Sureda, R; Casas, I; Giménez, J; de Pablo, J; Quiñones, J; Zhang, J; Ewing, R C
2011-03-15
The stability of soddyite under electron irradiation has been studied over the temperature range of 25-300 °C. At room temperature, soddyite undergoes a crystalline-to-amorphous transformation (amorphization) at a total dose of 6.38 × 10(8) Gy. The electron beam irradiation results suggest that the soddyite structure is susceptible to radiation-induced nanocrystallization of UO(2). The temperature dependence of amorphization dose increases linearly up to 300 °C. A thermogravimetric and calorimetric analysis (TGA-DSC) combined with X-ray diffraction (XRD) indicates that soddyite retains its water groups up to 400 °C, followed by the collapse of the structure. Based on thermal analysis of uranophane, the removal of some water groups at relatively low temperatures provokes the collapse of the uranophane structure. This structural change appears to be the reason for the increase of amorphization dose at 140 °C. According to the results obtained, radiation field of a nuclear waste repository, rather than temperature effects, may cause changes in the crystallinity of soddyite and affect its stability during long-term storage.
Structural, mechanical and vibrational study of uranyl silicate mineral soddyite by DFT calculations
NASA Astrophysics Data System (ADS)
Colmenero, Francisco; Bonales, Laura J.; Cobos, Joaquín; Timón, Vicente
2017-09-01
Uranyl silicate mineral soddyite, (UO2)2(SiO4)·2(H2O), is a fundamental component of the paragenetic sequence of secondary phases that arises from the weathering of uraninite ore deposits and corrosion of spent nuclear fuel. In this work, soddyite was studied by first principle calculations based on the density functional theory. As far as we know, this is the first time that soddyite structure is determined theoretically. The computed structure of soddyite reproduces the one determined experimentally by X-Ray diffraction (orthorhombic symmetry, spatial group Fddd O2; lattice parameters a = 8.334 Å, b = 11.212 Å; c = 18.668 Å). Lattice parameters, bond lengths, bond angles and X-Ray powder pattern were found to be in very good agreement with their experimental counterparts. Furthermore, the mechanical properties were obtained and the satisfaction of the Born conditions for mechanical stability of the structure was demonstrated by means of calculations of the elasticity tensor. The equation of state of soddyite was obtained by fitting lattice volumes and pressures to a fourth order Birch-Murnahan equation of state. The Raman spectrum was also computed by means of density functional perturbation theory and compared with the experimental spectrum obtained from a natural soddyite sample. The results were also found in agreement with the experimental data. A normal mode analysis of the theoretical spectra was carried out and used in order to assign the main bands of the Raman spectrum.
Neptunium incorporation into select uranyl phases and thermal analysis of select uranyl phases
NASA Astrophysics Data System (ADS)
Klingensmith, Amanda Leigh
Alteration of spent nuclear fuel in a geological repository under oxidizing conditions is likely to result in abundant uranyl compounds. The proposed repository at Yucca Mountain, Nevada is intended to store about 70,000 metric tons of spent nuclear fuel in the unsaturated zone of a welded tuff sequence. Following failure of canisters that encapsulate the waste, contents may be exposed both to air and water and undergo repetitive wetting and drying events. Incorporation of radionuclides into the uranyl alteration phases may significantly reduce their mobility, thereby impacting repository performance. Of particular interest is 237Np owing to its long half-life (2.14 x 106 years) and potential mobility in groundwater. Powders of the synthetic uranyl phase soddyite, (UO2) 2(SiO4)(H2O)2, a framework type structure, and uranophane, Ca[(UO2)(SiO3OH)]2(H 2O)5, kasolite, Pb[(UO2)(SiO4)]H 2O, Na compreignacite, Na2[(UO2)3O 2(OH)3]2(H2O)7, and becquerelite, Ca[(UO2)3O2(OH)3]2(H 2O)8, all of which are sheet type structures, were synthesized in the presence of Np5+ under varying temperature and pH conditions. Uranophane, kasolite, boltwoodite K[(UO2)(SiO3OH)](H 2O)1.5, and Na boltwoodite K,Na[(UO2)(SiO 3OH)](H2O)1.5 were synthesized in the presence of Np as well as P, Ca and/or Mg. Single crystals of Na metaschoepite, Na[(UO 2)4O2(OH)5]˙5H2O were synthesized in the presence of Np5+ and laser ablation verified that Np can be incorporated within the structure of a uranyl phase. Incorporation of Np5+ into soddyite increased steadily with synthesis temperature. Np incorporation into uranophane, becquerelite, and kasolite was not dependent on synthesis temperature. Np uptake in uranophane and kasolite was found to be dependent on synthesis pH, with an increase in Np uptake with higher pH. Uranophane, boltwoodite and Na boltwoodite showed an increase in Np incorporation in the presence of P. Boltwoodite showed an even higher Np uptake when Mg and P were both present in the synthesis. Thermal analysis was completed for the uranyl phases soddyite, becquerelite, Na compreignacite, uranophane, and kasolite. TGA curves for becquerelite, Na compreignacite and uranophane showed loss of interlayer water groups by 100°C. Soddyite and kasolite showed more gradual TGA curves and retention of water groups up to 400°C for soddyite and 550°C for kasolite, with agreement shown by high temperature powder XRD data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, E.C.; Dietz, N.L.; Bates, J.K.
Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.
NASA Astrophysics Data System (ADS)
Hamdy, Mohamed M.; Waheeb, Anton G.; Aly, Samir M.; Farag, Nagdy M.; Sadek, Adel F.
2017-12-01
The Gabal Nasb El Atshan Upper Carboniferous-Lower Permian altered trachytes include uranium up to 3165 ppm. The paleostress and resolved shear stress analyses of the deformation systems in Gabal Nasb El Atshan area indicate that the trachyte was subjected to WNW-ESE to E-W tensile shear stress directed extensional regimes. The low-stress regions in the vicinity of extensional faults and their associated joints were favorable locations for fluid flow and the consequence alteration and U-mineralization. This occurred more extensively along the contacts between the sills of trachyte and the Hammamat sedimentary rocks; where the latter acted as a physical barrier for the alteration fluids migration outward. Alteration styles include albitization, aegirinization, arfvedsonization, chloritization and ferruginisation. The albitization is the most common sodic metasomatism, giving sanidine from Or98.8Ab0.7 to Or62.3Ab37.6, anorthoclase from Or51.4Ab48.0 to Or12.2Ab87.6 and albite from Or11.0Ab89.0 to Or0.8Ab99.2. Aegirine and arfvedsonite formed due to decreasing sodium activity in the metasomatic fluids. Sodic metasomatism may be the source of uranium-enrichment, taking place during the late magmatic to deuteric processes. This was followed by a retrograde alteration of chloritization between 175 and 42 °C toward precipitation of Fe-oxides and alteration of primary uranium. Surficial low-temperature alteration remobilized and redistributed the produced uranylhydroxides and ferruginisation caused the reduction and adsorption of U forming betafite, uranophane, soddyite, umohoite, uranotile and uranopilite.