data jointly in a network-centric fashion. Several candidate technologies are introduced including the ability to fully process multi-sensor data given only partial overlap in sensor coverage and the ability to incorporate target identification information in stride. Finally the critical enabling capabilities are outlined including open architecture, open business, and a concept of operations. This ability to process multi-sensor data in a network-centric fashion is a core enabler of the Navy's vision and will become a necessity with the increasing number of manned and unmanned sensor systems and the requirement for their simultaneous use.
Social Networks and Welfare in Future Animal Management.
Koene, Paul; Ipema, Bert
2014-03-17
It may become advantageous to keep human-managed animals in the social network groups to which they have adapted. Data concerning the social networks of farm animal species and their ancestors are scarce but essential to establishing the importance of a natural social network for farmed animal species. Social Network Analysis (SNA) facilitates the characterization of social networking at group, subgroup and individual levels. SNA is currently used for modeling the social behavior and management of wild animals and social welfare of zoo animals. It has been recognized for use with farm animals but has yet to be applied for management purposes. Currently, the main focus is on cattle, because in large groups (poultry), recording of individuals is expensive and the existence of social networks is uncertain due to on-farm restrictions. However, in many cases, a stable social network might be important to individual animal fitness, survival and welfare. For instance, when laying hens are not too densely housed, simple networks may be established. We describe here small social networks in horses, brown bears, laying hens and veal calves to illustrate the importance of measuring social networks among animals managed by humans. Emphasis is placed on the automatic measurement of identity, location, nearest neighbors and nearest neighbor distance for management purposes. It is concluded that social networks are important to the welfare of human-managed animal species and that welfare management based on automatic recordings will become available in the near future.
The moderating role of attachment anxiety on social network site use intensity and social capital.
Liu, Haihua; Shi, Junqi; Liu, Yihao; Sheng, Zitong
2013-02-01
This study examined the moderating role of attachment anxiety on the relationship between intensity of social network site use and bridging, bonding, and maintained social capital. Data from 322 undergraduate Chinese students were collected. Hierarchical regression analyses showed positive relationships between online intensity of social network site use and the three types of social capital. Moreover, attachment anxiety moderated the effect of intensity of social network site use on social capital. Specifically, for students with lower attachment anxiety, the relationships between intensity of social network site use and bonding and bridging social capital were stronger than those with higher attachment anxiety. The result suggested that social network sites cannot improve highly anxiously attached individuals' social capital effectively; they may need more face-to-face communications.
AQUATIC IMPACTS STUDY OF MOUNTAINTOP MINING AND VALLEY FILL OPERATIONS IN WEST VIRGINIA
The practice of mountaintop mining and valley fill operations in West Virginia is fraught with controversy. In 1999, EPA, along with several state and federal agencies, initiated an environmental impact study (EIS) to investigate the economic, social and ecological impacts of th...
Privacy-Preserving Relationship Path Discovery in Social Networks
NASA Astrophysics Data System (ADS)
Mezzour, Ghita; Perrig, Adrian; Gligor, Virgil; Papadimitratos, Panos
As social networks sites continue to proliferate and are being used for an increasing variety of purposes, the privacy risks raised by the full access of social networking sites over user data become uncomfortable. A decentralized social network would help alleviate this problem, but offering the functionalities of social networking sites is a distributed manner is a challenging problem. In this paper, we provide techniques to instantiate one of the core functionalities of social networks: discovery of paths between individuals. Our algorithm preserves the privacy of relationship information, and can operate offline during the path discovery phase. We simulate our algorithm on real social network topologies.
The Weather Forecast Using Data Mining Research Based on Cloud Computing.
NASA Astrophysics Data System (ADS)
Wang, ZhanJie; Mazharul Mujib, A. B. M.
2017-10-01
Weather forecasting has been an important application in meteorology and one of the most scientifically and technologically challenging problem around the world. In my study, we have analyzed the use of data mining techniques in forecasting weather. This paper proposes a modern method to develop a service oriented architecture for the weather information systems which forecast weather using these data mining techniques. This can be carried out by using Artificial Neural Network and Decision tree Algorithms and meteorological data collected in Specific time. Algorithm has presented the best results to generate classification rules for the mean weather variables. The results showed that these data mining techniques can be enough for weather forecasting.
Sag, Alan Alper; Sal, Oguzhan; Kilic, Yagmur; Onal, Emine Meltem; Kanbay, Mehmet
2017-05-01
This review aims to introduce the novel concept of embryological target mining applied to interorgan crosstalk network genesis, and applies embryological target mining to multidrug-resistant essential hypertension (a prototype, complex, undertreated, multiorgan systemic syndrome) to uncover new treatment targets and critique why existing strategies fail. Briefly, interorgan crosstalk pathways represent the next frontier for target mining in molecular medicine. This is because stereotyped stepwise organogenesis presents a unique opportunity to infer interorgan crosstalk pathways that may be crucial to discovering novel treatment targets. Insights gained from this review will be applied to patient management in a clinician-directed fashion. ©2017 Wiley Periodicals, Inc.
Jeffryes, James G; Colastani, Ricardo L; Elbadawi-Sidhu, Mona; Kind, Tobias; Niehaus, Thomas D; Broadbelt, Linda J; Hanson, Andrew D; Fiehn, Oliver; Tyo, Keith E J; Henry, Christopher S
2015-01-01
In spite of its great promise, metabolomics has proven difficult to execute in an untargeted and generalizable manner. Liquid chromatography-mass spectrometry (LC-MS) has made it possible to gather data on thousands of cellular metabolites. However, matching metabolites to their spectral features continues to be a bottleneck, meaning that much of the collected information remains uninterpreted and that new metabolites are seldom discovered in untargeted studies. These challenges require new approaches that consider compounds beyond those available in curated biochemistry databases. Here we present Metabolic In silico Network Expansions (MINEs), an extension of known metabolite databases to include molecules that have not been observed, but are likely to occur based on known metabolites and common biochemical reactions. We utilize an algorithm called the Biochemical Network Integrated Computational Explorer (BNICE) and expert-curated reaction rules based on the Enzyme Commission classification system to propose the novel chemical structures and reactions that comprise MINE databases. Starting from the Kyoto Encyclopedia of Genes and Genomes (KEGG) COMPOUND database, the MINE contains over 571,000 compounds, of which 93% are not present in the PubChem database. However, these MINE compounds have on average higher structural similarity to natural products than compounds from KEGG or PubChem. MINE databases were able to propose annotations for 98.6% of a set of 667 MassBank spectra, 14% more than KEGG alone and equivalent to PubChem while returning far fewer candidates per spectra than PubChem (46 vs. 1715 median candidates). Application of MINEs to LC-MS accurate mass data enabled the identity of an unknown peak to be confidently predicted. MINE databases are freely accessible for non-commercial use via user-friendly web-tools at http://minedatabase.mcs.anl.gov and developer-friendly APIs. MINEs improve metabolomics peak identification as compared to general chemical databases whose results include irrelevant synthetic compounds. Furthermore, MINEs complement and expand on previous in silico generated compound databases that focus on human metabolism. We are actively developing the database; future versions of this resource will incorporate transformation rules for spontaneous chemical reactions and more advanced filtering and prioritization of candidate structures. Graphical abstractMINE database construction and access methods. The process of constructing a MINE database from the curated source databases is depicted on the left. The methods for accessing the database are shown on the right.
Studies on the population dynamics of a rumor-spreading model in online social networks
NASA Astrophysics Data System (ADS)
Dong, Suyalatu; Fan, Feng-Hua; Huang, Yong-Chang
2018-02-01
This paper sets up a rumor spreading model in online social networks based on the European fox rabies SIR model. The model considers the impact of changing number of online social network users, combines the transmission dynamics to set up a population dynamics of rumor spreading model in online social networks. Simulation is carried out on online social network, and results show that the new rumor spreading model is in accordance with the real propagation characteristics in online social networks.
Social disadvantage and borderline personality disorder: A study of social networks.
Beeney, Joseph E; Hallquist, Michael N; Clifton, Allan D; Lazarus, Sophie A; Pilkonis, Paul A
2018-01-01
Examining differences in social integration, social support, and relationship characteristics in social networks may be critical for understanding the character and costs of the social difficulties experienced of borderline personality disorder (BPD). We conducted an ego-based (self-reported, individual) social network analysis of 142 participants recruited from clinical and community sources. Each participant listed the 30 most significant people (called alters) in their social network, then rated each alter in terms of amount of contact, social support, attachment strength and negative interactions. In addition, measures of social integration were determined using participant's report of the connection between people in their networks. BPD was associated with poorer social support, more frequent negative interactions, and less social integration. Examination of alter-by-BPD interactions indicated that whereas participants with low BPD symptoms had close relationships with people with high centrality within their networks, participants with high BPD symptoms had their closest relationships with people less central to their networks. The results suggest that individuals with BPD are at a social disadvantage: Those with whom they are most closely linked (including romantic partners) are less socially connected (i.e., less central) within their social network. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Jeffryes, James G.; Colastani, Ricardo L.; Elbadawi-Sidhu, Mona; ...
2015-08-28
Metabolomics have proven difficult to execute in an untargeted and generalizable manner. Liquid chromatography–mass spectrometry (LC–MS) has made it possible to gather data on thousands of cellular metabolites. However, matching metabolites to their spectral features continues to be a bottleneck, meaning that much of the collected information remains uninterpreted and that new metabolites are seldom discovered in untargeted studies. These challenges require new approaches that consider compounds beyond those available in curated biochemistry databases. Here we present Metabolic In silico Network Expansions (MINEs), an extension of known metabolite databases to include molecules that have not been observed, but are likelymore » to occur based on known metabolites and common biochemical reactions. We utilize an algorithm called the Biochemical Network Integrated Computational Explorer (BNICE) and expert-curated reaction rules based on the Enzyme Commission classification system to propose the novel chemical structures and reactions that comprise MINE databases. Starting from the Kyoto Encyclopedia of Genes and Genomes (KEGG) COMPOUND database, the MINE contains over 571,000 compounds, of which 93% are not present in the PubChem database. However, these MINE compounds have on average higher structural similarity to natural products than compounds from KEGG or PubChem. MINE databases were able to propose annotations for 98.6% of a set of 667 MassBank spectra, 14% more than KEGG alone and equivalent to PubChem while returning far fewer candidates per spectra than PubChem (46 vs. 1715 median candidates). Application of MINEs to LC–MS accurate mass data enabled the identity of an unknown peak to be confidently predicted. MINE databases are freely accessible for non-commercial use via user-friendly web-tools at http://minedatabase.mcs.anl.gov and developer-friendly APIs. MINEs improve metabolomics peak identification as compared to general chemical databases whose results include irrelevant synthetic compounds. MINEs complement and expand on previous in silico generated compound databases that focus on human metabolism. We are actively developing the database; future versions of this resource will incorporate transformation rules for spontaneous chemical reactions and more advanced filtering and prioritization of candidate structures.« less
pubmed.mineR: an R package with text-mining algorithms to analyse PubMed abstracts.
Rani, Jyoti; Shah, A B Rauf; Ramachandran, Srinivasan
2015-10-01
The PubMed literature database is a valuable source of information for scientific research. It is rich in biomedical literature with more than 24 million citations. Data-mining of voluminous literature is a challenging task. Although several text-mining algorithms have been developed in recent years with focus on data visualization, they have limitations such as speed, are rigid and are not available in the open source. We have developed an R package, pubmed.mineR, wherein we have combined the advantages of existing algorithms, overcome their limitations, and offer user flexibility and link with other packages in Bioconductor and the Comprehensive R Network (CRAN) in order to expand the user capabilities for executing multifaceted approaches. Three case studies are presented, namely, 'Evolving role of diabetes educators', 'Cancer risk assessment' and 'Dynamic concepts on disease and comorbidity' to illustrate the use of pubmed.mineR. The package generally runs fast with small elapsed times in regular workstations even on large corpus sizes and with compute intensive functions. The pubmed.mineR is available at http://cran.rproject. org/web/packages/pubmed.mineR.
Modeling and Simulation of the Economics of Mining in the Bitcoin Market.
Cocco, Luisanna; Marchesi, Michele
2016-01-01
In January 3, 2009, Satoshi Nakamoto gave rise to the "Bitcoin Blockchain", creating the first block of the chain hashing on his computer's central processing unit (CPU). Since then, the hash calculations to mine Bitcoin have been getting more and more complex, and consequently the mining hardware evolved to adapt to this increasing difficulty. Three generations of mining hardware have followed the CPU's generation. They are GPU's, FPGA's and ASIC's generations. This work presents an agent-based artificial market model of the Bitcoin mining process and of the Bitcoin transactions. The goal of this work is to model the economy of the mining process, starting from GPU's generation, the first with economic significance. The model reproduces some "stylized facts" found in real-time price series and some core aspects of the mining business. In particular, the computational experiments performed can reproduce the unit root property, the fat tail phenomenon and the volatility clustering of Bitcoin price series. In addition, under proper assumptions, they can reproduce the generation of Bitcoins, the hashing capability, the power consumption, and the mining hardware and electrical energy expenditures of the Bitcoin network.
Ontology-supported research on vaccine efficacy, safety and integrative biological networks.
He, Yongqun
2014-07-01
While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including Vaccine Ontology, Ontology of Adverse Events and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network ('OneNet') Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms.
Ontology-supported Research on Vaccine Efficacy, Safety, and Integrative Biological Networks
He, Yongqun
2016-01-01
Summary While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including the Vaccine Ontology, Ontology of Adverse Events, and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network (“OneNet”) Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms. PMID:24909153
The ART of Social Networking: How SART member clinics are connecting with patients online
OMURTAG, Kenan; JIMENEZ, Patricia T.; RATTS, Valerie; ODEM, Randall; COOPER, Amber R.
2013-01-01
Objective To study and describe the use of social networking websites among SART member clinics Design Cross-sectional study Setting University Based Practice Patients Not Applicable Interventions Not Applicable Main Outcome Measure Prevalence of social networking websites among SART member clinics and evaluation of content, volume and location (i.e mandated state, region) using multivariate regression analysis Results 384 SART registered clinics and 1,382 social networking posts were evaluated. Of the clinics, 96% have a website and 30% link to a social networking website. The majority of clinics (89%) with social networking websites were affiliated with non-academic centers. Social networking posts mostly provide information (31%) and/or advertise (28%), while the remaining offer support (19%) or are irrelevant (17%) to the target audience. Only 5% of posts involved patients requesting information. Clinic volume correlates with the presence of a clinic website and a social networking website (p<0.001). Conclusion Almost all SART member clinics have a website. Nearly one-third of these clinics host a social networking website like Facebook, Twitter and/or a Web-log (“blog”). Larger volume clinics commonly host social networking websites. These sites provide new ways to communicate with patients, but clinics should maintain policies on the incorporation of social networks into practice. PMID:22088209
2011-03-10
more and more social interactions are happening on the on-line. Especially recent uptake of the social network sites (SNSs), such as Facebook (http...results give overviews on social interactions on a popular social network site . As each twitter account has different characteristics based on...the public and individuals post their private stories on their blogs and share their interests using social network sites . On the other hand, people
Psychology and social networks: a dynamic network theory perspective.
Westaby, James D; Pfaff, Danielle L; Redding, Nicholas
2014-04-01
Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Social network changes and life events across the life span: a meta-analysis.
Wrzus, Cornelia; Hänel, Martha; Wagner, Jenny; Neyer, Franz J
2013-01-01
For researchers and practitioners interested in social relationships, the question remains as to how large social networks typically are, and how their size and composition change across adulthood. On the basis of predictions of socioemotional selectivity theory and social convoy theory, we conducted a meta-analysis on age-related social network changes and the effects of life events on social networks using 277 studies with 177,635 participants from adolescence to old age. Cross-sectional as well as longitudinal studies consistently showed that (a) the global social network increased up until young adulthood and then decreased steadily, (b) both the personal network and the friendship network decreased throughout adulthood, (c) the family network was stable in size from adolescence to old age, and (d) other networks with coworkers or neighbors were important only in specific age ranges. Studies focusing on life events that occur at specific ages, such as transition to parenthood, job entry, or widowhood, demonstrated network changes similar to such age-related network changes. Moderator analyses detected that the type of network assessment affected the reported size of global, personal, and family networks. Period effects on network sizes occurred for personal and friendship networks, which have decreased in size over the last 35 years. Together the findings are consistent with the view that a portion of normative, age-related social network changes are due to normative, age-related life events. We discuss how these patterns of normative social network development inform research in social, evolutionary, cultural, and personality psychology. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
A Qualitative Study of the Formation and Composition of Social Networks Among Homeless Youth
Tyler, Kimberly A.; Melander, Lisa A.
2011-01-01
Although social networks are essential for explaining protective and risk factors among homeless youth, little is known about the formation and composition of these groups. In this study, we utilized 19 in-depth interviews with homeless youth to investigate their social network formation, role relationships, housing status, and network member functions. Our findings reveal that the formation of these networks occurred in different ways including meeting network members through others or in specific social situations. The majority of social network members were currently housed and provided various functions including instrumental and social support and protection. Responses from participants provide valuable insight into the formation of social networks and potentially explain their subsequent involvement in risky behaviors. PMID:22121330
Abbott, Katherine M; Bettger, Janet Prvu; Hampton, Keith N; Kohler, Hans-Peter
2015-03-01
Studies indicate that social integration has a significant influence on physical and mental health. Older adults experience an increased risk of social isolation as their social networks decline with fewer traditional opportunities to add new social relationships. Deaths of similar aged friends, cognitive and functional impairments, and relocating to a nursing home (NH) or assisted-living (AL) facility contribute to difficulties in maintaining one's social network. Due to the paucity of research examining the social networks of people residing in AL and NH, this study was designed to develop and test the feasibility of using a combination of methodological approaches to capture social network data among older adults living in AL and a dementia special care unit NH. Social network analysis of both egocentric and sociocentric networks was conducted to visualize the social networks of 15 residents of an AL neighborhood and 12 residents of a dementia special care unit NH and to calculate measures network size, centrality, and reciprocity. The combined egocentric and sociocentric method was feasible and provided a robust indicator of resident social networks highlighting individuals who were socially integrated as well as isolated. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Mining of Social Media Data of University Students
ERIC Educational Resources Information Center
Singh, Archana
2017-01-01
The youth power to speak their mind, recommendations and opinions about various issues on social media cannot be ignored. There is a generated by students on social media websites like, facebook, Orkut, twitter etc. This paper focusses on the extraction of knowledge from the data floated by the University students on social websites in different…
Text Mining for Adverse Drug Events: the Promise, Challenges, and State of the Art
Harpaz, Rave; Callahan, Alison; Tamang, Suzanne; Low, Yen; Odgers, David; Finlayson, Sam; Jung, Kenneth; LePendu, Paea; Shah, Nigam H.
2014-01-01
Text mining is the computational process of extracting meaningful information from large amounts of unstructured text. Text mining is emerging as a tool to leverage underutilized data sources that can improve pharmacovigilance, including the objective of adverse drug event detection and assessment. This article provides an overview of recent advances in pharmacovigilance driven by the application of text mining, and discusses several data sources—such as biomedical literature, clinical narratives, product labeling, social media, and Web search logs—that are amenable to text-mining for pharmacovigilance. Given the state of the art, it appears text mining can be applied to extract useful ADE-related information from multiple textual sources. Nonetheless, further research is required to address remaining technical challenges associated with the text mining methodologies, and to conclusively determine the relative contribution of each textual source to improving pharmacovigilance. PMID:25151493
Coyne, Sarah M; Padilla-Walker, Laura M; Day, Randal D; Harper, James; Stockdale, Laura
2014-01-01
This study examined the relationship between parent-child social networking, connection, and outcomes for adolescents. Participants (491 adolescents and their parents) completed a number of questionnaires on social networking use, feelings of connection, and behavioral outcomes. Social networking with parents was associated with increased connection between parents and adolescents. Feelings of connection then mediated the relationship between social networking with parents and behavioral outcomes, including higher prosocial behavior and lower relational aggression and internalizing behavior. Conversely, adolescent social networking use without parents was associated with negative outcomes, such as increased relational aggression, internalizing behaviors, delinquency, and decreased feelings of connection. These results indicate that although high levels of social networking use may be problematic for some individuals, social networking with parents may potentially strengthen parent-child relationships and then lead to positive outcomes for adolescents.
Hao, Chun; Liu, Hongjie
2014-01-01
Background Few studies have investigated the relationship between HIV stigma and social network components at the dyadic level. The objective of this study was to examine the actor and partner effects of perceived HIV stigma by people living with HIV/AIDS (PLWHAs) and their caregivers on social network variables at the dyadic level. Method An egocentric social network study was conducted among 147 dyads consisting of one PLWHA and one caregiver (294 participants) in Nanning, China. The actor-partner interdependence model (APIM) was used to analyze the relationships between perceived HIV stigma and social network components (network relations, network structures, and network functions) at the dyadic level. Results We found in this dyadic analysis that: (1) social network components were similar between PLWHAs and their caregivers; (2) HIV stigma perceived by PLWHAs influenced their own social network components, whereas this influence did not exist between caregivers' perceived HIV stigma and their own social network components; (3) a few significant partner effects were observed between HIV stigma and social network components among both PLWHAs and caregivers. Conclusion The interrelationships between HIV stigma and social network components were complex at the dyadic level. Future interventions programs targeting HIV stigma should focus on the interpersonal relationship at the dyadic level, beyond the intrapersonal factors. PMID:25085478
Hao, Chun; Liu, Hongjie
2015-06-01
Few studies have investigated the relationship between HIV stigma and social network components at the dyadic level. The objective of this study was to examine the actor and partner effects of perceived HIV stigma by people living with HIV/AIDS (PLWHAs) and their caregivers on social network variables at the dyadic level. An egocentric social network study was conducted among 147 dyads consisting of one PLWHA and one caregiver (294 participants) in Nanning, China. The actor-partner interdependence model (APIM) was used to analyze the relationships between perceived HIV stigma and social network components (network relations, network structures, and network functions) at the dyadic level. We found in this dyadic analysis that: (1) social network components were similar between PLWHAs and their caregivers; (2) HIV stigma perceived by PLWHAs influenced their own social network components, whereas this influence did not exist between caregivers' perceived HIV stigma and their own social network components; (3) a few significant partner effects were observed between HIV stigma and social network components among both PLWHAs and caregivers. The interrelationships between HIV stigma and social network components were complex at the dyadic level. Future interventions programs targeting HIV stigma should focus on the interpersonal relationship at the dyadic level, beyond the intrapersonal factors. © The Author(s) 2014.
Data mining for health executive decision support: an imperative with a daunting future!
Glover, Saundra; Rivers, Patrick A; Asoh, Derek A; Piper, Crystal N; Murph, Keva
2010-01-01
Summary Data mining is highly profiled. It has the potential to enhance executive information systems. Such enhancement would mean better decision-making by management, which in turn would mean better services for customers. While the future of data mining as technology should be exciting, some are worried about privacy concerns, which make the future of data mining daunting. This paper examines why data mining is highly profiled – the imperative toward data mining, data mining models and processes. Additionally, the paper examines some of the benefits and challenges of using data mining processes within the health-care arena. We cast the future of data mining by highlighting two of the many data mining tools available – one commercial and one freely available. Subsequently, we discuss a number of social and technical factors that may thwart the extensive deployment of data mining, especially when the intent is to know more about the people that organizations have to serve and cast a view of what the future holds for data mining. This component is especially important when attempting to determine the longevity of data mining within health-care organizations. It is hoped that our discussions would be useful to organizations as they engage data mining, strategies for executive information systems and information policy issues. PMID:20150610
MONGKIE: an integrated tool for network analysis and visualization for multi-omics data.
Jang, Yeongjun; Yu, Namhee; Seo, Jihae; Kim, Sun; Lee, Sanghyuk
2016-03-18
Network-based integrative analysis is a powerful technique for extracting biological insights from multilayered omics data such as somatic mutations, copy number variations, and gene expression data. However, integrated analysis of multi-omics data is quite complicated and can hardly be done in an automated way. Thus, a powerful interactive visual mining tool supporting diverse analysis algorithms for identification of driver genes and regulatory modules is much needed. Here, we present a software platform that integrates network visualization with omics data analysis tools seamlessly. The visualization unit supports various options for displaying multi-omics data as well as unique network models for describing sophisticated biological networks such as complex biomolecular reactions. In addition, we implemented diverse in-house algorithms for network analysis including network clustering and over-representation analysis. Novel functions include facile definition and optimized visualization of subgroups, comparison of a series of data sets in an identical network by data-to-visual mapping and subsequent overlaying function, and management of custom interaction networks. Utility of MONGKIE for network-based visual data mining of multi-omics data was demonstrated by analysis of the TCGA glioblastoma data. MONGKIE was developed in Java based on the NetBeans plugin architecture, thus being OS-independent with intrinsic support of module extension by third-party developers. We believe that MONGKIE would be a valuable addition to network analysis software by supporting many unique features and visualization options, especially for analysing multi-omics data sets in cancer and other diseases. .
Transitions in Smokers’ Social Networks After Quit Attempts: A Latent Transition Analysis
Smith, Rachel A.; Piper, Megan E.; Roberts, Linda J.; Baker, Timothy B.
2016-01-01
Introduction: Smokers’ social networks vary in size, composition, and amount of exposure to smoking. The extent to which smokers’ social networks change after a quit attempt is unknown, as is the relation between quitting success and later network changes. Methods: Unique types of social networks for 691 smokers enrolled in a smoking-cessation trial were identified based on network size, new network members, members’ smoking habits, within network smoking, smoking buddies, and romantic partners’ smoking. Latent transition analysis was used to identify the network classes and to predict transitions in class membership across 3 years from biochemically assessed smoking abstinence. Results: Five network classes were identified: Immersed (large network, extensive smoking exposure including smoking buddies), Low Smoking Exposure (large network, minimal smoking exposure), Smoking Partner (small network, smoking exposure primarily from partner), Isolated (small network, minimal smoking exposure), and Distant Smoking Exposure (small network, considerable nonpartner smoking exposure). Abstinence at years 1 and 2 was associated with shifts in participants’ social networks to less contact with smokers and larger networks in years 2 and 3. Conclusions: In the years following a smoking-cessation attempt, smokers’ social networks changed, and abstinence status predicted these changes. Networks defined by high levels of exposure to smokers were especially associated with continued smoking. Abstinence, however, predicted transitions to larger social networks comprising less smoking exposure. These results support treatments that aim to reduce exposure to smoking cues and smokers, including partners who smoke. Implications: Prior research has shown that social network features predict the likelihood of subsequent smoking cessation. The current research illustrates how successful quitting predicts social network change over 3 years following a quit attempt. Specifically, abstinence predicts transitions to networks that are larger and afford less exposure to smokers. This suggests that quitting smoking may expand a person’s social milieu rather than narrow it. This effect, plus reduced exposure to smokers, may help sustain abstinence. PMID:27613925
Kwak, Doyeon
2017-01-01
It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks. PMID:28542367
Kwak, Doyeon; Kim, Wonjoon
2017-01-01
It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks.
20 CFR 410.401 - Scope of subpart D.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV... D. (a) General. This subpart establishes the standards for determining whether a coal miner is.... Pneumoconiosis means: (1) A chronic dust disease of the lung arising out of employment in the Nation's coal mines...
An Environmental Unit for the Social Studies.
ERIC Educational Resources Information Center
Kroll, Claudia J.
Based on the inquiry method of learning, this instructional unit attempts to encourage students to discover for themselves the facts, problems, values, conflicts, and potential solutions of an environmental issue. Specifically, it deals with surface mining in the United States, with special focus on surface mining in Illinois. Materials and…
Myneni, Sahiti; Cobb, Nathan K; Cohen, Trevor
2013-01-01
Unhealthy behaviors increase individual health risks and are a socioeconomic burden. Harnessing social influence is perceived as fundamental for interventions to influence health-related behaviors. However, the mechanisms through which social influence occurs are poorly understood. Online social networks provide the opportunity to understand these mechanisms as they digitally archive communication between members. In this paper, we present a methodology for content-based social network analysis, combining qualitative coding, automated text analysis, and formal network analysis such that network structure is determined by the content of messages exchanged between members. We apply this approach to characterize the communication between members of QuitNet, an online social network for smoking cessation. Results indicate that the method identifies meaningful theme-based social sub-networks. Modeling social network data using this method can provide us with theme-specific insights such as the identities of opinion leaders and sub-community clusters. Implications for design of targeted social interventions are discussed.
A Methodology to Develop Entrepreneurial Networks: The Tech Ecosystem of Six African Cities
2014-11-01
Information Center. Greve, A. and Salaff, J. W. (2003), Social Networks and Entrepreneurship . Entrepreneurship Theory and Practice, 28: 1–22. doi...methodology enables us to accurately measure social capital and circumvents the massive effort of mapping an individual’s social network before...locating the social resources in it. 15. SUBJECT TERMS Network Analysis, Economic Networks, Network Topology, Network Classification 16. SECURITY
20 CFR 410.704 - Review procedures.
Code of Federal Regulations, 2011 CFR
2011-04-01
... has elected review by the Social Security Administration, he or she may change the election any time... Workers' Compensation Programs. The claimant may change the election if the Social Security Administration... Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV...
20 CFR 410.704 - Review procedures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... has elected review by the Social Security Administration, he or she may change the election any time... Workers' Compensation Programs. The claimant may change the election if the Social Security Administration... Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV...
NASA Astrophysics Data System (ADS)
Wasylycia-Leis, Joseph; Fitzpatrick, Patricia; Fonseca, Alberto
2014-03-01
This paper applies the resilience lens to a social-ecological system characterized by the presence of large-scale mineral extraction operations. The system in question is the Brazilian community of Itabira, Minas Gerais, host to an iron ore operation of Vale, the world's second largest mining corporation. Utilizing a resilience assessment framework, this study describes the various components of the Itabira social-ecological system revealing the challenges brought about by mining's dominance. Data collection included literature reviews and semi-structured interviews with 29 individuals representing different stakeholder groups. Findings revealed that, despite recent efforts by government to regulate the industry, the mine continues to generate press and pulse disturbances that impact the resilience of the community. Operating from the standpoint that resilience depends largely upon the management capacity of stakeholders, the research identifies three ways to improve mining governance in Itabira. First, there is a need for local government to have more power in dealings with the corporation. Concurrent with this power, however, the municipality must demonstrate ownership over its fate, ideally through the creation of a sustainability plan. Finally, all key parties must demonstrate commitment to cooperating to resolve outstanding disturbances, even when these fall outside the regulatory approval process. While Itabira will remain a mining town for the foreseeable future, actions taken now to address challenges will only strengthen community well-being and sustainability moving forward.
Youm, Yoosik; Laumann, Edward O; Ferraro, Kenneth F; Waite, Linda J; Kim, Hyeon Chang; Park, Yeong-Ran; Chu, Sang Hui; Joo, Won-Tak; Lee, Jin A
2014-09-14
This paper has two objectives. Firstly, it provides an overview of the social network module, data collection procedures, and measurement of ego-centric and complete-network properties in the Korean Social Life, Health, and Aging Project (KSHAP). Secondly, it directly compares the KSHAP structure and results to the ego-centric network structure and results of the National Social Life, Health, and Aging Project (NSHAP), which conducted in-home interviews with 3,005 persons 57 to 85 years of age in the United States. The structure of the complete social network of 814 KSHAP respondents living in Township K was measured and examined at two levels of networks. Ego-centric network properties include network size, composition, volume of contact with network members, density, and bridging potential. Complete-network properties are degree centrality, closeness centrality, betweenness centrality, and brokerage role. We found that KSHAP respondents with a smaller number of social network members were more likely to be older and tended to have poorer self-rated health. Compared to the NSHAP, the KSHAP respondents maintained a smaller network size with a greater network density among their members and lower bridging potential. Further analysis of the complete network properties of KSHAP respondents revealed that more brokerage roles inside the same neighborhood (Ri) were significantly associated with better self-rated health. Socially isolated respondents identified by network components had the worst self-rated health. The findings demonstrate the importance of social network analysis for the study of older adults' health status in Korea. The study also highlights the importance of complete-network data and its ability to reveal mechanisms beyond ego-centric network data.
2014-01-01
Background This paper has two objectives. Firstly, it provides an overview of the social network module, data collection procedures, and measurement of ego-centric and complete-network properties in the Korean Social Life, Health, and Aging Project (KSHAP). Secondly, it directly compares the KSHAP structure and results to the ego-centric network structure and results of the National Social Life, Health, and Aging Project (NSHAP), which conducted in-home interviews with 3,005 persons 57 to 85 years of age in the United States. Methods The structure of the complete social network of 814 KSHAP respondents living in Township K was measured and examined at two levels of networks. Ego-centric network properties include network size, composition, volume of contact with network members, density, and bridging potential. Complete-network properties are degree centrality, closeness centrality, betweenness centrality, and brokerage role. Results We found that KSHAP respondents with a smaller number of social network members were more likely to be older and tended to have poorer self-rated health. Compared to the NSHAP, the KSHAP respondents maintained a smaller network size with a greater network density among their members and lower bridging potential. Further analysis of the complete network properties of KSHAP respondents revealed that more brokerage roles inside the same neighborhood (Ri) were significantly associated with better self-rated health. Socially isolated respondents identified by network components had the worst self-rated health. Conclusions The findings demonstrate the importance of social network analysis for the study of older adults’ health status in Korea. The study also highlights the importance of complete-network data and its ability to reveal mechanisms beyond ego-centric network data. PMID:25217892
Contemporary Network Proteomics and Its Requirements
Goh, Wilson Wen Bin; Wong, Limsoon; Sng, Judy Chia Ghee
2013-01-01
The integration of networks with genomics (network genomics) is a familiar field. Conventional network analysis takes advantage of the larger coverage and relative stability of gene expression measurements. Network proteomics on the other hand has to develop further on two critical factors: (1) expanded data coverage and consistency, and (2) suitable reference network libraries, and data mining from them. Concerning (1) we discuss several contemporary themes that can improve data quality, which in turn will boost the outcome of downstream network analysis. For (2), we focus on network analysis developments, specifically, the need for context-specific networks and essential considerations for localized network analysis. PMID:24833333
Social networks in cardiovascular disease management.
Shaya, Fadia T; Yan, Xia; Farshid, Maryam; Barakat, Samer; Jung, Miah; Low, Sara; Fedder, Donald
2010-12-01
Cardiovascular disease remains the leading cause of death in the USA. Social networks have a positive association with obesity, smoking cessation and weight loss. This article summarizes studies evaluating the impact of social networks on the management of cardiovascular disease. The 35 studies included in the article describe the impact of social networks on a decreased incidence of cardiovascular disease, depression and mortality. In addition, having a large-sized social network is also associated with better outcomes and improved health. The role of pharmacists is beginning to play an important role in the patient-centered medical home, which needs to be incorporated into social networks. The patient-centered medical home can serve as an adaptive source for social network evolvement.
Kenny, J.F.; McCauley, J.R.
1983-01-01
Disturbances resulting from intensive coal mining in the Cherry Creek basin of southeastern Kansas were investigated using color and color-infrared aerial photography in conjunction with water-quality data from simultaneously acquired samples. Imagery was used to identify the type and extent of vegetative cover on strip-mined lands and the extent and success of reclamation practices. Drainage patterns, point sources of acid mine drainage, and recharge areas for underground mines were located for onsite inspection. Comparison of these interpretations with water-quality data illustrated differences between the eastern and western parts of the Cherry Creek basin. Contamination in the eastern part is due largely to circulation of water from unreclaimed strip mines and collapse features through the network of underground mines and subsequent discharge of acidic drainage through seeps. Contamination in the western part is primarily caused by runoff and seepage from strip-mined lands in which surfaces have frequently been graded and limed but are generally devoid of mature stands of soil-anchoring vegetation. The successful use of aerial photography in the study of Cherry Creek basin indicates the potential of using remote-sensing techniques in studies of other coal-mined regions. (USGS)
Control Theoretic Modeling for Uncertain Cultural Attitudes and Unknown Adversarial Intent
2009-02-01
Constructive computational tools. 15. SUBJECT TERMS social learning, social networks , multiagent systems, game theory 16. SECURITY CLASSIFICATION OF: a...over- reactionary behaviors; 3) analysis of rational social learning in networks : analysis of belief propagation in social networks in various...general methodology as a predictive device for social network formation and for communication network formation with constraints on the lengths of
Mining the key predictors for event outbreaks in social networks
NASA Astrophysics Data System (ADS)
Yi, Chengqi; Bao, Yuanyuan; Xue, Yibo
2016-04-01
It will be beneficial to devise a method to predict a so-called event outbreak. Existing works mainly focus on exploring effective methods for improving the accuracy of predictions, while ignoring the underlying causes: What makes event go viral? What factors that significantly influence the prediction of an event outbreak in social networks? In this paper, we proposed a novel definition for an event outbreak, taking into account the structural changes to a network during the propagation of content. In addition, we investigated features that were sensitive to predicting an event outbreak. In order to investigate the universality of these features at different stages of an event, we split the entire lifecycle of an event into 20 equal segments according to the proportion of the propagation time. We extracted 44 features, including features related to content, users, structure, and time, from each segment of the event. Based on these features, we proposed a prediction method using supervised classification algorithms to predict event outbreaks. Experimental results indicate that, as time goes by, our method is highly accurate, with a precision rate ranging from 79% to 97% and a recall rate ranging from 74% to 97%. In addition, after applying a feature-selection algorithm, the top five selected features can considerably improve the accuracy of the prediction. Data-driven experimental results show that the entropy of the eigenvector centrality, the entropy of the PageRank, the standard deviation of the betweenness centrality, the proportion of re-shares without content, and the average path length are the key predictors for an event outbreak. Our findings are especially useful for further exploring the intrinsic characteristics of outbreak prediction.
Brain connectivity dynamics during social interaction reflect social network structure
Schmälzle, Ralf; Brook O’Donnell, Matthew; Garcia, Javier O.; Cascio, Christopher N.; Bayer, Joseph; Vettel, Jean M.
2017-01-01
Social ties are crucial for humans. Disruption of ties through social exclusion has a marked effect on our thoughts and feelings; however, such effects can be tempered by broader social network resources. Here, we use fMRI data acquired from 80 male adolescents to investigate how social exclusion modulates functional connectivity within and across brain networks involved in social pain and understanding the mental states of others (i.e., mentalizing). Furthermore, using objectively logged friendship network data, we examine how individual variability in brain reactivity to social exclusion relates to the density of participants’ friendship networks, an important aspect of social network structure. We find increased connectivity within a set of regions previously identified as a mentalizing system during exclusion relative to inclusion. These results are consistent across the regions of interest as well as a whole-brain analysis. Next, examining how social network characteristics are associated with task-based connectivity dynamics, we find that participants who showed greater changes in connectivity within the mentalizing system when socially excluded by peers had less dense friendship networks. This work provides insight to understand how distributed brain systems respond to social and emotional challenges and how such brain dynamics might vary based on broader social network characteristics. PMID:28465434
Litwin, Howard
2011-08-01
Although social network relationships are linked to mental health in late life, it is still unclear whether it is the structure of social networks or their perceived quality that matters. The current study regressed a dichotomous 8-item version of the Center for Epidemiological Studies Depression Scale (CESD-8) score on measures of social network relationships among Americans, aged 65-85 years, from the first wave of the National Social Life, Health and Aging Project. The network indicators included a structural variable - social network type - and a series of relationship quality indicators: perceived positive and negative ties with family, friends and spouse/ partner. Multivariate logistic regression analyses controlled for age, gender, education, income, race/ethnicity, religious affiliation, functional health and physical health. The perceived social network quality variables were unrelated to the presence of a high level of depressive symptoms, but social network type maintained an association with this mental health outcome even after controlling for confounders. Respondents embedded in resourceful social network types in terms of social capital--"diverse," "friend" and "congregant" networks--reported less presence of depressive symptoms, to varying degrees. The results show that the structure of the network seems to matter more than the perceived quality of the ties as an indicator of depressive symptoms. Moreover, the composite network type variable stands out in capturing the differences in mental state. The construct of network type should be incorporated in mental health screening among older people who reside in the community. One's social network type can be an important initial indicator that one is at risk.
Barrington, Clare; Latkin, Carl; Sweat, Michael D; Moreno, Luis; Ellen, Jonathan; Kerrigan, Deanna
2009-06-01
Male partners of female sex workers are rarely targeted by HIV prevention interventions in the commercial sex industry, despite recognition of their central role and power in condom use negotiation. Social networks offer a naturally existing social structure to increase male participation in preventing HIV. The purpose of this study was to explore the relationship between social network norms and condom use among male partners of female sex workers in La Romana, Dominican Republic. Male partners (N =318) were recruited from 36 sex establishments to participate in a personal network survey. Measures of social network norms included 1) perceived condom use by male social network members and 2) encouragement to use condoms from social network members. Other social network characteristics included composition, density, social support, and communication. The primary behavioral outcome was consistent condom use by male partners with their most recent female sex worker partner during the last 3 months. In general, men reported small, dense networks with high levels of communication about condoms and consistent condom use. Multivariate logistic regression revealed consistent condom use was significantly more likely among male partners who perceived that some or all of their male social network members used condoms consistently. Perceived condom use was, in turn, significantly associated with dense networks, expressing dislike for condoms, and encouragement to use condoms from social network members. Findings suggest that the tight social networks of male partners may help to explain the high level of condom use and could provide an entry point for HIV prevention efforts with men. Such efforts should tap into existing social dynamics and patterns of communication to promote pro-condom norms and reduce HIV-related vulnerability among men and their sexual partners.
Professional social networking.
Rowley, Robert D
2014-12-01
We review the current state of social communication between healthcare professionals, the role of consumer social networking, and some emerging technologies to address the gaps. In particular, the review covers (1) the current state of loose social networking for continuing medical education (CME) and other broadcast information dissemination; (2) social networking for business promotion; (3) social networking for peer collaboration, including simple communication as well as more robust data-centered collaboration around patient care; and (4) engaging patients on social platforms, including integrating consumer-originated data into the mix of healthcare data. We will see how, as the nature of healthcare delivery moves from the institution-centric way of tradition to a more social and networked ambulatory pattern that we see emerging today, the nature of health IT has also moved from enterprise-centric systems to more socially networked, cloud-based options.
Image Re-Ranking Based on Topic Diversity.
Qian, Xueming; Lu, Dan; Wang, Yaxiong; Zhu, Li; Tang, Yuan Yan; Wang, Meng
2017-08-01
Social media sharing Websites allow users to annotate images with free tags, which significantly contribute to the development of the web image retrieval. Tag-based image search is an important method to find images shared by users in social networks. However, how to make the top ranked result relevant and with diversity is challenging. In this paper, we propose a topic diverse ranking approach for tag-based image retrieval with the consideration of promoting the topic coverage performance. First, we construct a tag graph based on the similarity between each tag. Then, the community detection method is conducted to mine the topic community of each tag. After that, inter-community and intra-community ranking are introduced to obtain the final retrieved results. In the inter-community ranking process, an adaptive random walk model is employed to rank the community based on the multi-information of each topic community. Besides, we build an inverted index structure for images to accelerate the searching process. Experimental results on Flickr data set and NUS-Wide data sets show the effectiveness of the proposed approach.
Link prediction in multiplex online social networks
NASA Astrophysics Data System (ADS)
Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž
2017-02-01
Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.
Link prediction in multiplex online social networks.
Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž
2017-02-01
Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.
NASA Astrophysics Data System (ADS)
Shao, Huaiyong; Xian, Wei; Yang, Wunian
2009-07-01
The large-scale and super-strength development of mineral resources in mining cities in long term has made great contributions to China's economic construction and development, but it has caused serious damage to the ecological environment even ecological imbalance at the same time because the neglect of the environmental impact even to the expense of the environment to some extent. In this study, according to the characteristics of mining cities, the scientific and practical eco-environmental vulnerability evaluation index system of mining cities had been established. Taking Panzhihua city of Sichuan province as an example, using remote sensing and GIS technology, applying various types of remote sensing image (TM, SPOT5, IKONOS) and Statistical data, the ecological environment evaluation data of mining cities was extracted effectively. For the non-linear relationship between the evaluation indexes and the degree of eco-environmental vulnerability in mining cities, this study innovative took the evaluation of eco-environmental vulnerability of the study area by using artificial neural network whose training used SCE-UA algorithm that well overcome the slow learning and difficult convergence of traditional neural network algorithm. The results of ecoenvironmental vulnerability evaluation of the study area were objective, reasonable and the credibility was high. The results showed that the area distribution of five eco-environmental vulnerability grade types was basically normal, and the overall ecological environment situation of Panzhihua city was in the middle level, the degree of eco-environmental vulnerability in the south was higher than the north, and mining activities were dominant factors to cause ecoenvironmental damage and eco-environmental Vulnerability. In this study, a comprehensive theory and technology system of regional eco-environmental vulnerability evaluation which included the establishment of eco-environmental vulnerability evaluation index system, processing of evaluation data and establishing of evaluation model. New ideas and methods had provided for eco-environmental vulnerability of mining cities.
Thinking Like a Social Worker: Examining the Meaning of Critical Thinking in Social Work
ERIC Educational Resources Information Center
Mathias, John
2015-01-01
"Critical thinking" is frequently used to describe how social workers ought to reason. But how well has this concept helped us to develop a normative description of what it means to think like a social worker? This critical review mines the literature on critical thinking for insight into the kinds of thinking social work scholars…
de Voux, Alex; Baral, Stefan; Bekker, Linda-Gail; Beyrer, Chris; Phaswana-Mafuya, Nancy; Siegler, Aaron; Sullivan, Patrick; Winskell, Kate; Stephenson, Rob
2016-01-01
Despite the high prevalence of HIV among men who have sex with men in South Africa, very little is known about their lived realities, including their social and sexual networks. Given the influence of social network structure on sexual risk behaviours, a better understanding of the social contexts of men who have sex with men is essential for informing the design of HIV programming and messaging. This study explored social network connectivity, an understudied network attribute, examining self-reported connectivity between friends, family and sex partners. Data were collected in Cape Town and Port Elizabeth, South Africa from 78 men who have sex with men who participated in in-depth interviews which included a social network mapping component. Five social network types emerged from the content analysis of these social network maps based on the level of connectivity between family, friends and sex partners, and ranged from disconnected to densely connected networks. The ways in which participants reported sexual risk-taking differed across the five network types revealing diversity in social network profiles. HIV programming and messaging for this population can greatly benefit from recognising the diversity in lived realities and social connections between men who have sex with men. PMID:26569376
de Voux, Alex; Baral, Stefan D; Bekker, Linda-Gail; Beyrer, Chris; Phaswana-Mafuya, Nancy; Siegler, Aaron J; Sullivan, Patrick S; Winskell, Kate; Stephenson, Rob
2016-01-01
Despite the high prevalence of HIV among men who have sex with men in South Africa, very little is known about their lived realities, including their social and sexual networks. Given the influence of social network structure on sexual risk behaviours, a better understanding of the social contexts of men who have sex with men is essential for informing the design of HIV programming and messaging. This study explored social network connectivity, an understudied network attribute, examining self-reported connectivity between friends, family and sex partners. Data were collected in Cape Town and Port Elizabeth, South Africa, from 78 men who have sex with men who participated in in-depth interviews that included a social network mapping component. Five social network types emerged from the content analysis of these social network maps based on the level of connectivity between family, friends and sex partners, and ranged from disconnected to densely connected networks. The ways in which participants reported sexual risk-taking differed across the five network types, revealing diversity in social network profiles. HIV programming and messaging for this population can greatly benefit from recognising the diversity in lived realities and social connections between men who have sex with men.
Gowen, Kris; Deschaine, Matthew; Gruttadara, Darcy; Markey, Dana
2012-01-01
This study examined ways that young adults with mental illnesses (1) currently use social networking; and (2) how they would like to use a social networking site tailored for them. The authors examined differences between those with mental health conditions and those without. An online survey was administered by the National Alliance on Mental Illness (NAMI) to 274 participants; of those, 207 reported being between 18 and 24 years old. The survey included questions about current social networking use, the key resources respondents believed young adults living with mental illness need, and the essential components that should be included in a social networking site specifically tailored to young adults living with mental illness. Pearson Chi-square analyses examined the differences between those who reported having a mental illness and those who did not. Results indicate that almost all (94%) participants with mental illnesses currently use social networking sites. Individuals living with a mental illness are more likely than those not living with a mental illness to report engaging in various social networking activities that promote connectivity and making online friends. Individuals living with mental illnesses are also more likely to report wanting resources on independent living skills and overcoming social isolation available on a social networking site. Young adults living with mental illnesses are currently using social networking sites and express high interest in a social networking site specifically tailored to their population with specific tools designed to decrease social isolation and help them live more independently. These results indicate that practitioners should themselves be aware of the different social networking sites frequented by their young adult clients, ask clients about their use of social networking, and encourage safe and responsible online behaviors.
Mining twitter to understand the smoking cessation barriers.
Krittanawong, Chayakrit; Wang, Zhen
2017-10-26
Smoking cessation is challenging and lack of positive support is a known major barrier to quitting cigarettes. Previous studies have suggested that social influences might increase smokers' awareness of social norms for appropriate behavior, which might lead to smoking cessation. Although social media use is increasing among young adults in the United States, research on the relationship between social media use and smoking cessation is lacking. Twitter has provided a rich source of information for researchers, but no overview exists as to how the field uses Twitter in smoking cessation research. To the best of our knowledge, this study conducted a data mining analysis of Twitter to assess barriers to smoking cessation. In conclusion, Twitter is a cost-effective tool with the potential to disseminate information on the benefits of smoking cessation and updated research to the Twitter community on a global scale.
Boeri, Miriam; Gardner, Megan; Gerken, Erin; Ross, Melissa; Wheeler, Jack
2016-01-01
Purpose The purpose of this paper is to understand how people with problematic drug use access positive social capital. Social capital is defined as relations that provide valuable resources to individuals through participation in social networks. People with low socioeconomic status remain at a disadvantage for acquiring positive social capital, a component of recovery capital. The concept of social recovery emphasises the relational processes of recovery. Design/methodology/approach In-depth life history data were collected from 29 individuals who used heroin, cocaine, crack, or methamphetamine for at least five years, have less than a high school education, and unstable employment and housing. Qualitative data were coded for social networks accessed throughout the life course, distinguished by bonding, bridging and linking social capital. Findings Social networks included drug treatment programs; non-drug-using family and friends; religious/spiritual groups; workplace networks, and social clubs/activities. Bonding and/or bridging social capital were acquired through treatment, family and friends, religious/spiritual groups, workplaces, and social clubs. Linking social capital was not acquired through any social networks available, and many barriers to accessing mainstream social networks were found. Limitations This is a small study conducted in the US. Social implications A greater focus on social recovery is needed to achieve sustained recovery for individuals lacking access to and engagement in mainstream social networks. Practical implications Social recovery is proposed as an analytical tool as well as for developing prevention, intervention, and treatment strategies. PMID:27668008
Social Networking Sites as Virtual Communities of Practice: A Mixed Method Study
ERIC Educational Resources Information Center
Davis, Lorretta J.
2010-01-01
Membership in social networking sites is increasing rapidly. Social networking sites serve many purposes including networking, communication, recruitment, and sharing knowledge. Social networking sites, public or private, may be hosted on applications such as Facebook and LinkedIn. As individuals begin to follow and participate in social…
Young, Sean D; Rice, Eric
2011-02-01
This study evaluates associations between online social networking and sexual health behaviors among homeless youth in Los Angeles. We analyzed survey data from 201 homeless youth accessing services at a Los Angeles agency. Multivariate (regression and logistic) models assessed whether use of (and topics discussed on) online social networking technologies affect HIV knowledge, sexual risk behaviors, and testing for sexually transmitted infections (STIs). One set of results suggests that using online social networks for partner seeking (compared to not using the networks for seeking partners) is associated with increased sexual risk behaviors. Supporting data suggest that (1) using online social networks to talk about safe sex is associated with an increased likelihood of having met a recent sex partner online, and (2) having online sex partners and talking to friends on online social networks about drugs and partying is associated with increased exchange sex. However, results also suggest that online social network usage is associated with increased knowledge and HIV/STI prevention among homeless youth: (1) using online social networks to talk about love and safe sex is associated with increased knowledge about HIV, (2) using the networks to talk about love is associated with decreased exchange sex, and (3) merely being a member of an online social network is associated with increased likelihood of having previously tested for STIs. Taken together, this study suggests that online social networking and the topics discussed on these networks can potentially increase and decrease sexual risk behaviors depending on how the networks are used. Developing sexual health services and interventions on online social networks could reduce sexual risk behaviors.
The ART of social networking: how SART member clinics are connecting with patients online.
Omurtag, Kenan; Jimenez, Patricia T; Ratts, Valerie; Odem, Randall; Cooper, Amber R
2012-01-01
To study and describe the use of social networking websites among Society for Assisted Reproductive Technology (SART) member clinics. Cross-sectional study. University-based practice. Not applicable. Not applicable. Prevalence of social networking websites among SART member clinics and evaluation of content, volume, and location (i.e., mandated state, region) using multivariate regression analysis. A total of 384 SART-registered clinics and 1,382 social networking posts were evaluated. Of the clinics, 96% had a website and 30% linked to a social networking website. The majority of clinics (89%) with social networking websites were affiliated with nonacademic centers. Social networking posts mostly provided information (31%) and/or advertising (28%), and the remaining offered support (19%) or were irrelevant (17%) to the target audience. Only 5% of posts involved patients requesting information. Clinic volume correlated with the presence of a clinic website and a social networking website. Almost all SART member clinics have a website. Nearly one-third of these clinics host a social networking website such as Facebook, Twitter, and/or a blog. Large-volume clinics commonly host social networking websites. These sites provide new ways to communicate with patients, but clinics should maintain policies on the incorporation of social networks into practice. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
2006-03-01
equally essential to examine the antecedents that bring a person to a particular network location. The previous body of knowledge in social networks...Locus of Control on Social Network Position in Friendship Networks THESIS Gary J. Moore, Captain, USAF AFIT/GEM/ENV/06M-11 DEPARTMENT OF THE AIR...THE LONGITUDINAL EFFECTS OF SELF-MONITORING AND LOCUS OF CONTROL ON SOCIAL NETWORK POSITION IN FRIENDSHIP NETWORKS THESIS Presented to the
Towards Trust-based Cognitive Networks: A Survey of Trust Management for Mobile Ad Hoc Networks
2009-06-01
of trust. First, social trust refers to properties derived from social relationships . Examples of social networks are strong social ... relationships such as colleagues or relatives or loose social relationships such as school alumni or friends with common interests [44]. Social trust may...also use social relationships in evaluating the trust metric among group members by employing the concept of social networks. Yu et al. [44] define
Masculinity, Educational Achievement and Social Status: A Social Network Analysis
ERIC Educational Resources Information Center
Lusher, Dean
2011-01-01
This study utilises a quantitative case study social network approach to explore the connection between masculinity and scholastic achievement in two secondary, all-boys schools in Australia. In both schools two social networks representing social status are explored: the "friendship" network as a measure of status that includes…
Social Network Methods for the Educational and Psychological Sciences
ERIC Educational Resources Information Center
Sweet, Tracy M.
2016-01-01
Social networks are especially applicable in educational and psychological studies involving social interactions. A social network is defined as a specific relationship among a group of individuals. Social networks arise in a variety of situations such as friendships among children, collaboration and advice seeking among teachers, and coauthorship…
The Application of Social Network Analysis to Team Sports
ERIC Educational Resources Information Center
Lusher, Dean; Robins, Garry; Kremer, Peter
2010-01-01
This article reviews how current social network analysis might be used to investigate individual and group behavior in sporting teams. Social network analysis methods permit researchers to explore social relations between team members and their individual-level qualities simultaneously. As such, social network analysis can be seen as augmenting…
ERIC Educational Resources Information Center
Putnik, Goran; Costa, Eric; Alves, Cátia; Castro, Hélio; Varela, Leonilde; Shah, Vaibhav
2016-01-01
Social network-based engineering education (SNEE) is designed and implemented as a model of Education 3.0 paradigm. SNEE represents a new learning methodology, which is based on the concept of social networks and represents an extended model of project-led education. The concept of social networks was applied in the real-life experiment,…
A Social Network Approach to Understanding an Insurgency
2007-07-01
and a framework for testing theories regarding struc- tured social relationships.6 Equally relevant is the understanding of a social network approach...A Social Network Approach to Understanding an Insurgency BRIAN REED The study of networks, interactions, and relationships has a long history...characteristics of social network analysis is often counter-intuitive to traditional military thinking, rooted in the efficiency of a hierarchy that
NASA Astrophysics Data System (ADS)
Pereira, Dolores; Pereira, Alcides; Neves, Luis
2015-04-01
The study of radioactivity in natural stones is a subject of great interest from different points of view: scientific, social and economic. Several previous studies have demonstrated that the radioactivity is dependent, not only on the uranium content, but also on the structures, textures, minerals containing the uranium and degree of weathering of the natural stone. Villavieja granite is extracted in a village where uranium mining was an important activity during the 20th century. Today the mine is closed but the granite is still extracted. Incorrect information about natural radioactivity given to natural stone users, policy makers, construction managers and the general public has caused turmoil in the media for many years. This paper considers problems associated with the communication of reliable information, as well as uncertainties, on natural radioactivity to these audiences.
Boeri, Miriam; Gardner, Megan; Gerken, Erin; Ross, Melissa; Wheeler, Jack
The purpose of this paper is to understand how people with problematic drug use access positive social capital. Social capital is defined as relations that provide valuable resources to individuals through participation in social networks. People with low socioeconomic status remain at a disadvantage for acquiring positive social capital, a component of recovery capital. The concept of social recovery emphasises the relational processes of recovery. In-depth life history data were collected from 29 individuals who used heroin, cocaine, crack, or methamphetamine for at least five years, have less than a high school education, and unstable employment and housing. Qualitative data were coded for social networks accessed throughout the life course, distinguished by bonding, bridging and linking social capital. Social networks included drug treatment programs; non-drug-using family and friends; religious/spiritual groups; workplace networks, and social clubs/activities. Bonding and/or bridging social capital were acquired through treatment, family and friends, religious/spiritual groups, workplaces, and social clubs. Linking social capital was not acquired through any social networks available, and many barriers to accessing mainstream social networks were found. This is a small study conducted in the US. A greater focus on social recovery is needed to achieve sustained recovery for individuals lacking access to and engagement in mainstream social networks. Social recovery is proposed as an analytical tool as well as for developing prevention, intervention, and treatment strategies.
Measuring Social Networks for Medical Research in Lower-Income Settings
Kelly, Laura; Patel, Shivani A.; Narayan, K. M. Venkat; Prabhakaran, Dorairaj; Cunningham, Solveig A.
2014-01-01
Social networks are believed to affect health-related behaviors and health. Data to examine the links between social relationships and health in low- and middle-income country settings are limited. We provide guidance for introducing an instrument to collect social network data as part of epidemiological surveys, drawing on experience in urban India. We describe development and fielding of an instrument to collect social network information relevant to health behaviors among adults participating in a large, population-based study of non-communicable diseases in Delhi, India. We discuss basic characteristics of social networks relevant to health including network size, health behaviors of network partners (i.e., network exposures), network homogeneity, network diversity, strength of ties, and multiplexity. Data on these characteristics can be collected using a short instrument of 11 items asked about up to 5 network members and 3 items about the network generally, administered in approximately 20 minutes. We found high willingness to respond to questions about social networks (97% response). Respondents identified an average of 3.8 network members, most often relatives (80% of network ties), particularly blood relationships. Ninety-one percent of respondents reported that their primary contacts for discussing health concerns were relatives. Among all listed ties, 91% of most frequent snack partners and 64% of exercise partners in the last two weeks were relatives. These results demonstrate that family relationships are the crux of social networks in some settings, including among adults in urban India. Collecting basic information about social networks can be feasibly and effectively done within ongoing epidemiological studies. PMID:25153127
NASA Astrophysics Data System (ADS)
Jordan, Gyozo
2009-07-01
Wide-spread environmental contamination associated with historic mining in Europe has triggered social responses to improve related environmental legislation, the environmental assessment and management methods for the mining industry. Mining has some unique features such as natural background contamination associated with mineral deposits, industrial activities and contamination in the three-dimensional subsurface space, problem of long-term remediation after mine closure, problem of secondary contaminated areas around mine sites, land use conflicts and abandoned mines. These problems require special tools to address the complexity of the environmental problems of mining-related contamination. The objective of this paper is to show how regional mineral resources mapping has developed into the spatial contamination risk assessment of mining and how geological knowledge can be transferred to environmental assessment of mines. The paper provides a state-of-the-art review of the spatial mine inventory, hazard, impact and risk assessment and ranking methods developed by national and international efforts in Europe. It is concluded that geological knowledge on mineral resources exploration is essential and should be used for the environmental contamination assessment of mines. Also, sufficient methodological experience, knowledge and documented results are available, but harmonisation of these methods is still required for the efficient spatial environmental assessment of mine contamination.
Walk-based measure of balance in signed networks: Detecting lack of balance in social networks
NASA Astrophysics Data System (ADS)
Estrada, Ernesto; Benzi, Michele
2014-10-01
There is a longstanding belief that in social networks with simultaneous friendly and hostile interactions (signed networks) there is a general tendency to a global balance. Balance represents a state of the network with a lack of contentious situations. Here we introduce a method to quantify the degree of balance of any signed (social) network. It accounts for the contribution of all signed cycles in the network and gives, in agreement with empirical evidence, more weight to the shorter cycles than to the longer ones. We found that, contrary to what is generally believed, many signed social networks, in particular very large directed online social networks, are in general very poorly balanced. We also show that unbalanced states can be changed by tuning the weights of the social interactions among the agents in the network.
Code of Federal Regulations, 2010 CFR
2010-04-01
...' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK... family, the Social Security Administration may, in its discretion, certify to any two or more of such... same household and one of them dies before the check is cashed, the Social Security Administration may...
20 CFR 410.585 - Conservation and investment of payments.
Code of Federal Regulations, 2010 CFR
2010-04-01
....585 Section 410.585 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND... beneficiary) (Social Security No.), a minor, for whom (Name of payee) is representative payee for black lung... adult beneficiary should be registered as follows: , (Name of beneficiary) (Social Security No.), for...
20 CFR 410.670c - Application of circuit court law.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Section 410.670c Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY... the Social Security Act or regulations unless the Government seeks further review or the... with the Administration's interpretation of a provision of the Social Security Act or regulations and...
NASA Astrophysics Data System (ADS)
Li, Huajiao; An, Haizhong; Wang, Yue; Huang, Jiachen; Gao, Xiangyun
2016-05-01
Keeping abreast of trends in the articles and rapidly grasping a body of article's key points and relationship from a holistic perspective is a new challenge in both literature research and text mining. As the important component, keywords can present the core idea of the academic article. Usually, articles on a single theme or area could share one or some same keywords, and we can analyze topological features and evolution of the articles co-keyword networks and keywords co-occurrence networks to realize the in-depth analysis of the articles. This paper seeks to integrate statistics, text mining, complex networks and visualization to analyze all of the academic articles on one given theme, complex network(s). All 5944 ;complex networks; articles that were published between 1990 and 2013 and are available on the Web of Science are extracted. Based on the two-mode affiliation network theory, a new frontier of complex networks, we constructed two different networks, one taking the articles as nodes, the co-keyword relationships as edges and the quantity of co-keywords as the weight to construct articles co-keyword network, and another taking the articles' keywords as nodes, the co-occurrence relationships as edges and the quantity of simultaneous co-occurrences as the weight to construct keyword co-occurrence network. An integrated method for analyzing the topological features and evolution of the articles co-keyword network and keywords co-occurrence networks is proposed, and we also defined a new function to measure the innovation coefficient of the articles in annual level. This paper provides a useful tool and process for successfully achieving in-depth analysis and rapid understanding of the trends and relationships of articles in a holistic perspective.
Gray, Heather M; Shaffer, Paige M; Nelson, Sarah E; Shaffer, Howard J
2016-10-01
Social networks play important roles in mental and physical health among the general population. Building healthier social networks might contribute to the development of self-sufficiency among people struggling to overcome homelessness and substance use disorders. In this study of homeless adults completing a job- and life-skills program (i.e., the Moving Ahead Program at St. Francis House, Boston), we prospectively examined changes in social network quality, size, and composition. Among the sample of participants (n = 150), we observed positive changes in social network quality over time. However, social network size and composition did not change among the full sample. The subset of participants who reported abstaining from alcohol during the months before starting the program reported healthy changes in their social networks; specifically, while completing the program, they re-structured their social networks such that fewer members of their network used alcohol to intoxication. We discuss practical implications of these findings.
NASA Astrophysics Data System (ADS)
Durand, J. F.
2012-06-01
The Witwatersrand has been subjected to geological exploration, mining activities, parallel industrial development and associated settlement patterns over the past century. The gold mines brought with them not only development, employment and wealth, but also the most devastating war in the history of South Africa, civil unrest, economical inequality, social uprooting, pollution, negative health impacts and ecological destruction. One of the most consistent and pressing problems caused by mining has been its impact on the water bodies in and adjacent to the Witwatersrand. The dewatering and rewatering of the karstic aquifer overlying and adjacent to the Witwatersrand Supergroup and the pollution caused by Acid Mine Drainage (AMD) are some of the most serious consequences of gold mining in South Africa and will affect the lives of many South Africans.
The Mine Locomotive Wireless Network Strategy Based on Successive Interference Cancellation
Wu, Liaoyuan; Han, Jianghong; Wei, Xing; Shi, Lei; Ding, Xu
2015-01-01
We consider a wireless network strategy based on successive interference cancellation (SIC) for mine locomotives. We firstly build the original mathematical model for the strategy which is a non-convex model. Then, we examine this model intensively, and figure out that there are certain regulations embedded in it. Based on these findings, we are able to reformulate the model into a new form and design a simple algorithm which can assign each locomotive with a proper transmitting scheme during the whole schedule procedure. Simulation results show that the outcomes obtained through this algorithm are improved by around 50% compared with those that do not apply the SIC technique. PMID:26569240
Al-Fatlawi, Ali H; Fatlawi, Hayder K; Sai Ho Ling
2017-07-01
Daily physical activities monitoring is benefiting the health care field in several ways, in particular with the development of the wearable sensors. This paper adopts effective ways to calculate the optimal number of the necessary sensors and to build a reliable and a high accuracy monitoring system. Three data mining algorithms, namely Decision Tree, Random Forest and PART Algorithm, have been applied for the sensors selection process. Furthermore, the deep belief network (DBN) has been investigated to recognise 33 physical activities effectively. The results indicated that the proposed method is reliable with an overall accuracy of 96.52% and the number of sensors is minimised from nine to six sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirdt, J.A.; Brown, D.A., E-mail: dbrown@bnl.gov
The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of socialmore » networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.« less
Systematic analysis of molecular mechanisms for HCC metastasis via text mining approach.
Zhen, Cheng; Zhu, Caizhong; Chen, Haoyang; Xiong, Yiru; Tan, Junyuan; Chen, Dong; Li, Jin
2017-02-21
To systematically explore the molecular mechanism for hepatocellular carcinoma (HCC) metastasis and identify regulatory genes with text mining methods. Genes with highest frequencies and significant pathways related to HCC metastasis were listed. A handful of proteins such as EGFR, MDM2, TP53 and APP, were identified as hub nodes in PPI (protein-protein interaction) network. Compared with unique genes for HBV-HCCs, genes particular to HCV-HCCs were less, but may participate in more extensive signaling processes. VEGFA, PI3KCA, MAPK1, MMP9 and other genes may play important roles in multiple phenotypes of metastasis. Genes in abstracts of HCC-metastasis literatures were identified. Word frequency analysis, KEGG pathway and PPI network analysis were performed. Then co-occurrence analysis between genes and metastasis-related phenotypes were carried out. Text mining is effective for revealing potential regulators or pathways, but the purpose of it should be specific, and the combination of various methods will be more useful.
Maojo, Victor; de la Calle, Guillermo; Martín-Sánchez, Fernando; Díaz, Carlos; Sanz, Ferran
2005-01-01
INFOBIOMED is an European Network of Excellence (NoE) funded by the Information Society Directorate-General of the European Commission (EC). A consortium of European organizations from ten different countries is involved within the network. Four pilots, all related to linking clinical and genomic information, are being carried out. From an informatics perspective, various challenges, related to data integration and mining, are included.
Social networks and links to isolation and loneliness among elderly HCBS clients.
Medvene, Louis J; Nilsen, Kari M; Smith, Rachel; Ofei-Dodoo, Samuel; DiLollo, Anthony; Webster, Noah; Graham, Annette; Nance, Anita
2016-01-01
The purpose of this study was to explore the network types of HCBS clients based on the structural characteristics of their social networks. We also examined how the network types were associated with social isolation, relationship quality and loneliness. Forty personal interviews were carried out with HCBS clients to assess the structure of their social networks as indicated by frequency of contact with children, friends, family and participation in religious and community organizations. Hierarchical cluster analysis was conducted to identify network types. Four network types were found including: family (n = 16), diverse (n = 8), restricted (n = 8) and religious (n = 7). Family members comprised almost half of participants' social networks, and friends comprised less than one-third. Clients embedded in family, diverse and religious networks had significantly more positive relationships than clients embedded in restricted networks. Clients embedded in restricted networks had significantly higher social isolation scores and were lonelier than clients in diverse and family networks. The findings suggest that HCBS clients' isolation and loneliness are linked to the types of social networks in which they are embedded. The findings also suggest that clients embedded in restricted networks are at high risk for negative outcomes.