Controlled thermal decomposition of NaSi to derive silicon clathrate compounds
NASA Astrophysics Data System (ADS)
Horie, Hiro-omi; Kikudome, Takashi; Teramura, Kyosuke; Yamanaka, Shoji
2009-01-01
Formation conditions of two types of sodium containing silicon clathrate compounds were determined by the controlled thermal decomposition of sodium monosilicide NaSi under vacuum. The decomposition began at 360 °C. Much higher decomposition temperatures and the presence of sodium metal vapor were favorable for the formation of type I clathrate compound Na 8Si 46. Type II clathrate compound Na xSi 136 was obtained as a single phase at a decomposition temperature <440 °C under the condition without sodium metal vapor. The type I clathrate compound was decomposed to crystalline Si above 520 °C. The type II clathrate compound was thermally more stable, and retained at least up to 550 °C in vacuum.
NASA Astrophysics Data System (ADS)
Okada, Takashi; Nishimura, Fumihiro; Xu, Zhanglian; Yonezawa, Susumu
2018-06-01
We propose a method of reduction-melting at 1000 °C, using a sodium-based flux, to recover lead from cathode-ray tube funnel glass. To recover the added sodium from the treated glass, we combined a reduction-melting process with a subsequent annealing step at 700 °C, generating water-soluble sodium compounds in the molten glass. Using this combined process, this study compares lead removal behavior and the generation of water-soluble sodium compounds (sodium silicates and carbonates) in order to gain fundamental information to enhance the recovery of both lead and sodium. We find that lead removal increases with increasing melting time, whereas the generation efficiency of water-soluble sodium increases and decreases periodically. In particular, near 90% lead removal, the generation of water-soluble sodium compounds decreased sharply, increasing again with the prolongation of melting time. This is due to the different crystallization and phase separation efficiencies of water-soluble sodium in molten glass, whose structure continuously changes with lead removal. Previous studies used a melting time of 60 min in the processes. However, in this study, we observe that a melting time of 180 min enhances the water-soluble sodium generation efficiency.
Method of and apparatus for removing silicon from a high temperature sodium coolant
Yunker, W.H.; Christiansen, D.W.
1983-11-25
This patent discloses a method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.
Method of and apparatus for removing silicon from a high temperature sodium coolant
Yunker, Wayne H.; Christiansen, David W.
1987-05-05
A method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.
Method of and apparatus for removing silicon from a high temperature sodium coolant
Yunker, Wayne H.; Christiansen, David W.
1987-01-01
A method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.
Aroma barrier properties of sodium caseinate-based films.
Fabra, Maria José; Hambleton, Alicia; Talens, Pau; Debeaufort, Fréderic; Chiralt, Amparo; Voilley, Andrée
2008-05-01
The mass transport of six different aroma compounds (ethyl acetate, ethyl butyrate, ethyl hexanoate, 2-hexanone, 1-hexanol, and cis-3-hexenol) through sodium caseinate-based films with different oleic acid (OA)/beeswax (BW) ratio has been studied. OA is less efficient than BW in reducing aroma permeability, which can be attributed to its greater polarity. Control film (without lipid) and films prepared with 0:100 OA/BW ratio show the lowest permeability. OA involves a decrease in aroma barrier properties of the sodium caseinate-based films due to its plasticization ability. Preferential sorption and diffusion occurs through OA instead of caseinate matrix and/or BW. The efficiency of sodium caseinate-based films to retain or limit aroma compound transfers depend on the affinity of the volatile compound to the films, which relates physicochemical interaction between volatile compound and film. Specific interactions (aroma compound-hydrocolloid and aroma compound-lipid) induce structural changes during mass transfer.
NASA Astrophysics Data System (ADS)
Wang, Xiangqin; Yu, Zengliang
2003-08-01
In this paper, samples of solid organic sodium salts (sodium formate, sodium acetate and sodium benzoate) were irradiated by low-energy N+ ions. The induced damage was detected by infrared (FT-IR). It is shown that a new cyano group (-CN) and amino group (-NH2) were formed in the irradiated sodium carbroxylic sample with N+ ion irradiation. The experimental results examined the effect of N+ ion irradiation by reacting with sodium salt molecules, and presented a new way for the synthesis of nitrogenous compound by low-energy ion irradiation.
Genotoxicity of two arsenic compounds in germ cells and somatic cells of Drosophila melanogaster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos-Morales, P.; Rodriguez-Arnaiz, R.
Two arsenic compounds, sodium arsenite (NaAsO{sup 2}) and sodium arsenate (Na{sub 2}HasO{sub 4}), were tested for their possible genotoxicity in germinal and somatic cells of Drosophila melanagaster. For germinal cells, the sex-linked recessive lethal test (SLRLT) and the sea chromosome loss test (SCLT) were used. In both tests, a broad scheme of 2-3-3 days was employed. Two routes of administration were used for the SLRLT: adult male injection (0.38, 0.77 mM used for Sodium arsenite; and 0.01, 0.02 mM for sodium arsenate). The the SCLT the compounds were injected into males. Controls were treated with a solution of 5% sucrosemore » which was employed as solvent. The somatic mutation and recombination test (SMART) was run in the w{sup +}/w eye assay as well as in the mwh +/+ flr{sup 3} wing test, employing the standard and insecticide-resistant strains. In both tests, third instar larvae were treated for 6 hr with sodium arsenite (0.38, 0.77, 1.15 mM), and sodium arsenate (0.54, 1.34, 2.69 mM). In the SLRLT, both compounds were positive, but they were negative in the SCLT. The genotoxicity of both compounds was localized mainly in somatic cells, in agreement with reports on the carcinogenic potential of arsenical compounds Solium and arsenite was an order of magnitude more toxic and mutagenic than sodium arsenate. This study confirms the reliability of the Drosophila in vivo system to test the genotoxicity of environmental compounds. 75 refs., 4 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Bhange, Deu S.; Ali, Ghulam; Kim, Ji-Young; Chung, Kyung Yoon; Nam, Kyung-Wan
2017-10-01
Due to their abundance and environmentally benign nature, iron and titanium present as the most attractive potential elements for use in rechargeable sodium-ion batteries (SIBs). Accordingly, two structurally different Fe and Ti based compounds, stoichiometric NaFeTiO4 and sodium deficient NaxFexTi2-xO4 (where x = 0.9, and 0.8), are explored as anode materials for SIBs. Their structure and sodium storage capacity are systematically investigated by using combined structural and electrochemical analysis. Rietveld refinement analysis reveals that the sodium deficiency leads to the structural transformation from a single-tunnel structure (NaFeTiO4) to a zigzag-type double-tunnel structure (Na0.9Fe0.9Ti1.1O4 and Na0.8Fe0.8Ti1.2O4). The series of sodium deficient compounds bears systematic sodium ion vacancies in their structure up to 20%. Sodium deficiency in the NaxFexTi2-xO4 logically provides additional space for accommodating the excess sodium ions as such the NaxFexTi2-xO4 compounds with higher level of sodium deficiency show higher specific capacities than the stoichiometric NaFeTiO4. All the compounds exhibited very good electrochemical cycling stability, with minimal capacity loss during cycling. The present approach is a model example of improvement in the sodium storage capacity of the anode materials by tuning the chemical composition, and could facilitate the performance improvement of known or new electrode materials for SIBs.
Controlled thermal decomposition of NaSi to derive silicon clathrate compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horie, Hiro-omi; Kikudome, Takashi; Teramura, Kyosuke
Formation conditions of two types of sodium containing silicon clathrate compounds were determined by the controlled thermal decomposition of sodium monosilicide NaSi under vacuum. The decomposition began at 360 deg. C. Much higher decomposition temperatures and the presence of sodium metal vapor were favorable for the formation of type I clathrate compound Na{sub 8}Si{sub 46}. Type II clathrate compound Na{sub x}Si{sub 136} was obtained as a single phase at a decomposition temperature <440 deg. C under the condition without sodium metal vapor. The type I clathrate compound was decomposed to crystalline Si above 520 deg. C. The type II clathratemore » compound was thermally more stable, and retained at least up to 550 deg. C in vacuum. - Graphical Abstract: The optimal condition to prepare type II silicon clathrate Na{sub x}Si{sub 136} with minimal contamination of the type I phase is proposed. The starting NaSi should be thermally decomposed below 440 deg. C, and the rapid removal of Na vapor evolved is essentially important.« less
Technique for detecting liquid metal leaks
Bauerle, James E.
1979-01-01
In a system employing flowing liquid metal as a heat transfer medium in contact with tubular members containing a working fluid, i.e., steam, liquid metal leaks through the wall of the tubular member are detected by dislodging the liquid metal compounds forming in the tubular member at the leak locations and subsequently transporting the dislodged compound in the form of an aerosol to a detector responsive to the liquid metal compound. In the application to a sodium cooled tubular member, the detector would consist of a sodium responsive device, such as a sodium ion detector.
Anderson, Collin; Stidham, Chanelle; Boehme, Sabrina; Cash, Jared
2017-12-14
Calcium phosphate precipitates present 1 of many challenges associated with parenteral nutrition (PN) compounding. Extensive research has led to the establishment of solubility curves to guide practitioners in the prescription and preparation of stable PN. Concurrent dosing of intravenous products via y-site administration with PN can alter the chemical balance of the solution and modify solubility. Medications containing calcium or phosphate should not be administered in the same line as PN, due to the high potential for precipitation. Herein a case is reported from a pediatric cardiac intensive care unit where a physician ordered the administration of calcium chloride. The bedside nurse added the calcium chloride intermittent infusion as a y-site administration with the patient's PN. The patient's PN had been compounded with sodium glycerophosphate, temporarily available in the United States during a sodium phosphate shortage. The patient did not experience any observable adverse effects from the y-site administration with PN. Following this event, the scenario was replicated to investigate any precipitation risk associated with the y-site administration. Additionally, a separate PN solution containing sodium phosphate rather than glycerophosphate was compounded and used in a laboratory setting to demonstrate the potential for harm had the patient's PN been compounded with an inorganic phosphate source. This replication of the error demonstrates the additional safety gained in relation to precipitation risk when PN solutions are compounded with sodium glycerophosphate in place of sodium phosphate. © 2017 American Society for Parenteral and Enteral Nutrition.
NASA Astrophysics Data System (ADS)
Nelson, Peter N.; Taylor, Richard A.
2015-03-01
A comparative study of the room temperature molecular packing and lattice structures for the homologous series of zinc(II) and sodium(I) n-alkanoates adduced from Fourier transform infrared and solid-state 13C NMR spectroscopic data in conjunction with X-ray powder diffraction measurements is carried out. For zinc carboxylates, metal-carboxyl bonding is via asymmetric bridging bidentate coordination whilst for the sodium adducts, coordination is via asymmetric chelating bidentate bonding. All compounds are packed in a monoclinic crystal system. Furthermore, the fully extended all-trans hydrocarbon chains are arranged as lamellar bilayers. For zinc compounds, there is bilayer overlap, for long chain adducts (nc > 8) but not for sodium compounds where methyl groups from opposing layers in the lamellar are only closely packed. Additionally, the hydrocarbon chains are extended along the a-axis of the unit cell for zinc compounds whilst for sodium carboxylates they are extended along the c-axis. These packing differences are responsible for different levels of Van der Waals effects in the lattices of these two series of compounds, hence, observed odd-even alternation is different. The significant difference in lattice packing observed for these two series of compounds is proposed to be due to the difference in metal-carboxyl coordination mode, arising from the different electronic structure of the central metal ions.
TUNGSTEN BRONZE RELATED NON-NOBLE ELECTROCATALYSTS.
FUEL CELLS, *CATALYSTS), (*OXYGEN, *ELECTRODES), (* SILICIDES , ELECTRODES), (*CARBIDES, ELECTRODES), (*TUNGSTEN COMPOUNDS, *ELECTROCHEMISTRY...CATALYSTS, TITANIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, VANADIUM COMPOUNDS, NIOBIUM COMPOUNDS, TUNGSTEN COMPOUNDS, TANTALUM COMPOUNDS, MOLYBDENUM COMPOUNDS, SULFURIC ACID, CRYSTAL GROWTH, SODIUM COMPOUNDS
THE DIFFERENTIAL THERMAL ANALYSIS OF CYANO-TRANSITION METAL COMPLEXES
COMPOUNDS, CHROMATES, COBALT COMPOUNDS, CYANIDES, CYANOGEN, DYES, FERRATES , GASES, HEAT, HYDROXIDES, LITHIUM COMPOUNDS, MOLYBDATES, NICKELATES, NITRATES...OXIDATION REDUCTION REACTIONS, POTASSIUM COMPOUNDS, SILVER COMPOUNDS, SODIUM COMPOUNDS, VANADATES
Bamberger, C.E.
1980-04-24
A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO/sub 2/), titanium dioxide (TiO/sub 2/) and sodium titanate (Na/sub 2/TiO/sub 3/) to form sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) and oxygen. Sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) reacted with sodium carbonate (Na/sub 2/CO/sub 3/) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.
Bamberger, Carlos E.
1982-01-01
A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO.sub.2), titanium dioxide (TiO.sub.2) and sodium titanate (Na.sub.2 TiO.sub.3) to form sodium cerous titanate (NaCeTi.sub.2 O.sub.6) and oxygen. Sodium cerous titanate (NaCeTi.sub.2 O.sub.6) reacted with sodium carbonate (Na.sub.2 CO.sub.3) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.
Berardo, A; De Maere, H; Stavropoulou, D A; Rysman, T; Leroy, F; De Smet, S
2016-11-01
The effects of sodium nitrite and ascorbate on lipid and protein oxidation were studied during the ripening process of dry fermented sausages. Samples were taken at day 0, 2, 8, 14, 21 and 28 of ripening to assess lipid (malondialdehyde) and protein (carbonyls and sulfhydryl groups) oxidation. Sodium ascorbate and nitrite were separately able to reduce the formation of malondialdehyde. Their combined addition resulted in higher amounts of carbonyl compounds compared to their separate addition or the treatment without any of both compounds. Moreover, sodium nitrite limited the formation of γ-glutamic semialdehyde whereas sodium ascorbate showed a pro-oxidant effect. A loss of thiol groups was observed during ripening, which was not affected by the use of sodium ascorbate nor sodium nitrite. In conclusion, sodium nitrite and ascorbate affected protein and lipid oxidation in different manners. The possible pro-oxidant effect of their combined addition on carbonyl formation might influence the technological and sensory properties of these products. Copyright © 2016 Elsevier Ltd. All rights reserved.
21 CFR 176.210 - Defoaming agents used in the manufacture of paper and paperboard.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (soaps). Sorbitol (esters). Sulfuric acid (sulfated and sulfonated compounds). Triethanolamine (amides... sulfate. Sodium lignin sulfonate. Sodium 2-mercaptobenzothiazole. Sodium naphthalenesulfonic acid (3 mols...
21 CFR 176.210 - Defoaming agents used in the manufacture of paper and paperboard.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (soaps). Sorbitol (esters). Sulfuric acid (sulfated and sulfonated compounds). Triethanolamine (amides... sulfate. Sodium lignin sulfonate. Sodium 2-mercaptobenzothiazole. Sodium naphthalenesulfonic acid (3 mols...
Shadike, Zulipiya; Zhou, Yong -Ning; Chen, Lan -Li; ...
2017-08-30
The intercalation compounds with various electrochemically active or inactive elements in the layered structure have been the subject of increasing interest due to their high capacities, good reversibility, simple structures and ease of synthesis. However, their reversible intercalation/deintercalation redox chemistries in all previous compounds involve a single cationic redox reaction or a cumulative cationic and anionic redox reaction. Here we report an anionic redox only chemistry and structural stabilization of layered sodium chromium sulfide. It is discovered that sulfur in sodium chromium sulfide is electrochemical active undergoing oxidation/reduction of sulfur rather than chromium. Significantly, sodium ions can successfully move outmore » and into without changing its lattice parameter c, which is explained in terms of the occurrence of chromium/sodium vacancy antisite during desodiation and sodiation processes. Here, our present work not only enriches the electrochemistry of layered intercalation compounds, but also extends the scope of investigation on high-capacity electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadike, Zulipiya; Zhou, Yong -Ning; Chen, Lan -Li
The intercalation compounds with various electrochemically active or inactive elements in the layered structure have been the subject of increasing interest due to their high capacities, good reversibility, simple structures and ease of synthesis. However, their reversible intercalation/deintercalation redox chemistries in all previous compounds involve a single cationic redox reaction or a cumulative cationic and anionic redox reaction. Here we report an anionic redox only chemistry and structural stabilization of layered sodium chromium sulfide. It is discovered that sulfur in sodium chromium sulfide is electrochemical active undergoing oxidation/reduction of sulfur rather than chromium. Significantly, sodium ions can successfully move outmore » and into without changing its lattice parameter c, which is explained in terms of the occurrence of chromium/sodium vacancy antisite during desodiation and sodiation processes. Here, our present work not only enriches the electrochemistry of layered intercalation compounds, but also extends the scope of investigation on high-capacity electrodes.« less
Survey of Chemical Compounds Tested In Vitro against Rumen Protozoa for Possible Control of Bloat
Willard, F. L.; Kodras, Rudolph
1967-01-01
Over 170 chemical agents were screened for antiprotozoal action in bovine ruminal fluid. Compounds were tested at 0.1 and 0.05% concentrations. Tested compounds included inorganic compounds, antibiotics, biocides, neuromuscular agents, arsenicals, plant and animal hormones, antimalarials, surface-active agents, anthelmintics, and many others. The most active compounds were cupric sulfate, nickel sulfate, nitrofurazone, hydrogen peroxide, dodecyl sodium sulfate, pelargonic acid, iodoacetic acid, 1-diethylaminoethylamino-4-methylthiaxanthrone, sodium arsanilate, sodium arsenate, bismuth glycolyl arsanilate, 1-β-hydroxyethyl-2-methyl-5-nitroimidazole, and p-nitroaniline. Copper ion was not particularly effective against entodinia; nickel ion had no effect on holotrichs. Hydrogen peroxide and iodoacetic acid were effective at a concentration of 0.005%. Anionic surface-active agents were very effective, especially long-chain sulfates and phosphates. These antiprotozoal agents warrant further in vivo studies for possible use in treating or curing bloat in ruminants. PMID:6077407
Survey of chemical compounds tested in vitro against rumen protozoa for possible control of bloat.
Willard, F L; Kodras, R
1967-09-01
Over 170 chemical agents were screened for antiprotozoal action in bovine ruminal fluid. Compounds were tested at 0.1 and 0.05% concentrations. Tested compounds included inorganic compounds, antibiotics, biocides, neuromuscular agents, arsenicals, plant and animal hormones, antimalarials, surface-active agents, anthelmintics, and many others. The most active compounds were cupric sulfate, nickel sulfate, nitrofurazone, hydrogen peroxide, dodecyl sodium sulfate, pelargonic acid, iodoacetic acid, 1-diethylaminoethylamino-4-methylthiaxanthrone, sodium arsanilate, sodium arsenate, bismuth glycolyl arsanilate, 1-beta-hydroxyethyl-2-methyl-5-nitroimidazole, and p-nitroaniline. Copper ion was not particularly effective against entodinia; nickel ion had no effect on holotrichs. Hydrogen peroxide and iodoacetic acid were effective at a concentration of 0.005%. Anionic surface-active agents were very effective, especially long-chain sulfates and phosphates. These antiprotozoal agents warrant further in vivo studies for possible use in treating or curing bloat in ruminants.
2015-01-01
The functionalized amino acid, lacosamide ((R)-2), and the α-aminoamide, safinamide ((S)-3), are neurological agents that have been extensively investigated and have displayed potent anticonvulsant activities in seizure models. Both compounds have been reported to modulate voltage-gated sodium channel activity. We have prepared a series of chimeric compounds, (R)-7–(R)-10, by merging key structural units in these two clinical agents, and then compared their activities with (R)-2 and (S)-3. Compounds were assessed for their ability to alter sodium channel kinetics for inactivation, frequency (use)-dependence, and steady-state activation and fast inactivation. We report that chimeric compounds (R)-7–(R)-10 in catecholamine A-differentiated (CAD) cells and embryonic rat cortical neurons robustly enhanced sodium channel inactivation at concentrations far lower than those required for (R)-2 and (S)-3, and that (R)-9 and (R)-10, unlike (R)-2 and (S)-3, produce sodium channel frequency (use)-dependence at low micromolar concentrations. We further show that (R)-7–(R)-10 displayed excellent anticonvulsant activities and pain-attenuating properties in the animal formalin model. Of these compounds, only (R)-7 reversed mechanical hypersensitivity in the tibial-nerve injury model for neuropathic pain in rats. PMID:25418676
Park, Ki Duk; Yang, Xiao-Fang; Dustrude, Erik T; Wang, Yuying; Ripsch, Matthew S; White, Fletcher A; Khanna, Rajesh; Kohn, Harold
2015-02-18
The functionalized amino acid, lacosamide ((R)-2), and the α-aminoamide, safinamide ((S)-3), are neurological agents that have been extensively investigated and have displayed potent anticonvulsant activities in seizure models. Both compounds have been reported to modulate voltage-gated sodium channel activity. We have prepared a series of chimeric compounds, (R)-7-(R)-10, by merging key structural units in these two clinical agents, and then compared their activities with (R)-2 and (S)-3. Compounds were assessed for their ability to alter sodium channel kinetics for inactivation, frequency (use)-dependence, and steady-state activation and fast inactivation. We report that chimeric compounds (R)-7-(R)-10 in catecholamine A-differentiated (CAD) cells and embryonic rat cortical neurons robustly enhanced sodium channel inactivation at concentrations far lower than those required for (R)-2 and (S)-3, and that (R)-9 and (R)-10, unlike (R)-2 and (S)-3, produce sodium channel frequency (use)-dependence at low micromolar concentrations. We further show that (R)-7-(R)-10 displayed excellent anticonvulsant activities and pain-attenuating properties in the animal formalin model. Of these compounds, only (R)-7 reversed mechanical hypersensitivity in the tibial-nerve injury model for neuropathic pain in rats.
[Preparation and application on compound excipient of sodium stearyl fumarate and plasdone S-630].
Jiang, Yan-Rong; Zhang, Zhen-Hai; Jia, Xiao-Bin
2013-01-01
The compound excipient containing sodium stearyl fumarate and plasdone S-630 was prepared by applying spray drying method. The basic physical properties of compound excipient were studied by solubility test, scanning electron microscope, differential scanning calorimeter, X-ray diffraction and Fourier transform infra-red spectroscopy. The effect of compound excipient on moisture absorption and ferulic acid in vitro dissolution of spray drying power of angelica were investigated. The results showed that the chemical constituents of compound excipient did not change before and after spray drying. The water soluble compound excipient can improve significantly moisture absorption and has application prospect.
Chen, Jing; Wang, Wenqing; Shi, Chunyang; Fang, Jianguo
2014-01-01
Houttuynia cordata Thunb. (H. cordata) is an anti-inflammatory herbal drug that is clinically used in Asia. The essential oil obtained from H. cordata is known to contain 2-undecanone (2-methyl nonyl ketone). In addition, sodium houttuyfonate is a compound that can be derived from H. cordata and has important clinical uses as an anti-inflammatory agent. Sodium houttuyfonate can be converted to decanoyl acetaldehyde (houttuynin) and then to 2-undecanone. Therefore, the experiments described here explore the comparative anti-inflammatory activities of these compounds. Sodium houttuyfonate showed more potent anti-inflammatory activities than that of 2-undecanone at the same dosage, both in vitro and in vivo, although both compounds significantly inhibited the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and the expression of toll-like receptor 4 (TLR4), but increased the secretion of interleukin-10 (IL-10) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In addition, both compounds showed dose-dependent inhibitory effects on xylene-induced mouse ear edema. In a previous study, we found sodium houttuyfonate to be transformed to 2-undecanone during steam distillation (SD). Optimum therapeutic effects are related to the stability and pharmacological activity of the drugs. Consequently, we studied the stability of sodium houttuyfonate under a simulated gastrointestinal environment with the main influencing factors being solvent, temperature and pH effects. For the first time, sodium houttuyfonate and 2-undecanone were detected simultaneously in the mouse serum and the gastrointestinal tissue after oral administration. Sodium houttuyfonate is detected within a short period of time in the systemic circulation and tissues without conversion to 2-undecanone. PMID:25514406
GENOTOXICITY STUDIES OF SODIUM DICHLOROACETATE AND SODIUM TRICHLOROACETATE
The genotoxic properties of sodium dichloroacetate (DCA) and sodium trichloroacetate (TCA)were evaluated in several short-term in vitro and in vivo assays. Neither compound was mutagenic in tester strain TA102 in the Salmonella mutagenicity assay. Both DCA and TCA were weak induc...
Arihara, K; Itoh, M
2000-06-01
Lactobacillus gasseri, one of the predominant lactobacilli in human intestinal tracts, is utilized for probiotics and dairy starter cultures. However, since L. gasseri is relatively sensitive to sodium chloride and sodium nitrite (essential compounds for meat products), it is difficult to utilize this species for conventional fermented meat products. In this study, efforts were directed to generate mutants of L. gasseri resisting sodium chloride and sodium nitrite. UV irradiation of the strain of L. gasseri JCM1131(T) generated several mutants resisting these compounds. A mutant strain 1131-M8 demonstrated satisfactory growth in meat containing 3.3% sodium chloride and 200 ppm sodium nitrite. Although proteins extracted from the cell surface of 1131-M8 were slightly different from those of the original strain, other biochemical characteristics of both strains were indistinguishable. These results suggest that the L. gasseri mutant obtained in this study could be utilized as a starter culture to develop probiotic meat products.
Jalili, M; Jinap, S; Son, R
2011-04-01
The effect of 18 different chemicals, which included acidic compounds (sulfuric acid, chloridric acid, phosphoric acid, benzoic acid, citric acid, acetic acid), alkaline compounds (ammonia, sodium bicarbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide), salts (acetate ammonium, sodium bisulfite, sodium hydrosulfite, sodium chloride, sodium sulfate) and oxidising agents (hydrogen peroxide, sodium hypochlorite), on the reduction of aflatoxins B(1), B(2), G(1) and G(2) and ochratoxin A (OTA) was investigated in black and white pepper. OTA and aflatoxins were determined using HPLC after immunoaffinity column clean-up. Almost all of the applied chemicals showed a significant degree of reduction on mycotoxins (p < 0.05). The lowest and highest reduction of aflatoxin B(1), which is the most dangerous aflatoxin, was 20.5% ± 2.7% using benzoic acid and 54.5% ± 2.7% using sodium hydroxide. There was no significant difference between black and white peppers (p < 0.05).
Tellurate and periodate solutions as media for paper electrophoresis of carbohydrates.
Alesofie, B M; Popiel, W J
1973-02-01
Electrophoretic separations of sugars and other polyhydroxy compounds may be performed in 0.2M telluric acid media adjusted to pH 10 with sodium hydroxide, and in 0.07M sodium metaperiodate at pH 11. Oxidation by periodate appears to be only slight under these conditions. Migration rates of 21 compounds are reported relative to the movement of d-ribose. In both electrolytes the compounds form anionic complexes.
Anderson, Collin R; Collins, Deborah; Laursen, Trevor; Arave, Trevor; Helm, Michael
2016-01-01
Sodium nitroprusside is a potent vasodilator employed intraoperatively and within critical care areas. The photolabile pharmaceutical agent has been used for decades and various stability studies have been executed. Due to potential shortages and the desire to batch compound sodium nitroprusside at a concentration of 1 mg/mL in polypropylene syringes, a new stability study was performed. Chromatographic analysis was conducted on a C18 column, with elution via an aqueous phase of 0.01 M sodium phosphate monobasic, adjusted to pH 6.5 with sodium hydroxide, and methanol (97.5:2.5) at a rate of 1 mL/min, and subsequent ultraviolet detection at 210 nm. Triplicate determinations of four samples, stored under refrigeration at 4°C, were obtained initially and on days 2, 5, and 9. Turbidity and pH measurements were performed in conjunction with visual observation on days of chromatographic analysis. Results demonstrate that sodium nitroprusside compounded in 5% dextrose at a concentration of 1 mg/mL, stored at 4°C protected from light in polypropylene syringes, is physically and chemically stable for at least 9 days. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Insertion compounds and composites made by ball milling for advanced sodium-ion batteries
Zhang, Biao; Dugas, Romain; Rousse, Gwenaelle; Rozier, Patrick; Abakumov, Artem M.; Tarascon, Jean-Marie
2016-01-01
Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)2F3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P′2-Na1[Fe0.5Mn0.5]O2 and C/‘Na3+xV2(PO4)2F3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology. PMID:26777573
Process for production desulfurized of synthesis gas
Wolfenbarger, James K.; Najjar, Mitri S.
1993-01-01
A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.
Hrizo, John; Bauerle, James E.; Witkowski, Robert E.
1982-01-01
A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, M.K.; Minta, J.O.
1985-08-01
The authors have examined the effects of anti-inflammatory and anti-rheumatic drugs on membrane-bound and purified Na /K -ATPase activity in vitro. Only the gold-containing compounds (gold sodium thiomalate and auranofin) were found to inhibit the enzyme activity in a dose-dependent manner. Sodium thiomalate and triethylphosphine, the ligand compounds for gold sodium thiomalate and auranofin, respectively, had no effect on ATPase activity. The antagonistic properties was abolished by preincubation of the gold compounds with dithiothreitol. Lineweaver-Burke analysis of the inhibitions of purified ATPase by the gold compounds was found to follow uncompetitive kinetics. Inhibition of ATPase by gold may cause disruptionmore » of transmembrane cation transport and thus result in impairment of several metabolic processes and cellular functions.« less
21 CFR 184.1754 - Sodium diacetate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium diacetate. 184.1754 Section 184.1754 Food... Specific Substances Affirmed as GRAS § 184.1754 Sodium diacetate. (a) Sodium diacetate (C4H7O4Na·xH2O, CAS Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration. The...
21 CFR 184.1754 - Sodium diacetate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium diacetate. 184.1754 Section 184.1754 Food... Specific Substances Affirmed as GRAS § 184.1754 Sodium diacetate. (a) Sodium diacetate (C4H7O4Na·xH2O, CAS Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration. The...
21 CFR 184.1754 - Sodium diacetate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium diacetate. 184.1754 Section 184.1754 Food... Specific Substances Affirmed as GRAS § 184.1754 Sodium diacetate. (a) Sodium diacetate (C4H7O4Na·xH2O, CAS Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration. The...
21 CFR 184.1754 - Sodium diacetate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium diacetate. 184.1754 Section 184.1754 Food... Specific Substances Affirmed as GRAS § 184.1754 Sodium diacetate. (a) Sodium diacetate (C4H7O4Na·xH2O, CAS Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration. The...
21 CFR 184.1754 - Sodium diacetate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium diacetate. 184.1754 Section 184.1754 Food... GRAS § 184.1754 Sodium diacetate. (a) Sodium diacetate (C4H7O4Na·xH2O, CAS Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration. The technical grade is prepared...
METHOD OF PROCESSING MONAZITE SAND
Calkins, G.D.
1957-10-29
A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.
Process for production of synthesis gas with reduced sulfur content
Najjar, Mitri S.; Corbeels, Roger J.; Kokturk, Uygur
1989-01-01
A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.
Lee, A; Eschenbruch, R; Waller, J
1985-09-01
The effect of phenolic compounds, ethyl alcohol, and sodium metabisulphite on the lytic activity of virulent bacteriophage PL-1 on a Lactobacillus casei S strain isolated from a lactic acid beverage fermentation was investigated. Catechin, caffeic, and gallic acids, commercially produced red, white, and champagne tannins, ethyl alcohol, and sodium metabisulphite inhibited plaque formation. Catechin, caffeic, and gallic acids were the most effective inhibitors of plaque formation. Commercially supplied oenocyanin was not effective.
NASA Astrophysics Data System (ADS)
Sun, C. X.; Chen, Y. M.; Xu, H. W.; Zhang, M.; Chen, M.; Xue, M.; Wu, J. Y.; Huang, C. S.
2015-07-01
The electrochemical corrosion behavior of A3 in compound sodium molybdate and organic inhibitor solution was tested by the electrochemical workstation method. The concentration of the compound inhibitor set to range 250 mg/L to 3000 mg/L. The polarization curve results of A3 in different concentration inhibitor solutions show that the inhibitor markedly represses the anodic processes. The EIS has two time constant. The extreme concentration is 1500 mg/L.
Sharma, Vijeta; Amarnath, Nagarjuna; Shukla, Swapnil; Ayana, R; Kumar, Naveen; Yadav, Nisha; Kannan, Deepika; Sehrawat, Seema; Pati, Soumya; Lochab, Bimlesh; Singh, Shailja
2018-05-15
Development of new class of anti-malarial drugs is an essential requirement for the elimination of malaria. Bioactive components present in medicinal plants and their chemically modified derivatives could be a way forward towards the discovery of effective anti-malarial drugs. Herein, we describe a new class of compounds, 1,3-benzoxazine derivatives of pharmacologically active phytophenols eugenol (compound 3) and isoeugenol (compound 4) synthesised on the principles of green chemistry, as anti-malarials. Compound 4, showed highest anti-malarial activity with no cytotoxicity towards mammalian cells. Compound 4 induced alterations in the intracellular Na + levels and mitochondrial depolarisation in intraerythrocytic Plasmodium falciparum leading to cell death. Knowing P-type cation ATPase PfATP4 is a regulator for sodium homeostasis, binding of compound 3, compound 4 and eugenol to PfATP4 was analysed by molecular docking studies. Compounds showed binding to the catalytic pocket of PfATP4, however compound 4 showed stronger binding due to the presence of propylene functionality, which corroborates its higher anti-malarial activity. Furthermore, anti-malarial half maximal effective concentration of compound 4 was reduced to 490 nM from 17.54 µM with nanomaterial graphene oxide. Altogether, this study presents anti-plasmodial potential of benzoxazine derivatives of phytophenols and establishes disruption of parasite sodium homeostasis as their mechanism of action. Copyright © 2018 Elsevier Ltd. All rights reserved.
Legal Regulation of Sodium Consumption to Reduce Chronic Conditions
Barraza, Leila F.
2016-01-01
In the United States, tens of thousands of Americans die each year of heart disease, stroke, or other chronic conditions tied to hypertension from long-term overconsumption of sodium compounds. Major strides to lower dietary sodium have been made over decades, but the goal of reducing Americans’ daily consumption is elusive. The Food and Drug Administration (FDA) has been urged to consider stronger regulatory limits on sodium, especially in processed and prepared foods. Still, FDA categorizes salt (and many other sodium compounds) as “generally recognized as safe,” meaning they can be added to foods when ingested in reasonable amounts. Legal reforms or actions at each level of government offer traditional and new routes to improving chronic disease outcomes. However, using law as a public health tool must be assessed carefully, given potential trade-offs and unproven efficacy. PMID:26890409
Torregrosa, Robert; Yang, Xiao-Fang; Dustrude, Erik T.; Cummins, Theodore R.
2015-01-01
Six novel 3″-substituted (R)-N-(phenoxybenzyl) 2-N-acetamido-3-methoxypropionamides were prepared and then assessed using whole-cell, patch-clamp electrophysiology for their anticonvulsant activities in animal seizure models and for their sodium channel activities. We found compounds with various substituents at the terminal aromatic ring that had excellent anticonvulsant activity. Of these compounds, (R)-N-4′-((3″-chloro)phenoxy)benzyl 2-N-acetamido-3-methoxypropionamide ((R)-5) and (R)-N-4′-((3″-trifluoromethoxy)phenoxy)benzyl 2-N-acetamido-3-methoxypropionamide ((R)-9) exhibited high protective indices (PI = TD50/ED50) comparable with many antiseizure drugs when tested in the maximal electroshock seizure test to mice (intraperitoneally) and rats (intraperitoneally, orally). Most compounds potently transitioned sodium channels to the slow-inactivated state when evaluated in rat embryonic cortical neurons. Treating HEK293 recombinant cells that expressed hNav1.1, rNav1.3, hNav1.5, or hNav1.7 with (R)-9 recapitulated the high levels of sodium channel slow inactivation. PMID:25922183
NASA Astrophysics Data System (ADS)
Ibrahim, I. M.; Jai, J.; Daud, M.; Hashim, Md A.
2018-03-01
The inhibition effect demonstrates an increase in the inhibition performance in presence of a secondary compound in the inhibited solution. This study introduces fatty amides as corrosion inhibitor and oxygen scavenger, namely, sodium sulphite as a secondary compound. The main objective is to determine the synergistic inhibition effect of a system by using fatty amides together with sodium sulphite in hydrodynamic condition. The synergistic inhibition of fatty amides and sodium sulphite on corrosion of carbon steel in 3.5 wt% sodium chloride solution had been studied using linear polarization resistance method and scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX). Electrochemical measurement was carried out using rotating cylinder electrode at different flow regimes (static, laminar, transition and turbulent). Linear polarization resistance experiments showed the changes in polarization resistance when the rotation speed increased. It found that, by addition of fatty amides together with sodium sulphite in test solution, the inhibition efficiency increased when rotation speed increased. The results collected from LPR experiment correlated with results from SEM-EDX. The results showed inhibition efficiency of system was enhanced when fatty amides and oxygen scavengers were present together.
GROWTH AND CHARACTERIZATION OF SINGLE CRYSTALS OF RARE EARTH COMPOUNDS.
SINGLE CRYSTALS, CRYSTAL GROWTH), (*CRYSTAL GROWTH, SINGLE CRYSTALS), (*RARE EARTH COMPOUNDS, SINGLE CRYSTALS), EPITAXIAL GROWTH, SODIUM COMPOUNDS, CHLORIDES, VAPOR PLATING, ELECTROSTATIC FIELDS, ENERGY, ATOMIC PROPERTIES , BONDING
Parliman, D.J.
2001-01-01
Between September 1999 and March 2000, soil samples from the Fort Hall, Idaho, area were analyzed for two soil fumigants, 1,3-dichloropropene (1,3-DCP) and sodium n-methyldithiocarbamate (metam-sodium), and their degradation products. Ground water is the only source of drinking water at Fort Hall, and the purpose of the investigation was to determine potential risk of ground-water contamination from persistence and movement of these pesticides in cropland soils. 1,3-DCP, metam-sodium, or their degradation products were detected in 42 of 104 soil samples. The samples were collected from 1-, 2-, and 3-foot depths in multiple backhoe trenches during four sampling events—before pesticide application in September; after application in October; before soil freeze in December; and after soil thaw in March. In most cases, concentrations of the pesticide compounds were at or near their laboratory minimum reporting limits. U.S. Environmental Protection Agency Method 5035 was used as the guideline for soil sample preparation and analyses, and either sodium bisulfate (NaHSO4), an acidic preservative, or pesticide-free water was added to samples prior to analyses. Addition of NaHSO4 to the samples resulted in a greater number of compound detections, but pesticide-free water was added to most samples to avoid the strong reactions of soil carbonate minerals with the NaHSO4. As a result, nondetection of compounds in samples containing pesticide-free water did not necessarily indicate that the compounds were absent. Detections of these compounds were inconsistent among trenches with similar soil characteristics and histories of soil fumigant use. Compounds were detected at different depths and different trench locations during each sampling event. Overall results of this study showed that the original compounds or their degradation products can persist in soil 6 months or more after their application and are present to at least 3 feet below land surface in some areas. A few of the soil analyses results were unexpected. Degradation products of metam-sodium were detected in samples from croplands with a history of 1,3-DCP applications only, and were not detected in samples from croplands with a history of metam-sodium applications. Although 1,2-dibromoethane (EDB) has not been used in the area for many years, EDB was detected in a few soil samples. The presence of EDB in soil could be caused by irrigation of croplands with EDBcontaminated ground water. Analyses of these soil samples resulted in many unanswered questions, and further studies are needed. One potential study to determine vertical extent of pesticide compound migration in sediments, for example, would include analysis of one or more columns of soil and sediments (land surface to ground water, about 35 to 50 feet below land surface) in areas with known soil contamination. Another study would expand the scope of soil contamination to include broader types of cropland conditions and compound analyses.
Puspitasari, Irma M; Yamazaki, Chiho; Abdulah, Rizky; Putri, Mirasari; Kameo, Satomi; Nakano, Takashi; Koyama, Hiroshi
2017-01-01
The administration of radioprotective compounds is one approach to preventing radiation damage in non-cancerous tissues. Therefore, radioprotective compounds are crucial in clinical radiotherapy. Selenium is a radioprotective compound that has been used in previous clinical studies of radiotherapy. However, evidence regarding the effectiveness of selenium in radiotherapy and the mechanisms underlying the selenium-induced reduction of the side effects of radiotherapy remains insufficient. To further investigate the effectiveness of selenium in radiotherapy, the present study examined the protective effects of sodium selenite supplementation administered prior to X-ray radiation treatment in CHEK-1 non-cancerous human esophageal cells. Sodium selenite supplementation increased glutathione peroxidase 1 (GPx-1) activity in a dose- and time-dependent manner. The sodium selenite dose that induced the highest GPx-1 activity was determined to be 50 nM for 72 h prior to radiotherapy. The half-maximal inhibitory concentration of sodium selenite in CHEK-1 cells was 3.6 µM. Sodium selenite supplementation increased the survival rate of the cells in a dose-dependent manner and enhanced the degree of cell viability at 72 h post-irradiation (P<0.05). Combined treatment with 50 nM sodium selenite and 2 gray (Gy) X-ray irradiation decreased the number of sub-G 1 cells from 5.9 to 4.2% (P<0.05) and increased the proportion of G 1 cells from 58.8 to 62.1%, compared with 2 Gy X-ray irradiation alone; however, this difference was not statistically significant (P=1.00). Western blot analysis revealed that treatment with 2 Gy X-ray irradiation significantly increased the expression levels of cleaved poly (ADP-ribose) polymerase (PARP; P<0.05). In addition, combined treatment with 50 nM sodium selenite and 2 Gy X-ray irradiation reduced the expression levels of cleaved PARP protein, compared with 2 Gy X-ray irradiation alone; however, this reduction was not statistically significant (P=0.423). These results suggest that 50 nM sodium selenite supplementation administered for 72 h prior to irradiation may protect CHEK-1 cells from irradiation-induced damage by inhibiting irradiation-induced apoptosis. Therefore, sodium selenite is a potential radioprotective compound for non-cancerous cells in clinical radiotherapy.
Antibacterial Effect of Silver Diamine Fluoride on Cariogenic Organisms.
Lou, Yali; Darvell, Brain W; Botelho, Michael G
2018-05-01
To screen the possible antimicrobial activity of a range of clinically used, silver-based compounds on cariogenic organisms: silver diamine fluoride (SDF), silver fluoride, and silver nitrate. Preliminary screening disk-diffusion susceptibility tests were conducted on Mueller-Hinton agar plates inoculated with Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces naeslundii, organisms known to be cariogenic. In order to identify which component of the silver compounds was responsible for any antibacterial (AB) effect, and to provide controls, the following were also investigated at high and low concentrations: sodium fluoride, ammonium fluoride, ammonium chloride, sodium fluoride, sodium chloride, and sodium nitrate, as well as deionized water as control. A volume of 10 pL of a test solution was dispensed onto a paper disk resting on the inoculated agar surface, and the plate incubated anaerobically at 37°C for 48 hours. The zones of inhibition were then measured. Silver diamine fluoride, silver fluoride, silver nitrate, and ammonium fluoride had significant AB effect (p < 0.05) on all three test organisms, although ammonium fluoride had no effect at low concentration; the remaining other compounds had no effect. Silver ions appear to be the principal AB agent at both high and low concentration; fluoride ions only have an AB effect at high concentration, while ammonium, nitrate, chloride and sodium ions have none. The anticaries effect of topical silver solutions appears restricted to that of the silver ions. Silver compounds, such as SDF, silver fluoride, and silver nitrate have AB effect against cariogenic organisms and these may have clinical impact in arresting or preventing dental decay. Sodium fluoride did not have AB effect under the conditions tested.
Oliver, Caitlin J; Softley, Samantha; Williamson, Sally M; Stevenson, Philip C; Wright, Geraldine A
2015-01-01
Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the main target sites of many naturally-occurring, insecticidal plant compounds and agricultural pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particularly toxic to insects and have been successfully used as pesticides including on flowering crops that are visited by pollinators. Pyrethrins, from which they were derived, occur naturally in the nectar of some flowering plant species. We know relatively little about how such compounds--i.e., compounds that target sodium channels--influence pollinators at low or sub-lethal doses. Here, we exposed individual adult forager honeybees to several compounds that bind to sodium channels to identify whether these compounds affect motor function. Using an assay previously developed to identify the effect of drugs and toxins on individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyrethroid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins (aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning behaviour. Bees exposed to these compounds spent more time upside down and fanning their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin, aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees affected the time spent upside down (i.e., failure to perform the righting reflex). Our data show that low doses of pyrethroids and other nectar toxins that target sodium channels mainly influence motor function through their effect on the righting reflex of adult worker honeybees.
Combustion system processes leading to corrosive deposits
NASA Technical Reports Server (NTRS)
Stearns, C. A.; Kohl, F. J.; Rosner, D. E.
1981-01-01
Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, and silicon.
Fine, Dennis D; Ko, Saebom; Huling, Scott
2013-12-15
Analytical artifacts attributed to the bromination of toluene, xylenes, and trimethylbenzenes were found during the heated headspace gas chromatography/mass spectrometry (GC/MS) analysis of aqueous samples. The aqueous samples were produced from Fenton-like chemical oxidation reactions and contained aromatic compounds, hydrogen peroxide (H2O2), and ferric sulfate. Prior to GC/MS headspace analysis, the samples were acidified (pH<2), and sodium chloride was amended to the headspace vial as a matrix modifier. The brominated artifacts were generated during heated headspace analysis. Further, when samples were spiked with a mixture of volatile chlorinated and aromatic compounds (50 µg/L), poor spike recoveries of toluene and xylenes occurred, and in some cases complete loss of trimethylbenzenes and naphthalene resulted. Where poor recovery of aromatic spike compounds occurred, brominated aromatic compounds were found. The only significant source of bromine in the reaction scheme is the bromide typically present (<0.01% w/w) in the sodium chloride amended to the samples. Conversely, brominated artifacts were absent when a buffered salt mixture composed of sodium chloride and potassium phosphate dibasic/monobasic was used as a matrix modifier and raised the sample pH (pH~6). This indicated that the brominated artifacts resulted from the reaction of the aromatic compounds with BrCl, which was formed by the reaction of H2O2, chloride, and bromide under acidic conditions. An alternative matrix modifier salt is recommended that prevents the bromination reaction and avoids these deleterious effects on sample integrity during headspace analysis. Published by Elsevier B.V.
Titania bound sodium titanate ion exchanger
DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph
1999-03-23
This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.
Kintzel, Polly E; Zhao, Ting; Wen, Bo; Sun, Duxin
2014-12-01
The chemical stability of a sterile admixture containing metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection was evaluated. Triplicate samples were prepared and stored at room temperature without light protection for a total of 48 hours. Aliquots from each sample were tested for chemical stability immediately after preparation and at 1, 4, 8, 24, and 48 hours using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Metoclopramide, diphenhydramine hydrochloride, and dexamethasone sodium phosphate were selectively monitored using multiple-reaction monitoring. Samples were diluted differently for quantitation using three individual LC-MS/MS methods. To determine the drug concentration of the three compounds in the samples, three calibration curves were constructed by plotting the peak area or the peak area ratio versus the concentration of the calibration standards of each tested compound. Apixaban was used as an internal standard. Linearity of the calibration curve was evaluated by the correlation coefficient r(2). Constituents of the admixture of metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection retained more than 90% of their initial concentrations over 48 hours of storage at room temperature without protection from light. The observed variability in concentrations of these three compounds was within the limits of assay variability. An i.v. admixture containing metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection was chemically stable for 48 hours when stored at room temperature without light protection. Copyright © 2014 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
77 FR 1679 - Notice of Receipt of Requests To Voluntarily Cancel Certain Pesticide Registrations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-11
.... II. 075341-00012 Hollow Heart CF.. Copper naphthenate; Sodium fluoride. 075341-00013 COP-R-Plastic II Copper naphthenate; Wood Preserving Sodium fluoride. Compound. CA110009 Ethylene......... Ethylene...
PROCESSES OF RECOVERING URANIUM FROM A CALUTRON
Baird, D.O.; Zumwalt, L.R.
1958-07-15
An improved process is described for recovering the residue of a uranium compound which has been subjected to treatment in a calutron, from the parts of the calutron disposed in the source region upon which the residue is deposited. The process may be utilized when the uranium compound adheres to a surface containing metals of the group consisting of copper, iron, chromium, and nickel. The steps comprise washing the surface with an aqueous acidic oxidizing solvent for the uranium whereby there is obtained an acidic aqueous Solution containing uranium as uranyl ions and metals of said group as impurities, treating the acidic solution with sodium acetate in the presenee of added sodium nitrate to precipitate the uranium as sodium uranyl acetate away from the impurities in the solution, and separating the sodium uranyl acetate from the solution.
Development of single crystal membranes
NASA Technical Reports Server (NTRS)
Stormont, R. W.; Cocks, F. H.
1972-01-01
The design and construction of a high pressure crystal growth chamber was accomplished which would allow the growth of crystals under inert gas pressures of 2 MN/sq m (300 psi). A novel crystal growth technique called EFG was used to grow tubes and rods of the hollandite compounds, BaMgTi7O16, K2MgTi7O16, and tubes of sodium beta-alumina, sodium magnesium-alumina, and potassium beta-alumina. Rods and tubes grown are characterized using metallographic and X-ray diffraction techniques. The hollandite compounds are found to be two or three-phase, composed of coarse grained orientated crystallites. Single crystal c-axis tubes of sodium beta-alumina were grown from melts containing excess sodium oxide. Additional experiments demonstrated that crystals of magnesia doped beta-alumina and potassium beta-alumina also can be achieved by this EFG technique.
DIFFERENTIAL THERMOMETRIC TITRATIONS AND THE DETERMINATION OF HEATS OF REACTION,
TITRATION , THERMISTORS), (*HEAT OF REACTION, TITRATION ), SILVER COMPOUNDS, NITRATES, AMMONIA, PYRIDINES, ETHYLENEDIAMINE, AMINES, ALCOHOLS, BUTANOLS, PROPANOLS, SODIUM COMPOUNDS, HYDROXIDES, TEST METHODS
In vivo screening of candidate pretreatment compounds against cyanide using mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiser, R.C.; Olson, C.T.; Menton, R.G.
1993-05-13
An in vivo screening procedure was established at Battelle's Medical Research and Evaluation Facility (MREF) to evaluate the efficacy of candidate pretreatment compounds in mice challenged with the blood agent, sodium cyanide (NaCN). Male albino mice of ICR outbred stock weighing between 22.5 and 27.5 g are challenged by intramuscular (i.m.) injection, at a volume of 0.5 mL/kg, of a dose of NaCN twice the LD50 of untreated mice as determined on that day of testing. Candidate drugs are tested at fractions of their LD50 or their limit of solubility in the most optimum vehicle and given intraperitoneally (i.p.) tomore » separate groups of mice at either 60 or 15 min prior to NaCN challenge. Sodium thiosulfate (1000 mg/kg)/sodium nitrite (100 mg/kg) controls are injected i.p. only at 60 min prior to challenge. A test compound is deemed effective if, at any of three concentrations tested, or at either pretreatment time, it is statistically more efficacious in preventing lethality than is a negative control substance (candidate compound vehicle).« less
Saha, Suman; Majumder, Sambrita; Das, Sushovan; Das, Tapan Kumar; Bhattacharyya, Anjan; Roy, Sankhajit
2018-04-01
A laboratory experiment was conducted to investigate the effect of pH on the persistence and the dissipation of the new readymix formulation of bispyribac sodium and metamifop. The experiment was conducted in water of three different pH viz. 4.0, 7.0 and 9.2. The spiking level of both the compounds in water was 1.0 and 2.0 µg/mL. The residues were extracted by a simple, quick and reliable method and quantified by liquid chromatography tandem mass spectrometry (LC-MS/MS). The method was justified based on the recovery study, which was > 85%. The dissipation of both compounds followed first order kinetics. The half-life values ranged between 19.86-36.29 and 9.92-19.69 days for bispyribac sodium and metamifop, respectively. The pH of water has a prominent effect on degradation of both the compounds. The rate of dissipation of both the compounds was highest in water of acidic pH followed by neutral and alkaline pH.
CATALYTIC PROPERTIES OF SEMICONDUCTORS.
SEMICONDUCTORS, CATALYSTS), (*CATALYSIS, REACTION KINETICS), (* SODIUM COMPOUNDS, TUNGSTATES), (*GALLIUM ALLOYS, ARSENIC ALLOYS), (*YTTERBIUM...COMPOUNDS, SILICIDES ), (*GERMANIUM, CATALYSIS), INTERNAL CONVERSION, EXCHANGE REACTIONS, HEAT OF ACTIVATION, THERMODYNAMICS, DEUTERIUM, POWDERS, SURFACES, HYDROGEN
NASA Astrophysics Data System (ADS)
Ri, Gum-Chol; Choe, Song-Hyok; Yu, Chol-Jun
2018-02-01
Natural abundance of sodium and its similar behavior to lithium triggered recent extensive studies of cost-effective sodium-ion batteries (SIBs) for large-scale energy storage systems. A challenge is to develop electrode materials with a high electrode potential, specific capacity and a good rate capability. In this work we propose mixed eldfellite compounds Nax(Fe1/2M1/2) (SO4)2 (x = 0-2, M = Mn, Co, Ni) as a new family of high electrode potential cathodes of SIBs and present their material properties predicted by first-principles calculations. The structural optimizations show that these materials have significantly small volume expansion rates below 5% upon Na insertion/desertion with negative Na binding energies. Through the electronic structure calculations, we find band insulating properties and hole (and/or electron) polaron hoping as a possible mechanism for the charge transfer. Especially we confirm the high electrode voltages over 4 V with reasonably high specific capacities. We also investigate the sodium ion mobility by estimating plausible diffusion pathways and calculating the corresponding activation barriers, demonstrating the reasonably fast migrations of sodium ions during the operation. Our calculation results indicate that these mixed eldfellite compounds can be suitable materials for high performance SIB cathodes.
Inhibition of bacterial activity in acid mine drainage
NASA Astrophysics Data System (ADS)
Singh, Gurdeep; Bhatnagar, Miss Mridula
1988-12-01
Acid mine drainage water give rise to rapid growth and activity of an iron- and sulphur- oxidizing bacterium Thiobacillus ferrooxidians which greatly accelerate acid producing reactions by oxidation of pyrite material associated with coal and adjoining strata. The role of this bacterium in production of acid mine drainage is described. This study presents the data which demonstrate the inhibitory effect of certain organic acids, sodium benzoate, sodium lauryl sulphate, quarternary ammonium compounds on the growth of the acidophilic aerobic autotroph Thiobacillus ferrooxidians. In each experiment, 10 milli-litres of laboratory developed culture of Thiobacillus ferrooxidians was added to 250 milli-litres Erlenmeyer flask containing 90 milli-litres of 9-k media supplemented with FeSO4 7H2O and organic compounds at various concentrations. Control experiments were also carried out. The treated and untreated (control) samples analysed at various time intervals for Ferrous Iron and pH levels. Results from this investigation showed that some organic acids, sodium benzoate, sodium lauryl sulphate and quarternary ammonium compounds at low concentration (10-2 M, 10-50 ppm concentration levels) are effective bactericides and able to inhibit and reduce the Ferrous Iron oxidation and acidity formation by inhibiting the growth of Thiobacillus ferrooxidians is also discussed and presented
Study of linear optical parameters of sodium sulphide nano-particles added ADP crystals
NASA Astrophysics Data System (ADS)
Kochuparampil, A. P.; Joshi, J. H.; Dixit, K. P.; Jethva, H. O.; Joshi, M. J.
2017-05-01
Ammonium Dihydrogen Phosphate (ADP) is one of the nonlinear optical crystals. It is having various applications like optical mixing, electro-optical modulator, harmonic generators, etc. Chalcogenide compounds are poorly soluble in water and difficult to add in the water soluble ADP crystals. The solubility of Chalcogenide compounds can be increased by synthesizing the nano-structured samples with suitable capping agent. In the present study sodium sulphide was added in to ADP to modify its linear optical parameters. Sodium sulphide nano particles were synthesized by co-precipitation technique using Ethylene diamine as capping agent followed by microwave irradiation. The powder XRD confirmed the nano-structured nature of sodium sulphide nano particles. The solubility of nanoparticles of sodium sulphide increased significantly in water compared to the bulk. Pure and Na2S added ADP crystals were grown by slow solvent evaporation method at room temperature. The presence of sodium in ADP was confirmed by AAS. The UV-Vis spectra were recorded for all crystals. Various optical parameters like, transmittance, energy band gap, extinction coefficient, refractive index, optical conductivity, etc. were evaluated. The electronic polarizibility of pure and doped crystals calculated from energy band gap. The effect of doping concentration was found on various parameters.
The effect of histone deacetylase inhibitors on AHSP expression
Ziari, Katayoun; Ranjbaran, Reza; Nikouyan, Negin
2018-01-01
Alpha-hemoglobin stabilizing protein (AHSP) is a molecular chaperone that can reduce the damage caused by excess free α-globin to erythroid cells in patients with impaired β-globin chain synthesis. We assessed the effect of sodium phenylbutyrate and sodium valproate, two histone deacetylase inhibitors (HDIs) that are being studied for the treatment of hemoglobinopathies, on the expression of AHSP, BCL11A (all isoforms), γ-globin genes (HBG1/2), and some related transcription factors including GATA1, NFE2, EKLF, KLF4, and STAT3. For this purpose, the K562 cell line was cultured for 2, 4, and 6 days in the presence and absence of sodium phenylbutyrate and sodium valproate. Relative real-time qRT-PCR analysis of mRNA levels was performed to determine the effects of the two compounds on gene expression. Expression of all target mRNAs increased significantly (p < 0.05), except for the expression of BCL11A, which was down-regulated (p < 0.05) in the cells treated with both compounds relative to the levels measured for untreated cells. The findings indicated that sodium valproate had a more considerable effect than sodium phenylbutyrate (p < 0.0005) on BCL11A repression and the up-regulation of other studied genes. γ-Globin and AHSP gene expression continuously increased during the culture period in the treated cells, with the highest gene expression observed for 1 mM sodium valproate after 6 days. Both compounds repressed the expression of BCL11A (-XL, -L, -S) and up-regulated GATA1, NFE2, EKLF, KLF4, STAT3, AHSP, and γ-globin genes expression. Moreover, sodium valproate showed a stronger effect on repressing BCL11A and escalating the expression of other target genes. The findings of this in vitro experiment could be considered in selecting drugs for clinical use in patients with β-hemoglobinopathies. PMID:29389946
Hays, S J; Rice, M J; Ortwine, D F; Johnson, G; Schwarz, R D; Boyd, D K; Copeland, L F; Vartanian, M G; Boxer, P A
1994-10-01
Thirty-two aryl-substituted 2-benzothiazolamines have been tested for their ability to modulate sodium flux in rat cortical slices. A QSAR analysis, applied to these derivatives, showed a trend toward increasing potency as sodium flux inhibitors with increasing lipophilicity, decreasing size, and increasing electron withdrawal of the benzo ring substituents. Additionally, 4- or 5-substitution of the benzo ring was found to decrease potency. The combination of increased lipophilicity, small size, and electron withdrawal severely limited which groups were tolerated on the benzo ring, thus suggesting that the optimal substitution patterns have been prepared within this series. Nine of these compounds were potent inhibitors of veratridine-induced sodium flux (NaFl). These nine compounds also proved to be anticonvulsant in the maximal electroshock (MES) assay. Fourteen additional 2-benzothiazolamines demonstrated activity in the MES screen, yet exhibited no activity in the NaFl assay. These derivatives may be interacting at the sodium channel in a manner not discernible by the flux paradigm, or they may be acting by an alternative mechanism in vivo.
Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Chao; Xu, Gui-Liang; Ji, Xiao
Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAhg -1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAhg -1 can be retained for 2000 cycles, demonstratingmore » excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na +. The reversible redox chemistry between azo compound and Na ions offer opportunities for developing longcycle-life and high-rate SSIBs.« less
Synthesis and Characterization of Highly Intercalated Graphite Bisulfate
NASA Astrophysics Data System (ADS)
Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo
2017-03-01
Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy ( μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO4, K2Cr2O7) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO4 and NaClO3.
Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries
Luo, Chao; Xu, Gui-Liang; Ji, Xiao; ...
2018-01-29
Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAhg -1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAhg -1 can be retained for 2000 cycles, demonstratingmore » excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na +. The reversible redox chemistry between azo compound and Na ions offer opportunities for developing longcycle-life and high-rate SSIBs.« less
Synthesis and Characterization of Highly Intercalated Graphite Bisulfate.
Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo
2017-12-01
Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy (μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO 4 , K 2 Cr 2 O 7 ) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO 4 and NaClO 3 .
Reductive precipitation of metals photosensitized by tin and antimony porphyrins
Shelnutt, John A.; Gong, Weiliang; Abdelouas, Abdesselam; Lutze, Werner
2003-09-30
A method for reducing metals using a tin or antimony porphyrin by forming an aqueous solution of a tin or antimony porphyrin, an electron donor, such as ethylenediaminetetraaceticacid, triethylamine, triethanolamine, and sodium nitrite, and at least one metal compound selected from a uranium-containing compound, a mercury-containing compound, a copper-containing compound, a lead-containing compound, a gold-containing compound, a silver-containing compound, and a platinum-containing compound through irradiating the aqueous solution with light.
Additivity of Pyrethroid Actions on Sodium Influx in Cortical Neuronsin vitro
Background: Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. While previous work has tested the additivity of pyrethroids in vivo, the additivity of these compounds at the major target si...
Anderson, Collin; MacKay, Mark
2016-11-01
Calcium and phosphate precipitation is an ongoing concern when compounding pediatric parenteral nutrition (PN) solutions. Considerable effort has been expended in producing graphs, tables, and equations to guide the practitioner in prescribing PN that will remain stable. Calcium gluconate is preferred over calcium chloride when compounding PN because of its superior compatibility with inorganic phosphates. PN solutions containing calcium gluconate carry a higher aluminum load than equivalent solutions compounded with calcium chloride, leading to increased potential for aluminum toxicity. This study tested the solubility of calcium chloride in PN solutions compounded with an organic phosphate component, sodium glycerophosphate (NaGP), in place of sodium phosphate. Five PN solutions were compounded by adding calcium chloride at 10, 20, 30, 40, and 50 mEq/L and corresponding concentrations of NaGP at 10, 20, 30, 40, and 50 mmol/L. Each of the 5 solutions was compounded using 1.5% and 4% amino acids, cysteine, and lipids. The physical stability was evaluated by visual inspection (precipitation, haze, and color change). Solutions were evaluated microscopically for any microcrystals using U.S. Pharmacopeia <788> standards. Compatibility testing showed no changes in the PN solution in any of the concentrations tested. Calcium chloride was found to be physically compatible with NaGP in PN at the tested concentrations. Utilization of NaGP in PN solutions would eliminate the need for precipitation curves and allow for the use of calcium chloride. Compounding with NaGP and calcium chloride allows the practitioner a mechanism for reducing the aluminum load in PN. © 2015 American Society for Parenteral and Enteral Nutrition.
Liu, Yi; Beck, Edward J; Flores, Christopher M
2011-12-01
Hyperactivity of voltage-gated sodium channels underlies, at least in part, a range of pathological states, including pain and epilepsy. Selective blockers of these channels may offer effective treatment of such disorders. Currently employed methods to screen for sodium channel blockers, however, are inadequate to rationally identify mechanistically diverse blockers, limiting the potential range of indications that may be treated by such agents. Here, we describe an improved patch clamp screening assay that increases the mechanistic diversity of sodium channel blockers being identified. Using QPatch HT, a medium-throughput, automated patch clamp system, we tested three common sodium channel blockers (phenytoin, lidocaine, and tetrodotoxin) with distinct mechanistic profiles at Nav1.2. The single-voltage protocol employed in this assay simultaneously measured the compound activity in multiple states, including the slow inactivated state, of the channel. A long compound incubation period (10 s) was introduced during channel inactivation to increase the probability of identifying "slow binders." As such, phenytoin, which preferentially binds with slow kinetics to the fast inactivated state, exhibited significantly higher potency than that obtained from a brief exposure (100 ms) used in typical assays. This assay also successfully detected the use-dependent block of tetrodotoxin, a well-documented property of this molecule yet unobserved in typical patch clamp protocols. These results indicate that the assay described here can increase the likelihood of identification and mechanistic diversity of sodium channel blockers from a primary screen. It can also be used to efficiently guide the in vitro optimization of leads that retain the desired mechanistic properties. © MARY ANN LIEBERT, INC.
Study on small molecular organic compounds pyrolysed from rubber seed oil and its sodium soap.
Fernando, T L D; Prashantha, M A B; Amarasinghe, A D U S
2016-01-01
Rubber seed oil (RSO) and its sodium soap were pyrolysed in a batch reactor to obtain low molar mass organic substances. The pyrolitic oil of RSO was redistilled and the distillates were characterized by GC-MS and FTIR. Density, acid value, saponification value and ester values were also measured according to the ASTM standard methods. A similar analysis was done for samples taken out at different time intervals from the reaction mixture. Industrially important low molar mass alkanes, alkenes, aromatics, cyclic compounds and carboxylic acids were identified in the pyrolysis process of rubber seed oil. However, pyrolysis of the sodium soap of rubber seed oil gave a mixture of hydrocarbons in the range of C14-C17 and hence it has more applications as a fuel.
Ether-based nonflammable electrolyte for room temperature sodium battery
NASA Astrophysics Data System (ADS)
Feng, Jinkui; Zhang, Zhen; Li, Lifei; Yang, Jian; Xiong, Shenglin; Qian, Yitai
2015-06-01
Safety problem is one of the key points that hinder the development of room temperature sodium batteries. In this paper, four well-known nonflammable organic compounds, Trimethyl Phosphate (TMP), Tri(2,2,2-trifluoroethyl) phosphite (TFEP), Dimethyl Methylphosphonate (DMMP), Methyl nonafluorobuyl Ether (MFE), are investigated as nonflammable solvents in sodium batteries for the first time. Among them, MFE is stable towards sodium metal at room temperature. The electrochemical properties and electrode compatibility of MFE based electrolyte are investigated. Both Prussian blue cathode and carbon nanotube anode show good electrochemical performance retention in this electrolyte. The results suggest that MFE is a promising option as nonflammable electrolyte additive for sodium batteries.
Intravitreal flomoxef sodium in rabbits.
Mochizuki, K; Torisaki, M; Yamashita, Y; Komatsu, M; Tanahashi, T
1993-01-01
We studied the intraocular concentration of flomoxef sodium in nonvitrectomized and vitrectomized eyes of albino rabbits after intravenous administration of 100 mg/kg flomoxef sodium. The concentration of flomoxef sodium in the vitreous body was undetectable (< 0.1 micrograms/ml) in nonvitrectomized eyes. Retinal toxicity of flomoxef sodium was investigated with ophthalmoscopy, electroretinography (ERG) and light microscopy after intravitreal injection of 200, 500, 1,000 and 2,000 micrograms flomoxef sodium in albino and pigmented rabbits. No ERG changes were induced with 200 micrograms. Other higher doses caused transient ERG changes. After the 200-micrograms injection, the intravitreal concentration decreased exponentially, the half-life being 4.4 h. The antibacterial activity, broad coverage and low intravitreal toxicity of flomoxef sodium suggest that this compound may be used to treat bacterial endophthalmitis.
Boron containing amino acid compounds and methods for their use
Glass, John D.; Coderre, Jeffrey A.
2000-01-01
The present invention provides new boron containing amino acid compounds and methods for making these compounds by contacting melphalan or another nitrogen mustard derivative and sodium borocaptate. The present invention also provides a method of treating a mammal having a tumor by administering to the mammal a therapeutically effective amount of the new boron containing amino acid compounds.
The availability of dissolved organic phosphorus compounds to marine phytoplankton
NASA Astrophysics Data System (ADS)
Hua-Sheng, Hong; Hai-Li, Wang; Bang-Qin, Huang
1995-06-01
The availability of three dissolved organic phosphorus (DOP) compounds as nutrient sources for experimental culture of three algae was studied. Results indicated that these compounds could be utilized by algae, and that dissolved inorganic phosphorus (DIP) was first to be uptaken when various forms of phosphorus (DIP and DOP) co-existed. Dicrateria zhanjiangensis' uptake of sodium glycerophosphate was faster than that of D-ribose-5-phosphate. The increase of sodium glycerophosphate had little effect on the maximum uptake rate( V max) of Chlorella sp., but increased the semisaturation constant( K s) remarkably; the photosynthesis rates(PR) of Dicrateria zhanjiangensis and Chlorella sp. were rarely affected by using various forms of phosphorus in the culture experiments. The possible DOP pathways utilized by algae are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, J.-S.; Soderlund, David M.
2006-03-15
Pyrethroid insecticides bind to voltage-sensitive sodium channels and modify their gating kinetics, thereby disrupting nerve function. This paper describes the action of 11 structurally diverse commercial pyrethroid insecticides on the rat Na{sub v}1.8 sodium channel isoform, the principal carrier of the tetrodotoxin-resistant, pyrethroid-sensitive sodium current of sensory neurons, expressed in Xenopus laevis oocytes. All 11 compounds produced characteristic sodium tail currents following a depolarizing pulse that ranged from rapidly-decaying monoexponential currents (allethrin, cismethrin and permethrin) to persistent biexponential currents (cyfluthrin, cyhalothrin, cypermethrin and deltamethrin). Tail currents for the remaining compounds (bifenthrin, fenpropathrin, fenvalerate and tefluthrin) were monoexponential and decayed withmore » kinetics intermediate between these extremes. Reconstruction of currents carried solely by the pyrethroid-modified subpopulation of channels revealed two types of pyrethroid-modified currents. The first type, found with cismethrin, allethrin, permethrin and tefluthrin, activated relatively rapidly and inactivated partially during a 40-ms depolarization. The second type, found with cypermethrin, cyfluthrin, cyhalothrin, deltamethrin, fenpropathrin and fenvalerate, activated more slowly and did not detectably inactivate during a 40-ms depolarization. Only bifenthrin did not produce modified currents that fit clearly into either of these categories. In all cases, the rate of activation of modified channels was strongly correlated with the rate of tail current decay following repolarization. Modification of Na{sub v}1.8 sodium channels by cyfluthrin, cyhalothrin, cypermethrin and deltamethrin was enhanced 2.3- to 3.4-fold by repetitive stimulation; this effect appeared to result from the accumulation of persistently open channels rather than preferential binding to open channel states. Fenpropathrin was the most effective compound against Na{sub v}1.8 sodium channels from the perspective of either resting or use-dependent modification. When use dependence is taken into account, cypermethrin, deltamethrin and tefluthrin approached the effectiveness of fenpropathrin. The selective expression of Na{sub v}1.8 sodium channels in nociceptive neurons suggests that these channels may be important targets for pyrethroids in the production of paresthesia following dermal expo0010su.« less
So, Masatomo; Ishii, Akira; Hata, Yasuko; Yagi, Hisashi; Naiki, Hironobu; Goto, Yuji
2015-09-15
Although various natural and synthetic compounds have been shown to accelerate or inhibit the formation of amyloid fibrils, the mechanisms by which they achieve these adverse effects in a concentration-dependent manner currently remain unclear. Sodium dodecyl sulfate (SDS), one of the compounds that has adverse effects on fibrillation, is the most intensively studied. Here we examined the effects of a series of detergents including SDS on the amyloid fibrillation of β2-microglobulin at pH 7.0, a protein responsible for dialysis-related amyloidosis. In all the detergents examined (i.e., SDS, sodium decyl sulfate, sodium octyl sulfate, and sodium deoxycholate), amyloid fibrillation was accelerated and inhibited at concentrations near the critical micelle concentration (CMC) and higher than CMC, respectively. The most stable conformation changed from monomers with a β-structure to amyloid fibrils with a β-structure and then to α-helical complexes with micelles with an increase in detergent concentrations. These results suggest that competition between supersaturation-limited fibrillation and unlimited mixed micelle formation between proteins and micelles underlies the detergent concentration-dependent complexity of amyloid fibrillation.
Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz
2015-05-22
Preparation is described of a durable surface of cationic gold nanoparticles (AuNPs), covering commercial and custom-made MALDI targets, along with characterization of the nanoparticle surface properties and examples of the use in MS analyses and MS imaging (IMS) of low molecular weight (LMW) organic compounds. Tested compounds include nucleosides, saccharides, amino acids, glycosides, and nucleic bases for MS measurements, as well as over one hundred endogenous compounds in imaging experiment. The nanoparticles covering target plate were enriched in sodium in order to promote sodium-adduct formation. The new surface allows fast analysis, high sensitivity of detection and high mass determination accuracy. Example of application of new Au nanoparticle-enhanced target for fast and simple MS imaging of a fingerprint is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.
A stable compound of helium and sodium at high pressure
Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; ...
2017-02-06
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. As a result, we also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less
A stable compound of helium and sodium at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. We also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less
A stable compound of helium and sodium at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. As a result, we also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less
NASA Astrophysics Data System (ADS)
Bensabra, Hakim; Franczak, Agnieszka; Aaboubi, Omar; Azzouz, Noureddine; Chopart, Jean-Paul
2017-01-01
Several compounds tested as corrosion inhibitors have proven to possess good effectiveness in protection of steel rebar in concrete. However, most of them are considered as pollutant compounds, which limits their use. The aim of this work is to investigate the inhibitive effect of sodium molybdate, which is considered as a nonpollutant compound, against pitting corrosion of steel rebar in simulated concrete pore solution. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results indicate that the addition of sodium molybdate to the chlorinated solution decreases significantly the corrosion rate of steel. Due to its passivating character, the sodium molybdate inhibitor promotes the formation of a stable passive layer on the surface of steel, acting as a physical barrier against chloride ions, on one hand, and consolidating the passivation mechanism of steel, on the other. The optimal inhibition rate is given by the concentration of molybdate ions, corresponding to a [MoO4 2-]/[Cl-] that is equal to 0.5.
Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries.
Luo, Chao; Xu, Gui-Liang; Ji, Xiao; Hou, Singyuk; Chen, Long; Wang, Fei; Jiang, Jianjun; Chen, Zonghai; Ren, Yang; Amine, Khalil; Wang, Chunsheng
2018-03-05
Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAh g -1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAh g -1 can be retained for 2000 cycles, demonstrating excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na + . The reversible redox chemistry between azo compound and Na ions offer opportunities for developing long-cycle-life and high-rate SSIBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stephansen, Karen; García-Díaz, María; Jessen, Flemming; Chronakis, Ioannis S; Nielsen, Hanne M
2016-03-07
Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing, and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts of insulin were released from the fibers when benzalkonium chloride was present. The FSP-Ins fibers appeared dense after incubation with this cationic surfactant, whereas high fiber porosity was observed after incubation with anionic or neutral surfactants. Contact angle measurements and staining with the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid indicated that the FSP-Ins fibers were hydrophobic, and showed that the fiber surface properties were affected differently by the surfactants. Bovine serum albumin also affected insulin release in vitro, indicating that also proteins may affect the fiber performance in an in vivo setting.
Efficacy Profiles of Psychopharmacology: Divalproex Sodium in Conduct Disorder
ERIC Educational Resources Information Center
Khanzode, Leena A.; Saxena, Kirti; Kraemer, Helena; Chang, Kiki; Steiner, Hans
2006-01-01
Little is known about how deeply medication treatment penetrates different levels of the mind/brain system. Psychopathology consists of relatively simple constructs (e.g., anger, irritability), or complex ones (e.g., responsibility). This study examines the efficacy of a specific compound, divalproex sodium (DVPX), on the various levels of…
Synthesis and Characterization of Furanic Compounds
2013-09-01
trifluoroacetic acid, 1.6-M solution of BuLi in hexane, dichloromethane, sodium bicarbonate, pyridinium chlorochromate, potassium permanganate , sodium...intermediate, 2,5-diformylfuran (2.29 g, 18.47 mmol), was oxidized in a 100-mL round-bottom flask with potassium permanganate (4.47 g, 153.1 mmol) in a NaOH
Singh, Jatinder; Shah, Ramanpreet; Singh, Dhandeep; Jaggi, Amteshwar S; Singh, Nirmal
2018-05-01
Mast cell degranulation plays a momentous role in myriad diseases like asthma, eczema, allergic rhinitis, and conjunctivitis as well as anaphylactic shock; hence, there is an unmet need for developing new mast cells stabilizers. The reported mast cell stabilizers have a heterocyclic moiety and an acidic group. Furthermore, the role of tryptophan in suppression of mast cell activation is established. Hence, we prepared constrained analogs of tryptophan, which are derivatives of 2,3,4,9-tetrahydrospiro-β-carboline-3-carboxylic acid, and evaluated them for ex vivo inhibition of compound 48/80-induced mast degranulation activity. By comparing IC 50 (μM) values with that of the standard drug sodium cromoglycate (IC 50 = 0.489 ± 0.003 μM), compounds with bulky groups like heptyl (compound 9; IC 50 = 0.389 ± 0.015 μM) and octyl (compound 10; IC 50 = 0.354 ± 0.023 μM) were found to be of similar potency as sodium cromoglycate. Furthermore, the polar group-containing compounds like the chloropropyl (compound 16; IC 50 = 0.382 ± 0.083 μM) and benzoyl derivative (compound 14; IC 50 = 00.469 ± 0.032 μM) were also found to be of similar potency as sodium cromoglycate. This is a seminal study of spiro-β-carboline mast cell stabilization having a wider scope in mast cell research; yet, the mechanism of action remains elusive. © 2018 Deutsche Pharmazeutische Gesellschaft.
Lee, M T; Ahmed, T; Haddad, R; Friedman, M E
1989-01-01
Bovine liver beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32), wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) and bovine liver L-malate dehydrogenase (L-malate: NAD oxidoreductase, EC 1.1.1.37) were inhibited by a series of gold (I) complexes that have been used as anti-inflammatory drugs. Both sodium thiosulfatoaurate (I) (Na AuTs) and sodium thiomalatoraurate (NaAuTM) effectively inhibited all three enzymes, while thioglucosoaurate (I) (AuTG) only inhibited L-malate dehydrogenase. The equilibrium constants (K1) ranged from nearly 4000 microM for the NaAuTM-beta-glucuronidase interaction to 24 microM for the NaAuTS-beta-glucuronidase interaction. The rate of covalent bond formation (kp) ranged from 0.00032 min-1 for NaAuTM-beta-glucuronidase formation to 1.7 min-1 for AuTG-L-malate dehydrogenase formation. The equilibrium data shows that the gold (I) drugs bind by several orders lower than the gold (III) compounds, suggesting a significantly stronger interaction between the more highly charged gold ion and the enzyme. Yet the rate of covalent bond formation depends as much on the structure of the active site as upon the lability of the gold-ligand bond. It was also observed that the more effective the gold inhibition the more toxic the compound.
1984-03-01
contains many inorganic and organic chemicals such as sodium , nitrate, detergents, and volatile organic compounds which can be toxic and render a ground...1983-- 51 24 . sodium in ground water, 1983---------------------------- 53 25 . chloride in ground water, 1983-------------------------- 54 26...contains elevated concentrations of chloride, sodium , boron, nitrogen, detergents, and other constituents of the treated sewage. The plume was
Equilibrium studies of oxalate and aluminum containing solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M. S.; King, W. D.; Peters, T. B.
2015-11-01
The Savannah River National Laboratory (SRNL) was tasked to develop data on the solubility and conditions leading to precipitation of sodium oxalate, sodium nitrate, Bayerite (a polymorph of gibbsite, Al(OH) 3), and sodium aluminosilicate solids recently found in the Modular Caustic Side Solvent Extraction Unit (MCU). The data generated will be used to improve the OLI Systems thermodynamic database for these compounds allowing better prediction of solids formation by the modeling software in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugama T.; Pyatina, T.
2012-05-01
We investigated the usefulness of sodium carboxymethyl celluloses (CMC) in promoting self-degradation of 200°C-heated sodium silicate-activated slag/Class C fly ash cementitious material after contact with water. CMC emitted two major volatile compounds, CO2 and acetic acid, creating a porous structure in cement. CMC also reacted with NaOH from sodium silicate to form three water-insensitive solid reaction products, disodium glycolate salt, sodium glucosidic salt, and sodium bicarbonate. Other water-sensitive solid reaction products, such as sodium polysilicate and sodium carbonate, were derived from hydrolysates of sodium silicate. Dissolution of these products upon contact with water generated heat that promoted cement’s self-degradation. Thus,more » CMC of high molecular weight rendered two important features to the water-catalyzed self-degradation of heated cement: One was the high heat energy generated in exothermic reactions in cement; the other was the introduction of extensive porosity into cement.« less
Process for making transition metal nitride whiskers
Bamberger, Carlos E.
1989-01-01
A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.
Removal of plutonium and americium from alkaline waste solutions
Schulz, Wallace W.
1979-01-01
High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.
Natural extracts versus sodium ascorbate to extend the shelf life of meat-based ready-to-eat meals.
Price, Alejandra; Díaz, Pedro; Bañón, Sancho; Garrido, Maria Dolores
2013-10-01
The effect of grape seed and green tea extracts was compared with effect of sodium ascorbate on bacterial spoilage, lipid stability and sensory quality in cooked pork meatballs during refrigerated storage. Meatballs were stored at 4 in aerobic packaging for 0, 4, 8, 12 and 16 days under retail display conditions. Lipid oxidation was evaluated as thiobarbituric acid reactive substances, volatile compounds and cholesterol oxidation products. Colour stability was assessed through CIELab parameters. Microbiological spoilage was determined through total viable, mould and yeast and coliform counts. The samples containing green tea and grape seed extracts showed lower levels of thiobarbituric acid reacting substances, major volatile compounds and microbiological counts than the samples with sodium ascorbate. Formation of cholesterol oxidation products was also inhibited to a greater extent. Colour of meatballs and pork meatballs was not affected by refrigerated storage; however, the addition of extracts provided brown shades. The addition of antioxidants did not modify the sensory attributes except for the colour. Green tea and grape seed extracts were more effective than sodium ascorbate at preventing lipid oxidation.
Jha, Virendra Kumar; Wydoski, Duane S.
2003-01-01
A method for the isolation of 20 parent organophosphate pesticides and 5 pesticide degradates from bottom-sediment samples is described. The compound O-ethyl-O-methyl-S-proplyphosphorothioate is reported as an estimated concentration because of variable performance. In this method, the sediment samples are centrifuged to remove excess waster mixed with anhydrous sodium sulfate and Soxhlet extracted overnight with dichloromethane (93 percent) and methanol (7 percent). The extract is concentrated and then filtered through a 0.2-micrometer polytetrafluoroethylene membrane syringe filter. An aliquot of the sample extract is quantitatively injected onto two polystyrene-divinylbenzene gel-permeation chromatographic columns connected in series. The compounds are eluted with dichloromethane and a fraction is collected for analysis, with some coextracted interferences, including elemental sulfur, separated and discarded. The aliquot is concentrated and solvent exchanged to ethyl acetate. The extract is analyzed by dual capillary-column gas chromatography with flame photometric detection. Single-operator method detection limits in sodium sulfate matrix samples ranged from 0.81 to 2 micrograms per kilogram. Method performance was validated by spiking all compounds into three different solid matrices (sodium sulfate, bed sediment from Clear Creek, and bed sediment from Evergreen Lake) at three different concentrations. Eight replicates were analyzed at each concentration in each matrix. Mean recoveries of method compounds spiked in Clear Creek samples ranged from 43 to 110 percent, and those in Evergreen Lake samples ranged from 62 to 118 percent for all pesticides. Mean recoveries of method compounds spiked in reagent sodium sulfate samples ranged from 41 to 101 percent for all pesticides. The only exception was O-ethyl-O-methyl-S-propylphosphorothioate, which had an average recovery of 35 percent, and, thus, sample concentration is reported as estimated ('E' remark code).
Additivity of Pyrethroid Actions on Sodium Influx in Cerebrocortical Neurons in Primary Culture
Cao, Zhengyu; Shafer, Timothy J.; Crofton, Kevin M.; Gennings, Chris
2011-01-01
Background: Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Although previous work has tested the additivity of pyrethroids in vivo, this has not been assessed directly at the primary molecular target using a functional measure. Objectives: We investigated the potency and efficacy of 11 structurally diverse food-use pyrethroids to evoke sodium (Na+) influx in neurons and tested the hypothesis of dose additivity for a mixture of these same 11 compounds. Methods: We determined pyrethroid-induced increases in Na+ influx in primary cultures of cerebrocortical neurons using the Na+-sensitive dye sodium-binding benzofuran isophthalate (SBFI). Concentration-dependent responses for 11 pyrethroids were determined, and the response to dilutions of a mixture of all 11 compounds at an equimolar mixing ratio was assessed. Additivity was tested assuming a dose-additive model. Results: Seven pyrethroids produced concentration-dependent, tetrodotoxin-sensitive Na+ influx. The rank order of potency was deltamethrin > S-bioallethrin > β-cyfluthrin > λ-cyhalothrin > esfenvalerate > tefluthrin > fenpropathrin. Cypermethrin and bifenthrin produced modest increases in Na+ influx, whereas permethrin and resmethrin were inactive. When all 11 pyrethroids were present at an equimolar mixing ratio, their actions on Na+ influx were consistent with a dose-additive model. Conclusions: These data provide in vitro relative potency and efficacy measurements for 7 pyrethroid compounds in intact mammalian neurons. Despite differences in individual compound potencies, we found the action of a mixture of all 11 pyrethroids to be additive when we used an appropriate statistical model. These results are consistent with a previous report of the additivity of pyrethroids in vivo. PMID:21665567
Rossi, Lorenzo; Borghi, Monica; Francini, Alessandra; Lin, Xiuli; Xie, De-Yu; Sebastiani, Luca
2016-10-01
Olive tree (Olea europaea L.) is an important crop in the Mediterranean Basin where drought and salinity are two of the main factors affecting plant productivity. Despite several studies have reported different responses of various olive tree cultivars to salt stress, the mechanisms that convey tolerance and sensitivity remain largely unknown. To investigate this issue, potted olive plants of Leccino (salt-sensitive) and Frantoio (salt-tolerant) cultivars were grown in a phytotron chamber and treated with 0, 60 and 120mM NaCl. After forty days of treatment, growth analysis was performed and the concentration of sodium in root, stem and leaves was measured by atomic absorption spectroscopy. Phenolic compounds were extracted using methanol, hydrolyzed with butanol-HCl, and quercetin and kaempferol quantified via high performance liquid-chromatography-electrospray-mass spectrometry (HPLC-ESI-MS) and HPLC-q-Time of Flight-MS analyses. In addition, the transcripts levels of five key genes of the phenylpropanoid pathway were measured by quantitative Real-Time PCR. The results of this study corroborate the previous observations, which showed that Frantoio and Leccino differ in allocating sodium in root and leaves. This study also revealed that phenolic compounds remain stable or are strongly depleted under long-time treatment with sodium in Leccino, despite a strong up-regulation of key genes of the phenylpropanoid pathway was observed. Frantoio instead, showed a less intense up-regulation of the phenylpropanoid genes but overall higher content of phenolic compounds. These data suggest that Frantoio copes with the toxicity imposed by elevated sodium not only with mechanisms of Na + exclusion, but also promptly allocating effective and adequate antioxidant compounds to more sensitive organs. Copyright © 2016 Elsevier GmbH. All rights reserved.
Taub, Mitchell E; Kristensen, Lisbeth; Frokjaer, Sven
2002-05-01
The solubility enhancing effects of various excipients, including their compatibility with in vitro permeability (P(app)) systems, was investigated using drugs representative of Biopharmaceutics Classification System (BCS) classes I-IV. Turbidimetric solubility determination using nephelometry and transport experiments using MDCK Strain I cell monolayers were employed. The highest usable concentration of each excipient [dimethyl sulfoxide (DMSO), ethanol, hydroxypropyl-beta-cyclodextrin (HPCD), and sodium taurocholate] was determined by monitoring apical (AP) to basolateral (BL) [14C]mannitol apparent permeability (P(app)) and the transepithelial electrical resistance (TEER) in transport experiments done at pH 6.0 and 7.4. The excipients were used in conjunction with compounds demonstrating relatively low aqueous solubility (amphotericin B, danazol, mefenamic acid, and phenytoin) in order to obtain a drug concentration >50 microM in the donor compartment. The addition of at least one of the selected excipients enhanced the solubility of the inherently poorly soluble compounds to >50 microM as determined via turbidimetric evaluation at pH 6.0 and 7.4. Ethanol and DMSO were found to be generally disruptive to the MDCK monolayer and were not nearly as useful as HPCD and sodium taurocholate. Sodium taurocholate (5 mM) was compatible with MDCK monolayers under all conditions investigated. Additionally, a novel in vitro system aimed at more accurately simulating in vivo conditions, i.e., a pH gradient (6.0 AP/7.4 BL), sodium taurocholate (5 mM, AP), and bovine serum albumin (0.25%, BL), was shown to generate more reliable P(app) values for compounds that are poorly soluble and/or highly protein bound.
Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system
Gagliardi, Agnese; Paolino, Donatella; Iannone, Michelangelo; Palma, Ernesto
2018-01-01
Background The use of biopolymers is increasing in drug delivery, thanks to the peculiar properties of these compounds such as their biodegradability, availability, and the possibility of modulating their physico-chemical characteristics. In particular, protein-based systems such as albumin are able to interact with many active compounds, modulating their biopharmaceutical properties. Zein is a protein of 20–40 kDa made up of many hydrophobic amino acids, generally regarded as safe (GRAS) and used as a coating material. Methods In this investigation, zein was combined with various surfactants in order to obtain stable nanosystems by means of the nanoprecipitation technique. Specific parameters, eg, temperature, pH value, Turbiscan Stability Index, serum stability, in vitro cytotoxicity and entrapment efficiency of various model compounds were investigated, in order to identify the nanoformulation most useful for a systemic drug delivery application. Results The use of non-ionic and ionic surfactants such as Tween 80, poloxamer 188, and sodium deoxycholate allowed us to obtain nanoparticles characterized by a mean diameter of 100–200 nm when a protein concentration of 2 mg/mL was used. The surface charge was modulated by means of the protein concentration and the nature of the stabilizer. The most suitable nanoparticle formulation to be proposed as a colloidal drug delivery system was obtained using sodium deoxycholate (1.25% w/v) because it was characterized by a narrow size distribution, a good storage stability after freeze-drying and significant feature of retaining lipophilic and hydrophilic compounds. Conclusion The sodium deoxycholate-coated zein nanoparticles are stable biocompatible colloidal carriers to be used as useful drug delivery systems. PMID:29430179
Bitner-Michalska, Anna; Nolis, Gene M.; Żukowska, Grażyna; Zalewska, Aldona; Poterała, Marcin; Trzeciak, Tomasz; Dranka, Maciej; Kalita, Michał; Jankowski, Piotr; Niedzicki, Leszek; Zachara, Janusz; Marcinek, Marek; Wieczorek, Władysław
2017-01-01
A new family of fluorine-free solid-polymer electrolytes, for use in sodium-ion battery applications, is presented. Three novel sodium salts withdiffuse negative charges: sodium pentacyanopropenide (NaPCPI), sodium 2,3,4,5-tetracyanopirolate (NaTCP) and sodium 2,4,5-tricyanoimidazolate (NaTIM) were designed andtested in a poly(ethylene oxide) (PEO) matrix as polymer electrolytes for anall-solid sodium-ion battery. Due to unique, non-covalent structural configurations of anions, improved ionic conductivities were observed. As an example, “liquid-like” high conductivities (>1 mS cm−1) were obtained above 70 °C for solid-polymer electrolyte with a PEO to NaTCP molar ratio of 16:1. All presented salts showed high thermal stability and suitable windows of electrochemical stability between 3 and 5 V. These new anions open a new class of compounds with non-covalent structure for electrolytes system applications. PMID:28067301
NASA Astrophysics Data System (ADS)
Bitner-Michalska, Anna; Nolis, Gene M.; Żukowska, Grażyna; Zalewska, Aldona; Poterała, Marcin; Trzeciak, Tomasz; Dranka, Maciej; Kalita, Michał; Jankowski, Piotr; Niedzicki, Leszek; Zachara, Janusz; Marcinek, Marek; Wieczorek, Władysław
2017-01-01
A new family of fluorine-free solid-polymer electrolytes, for use in sodium-ion battery applications, is presented. Three novel sodium salts withdiffuse negative charges: sodium pentacyanopropenide (NaPCPI), sodium 2,3,4,5-tetracyanopirolate (NaTCP) and sodium 2,4,5-tricyanoimidazolate (NaTIM) were designed andtested in a poly(ethylene oxide) (PEO) matrix as polymer electrolytes for anall-solid sodium-ion battery. Due to unique, non-covalent structural configurations of anions, improved ionic conductivities were observed. As an example, “liquid-like” high conductivities (>1 mS cm-1) were obtained above 70 °C for solid-polymer electrolyte with a PEO to NaTCP molar ratio of 16:1. All presented salts showed high thermal stability and suitable windows of electrochemical stability between 3 and 5 V. These new anions open a new class of compounds with non-covalent structure for electrolytes system applications.
Changes of sodium nitrate, nitrite, and N-nitrosodiethylamine during in vitro human digestion.
Kim, Hyeong Sang; Hur, Sun Jin
2017-06-15
This study aimed to determine the changes in sodium nitrate, sodium nitrite, and N-nitrosodiethylamine (NDEA) during in vitro human digestion, and the effect of enterobacteria on the changes in these compounds. The concentrations of nitrate, nitrite, and NDEA were significantly reduced from 150, 150, and 1ppm to 42.8, 63.2, and 0.85ppm, respectively, during in vitro human digestion (p<0.05). The enterobacteria Escherichia coli and Lactobacillus casei reduced the amount of these compounds present during in vitro human digestion. This study is the first to report that E. coli can dramatically reduce the amount of nitrite during in vitro human digestion and this may be due to the effect of nitrite reductase present in E. coli. We therefore conclude that the amounts of potentially harmful substances and their toxicity can be decreased during human digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Preciado-Iñiga, Grace E; Amador-Espejo, Genaro G; Bárcenas, María E
2018-02-01
In a previous study, a stable tamarillo sweet product (TSP) was obtained by applying hurdle technology (low pH, reduction of water activity, sodium benzoate addition and stored at 4 °C, with oxygen and light protection). In order to improve the TSP shelf life, it was decided to employ a mixture of antimicrobial agents (sodium benzoate and potassium sorbate 50-50%) and fruit blanching. The phenolic compounds content, total monomeric anthocyanins of TSP, antioxidant capacity, microbial growth (aerobic mesophilic bacteria, molds and yeasts) and net color change were evaluated, during 63 days. The results showed that the use of blanched tamarillo and the addition of the antimicrobial mixture increased the TSP stability, in which the microbial counts were maintained below the limits established by the official food safety norms, without effects the antioxidant compounds and color.
Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors.
Yin, Jiao; Qi, Li; Wang, Hongyu
2012-05-01
The lithium-based energy storage technology is currently being considered for electric automotive industry and even electric grid storage. However, the hungry demand for vast energy sources in the modern society will conflict with the shortage of lithium resources on the earth. The first alternative choice may be sodium-related materials. Herein, we propose an electric energy storage system (sodium-ion capacitor) based on porous carbon and sodium titanate nanotubes (Na-TNT, Na(+)-insertion compounds) as positive and negative electrode materials, respectively, in conjunction with Na(+)-containing non-aqueous electrolytes. As a low-voltage (0.1-2 V) sodium insertion nanomaterial, Na-TNT was synthesized via a simple hydrothermal reaction. Compared with bulk sodium titanate, the predominance of Na-TNT is the excellent rate performance, which exactly caters to the need for electrochemical capacitors. The sodium-ion capacitors exhibited desirable energy density and power density (34 Wh kg(-1), 889 W kg(-1)). Furthermore, the sodium-ion capacitors had long cycling life (1000 cycles) and high coulombic efficiency (≈ 98 % after the second cycle). More importantly, the conception of sodium-ion capacitor has been put forward.
Moriyama, Brad; Henning, Stacey A.; Jin, Haksong; Kolf, Mike; Rehak, Nadja N.; Danner, Robert L.; Walsh, Thomas J.; Grimes, George J.
2011-01-01
PURPOSE To assess the physical compatibility of magnesium sulfate and sodium bicarbonate in a pharmacy-compounded bicarbonate-buffered hemofiltration solution used at the National Institutes of Health Clinical Center (http://www.cc.nih.gov). METHODS Two hemofiltration fluid formulations with a bicarbonate of 50 mEq/L and a magnesium of 1.5 mEq/L or 15 mEq/L were prepared in triplicate with an automated compounding device. The hemofiltration solution with a bicarbonate of 50 mEq/L and a magnesium of 1.5 mEq/L contains the maximum concentration of additives that we use in clinical practice. The hemofiltration solution of 15 mEq/L of magnesium and 50 mEq/L of bicarbonate was used to study the physicochemical properties of this interaction. The solutions were stored without light protection at 22 to 25 °C for 48 hours. Physical compatibility was assessed by visual inspection and microscopy. The pH of the solutions was assayed at 3 to 4 hours and 52 to 53 hours after compounding. In addition, electrolyte and glucose concentrations in the solutions were assayed at two time points after preparation: 3 to 4 hours and 50 to 51 hours. RESULTS No particulate matter was observed by visual and microscopic inspection in the compounded hemofiltration solutions at 48 hours. Electrolyte and glucose concentrations and pH were similar at both time points after solution preparation. CONCLUSION Magnesium sulfate (1.5 mEq/L) and sodium bicarbonate (50 mEq/L) were physically compatible in a pharmacy-compounded bicarbonate-buffered hemofiltration solution at room temperature without light protection at 48 hours. PMID:20237384
Prieto-Blanco, M C; López-Mahía, P; Prada-Rodríguez, D
2006-04-01
The control of industrial products for minimization of their impact on the environment and human health requires the development of specific analysis methods. Information provided by these methods about toxic components, by-products, and other derivatives may also be useful to reduce the possible impact of industrial products. The studied compound in this paper, triethylbenzylammonium chloride (TEBA), is mainly used in industrial synthesis. This quaternary compound and its residual products coming from quaternization reaction (benzyl chloride, benzaldehyde, and benzyl alcohol) are analyzed by HPLC. The separation is based on control of the silanophilic contribution to TEBA retention because of the quaternary nature of this compound. The effect of the three buffers (sodium acetate, ammonium acetate, and sodium formate) and their concentrations in the chromatographic behavior of the quaternary compound is examined. The buffer cation and anion regulate TEBA retention. Also, the concentration of the quaternary compound is another parameter that had influence in some aspects of its chromatographic behavior (e.g., retention and symmetry). The proposed method is applied to TEBA synthesis along, with the formation and removal of impurities with the results compared with those obtained for the quaternary compound benzalkonium chloride.
[Synthesis, solubility, lipids-lowering and liver-protection activities of sulfonated formononetin].
Wang, Qiu-ya; Meng, Qing-hua; Zhang, Zun-ting; Tian, Zhen-jun; Liu, Hui
2009-04-01
A water-soluble compound, sodium formononetin-3'-sulfonate with good lipid-lowering and liver-protection activities was synthesized. It was synthesized by sulfonation reaction, and its structure was characterized by IR, NMR and elemental analyses. The solubility of sodium formononetin-3'-sulfonate in water and n-octanol/water partition coefficient were determined by UV spectrophotometry. The lipid-lowering and liver-protection activities of sodium formononetin-3'-sulfonate were tested by using rat's high fat model induce by feeding with high fat food. The results showed that sodium formononetin-3'-sulfonate not only had favorable water, solubility but also had good lipid-lowering and liver-protection activities.
Antibacterial properties of soap containing some fatty acid esters.
Pandey, N K; Natraj, C V; Kalle, G P; Nambudiry, M E
1985-02-01
Synopsis Chemical microbial inhibitors compatible with formulations of soaps and deodorant perfumes are more effective if they are substantive to the skin. However, highly effective inhibitors are toxic and their substantivity on skin may accentuate the toxicity. Natural compounds such as short to medium chain fatty acids and their derivatives, which are known to be germicidal, offer a viable alternative to chemical inhibitors. We report here the synthesis of sodium 2-lauroyloxy propionate and an in vivo method to test its substantivity on skin following its incorporation in soaps. Among several compounds tested, sodium 2-lauroyloxy propionate was found to be highly substantive in soap formulation.
Chindapan, Nathamol; Devahastin, Sakamon; Chiewchan, Naphaporn; Sablani, Shyam S
2011-09-01
Fish sauce is an ingredient that exhibits unique flavor and is widely used by people in Southeast Asia. Fish sauce, however, contains a significant amount of salt (sodium chloride). Recently, electrodialysis (ED) has been successfully applied to reduce salt in fish sauce; however, no information is available on the effect of ED on changes in compounds providing aroma and taste of ED-treated fish sauce. The selected aroma compounds, amino acids, and sensory quality of the ED-treated fish sauce with various salt concentrations were then analyzed. The amounts of trimethylamine, 2,6-dimethylpyrazine, phenols, and all carboxylic acids except for hexanoic acid significantly decreased, whereas benzaldehyde increased significantly when the salt removal level was higher. The amounts of all amino acids decreased with the increased salt removal level. Significant difference in flavor and saltiness intensity among ED-treated fish sauce with various salt concentrations, as assessed by a discriminative test, were observed. Information obtained in this work can serve as a guideline for optimization of a process to produce low-sodium fish sauce by ED. It also forms a basis for further in-depth sensory analysis of low-sodium fish sauce. © 2011 Institute of Food Technologists®
Adebiyi, Olamide Elizabeth; Olopade, James Olukayode; Olayemi, Funsho Olakitike
2018-06-01
Exposures to toxic levels of vanadium and soluble vanadium compounds cause behavioral impairments and neurodegeneration via free radical production. Consequently, natural antioxidant sources have been explored for effective and cheap remedy following toxicity. Grewia carpinifolia has been shown to improve behavioral impairments in vanadium-induced neurotoxicity, however, the active compounds implicated remains unknown. Therefore, this study was conducted to investigate ameliorative effects of bioactive compounds from G. carpinifolia on memory and behavioral impairments in vanadium-induced neurotoxicity. Sixty BALB/c mice were equally divided into five groups (A-E). A (control); administered distilled water, B (standard); administered α-tocopherol (500 mg/kg) every 72 hr orally with daily dose of sodium metavanadate (3 mg/kg) intraperitoneally, test groups C, and D; received single oral dose of 100 μg β-spinasterol or stigmasterol (bioactive compounds from G. carpinifolia), respectively, along with sodium metavanadate and the model group E, received sodium metavanadate only for seven consecutive days. Memory, locomotion and muscular strength were accessed using Morris water maze, Open field and hanging wire tests. In vivo antioxidant and neuroprotective activities were evaluated by measuring catalase, superoxide dismutase, MDA, H 2 O 2 , and myelin basic protein (MBP) expression in the hippocampus. In Morris water maze, stigmasterol significantly (p ≤ 0.05) decreased escape latency and increased swimming time in target quadrant (28.01 ± 0.02; 98.24 ± 17.38 s), respectively, better than α-tocopherol (52.43 ± 13.25; 80.32 ± 15.21) and β-spinasterol (42.09 ± 14.27; 70.91 ± 19.24) in sodium metavanadate-induced memory loss (112.31 ± 9.35; 42.35 ± 11.05). β-Spinasterol and stigmasterol significantly increased exploration and latency in open field and hanging wire tests respectively. Stigmasterol also increased activities of antioxidant enzymes, decreased oxidative stress markers and lipid peroxidation in mice hippocampal homogenates, and increased MBP expression. The findings of this study indicate a potential for stigmasterol, a bioactive compound from G. carpinifolia in improving cognitive decline, motor coordination, and ameliorating oxidative stress in vanadium-induced neurotoxicity. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
Process for making transition metal nitride whiskers
Bamberger, C.E.
1988-04-12
A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.
ERIC Educational Resources Information Center
Rosenberg, Robert E.
2007-01-01
The guided-inquiry approach is applied to the reactions of sodium borohydride and phenyl magnesium bromide with benzaldehyde, benzophenone, benzoic anhydride, and ethyl benzoate. Each team of four students receives four unknowns. Students identify the unknowns and their reaction products by using the physical state of the unknown, an…
Alkaline extraction of phenolic compounds from intact sorghum kernels
USDA-ARS?s Scientific Manuscript database
An aqueous sodium hydroxide solution was employed to extract phenolic compounds from whole grain sorghum without decortication or grinding as determined by Oxygen Radical Absorbance Capacity (ORAC). The alkaline extract ORAC values were more stable over 32 days compared to neutralized and freeze dri...
Comparison of the toxicity of fluoridation compounds in the nematode Caenorhabditis elegans.
Rice, Julie R; Boyd, Windy A; Chandra, Dave; Smith, Marjolein V; Den Besten, Pamela K; Freedman, Jonathan H
2014-01-01
Fluorides are commonly added to drinking water in the United States to decrease the incidence of dental caries. Silicofluorides, such as sodium hexafluorosilicate (Na2 SiF6 ) and fluorosilicic acid (H2 SiF6 ), are mainly used for fluoridation, although fluoride salts such as sodium fluoride (NaF) are also used. Interestingly, only the toxicity of NaF has been examined and not that of the more often used silicofluorides. In the present study, the toxicities of NaF, Na2 SiF6 , and H2 SiF6 were compared. The toxicity of these fluorides on the growth, feeding, and reproduction in the alternative toxicological testing organism Caenorhabditis elegans was examined. Exposure to these compounds produced classic concentration-response toxicity profiles. Although the effects of the fluoride compounds varied among the 3 biological endpoints, no differences were found between the 3 compounds, relative to the fluoride ion concentration, in any of the assays. This suggests that silicofluorides have similar toxicity to NaF. © 2013 SETAC.
Gupta, Vinod Kumar; Atar, Necip; Yola, Mehmet Lütfi; Üstündağ, Zafer; Uzun, Lokman
2014-01-01
In this study, a novel catalyst based on Fe@Au bimetallic nanoparticles involved graphene oxide was prepared and characterized by transmission electron microscope (TEM), and x-ray photoelectron spectroscopy (XPS). The nanomaterial was used in catalytic reductions of 4-nitrophenol and 2-nitrophenol in the presence of sodium borohydride. The experimental parameters such as temperature, the dosage of catalyst and the concentration of sodium borohydride were studied. The rates of catalytic reduction of the nitrophenol compounds have been found as the sequence: 4-nitrophenol>2-nitrophenol. The kinetic and thermodynamic parameters of nitrophenol compounds were determined. Activation energies were found as 2.33 kcal mol(-1) and 3.16 kcal mol(-1) for 4-nitrophenol and 2-nitrophenol, respectively. The nanomaterial was separated from the product by using a magnet and recycled after the reduction of nitrophenol compounds. The recyclable of the nanocatalyst is economically significant in industry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vanderford, Brett J; Mawhinney, Douglas B; Trenholm, Rebecca A; Zeigler-Holady, Janie C; Snyder, Shane A
2011-02-01
Proper collection and preservation techniques are necessary to ensure sample integrity and maintain the stability of analytes until analysis. Data from improperly collected and preserved samples could lead to faulty conclusions and misinterpretation of the occurrence and fate of the compounds being studied. Because contaminants of emerging concern, such as pharmaceuticals and personal care products (PPCPs) and steroids, generally occur in surface and drinking water at ng/L levels, these compounds in particular require such protocols to accurately assess their concentrations. In this study, sample bottle types, residual oxidant quenching agents, preservation agents, and hold times were assessed for 21 PPCPs and steroids in surface water and finished drinking water. Amber glass bottles were found to have the least effect on target analyte concentrations, while high-density polyethylene bottles had the most impact. Ascorbic acid, sodium thiosulfate, and sodium sulfite were determined to be acceptable quenching agents and preservation with sodium azide at 4 °C led to the stability of the most target compounds. A combination of amber glass bottles, ascorbic acid, and sodium azide preserved analyte concentrations for 28 days in the tested matrices when held at 4 °C. Samples without a preservation agent were determined to be stable for all but two of the analytes when stored in amber glass bottles at 4 °C for 72 h. Results suggest that if improper protocols are utilized, reported concentrations of target PPCPs and steroids may be inaccurate.
Radioprotection by metals: Selenium
NASA Astrophysics Data System (ADS)
Weiss, J. F.; Srinivasan, V.; Kumar, K. S.; Landauer, M. R.
The need exists for compounds that will protect individuals from high-dose acute radiation exposure in space and for agents that might be less protective but less toxic and longer acting. Metals and metal derivatives provide a small degree of radioprotection (dose reduction factor <= 1.2 for animal survival after whole-body irradiation). Emphasis is placed here on the radioprotective potential of selenium (Se). Both the inorganic salt, sodium selenite, and the organic Se compound, selenomethionine, enhance the survival of irradiated mice (60Co, 0.2 Gy/min) when injected IP either before (-24 hr and -1 hr) or shortly after (+15 min) radiation exposure. When administered at equitoxic doses (one-fourth LD10; selenomethionine = 4.0 mg/kg Se, sodium selenite = 0.8 mg/kg Se), both drugs enhanced the 30-day survival of mice irradiated at 9 Gy. Survival after 10-Gy exposure was significantly increased only after selenomethionine treatment. An advantage of selenomethionine is lower lethal and behavioral toxicity (locomotor activity depression) compared to sodium selenite, when they are administered at equivalent doses of Se. Sodium selenite administered in combination with WR-2721, S-2-(3-aminopropylamino)ethylphosphorothioic acid, enhances the radioprotective effect and reduces the lethal toxicity, but not the behavioral toxicity, of WR-2721. Other studies on radioprotection and protection against chemical carcinogens by different forms of Se are reviewed. As additional animal data and results from human chemoprevention trials become available, consideration also can be given to prolonged administration of Se compounds for protection against long-term radiation effects in space.
Ohno, Hiroyuki; Suzuki, Masako; Nakashima, Shigehito; Aoyama, Taiki; Mitani, Kazunori
2002-08-01
A simultaneous determination method for 9 organotin compounds in polyvinyl chloride (PVC) and silicone products used as kitchen utensils and food packages was developed using ethyl derivatization with sodium tetraethylborate (NaBEt4). Organotin compounds were extracted with acetone-hexane (3:7) from the samples after acidification and the extract was filtered and concentrated at under 40 degrees C. After centrifugal separation, these compounds were derivatized with 2% NaBEt4 solution and determined by GC/MS. This method was applicable for simple routine analysis. Recoveries of spiked compounds were 49.1-118.1% for 3 PVC products and 88.8-102.2% for a siliconized paper. Monooctyltin, dioctyltin and trioctyltin compounds were found in all PVC food containers at the levels of 123-1,380 micrograms/g, 1,770-13,200 micrograms/g and 6.6-139 micrograms/g, respectively. They also were found in 3 gloves, 5 spouts, 1 hose and 5 pipes. Some PVC products contained monomethyltin, dimethyltin, trimethyltin, monobutyltin and dibutyltin compounds at the levels of 97.3-433 micrograms/g, 96.5-5,120 micrograms/g, 8.5-24.9 micrograms/g, 1.2-852 micrograms/g and 1.2-29.4 micrograms/g, respectively.
Copoví, A; Díez-Sales, O; Herráez-Domínguez, J V; Herráez-Domínguez, M
2006-05-11
The percutaneous penetration-enhancing effects of glycolic acid, lactic acid and sodium lauryl sulphate through the human epidermis was investigated using 5-fluorouracil as a hydrophilic model permeant and three compounds belonging to the phenylalcohols: 2-phenyl-ethanol, 4-phenyl-butanol and 5-phenyl-pentanol. The lipophilicity values of the compounds ranged from log Poct -0.95 to 2.89. The effect of the enhancer concentration was also studied. Skin pretreatment with aqueous solutions of the three enhancers did not increase the permeability coefficient of the most lipophilic compound (log Poct = 2.89). For the other compounds assayed, the increase in the permeability coefficients depended on the concentration used in skin pretreatment, and on the lipophilicity of the compounds tested-and was always greater for the most hydrophilic compound (5-fluorouracil), for which lactic acid exerted a greater enhancer effect than glycolic acid or sodium lauryl sulphate. Primary irritation testing of the three enhancers was also carried out at the two concentrations used in skin pretreatment for diffusional experiments (1% and 5%, w/w). The least irritant capacity corresponded to lactic acid; consequently, this alpha-hydroxyacid could be proposed as a percutaneous penetration enhancer for hydrophilic molecules that are of interest for transdermal administration.
Wise, Sandra S.; Holmes, Amie L.; Qin, Qin; Xie, Hong; Katsifis, Spiros P.; Thompson, W. Douglas; Wise, John Pierce
2010-01-01
Hexavalent chromium (Cr(VI)) compounds are well-established human lung carcinogens. Solubility plays an important role in their carcinogenicity with the particulate Cr(VI) compounds being the most carcinogenic. Epidemiology and animal studies suggest that zinc chromate is the most potent particulate Cr(VI) compound, however, there are few comparative data to support these observations. The purpose of this study was to compare the genotoxicity of zinc chromate with two other particulate Cr(VI) compounds, barium chromate and lead chromate, and one soluble Cr(VI) compound, sodium chromate. The clastogenic effects of barium chromate and zinc chromate were similar but lead chromate induced significantly less damage. The levels of DNA damage measured by gamma-H2A.X foci formation were similar for the three particulate chromium compounds. Corrected for chromium uptake differences, we found that zinc chromate and barium chromate were the most cytotoxic and lead chromate and sodium chromate were less cytotoxic. Zinc chromate was more clastogenic than all other chromium compounds and lead chromate was the least clastogenic. There was no significant difference between any of the compounds for the induction of DNA double strand breaks. All together, these data suggest that the difference in the carcinogenic potency of zinc chromate over the other chromium compounds is not due solely to a difference in chromium ion uptake and the zinc cation may in fact have an important role in its carcinogenicity. PMID:20000473
Effects of calcium magnesium acetate on small lentic environments in interior Alaska
DOT National Transportation Integrated Search
1986-08-01
The use of deicing compounds on winter roads has become an accepted practice for snow and ice removal in northern areas. The most commonly employed compounds have been the chloride salts sodium chloride (NaCl) and calcium chloride (CaCl(2)). The appl...
Prigol, Marina; Wilhelm, Ethel A; Schneider, Caroline C; Nogueira, Cristina W
2008-11-25
Unsymmetrical dichalcogenides, a class of organoselenium compounds, were screened for antioxidant activity in rat brain homogenates in vitro. Unsymmetrical dichalcogenides (1-3) were tested against lipid peroxidation induced by sodium nitroprusside (SNP) or malonate, and reactive species (RS) production induced by sodium azide in rat brain homogenates. Compounds 1 (without a substituent at the phenyl group), 2 (chloro substituent at the phenyl group bounded to the sulfur atom) and 3 (chloro substituent at the phenyl group bounded to the selenium atom) protected against lipid peroxidation induced by SNP. The IC50 values followed the order 3<2<1. Lipid peroxidation induced by malonate was also reduced by dichalcogenides 1, 2 and 3. The IC50 values were 3
Cryolite process for the solidification of radioactive wastes
Wielang, Joseph A.; Taylor, Larry L.
1976-01-01
An improved method is provided for solidifying liquid wastes containing significant quantities of sodium or sodium compounds by calcining in a fluidized-bed calciner. The formation of sodium nitrate which will cause agglomeration of the fluidized-bed particles is retarded by adding aluminum and a fluoride to the waste in order to produce cryolite during calcination. The off-gas of the calciner is scrubbed with a solution containing aluminum in order to complex any fluoride which may be liberated by subsequent dissolution of cryolite and prevent corrosion in the off-gas cleanup system.
Topical sodium metabisulfite for the treatment of calcinosis cutis: a promising new therapy.
Del Barrio-Díaz, P; Moll-Manzur, C; Álvarez-Veliz, S; Vera-Kellet, C
2016-09-01
Calcinosis cutis is a chronic calcium-mediated disease that causes significant morbidity. Multiple treatments have been tried, with varying results; indeed, to date, no standard treatment has been generally accepted. Sodium metabisulfite is an inorganic compound that, when it reacts with oxygen, becomes sodium sulfate, a metabolite of sodium thiosulfate that has a similar ability to inhibit calcium oxalate agglomeration. Four women diagnosed with calcinosis cutis, secondary to dermatomyositis, systemic sclerosis and radiodermatitis after breast cancer, were evaluated for their response to topical 25% sodium metabisulfite. In all patients a decrease in lesion size, erythema and pain from injuries was shown, with complete resolution of the associated ulcers. One patient had a complete response. None experienced adverse effects. Topical sodium metabisulfite is a promising emerging therapy that should be considered as a valid alternative treatment in calcinosis cutis. Randomized prospective studies are required to evaluate its true efficacy. © 2016 British Association of Dermatologists.
Zur, Eyal
2012-01-01
Sodium cromoglicate (cromolyn sodium) is a very well-known medicine that has been used for many years for various allergic conditions. The topical use of this medicine is less known, and there are no commercial medicines of cream, gel, or lotion in most of the world. This article summarizes the clinical data accumulated from seventeen trials that checked the topical efficacy and safety of sodium cromoglicate and analyzes the clinical implementations of this medicine in the topical treatment of atopic dermatitis and other skin allergies. In addition, this article analyzes the various formulations that have been used in the clinical trials in an attempt to find the optimal formulation. The topical use of sodium cromoglicate seemed to have a promising potential, and implementing the data of this article can allow the compounding pharmacist a very interesting professional activity in very common and widespread allergic pathologies.
Zhang, Hong-Yu; Ge, Chao; Zhao, Jiquan; Zhang, Yuecheng
2017-10-06
Disclosed herein is an unprecedented cobalt-catalyzed trifluoromethylation-peroxidation of unactivated alkenes. In this process the hydroperoxide acts as a radical initiator as well as a coupling partner. The cheap and readily available sodium trifluoromethanesulfinate serves as the CF 3 source in the reaction. Various alkenes are transformed into vicinal trifluoromethyl-peroxide compounds in moderate to good yields.
Process for making boron nitride using sodium cyanide and boron
Bamberger, Carlos E.
1990-02-06
This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.
Process for making boron nitride using sodium cyanide and boron
Bamberger, Carlos E.
1990-01-01
This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.
NASA Astrophysics Data System (ADS)
Yang, Lufeng; Li, Xiang; Ma, Xuetian; Xiong, Shan; Liu, Pan; Tang, Yuanzhi; Cheng, Shuang; Hu, Yan-Yan; Liu, Meilin; Chen, Hailong
2018-03-01
Sodium-ion batteries (SIBs) are an emerging electrochemical energy storage technology that has high promise for electrical grid level energy storage. High capacity, long cycle life, and low cost cathode materials are very much desired for the development of high performance SIB systems. Sodium manganese oxides with different compositions and crystal structures have attracted much attention because of their high capacity and low cost. Here we report our investigations into a group of promising lithium doped sodium manganese oxide cathode materials with exceptionally high initial capacity of ∼223 mAh g-1 and excellent capacity retentions, attributed primarily to the absence of phase transformation in a wide potential range of electrochemical cycling, as confirmed by in-operando X-ray diffraction (XRD), Rietveld refinement, and high-resolution 7Li solid-state NMR characterizations. The systematic study of structural evolution and the correlation with the electrochemical behavior of the doped cathode materials provides new insights into rational design of high-performance intercalation compounds by tailoring the composition and the crystal structure evolution in electrochemical cycling.
A Laboratory Procedure for the Reduction of Chromium(VI) to Chromium(III).
ERIC Educational Resources Information Center
Lunn, George; Sansone, Eric B.
1989-01-01
Chromium(VI) compounds are classified as oxidizers and must be specially packaged and transported for disposal while Cr(III) compounds are considered nonoxidizers. A process which reduces Cr(VI) to Cr(III) by adding sodium metabisulfite followed by neutralization with magnesium hydroxide is explored. (MVL)
Murtaza, M A; Huma, N; Sameen, A; Murtaza, M S; Mahmood, S; Mueen-ud-Din, G; Meraj, A
2014-11-01
The adverse health effects of dietary sodium demand the production of cheese with reduced salt content. The study was aimed to assess the effect of reducing the level of sodium chloride on the texture, flavor, and sensory qualities of Cheddar cheese. Cheddar cheese was manufactured from buffalo milk standardized at 4% fat level by adding sodium chloride at 2.5, 2.0, 1.5, 1.0, and 0.5% (wt/wt of the curd obtained). Cheese samples were ripened at 6 to 8 °C for 180 d and analyzed for chemical composition after 1 wk; for texture and proteolysis after 1, 60, 120, and 180 d; and for volatile flavor compounds and sensory quality after 180 d of ripening. Decreasing the salt level significantly reduced the salt-in-moisture and pH and increased the moisture-in-nonfat-substances and water activity. Cheese hardness, toughness, and crumbliness decreased but proteolysis increased considerably on reducing the sodium content and during cheese ripening. Lowering the salt levels appreciably enhanced the concentration of volatile compounds associated with flavor but negatively affected the sensory perception. We concluded that salt level in cheese can be successfully reduced to a great extent if proteolysis and development of off-flavors resulted by the growth of starter and nonstarter bacteria can be controlled. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Voltage-gated sodium channels as targets for pyrethroid insecticides.
Field, Linda M; Emyr Davies, T G; O'Reilly, Andrias O; Williamson, Martin S; Wallace, B A
2017-10-01
The pyrethroid insecticides are a very successful group of compounds that have been used extensively for the control of arthropod pests of agricultural crops and vectors of animal and human disease. Unfortunately, this has led to the development of resistance to the compounds in many species. The mode of action of pyrethroids is known to be via interactions with the voltage-gated sodium channel. Understanding how binding to the channel is affected by amino acid substitutions that give rise to resistance has helped to elucidate the mode of action of the compounds and the molecular basis of their selectivity for insects vs mammals and between insects and other arthropods. Modelling of the channel/pyrethroid interactions, coupled with the ability to express mutant channels in oocytes and study function, has led to knowledge of both how the channels function and potentially how to design novel insecticides with greater species selectivity.
Synthesis of the first novel pyrazole thioglycosides as deaza ribavirin analogues.
Abu-Zaied, Mamdouh A; Elgemeie, Galal H
2017-12-02
This study reports a novel and efficient method for the synthesis of the first reported novel class of thiopyrazoles and their corresponding thioglycosides. These series of compounds were designed through the reaction of hydrazine derivatives with sodium dithiolate salt 2 in EtOH at ambient temperature to give the corresponding sodium 5-amino-4-cyano-1H-pyrazole-3-thiolates 4a-d. The latter compounds were treated with α-acetobromoglucose 6a and α-acetobromogalactose 6b in DMF at ambient temperature to give in an excellent yields the corresponding pyrazole S-glycosides 7a-h. Ammonolysis of the pyrazole thioglycosides 7a-h afforded the corresponding free thioglycosides 8a-h.
Bachelli, Mara Lígia Biazotto; Amaral, Rívia Darla Álvares; Benedetti, Benedito Carlos
2013-01-01
Lettuce is a leafy vegetable widely used in industry for minimally processed products, in which the step of sanitization is the crucial moment for ensuring a safe food for consumption. Chlorinated compounds, mainly sodium hypochlorite, are the most used in Brazil, but the formation of trihalomethanes from this sanitizer is a drawback. Then, the search for alternative methods to sodium hypochlorite has been emerging as a matter of great interest. The suitability of chlorine dioxide (60 mg L−1/10 min), peracetic acid (100 mg L−1/15 min) and ozonated water (1.2 mg L−1 /1 min) as alternative sanitizers to sodium hypochlorite (150 mg L−1 free chlorine/15 min) were evaluated. Minimally processed lettuce washed with tap water for 1 min was used as a control. Microbiological analyses were performed in triplicate, before and after sanitization, and at 3, 6, 9 and 12 days of storage at 2 ± 1 °C with the product packaged on LDPE bags of 60 μm. It was evaluated total coliforms, Escherichia coli, Salmonella spp., psicrotrophic and mesophilic bacteria, yeasts and molds. All samples of minimally processed lettuce showed absence of E. coli and Salmonella spp. The treatments of chlorine dioxide, peracetic acid and ozonated water promoted reduction of 2.5, 1.1 and 0.7 log cycle, respectively, on count of microbial load of minimally processed product and can be used as substitutes for sodium hypochlorite. These alternative compounds promoted a shelf-life of six days to minimally processed lettuce, while the shelf-life with sodium hypochlorite was 12 days. PMID:24516433
Bachelli, Mara Lígia Biazotto; Amaral, Rívia Darla Álvares; Benedetti, Benedito Carlos
2013-01-01
Lettuce is a leafy vegetable widely used in industry for minimally processed products, in which the step of sanitization is the crucial moment for ensuring a safe food for consumption. Chlorinated compounds, mainly sodium hypochlorite, are the most used in Brazil, but the formation of trihalomethanes from this sanitizer is a drawback. Then, the search for alternative methods to sodium hypochlorite has been emerging as a matter of great interest. The suitability of chlorine dioxide (60 mg L(-1)/10 min), peracetic acid (100 mg L(-1)/15 min) and ozonated water (1.2 mg L(-1)/1 min) as alternative sanitizers to sodium hypochlorite (150 mg L(-1) free chlorine/15 min) were evaluated. Minimally processed lettuce washed with tap water for 1 min was used as a control. Microbiological analyses were performed in triplicate, before and after sanitization, and at 3, 6, 9 and 12 days of storage at 2 ± 1 °C with the product packaged on LDPE bags of 60 μm. It was evaluated total coliforms, Escherichia coli, Salmonella spp., psicrotrophic and mesophilic bacteria, yeasts and molds. All samples of minimally processed lettuce showed absence of E. coli and Salmonella spp. The treatments of chlorine dioxide, peracetic acid and ozonated water promoted reduction of 2.5, 1.1 and 0.7 log cycle, respectively, on count of microbial load of minimally processed product and can be used as substitutes for sodium hypochlorite. These alternative compounds promoted a shelf-life of six days to minimally processed lettuce, while the shelf-life with sodium hypochlorite was 12 days.
Perera, Glen; Barthelmes, Jan; Vetter, Anja; Krieg, Christof; Uhlschmied, Cindy; Bonn, Günther K; Bernkop-Schnürch, Andreas
2011-08-01
Thiolated polyacrylates were shown to be permeation enhancers with notable potential. The aim of this study was to evaluate the permeation enhancing properties of a thiolated polycarbophil/glutathione (PCP-Cys/GSH) system for oral drug application in comparison to a well-established permeation enhancer, namely sodium caprate. In vitro permeation studies were conducted in Ussing-type chambers with sodium fluoresceine (NaFlu) and fluoresceine isothiocyanate labeled dextran (molecular mass 4 kDa; FD4) as model compounds. Bioavailability studies were carried out in Sprague Dawley rats with various formulations. Moreover, cytotoxic effects of both permeation enhancers were compared. Permeation enhancement ratios of 1% sodium caprate were found to be 3.0 (FD4) and 2.3 (NaFlu), whereas 1% PCP-Cys/0.5% GSH displayed enhancement ratios of 2.4 and 2.2. Both excipients performed at a similar level in vivo. Sodium caprate solutions increased oral bioavailability 2.2-fold (FD4) and 2.3-fold (NaFlu), while PCP-Cys hydrogels led to a 3.2-fold and 2.2-fold enhancement. Cell viability experiments revealed a significantly higher tolerance of Caco-2 cells towards 0.5% PCP-Cys (81% survival) compared to 0.5% sodium caprate (5%). As PCP-Cys is not absorbed from mucosal membranes due to its comparatively high molecular mass, systemic side-effects can be excluded. In conclusion, both systems displayed a similar potency for permeation enhancement of hydrophilic compounds. However, PCP-Cys seems to be less harmful to cultured cells.
Renal Damage Associated with Silicon Compounds in Dogs*
Newberne, Paul M.; Wilson, Robert B.
1970-01-01
A number of oral preparations of various forms of silicon were fed to young adult Beagle dogs and young rats of both sexes for a period of four weeks. During the test period the animals were observed for clinical symptoms and urine and blood measurements were made. At the end of the experimental period all animals were sacrificed and subjected to a complete necropsy and histopathologic study. Polydipsia, polyuria, and soft stools in some animals fed sodium silicate and magnesium trisilicate were the only untoward clinical signs observed; all clinical tests on blood and urine were within normal limits. Gross and microscopic renal lesions were observed in dogs fed sodium silicate and magnesium trisilicate but no changes were seen in those animals fed silicon dioxide or aluminium silicate. Lesions were not observed in any of the rats. In view of the large number of commercial preparations which contain sodium silicate and magnesium trisilicate used in human medicine, these compounds deserve further study. Images PMID:5266156
Moghimipour, Eskandar; Tabassi, Sayyed Abolghassem Sajadi; Ramezani, Mohammad; Handali, Somayeh; Löbenberg, Raimar
2016-01-01
The aim of this study was to investigate the influence of absorption enhancers in the uptake of hydrophilic compounds. The permeation of the two hydrophilic drug models gentamicin and 5 (6)-carboxyfluorescein (CF) across the brush border membrane vesicles and Caco-2 cell lines were evaluated using total saponins of Acanthophyllum squarrosum, Quillaja saponaria, sodium lauryl sulfate, sodium glycocholate, sodium taurodeoxycholate, and Tween 20 as absorption enhancers. Transepithelial electrical resistance (TEER) measurement was utilized to assess the paracellular permeability of cell lines. Confocal laser scanning microscopy (CLSM) was performed to obtain images of the distribution of CF in Caco-2 cells. These compounds were able to loosen tight junctions, thus increasing paracellular permeability. CLSM confirmed the effect of these absorption enhancers on CF transport across Caco-2 lines and increased the Caco-2 permeability via transcellular route. It was also confirmed that the decrease in TEER was transient and reversible after removal of permeation enhancers. PMID:27429925
NASA Astrophysics Data System (ADS)
Huczyński, Adam; Stefańska, Joanna; Piśmienny, Mieszko; Brzezinski, Bogumil
2013-02-01
A series of new Monensin A dimers linked by diurethane moiety were synthesised and their molecular structures were studied using ESI-MS, FT-IR, 1H and 13C NMR and PM5 methods. The results showed that the compounds form a pseudo-cyclic structure stabilized by three intramolecular hydrogen bonds and the sodium cation was coordinated by five oxygen atoms of polyether skeleton of Monensin moiety. The NMR and FT-IR data of complexes of Monensin urethane sodium salts demonstrated that within the pseudo-cyclic structure the carbonyl oxygen atom of the urethane group did not coordinate the sodium cation. Monensin urethanes were tested in vitro for the activity against Gram-positive and Gram-negative bacteria and fungi as well as against a series of clinical isolates of Staphylococcus: methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA). The most active compound against MRSA and MSSA was 1,4-phenylene diurethane of Monensin with MIC 10.4-41.4 μmol/L).
Kоbyli nska, L I; Havrylyuk, D Ya; Mitina, N E; Zaichenko, A S; Lesyk, R B; Zіme nkovsky, B S; Stoika, R S
2016-01-01
The aim of this study was to compare the effect of new synthetic 4-thiazolidinone derivatives (potential anticancer compounds denoted as 3882, 3288 and 3833) and doxorubicin (positive control) in free form and in their complexes with synthetic polyethylene glycol-containing nanoscale polymeric carrier on the biochemical indicators of nephrotoxicity in blood serum of rats. The concentration of total protein, urea, creatinine, glucose, ions of sodium, potassium, calcium, iron and chloride was measured. It was found that after injection of the investigated compounds, the concentration of sodium cations and chloride anions in blood serum was increased compared with control (untreated animals). Doxorubicin’s injection was accompanied by a decrease in the concentration of iron cations. The concentration of total protein, urea and creatinine decreased under the influence of the studied compounds. Complexation of these аntineoplastic substances with a synthetic polymeric nanocarrier lowered the concentration of the investigated metabolites substantially compared to the effect of these compounds in free form. The normalization of concentration of total protein, urea and creatinine in blood serum of rats treated with complexes of the studied compounds with the polymeric carrier comparing with increased concentration of these indicators at the introduction of such compounds in free form was found.
Zhang, Jin; Fu, Lei-Lei; Tian, Mao; Liu, Hao-Qiu; Li, Jing-Jing; Li, Yan; He, Jun; Huang, Jian; Ouyang, Liang; Gao, Hui-Yuan; Wang, Jin-Hui
2015-03-01
Sodium taurocholate cotransporting polypeptide (NTCP) is a multiple transmembrane transporter predominantly expressed in the liver, functioning as a functional receptor for HBV. Through our continuous efforts to identify NTCP as a novel HBV target, we designed and synthesized a series of new compounds based on the structure of our previous compound NT-5. Molecular docking and MD simulation validated that a new compound named NTI-007 can tightly bind to NTCP, whose efficacy was also measured in vitro virological examination and cytotoxicity studies. Furthermore, autophagy was observed in NTI-007 incubated HepG2.2.15 cells, and results of q-PCR and Western blotting revealed that NTI-007 induced autophagy through NTCP-APOA1-HBx-Beclin1-mediated pathway. Taken together, considering crucial role of NTCP in HBV infection, NTCP-mediated autophagic pathway may provide a promising strategy of HBV therapy and given efficacy of NTI-007 triggering autophagy. Our study suggests pre-clinical potential of this compound as a novel anti-HBV drug candidate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of Volatile Aromatic Anesthetics on Voltage-Gated Na+ Channels Expressed in Xenopus Oocytes
Horishita, Takafumi; Eger, Edmond I; Harris, R. Adron
2008-01-01
Background Many inhaled anesthetics inhibit voltage-gated sodium channels at clinically relevant concentrations, and suppression of neurotransmitter release by these agents results, at least partly, from decreased presynaptic sodium channel activity. Volatile aromatic anesthetics can inhibit N-methyl-D-aspartate (NMDA) receptor function and enhance γ-amino butyric acid A (GABAA) receptor function, but these effects depend strongly on the chemical properties of the aromatic ompounds. The present study tested whether diverse aromatic anesthetics consistently inhibit sodium channel function. Methods We studied the effect of eight aromatic anesthetics on Nav1.2 sodium channels with β1 subunits, using whole-cell, two-electrode voltage-clamp techniques in Xenopus oocytes. Results All aromatic anesthetics inhibited INa (sodium currents) at a holding potential which produce half-maximal current (V1/2) (partial depolarization); inhibition was modest with 1,3,5-trifluorobenzene (8 ± 2%), pentafluorobenzene (13 ± 2%), and hexafluorobenzene (13 ± 2%), but greater with benzene (37 ± 2%), fluorobenzene (39 ± 2%), 1,2-difluorobenzene (48 ± 2%), 1,4-difluorobenzene (31 ± 3%), and 1,2,4-trifluorobenzene (33 ± 1%). Such dichotomous effects were noted by others for NMDA and GABAA receptors. Parallel, but much smaller inhibition, was found for INa at a holding potential which produced near maximal current (−90 mV) (VH-90), and hexafluorobenzene caused small (6 ± 1%) potentiation of this current. These changes in sodium channel function were correlated with effectiveness for inhibiting NMDA receptors, with lipid solubility of the compounds, with molecular volume, and with cation-π interactions. Conclusion Aromatic compounds vary in their actions on the kinetics of sodium channel gating and this may underlie their variable inhibition. The range of inhibition produced by MAC concentrations of inhaled anesthetics indicates that sodium channel inhibition may underlie the action of some of these anesthetics but not others. PMID:18931215
Im, K.H.; Ahluwalia, R.K.
1984-05-01
The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.
Yuan, Chenpei; Wu, Qiong; Shao, Qi; Li, Qiang; Gao, Bo; Duan, Qian; Wang, Heng-Guo
2018-05-01
Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotubes (CNTs) has been successfully synthesized by a simple vacuum filtration strategy. The obtained flexible and free-standing film could be directly used as the binder-, additive- and current collector-free cathode for lithium ion batteries (LIBs) and sodium ion batteries (SIBs). Benefitting from the synergistic effect provided by the aromatic carbonyl compound and CNTs, the flexible organic cathode shows excellent lithium and sodium storage properties, including high reversible capacity (∼150 mAh g -1 at 50 mA g -1 for LIBs and 57.8 mAh g -1 at 25 mA g -1 for SIBs), excellent cycling stability (over 500 cycles for LIBs and 300 cycles for SIBs) and good rate capability (48 mAh g -1 even at 2000 mA g -1 for LIBs and 48 mAh g -1 even at 1000 mA g -1 for SIBs). In view of the simple preparation process and excellent performance, the proposed strategy might open new avenues for the design of high-performance flexible organic electrode for the application in energy storage and conversion. Copyright © 2018 Elsevier Inc. All rights reserved.
Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro
2016-10-01
Arginine is widely used in biotechnological application, but mostly with chloride counter ion. Here, we examined the effects of various anions on solubilization of aromatic compounds and reduced lysozyme and on refolding of the lysozyme. All arginine salts tested increased the solubility of propyl gallate with acetate much more effectively than chloride. The effects of arginine salts were compared with those of sodium or guanidine salts, indicating that the ability of anions to modulate the propyl gallate solubility is independent of the cation. Comparison of transfer free energy of propyl gallate between sodium and arginine salts indicates that the interaction of propyl gallate is more favorable with arginine than sodium. On the contrary, the solubility of aromatic amino acids is only slightly modulated by anions, implying that there is specific interaction between acetic acid and propyl gallate. Unlike their effects on the solubility of small aromatic compounds, the solubility of reduced lysozyme was much higher in arginine chloride than in arginine acetate or sulfate. Consistent with high solubility, refolding of reduced lysozyme was most effective in arginine chloride. These results suggest potential broader applications of arginine modulated by different anions. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparison of phosphorus forms in three extracts of dairy feces by solution 31P NMR analysis
USDA-ARS?s Scientific Manuscript database
Using solution 31P NMR spectroscopy, we compared three extractants, deionized water, sodium acetate buffer (pH 5.0) with fresh sodium dithionite (NaAc-SD), and 0.25 M NaOH-0.05 M EDTA (NaOH-EDTA), for the profile of P compounds in two dairy fecal samples. Phosphorus extracted was 35% for water, and...
Environmental Compliance Assessment System (ECAS) - Wisconsin Supplement
1994-02-01
animal product, produced by a person primarily for sale, consumption, propagation or other use by humans or animals. "• Animal Technician - an individual...34* Manufacture - to process, manufacture, formulate, prepare, compound, propagate , package or label any pesticide. "* Metam Sodium - Sodium N...the term includes pesticide-fertilizer mixtures and seeds, seed pieces, and other plant parts intended for planting or propagation that have been
Suwannoppadol, Suwat; Ho, Goen; Cord-Ruwisch, Ralf
2012-12-01
Sodium toxicity is a common problem causing inhibition of anaerobic digestion, and digesters treating highly concentrated wastes, such as food and municipal solid waste, and concentrated animal manure, are likely to suffer from partial or complete inhibition of methane-producing consortia, including methanogens. When grass clippings were added at the onset of anaerobic digestion of acetate containing a sodium concentration of 7.8 gNa(+)/L, a total methane production about 8L/L was obtained, whereas no methane was produced in the absence of grass leaves. In an attempt to narrow down which components of grass leaves caused decrease of sodium toxicity, different hypotheses were tested. Results revealed that betaine could be a significant compound in grass leaves causing reduction to sodium inhibition. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nutritional value, bioactive compounds, and health benefits of lettuce (Lactuca sativa L.)
USDA-ARS?s Scientific Manuscript database
Lettuce is one of the most popularly consumed vegetables worldwide but its nutritional value has been underestimated. Lettuce is low in calories and fat but high in fiber. Moreover, lettuce is high in potassium but low in sodium. Lettuce is also a good source of health-beneficial bioactive compounds...
Kocadağlı, Tolgahan; Gökmen, Vural
2016-08-17
This study aimed to investigate the kinetics of α-dicarbonyl compound formation in glucose and glucose-sodium chloride mixture during heating under caramelization conditions. Changes in the concentrations of glucose, fructose, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural (HMF), glyoxal, methylglyoxal, and diacetyl were determined. A comprehensive reaction network was built, and the multiresponse model was compared to the experimentally observed data. Interconversion between glucose and fructose became 2.5 times faster in the presence of NaCl at 180 and 200 °C. The effect of NaCl on the rate constants of α-dicarbonyl compound formation varied across the precursor and the compound itself and temperature. A decrease in rate constants of 3-deoxyglucosone and 1-deoxyglucosone formations by the presence of NaCl was observed. HMF formation was revealed to be mainly via isomerization to fructose and dehydration over cyclic intermediates, and the rate constants increase 4-fold in the presence of NaCl.
Liu, Dengyong; Li, Shengjie; Wang, Nan; Deng, Yajun; Sha, Lei; Gai, Shengmei; Liu, Huan; Xu, Xinglian
2017-05-01
This paper aimed to study the time course changes in taste compounds of Dezhou-braised chicken during the entire cooking process mainly consisting of deep-frying, high-temperature boiling, and low-temperature braising steps. For this purpose, meat samples at different processing stages were analyzed for 5'-nucleotides and free amino acids, and were also subjected to electronic tongue measurements. Results showed that IMP, Glu, Lys, and sodium chloride were the main compounds contributing to the taste attributes of the final product. IMP and Glu increased in the boiling step and remained unchanged in the following braising steps. Meanwhile, decrease in Lys content and increase in sodium chloride content were observed over time in both boiling and braising steps. Intensities for bitterness, saltiness, and Aftertaste-B obtained from the electronic tongue analysis were correlated with the concentrations of these above chemical compounds. Therefore, the electronic tongue system could be applied to evaluate the taste development of Dezhou-braised chicken during processing. © 2017 Institute of Food Technologists®.
Inhibitors of voltage-gated sodium channel Nav1.7: patent applications since 2010.
Sun, Shaoyi; Cohen, Charles J; Dehnhardt, Christoph M
2014-09-01
There has been intense interest in developing inhibitors of the sodium channel Nav1.7 because genetic studies have established very strong validation for the efficacy to alleviate both inflammatory and neuropathic pain. This review summarizes patent applications targeting Nav1.7 since 2010 until May, 2014. We have classified the patents into three categories as follows: small molecules with well-defined molecular selectivity among sodium channel isoforms; biologicals with well-defined molecular selectivity; and, small molecules that inhibit Nav1.7 with unknown molecular selectivity. Most of the review is dedicated to small molecule selective compounds.
Yeo, H; Doyle, T; Saynor, R; Smith, G H
1986-01-01
After observations of cloudiness in the perfusion circuit at open intracardiac operations, laboratory experiments showed a precipitate in a Hartmann's solution (compound sodium lactate solution, Ringer-lactate) and sodium bicarbonate based priming fluid used for cardiopulmonary bypass. The precipitate was found to consist of calcium carbonate crystals. The crystals were not dissolved by adding plasma proteins, nor were they sufficiently cleared from the extracorporeal circuit by a 40 microns filter in the arterial line. The crystals may embolise in microvascular beds and thus be a cause of postoperative morbidity. The practice of adding sodium bicarbonate to the pump prime may be unnecessary. Images PMID:3010485
NASA Astrophysics Data System (ADS)
Ramadan, Septian; Fariduddin, Sholah; Rizki Aminudin, Afianti; Kurnia Hayatri, Antisa; Riyanto
2017-11-01
The effects of voltage and concentration of sodium bicarbonate were investigated to determine the optimum conditions of the electrochemical synthesis process to convert carbon dioxide into ethanol. The conversion process is carried out using a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor equipped with a cathode and anode. As the cathode was used brass, while as the anode carbon was utilized. Sample of the electrochemical synthesis process was analyzed by gas chromatography to determine the content of the compounds produced. The optimum electrochemical synthesis conditions to convert carbon dioxide into ethanol are voltage and concentration of sodium bicarbonate are 3 volts and 0.4 M with ethanol concentration of 1.33%.
The analytical biochemistry of chromium.
Katz, S A
1991-01-01
The essentiality and carcinogenicity of chromium depend on its chemical form. Oxidation state and solubility are particularly important in determining the biological effects of chromium compounds. For this reason, total chromium measurements are of little value in assessing its nutritional benefits or its toxicological hazards. Aqueous sodium carbonate-sodium hydroxide solutions have been successfully used for extracting hexavalent chromium from a variety of environmental and biological matrices while preserving its oxidation state. Typical recoveries are 90 to 105% in samples spiked with both trivalent and hexavalent chromium. Determination of hexavalent chromium after extraction with sodium carbonate-sodium hydroxide solution, coupled with the determination of total chromium after nitric acid-hydrogen peroxide digestion, has been applied to the evaluation of chromium speciation in airborne particulates, sludges, and biological tissues. PMID:1935842
Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottea, J.A.; Payne, G.T.; Soderlund, D.M.
1990-08-01
Nine synthetic N-alkylamides were examined as inhibitors of the specific binding of ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate (({sup 3}H)BTX-B) to sodium channels and as activators of sodium uptake in mouse brain synaptoneurosomes. In the presence of scorpion (Leiurus quinquestriatus) venom, the six insecticidal analogues were active as both inhibitors of ({sup 3}H)BTX-B binding and stimulators of sodium uptake. These findings are consistent with an action of these compounds at the alkaloid activator recognition site (site 2) of the voltage-sensitive sodium channel. The three noninsecticidal N-alkylamides also inhibited ({sup 3}H)BTX-B binding but were ineffective as activators of sodium uptake. Concentration-response studies revealedmore » that some of the insecticidal amides also enhanced sodium uptake through a second, high-affinity interaction that does not involve site 2, but this secondary effect does not appear to be correlated with insecticidal activity. The activities of N-alkylamides as sodium channel activators were influenced by the length of the alkenyl chain and the location of unsaturation within the molecule. These results further define the actions of N-alkylamides on sodium channels and illustrate the significance of the multiple binding domains of the sodium channel as target sites for insect control agents.« less
Metal cleaners contain organic compounds called hydrocarbons, including: 1,2-butylene oxide Boric acid Cocoyl sarcosine Dicarboxylic fatty acid Dimethoxymethane Dodecanedioic acid N-propyl bromide Sodium hydroxide T-butanol
[Dentinal hypersensitivity in periodontal disease. Aetiology Aetiology--management].
Andronikaki-Faldani, A; Kamma, I
1988-01-01
The exposure of dentine has a multifactoral aetiology and pain may frequently be elicited by a number of stimuli. Management of dentinal hypersensitivity tends to be empirical because of the lack of knowledge concerning the mechanism of pain transmission through dentine. Nevertheless, whichever theory proves to be correct, occlusion of dentinal tubules would appear an essential prerequisite for an effective desensitising agent. A large number of compounds as well as iontophoresis have been employed in the management of dentinal hypersensitivity. These desensitising agents are: sodium, fluoride, stannous fluoride, sodium monofluorophosphate, strontium chloride, calcium hydroxide, potassium nitrate, silver nitrate, formalin, corticosteroids, resins, varnishes and glass ionomers. The most effective of the compounds mentioned above, are fluorides used as gels, varnishes, mouthwashes or toothpastes, strontium chloride and potassium nitrate.
A thermochemical explanation for the stability of NaCl3 and NaCl7
NASA Astrophysics Data System (ADS)
Fernandes de Farias, Robson
2017-03-01
Thermodynamically stable cubic and orthorhombic NaCl3 as well as NaCl7 have been synthesized (Zhang et al., 2013). In the present work, a thermochemical explanation for the stability of such unusual sodium chlorides is provided, based on lattice energy values. Using the Glasser-Jenkins generalized equation (Glasser and Jenkins, 2000) lattice energies (kJ mol-1) of -162.5, -168.9 and -113.1 are calculated for Pm3n NaCl3, Pnma NaCl3 and NaCl7, respectively. It is postulated that any NaxCly compound could be synthesized, if the ionic character of the Nasbnd Cl bond in the prepared compound remains around 80%, and the sodium charge below unit.
Singh, R P; Nie, X; Singh, M; Coffin, R; Duplessis, P
2002-01-01
Phenolic compounds from plant tissues inhibit reverse transcription-polymerase chain reaction (RT-PCR). Multiple-step protocols using several additives to inhibit polyphenolic compounds during nucleic acid extraction are common, but time consuming and laborious. The current research highlights that the inclusion of 0.65 to 0.70% of sodium sulphite in the extraction buffer minimizes the pigmentation of nucleic acid extracts and improves the RT-PCR detection of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in potato (Solanum tuberosum) tubers and Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV) in leaves and bark in the sweet cherry (Prunus avium) tree. Substituting sodium sulphite in the nucleic acid extraction buffer eliminated the use of proteinase K during extraction. Reagents phosphate buffered saline (PBS)-Tween 20 and polyvinylpyrrolidone (PVP) were also no longer required during RT or PCR phase. The resultant nucleic acid extracts were suitable for both duplex and multiplex RT-PCR. This simple and less expensive nucleic acid extraction protocol has proved very effective for potato cv. Russet Norkotah, which contains a high amount of polyphenolics. Comparing commercially available RNA extraction kits (Catrimox and RNeasy), the sodium sulphite based extraction protocol yielded two to three times higher amounts of RNA, while maintaining comparable virus detection by RT-PCR. The sodium sulphite based extraction protocol was equally effective in potato tubers, and in leaves and bark from the cherry tree.
Early Development of a Hazardous Chemical Protective Ensemble.
1986-10-01
Insuff. Cyanides ( Sodium , Potassium, Sol’n) -- 5 Butyl Cyanogen Bromide CBR 2 Insuff. Cyanogen Chloride CCL NR Insuff. Cyclohexane --- 6 Butyl...SPILLED SUBSTANCES ANNUAL RECOMMENDED ALTERNATE COMPOUND CHRIS CODE NO. OF SPILLS MATERIAL MATERIALS Dimethyl Sulfate DSL 4 Insuff. Ethyl Acrylate EAC 38...Tetrachloride STC 2 Insuff. Sodium Hydroxide (sol’n or dry) SHD 193 Butyl Sulfuric Acid SFA 426 CPE Tetrahydrofuran THF 13 None Titanium Tetrachloride TTT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smetana, Volodymyr; Lin, Qisheng; Pratt, Daniel K.
2013-09-26
Gold macht stabil: Na 13Au 12Ga 15, ein natriumhaltiges thermodynamisch stabiles quasikristallines Material, wurde bei einer systematischen Studie des polaren Na-Au-Ga-Intermetallsystems entdeckt. Sein Elektron/Atom-Verhältnis von 1.75 ist für Bergman-Ikosaederphasen extrem klein, doch der substanzielle Au-Anteil sorgt für eine Hume-Rothery-Stabilisierung und neuartige polar-kovalente Na-Au-Wechselwirkungen.
Jin, Jian; Li, Xiaodong; Chi, Yong; Yan, Jianhua
2010-12-01
This study investigated the process of aluminosilicate formation in medical waste incinerator fly ash containing large amounts of heavy metals and treated with alkaline compounds at 375 degrees C and examined how this process affected the mobility and availability of the metals. As a consequence of the treatments, the amount of dissolved heavy metals, and thus their mobility, was greatly reduced, and the metal leaching concentration was below the legislative regulations for metal leachability. Moreover, this process did not produce a high concentration of heavy metals in the effluent. The addition of alkaline compounds such as sodium hydroxide and sodium carbonate can prevent certain heavy metal ions dissolving in water. In comparison with the alkaline-free condition, the extracted concentrations of As, Mn, Pb, Sr and Zn were decreased by about 51.08, 97.22, 58.33, 96.77 and 86.89% by the addition of sodium hydroxide and 66.18, 86.11, 58.33, 83.87 and 81.91% by the addition of sodium carbonate. A mechanism for how the formation of aluminosilicate occurred in supercritical water and affected the mobility and availability of the heavy metals is discussed. The reported results could be useful as basic knowledge for planning new technologies for the hydrothermal stabilization of heavy metals in fly ash.
Jain, R K; Piskorz, C F; Matta, K L
1995-10-02
Allyl 2-acetamido-4,6-O-(4-methoxybenzylidene)-2-deoxy-alpha-D-galact opy ranoside (1) was condensed with either 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide (2) or 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-alpha-D-galactopyranosyl bromide (14) in the presence of mercuric cyanide. Selective substitution with methyl, sulfo or both at desired positions, followed by the removal of protecting groups, afforded allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-6-O-methyl-alpha -D- galactopyranoside (5), allyl O-(6-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy-6- O-methyl-alpha-D-galactopyranoside (10), allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-6-O-sulfo-alpha- D- galactopyranoside sodium salt (13), allyl O-(6-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy- alpha-D-galactopyranoside (17) and allyl O-(3-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy- alpha-D-galactopyranoside (22). The structures of compounds 5, 10, 13, 17 and 22 were established by 13C NMR and FAB mass spectroscopy.
Defluorination of Sodium Fluoroacetate by Bacteria from Soil and Plants in Brazil
Camboim, Expedito K. A.; Tadra-Sfeir, Michelle Z.; de Souza, Emanuel M.; Pedrosa, Fabio de O.; Andrade, Paulo P.; McSweeney, Chris S.; Riet-Correa, Franklin; Melo, Marcia A.
2012-01-01
The aim of this work was to isolate and identify bacteria able to degrade sodium fluoroacetate from soil and plant samples collected in areas where the fluoroacetate-containing plants Mascagnia rigida and Palicourea aenofusca are found. The samples were cultivated in mineral medium added with 20 mmol L−1 sodium fluoroacetate. Seven isolates were identified by 16S rRNA gene sequencing as Paenibacillus sp. (ECPB01), Burkholderia sp. (ECPB02), Cupriavidus sp. (ECPB03), Staphylococcus sp. (ECPB04), Ancylobacter sp. (ECPB05), Ralstonia sp. (ECPB06), and Stenotrophomonas sp. (ECPB07). All seven isolates degraded sodium-fluoroacetate-containing in the medium, reaching defluorination rate of fluoride ion of 20 mmol L−1. Six of them are reported for the first time as able to degrade sodium fluoroacetate (SF). In the future, some of these microorganisms can be used to establish in the rumen an engineered bacterial population able to degrade sodium fluoroacetate and protect ruminants from the poisoning by this compound. PMID:22619595
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinlong; Wang, Yonggang; Li, Shuai
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-stat battery. In this work, the sodium ionic transport pathways of the parent compound Na 3OBr, as well as the modified layered antiperovskite Na 4OI 2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na 3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions ho within and among oxygen octahedra, and Br - ions are not involved in the tetragonal Namore » 4OI 2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. In conclusion, the transport of sodium ions along the c axis is assisted by I - ions.« less
Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries.
Lao, Mengmeng; Zhang, Yu; Luo, Wenbin; Yan, Qingyu; Sun, Wenping; Dou, Shi Xue
2017-12-01
Sodium-ion batteries (SIBs) are considered as promising alternatives to lithium-ion batteries owing to the abundant sodium resources. However, the limited energy density, moderate cycling life, and immature manufacture technology of SIBs are the major challenges hindering their practical application. Recently, numerous efforts are devoted to developing novel electrode materials with high specific capacities and long durability. In comparison with carbonaceous materials (e.g., hard carbon), partial Group IVA and VA elements, such as Sn, Sb, and P, possess high theoretical specific capacities for sodium storage based on the alloying reaction mechanism, demonstrating great potential for high-energy SIBs. In this review, the recent research progress of alloy-type anodes and their compounds for sodium storage is summarized. Specific efforts to enhance the electrochemical performance of the alloy-based anode materials are discussed, and the challenges and perspectives regarding these anode materials are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery
NASA Astrophysics Data System (ADS)
Law, Markas; Ramar, Vishwanathan; Balaya, Palani
2017-08-01
Here we report a polyanion-based cathode material for sodium-ion batteries, Na2MnSiO4, registering impressive sodium storage performances with discharge capacity of 210 mAh g-1 at an average voltage of 3 V at 0.1 C, along with excellent long-term cycling stability (500 cycles at 1 C). Insertion/extraction of ∼1.5 mol of sodium ion per formula unit of the silicate-based compound is reported and the utilisation of Mn2+ ⇋ Mn4+ redox couple is also demonstrated by ex-situ XPS. Besides, this study involves a systematic investigation of influence of the electrolyte additive (with different content) on the sodium storage performance of Na2MnSiO4. The electrolyte additive forms an optimum protective passivation film on the electrode surface, successfully reducing manganese dissolution.
Investigation of ionic transport in sodium scandium phosphate (NSP) and related compounds
NASA Astrophysics Data System (ADS)
Bhat, Kaustubh; Blügel, Stefan; Lustfeld, Hans
Sodium ionic conductors offer significant advantages for application in large scale energy storage systems. In this study, we investigate the different pathways available for sodium ion conduction in NSP and calculate energy barriers for ionic transport using Density Functional Theory (DFT) and the Nudged Elastic Band Method. We identify the structural parameters that reduce the energy barrier, by calculating the influence of positive and negative external pressure on the energy barrier. Lattice strain can be introduced by cation or anion substitution within the NASICON structure. We substitute the scandium atom with other trivalent atoms such as aluminium and yttrium, and calculate the resulting energy barriers. Sodium thiophosphate (Na3PS4) has previously shown about two orders of magnitude higher ionic conductivity than sodium phosphate (Na3PO4). We investigate the effect of substituting oxygen with sulphur in NSP. We acknowledge discussions with our experimental colleagues F. Tietz and M. Guin toward this work
Zhu, Jinlong; Wang, Yonggang; Li, Shuai; ...
2016-06-02
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-stat battery. In this work, the sodium ionic transport pathways of the parent compound Na 3OBr, as well as the modified layered antiperovskite Na 4OI 2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na 3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions ho within and among oxygen octahedra, and Br - ions are not involved in the tetragonal Namore » 4OI 2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. In conclusion, the transport of sodium ions along the c axis is assisted by I - ions.« less
Determination of sulfur compounds in hydrotreated transformer base oil by potentiometric titration.
Chao, Qiu; Sheng, Han; Cheng, Xingguo; Ren, Tianhui
2005-06-01
A method was developed to analyze the distribution of sulfur compounds in model sulfur compounds by potentiometric titration, and applied to analyze hydrotreated transformer base oil. Model thioethers were oxidized to corresponding sulfoxides by tetrabutylammonium periodate and sodium metaperiodate, respectively, and the sulfoxides were titrated by perchloric acid titrant in acetic anhydride. The contents of aliphatic thioethers and total thioethers were then determined from that of sulfoxides in solution. The method was applied to determine the organic sulfur compounds in hydrotreated transformer base oil.
Fontana, Andréia Cristina Karklin; de Oliveira Beleboni, Renê; Wojewodzic, Marcin Wlodzimierz; Ferreira Dos Santos, Wagner; Coutinho-Netto, Joaquim; Grutle, Nina Julie; Watts, Spencer D; Danbolt, Niels Christian; Amara, Susan G
2007-11-01
Previous studies have shown that a compound purified from the spider Parawixia bistriata venom stimulates the activity of glial glutamate transporters and can protect retinal tissue from ischemic damage. To understand the mechanism by which this compound enhances transport, we examined its effects on the functional properties of glutamate transporters after solubilization and reconstitution in liposomes and in transfected COS-7 cells. Here, we demonstrate in both systems that Parawixin1 promotes a direct and selective enhancement of glutamate influx by the EAAT2 transporter subtype through a mechanism that does not alter the apparent affinities for the cosubstrates glutamate or sodium. In liposomes, we observed maximal enhancement by Parawixin1 when extracellular sodium and intracellular potassium concentrations are within physiological ranges. Moreover, the compound does not enhance the reverse transport of glutamate under ionic conditions that favor efflux, when extracellular potassium is elevated and the sodium gradient is reduced, nor does it alter the exchange of glutamate in the absence of internal potassium. These observations suggest that Parawixin1 facilitates the reorientation of the potassium-bound transporter, the rate-limiting step in the transport cycle, a conclusion further supported by experiments showing that Parawixin1 does not stimulate uptake by an EAAT2 transport mutant (E405D) defective in the potassium-dependent reorientation step. Thus, Parawixin1 enhances transport through a novel mechanism targeting a step in the transport cycle distinct from substrate influx or efflux and provides a basis for the design of new drugs that act allosterically on transporters to increase glutamate clearance.
von Stein, Richard T.; Silver, Kristopher S.; Soderlund, David M.
2013-01-01
Sodium channel inhibitor (SCI) insecticides were discovered almost four decades ago but have only recently yielded important commercial products (eg., indoxacarb and metaflumizone). SCI insecticides inhibit sodium channel function by binding selectively to slow-inactivated (non-conducting) sodium channel states. Characterization of the action of SCI insecticides on mammalian sodium channels using both biochemical and electrophysiological approaches demonstrates that they bind at or near a drug receptor site, the "local anesthetic (LA) receptor." This mechanism and site of action on sodium channels differentiates SCI insecticides from other insecticidal agents that act on sodium channels. However, SCI insecticides share a common mode of action with drugs currently under investigation as anticonvulsants and treatments for neuropathic pain. In this paper we summarize the development of the SCI insecticide class and the evidence that this structurally diverse group of compounds have a common mode of action on sodium channels. We then review research that has used site-directed mutagenesis and heterologous expression of cloned mammalian sodium channels in Xenopus laevis oocytes to further elucidate the site and mechanism of action of SCI insecticides. The results of these studies provide new insight into the mechanism of action of SCI insecticides on voltage-gated sodium channels, the location of the SCI insecticide receptor, and its relationship to the LA receptor that binds therapeutic SCI agents. PMID:24072940
Enteric-coated mycophenolate sodium.
Gabardi, Steven; Tran, Jennifer L; Clarkson, Michael R
2003-11-01
To review the pharmacology, pharmacokinetics, efficacy, and safety of mycophenolate sodium. Primary literature was obtained via a MEDLINE search (1966-June 2003). Abstracts were obtained from the manufacturer and included in the analysis. All studies and abstracts evaluating mycophenolate sodium in solid organ transplantation were considered for inclusion. English-language studies and abstracts were selected for inclusion, but were limited to those consisting of human subjects. Mycophenolate sodium, a mycophenolic acid prodrug, is an inhibitor of T-lymphocyte proliferation. Mycophenolic acid reduces the incidence of acute rejection in renal transplantation. Mycophenolate sodium is enteric coated and has been suggested as a potential method to reduce the gastrointestinal adverse events seen with mycophenolate mofetil. Both mycophenolate mofetil and mycophenolate sodium have been shown to be therapeutically equivalent at decreasing the incidence of allograft rejection and loss. The frequency of adverse events is similar between both compounds, with the most common events being diarrhea and leukopenia. Mycophenolate sodium is effective in preventing acute rejection in renal transplant recipients. At doses of 720 mg twice daily, the efficacy and safety profiles are similar to those of mycophenolate mofetil 1000 mg twice daily. Mycophenolate sodium has been approved in Switzerland; approval in the US is pending.
Sodium transport modes in AMTEC electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, R.M.; Homer, M.L.; Lara, L.
1998-07-01
Transport of alkali metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant, reducible losses in the electrical performance of these cells. Sodium transport has been characterized in a variety of AMTEC electrodes and several different transport modes clearly exist. Free molecular flow is the dominant transport mechanism in clean porous molybdenum and tungsten electrodes, and contributes to sodium transport in all porous electrodes, including WPt{sub 2}, WRh{sub 3}, and TiN. Molybdenum and tungsten electrodes containing phases such as Na{sub 2}MoO{sub 4} and Na{sub 2}WO{sub 4} exhibit very efficient sodium ion transport through themore » electrode in the ionic conducting phase. These electrodes also show reversible electrochemical reactions in which sodium ions and electrons are inserted or removed from into phases such as Na{sub 2}MoO{sub 4} and Na{sub 2}Mo{sub 3}O{sub 6} which are present in the electrode WPt{sub 2} and WRh{sub 3} electrodes typically exhibit both free molecular flow transport as well as an enhanced thermally activated transport mode which is probably surface and/or grain boundary diffusion of sodium in the alloy electrode. Data for large area WPt{sub 2} electrodes within a cylindrical heat shield are reported in this paper. Sodium transport away from these electrodes is effected by both the electrode's properties and the exterior environment which inhibits sodium gas flow to the condenser. Liquid alloy electrodes have been examined and have fairly efficient transport properties by liquid phase diffusion, but have generally not been considered advantageous for development. Titanium nitride, TiN, electrodes used in AMTEC cells, and similar electronically conducting refractory compounds such as TiB{sub 2} and NbN are always physically porous to some degree as formed by sputter deposition or screen printing, and these compounds sinter quite slowly. Hence free molecular flow is always a significant sodium transport mode in these electrodes. However, the sodium transport rate computed from the physical morphology of the electrodes is not as efficient as actual sodium transport in TiN electrodes, implicating an enhanced transport mode, which remains operational at lower AMTEC operating temperatures. Some TiN electrodes also have been found to exhibit electrochemical reactions involving electrode phases which persist in sodium exposure test cells at 1223K, as reported in this paper.« less
Rackl, Daniel; Yoo, Chun-Jae; Jones, Christopher W; Davies, Huw M L
2017-06-16
A tandem reaction system has been developed for the preparation of donor/acceptor-substituted diazo compounds in continuous flow coupled to dirhodium-catalyzed C-H functionalization or cyclopropanation. Hydrazones were oxidized in flow by solid-supported N-iodo-p-toluenesulfonamide potassium salt (PS-SO 2 NIK) to generate the diazo compounds, which were then purified by passing through a column of molecular sieves/sodium thiosulfate.
Fu, L-L; Liu, J; Chen, Y; Wang, F-T; Wen, X; Liu, H-Q; Wang, M-Y; Ouyang, L; Huang, J; Bao, J-K; Wei, Y-Q
2014-08-01
The aim of this study was to explore sodium taurocholate co-transporting polypeptide (NTCP) exerting its function with hepatitis B virus (HBV) and its targeted candidate compounds, in HBV therapy. Identification of NTCP as a novel HBV target for screening candidate small molecules, was used by phylogenetic analysis, network construction, molecular modelling, molecular docking and molecular dynamics (MD) simulation. In vitro virological examination, q-PCR, western blotting and cytotoxicity studies were used for validating efficacy of the candidate compound. We used the phylogenetic analysis of NTCP and constructed its protein-protein network. Also, we screened compounds from Drugbank and ZINC, among which five were validated for their authentication in HepG 2.2.15 cells. Then, we selected compound N4 (azelastine hydrochloride) as the most potent of them. This showed good inhibitory activity against HBsAg (IC50 = 7.5 μm) and HBeAg (IC50 = 3.7 μm), as well as high SI value (SI = 4.68). Further MD simulation results supported good interaction between compound N4 and NTCP. In silico analysis and experimental validation together demonstrated that compound N4 can target NTCP in HepG2.2.15 cells, which may shed light on exploring it as a potential anti-HBV drug. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Pedersen, Charles J.
1988-07-01
The discovery of the crown ethers stemmed from efforts to control the catalytic activity of vanadium and copper by complexation with multidentate ligands. The first crown ether, 2,3,11,12-dibenzo-1,4,7,10,13,16-hexaoxacyclo-octadeca-2,11-diene, was obtained in 0.4% yield during an attempt to prepare a phenolic ligand from catechol and bis(2-chloroethyl)ether. This compound, which complexed with the sodium cation, was the first compound known to display such activity and became known as dibenzo-18-crown-6, an 18-atom heterocycle containing 6 oxygen atoms. Some 60 related compounds were made involving heterocyclic rings containing 12 to 60 atoms including 4 and 10 oxygen atoms. There are optimum polyether ring sizes for the different alkali metal cations: 15 to 18 for sodium, 18 for potassium, and 18 to 21 for cesium. Complexes having polyether to cation ratios of 1:1, 3:2, and 2:1 were prepared. Solubilization of inorganic salts in aprotic solvents, especially by saturated crown ethers, was demonstrated.
Comparison and Analysis of Toxcast Data with In Vivo Data for ...
The ToxCast program has generated a great wealth of in vitro high throughput screening (HTS) data on a large number of compounds, providing a unique resource of information on the bioactivity of these compounds. However, analysis of these data are ongoing, and interpretation and use of the ToxCast data such as for safety assessment of food related compounds remains undetermined. To fill this gap, we conducted a case study of 2 food-related compounds to better understand the ToxCast data and its potential use in chemical safety assessment by comparison between ToxCast and traditional, in vivo toxicology data using the Risk21 approach. Risk21 is an exposure driven flexible risk assessment framework developed by ILSI HESI. Prior work (Karmaus et. al., 2016) looking at all food-relevant compounds in ToxCast showed that food contact substances had high bioactivity in ToxCast assays. To better understand these chemicals based on their indirect food use, exposure and availability of traditional toxicology data, two compounds, dibutyltin dichloride and sodium pyrithione, were selected from a list of the food contact substances with the greatest activity in ToxCast. Exposure and hazard data were compiled and analyzed for both compounds. Comparison between in vitro HTS and in vivo data for sodium pyrithione showed that concentrations that elicited bioactivity in ToxCast assays corresponded to low- and no- observed adverse effect doses in animals. For dibutyltin dichlori
Effects of sodium citrate, citric acid and lactic acid on human blood coagulation.
Scaravilli, Vittorio; Di Girolamo, Luca; Scotti, Eleonora; Busana, Mattia; Biancolilli, Osvaldo; Leonardi, Patrizia; Carlin, Andrea; Lonati, Caterina; Panigada, Mauro; Pesenti, Antonio; Zanella, Alberto
2018-05-01
Citric acid infusion in extracorporeal blood may allow concurrent regional anticoagulation and enhancement of extracorporeal CO 2 removal. Effects of citric acid on human blood thromboelastography and aggregometry have never been tested before. In this in vitro study, citric acid, sodium citrate and lactic acid were added to venous blood from seven healthy donors, obtaining concentrations of 9 mEq/L, 12 mEq/L and 15 mEq/L. We measured gas analyses, ionized calcium (iCa ++ ) concentration, activated clotting time (ACT), thromboelastography and multiplate aggregometry. Repeated measure analysis of variance was used to compare the acidifying and anticoagulant properties of the three compounds. Sodium citrate did not affect the blood gas analysis. Increasing doses of citric and lactic acid progressively reduced pH and HCO 3 - and increased pCO 2 (p<0.001). Sodium citrate and citric acid similarly reduced iCa ++ , from 0.39 (0.36-0.39) and 0.35 (0.33-0.36) mmol/L, respectively, at 9 mEq/L to 0.20 (0.20-0.21) and 0.21 (0.20-0.23) mmol/L at 15 mEq/L (p<0.001). Lactic acid did not affect iCa ++ (p=0.07). Sodium citrate and citric acid similarly incremented the ACT, from 234 (208-296) and 202 (178-238) sec, respectively, at 9 mEq/L, to >600 sec at 15 mEq/L (p<0.001). Lactic acid did not affect the ACT values (p=0.486). Sodium citrate and citric acid similarly incremented R-time and reduced α-angle and maximum amplitude (MA) (p<0.001), leading to flat-line thromboelastograms at 15 mEq/L. Platelet aggregometry was not altered by any of the three compounds. Citric acid infusions determine acidification and anticoagulation of blood similar to lactic acid and sodium citrate, respectively.
NASA Astrophysics Data System (ADS)
Vari, Sandor G.; Papazoglou, Theodore G.; Papaioannou, Thanassis; Stavridi, Marigo; Pergadia, Vani R.; Fishbein, Michael C.; van der Veen, Maurits J.; Thomas, Reem; Grundfest, Warren S.
1994-03-01
Laser induced fluorescence spectroscopy (LIFS) was used to detect the presence of PHOTOFRINR porfimer sodium and Benzoporphyrin derivative-monoacid, ring A (BPD-MA) in various tissues. Lobund Wistar rats (n equals 49) inoculated with rat prostatic adenocarcinoma (PA-III) were injected with PHOTOFRINR porfimer sodium (7.5 - 0.25 mg/kg) and BPD (0.50 - 25 mg/kg) intravenously. A Helium-Cadmium laser (442 nm) was used as an excitation source. Our study showed that the amount of PHOTOFRINR porfimer sodium and BPD-MA which localizes in the metastatic lymph nodes is higher than in tumor and all other healthy tissues. Laser induced fluorescence spectroscopy may be a feasible method to detect the distribution of photosensitizers or other fluorescent compounds in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinlong; Wang, Yonggang; Li, Shuai
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-state battery. In this work, the sodium ionic transport pathways of the parent compound Na3OBr, as well as the modified layered antiperovskite Na4OI2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions hop within and among oxygen octahedra, and Br- ions are not involved. In the tetragonal Na4OI2 antiperovskite, Na ions, which connectmore » octahedra in the ab plane, have the lowest activation energy barrier. The transport of sodium ions along the c axis is assisted by I- ions.« less
PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, D.
2011-01-19
Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), andmore » measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.« less
Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.
1984-01-01
Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. PMID:16346592
Characterization of the Chemical Constitution and Profile of Pharmacological Activity of PGB(x).
1982-02-26
ischemia. Fed. Proc. 40 , 692 (1980). 3. Burkman, A. M. and Phornchirasilp, S., Prostaglandin Bx enhances the inotropic efficacy (Emax) of...nitroketone 10 was then converted to the sodium salt of the corresponding nitronic acid on treatment with an equimolar amount of sodium metabolite in...bromide in chloroform-ethyl acetate to give unsaturated aldehyde 12 in 40 ’ yield. The reaction of compound 9 with dimethyl (2-oxoheptvl) phosphonate in
Technology Study on Piezoelectric Materials
1979-07-20
broken down into five classes: 1) perovskite -type oxides, 2) aqueous solution grown crystals, 3) semiconductive compounds, 4) other oxides and 5...three times that of sodium, sodium would 24 be heated three times as much as water by identical x-rays. " Perovskite -Type Oxides Sixteen of the materials...in Table 1 have the general formula ABD3 which normally have a distorted perovskite , simple cubic structure. The A-type cation at the 12
Organic Electrolytes for Sodium Batteries
1992-09-01
discussion ................................... 30 3.1 Stability of the organic compounds ...................... 30 3.2 Reactivity with aluminum chloride...Reactions between organic salt/ aluminum chloride. 3.2.1 The MEICI:AICI 3 system. 3.3.1.1 Least-Squares-Fitted Parameters fo, specific conductivitie’s of l...temperature. 3.5.2.3.1 Sodium behavior towards MEICIAICI3 melts. 3.5.2.3.1.1 Standard potential of copper couples in AICt3 :BuPyCI melts versus aluminum
Analysis of the potential geochemical reactions in the Enceladus' hydrothermal environment
NASA Astrophysics Data System (ADS)
Ramirez-Cabañas, A. K.; Flandes, A.
2017-12-01
Enceladus is the sixth largest moon of Saturn and differs from its other moons, because of its cryovolcanic geysers that emanate from its south pole. The instruments of the Cassini spacecraft reveal different compounds in the gases and the dust of the geysers, such as salts (sodium chloride, sodium bicarbonate and/or sodium carbonate), as well as silica traces (Postberg et al., 2008, 2009) that could be the result of a hydrothermal environment (Hsu et al., 2014, Sekine et al., 2014). By means of a thermodynamic analysis, we propose and evaluate potential geochemical reactions that could happen from the interaction between the nucleus surface and the inner ocean of Enceladus. These reactions may well lead to the origin of the compounds found in the geysers. From this analysis, we propose that, at least, two minerals must be present in the condritic nucleus of Enceladus: olivines (fayalite and fosterite) and feldspar (orthoclase and albite). Subsequently, taking as reference the hydrothermal processes that take place on Earth, we propose the different stages of a potential hydrothermal scenario for Enceladus.
Underhill, L. E. W.; Wetter, L. R.
1969-01-01
The biosynthesis of the mustard oil glucoside, benzylglucosinolate, was studied in Tropaeolum majus L. A number of labeled compounds were administered to plant shoots and the incorporation of tracer into benzylglucosinolate, isolated as the crystalline tetramethyl-ammonium salt, was measured. In order of decreasing efficiency of conversion into benzyl-glucosinolate the compounds fed were S-(β-d-glucopyranosyl)phenylacetothiohydroximic acid (desulfobenzylglucosinolate), sodium phenylacetothiohydroximate, dl-phenylalanine, d-glucose, and sodium-d-1-glucopyranosyl mercaptide (1-thioglucose). The results are consistent with the hypothesis that the thioglucosyl group of benzylglucosinolate is derived by glucosylation of phenylacetothiohydroximate and not from 1-thioglucose. The results also suggest that benzylglucosinolate is formed by sulfation of desulfobenzylglucosinolate as the final step in its biosynthesis. A method for the isolation of a number of glucosinolates (mustard oil glucosides) is described which utilizes anion exchange chromatography on diethylaminoethyl (DEAE) cellulose. Potassium allylglucosinolate, tetramethylammonium benzylglucosinolate, potassium 2-hydroxy-2-phenylethylglucosinolate and potassium 2-phenylethylglucosinolate were obtained on recrystallization of the glucosinolate fraction eluted from the column. PMID:16657104
Liu, W L; Zhang, C B; Han, W J; Guan, M; Liu, S Y; Ge, Y; Chang, J
2017-12-01
To control potential fungal denitrification rate (PFDR) in vertical flow simulated wetlands (VFSW) microcosms, thirty VFSW microcosms were established and planted with three plant species richness levels (i.e. unplanted, monoculture, and four-species polyculture treatment), and effects of carbon, nitrogen and pH amendments on the PFDR were investigated using a room-incubating method. Among seven carbon compounds, sodium citrate, glycerol, glucose and sodium succinate were more effective in enhancing PFDRs. These enhanced effects were dependant on a given species richness level. Sodium nitrite mostly stimulated PFDRs to a greater extent than the other three nitrogen compound amendments at any richness level. Treatments with pH 5.6 or 8.4 had significantly greater PFDRs than the treatment with pH 2.8 in the three species richness levels. However, no effect of plant species richness on the PFDR was observed among any carbon, nitrogen and pH amendments. Current results suggest carbon, nitrogen and pH factors should be considered when mediating fungal denitrification in VFSW microcosms.
Site preferences of actinide cations in [NZP] compounds
NASA Astrophysics Data System (ADS)
Hawkins, H. T.; Spearing, D. R.; Smith, D. M.; Hampel, F. G.; Veirs, D. K.; Scheetz, B. E.
2000-07-01
Compounds adopting the sodium dizirconium tris(phosphate) (NaZr2(PO4)3) structure type belong to the [NZP] structural family of compounds. [NZP] compounds possess desirable properties that would permit their application as hosts for the actinides. These properties include compositional flexibility (i.e., three structural sites that can accommodate a variety of different cations), high thermal stability, negligible thermal expansion, and resistance to radiation damage. Experimental data indicate that [NZP] compounds resist dissolution and release of constituents over a wide range of experimental conditions. Moreover, [NZP] compounds may be synthesized by both conventional and novel methods and may be heat treated or sintered at modest temperatures (800 °C-1350 °C) in open or restricted systems.
Staniszewska, Monika; Bondaryk, Małgorzata; Wieczorek, Magdalena; Estrada-Mata, Eine; Mora-Montes, Héctor M.; Ochal, Zbigniew
2016-01-01
We investigated the antifungal activity of novel a 2-bromo-2-chloro-2-(4-chlorophenylsulfonyl)-1-phenylethanone (compound 4). The synthesis of compound 4 was commenced from sodium 4-chlorobenzene sulfinate and the final product was obtained by treatment of α-chloro-β-keto-sulfone with sodium hypobromite. The sensitivity of 63 clinical isolates belonging to the most relevant Candida species toward compound 4 using the method M27-A3 was evaluated. We observed among most of the clinical strains of C. albicans MIC ranging from 0.00195 to 0.0078 μg/mL. Compound 4 at 32 μg/mL exhibited fungicidal activity against nine Candida strains tested using the MFC assay. Compound 4 displayed anti-Candida activity (with clear endpoint) against 22% of clinical strains of Candida. Under compound 4, Candida susceptibility and tolerance, namely paradoxical effect (PG), was found for only two clinical isolates (C. glabrata and C. parapsilosis) and reference strain 14053 using both M27-A3 and MFC method. We found that compound 4 does not induce toxicity in vivo against larvae of Galleria mellonella (≥97% survival) and it displays reduced toxicity on mammalian cells in vitro (< CC20 at 64 μg/mL). Furthermore, XTT assay denoted clear metabolic activity of sessile cells in the presence of compound 4. Thus, the effect of compound 4 on formed C. albicans biofilms was minimal. Moreover, strain 90028 exhibited no defects in hyphal growth on Caco-2 monolayer under compound 4 influence at MIC = 16 μg/mL. The MIC values of compound 4 against C. albicans 90028, in medium with sorbitol did not suggest that compound 4 acts by inhibiting fungal cell wall synthesis. Our findings with compound 4 suggest a general strategy for antifungal agent development that might be useful in limiting the emergence of resistance in Candida strains. PMID:27610100
McSweeney, C S; Denman, S E
2007-11-01
To examine the effect of sulfur-containing compounds on the growth of anaerobic rumen fungi and the fibrolytic rumen bacteria Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes in pure culture and within the cattle rumen. The effect of two reduced sulfur compounds, 3-mercaptopropionic acid (MPA) or 3-mercapto-1-propanesulfonic acid as the sole S source on growth of pure fibroyltic fungal and bacterial cultures showed that these compounds were capable of sustaining growth. An in vivo trial was then conducted to determine the effect of sulfur supplements (MPA and sodium sulfate) on microbial population dynamics in cattle fed the roughage Dichanthium aristatum. Real-time PCR showed significant increases in fibrolytic bacterial and fungal populations when cattle were supplemented with these compounds. Sulfate supplementation leads to an increase in dry matter intake without a change in whole tract dry matter digestibility. Supplementation of low S-containing diets with either sodium sulfate or MPA stimulates microbial growth with an increase in rumen microbial protein supply to the animal. Through the use of real-time PCR monitoring, a better understanding of the effect of S supplementation on discrete microbial populations within the rumen is provided.
Chemical constituents from the stems of Gymnema sylvestre.
Liu, Yue; Xu, Tun-Hai; Zhang, Man-Qi; Li, Xue; Xu, Ya-Juan; Jiang, Hong-Yu; Liu, Tong-Hua; Xu, Dong-Ming
2014-04-01
To study the chemical constituents of stems of Gymnema sylvestre (Retz.) Schult. Chromatographic techniques using silica gel, C18 reversed phase silica gel, and prep-HPLC were used. The structures were elucidated on the basis of MS and spectroscopic analysis (1D and 2D NMR), as well as chemical methods. Seven compounds were isolated and their structures were elucidated as conduritol A (1), stigmasterol (2), lupeol (3), stigmasterol-3-O-β-D-glucoside (4), the sodium salt of 22α-hydroxy-longispinogenin-3-O-β-D-glucopyranosyl-(1→3)-β-D-glu-curono-pyranosyl-28-O-α-L-rhamnopyranoside (5), oleanolic acid-3-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (6), and the sodium salt of 22α-hydroxy-longispinogenin 3-O-β-D-glucuronopyranosyl-28-O-α-L-rhamnopyranoside (7). The inhibition activities of compounds 1, 5-7 on non-enzymatic glycation of protein in vitro were evaluated. Compound 7 is a new triterpenoid saponin. It was shown that compounds 1, 5-7 have weak inhibition activities for non-enzymatic glycation of protein in vitro. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
1991-12-01
34 0-0-° AD-A256 238 - DTIC 7 ELECTE A S OCTI 6 1992 R CM S PHARMACOKINETIC MODELING OF T TRIVALENT AND HEXAVALENT CHROMIUM R BASED ON INGESTION AND...or inhalation of trivalent or hexavalent soluble chromium compounds. The research described herein began in June 1990 and was completed in December... trivalent and hexavalent chromium compounds, chromic chloride-hexahydrate and sodium dichromate, respectively (Table I). An inhalation control group was
Gottardi, W; Klotz, S; Nagl, M
2014-06-01
To investigate and compare the bactericidal activity (BA) of active bromine and chlorine compounds in the absence and presence of protein load. Quantitative killing tests against Escherichia coli and Staphylococcus aureus were performed both in the absence and in the presence of peptone with pairs of isosteric active chlorine and bromine compounds: hypochlorous and hypobromous acid (HOCl and HOBr), dichloro- and dibromoisocyanuric acid, chlorantine and bromantine (1,3-dibromo- and 1,3 dichloro-5,5-dimethylhydantoine), chloramine T and bromamine T (N-chloro- and N-bromo-4-methylbenzenesulphonamide sodium), and N-chloro- and N-bromotaurine sodium. To classify the bactericidal activities on a quantitative basis, an empirical coefficient named specific bactericidal activity (SBA), founded on the parameters of killing curves, was defined: SBA= mean log reductions/(mean exposure times x concentration) [mmol 1(-1) min (-1)]. In the absence of peptone, tests with washed micro-organisms revealed a throughout higher BA of bromine compounds with only slight differences between single substances. This was in contrast to chlorine compounds, whose killing times differed by a factor of more than four decimal powers. As a consequence, also the isosteric pairs showed according differences. In the presence of peptone, however, bromine compounds showed an increased loss of BA, which partly caused a reversal of efficacy within isosteric pairs. In medical practice, weakly oxidizing active chlorine compounds like chloramines have the highest potential as topical anti-infectives in the presence of proteinaceous material (mucous membranes, open wounds). Active bromine compounds, on the other hand, have their chance at insensitive body regions with low organic matter, for example skin surfaces. The expected protein load is one of the most important parameters for selection of a suited active halogen compound. © 2014 The Society for Applied Microbiology.
Defense Small Business Innovation Research Program (SBIR). Abstracts of Phase II Awards. 1985.
1985-01-01
SILICIDES : NEW SILICON COMPATIBLE ELECTRO-OPTIC MATERIALS TOPIC: 3 OFFICE: DARPA THE GOAL OF THIS WORK IS TO OBTAIN SINGLE CRYSTAL FILMS OF SEMI...CONSTITUENTS. CON- STITUENTS WITH IONIZATION POTENTIALS COMPARABLE TO THE WORK FUNCTION A ARE EVOLVED AS POSITIVE IONS (USUALLY SODIUM ATOMIC IONS FROM... SODIUM COMPOUND IMPURITIES). ARRIVAL OF A PARTICLE AT THE SURFACE CAUSES A BURST OF MANY IONS WHICH ARE DRAWN TO A NEARBY ION COLLECTOR ELECT- RODE
Mariotto, S; Cuzzolin, L; Adami, A; Del Soldato, P; Suzuki, H; Benoni, G
1995-01-01
A well-known nitric oxide (NO)-releasing compound, sodium nitroprusside (SNP), decreases in a dose-dependent manner NO synthase (NOS) activity induced in rat neutrophils by treatment with lipopolysaccharide (LPS). This inhibitory action of SNP seems not to be due to its direct effect on the enzyme activity. The strong nitrosonium ion (NO+) character of SNP could be responsible for its inhibition of NOS induction in neutrophils. PMID:7542530
Characteristics of (3H)2-Deoxyglucose Uptake by Slices of Rat Cerebral Cortex
1983-05-17
phlorizin or by phloretin , two compounds known to inhibit glucose transport by kidney and by erythrocytes, respectively. Net [-̂ H]2-de- oxyglucose uptake...Hexoses 53 17. The Effect of Phlorizin and Phloretin on Net [3H]2-Deoxy- glucose Transport by Slices of Cerebral Cortex 55 18. The Effect of Sodium...LeFevre, 1961). Transport by erythrocytes is not dependent on sodium (Silverman, 1976). Transport is, however, sensitive to inhibition by phloretin
1993-10-01
100.00 _______________ Carbon tetrachloride 20,000.00 2 11.47 *Carbon disulfide 170.00 1 10.08 Chlorine 977,000.00 0.5 11.48 Chlorobenzene 192.00 75 9.07...SYMPTOMS AND EFFECTS Chlorine Strong irritant to eyes, mucous membranes, skin, and respiratory rn system; pulmonary edema; cough; lachrymator; nausea...sodium hypochlorite. Inorganic halogen salts are compounds containing halogens ( chlorine , bromine, fluorine) such as sodium chloride, potassium bromate
Li, S Q
2001-11-01
An endogenous inhibitor of the sodium pump from the Chinese medication Chansu was purified. The dry substance Chansu was extracted with methanol. The dry residue dissolved in water and filtered subsequently through membrane filters with the exclusion size of 1000 Da, 3000 Da and 10000 Da in a Filtron Pro Vario-3-System and applied to thin-layer chromatographic plate made of Silica gel 60 F254 + 366 developed with a mixture of CHCl3-MeOH-H2O(75:20:5, volume ratio). The fractions with Rf 0.55 inhibiting the sodium pump were purified on an HPLC C18-RP column using a linear H2O-methanol gradient with 220 nm and 300 nm DAD detection. The bioactivity was measured by 86Rb-uptake into human red blood cells. The results showed that a low molecular weight, water soluble compound, which inhibited the sodium pump activity in the red blood cells and had a maximum absorbance at 250 nm was isolated from the Chinese medication Chansu. Several mg of the compound in pure state could be obtained from 1 kg Chansu. It was different from ouabain and proscillaridin A in chemical structure, because ouabain and proscillaridin A show a UV maximum absorption at 220 nm and 300 nm, while the new inhibitor at 250 nm.
Mitchell, A.R.; Pagoria, P.F.; Schmidt, R.D.
1996-10-29
The present invention relates to a process to produce 1,3-diamino-2,4,6-trinitrobenzene (DATB) or 1,3,5-triamino-2,4,6,trinitrobenzene (TATB) by: (a) reacting at ambient pressure and a temperature of between about 0 and 50 C for between about 0.1 and 24 hr, a trinitroaromatic compound of the structure shown within where X, Y, and Z are each independently selected from --H, or --NH{sub 2}, with the proviso that at least 1 or 2 of X, Y, and Z are hydrogen, with an amount effective to produce DATB or TATB, or 1,1,1-trialkylhydrazinium halide wherein alkyl is selected from methyl, ethyl, propyl or butyl and halide is selected from chloride, bromide or iodide, in the presence of a strong base selected from sodium butoxide, potassium butoxide, potassium propoxide, sodium propoxide, sodium ethoxide, potassium ethoxide, sodium methoxide, potassium methoxide, and combinations thereof; in a solvent selected from the group consisting of methanol, ethanol, propanol, butanol, dimethylsulfoxide, N-methylpyrrolidone, hexamethylphosphoramide, dimethylformide, dimethylacetamide and mixtures thereof, provided that when alcohols are present primarily DATB and picramide is formed; and (b) isolating the DATB or TATB produced. DATB and TATB are useful specialty explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).
Durairaju Nisshanthini, S; Teresa Infanta S, Antony K; Raja, Duraisamy Senthil; Natarajan, Karuppannan; Palaniswamy, M; Angayarkanni, Jayaraman
2015-04-01
Soil and water samples were collected from various regions of SIPCOT and nearby Vanappadi Lake, Ranipet, Tamilnadu, India. Based on their colony morphology and their stability during subculturing, 72 bacteria were isolated, of which 14 isolates were actinomycetes. Preliminary selection was carried out to exploit the ability of the microorganisms to utilize sodium cyanate as nitrogen source. Those organisms that were able to utilize cyanate were subjected to secondary screening viz., utilization of sodium cyanide as the nitrogen source. The oxygenolytic cleavage of cyanide is dependent on cyanide monooxygenase which obligately requires pterin cofactor for its activity. Based on this, the organisms capable of utilizing sodium cyanide were tested for the presence of pterin. Thin layer chromatography (TLC) of the cell extracts using n-butanol: 5 N glacial acetic acid (4:1) revealed that 10 out of 12 organisms that were able to utilize cyanide had the pterin-related blue fluorescent compound in the cell extract. The cell extracts of these 10 organisms were subjected to high performance thin layer chromatography (HPTLC) for further confirmation using a pterin standard. Based on the incubation period, cell biomass yield, peak height and area, strain VPW3 was selected and was identified as Bacillus subtilis. The Rf value of the cell extract was 0.73 which was consistent with the 0.74 Rf value of the pterin standard when scanned at 254 nm. The compound was extracted and purified by preparative High Performance Liquid Chromatography (HPLC). Characterization of the compound was performed by ultraviolet spectrum, fluorescence spectrum, Electrospray Ionization-Mass Spectrometry (ESI-MS), and Nuclear Magnetic Resonance spectroscopy (NMR). The compound is proposed to be 6-propionyl pterin (2-amino-6-propionyl-3H-pteridin-4-one).
Wang, Zimeng; Wen, Chao; Shi, Xingbo; Lu, Dai; Deng, Jiehong; Deng, Fangming
2017-02-01
Inhibiting the formation of acrylamide (AA) and hydroxymethylfurfural (HMF) during food heating processes has attracted considerable investigative efforts due to potential health concerns associated with these compounds. The main purpose of this work is to demonstrate a strategy to simultaneously inhibit the formation of AA and HMF with sodium glutamate microcapsules selected to confirm the efficacy of this strategy. An asparagine-glucose aqueous model system was prepared containing free sodium glutamate and sodium glutamate microcapsules. Compared to adding free sodium glutamate, the maximum inhibition efficiency for AA and HMF was found to increase by addition of sodium glutamate microcapsules to 19.07 and 84.32%, respectively. Moreover, the kinetics of AA and HMF formation were studied in this model system. The AA inhibition efficiency significantly increased from 6.75 to 60.35% and the HMF inhibition efficiency significantly increased from 5.98 to 79.72% with increasing the reaction time from 25 to 40 min, indicating that the sodium glutamate microcapsules strategy proves to be far superior at prolonged heating times. These findings suggested that this inhibition strategy may provide promising characteristics for a variety of applications in food processing.
Yabuuchi, Naoaki; Komaba, Shinichi
2014-01-01
Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed. PMID:27877694
Yabuuchi, Naoaki; Komaba, Shinichi
2014-08-01
Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed.
Molecular Mechanism of Action and Selectivity of Sodium Channel Blocker Insecticides
Silver, Kristopher; Dong, Ke; Zhorov, Boris S.
2017-01-01
Sodium channel blocker insecticides (SCBIs) are a relatively new class of insecticides that are represented by two commercially registered compounds, indoxacarb and metaflumizone. SCBIs, like pyrethroids and DDT, target voltage-gated sodium channels (VGSCs) to intoxicate insects. In contrast to pyrethroids, however, SCBIs inhibit VGSCs at a distinct receptor site that overlaps those of therapeutic inhibitors of sodium channels, such as local anesthetics, anticonvulsants and antiarrhythmics. This review will recount the development of the SCBI insecticide class from its roots as chitin synthesis inhibitors, discuss the symptoms of poisoning and evidence supporting inhibition of VGSCs as their mechanism of action, describe the current model for SCBI-induced inhibition of VGSCs, present a model for the receptor for SCBIs on VGSCs, and highlight differences between data collected from mammalian and insect experimental models. PMID:27993108
µ-Conotoxins Modulating Sodium Currents in Pain Perception and Transmission: A Therapeutic Potential
Tosti, Elisabetta; Boni, Raffaele
2017-01-01
The Conus genus includes around 500 species of marine mollusks with a peculiar production of venomous peptides known as conotoxins (CTX). Each species is able to produce up to 200 different biological active peptides. Common structure of CTX is the low number of amino acids stabilized by disulfide bridges and post-translational modifications that give rise to different isoforms. µ and µO-CTX are two isoforms that specifically target voltage-gated sodium channels. These, by inducing the entrance of sodium ions in the cell, modulate the neuronal excitability by depolarizing plasma membrane and propagating the action potential. Hyperexcitability and mutations of sodium channels are responsible for perception and transmission of inflammatory and neuropathic pain states. In this review, we describe the current knowledge of µ-CTX interacting with the different sodium channels subtypes, the mechanism of action and their potential therapeutic use as analgesic compounds in the clinical management of pain conditions. PMID:28937587
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rong-Nan Huang; I-Ching Ho; Ling-Hui Yih
Arsenic, strongly associated with increased risks of human cancers, is a potent clastogen in a variety of mammalian cell systems. The effect of sodium arsenite (a trivalent arsenic compound) on chromatid separation was studied in human skin fibroblasts (HFW). Human fibroblasts were arrested in S phase by the aid of serum starvation and aphidicolin blocking and then these cells were allowed to synchronously progress into G2 phase. Treatment of the G2-enriched HFW cells with sodium arsenite (0-200 {mu}M) resulted in arrest of cells in the G2 phase, interference with mitotic division, inhibition of spindle assembly, and induction of chromosome endoreduplicationmore » in their second mitosis. Sodium arsenite treatment also inhibited the activities of serine/threonine protein phosphatases and enhanced phosphorylation levels of a small heat shock protein (HSP27). These results suggest that sodium arsenite may mimic okadaic acid to induce chromosome endoreduplication through its inhibitory effect on protein phosphatase activity. 61 refs., 6 figs., 2 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moccari, A.; MacDonald, D.D.
The corrosion of ASTM A-470 turbine disk steel in concentrated sodium hydroxide solution (10 mol/kg) containing sodium silicate, sodium dihydrogen phosphate, sodium chromate, aniline and some of its derivatives, tannic acid, L-(-)-phenylalanine (aminopropionic acid) and octadecylamine as potential inhibitors has been studied using the potentiodynamic, AC impedance, and Tafel extrapolation techniques. All tests were performed at 115 + or - 2 C. The anodic and cathodic polarization data show that aniline and its derivatives, L-(-)-phenylalanine, NaH/sub 2/PO/sub 4/, Na/sub 2/SiO/sub 3/, and Na/sub 2/CrO/sub 4/ inhibit the anodic process, whereas tannic acid inhibits the cathodic reaction. Octadecylamine was found tomore » inhibit both the anodic and cathodic processes. The mechanisms of inhibition for some of these compounds have been inferred from the wide band width frequency dispersions of the interfacial impedance.« less
Mechanochemical Preparation of Organic Nitro Compounds
selectivity were found to depend on the ratios of the reactants and the catalyst. A parametric study addressed the effects of milling time, temperature ...Aromatic compounds such as toluene are commercially nitrated using a combination of nitric acid with other strong acids. This process relies on the...was synthesized by milling toluene with sodium nitrate and molybdenum trioxide as a catalyst. Several parameters affecting the desired product yield and
Odd-even chain packing, molecular and thermal models for some long chain sodium(I) n-alkanoates
NASA Astrophysics Data System (ADS)
Nelson, Peter N.; Ellis, Henry A.
2014-10-01
A homologous series of sodium(I) n-alkanoates, NaCnH2n-1O2, with chain lengths n = 8-18, inclusive, have been synthesized and their structural and thermal properties investigated via Fourier Transform Infrared and Solid State 13C NMR spectroscopies, X-ray powder diffraction, Thermogravimetry, Differential Scanning Calorimetry, Polarizing light microscopy and variable temperature Infrared spectroscopy. The measurements show that metal-carboxylate coordination is via asymmetric chelating bidentate bonding with extensive carboxyl group inter-molecular interactions in which four oxygen atoms are bonded tetrahedrally to a sodium atom. Furthermore, the compounds crystallize in a monoclinic crystal system with the hydrocarbon chains in the fully extended all-trans conformation, advancing along the c-axis. Moreover, the chains are packed as tilted (θ ∼ 63°), non-overlapping, tail-to-tail lamellar bilayers that are not in the same plane, within a lamellar. Though these compounds are nearly isostructural, there are subtle differences in the packing of the hydrocarbon chains in the crystal lattice, resulting in odd-even alternation in the terminal methyl group asymmetric stretching vibration and chemical shift. These differences arise from the relative vertical distances between hydrocarbon planes within the lamellar; such that, for odd-chain compounds, larger inter-planar distances result in less efficient packing in the crystal lattice and hence, lower inter-planar van der Waals interactions between hydrocarbon chains. Thermal traces, for all compounds, show several partially reversible solid-solid pre-melting transitions associated with different degrees of gauche conformers in the alkyl chains. The reversible gauche-trans isomerism, of the methylene groups, is kinetically controlled; hence, super-cooling of the melt and other transitions, are observed for all compounds. The kinetics of chain reversion follow the exponential law of nucleation, though complicated by competing processes. Thermogravimetric data show that all compounds decompose at temperatures in excess of 690 K; therefore, free radical thermal cracking of the hydrocarbon chains, in conjunction with decarboxylation is proposed for their non-oxidative degradation mechanism.
Onoda, Hiroaki; Yamaguchi, Taisuke
2013-04-01
In this study, titanium phosphates were prepared from titanium chloride and phosphoric acid, sodium pyrophosphate and sodium triphosphate solutions with water retention compounds in hydrothermal process as a novel white pigment for cosmetics. Their chemical composition, powder properties, photo catalytic activity, water retention and smoothness were studied. The addition of glycerin in the preparation from sodium pyrophosphate has the useful method to obtain homogenized spherical particles of titanium phosphate pigments for the cosmetics. These titanium phosphates had less photo catalytic activity to protect the sebum on the skin. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Svirskis, Darren; Lin, Shao-Wei; Brown, Helen; Sangaroomthong, Annie; Shin, Daniel; Wang, Ziqi; Xu, Hongtao; Dean, Rebecca; Vareed, Preetika; Jensen, Maree; Wu, Zimei
2018-01-01
Three brands of levothyroxine tablets are currently available in New Zealand (Eltroxin, Mercury Pharma, Synthroid) for extemporaneous compounding into suspensions. This study aims to determine whether tablet brand (i.e., formulation), concentration, storage conditions, as well as pH, impact the stability of compounded levothyroxine suspensions. Using the three available brands of levothyroxine tablets, suspensions were compounded at concentrations of 15 µg/mL and 25 µg/mL and stored at 4°C and 22°C. Samples were withdrawn weekly for 4 weeks, and chemical stability was evaluated using high-performance liquid chromatographic analysis. Physical appearance, ease of resuspension, and pH were also monitored weekly. To evaluate the effect on drug stability, pH modifiers were added to a suspension. As demonstrated by high-performance liquid chromatographic analysis, the suspensions compounded from the Eltroxin and Mercury Pharma tablets were more stable (>90% remaining after 4 weeks) than Synthroid across both storage conditions and concentrations. The drug was more stable at the higher concentration of 25 µg/mL than at 15 µg/mL. Levothyroxine was stable when pH was increased to pH 8 through the addition of sodium citrate; stability was reduced at a lower pH. Storage temperature did not affect the stability of the suspensions during the 4-week study. This is the first study demonstrating the impact of tablet brand, with different excipients, and drug concentrations on stability, and thus the beyond-use date of the compounded levothyroxine liquid formulations. The pH control achieved by sodium citrate, either as an excipient in tablets or an additive during compounding, improved drug stability. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Editor's highlight: Evaluation of a Microelectrode Array-based ...
Thousands of compounds in the environment have not been characterized for developmental neurotoxicity (DNT) hazard. To address this issue, methods to screen compounds rapidly for DNT hazard evaluation are necessary and are being developed for key neurodevelopmental processes. In order to develop an assay for network formation, the current study evaluated effects of a training set of chemicals on network ontogeny by measuring spontaneous electrical activity in neural networks grown on microelectrode arrays (MEA). Rat (0-24 h old) primary cortical cells were plated in 48 well MEA plates and exposed to six compounds: acetaminophen, bisindolylmaleimide-1 (Bis-1), domoic acid, mevastatin, sodium orthovanadate, and loperamide for a period of 12 days. Spontaneous network activity was recorded on days 2, 5, 7, 9, and 12 and viability was assessed using the Cell Titer Blue® assay on day 12. Network activity (e.g. mean firing rate (MFR), burst rate (BR), etc), increased between days 5 and 12. Random Forest analysis indicated that across all compounds and times, temporal correlation of firing patterns (r), MFR, BR, #of active electrodes and % of spikes in a burst were the most influential parameters in separating control from treated wells. All compounds except acetaminophen (≤ 30 µM) caused concentration-related effects on one or more of these parameters. Domoic acid and sodium orthovanadate altered several of these parameters in the absence of cytotoxicity. Although
Common High Blood Pressure Myths
... compounds are present. Myth: I use kosher or sea salt when I cook instead of regular table ... are low-sodium alternatives. Chemically, kosher salt and sea salt are the same as table salt — 40 ...
NASA Astrophysics Data System (ADS)
Zümreoglu-Karan, B.
2009-07-01
Preparation of gold nanoparticles, particularly gold nanorods, by wet chemistry processes involves gold seeds, an Au(III) salt, structure directing surfactants, and metal ion additives in the growth solution into which a weak reducing agent is added. The most commonly employed weak reducing agent is l-ascorbic acid (vitamin C) which is known to reduce many metal ions in the solution phase and form complexes with relatively low stability constants. A purple-gray gold-ascorbate compound, obtained from the reaction of sodium tetrachloroaurate(III) with sodium ascorbate, is now reported. The compound possesses the expected structural features of vitamin C-metal complexes as verified by its 13C CP-MAS NMR spectrum. A discussion is also presented on the possibility of gold-ascorbate complexation operating in gold nanoparticle formation.
MacKay, Mark; Anderson, Collin
2015-08-01
The solubility of inorganic calcium and phosphate in parenteral solutions can be complicated in pediatrics due to the dosing of calcium and phosphorus at the saturation point. The purpose of this study was to test the solubility of sodium glycerophosphate (NaGP) with calcium gluconate in pediatric parenteral nutrition (PN) solutions. Five PN solutions were compounded by adding calcium gluconate at 10, 20, 30, 40, and 50 mEq/L and corresponding concentrations of NaGP at 10, 20, 30, 40, and 50 mmol/L. Each of the 5 solutions was compounded using 1.5% and 4% amino acids, cysteines, and lipids. Compatibility was evaluated by visual inspection (precipitation, haze, and color change). Solutions were evaluated microscopically for any microcrystals and measured by a turbidimeter for changes in turbidity. Solutions were further analyzed using United States Pharmacopeia 788 standards. Six hundred seventy-one PN solutions were compounded at various concentrations and evaluated for visual stability. Compatibility testing showed no changes in the PN solution in any of the concentrations tested. Microscopically, no microcrystals were detected. The turbidimeter measurements had changes of ≤ 0.14 nephelometric turbidity units for all test solutions. There were no visual changes in any of the 671 PN solutions. It is recommended that NaGP replace sodium phosphate in PN solutions. This would eliminate the concern of calcium and phosphorus precipitation and the need of any saturation curves. © 2014 American Society for Parenteral and Enteral Nutrition.
Theoretical investigation of the electronic structure of a substituted nickel phthalocyanine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Prabhjot, E-mail: prabhphysics@gmail.com; Sachdeva, Ritika; Singh, Sukhwinder
2016-05-23
The optimized geometry and electronic structure of an organic compound nickel phthalocyanine tetrasulfonic acid tetra sodium salt have been investigated using density functional theory. We have also optimized the structure of nickel phthalocyanine tetrasulfonic acid tetra sodium salt in dimethyl sulfoxide to study effects of solvent on the electronic structure and transitions. Experimentally, the electronic transitions have been studied using UV-VIS spectroscopic technique. It is observed that the electronic transitions obtained from the theoretical studies generally agree with the experiment.
Smith, Jaime J; Blumenthal, Kenneth M
2007-02-01
Sea anemone toxins, whose biological function is the capture of marine prey, are invaluable tools for studying the structure and function of mammalian voltage-gated sodium channels. Their high degree of specificity and selectivity have allowed for detailed analysis of inactivation gating and assignment of molecular entities responsible for this process. Because of their ability to discriminate among channel isoforms, and their high degree of structural conservation, these toxins could serve as important lead compounds for future pharmaceutical design.
Effect of Organophosphate Compounds on Renal Function and Transport.
1983-09-15
DiBona , 15) have presented physiological data that suggest a direct role of the sympathetic nerves in renal tubular sodium reabsorption, i.e., not...tubular sodium reabsorp- tion. Amer. J. Physiol., 233 (1977) F73-81. 16. G.F. DiBona , 1.3. Zambraski, A.S. Aquilera and G.3. Kaloyanides, Neurogenic...reflex renal nerve stimulation. J. Pharuacol. Exptl. flerap.. 198 (1976a) 464-472. 29. 1.3. Zambraski, G.E. DiBona and 0.3. Kloyanides, Specificity of
Kim, Hyungsub; Park, Inchul; Seo, Dong-Hwa; Lee, Seongsu; Kim, Sung-Wook; Kwon, Woo Jun; Park, Young-Uk; Kim, Chul Sung; Jeon, Seokwoo; Kang, Kisuk
2012-06-27
New iron-based mixed-polyanion compounds Li(x)Na(4-x)Fe(3)(PO(4))(2)(P(2)O(7)) (x = 0-3) were synthesized, and their crystal structures were determined. The new compounds contained three-dimensional (3D)sodium/lithium paths supported by P(2)O(7) pillars in the crystal. First principles calculations identified the complex 3D paths with their activation barriers and revealed them as fast ionic conductors. The reversible electrode operation was found in both Li and Na cells with capacities of one-electron reaction per Fe atom, 140 and 129 mAh g(-1), respectively. The redox potential of each phase was ∼3.4 V (vs Li) for the Li-ion cell and ∼3.2 V (vs Na) for the Na-ion cell. The properties of high power, small volume change, and high thermal stability were also recognized, presenting this new compound as a potential competitor to other iron-based electrodes such as Li(2)FeP(2)O(7), Li(2)FePO(4)F, and LiFePO(4).
Qin, Peiyou; Wei, Aichun; Zhao, Degang; Yao, Yang; Yang, Xiushi; Dun, Baoqing; Ren, Guixing
2017-06-01
This study aimed to investigate the effects of different concentrations of sodium bicarbonate (NaHCO 3 ) on the accumulation of flavonoids, total phenolics and d-chiro-inositol (DCI), as well as the antioxidant and α-glucosidase inhibitory activities, in tartary buckwheat sprouts. Treatment with low concentrations of NaHCO 3 (0.05, 0.1, and 0.2%) resulted in an increase in flavonoids, total phenolic compounds and DCI concentrations, and improved DPPH radical-scavenging and α-glucosidase inhibition activities compared with the control (0%). The highest levels of total flavonoids (26.69mg/g DW), individual flavonoids (rutin, isoquercitrin, quercetin, and kaempferol), total phenolic compounds (29.31mg/g DW), DCI (12.56mg/g DW), as well as antioxidant and α-glucosidase inhibition activities, were observed in tartary buckwheat sprouts treated with 0.05% NaHCO 3 for 96h. These results indicated that appropriate treatment with NaHCO 3 could improve the healthy benefits of tartary buckwheat sprouts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nakata, Toru; Kyoui, Daisuke; Takahashi, Hajime; Kimura, Bon; Kuda, Takashi
2016-06-05
Soybean is one of the major components of the Japanese diet. In traditional Japanese cuisine, soybean-based food items are often consumed with brown algae. In this study, we examined the effect of water-soluble and fermentable polysaccharides, laminaran and sodium alginate, from brown algae, on putrefactive compound production, by human faecal microbiota in broth containing 3% (w/v) soy protein. We also investigated the effect of 2% laminaran or alginate diet on caecal putrefactive compounds in rats maintained on diets containing 20% (w/w) soy protein. The caecal microbiota was also analysed using denaturing gradient gel electrophoresis and pyrosequencing with primers targeting the bacterial 16S rRNA gene. The polysaccharides, particularly laminaran, inhibited ammonia, phenol, and indole production by human faecal microbiota. Both the algal polysaccharides lowered the caecal indole content. Laminaran was found to increase the number of Coprobacter, whereas Helicobacter was found to decrease in the presence of both laminaran and sodium alginate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zablocki, Jeff A; Elzein, Elfatih; Li, Xiaofen; Koltun, Dmitry O; Parkhill, Eric Q; Kobayashi, Tetsuya; Martinez, Ruben; Corkey, Britton; Jiang, Haibo; Perry, Thao; Kalla, Rao; Notte, Gregory T; Saunders, Oliver; Graupe, Michael; Lu, Yafan; Venkataramani, Chandru; Guerrero, Juan; Perry, Jason; Osier, Mark; Strickley, Robert; Liu, Gongxin; Wang, Wei-Qun; Hu, Lufei; Li, Xiao-Jun; El-Bizri, Nesrine; Hirakawa, Ryoko; Kahlig, Kris; Xie, Cheng; Li, Cindy Hong; Dhalla, Arvinder K; Rajamani, Sridharan; Mollova, Nevena; Soohoo, Daniel; Lepist, Eve-Irene; Murray, Bernard; Rhodes, Gerry; Belardinelli, Luiz; Desai, Manoj C
2016-10-03
Late sodium current (late I Na ) is enhanced during ischemia by reactive oxygen species (ROS) modifying the Na v 1.5 channel, resulting in incomplete inactivation. Compound 4 (GS-6615, eleclazine) a novel, potent, and selective inhibitor of late I Na , is currently in clinical development for treatment of long QT-3 syndrome (LQT-3), hypertrophic cardiomyopathy (HCM), and ventricular tachycardia-ventricular fibrillation (VT-VF). We will describe structure-activity relationship (SAR) leading to the discovery of 4 that is vastly improved from the first generation late I Na inhibitor 1 (ranolazine). Compound 4 was 42 times more potent than 1 in reducing ischemic burden in vivo (S-T segment elevation, 15 min left anteriorior descending, LAD, occlusion in rabbits) with EC 50 values of 190 and 8000 nM, respectively. Compound 4 represents a new class of potent late I Na inhibitors that will be useful in delineating the role of inhibitors of this current in the treatment of patients.
Bacterial Growth as a Practical Indicator of Extensive Biodegradability of Organic Compounds
Prochazka, G. J.; Payne, W. J.
1965-01-01
The proportionality of growth, as indicated by turbidity of cultures of Pseudomonas C12B, to the initial concentration of sodium dodecyl sulfate, dodecanol, or a mixture of C10-C20 secondary alcohol sulfates, each provided as sole carbon source in basal mineral salts medium, was demonstrated. Subsequently, the direct correlation of culture turbidity as a growth indicator and degradation of sodium dodecyl sulfate and the C10-C20 compounds was established. Degradation of these detergents was measured by the rise in surface tension and the decrease in methylene blue values, respectively. Turbidimetry was found to be a poor indicator of degradation of dodecanol in the early hours of culture, however, and did not correlate over a significant range with degradation of substrate. Viable cell counts did parallel dodecanol degradation as measured by gas-liquid chromatography. The use of bacterial growth as a reliable, quantitative, and easily measured parameter indicating biodegradability was suggested for those organic compounds which can be shown to serve as a carbon source for a bacterium. PMID:5867651
Application of three tailing-based composites in treating comprehensive electroplating wastewater.
Liu, Hongbo; Zhu, Mengling; Gao, Saisai
2014-01-01
Heavy metals and chemical oxygen demand (COD) are major challenging pollutants for most electroplating wastewater treatment plants. A novel composite material, prepared with a mixture of calcium and sodium compounds and tailings, was simply mixed by ratios and used to treat a comprehensive electroplating wastewater with influent COD, total copper (T-Cu), and total nickel (T-Ni) respectively as 690, 4.01, and 20.60 mg/L on average. Operational parameters, i.e. the contact time, pH, mass ratio of calcium and sodium compounds and tailings, were optimized as 30 min, 10.0, and 4:2:1. Removal rates for COD, T-Cu, and T-Ni could reach 71.8, 90.5, and 98.1%, respectively. No significant effect of initial concentrations on removal of T-Cu and T-Ni was observed for the composite material. The adsorption of Cu(II) and Ni(II) on the material fitted Langmuir and Freundlich isotherms respectively. Weight of waste sludge from the calcium/sodium-tailing system after reaction was 10% less than that from the calcium-tailing system. The tailing-based composite is cost-effective in combating comprehensive electroplating pollution, which shows a possibility of applying the tailings in treating electroplating wastewater.
Effect of Hofmeister series salts on Absorptivity of aqueous solutions on Sodium polyacrylate
NASA Astrophysics Data System (ADS)
Korrapati, Swathi; Pullela, Phani Kumar; Vijayalakshmi, U.
2017-11-01
Sodium polyacrylate (SPA) is a popular super absorbent commonly used in children diapers, sanitary pads, adult diapers etc. The use of SPA is in force from past 30 years and the newer applications like as food preservant are evolving. SPA is recently discovered by our group for improvement of sensitivity of colorimetric agents. Though the discovery of improvement in sensitivity is phenomenal, the mechanism still remains a puzzle. A typical assay reagent contains colorimetric/fluorescent reagents, buffers, salts, stabilizers etc. These chemicals are known to influence the water absorptivity of SPA. If we were to perform chemical/biochemical assays on SPA absorbed reagents effect of salts and other excipients on colorimetric/fluorescence compounds absorbed on SPA is very important. The hofmeister series are standard for studying effect of salts on permeability, stability, aggregation, fluorescence quenching etc. We recently studied affect of urea, sodium chloride, ammonium sulfate, guanidine thiocayanate on fluorescence characteristics of fluorescence compounds and noted that except urea all other reagents have resulted in fluorescence quenching and urea had an opposite effect and increased the fluorescence intensity. This result was attributed to the different water structure around fluorescent in urea solution versus other chaotropic agents.
Synthesis and bacterial metabolism of cis- and trans-2-alkyl analogues of sodium cyclamate.
Wiley, R A; Pearson, D A; Schmidt, V; Wesche, S B; Roxon, J J
1983-07-01
Sodium cyclamate is an effective artificial sweetner, which has been banned from the U.SD. market because of alleged carcinogenic properties. It appears that cyclohexylamine, liberated from cyclamate as a result of bacterial mtabolism, is the proximate carcinogen. In an effort to elucidate the extent to which analogues of cyclamate would enter into the bacterial metabolic pathway, as well as any stereochemical requirements which might exist, several 2-alkaly analogues of sodium cyclamate were prepared. It was found that trans-N-(2-methylcyclohexyl)sulfamate (trans-2a) and trans-N-(2-ethylcyclohexyl)sulfamate were hydrolyzed by freshly collected fecal suspensions from rats fed cyclamate, but not from control rats, at the same rate as cyclamate itself. trans-N-(2-Isopropylcyclohexyl)sulfamate (trans-2c) was not hydrolyzed at all. Surprisingly, two of the analogous cis compounds (cis-2a and cis-2c, respectively) were hydrolyzed by fecal suspensions from control, as well as from cyclamate-fed, rats. Moreover, cis-2a was hydrolyzed by incubating it in medium only. Thus, it is apparent that stereochemical influences on the chemical properties of these compounds are substantial. These results do not appear to point the way toward a safe, nonmetabolizable sweetening agent.
Piccirilli, Gisela N; García, Agustina; Leonardi, Darío; Mamprin, María E; Bolmaro, Raúl E; Salomón, Claudio J; Lamas, María C
2014-11-01
Encapsulation of albendazole, a class II compound, into polymeric microparticles based on chitosan-sodium lauryl sulfate was investigated as a strategy to improve drug dissolution and oral bioavailability. The microparticles were prepared by spray drying technique and further characterized by means of X-ray powder diffractometry, infrared spectroscopy and scanning electron microscopy. The formation of a novel polymeric structure between chitosan and sodium lauryl sulfate, after the internal or external gelation process, was observed by infrared spectroscopy. The efficiency of encapsulation was found to be between 60 and 85% depending on the internal or external gelation process. Almost spherically spray dried microparticles were observed using scanning electron microscopy. In vitro dissolution results indicated that the microparticles prepared by internal gelation released 8% of the drug within 30 min, while the microparticles prepared by external gelation released 67% within 30 min. It was observed that the AUC and Cmax values of ABZ from microparticles were greatly improved, in comparison with the non-encapsulated drug. In conclusion, the release properties and oral bioavailability of albendazole were greatly improved by using spraydried chitosan-sodium lauryl sulphate microparticles.
Romeo, Umberto; Libotte, Fabrizio; Palaia, Gaspare; Galanakis, Alexandros; Gaimari, Gianfranco; Tenore, Gianluca; Del Vecchio, Alessandro; Polimeni, Antonella
2014-01-01
The purpose of this study was to compare secondary intention healing of oral soft tissues after laser surgery with and without the use of a compound containing amino acids and sodium hyaluronate. Sodium hyaluronate has been successfully used in medicine to promote healing. It has not been studied in the healing of laser-produced wounds. Excisional biopsy was performed in oral soft tissues with a potassium-titanyl-phosphate (KTP) laser (532 nm, SmartLite, DEKA, Florence, Italy) in 49 patients divided into two groups. In the study group (SG), 31 patients received a compound gel containing four amino acids and sodium hyaluronate (Aminogam(®), Errekappa, Italy) after laser surgery; in the control group (CG), 18 subjects received no treatment involving a drug or gel. Numeric rating scale (NRS) was used to evaluate pain experienced after surgery [pain index (PI)]. Using a grid as a benchmark and computer software, the lesion area was measured after surgery (T0) and after 7 days (T1). A percentage healing index (PHI) was calculated indicating healing extension in 7 days. SG cases showed an average PHI of 64.38±26.50, whereas the average PHI in the CG was 47.88%±27.84. Mean PI was 2.67±0.96 for SG and 2.75±0.86 for CG. A statistically significant difference was detected between the groups for PHI (p=0.0447), whereas no difference was detectable for PI (p=0.77). The use of a gel containing amino acids and sodium hyaluronate can promote faster healing via secondary intention in laser-induced wounds, although it does not seem to affect pain perception.
Howley, Eimear; Bestwick, Michael; Fradley, Rosa; Harrison, Helen; Leveridge, Mathew; Okada, Kengo; Fieldhouse, Charlotte; Farnaby, Will; Canning, Hannah; Sykes, Andy P; Merchant, Kevin; Hazel, Katherine; Kerr, Catrina; Kinsella, Natasha; Walsh, Louise; Livermore, David G; Hoffman, Isaac; Ellery, Jonathan; Mitchell, Phillip; Patel, Toshal; Carlton, Mark; Barnes, Matt; Miller, David J
2017-11-01
Irregular N-methyl-D-aspartate receptor (NMDAR) function is one of the main hypotheses employed to facilitate understanding of the underlying disease state of schizophrenia. Although direct agonism of the NMDAR has not yielded promising therapeutics, advances have been made by modulating the NMDAR co-agonist site which is activated by glycine and D-serine. One approach to activate the co-agonist site is to increase synaptic D-serine levels through inhibition of D-amino acid oxidase (DAO), the major catabolic clearance pathway for this and other D-amino acids. A number of DAO inhibitors have been developed but most have not entered clinical trials. One exception to this is sodium benzoate which has demonstrated efficacy in small trials of schizophrenia and Alzheimer's disease. Herein we provide data on the effect of sodium benzoate and an optimised Takeda compound, PGM030756 on ex vivo DAO enzyme occupancy and cerebellar D-serine levels in mice. Both compounds achieve high levels of enzyme occupancy; although lower doses of PGM030756 (1, 3 and 10 mg/kg) were required to achieve this compared to sodium benzoate (300, 1000 mg/kg). Cerebellar D-serine levels were increased by both agents with a delay of approximately 6 h after dosing before the peak effect was achieved. Our data and methods may be useful in understanding the effects of sodium benzoate that have been seen in clinical trials of schizophrenia and Alzheimer's disease and to support the potential clinical assessment of other DAO inhibitors, such as PGM030756, which demonstrate good enzyme occupancy and D-serine increases following administration of low oral doses.
Wi, Seung Gon; Kim, Hyun Joo; Mahadevan, Shobana Arumugam; Yang, Duck-Joo; Bae, Hyeun-Jong
2009-12-01
Sea weed (Ceylon moss) possesses comparable bioenergy production potential to that of land plants. Ceylon moss has high content of carbohydrates, typically galactose (23%) and glucose (20%). We have explored the possibility of sodium chlorite in Ceylon moss pretreatment that can ultimately increase the efficiency of enzymatic saccharification. In an acidic medium, chlorite generates ClO(2) molecules that transform lignin into soluble compounds without any significant loss of carbohydrate content and this procedure is widely used as an analytical method for holocellulose determination. Sodium chlorite-pretreated samples resulted in glucose yield up to 70% with contrast of only 5% was obtained from non-pretreated samples. The efficiency of enzymatic hydrolysis is significantly improved by sodium chlorite pretreatment, and thus sodium chlorite pretreatment is potentially a very useful tool in the utilisation of Ceylon moss biomass for ethanol production or bioenergy purposes.
Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Champenois, Jean-Baptiste; Dhoury, Mélanie; Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr
Calcium sulfoaluminate (CSA) cements are potential candidates for the conditioning of radioactive wastes with high sodium borate concentrations. This work thus investigates early age hydration of two CSA cements with different gypsum contents (0 to 20%) as a function of the mixing solution composition (borate and NaOH concentrations). Gypsum plays a key role in controlling the reactivity of cement. When the mixing solution is pure water, increasing the gypsum concentration accelerates cement hydration. However, the reverse is observed when the mixing solution contains sodium borate. Until gypsum exhaustion, the pore solution pH remains constant at ~ 10.8, and a poorlymore » crystallized borate compound (ulexite) precipitates. A correlation is established between this transient precipitation and the hydration delay. Decreasing the gypsum content in the binder, or increasing the sodium content in the mixing solution, are two ways of reducing the stability of ulexite, thus decreasing the hydration delay.« less
Well treating fluids and additives therefor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, B.
1991-07-16
This patent describes a solid, dry additive for reducing the water loss and improving other properties of well treating fluids in high temperature environments. It comprises a mixture of a water soluble copolymer of N-vinyl pyrrolidone and the sodium salt of 2- acrylamido-2-methylpropane sulfonic acid and an organic compound selected from the group consisting of lignites, tannins, asphaltic materials, derivatives thereof and mixtures of such compounds, the mixture of the water soluble copolymer and organic compound being prepared by mixing a water and oil emulsion containing the copolymer with the organic compound followed by removing the oil and water frommore » the resultant mixture.« less
Ion transport: Tipping a cell's ionic balance
NASA Astrophysics Data System (ADS)
Davis, Jeffery T.
2014-10-01
A synthetic compound that transports chloride across membranes can kill both normal cells and cancer cells in vitro. The transporter works together with sodium channels to move NaCl into the cells, which triggers cell death.
Computer-assisted Crystallization.
ERIC Educational Resources Information Center
Semeister, Joseph J., Jr.; Dowden, Edward
1989-01-01
To avoid a tedious task for recording temperature, a computer was used for calculating the heat of crystallization for the compound sodium thiosulfate. Described are the computer-interfacing procedures. Provides pictures of laboratory equipment and typical graphs from experiments. (YP)
Conversion of radioactive ferrocyanide compounds to immobile glasses
Schulz, Wallace W.; Dressen, A. Louise
1977-04-26
Complex radioactive ferrocyanide compounds result from the scavenging of cesium from waste products produced in the chemical reprocessing of nuclear fuel. These ferrocyanides, in accordance with this process, are converted to an immobile glass, resistant to leaching by water, by fusion together with sodium carbonate and a mixture of (a) basalt and boron trioxide (B.sub.2 O.sub.3) or (b) silica (SiO.sub.2) and lime (CaO).
Kakinuma, Hiroyuki; Oi, Takahiro; Hashimoto-Tsuchiya, Yuko; Arai, Masayuki; Kawakita, Yasunori; Fukasawa, Yoshiki; Iida, Izumi; Hagima, Naoko; Takeuchi, Hiroyuki; Chino, Yukihiro; Asami, Jun; Okumura-Kitajima, Lisa; Io, Fusayo; Yamamoto, Daisuke; Miyata, Noriyuki; Takahashi, Teisuke; Uchida, Saeko; Yamamoto, Koji
2010-04-22
Derivatives of a novel scaffold, C-phenyl 1-thio-D-glucitol, were prepared and evaluated for sodium-dependent glucose cotransporter (SGLT) 2 and SGLT1 inhibition activities. Optimization of substituents on the aromatic rings afforded five compounds with potent and selective SGLT2 inhibition activities. The compounds were evaluated for in vitro human metabolic stability, human serum protein binding (SPB), and Caco-2 permeability. Of them, (1S)-1,5-anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-D-glucitol (3p) exhibited potent SGLT2 inhibition activity (IC(50) = 2.26 nM), with 1650-fold selectivity over SGLT1. Compound 3p showed good metabolic stability toward cryo-preserved human hepatic clearance, lower SPB, and moderate Caco-2 permeability. Since 3p should have acceptable human pharmacokinetics (PK) properties, it could be a clinical candidate for treating type 2 diabetes. We observed that compound 3p exhibits a blood glucose lowering effect, excellent urinary glucose excretion properties, and promising PK profiles in animals. Phase II clinical trials of 3p (TS-071) are currently ongoing.
Bustamante, P; Pena, M A; Barra, J
2000-01-20
Sodium salts are often used in drug formulation but their partial solubility parameters are not available. Sodium alters the physical properties of the drug and the knowledge of these parameters would help to predict adhesion properties that cannot be estimated using the solubility parameters of the parent acid. This work tests the applicability of the modified extended Hansen method to determine partial solubility parameters of sodium salts of acidic drugs containing a single hydrogen bonding group (ibuprofen, sodium ibuprofen, benzoic acid and sodium benzoate). The method uses a regression analysis of the logarithm of the experimental mole fraction solubility of the drug against the partial solubility parameters of the solvents, using models with three and four parameters. The solubility of the drugs was determined in a set of solvents representative of several chemical classes, ranging from low to high solubility parameter values. The best results were obtained with the four parameter model for the acidic drugs and with the three parameter model for the sodium derivatives. The four parameter model includes both a Lewis-acid and a Lewis-base term. Since the Lewis acid properties of the sodium derivatives are blocked by sodium, the three parameter model is recommended for these kind of compounds. Comparison of the parameters obtained shows that sodium greatly changes the polar parameters whereas the dispersion parameter is not much affected. Consequently the total solubility parameters of the salts are larger than for the parent acids in good agreement with the larger hydrophilicity expected from the introduction of sodium. The results indicate that the modified extended Hansen method can be applied to determine the partial solubility parameters of acidic drugs and their sodium salts.
Li, Jian; Zhang, Baisheng; Zhang, Zhiqiang; Yan, Kefeng; Kang, Lixun
2014-12-01
The primary pyrolysis mechanisms of the sodium carboxylate group in sodium benzoate-used as a model compound of brown coal-were studied by performing quantum chemical computations using B3LYP and the CBS method. Various possible reaction pathways involving reactions such as unimolecular and bimolecular decarboxylation and decarbonylation, crosslinking, and radical attack in the brown coal matrix were explored. Without the participation of reactive radicals, unimolecular decarboxylation to release CO2 was calculated to be the most energetically favorable primary reaction pathway at the B3LYP/6-311+G (d, p) level of theory, and was also found to be more energetically favorable than decarboxylation of an carboxylic acid group. When CBS-QBS results were included, crosslinking between the sodium carboxylate group and the carboxylic acid and the decarboxylation of the sodium carboxylate group (catalyzed by the phenolic hydroxyl group) were found to be possible; this pathway competes with unimolecular decarboxylation of the sodium carboxylate group. Provided that H and CH3 radicals are present in the brown coal matrix and can access the sodium carboxylate group, accelerated pyrolysis of the sodium carboxylate group becomes feasible, leading to the release of an Na atom or an NaCO2 radical at the B3LYP/6-311+G (d, p) or CBS-QB3 level of theory, respectively.
NASA Astrophysics Data System (ADS)
Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander
2016-05-01
Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).
Synaptic potentials recorded by the sucrosegap method from the rabbit superior cervical ganglion
Kosterlitz, H. W.; Lees, G. M.; Wallis, D. I.
1970-01-01
1. Compound ganglionic potentials evoked by stimulation of the preganglionic nerves to the superior cervical ganglion of the rabbit were recorded by the sucrose-gap method. 2. When the distal part of the ganglion was bathed in flowing isotonic sucrose solution or sodium-deficient solutions, ganglionic action potentials were no longer evoked, only large synaptic potentials. 3. The compound synaptic potential, which remained unaltered for more than 1 h, originated in a population of cells at the interface between the Krebs and sucrose solutions. Hexamethonium reduced the size but did not alter the time course of the synaptic potential. 4. It is suggested that a higher concentration of sodium ions is required for the generation of ganglionic action potentials than for either conduction in the postganglionic axons or production of synaptic potentials. 5. When lithium replaced sodium in the solution bathing the distal part of the ganglion, the synaptic potential was greatly reduced in amplitude. Impulse propagation in the postganglionic axons was only slightly impaired when lithium replaced sodium in the solution bathing the axons. 6. A quantitative assessment of the potency of the ganglion-blocking drugs nicotine, pentolinium, hexamethonium and pempidine was made by measuring the depression of the synaptic potentials produced by bathing the distal part of the ganglion in flowing isotonic sucrose solution. The concentrations which produced a 50% depression were 8·1 μM nicotine, 26·5 μM pentolinium, 111 μM hexamethonium and 22·2 μM pempidine. PMID:5492898
Mitchell, Alexander R.; Pagoria, Philip F.; Schmidt, Robert D.
1996-01-01
The present invention relates to a process to produce 1,3-diamino-2,4,6-trinitrobenzene (DATB) or 1,3,5-triamino-2,4,6,-trinitrobenzene (TATB) by: (a) reacting at ambient pressure and a temperature of between about 0.degree. and 50.degree. C. for between about 0.1 and 24 hr, a trinitroaromatic compound of structure V: ##STR1## wherein X, Y, and Z are each independently selected from --H, or --NH.sub.2, with the proviso that at least 1 or 2 of X, Y, and Z are hydrogen, with an amount effective to produce DATB or TATB of 1,1,1-trialkylhydrazinium halide wherein alkyl is selected from methyl, ethyl, propyl or butyl and halide is selected from chloride, bromide or iodide. in the presence of a strong base selected from sodium butoxide, potassium butoxide, potassium propoxide, sodium propoxide, sodium ethoxide, potassium ethoxide, sodium methoxide, potassium methoxide, and combinations thereof; in a solvent selected from the group consisting of methanol, ethanol, propanol, butanol, dimethylsulphoxide, N-methylpyrrolidone, hexamethylphosphoramide, dimethylformide, dimethylacetamide and mixtures thereof, provided that when alcohols are present primarily DATB and picramide is formed; and (b) isolating the DATB or TATB produced. DATB and TATB are useful specialty explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).
Bukara, Katarina; Drvenica, Ivana; Ilić, Vesna; Stančić, Ana; Mišić, Danijela; Vasić, Borislav; Gajić, Radoš; Vučetić, Dušan; Kiekens, Filip; Bugarski, Branko
2016-12-20
The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Raval, Hiren D.; Samnani, Mohit D.; Gauswami, Maulik V.
2018-01-01
Need for improvement in water flux of thin film composite (TFC) RO membrane has been appreciated by researchers world over and surface modification approach is found promising to achieve higher water flux and solute rejection. Thin film composite RO membrane was exposed to 2000 mg/l sodium hypochlorite solution with varying concentrations of glycerol ranging from 1 to 10%. It was found that there was a drop in concentration of sodium hypochlorite after the addition of glycerol because of a new compound resulted from the oxidation of glycerol with sodium hypochlorite. The water flux of the membrane treated with 1% glycerol with 2000 mg/l sodium hypochlorite for 1 h was about 22% more and salt rejection was 1.36% greater than that of only sodium hypochlorite treated membrane for the same concentration and time. There was an increase in salt rejection of membrane with increase in concentration of glycerol from 1% to 5%, however, increasing glycerol concentration further up to 10%, the salt rejection declined. The water flux was found declining from 1% glycerol solution to 10% glycerol solution. The membrane samples were characterized to understand the change in chemical structure and morphology of the membrane.
Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants
Tikhonov, Denis B.
2017-01-01
Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds. PMID:28258204
Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants.
Tikhonov, Denis B; Zhorov, Boris S
2017-04-03
Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds. © 2017 Tikhonov and Zhorov.
The system water-sodium oxide-silicon dioxide at 200, 250, and 300°
Rowe, Jack J.; Fournier, Robert O.; Morey, G.W.
1967-01-01
Studies were made of the H2O-Na2O-SiO2 system at its vapor pressure at 200, 250, and 300??. Three different sodium trisilicate hydrates were encountered in the investigation. At 300??, Na2Si3O7??5H2O is found: at 250??, Na2Si3O7??6H2O; and at 200??, Na2Si3O7??11H2O. The liquid immiscibility previously reported to exist in the system was found to be a quenching phenomenon caused by the decomposition of the hydrates to unstable, supersaturated, viscous liquids. Under conditions where equilibrium is maintained, as temperature is lowered, the hydrates decompose to quartz, sodium disilicate, and liquid. The retrograde solubility of sodium disilicate and its tendency to form supersaturated solutions during heating from 25 to 250?? account for higher solubilities reported by others than were found in this study. The solubility of sodium disilicate in water is 26% at 200??, 9% at 250??, and 5% at 300??. Sodium metasilicate solubility is 38% at 200?? and 34% at 250??; this compound is incongruently soluble at 300??.
NASA Astrophysics Data System (ADS)
Illy, Marie-Claire; Smith, Anna L.; Wallez, Gilles; Raison, Philippe E.; Caciuffo, Roberto; Konings, Rudy J. M.
2017-07-01
Na3.16(2)UV,VI0.84(2)O4 is obtained from the reaction of sodium with uranium dioxide under oxygen potential conditions typical of a sodium-cooled fast nuclear reactor. In the event of a breach of the steel cladding, it would be the dominant reaction product forming at the rim of the mixed (U,Pu)O2 fuel pellets. High-temperature X-ray diffraction measurements show that a distortion of the uranium environment in Na3.16(2)UV,VI0.84(2)O4 results in a strongly anisotropic thermal expansion. A comparison with several related sodium metallates Nan-2Mn+On-1 - including Na3SbO4 and Na3TaO4, whose crystal structures are reported for the first time - has allowed us to assess the role played in the lattice expansion by the Mn+ cation radius and the Na/M ratio. On this basis, the thermomechanical behavior of the title compound is discussed, along with those of several related double oxides of sodium and actinide elements, surrogate elements, or fission products.
Khadra, Ibrahim; Zhou, Zhou; Dunn, Claire; Wilson, Clive G; Halbert, Gavin
2015-01-25
A drug's solubility and dissolution behaviour within the gastrointestinal tract is a key property for successful administration by the oral route and one of the key factors in the biopharmaceutics classification system. This property can be determined by investigating drug solubility in human intestinal fluid (HIF) but this is difficult to obtain and highly variable, which has led to the development of multiple simulated intestinal fluid (SIF) recipes. Using a statistical design of experiment (DoE) technique this paper has investigated the effects and interactions on equilibrium drug solubility of seven typical SIF components (sodium taurocholate, lecithin, sodium phosphate, sodium chloride, pH, pancreatin and sodium oleate) within concentration ranges relevant to human intestinal fluid values. A range of poorly soluble drugs with acidic (naproxen, indomethacin, phenytoin, and piroxicam), basic (aprepitant, carvedilol, zafirlukast, tadalafil) or neutral (fenofibrate, griseofulvin, felodipine and probucol) properties have been investigated. The equilibrium solubility results determined are comparable with literature studies of the drugs in either HIF or SIF indicating that the DoE is operating in the correct space. With the exception of pancreatin, all of the factors individually had a statistically significant influence on equilibrium solubility with variations in magnitude of effect between the acidic and basic or neutral compounds and drug specific interactions were evident. Interestingly for the neutral compounds pH was the factor with the second largest solubility effect. Around one third of all the possible factor combinations showed a significant influence on equilibrium solubility with variations in interaction significance and magnitude of effect between the acidic and basic or neutral compounds. The least number of significant media component interactions were noted for the acidic compounds with three and the greatest for the neutral compounds at seven, with again drug specific effects evident. This indicates that a drug's equilibrium solubility in SIF is influenced depending upon drug type by between eight to fourteen individual or combinations of media components with some of these drug specific. This illustrates the complex nature of these fluids and provides for individual drugs a visualisation of the possible solubility envelope within the gastrointestinal tract, which may be of importance for modelling in vivo behaviour. In addition the results indicate that the design of experiment approach can be employed to provide greater detail of drug solubility behaviour, possible drug specific interactions and influence of variations in gastrointestinal media components due to disease. The approach is also feasible and amenable to adaptation for high throughput screening of drug candidates. Copyright © 2014 Elsevier B.V. All rights reserved.
2014-01-01
Arsenic-containing lipids (arsenolipids) are natural products present in fish and algae. Because these compounds occur in foods, there is considerable interest in their human toxicology. We report the synthesis and characterization of seven arsenic-containing lipids, including six natural products. The compounds comprise dimethylarsinyl groups attached to saturated long-chain hydrocarbons (three compounds), saturated long-chain fatty acids (two compounds), and monounsaturated long chain fatty acids (two compounds). The arsenic group was introduced through sodium dimethylarsenide or bis(dimethylarsenic) oxide. The latter route provided higher and more reproducible yields, and consequently, this pathway was followed to synthesize six of the seven compounds. Mass spectral properties are described to assist in the identification of these compounds in natural samples. The pure synthesized arsenolipids will be used for in vitro experiments with human cells to test their uptake, biotransformation, and possible toxic effects. PMID:24683287
Evaluation of Pterin, a Promising Drug Candidate from Cyanide Degrading Bacteria.
Mahendran, Ramasamy; Thandeeswaran, Murugesan; Kiran, Gopikrishnan; Arulkumar, Mani; Ayub Nawaz, K A; Jabastin, Jayamanoharan; Janani, Balraj; Anto Thomas, Thomas; Angayarkanni, Jayaraman
2018-06-01
Pterin is a member of the compounds known as pteridines. They have the same nucleus of 2-amino-4-hydroxypteridine (pterin); however, the side-chain is different at the position 6, and the state of oxidation of the ring may exist in different form viz. tetrahydro, dihydro, or a fully oxidized form. In the present study, the microorganisms able to utilize cyanide, and heavy metals have been tested for the efficient production of pterin compound. The soil samples contaminated with cyanide and heavy metals were collected from Salem steel industries, Tamil Nadu, India. Out of 77 isolated strains, 40 isolates were found to utilize sodium cyanate as nitrogen source at different concentrations. However, only 13 isolates were able to tolerate maximum concentration (60 mM) of sodium cyanate and were screened for pterin production. Among the 13 isolates, only 1 organism showed maximum production of pterin, and the same was identified as Bacillus pumilus SVD06. The compound was extracted and purified by preparative high-performance liquid chromatography and analyzed by UV/visible, FTIR, and fluorescent spectrum. The antioxidant property of the purified pterin compound was determined by cyclic voltammetry. In addition, antimicrobial activity of pterin was also studied which was substantiated by antagonistic activity against Escherichia coli, and Pseudomonas aeruginosa. Besides that the pterin compound was proved to inhibit the formation of biofilm. The extracted pterin compounds could be proposed further not only for antioxidant and antimicrobial but also for its potency to aid as anticancer and psychotic drugs in future.
NASA Astrophysics Data System (ADS)
Wazalwar, Sachin S.; Banpurkar, Anita R.; Perdih, Franc
2017-12-01
A series of novel isoxazol derivatives was synthesized by green route in aqueous phase at room temperature by the reaction of 3-methyl-4H-isoxazol-5-one with 3-(substituted phenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde by one-pot Knoevenagel condensation method using sodium benzoate as a catalyst. Compounds were characterized on the basis of IR, 1H NMR, mass spectroscopy and melting point determination. Crystal structures of five compounds were determined by X-ray diffraction. The compounds formed were screened for antibacterial and antifungal activity. Some compounds showed activity close to ampicillin against E. coli, S. aureus, and S. pyogenus. Two compounds showed antifungal activity against C. albicans close to standard greseofulvin.
Biosynthesis of mercapturic acids from allyl alcohol, allyl esters and acrolein
Kaye, Clive M.
1973-01-01
1. 3-Hydroxypropylmercapturic acid, i.e. N-acetyl-S-(3-hydroxypropyl)-l-cysteine, was isolated, as its dicyclohexylammonium salt, from the urine of rats after the subcutaneous injection of each of the following compounds: allyl alcohol, allyl formate, allyl propionate, allyl nitrate, acrolein and S-(3-hydroxypropyl)-l-cysteine. 2. Allylmercapturic acid, i.e. N-acetyl-S-allyl-l-cysteine, was isolated from the urine of rats after the subcutaneous injection of each of the following compounds: triallyl phosphate, sodium allyl sulphate and allyl nitrate. The sulphoxide of allylmercapturic acid was detected in the urine excreted by these rats. 3. 3-Hydroxypropylmercapturic acid was identified by g.l.c. as a metabolite of allyl acetate, allyl stearate, allyl benzoate, diallyl phthalate, allyl nitrite, triallyl phosphate and sodium allyl sulphate. 4. S-(3-Hydroxypropyl)-l-cysteine was detected in the bile of a rat dosed with allyl acetate. PMID:4762754
Jin, Yoonhee; Nair, Asha; van Veen, Hendrik W.
2014-01-01
Membrane transporters belonging to the multidrug and toxic compound extrusion family mediate the efflux of unrelated pharmaceuticals from the interior of the cell in organisms ranging from bacteria to human. These proteins are thought to fall into two classes that couple substrate efflux to the influx of either Na+ or H+. We studied the energetics of drug extrusion by NorM from Vibrio cholerae in proteoliposomes in which purified NorM protein was functionally reconstituted in an inside-out orientation. We establish that NorM simultaneously couples to the sodium-motive force and proton-motive force, and biochemically identify protein regions and residues that play important roles in Na+ or H+ binding. As the positions of protons are not available in current medium and high-resolution crystal structures of multidrug and toxic compound extrusion transporters, our findings add a previously unrecognized parameter to mechanistic models based of these structures. PMID:24711447
Hopple, Jessica A.; Barringer, Julia L.; Koleis, Janece
2007-01-01
Water samples were collected from 20 community water-supply wells in New Jersey to assess the chemical quality of the water before and after chlorination, to characterize the types of organic carbon present, and to determine the disinfection by-product formation potential. Water from the selected wells previously had been shown to contain concentrations of dissolved organic carbon (DOC) that were greater than 0.2 mg/L. Of the selected wells, five are completed in unconfined (or semi-confined) glacial-sediment aquifers of the Piedmont and Highlands (New England) Physiographic Provinces, five are completed in unconfined bedrock aquifers of the Piedmont Physiographic Province, and ten are completed in unconsolidated sediments of the Coastal Plain Physiographic Province. Four of the ten wells in the Coastal Plain are completed in confined parts of the aquifers; the other six are in unconfined aquifers. One or more volatile organic compounds (VOCs) were detected in untreated water from all of the 16 wells in unconfined aquifers, some at concentrations greater than maximum contaminant levels. Those compounds detected included aliphatic compounds such as trichloroethylene and 1,1,1-trichloroethane, aromatic compounds such as benzene, the trihalomethane compound, chloroform, and the gasoline additive methyl tert-butyl ether (MTBE). Concentrations of sodium and chloride in water from one well in a bedrock aquifer and sulfate in water from another exceeded New Jersey secondary standards for drinking water. The source of the sulfate was geologic materials, but the sodium and chloride probably were derived from human inputs. DOC fractions were separated by passing water samples through XAD resin columns to determine hydrophobic fractions from hydrophilic fractions. Concentrations of hydrophobic acids were slightly lower than those of combined hydrophilic acids, neutral compounds, and low molecular weight compounds in most samples. Water samples from the 20 wells were adjusted to a pH of 7, dosed with sodium hypochlorite, and incubated for 168 hours (seven days) at 25 ?C to form disinfection by-products (DBPs). Concentrations of the DBPs-trihalomethanes, haloacetic acids, haloacetonitriles, and chlorate-were measured. Concentrations of these compounds, with few exceptions, were higher in water from Coastal Plain wells than from wells in glacial and bedrock aquifers. The organic-carbon fractions were dosed with sodium hypochlorite, incubated for 168 hours at 25 ?C, and analyzed for trihalomethanes, haloacetic acids, haloacetonitriles, and chlorate. Concentrations of trihalomethanes and haloacetic acids were higher in most of the hydrophobic organic-acid fractions than in the hydrophilic fractions, with the highest concentrations in samples from Coastal Plain aquifers. Traces of haloacetonitriles were measured, mostly in the hydrophilic fraction. The aromaticity of the precursor DOC, as estimated by measurements of the absorbance of ultraviolet light at 254 nanometers, apparently is a factor in the DBP formation potentials determined, as aromaticity was greater in the samples that developed high concentrations of DBPs. VOCs may have contributed to the organic carbon present in some of the samples, but much of the DOC present in water from the 20 wells appeared to be natural in origin. The sediments of the Coastal Plain aquifers, in particular, contain substantial amounts of organic matter, which contribute ammonia, organic nitrogen, and aromatic DOC compounds to the ground water. Thus, the geologic characteristics of the aquifers appear to be a major factor in the potential for ground water to form DBPs when chlorinated.
Railroad Regulation: Changes in Freight Railroad Rates from 1997 through 2000
2002-06-01
Routes, 1990–2000 19 Figure 5: Real Rail Rates for Plastic Materials or Synthetic Fibers, Resins, or Rubbers, Selected Short-Distance Routes, 1990–2000...Compounds, Selected Short-, Medium-, and Long-Distance Routes, 1990–2000 39 Figure 14: Real Rail Rates for Plastic Materials or Synthetic Fibers, Resins...Transportation Board to determine rates for coal, grain (wheat and corn), chemicals (potassium and sodium compounds and plastic materials or synthetic
Rambabu, A; Senthilkumar, B; Sada, K; Krupanidhi, S B; Barpanda, P
2018-03-15
Sodium-ion thin-film micro-batteries form a niche sector of energy storage devices. Sodium titanate, Na 2 Ti 6 O 13 (NTO) thin films were deposited by pulsed laser deposition (PLD) using solid-state synthesized polycrystalline Na 2 Ti 6 O 13 compound. The phase-purity and crystallinity of NTO in bulk and thin-film forms were confirmed by Rietveld refinement. Electron microscopy and atomic force microscopy revealed the formation of uniform ∼100 nm thin film with roughness of ∼4 nm consisting of homogeneous nanoscale grains. These PLD-deposited NTO thin-films, when tested in Na-half cell architecture, delivered a near theoretical reversible capacity close to 42 mA h g -1 involving Ti 4+ /Ti 3+ redox activity along with good cycling stability and rate kinetics. Na 2 Ti 6 O 13 can work as an efficient and safe anode in designing sodium-ion thin-film micro-batteries. Copyright © 2017 Elsevier Inc. All rights reserved.
Song, Xiao-Hong; Wang, Wei-Hao; Chen, Shi-Tao; Chen, Sha; Zhang, Jun; Wang, Yue-Sheng; Liu, An
2016-07-01
Sodium aescinate, which is produced from saponins of Chinese Buckeye Seed, is a prescription drug for treatment of brain edema and all kinds of swellings caused by surgery. In this article, high-performance liquid chromatography/ion trap (HPLC-IT) mass spectrometry was applied to study the characteristic ions of ten reference substances, namely escin Ⅰa, escin Ⅰb, isoescin Ⅰa, isoescin Ⅰb, aesculiside A, aesculiside B, aesculuside A, escin Ⅳc, escinⅡa and escin Ⅴ, which were isolated from aescinate. Furthermore, 19 saponin compounds were predicted in sodium aescinate, besides the above mentioned reference substances. The study showed that sapogenins in sodium aescinate had two structural types, namely protoaescigenin and barringenol C, and the substituent acetyl, tigloyl or angeloyl was usually located at C-21, C-22 or C-28 position. Among these predicted saponins, their sugar chains were all located at C-3 position consisting of glucose and glucuronide. This study provides experimental data for chemical constituents in sodium aescinate and scientific basis for quality and safety evaluation. Copyright© by the Chinese Pharmaceutical Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuytema, G.S.; Nebeker, A.V.
1999-10-01
The effects of ammonium nitrate, ammonium chloride, ammonium sulfate, and sodium nitrate on survival and growth of Pacific treefrog (Pseudacris regilla [Baird and Girard]) and African clawed frog (Xenopus laevis [Daudin]) tadpoles were determined in static-renewal tests. The 10-d ammonium nitrate and ammonium sulfate LC50s for P. regilla were 55.2 and 89.7 mg/L NH{sub 4}-N, respectively. The 10-d LC50s for X. laevis for the three ammonium compounds ranged from 45 to 64 mg/L NH{sub 4}-N. The 10-d sodium nitrate LC50s were 266.2 mg/L NO{sub 3}-N for P. regilla and 1,236.2 mg/L NO{sub 3}-N for X. laevis. The lowest observed adversemore » effect level (LOAEL) of ammonium compound based on reduced length or weight was 24.6 mg/L NH{sub 4}-N for P. regilla and 99.5 mg/L NH{sub 4}-N for X. laevis. The lowest sodium nitrate LOAELs based on reduced length or weight were {lt}30.1 mg/L NO{sub 3}-N for P. regilla and 126.3 mg/L NO{sub 3}-N for X. laevis. Calculated un-ionized NH{sub 3} comprised 0.3 to 1.0% of measured NH{sub 4}-N concentrations. Potential harm to amphibians could occur if sensitive life stages were impacted by NH{sub 4}-N and NO{sub 3}-N in agricultural runoff or drainage for a sufficiently long period.« less
Colak, Basak Yilin; Peynichou, Pierre; Galland, Sophie; Oulahal, Nadia; Prochazka, Frédéric; Degraeve, Pascal
2016-05-01
Antimicrobial edible films based on sodium caseinate, glycerol, and 2 food preservatives (nisin or natamycin) were prepared by classical thermomechanical processes. Food preservatives were compounded (at 65 °C for 2.5 min) with sodium caseinate in a twin-screw extruder. Anti-Listeria activity assays revealed a partial inactivation of nisin following compounding. Thermoplastic pellets containing food preservatives were then used to manufacture films either by blown-film extrusion process or by heat-press. After 24 h of incubation on agar plates, the diameters of K. rhizophila growth inhibition zones around nisin-incorporated films prepared by solution casting (control), extrusion blowing or heat pressing at 80 °C for 7 min of nisin-containing pellets were 15.5 ± 0.9, 9.8 ± 0.2, and 8.6 ± 1.0 mm, respectively. Since heat-pressing for 7 min at 80 °C of nisin-incorporated pellets did not further inactivate nisin, this indicates that nisin inactivation during extrusion-blowing was limited. Moreover, the lower diameter of the K. rhizophila growth inhibition zone around films prepared with nisin-containing pellets compared to that observed around films directly prepared by solution casting confirms that nisin inactivation mainly occurred during the compounding step. Natamycin-containing thermoplastic films inhibited Aspergillus niger growth; however, by contrast with nisin-containing films, heat-pressed films had higher inhibition zone diameters than blown films, therefore suggesting a partial inactivation of natamycin during extrusion-blowing. © 2016 Institute of Food Technologists®
Synthesis, characterization and electrical properties of a lead sodium vanadate apatite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakroun-Ouadhour, E.; Ternane, R.; Hassen-Chehimi, D. Ben
2008-08-04
The lacunary lead sodium vanadate apatite Pb{sub 8}Na{sub 2}(VO{sub 4}){sub 6} was synthesized by the solid-state reaction method. The compound was characterized by X-ray powder diffraction, infrared (IR) absorption spectroscopy and Raman scattering spectroscopy. By comparing the effect of vanadate and phosphate ions on electrical properties, it was concluded that Pb{sub 8}Na{sub 2}(VO{sub 4}){sub 6} apatite is better conductor than Pb{sub 8}Na{sub 2}(PO{sub 4}){sub 6} apatite.
Geier, Jens; Grützmacher, Hansjörg
2003-12-07
[Na11(OtBu)10(OH)], a hydroxide enclosing 21-vertex cage compound, was found to crystallize from mixtures of sodium tert.butanolate with sodium hydroxide. Its structure can be derived from the known (NaOtBu)6-hexaprismane by replacing one butanolate unit with OH- and capping the latter with five additional units of NaOtBu. The hydroxide shows a signal at -3.21 ppm in the 1H NMR spectrum.
49 CFR 1248.101 - Commodity codes required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Chemical and Fertilizer Minerals. 14711 Barite. 14713 Potash, soda and borate. 14714 Phosphate rock. 14715... Organic Chemicals. 2812 Sodium, potassium, and other basic inorganic chemical compounds and chlorine... industrial organic chemicals. 28184 Alcohols. 2819 Miscellaneous industrial inorganic chemicals. 28193...
Sodium Perborate Oxidation of an Aromatic Amine
ERIC Educational Resources Information Center
Juestis, Laurence
1977-01-01
Describes an experiment involving the oxidation of aromatic primary amines to the corresponding azo compound; suggests procedures for studying factors that influence the yield of such a reaction, including the choice of solvent and the oxidant-amine ratio. (MLH)
NASA Astrophysics Data System (ADS)
Asharani, I. V.; Thirumalai, D.; Sivakumar, A.
2017-11-01
Polyethylene glycol (PEG) core dendrimer encapsulated silver nanoparticles (AgNPs) were synthesized through normal chemical reduction method, where dendrimer acts as reducing and stabilizing agent. The encapsulated AgNPs were well characterized using TEM, DLS and XPS techniques. The synthesized AgNPs showed excellent catalytic activity towards the reduction of aromatic nitro compounds with sodium borohydride as reducing agent and the results substantiate that dendrimer encapsulated AgNPs can be an effective catalyst for the substituted nitro aromatic reduction reactions. Also the kinetics of different nitro compounds reductions was studied and presented.
González-Olvera, Rodrigo; Espinoza-Vázquez, Araceli; Negrón-Silva, Guillermo E; Palomar-Pardavé, Manuel E; Romero-Romo, Mario A; Santillan, Rosa
2013-12-06
A series of new mono-1,2,3-triazole derivatives of pyrimidine nucleobases were synthesized by one-pot copper(I)-catalyzed 1,3-dipolar cycloaddition reactions between N-1-propargyluracil and thymine, sodium azide and several benzyl halides. The desired heterocyclic compounds were obtained in good yields and characterized by NMR, IR, and high resolution mass spectrometry. These compounds were investigated as corrosion inhibitors for steel in 1 M HCl solution, using electrochemical impedance spectroscopy (EIS) technique. The results indicate that these heterocyclic compounds are promising acidic corrosion inhibitors for steel.
Chakraborty, Shreyasi; Kar, Nabanita; Kumari, Leena; De, Asit; Bera, Tanmoy
2017-01-01
Background Type I hypersensitivity is an allergic reaction characterized by the overactivity of the immune system provoked by normally harmless substances. Glucocorticoids, anti-histamines, or mast cell stabilizers are the choices of treatment for type I hypersensitivity. Even though these drugs have the anti-allergic effect, they can have several side effects in prolong use. Cedrol is the main bioactive compound of Cedrus atlantica with anti-tumor, anti-oxidative, and platelet-activating factor inhibiting properties. Methods In this study, the preparation and anti-anaphylactic effect of cedrol-loaded nanostructured lipid carriers (NLCs) were evaluated. NLCs were prepared using Compritol® 888 ATO and triolein as lipid phase and vitamin E d-α-tocopherylpolyethyleneglycol 1000 succinate, soya lecithin, and sodium deoxycholate as nanoparticle stabilizers. Results The average diameter of cedrol-NLCs (CR-NLCs) was 71.2 nm (NLC-C1) and 91.93 nm (NLC-C2). The particle had negative zeta potential values of −31.9 mV (NLC-C1) and −44.5 mV (NLC-C2). Type I anaphylactoid reaction in the animal model is significantly reduced by cedrol and cedrol-NLC. This in vivo activity of cedrol resulted that cedrol suppressed compound 48/80-induced peritoneal mast cell degranulation and histamine release from mast cells. Furthermore, compound 48/80-evoked Ca2+ uptake into mast cells was reduced in a dose-dependent manner by cedrol and cedrol-NLC. Studies confirmed that the inhibition of type I anaphylactoid response in vivo in mice and compound 48/80-induced mast cell activation in vitro are greatly enhanced by the loading of cedrol into the NLCs. The safety of cedrol and CR-NLC was evaluated as selectivity index (SI) with prednisolone and cromolyn sodium as positive control. SI of CR-NLC-C2 was found to be 11.5-fold greater than both prednisolone and cromolyn sodium. Conclusion Administration of CR-NLC 24 hours before the onset of anaphylaxis can prevent an anaphylactoid reaction. NLCs could be a promising vehicle for the oral delivery of cedrol to protect anaphylactic reactions. PMID:28744120
Chakraborty, Shreyasi; Kar, Nabanita; Kumari, Leena; De, Asit; Bera, Tanmoy
2017-01-01
Type I hypersensitivity is an allergic reaction characterized by the overactivity of the immune system provoked by normally harmless substances. Glucocorticoids, anti-histamines, or mast cell stabilizers are the choices of treatment for type I hypersensitivity. Even though these drugs have the anti-allergic effect, they can have several side effects in prolong use. Cedrol is the main bioactive compound of Cedrus atlantica with anti-tumor, anti-oxidative, and platelet-activating factor inhibiting properties. In this study, the preparation and anti-anaphylactic effect of cedrol-loaded nanostructured lipid carriers (NLCs) were evaluated. NLCs were prepared using Compritol ® 888 ATO and triolein as lipid phase and vitamin E d-α-tocopherylpolyethyleneglycol 1000 succinate, soya lecithin, and sodium deoxycholate as nanoparticle stabilizers. The average diameter of cedrol-NLCs (CR-NLCs) was 71.2 nm (NLC-C 1 ) and 91.93 nm (NLC-C 2 ). The particle had negative zeta potential values of -31.9 mV (NLC-C 1 ) and -44.5 mV (NLC-C 2 ). Type I anaphylactoid reaction in the animal model is significantly reduced by cedrol and cedrol-NLC. This in vivo activity of cedrol resulted that cedrol suppressed compound 48/80-induced peritoneal mast cell degranulation and histamine release from mast cells. Furthermore, compound 48/80-evoked Ca 2+ uptake into mast cells was reduced in a dose-dependent manner by cedrol and cedrol-NLC. Studies confirmed that the inhibition of type I anaphylactoid response in vivo in mice and compound 48/80-induced mast cell activation in vitro are greatly enhanced by the loading of cedrol into the NLCs. The safety of cedrol and CR-NLC was evaluated as selectivity index (SI) with prednisolone and cromolyn sodium as positive control. SI of CR-NLC-C 2 was found to be 11.5-fold greater than both prednisolone and cromolyn sodium. Administration of CR-NLC 24 hours before the onset of anaphylaxis can prevent an anaphylactoid reaction. NLCs could be a promising vehicle for the oral delivery of cedrol to protect anaphylactic reactions.
Sato, Taira; Kikuchi, Masanori; Aizawa, Mamoru
2017-03-01
The anti-washout property, viscosity, and cytocompatibility to an osteoblastic cell line, MG-63, of anti-washout pastes were investigated. Mixing a hydroxyapatite/collagen bone-like nanocomposite (HAp/Col), an aqueous solution of sodium alginate (Na-Alg), which is a paste hardening and lubricant agent, and supplementation of calcium carbonate or calcium citrate (Ca-Cit) as a calcium resource for the hardening reaction realized an injectable bone paste. Adding Ca-Cit at a concentration greater than eight times the Ca 2+ ion concentration to Na-Alg improved the anti-washout property. Although the viscosity test indicated a gradual increase in the paste viscosity as the calcium compounds increased, pastes with excess supplementation of calcium compounds exhibited injectability through a syringe with a 1.8 mm inner diameter, realizing an injectable bone filler. Furthermore, the anti-washout pastes with Ca-Cit had almost the same cell proliferation rate as that of the HAp/Col dense body. Therefore, HAp/Col injectable anti-washout pastes composed of the HAp/Col, Na-Alg, and Ca-Cit are potential candidates for bioresorbable bone filler pastes.
Multifunctional slow-release organic-inorganic compound fertilizer.
Ni, Boli; Liu, Mingzhu; Lü, Shaoyu; Xie, Lihua; Wang, Yanfang
2010-12-08
Multifunctional slow-release organic-inorganic compound fertilizer (MSOF) has been investigated to improve fertilizer use efficiency and reduce environmental pollution derived from fertilizer overdosage. The special fertilizer is based on natural attapulgite (APT) clay used as a matrix, sodium alginate used as an inner coating and sodium alginate-g-poly(acrylic acid-co-acrylamide)/humic acid (SA-g-P(AA-co-AM)/HA) superabsorbent polymer used as an outer coating. The coated multielement compound fertilizer granules were produced in a pan granulator, and the diameter of the prills was in the range of 2.5-3.5 mm. The structural and chemical characteristics of the product, as well as its efficiency in slowing the nutrients release, were examined. In addition, a mathematical model for nutrient release from the fertilizer was applied to calculate the diffusion coefficient D of nutrients in MSOF. The degradation of the SA-g-P(AA-co-AM)/HA coating was assessed by examining the weight loss with incubation time in soil. It is demonstrated that the product prepared by a simple route with good slow-release property may be expected to have wide potential applications in modern agriculture and horticulture.
Kocadağlı, Tolgahan; Gökmen, Vural
2016-10-02
Effect of NaCl, KCl, CaCl2, NaHCO3, and NH4HCO3 on the formation of glucosone, 1-deoxyglucosone, 3-deoxyglucosone, glyoxal, methylglyoxal, diacetyl, 5-hydroxymethyl-2-furfural, 2-furfural and browning were investigated in cookies. Presence of 1.5% NaCl, 1% KCl, and 1% CaCl2 on flour basis had no effect on α-dicarbonyl compounds, except 1-deoxyglucosone increased in the presence of KCl and CaCl2. The increase in 5-hydroxymethyl-2-furfural formation in the presence of NaCl, KCl, and CaCl2 did not relate to 3-deoxyglucosone formation and pH changes. NaCl, KCl, and CaCl2 increased browning in cookies. Model reaction systems indicated that NaCl, KCl, and CaCl2 enhance browning by increasing furfurals in caramelization. NaCl, KCl, and CaCl2 decreased browning intensity in heated glucose-glycine system. Usage of CaCl2 in cookies may considerably increase furfurals but not α-dicarbonyl compounds. Sodium reduction can be obtained by replacement with potassium without sacrificing the desired consequences of caramelization in sugar rich bakeries.
Rostad, Colleen E.; Schmitt, Christopher J.; Schumacher, John G.; Leiker, Thomas J.
2011-01-01
Surface water samples were collected in 2006 from a lead mine-mill complex in Missouri to investigate possible organic compounds coming from the milling process. Water samples contained relatively high concentrations of dissolved organic carbon (DOC; greater than 20 mg/l) for surface waters but were colorless, implying a lack of naturally occurring aquatic humic or fulvic acids. Samples were extracted by three different types of solid-phase extraction and analyzed by electrospray ionization/mass spectrometry. Because large amounts of xanthate complexation reagents are used in the milling process, techniques were developed to extract and analyze for sodium isopropyl xanthate and sodium ethyl xanthate. Although these xanthate reagents were not found, trace amounts of the degradates, isopropyl xanthyl thiosulfonate and isopropyl xanthyl sulfonate, were found in most locations sampled, including the tailings pond downstream. Dioctyl sulfosuccinate, a surfactant and process filtering aid, was found at concentrations estimated at 350 μg/l at one mill outlet, but not downstream. Release of these organic compounds downstream from lead-zinc mine and milling areas has not previously been reported. A majority of the DOC remains unidentified.
NASA Astrophysics Data System (ADS)
Zhou, Hepeng; Cao, Yijun; Ma, Zilong; Li, Shulei
2018-05-01
Transition metal sulfides are considered to be promising candidates as anodes for sodium ion batteries (SIBs). However, their further applications are limited by poor electrical conductivity and sluggish electrochemical kinetics. We report, for the first time, nickel-doped Co9S8 hollow nanoparticles as SIB anodes with enhanced electrical conductivity and a large pseudocapacitive effect, leading to fast kinetics. This compound exhibits excellent sodium storage performance, including a high capacity of 556.7 mA h g-1, a high rate capability of 2000 mA g-1 and an excellent stability up to 200 cycles. The results demonstrate that nickel-doped Co9S8 hollow nanoparticles are a promising anode material for SIBs.
Review on Material Synthesis and Characterization of Sodium (Na) Super-Ionic Conductor (NASICON)
NASA Astrophysics Data System (ADS)
Kimpa, M. I.; Mayzan, M. Z. H.; Yabagi, J. A.; Nmaya, M. M.; Isah, K. U.; Agam, M. A.
2018-04-01
Sodium (Na) Super Ionic Conductor (NASICON) has general formula Na1+ x Zr2P3- xSi x O12 (0 ≤x ≤ 3) derived from its parent compound, sodium zirconium phosphate NaZr2(PO4)3 (NZP) which belong to a rhombohedral crystal structure. This material consists of three-dimensional structure with interesting features such as low thermal expansion coefficient, thermal stability, gas sensor and nuclear waste immobilization that make it viable for industrial applications. Current study presents comprehensive studies on the synthesis and essential characteristics required to understand the theory behind the mechanism that justifies the study of NASICON structure and its application such as lithium ion rechargeable battery, gas sensor, and nuclear waste immobilization and so on.
Zhou, Hepeng; Cao, Yijun; Ma, Zilong; Li, Shulei
2018-05-11
Transition metal sulfides are considered to be promising candidates as anodes for sodium ion batteries (SIBs). However, their further applications are limited by poor electrical conductivity and sluggish electrochemical kinetics. We report, for the first time, nickel-doped Co 9 S 8 hollow nanoparticles as SIB anodes with enhanced electrical conductivity and a large pseudocapacitive effect, leading to fast kinetics. This compound exhibits excellent sodium storage performance, including a high capacity of 556.7 mA h g -1 , a high rate capability of 2000 mA g -1 and an excellent stability up to 200 cycles. The results demonstrate that nickel-doped Co 9 S 8 hollow nanoparticles are a promising anode material for SIBs.
Monteleone, Jon P. R.; Mokhtarani, M.; Diaz, G. A.; Rhead, W.; Lichter-Konecki, U.; Berry, S. A.; LeMons, C.; Dickinson, K.; Coakley, D.; Lee, B.; Scharschmidt, B. F.
2014-01-01
Sodium phenylbutyrate and glycerol phenylbutyrate mediate waste nitrogen excretion in the form of urinary phenylacetylglutamine (PAGN) in patients with urea cycle disorders (UCDs); rare genetic disorders characterized by impaired urea synthesis and hyperammonemia. Sodium phenylbutyrate is approved for UCD treatment; the development of glycerol phenylbutyrate afforded the opportunity to characterize the pharmacokinetics (PK) of both compounds. A population PK model was developed using data from four Phase II/III trials that collectively enrolled patients ages 2 months to 72 years. Dose simulations were performed with particular attention to phenylacetic acid (PAA), which has been associated with adverse events in non-UCD populations. The final model described metabolite levels in plasma and urine for both drugs and was characterized by (a) partial presystemic metabolism of phenylbutyric acid (PBA) to PAA and/or PAGN, (b) slower PBA absorption and greater presystemic conversion with glycerol phenylbutyrate, (c) similar systemic disposition with saturable conversion of PAA to PAGN for both drugs, and (d) body surface area (BSA) as a significant covariate accounting for age-related PK differences. Dose simulations demonstrated similar PAA exposure following mole-equivalent PBA dosing of both drugs and greater PAA exposure in younger patients based on BSA. PMID:23775211
Monteleone, Jon P R; Mokhtarani, M; Diaz, G A; Rhead, W; Lichter-Konecki, U; Berry, S A; Lemons, C; Dickinson, K; Coakley, D; Lee, B; Scharschmidt, B F
2013-07-01
Sodium phenylbutyrate and glycerol phenylbutyrate mediate waste nitrogen excretion in the form of urinary phenylacetylglutamine (PAGN) in patients with urea cycle disorders (UCDs); rare genetic disorders characterized by impaired urea synthesis and hyperammonemia. Sodium phenylbutyrate is approved for UCD treatment; the development of glycerol phenylbutyrate afforded the opportunity to characterize the pharmacokinetics (PK) of both compounds. A population PK model was developed using data from four Phase II/III trials that collectively enrolled patients ages 2 months to 72 years. Dose simulations were performed with particular attention to phenylacetic acid (PAA), which has been associated with adverse events in non-UCD populations. The final model described metabolite levels in plasma and urine for both drugs and was characterized by (a) partial presystemic metabolism of phenylbutyric acid (PBA) to PAA and/or PAGN, (b) slower PBA absorption and greater presystemic conversion with glycerol phenylbutyrate, (c) similar systemic disposition with saturable conversion of PAA to PAGN for both drugs, and (d) body surface area (BSA) as a significant covariate accounting for age-related PK differences. Dose simulations demonstrated similar PAA exposure following mole-equivalent PBA dosing of both drugs and greater PAA exposure in younger patients based on BSA. © The Author(s) 2013.
Ukrainets, Igor V.; Petrushova, Lidiya A.; Shishkina, Svitlana V.; Grinevich, Lina A.; Sim, Galina
2016-01-01
In order to obtain and then test pharmocologically any possible conformers of the new feasible analgesic N-benzyl-4-hydroxy-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide, its 4-O-sodium salt was synthesized using two methods. X-ray diffraction study made possible to determine that, depending on the chosen synthesis conditions, the above-mentioned compound forms either monosolvate with methanol or monohydrate, where organic anion exists in the form of three different conformers. Pharmacological testing of the two known pseudo-enantiomeric forms of the original N-benzylamide and of the two solvates of its sodium salt was performed simultaneously under the same conditions and in equimolar doses. Comparison of the results obtained while studying the peculiarities of the synthesized compounds spatial structure and biological properties revealed an important structure-action relationship. In particular, it was shown that the intensity of analgesic effect of different conformational isomers of N-benzyl-4-hydroxy-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide may change considerably: while low active conformers are comparable with piroxicam, highly active conformers are more than twice as effective as meloxicam. PMID:27775559
DEVELOPMENTAL NEUROTOXICITY OF PYRETHROID INSECTICIDES: CRITICAL REVIEW.
Pyrethroids are widely utilized insecticides whose primary action is the disruption of voltage-sensitive sodium channels (VSSC). Although these compounds have been in use for over 30 years and their acute neurotoxicity has been well characterized, there is considerably less info...
In situ formation of coal gasification catalysts from low cost alkali metal salts
Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.
1985-01-01
A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.
Phase-separable aqueous amide solutions as a thermal history indicator.
Kitsunai, Makoto; Miyajima, Kentaro; Mikami, Yuzuru; Kim, Shokaku; Hirasawa, Akira; Chiba, Kazuhiro
2008-12-01
Aqueous solutions of several new amide compounds for use as simple thermal history indicators in the low-temperature transport of food and other products were synthesized. The phase transition temperatures of the aqueous solutions can be freely adjusted by changing the amide-water ratio in solution, the sodium chloride concentration of the water, and the type of amide compound. It is expected that these aqueous solutions can be applied as new thermal history indicators.
Wang, Chen; Lei, Ying Duan; Wania, Frank
2016-12-06
Dissolved inorganic salts influence the partitioning of organic compounds into the aqueous phase. This influence is especially significant in atmospheric aerosol, which usually contains large amounts of ions, including sodium, ammonium, chloride, sulfate, and nitrate. However, empirical data on this salt effect are very sparse. Here, the partitioning of numerous organic compounds into solutions of Na 2 SO 4 , NH 4 Cl, and NH 4 NO 3 was measured and compared with existing data for NaCl and (NH 4 ) 2 SO 4 . Salt mixtures were also tested to establish whether the salt effect is additive. In general, the salt effect showed a decreasing trend of Na 2 SO 4 > (NH) 2 SO 4 > NaCl > NH 4 Cl > NH 4 NO 3 for the studied organic compounds, implying the following relative strength of the salt effect of individual anions: SO 4 2- > Cl - > NO 3 - and of cations: Na + > NH 4 + . The salt effect of different salts is moderately correlated. Predictive models for the salt effect were developed based on the experimental data. The experimental data indicate that the salt effect of mixtures may not be entirely additive. However, the deviation from additivity, if it exists, is small. Data of very high quality are required to establish whether the effect of constituent ions or salts is additive or not.
Benjamin, Elfrida R; Pruthi, Farhana; Olanrewaju, Shakira; Ilyin, Victor I; Crumley, Gregg; Kutlina, Elena; Valenzano, Kenneth J; Woodward, Richard M
2006-02-01
Voltage-gated sodium channels (NaChs) are relevant targets for pain, epilepsy, and a variety of neurological and cardiac disorders. Traditionally, it has been difficult to develop structure-activity relationships for NaCh inhibitors due to rapid channel kinetics and state-dependent compound interactions. Membrane potential (Vm) dyes in conjunction with a high-throughput fluorescence imaging plate reader (FLIPR) offer a satisfactory 1st-tier solution. Thus, the authors have developed a FLIPR Vm assay of rat Nav1.2 NaCh. Channels were opened by addition of veratridine, and Vm dye responses were measured. The IC50 values from various structural classes of compounds were compared to the resting state binding constant (Kr)and inactivated state binding constant (Ki)obtained using patch-clamp electrophysiology (EP). The FLIPR values correlated with Ki but not Kr. FLIPRIC50 values fell within 0.1-to 1.5-fold of EP Ki values, indicating that the assay generally reports use-dependent inhibition rather than resting state block. The Library of Pharmacologically Active Compounds (LOPAC, Sigma) was screened. Confirmed hits arose from diverse classes such as dopamine receptor antagonists, serotonin transport inhibitors, and kinase inhibitors. These data suggest that NaCh inhibition is inherent in a diverse set of biologically active molecules and may warrant counterscreening NaChs to avoid unwanted secondary pharmacology.
Ohira, Shin-Ichi; Kaneda, Kyosuke; Matsuzaki, Toru; Mori, Shuta; Mori, Masanobu; Toda, Kei
2018-06-05
Most quantifications are achieved by comparison of the signals obtained with the sample to those from a standard. Thus, the purity and stability of the standard are key in chemical analysis. Furthermore, if an analyte standard cannot be obtained, quantification cannot be achieved, even if the chemical structures are identified by a qualification method (e.g., high-resolution mass spectrometry). Herein, we describe a universal and analyte standard-free detector for aqueous-eluent-based high-performance liquid chromatography. This universal carbon detector (UCD) was developed based on total organic carbon detection. Separated analytes were oxidized in-line and converted to carbon dioxide (CO 2 ). Generated CO 2 was transferred into the gas phase and collected into ultrapure water, which was followed by conductivity detection. The system can be applied as a HPLC detector that does not use an organic solvent as an eluent. The system can be calibrated with a primary standard of sodium bicarbonate for organic compounds. The universality and quantification were evaluated with organic compounds, including organic acids, sugars, and amino acids. Furthermore, the system was successfully applied to evaluation of the purity of formaldehyde in formalin solution, and determination of sugars in juices. The results show the universal carbon detector has good universality and can quantify many kinds of organic compounds with a single standard such as sodium bicarbonate.
[Standard addition determination of impurities in Na2CrO4 by ICP-AES].
Wang, Li-ping; Feng, Hai-tao; Dong, Ya-ping; Peng, Jiao-yu; Li, Wu; Shi, Hai-qin; Wang, Yong
2015-02-01
Coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the trace impurities of Ca, Mg, Al, Fe and Si in industrial sodium chromate. Wavelengths of 167.079, 393.366, 259.940, 279.533 and 251.611 nm were selected as analytical lines for the determination of Al, Ca, Fe, Mg and Si, respectively. The analytical errors can be eliminated by adjusting the determined solution with high pure hydrochloric acid. Standard addition method was used to eliminate matrix effects. The linear correlation, detection limit, precision and recovery for the concerned trace impurities have been examined. The effect of standard addition method on the accuracy for the determination under the selected analytical lines has been studied in detail. The results show that the linear correlations of standard curves were very good (R2 = 0.9988 to 0.9996) under the determined conditions. Detection limits of these trace impurities were in the range of 0.0134 to 0.0280 mg x L(-1). Sample recoveries were within 97.30% to 107.50%, and relative standard deviations were lower than 5.86% for eleven repeated determinations. The detection limits and accuracies established by the experiment can meet the analytical requirements and the analytic procedure was used to determine trace impurities in sodium chromate by ion membrane electrolysis technique successfully. Due to sodium chromate can be changed into sodium dichromate and chromic acid by adding acids, the established method can be further used to monitor trace impurities in these compounds or other hexavalent chromium compounds.
Chen, Mingzhe; Chen, Lingna; Hu, Zhe; Liu, Qiannan; Zhang, Binwei; Hu, Yuxiang; Gu, Qinfen; Wang, Jian-Li; Wang, Lian-Zhou; Guo, Xiaodong; Chou, Shu-Lei; Dou, Shi-Xue
2017-06-01
Rechargeable sodium-ion batteries are proposed as the most appropriate alternative to lithium batteries due to the fast consumption of the limited lithium resources. Due to their improved safety, polyanion framework compounds have recently gained attention as potential candidates. With the earth-abundant element Fe being the redox center, the uniform carbon-coated Na 3.32 Fe 2.34 (P 2 O 7 ) 2 /C composite represents a promising alternative for sodium-ion batteries. The electrochemical results show that the as-prepared Na 3.32 Fe 2.34 (P 2 O 7 ) 2 /C composite can deliver capacity of ≈100 mA h g -1 at 0.1 C (1 C = 120 mA g -1 ), with capacity retention of 92.3% at 0.5 C after 300 cycles. After adding fluoroethylene carbonate additive to the electrolyte, 89.6% of the initial capacity is maintained, even after 1100 cycles at 5 C. The electrochemical mechanism is systematically investigated via both in situ synchrotron X-ray diffraction and density functional theory calculations. The results show that the sodiation and desodiation are single-phase-transition processes with two 1D sodium paths, which facilitates fast ionic diffusion. A small volume change, nearly 100% first-cycle Coulombic efficiency, and a pseudocapacitance contribution are also demonstrated. This research indicates that this new compound could be a potential competitor for other iron-based cathode electrodes for application in large-scale Na rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sodium-ion batteries: present and future.
Hwang, Jang-Yeon; Myung, Seung-Taek; Sun, Yang-Kook
2017-06-19
Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.
Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J
2017-09-05
For the first time, a comprehensive investigation of the impurity profile of the synthetic thyroid API (active pharmaceutical ingredient) liothyronine sodium (LT 3 Na) was performed by using reversed phase HPLC and advanced structural elucidation techniques including high resolution tandem mass spectrometry (HRMS/MS) and on-line hydrogen-deuterium (H/D) exchange. Overall, 39 compounds were characterized and 25 of these related substances were previously unknown to literature. The impurity classification system recently developed for the closely related API levothyroxine sodium (LT 4 Na) could be applied to the newly characterized liothyronine sodium impurities resulting in a wholistic thyroid API impurity classification system. Furthermore, the mass-spectrometric CID-fragmentation of specific related substances was discussed and rationalized by detailed fragmentation pathways. Moreover, the UV/Vis absorption characteristics of the API and selected impurities were investigated to corroborate chemical structure assignments derived from MS data. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Qi; Yu, Yao; Li, Jixiang; Wan, Yanan; Huang, Qingqing; Guo, Yanbin; Li, Huafen
2017-02-15
Foliar Se fertilizers were applied to investigate the effects of Se forms on Se accumulation and distribution in the wheat-maize rotation system and residual concentration of Se in subsequent crops. Sodium selenite, sodium selenate, selenomethionine, chemical nano-Se, humic acid + sodium selenite, and compound fertilizer + sodium selenite were applied once at the flowering stage of wheat (30 g ha -1 ) and at the bell stage of maize (60 g ha -1 ). Compared with the control treatment, foliar Se applications significant increased the grain Se concentration of wheat and maize by 0.02-0.31 and 0.07-1.09 mg kg -1 , respectively. Wheat and maize grain Se recoveries were 3.0-10.4 and 4.1-18.5%, respectively. However, Se concentrations in the grain of subsequent wheat and maize significantly decreased by 77.9 and 91.2%, respectively. The change of Se concentration in soil was a dynamic process with Se depletion after harvest of maize.
High temperature two component explosive
Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles
1981-01-01
A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.
Cao, Zhen; Wu, Lin-Ping; Li, Yun-Xia; Guo, Yu-Bo; Chen, Yao-Wen; Wu, Ren-Hua
2008-06-28
To study liver cell apoptosis caused by the toxicity of selenium and observe the alteration of choline compounds using in vitro 9.4T high resolution magnetic resonance spectroscopy. Twenty male Wistar rats were randomly divided into two groups. The rats in the treatment group were intraperitoneally injected with sodium selenite and the control group with distilled water. All rats were sacrificed and the livers were dissected. (1)H-MRS data were collected using in vitro 9.4T high resolution magnetic resonance spectrometer. Spectra were processed using XWINNMR and MestRe-c 4.3. HE and TUNEL staining was employed to detect and confirm the change of liver cells. Good (1)H-MR spectra of perchloric acid extract from liver tissue of rats were obtained. The conventional metabolites were detected and assigned. Concentrations of different ingredient choline compounds in treatment group vs control group were as follows: total choline compounds, 5.08 +/- 0.97 mmol/L vs 3.81 +/- 1.16 mmol/L (P = 0.05); and free choline, 1.07 +/- 0.23 mmol/L vs 0.65 +/- 0.20 mmol/L (P = 0.00). However, there was no statistical significance between the two groups. The hepatic sinus and cellular structure of hepatic cells in treatment group were abnormal. Apoptosis of hepatic cells was confirmed by TUNEL assay. High dose selenium compounds can cause the rat liver lesion and induce cell apoptosis in vivo. High resolution (1)H-MRS in vitro can detect diversified metabolism. The changing trend for different ingredient of choline compounds is not completely the same at early period of apoptosis.
Ozdemir, N; Ozalp, Y; Ozkan, Y
2000-01-01
In this study, the effects of surface-active agents in different types and concentrations, added into the coating solution, on release of model hydrophilic compound have been examined. For this purpose, the tablets, prepared with the use of methylene blue as a model substance, were coated by spray coating technique with cellulose acetate solution containing polyethylene glycol 400 as a plasticizer. In addition, cetylpyridinium chloride as cationic surface-active agent and sodium lauryl sulphate as anionic surface-active agent were added into coating solution in different concentrations. After creating a delivery orifice by a microdrill on the tablets, release of model hydrophilic compound was tested by the USP paddle method. The data obtained were evaluated according to the different kinetics and the mechanism of release from the preparations was examined. The surface properties of the coating material were investigated by scanning electron microscope taken before and after the contact with medium fluid, as well as the mechanical properties by tensile tests. In conclusion, it has been found that the cationic surface active agent, cetylpyridinium chloride reduced the lag time, observed during the release of model hydrophilic compound, as a result of its enhancing effect on wettability of tablets by reducing the contact angle between the medium fluid and the coating material. On the other hand, the anionic surface active agent, sodium lauryl sulphate has been inactivated possibly due to the interaction with model hydrophilic compound that has cationic properties and/or substances contained in membrane composition; thus, the lag time has not decreased and furthermore, a significant decrease in the delivery rate of model hydrophilic compound has been observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Sun, Kang; Ni, Lijuan
Our previous studies in mice revealed that two weeks short-term toxicity of sodium selenosulfate was significantly lower than that of sodium selenite, but selenium repletion efficacy of both compounds was equivalent. In addition, we showed that sodium selenosulfate reduced nephrotoxicity of cisplatin (CDDP) without compromising its anticancer activity, thus leading to a dramatic increase of cancer cure rate from 25% to 75%. Hydration has been used in clinical practice to reduce CDDP-induced nephrotoxicity, but it cannot mitigate CDDP-induced gastrointestinal toxicity. The present work investigated whether sodium selenosulfate is a potential preventive agent for the gastrointestinal toxicity. In tumor-bearing mice, sodiummore » selenosulfate was administered at a dose of 9.5 μmol/kg daily for 11 days, CDDP alone resulted in diarrhea by 88% on day 12, whereas the co-administration of CDDP and sodium selenosulfate dramatically reduced diarrhea to 6% (p < 0.0001). Such a prominent protective effect promoted us to evaluate the safety potential of long-term sodium selenosulfate application. Mice were administered with sodium selenosulfate or sodium selenite for 55 days at the doses of 12.7 and 19 μmol/kg. The low-dose sodium selenite caused growth suppression and hepatotoxicity which were aggravated by the high-dose, leading to 40% mortality rate, but no toxic symptoms were observed in the two sodium selenosulfate groups. Altogether these results clearly show that sodium selenosulfate at an innocuous dose can markedly prevent CDDP-induced gastrointestinal toxicity. -- Highlights: ►Cisplatin resulted in diarrhea in mice by 88%. ►i.p. selenosulfate at 9.5 μmol/kg daily for 11 days reduced diarrhea to 6%. ►i.p. selenosulfate at 19 μmol/kg daily for 55 days was not toxic. ►i.p. selenite at 19 μmol/kg daily for 55 days was lethal. ►Innocuous dose of selenosulfate greatly prevents cisplatin-induced diarrhea.« less
Desaphy, Jean-François; Dipalma, Antonella; Costanza, Teresa; Carbonara, Roberta; Dinardo, Maria Maddalena; Catalano, Alessia; Carocci, Alessia; Lentini, Giovanni; Franchini, Carlo; Camerino, Diana Conte
2011-01-01
We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, directly blocked voltage-gated sodium channels, whereas salbutamol and nadolol did not (Desaphy et al., 2003), suggesting the presence of two hydroxyl groups on the aromatic moiety of the drugs as a molecular requisite for impeding sodium channel block. To verify such an hypothesis, we synthesized five new mexiletine analogs by adding one or two hydroxyl groups to the aryloxy moiety of the sodium channel blocker and tested these compounds on hNav1.4 channels expressed in HEK293 cells. Concentration–response relationships were constructed using 25-ms-long depolarizing pulses at −30 mV applied from an holding potential of −120 mV at 0.1 Hz (tonic block) and 10 Hz (use-dependent block) stimulation frequencies. The half-maximum inhibitory concentrations (IC50) were linearly correlated to drug lipophilicity: the less lipophilic the drug, minor was the block. The same compounds were also tested on F1586C and Y1593C hNav1.4 channel mutants, to gain further information on the molecular interactions of mexiletine with its receptor within the sodium channel pore. In particular, replacement of Phe1586 and Tyr1593 by non-aromatic cysteine residues may help in the understanding of the role of π–π or π–cation interactions in mexiletine binding. Alteration of tonic block suggests that the aryloxy moiety of mexiletine may interact either directly or indirectly with Phe1586 in the closed sodium channel to produce low-affinity binding block, and that this interaction depends on the electrostatic potential of the drug aromatic tail. Alteration of use-dependent block suggests that addition of hydroxyl groups to the aryloxy moiety may modify high-affinity binding of the drug amine terminal to Phe1586 through cooperativity between the two pharmacophores, this effect being mainly related to drug lipophilicity. Mutation of Tyr1593 further impaired such cooperativity. In conclusion, these results confirm our former hypothesis by showing that the presence of hydroxyl groups to the aryloxy moiety of mexiletine greatly reduced sodium channel block, and provide molecular insights into the intimate interaction of local anesthetics with their receptor. PMID:22403541
Dose—response relationships for agents inhibiting the immune response
Berenbaum, M. C.; Brown, I. N.
1964-01-01
Mice were injected with T.A.B. vaccine and, 2 days later, with various doses of different compounds. The relation between dose of compound, mortality and antibody production was studied, and therapeutic indices were calculated for a number of compounds. The most effective agent in suppressing antibody production at relatively non-toxic doses was cyclophosphamide, with next amethopterin (the effect of which was, however, inexplicably erratic), 6-thioguanine and 6-mercaptopurine, in that order. Vincaleukoblastine, triethylene melamine, triethylenethiophosphoramide, mannomustine and 5-fluorouracil were less effective. Compounds of a miscellaneous group (boric acid, caffeine, sodium nitrite, bacitracin, neomycin and polymyxin `B') were studied in the same way: they had no effect on antibody production, even in lethal doses. PMID:14113077
Kirkham, Kylian; Munson, Jessica M; McCluskey, Susan V; Graner, Kevin K
2017-01-01
The stability of dalteparin 1,000 units/mL in 0.9% sodium chloride for injection stored in polypropylene syringes under refrigeration was examined. Dalteparin 1,000-units/mL syringes were prepared by adding 9 mL of 0.9% sodium chloride for injection to 1 mL of dalteparin sodium 10,000 unit/mL from commercial single-use syringes. Compounded solutions in 0.5-mL aliquots were transferred to 1-mL polypropylene syringes and sealed with a Luer lock tip cap and stored at refrigerated temperatures (2°C to 8°C) with ambient fluorescent light exposure. Syringes from three batches of dalteparin 1,000 units/mL were potency tested in duplicate by a stability-indicating high-performance liquid chromatography assay using a 0.5-mL sample at specified intervals. Visual and pH testing were performed on each batch. Samples were visually inspected for container integrity, color, and clarity. Samples for pH testing were prepared using a 1:1 dilution of dalteparin 1,000 units/mL in sterile water for injection and underwent duplicate analysis at each time point. High-performance liquid chromatography analyses showed a remaining percent of the initial dalteparin content at day 30 of 94.88% ± 2.11%. Samples remained colorless and clear with no signs of container compromise and no visual particulate matter at each time point. Throughout the 30-day study period, pH values remained within 0.3-pH units from the initial value of 5.84. Dalteparin 1,000 unit/mL in 0.9% sodium chloride for injection, packaged in 1-mL polypropylene syringes was stable for at least 30 days while stored at refrigerated conditions with ambient fluorescent light exposure. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
NASA Technical Reports Server (NTRS)
Oshkaya, V. P.; Vanag, G. Y.
1985-01-01
Phthalic anhydride was condensed with acetoacetic ester in acetic anhydride and triethylamine solution, and when phthalyl chloride was reacted with sodium acetoacetic ester compounds were formed of the phthalide and indandione series: phthalylacetoacetic ester and a derivative of indan-1,3-dione which after boiling with hydrochloric acid yielded indan-1,3-dione. Phthalylmalonic ester was obtained from phthalic anhydride and malonic ester in the presence of triethylamine.
Bean, Amanda C; Garcia, Eduardo; Scott, Brian L; Runde, Wolfgang
2004-10-04
Reaction of a (237)Np(V) stock solution in the presence of oxalic acid, calcium chloride, and sodium hydroxide under hydrothermal conditions produces single crystals of a neptunium(V) oxalate, Na(2)NpO(2)(C(2)O(4))OH.H(2)O. The structure consists of one-dimensional chains running down the a axis and is the first example of a neptunium(V) oxalate compound containing hydroxide anions.
Tucker, Mark D [Albuquerque, NM
2011-09-20
A reduced weight decontamination formulation that utilizes a solid peracid compound (sodium borate peracetate) and a cationic surfactant (dodecyltrimethylammonium chloride) that can be packaged with all water removed. This reduces the packaged weight of the decontamination formulation by .about.80% (as compared to the "all-liquid" DF-200 formulation) and significantly lowers the logistics burden on the warfighter. Water (freshwater or saltwater) is added to the new decontamination formulation at the time of use from a local source.
1984-04-01
aziridinium ion (ChM Az), was used as a probe as we have shown previously this compound can act as a selective and irreversible inhibitor of sodium...relatively selective antagonist of muscarinic receptors in the central nervous system (Dahlbom et.al., Life Sci. 5, 1625, 1966). We have used this compound...phosphoinositide response are distinguished by their sensitivity to agonists and responsiveness to oxotremor- ine. The use of these " selective
A sulphated flavone glycoside from Livistona australis and its antioxidant and cytotoxic activity.
Kassem, Mona E S; Shoela, Soha; Marzouk, Mona M; Sleem, Amany A
2012-01-01
A new flavone glycoside tricin 7-O-β-glucopyranoside-2″-sulphate sodium salt along with 14 known flavonoid compounds were isolated and identified from the aqueous methanol extract of Livistona australis leaves. Their structures were established on the basis of extensive NMR (¹H, ¹³C, HSQC and H-H COSY) and ESIMS data. Antioxidant and cytotoxicity properties of the methanol extract of the leaves as well as the new compound were investigated.
NASA Astrophysics Data System (ADS)
Pohl, Nicola; Clague, Allen; Schwarz, Kimberly
2002-06-01
We describe an integrated set of experiments for the undergraduate organic laboratory that allows students to compare and contrast biological and chemical means of introducing chirality into a molecule. The racemic reduction of ethyl acetoacetate with sodium borohydride and the same reduction in the presence of a tartaric acid ligand are described, and a capillary gas chromatography column packed with a chiral material for product analysis is introduced. The results of these two hydride reactions are compared with the results of a common undergraduate experiment, the baker's yeast reduction of ethyl acetoacetate.
Solid state neutron detector and method for use
Doty, F. Patrick; Zwieback, Ilya; Ruderman, Warren
2002-01-01
Crystals of lithium tetraborate or alpha-barium borate had been found to be neutron detecting materials. The crystals are prepared using known crystal growing techniques, wherein the process does not include the common practice of using a fluxing agent, such as sodium oxide or sodium fluoride, to reduce the melting temperature of the crystalline compound. Crystals prepared by this method can be sliced into thin single or polycrystalline wafers, or ground to a powder and prepared as a sintered compact or a print paste, and then configured with appropriate electronic hardware, in order to function as neutron detectors.
Structure of chitosan gels mineralized by sorption
NASA Astrophysics Data System (ADS)
Modrzejewska, Z.; Skwarczyńska, A.; Douglas, T. E. L.; Biniaś, D.; Maniukiewicz, W.; Sielski, J.
2015-10-01
The paper presents the structural studies of mineralized chitosan hydrogels. Hydrogels produced by using sodium beta-glycerophosphate (Na-β-GP) as a neutralizing agent. Mineralization was performed method "post loading", which consisted in sorption to the gels structure Ca ions. In order to obtain - in the structure of gels - compounds similar to the hydroxyapatites present naturally in bone tissue, gels after sorption were modified in: pH 7 buffer and sodium hydrogen phosphate. In order to determine the structural properties of the gels, the following methods were used: infrared spectroscopy with Fourier transformation, FTIR, X-ray diffractometry, XRD, scanning electron microscopy, SEM.
Ghiaty, Adel; El-Morsy, Ahmed; El-Gamal, Kamal
2013-01-01
2-([1,2,4]Triazolo[4,3-a]quinoxalin-4-ylthio)acetic acid hydrazide (10) was used as a precursor for the syntheses of novel quinoxaline derivatives with potential anticonvulsant properties. The newly synthesized compounds have been characterized by IR, 1H NMR, and mass spectral data followed by elemental analysis. The anticonvulsant evaluation was carried out for eleven of the synthesized compounds using metrazol induced convulsions model and phenobarbitone sodium as a standard. Among this set of tested compounds, two of them (14, and 15b) showed the best anticonvulsant activities. PMID:24198971
NASA Astrophysics Data System (ADS)
Samanta, Ashis Kumar; Bagchi, Arindam
2017-06-01
Treatment with sodium stannate followed by treatment with boric acid imparts jute fabric wash fast fire resistance property as indicated by its Limiting Oxygen Index (LOI) value and 45° inclined flammability test results. The treatment was carried out by impregnation of sodium stannate followed by impregnation with an aqueous solution of boric acid and drying. Application of sodium stannate (20%) and boric acid (20%) treatment on jute fabric showed balanced flame retardancy property (LOI value 34) with some loss in fabric tenacity (loss of tenacity is 14.5%). Treated fabric retained good fire retardant property after three consecutive washing. Treated fabric also possessed good rot resistance property as indicated by soil burial test and strength retention after 21 days soil burial was found to be 65%. It is found that of sodium stannate and boric acid combination by double bath process form a synergistic durable fire-retardant as well as rot resistant when impregnated on jute material, which is considerably greater than the use of either sodium stannate or boric acid alone. TGA, FTIR and SEM analysis are also reported to support the results and reaction mechanism.
Yi, Huilan; Si, Liangyan
2007-06-15
Selenium (Se) is an important metalloid with industrial, environmental, biological and toxicological significance. Excessive selenium in soil and water may contribute to environmental selenium pollution, and affect plant growth and human health. By using Vicia faba micronucleus (MN) and sister chromatid exchange (SCE) tests, possible genotoxicity of sodium selenite and sodium biselenite was evaluated in this study. The results showed that sodium selenite, at concentrations from 0.01 to 10.0mg/L, induced a 1.9-3.9-fold increase in MN frequency and a 1.5-1.6-fold increase in SCE frequency, with a statistically significantly difference from the control (P<0.05 and 0.01, respectively). Sodium selenite also caused mitotic delay and a 15-80% decrease in mitotic indices (MI), but at the lowest concentration (0.005mg/L), it slightly stimulated mitotic activity. Similarly, the frequencies of MN and SCE also increased significantly in sodium biselenite treated samples, with MI decline only at relatively higher effective concentrations. Results of the present study suggest that selenite is genotoxic to V. faba root cells and may be a genotoxic risk to human health.
Negative electrodes for Na-ion batteries.
Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi
2014-08-07
Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.
The equilibrium of atmospheric sodium. [in atmospheres of Earth, Io, Mercury and Moon
NASA Technical Reports Server (NTRS)
Hunten, Donald M.
1992-01-01
We now have four examples of planetary objects with detectable sodium (and potassium) in their atmospheres: Earth, Io, Mercury and the moon. After a summary of the observational data, this survey discusses proposed sources and sinks. It appears that Io's surface material is rich in frozen SO2, but with around 1 percent of some sodium compound. The Io plasma torus contains ions of S, O and Na, also with at least one molecular ion containing Na. In turn, impact by these ions probably sustains the torus, as well as an extended neutral corona. A primary source for the Earth, Mercury and the moon is meteoroidal bombardment; at Mercury and perhaps the moon it may be supplemented by degassing of atoms from the regolith. Photoionization is important everywhere, although hot electrons are dominant at Io.
Clinical utility of (18)F-fluoride PET/CT in benign and malignant bone diseases.
Li, Yuxin; Schiepers, Christiaan; Lake, Ralph; Dadparvar, Simin; Berenji, Gholam R
2012-01-01
(18)F labeled sodium fluoride is a positron-emitting, bone seeking agent with more favorable skeletal kinetics than conventional phosphate and diphosphonate compounds. With the expanding clinical usage of PET/CT, there is renewed interest in using (18)F-fluoride PET/CT for imaging bone diseases. Growing evidence indicates that (18)F fluoride PET/CT offers increased sensitivity, specificity, and diagnostic accuracy in evaluating metastatic bone disease compared to (99m)Tc based bone scintigraphy. National Oncologic PET Registry (NOPR) has expanded coverage for (18)F sodium fluoride PET scans since February 2011 for the evaluation of osseous metastatic disease. In this article, we reviewed the pharmacological characteristics of sodium fluoride, as well as the clinical utility of PET/CT using (18)F-fluoride in both benign and malignant bone disorders. Published by Elsevier Inc.
Sodium channel blockers as therapeutic target for treating epilepsy: recent updates.
Zuliani, Valentina; Fantini, Marco; Rivara, Mirko
2012-01-01
The voltage-gated sodium channels (VGSCs) are a family of membrane proteins forming a pore, through which they selectively conduct sodium ions inward and outward cell's plasma membranes in response to variations of membrane potentials, playing a fundamental role in controlling cellular excitability. Growing evidences suggest that abnormal VGSCs are involved in the pathophysiology of both acquired and inherited epilepsy. Approximately two dozen drugs are currently marketed for the treatment of epilepsy and most of them act as sodium channel blockers, preventing the return of the channels to the active state by stabilizing the inactive form. Despite the many drugs on the market, 30% of patients continue to experience seizures even in the presence of optimal doses of AEDs, while others continue to suffer from medication induced side effects. Thus, there is a great need to continue the search for new AEDs that are not only more effective, but also have a better side effects profile. For this reason, many efforts have been made in the recent years to identify new sodium channel blockers for the treatment of epilepsy. These studies have led to different classes of compounds, characterized by a great structural diversity. The aim of this review is to provide an introduction on the structure and function of the sodium channels, followed by a brief historical perspective on the sodium channel blockers in use as anticonvulsant drugs. Moreover, it will focus on the medicinal chemistry of the sodium channel blockers recently published (2008-2011) and the drug design/molecular modeling studies related to the receptor.
Kirchhof, Paulus; Tal, Tzachy; Fabritz, Larissa; Klimas, Jan; Nesher, Nir; Schulte, Jan S; Ehling, Petra; Kanyshkova, Tatayana; Budde, Thomas; Nikol, Sigrid; Fortmueller, Lisa; Stallmeyer, Birgit; Müller, Frank U; Schulze-Bahr, Eric; Schmitz, Wilhelm; Zlotkin, Eliahu; Kirchhefer, Uwe
2015-01-01
New therapeutic approaches to improve cardiac contractility without severe risk would improve the management of acute heart failure. Increasing systolic sodium influx can increase cardiac contractility, but most sodium channel activators have proarrhythmic effects that limit their clinical use. Here, we report the cardiac effects of a novel positive inotropic peptide isolated from the toxin of the Black Judean scorpion that activates neuronal tetrodotoxin-sensitive sodium channels. All venoms and peptides were isolated from Black Judean Scorpions (Buthotus Hottentotta) caught in the Judean Desert. The full scorpion venom increased left ventricular function in sedated mice in vivo, prolonged ventricular repolarization, and provoked ventricular arrhythmias. An inotropic peptide (BjIP) isolated from the full venom by chromatography increased cardiac contractility but did neither provoke ventricular arrhythmias nor prolong cardiac repolarization. BjIP increased intracellular calcium in ventricular cardiomyocytes and prolonged inactivation of the cardiac sodium current. Low concentrations of tetrodotoxin (200 nmol/L) abolished the effect of BjIP on calcium transients and sodium current. BjIP did not alter the function of Nav1.5, but selectively activated the brain-type sodium channels Nav1.6 or Nav1.3 in cellular electrophysiological recordings obtained from rodent thalamic slices. Nav1.3 (SCN3A) mRNA was detected in human and mouse heart tissue. Our pilot experiments suggest that selective activation of tetrodotoxin-sensitive neuronal sodium channels can safely increase cardiac contractility. As such, the peptide described here may become a lead compound for a new class of positive inotropic agents. © 2014 American Heart Association, Inc.
Behaviour of conductivity improvers in jet fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dacre, B.; Hetherington, J.I.
1995-05-01
Dangerous accumulation of electrostatic charge can occur due to high speed pumping and microfiltration of fuel. This can be avoided by increasing the electrical conductivity of the fuel using conductivity improver additives. However, marked variations occur in the conductivity response of different fuels when doped to the same level with conductivity improver. This has been attributed to interactions of the conductivity improver with other fuel additives or fuel contaminants. The present work concentrates on the effects of fuel contaminants, in particular polar compounds, on the performance of the conductivity improver. Conductivity is the fuel property of prime interest. The conductivitymore » response of model systems of the conductivity improver STADIS 450 in dodecane has been measured and the effect on this conductivity of additions of model polar contaminants sodium naphthenate, sodium dodecyl benzene sulphonate, and sodium phenate have been measured. The sodium salts have been found to have a complex effect on the performance of STADIS 450, reducing the conductivity at low concentrations to a minimum value and then increasing the conductivity at high concentrations of sodium salts. This work has focused on characterising this minimum in the conductivity values and on understanding the reason for its occurrence. The effects on the minimum conductivity value of the following parameters are investigated: (a) time, (b) STADIS 450 concentration, (c) sodium salt concentration, (d) mixed sodium salts, (e) experimental method, (f) a phenol, (g) individual components of STADIS 450. The complex conductivity response of the STADIS 450 to sodium salt impurities is discussed in terms of possible inter-molecular interactions.« less
Clay mineral colloids play important roles in the adsorption of polar organic contaminants in the environment. Similarly, cyclodextrins (CD) can entrap poorly water-soluble organic compounds. A combination of CDs and clay minerals affords great opportunities to investigate simult...
Synthesis and evaluation of 3,4-dihydropyrimidin-2(1H)-ones as sodium iodide symporter inhibitors.
Lacotte, Pierre; Puente, Celine; Ambroise, Yves
2013-01-01
The sodium iodide symporter (NIS) is responsible for the accumulation of iodide in the thyroid gland. This transport process is involved in numerous thyroid dysfunctions and is the basis for human contamination in the case of exposure to radioactive iodine species. 4-Aryl-3,4-dihydropyrimidin-2(1H)-ones were recently discovered by high-throughput screening as the first NIS inhibitors. Described herein are the synthesis and evaluation of 115 derivatives with structural modifications at five key positions on the pyrimidone core. This study provides extensive structure-activity relationships for this new class of inhibitors that will serve as a basis for further development of compounds with in vivo efficacy and adequate pharmacokinetic properties. In addition, the SAR investigation provided a more potent compound, which exhibits an IC(50) value of 3.2 nM in a rat thyroid cell line (FRTL5). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lou, Hongming; Yuan, Long; Qiu, Xueqing; Qiu, Kexian; Fu, Jinguo; Pang, Yuxia; Huang, Jinhao
2016-01-01
Sodium lignosulfonate (SXSL) and long-chain fatty alcohols (LFAs) could enhance the enzymatic hydrolysis of xylan, and the compound of SXSL and LFAs have synergies on the enzymatic hydrolysis. SXSL shows a strong enhancement in buffer pH range from 4.0 to 6.0. The enhancement increased with the SXSL dosage and the xylanase loading. The cellulose and lignin in corncob substrate could not only adsorb xylanase nonproductively, but also seriously reduce the accessibility of xylanase on xylan to impede the enzymatic hydrolysis of xylan. Cellulase could break the plant cell wall structure of corncob and make additives work better. The xylose yield of corncob at 72h increased from 59.4% to 73.7% by adding the compound of 5g/L SXSL and 0.01% (v/v) n-decanol, which was higher than that without cellulase and additives by 30.7%. Meanwhile, the glucose yield at 72h of corncob increased from 45.8% to 62.3%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jin, Yoonhee; Nair, Asha; van Veen, Hendrik W
2014-05-23
Membrane transporters belonging to the multidrug and toxic compound extrusion family mediate the efflux of unrelated pharmaceuticals from the interior of the cell in organisms ranging from bacteria to human. These proteins are thought to fall into two classes that couple substrate efflux to the influx of either Na(+) or H(+). We studied the energetics of drug extrusion by NorM from Vibrio cholerae in proteoliposomes in which purified NorM protein was functionally reconstituted in an inside-out orientation. We establish that NorM simultaneously couples to the sodium-motive force and proton-motive force, and biochemically identify protein regions and residues that play important roles in Na(+) or H(+) binding. As the positions of protons are not available in current medium and high-resolution crystal structures of multidrug and toxic compound extrusion transporters, our findings add a previously unrecognized parameter to mechanistic models based of these structures. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Ryan, Charles; Mead, Anna; Lakkaraju, Prasad; Kaczur, Jerry; Bennett, Christopher; Dobbins, Tabbetha
Research on conversion of carbon dioxide into chemicals and fuels has the potential to address three problems of global relevance. (a) By removing carbon dioxide from the atmosphere, we are able to reduce the amount of greenhouse gases in the atmosphere, (b) by converting carbon dioxide into fuels, we are providing pathways for renewable energy sources, (c) by converting carbon dioxide into C2 and higher order compounds, and we are able to generate valuable precursors for organic synthesis. Formate salts are formed by the electrochemical reduction of carbon dioxide in aqueous media. However, in order to increase the utilization of carbon dioxide, methods need to be developed for the conversion of formate into compounds containing two carbon atoms such as oxalate or oxalic acid. Recently, we examined the thermal conversion of sodium formate into sodium oxalate utilizing a hydride ion catalyst. The proposed mechanism for this reaction involves the carbon dioxide dianion. Currently at NASA Goddard Space Flight Center.
Synthesis of a new class of fused cyclotetraphosphazene ring systems.
Beşli, Serap; Mutlu, Ceylan; İbişoğlu, Hanife; Yuksel, Fatma; Allen, Christopher W
2015-01-05
Octachlorocyclotetraphosphazene (1) was reacted with butylamines [n-butyl, i-butyl, sec-butyl, and t-butyl] in a 1:0.8 mol ratio in THF to obtain cyclotetraphosphazenes bearing a P-NH group, N4P4Cl7(NHR) [R = n-butyl (2a), i-butyl (2b), sec-butyl (2c), t-butyl (2d)](2a-d). The cyclotetraphosphazene derivatives 2a, 2b, and 2c were treated with sodium hydride giving rise to a new type of cyclophosphazene compounds (P8N8 ring) consisting of three fused tetramer rings (3a-c). Whereas reaction of sodium hydride with the t-butylaminocyclophosphazene derivative (2d) gave a P-O-P bridged compound (4) presumably as a result of hydrolysis reaction associated with moisture in the solvent. It is likely that the 16-membered cyclooctaphosphazene derivatives (3a-c) are formed by a proton abstraction/chloride ion elimination, intramolecular nucleophilic attack, ring opening and intermolecular condensation processes, respectively.
Curia, Giulia; Biagini, Giuseppe; Perucca, Emilio; Avoli, Massimo
2016-01-01
The mechanism of action of several antiepileptic drugs (AEDs) rests on their ability to modulate the activity of voltage-gated sodium currents that are responsible for fast action potential generation. Recent data indicate that lacosamide (a compound with analgesic and anticonvulsant effects in animal models) shares a similar mechanism. When compared with other AEDs, lacosamide has the unique ability to interact with sodium channel slow inactivation without affecting fast inactivation. This article reviews these findings and discusses their relevance within the context of neuronal activity seen during epileptiform discharges generated by limbic neuronal networks in the presence of chemical convulsants. These seizure-like events are characterized by sustained discharges of sodium-dependent action potentials supported by robust depolarizations, thus providing synchronization within neuronal networks. Generally, AEDs such as phenytoin, carbamazepine and lamotrigine block sodium channels when activated. In contrast, lacosamide facilitates slow inactivation of sodium channels both in terms of kinetics and voltage dependency. This effect may be relatively selective for repeatedly depolarized neurons, such as those participating in seizure activity in which the persistence of sodium currents is more pronounced and promotes neuronal excitation. The clinical effectiveness of lacosamide has been demonstrated in randomized, double-blind, parallel-group, placebo-controlled, adjunctive-therapy trials in patients with refractory partial seizures. Further studies should determine whether the effects of lacosamide in animal models and in clinical settings are fully explained by its selective action on sodium current slow inactivation or whether other effects (e.g. interactions with the collapsin-response mediator protein-2) play a contributory role. PMID:19552484
Prioritizing Environmental Risk of Prescription Pharmaceuticals
Dong, Zhao; Senn, David B.; Moran, Rebecca E.
2015-01-01
Low levels of pharmaceutical compounds have been detected in aquatic environments worldwide, but their human and ecological health risks associated with low dose environmental exposure is largely unknown due to the large number of these compounds and a lack of information. Therefore prioritization and ranking methods are needed for screening target compounds for research and risk assessment. Previous efforts to rank pharmaceutical compounds have often focused on occurrence data and have paid less attention to removal mechanisms such as human metabolism. This study proposes a simple prioritization approach based on number of prescriptions and toxicity information, accounting for metabolism and wastewater treatment removal, and can be applied to unmeasured compounds. The approach was performed on the 200 most-prescribed drugs in the U.S. in 2009. Our results showed that under-studied compounds such as levothyroxine and montelukast sodium received the highest scores, suggesting the importance of removal mechanisms in influencing the ranking, and the need for future environmental research to include other less-studied but potentially harmful pharmaceutical compounds. PMID:22813724
NASA Astrophysics Data System (ADS)
Yoshida, Koji; Sato, Toyoto; Unemoto, Atsushi; Matsuo, Motoaki; Ikeshoji, Tamio; Udovic, Terrence J.; Orimo, Shin-ichi
2017-03-01
In the present work, we developed highly sodium-ion conductive Na2B10H10-Na2B12H12 pseudo-binary complex hydride via mechanically ball-milling admixtures of the pure Na2B10H10 and Na2B12H12 components. Both of these components show a monoclinic phase at room temperature, but ball-milled mixtures partially stabilized highly ion-conductive, disordered cubic phases, whose fraction and favored structural symmetry (body-centered cubic or face-centered cubic) depended on the conditions of mechanical ball-milling and molar ratio of the component compounds. First-principles molecular-dynamics simulations demonstrated that the total energy of the closo-borane mixtures and pure materials is quite close, helping to explain the observed stabilization of the mixed compounds. The ionic conductivity of the closo-borane mixtures appeared to be correlated with the fraction of the body-centered-cubic phase, exhibiting a maximum at a molar ratio of Na2B10H10:Na2B12H12 = 1:3. A conductivity as high as log(σ/S cm-1) = -3.5 was observed for the above ratio at 303 K, being approximately 2-3 orders of magnitude higher than that of either pure material. A bulk-type all-solid-state sodium-ion battery with a closo-borane-mixture electrolyte, sodium-metal negative-electrode, and TiS2 positive-electrode demonstrated a high specific capacity, close to the theoretical value of NaTiS2 formation and a stable discharge/charge cycling for at least eleven cycles, with a high discharge capacity retention ratio above 91% from the second cycle.
Carbonic acid salts at 25 or 45 degrees C to control loquat decay under shelf life conditions.
Molinu, M G; D'Hallewin, G; Dore, A; Serusi, A; Venditti, T; Agabbio, M
2005-01-01
Generally recognised as save compounds (G.R.A.S) are attractive substitutes to synthetic chemicals in postharvest control diseases. They meet safety requirements, are cheap and able to be integrated with other disease control technologies. Among G.R.A.S compounds, carbonic acid salts have been investigated on carrots, bell pepper, melons, sweet cherries and their efficacy was also evaluated when combined with biological control agents. Moreover, the possibility to use sodium carbonate and sodium bicarbonate to prevent P. digitatum an P. italicum spread on Citrus fruit was studied since the begin of the 20th century. We explored the possibility to extend the use of carbonate-bicarbonate salts on loquat fruit in order to control the pathogens and to extend postharvest life. Loquat is a very perishable fruit, susceptible to decay, mechanical damage, moisture and nutritional losses during its postharvest life. We tested the combined effect of temperature and sodium or potassium carbonate-bicarbonate and ammonium carbonate. The fruit was dipped in the salt solutions at variable concentrations (0.5, 1 and 2% w/v) at 25 or 45 degrees C for two minutes and than stored under shelf life conditions (25 degrees C and 70% RH). Decay, weight loss, pH, titrable acidity and sugar content were detected after twelve days. Preliminary data show that the combined treatments were effective in decay control depending on salts. Best results were obtained with 2% potassium and sodium carbonate solution at 25 degrees C. Weight losses were related to treatment temperature and salts concentrations whereas, no differences were detected in the chemical parameters compared to the control.
Sellimi, Sabrine; Benslima, Abdelkarim; Ksouda, Ghada; Montero, Veronique Barragan; Hajji, Mohamed; Nasri, Moncef
2017-10-21
Background Nitrite salts are still common additives in the meat industry. The present study provides a first approach on the employment of the lyophilized aqueous extract (WE) of the Tunisian seaweed Cystoseira barbata for the quality enhancement of turkey meat sausage. Methods WE was supplemented as a natural antioxidant agent to investigate its effectiveness in delaying lipid oxidation turkey meat sausages containing reduced amounts of sodium nitrites. Results On storage day 5, all concentrations of WE (0.01-0.4 %) reduced the meat lipid oxidation by approximately 36 %, as compared to the negative control containing only 80 mg/kg of meat of sodium nitrites as antioxidant. It was noted that within 15 days of refrigerated storage, a meat system containing 80 mg/kg of meat of sodium nitrites and 0.02 % and 0.04 % of WE had similar Thiobarbituric Acid Reactive Substances (TBARS) levels (19±1.32 and 17±1.12 µmol/kg of meat, respectively), which were comparable to the positive control containing sodium nitrites (150 mg/kg of meat) and 0.045 % vitamin C (18.46±1.27 µmol/kg of meat). In-depth, the metabolomic profiling using gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-quadripole-time-of-flight-mass spectrometry (LC-QTOF-MS) analyses of the Tunisian seaweed C. barbata solvent extracts showed that the main active compounds were phenolic compounds, fatty acids and sterols. Conclusions Overall, the cold medium containing C. barbata lyophilized aqueous extrac, with strong antioxidant activity and antihypertensive properties, may open the way to the development of a natural quality enhancement strategy for new functional and ever healthier reduced nitrites meat sausages based on algae.
The Five Senses of Christmas Chemistry
ERIC Educational Resources Information Center
Jackson, Derek A.; Dicks, Andrew P.
2012-01-01
This article describes the organic chemistry of five compounds that are directly associated with the Christmas season. These substances and related materials are presented within the framework of the five senses: silver fulminate (sound), alpha-pinene (sight), sodium acetate (touch), tryptophan (taste), and gingerol (smell). Connections with the…
Use of soil fumigants and air quality issues in California, USA
USDA-ARS?s Scientific Manuscript database
Many high value cash crops use soil fumigants for profitable production.The primary fumigants used in California are 1,3-dichloropropene (Telone®), chloropicrin, metam salts (sodium or potassium), and methyl bromide. Most of these toxic chemicals and their formulations are volatile compounds (VOCs),...
Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest.
Kaspari, Michael; Yanoviak, Stephen P; Dudley, Robert; Yuan, May; Clay, Natalie A
2009-11-17
Sodium (Na) is uncommon in plants but essential to the metabolism of plant consumers, both decomposers and herbivores. One consequence, previously unexplored, is that as Na supplies decrease (e.g., from coastal to inland forests), ecosystem carbon should accumulate as detritus. Here, we show that adding NaCl solution to the leaf litter of an inland Amazon forest enhanced mass loss by 41%, decreased lignin concentrations by 7%, and enhanced decomposition of pure cellulose by up to 50%, compared with stream water alone. These effects emerged after 13-18 days. Termites, a common decomposer, increased 7-fold on +NaCl plots, suggesting an agent for the litter loss. Ants, a common predator, increased 2-fold, suggesting that NaCl effects cascade upward through the food web. Sodium, not chloride, was likely the driver of these patterns for two reasons: two compounds of Na (NaCl and NaPO(4)) resulted in equivalent cellulose loss, and ants in choice experiments underused Cl (as KCl, MgCl(2), and CaCl(2)) relative to NaCl and three other Na compounds (NaNO(3), Na(3)PO(4), and Na(2)SO(4)). We provide experimental evidence that Na shortage slows the carbon cycle. Because 80% of global landmass lies >100 km inland, carbon stocks and consumer activity may frequently be regulated via Na limitation.
Liu, Yingchun; Sun, Guoxiang; Wang, Yan; Yang, Lanping; Yang, Fangliang
2015-06-01
Micellar electrokinetic chromatography fingerprinting combined with quantification was successfully developed and applied to monitor the quality consistency of Weibizhi tablets, which is a classical compound preparation used to treat gastric ulcers. A background electrolyte composed of 57 mmol/L sodium borate, 21 mmol/L sodium dodecylsulfate and 100 mmol/L sodium hydroxide was used to separate compounds. To optimize capillary electrophoresis conditions, multivariate statistical analyses were applied. First, the most important factors influencing sample electrophoretic behavior were identified as background electrolyte concentrations. Then, a Box-Benhnken design response surface strategy using resolution index RF as an integrated response was set up to correlate factors with response. RF reflects the effective signal amount, resolution, and signal homogenization in an electropherogram, thus, it was regarded as an excellent indicator. In fingerprint assessments, simple quantified ratio fingerprint method was established for comprehensive quality discrimination of traditional Chinese medicines/herbal medicines from qualitative and quantitative perspectives, by which the quality of 27 samples from the same manufacturer were well differentiated. In addition, the fingerprint-efficacy relationship between fingerprints and antioxidant activities was established using partial least squares regression, which provided important medicinal efficacy information for quality control. The present study offered an efficient means for monitoring Weibizhi tablet quality consistency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest
Kaspari, Michael; Yanoviak, Stephen P.; Dudley, Robert; Yuan, May; Clay, Natalie A.
2009-01-01
Sodium (Na) is uncommon in plants but essential to the metabolism of plant consumers, both decomposers and herbivores. One consequence, previously unexplored, is that as Na supplies decrease (e.g., from coastal to inland forests), ecosystem carbon should accumulate as detritus. Here, we show that adding NaCl solution to the leaf litter of an inland Amazon forest enhanced mass loss by 41%, decreased lignin concentrations by 7%, and enhanced decomposition of pure cellulose by up to 50%, compared with stream water alone. These effects emerged after 13–18 days. Termites, a common decomposer, increased 7-fold on +NaCl plots, suggesting an agent for the litter loss. Ants, a common predator, increased 2-fold, suggesting that NaCl effects cascade upward through the food web. Sodium, not chloride, was likely the driver of these patterns for two reasons: two compounds of Na (NaCl and NaPO4) resulted in equivalent cellulose loss, and ants in choice experiments underused Cl (as KCl, MgCl2, and CaCl2) relative to NaCl and three other Na compounds (NaNO3, Na3PO4, and Na2SO4). We provide experimental evidence that Na shortage slows the carbon cycle. Because 80% of global landmass lies >100 km inland, carbon stocks and consumer activity may frequently be regulated via Na limitation. PMID:19884505
NASA Astrophysics Data System (ADS)
Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Machekhina, K. I.
2016-02-01
The present work is a part of a continuations study of the physical and chemical processes complex in natural waters containing humic-type organic substances at the influence of pulsed electrical discharges in a layer of iron pellets. The study of humic substances processing in the iron granules layer by means of pulsed electric discharge for the purpose of water purification from organic compounds humic origin from natural water of the northern regions of Russia is relevant for the water treatment technologies. In case of molar humate sodium - iron ions (II) at the ratio 2:3, reduction of solution colour and chemical oxygen demand occur due to the humate sodium ions and iron (II) participation in oxidation-reduction reactions followed by coagulation insoluble compounds formation at a pH of 6.5. In order to achieve this molar ratio and the time of pulsed electric discharge, equal to 10 seconds is experimentally identified. The role of secondary processes that occur after disconnection of the discharge is shown. The time of contact in active erosion products with sodium humate, equal to 1 hour is established. During this time, the value of permanganate oxidation and iron concentration in solution achieves the value of maximum permissible concentrations and further contact time increase does not lead to the controlled parameters change.
Kim, Ju-Sik; Park, Ji-Woon; Kim, Dae-Jung; Kim, Young-Ku; Lee, Jeong-Yun
2014-11-01
This study focused on the ability of aqueous anti-volatile-sulfur-compound (VSC) solutions to eliminate gaseous VSCs by direct contact in a sealed space to describe possible mode of action of anti-VSC agents. Twenty milliliters of each experimental solution, 0.16% sodium chlorite, 0.25% zinc chloride, 0.1% chlorhexidine and distilled water, was injected into a Teflon bag containing mixed VSCs, hydrogen sulfide, methyl mercaptan and dimethyl sulfide and mixed vigorously for 30 s. The VSC concentration was measured by gas chromatography before, immediately after, 30 min and 60 min after mixing. The sodium chlorite solution reduced the VSC concentration remarkably. After mixing, nearly all VSCs were eliminated immediately and no VSCs were detected at 30 and 60 min post-mixing. However, in the other solutions, the VSC concentration decreased by ∼30% immediately after mixing and there was no further decrease. The results suggest that sodium chlorite solution has the effect of eliminating gaseous VSCs directly. This must be because it can release chlorine dioxide gas which can react directly with gaseous VSCs. In the case of other solutions that have been proved to be effective to reduce halitosis clinically, it can be proposed that their anti-VSC effect is less likely due to the direct chemical elimination of gaseous VSCs in the mouth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tondreau, Aaron M.; Scott, Brian L.; Boncella, James M.
We explored ligand-induced reduction of ferrous alkyl complexes via homolytic cleavage of the alkyl fragment with simple chelating diphosphines. The reactivities of the sodium salts of diphenylmethane, phenyl(trimethylsilyl)methane, or diphenyl(trimethylsilyl)methane were explored in their reactivity with (py) 4FeCl 2. Furthermore, we prepared a series of monoalkylated salts of the type (py) 2FeRCl and characterized from the addition of 1 equiv of the corresponding alkyl sodium species. These complexes are isostructural and have similar magnetic properties. The double alkylation of (py) 4FeCl 2 resulted in the formation of tetrahedral high-spin iron complexes with the sodium salts of diphenylmethane and phenyl(trimethylsilyl)methane thatmore » readily decomposed. A bis(cyclohexadienyl) sandwich complex was formed with the addition of 2 equiv of the tertiary alkyl species sodium diphenyl(trimethylsilyl)methane. The addition of chelating phosphines to (py) 2FeRCl resulted in the overall transfer of Fe(I) chloride concurrent with loss of pyridine and alkyl radical. (dmpe) 2FeCl was synthesized via addition of 1 equiv of sodium diphenyl(trimethylsilyl)methane, whereas the addition of 2 equiv of the sodium compound to (dmpe) 2FeCl 2 gave the reduced Fe(0) nitrogen complex (dmpe) 2Fe(N 2). Our results demonstrate that iron–alkyl homolysis can be used to afford clean, low-valent iron complexes without the use of alkali metals.« less
Wang, Yuesheng; Mu, Linqin; Liu, Jue; ...
2015-08-06
In this study, aqueous sodium-ion batteries have shown desired properties of high safety characteristics and low-cost for large-scale energy storage applications such as smart grid, because of the abundant sodium resources as well as the inherently safer aqueous electrolytes. Among various Na insertion electrode materials, tunnel-type Na 0.44MnO 2 has been widely investigated as a positive electrode for aqueous sodium-ion batteries. However, the low achievable capacity hinders its practical applications. Here we report a novel sodium rich tunnel-type positive material with a nominal composition of Na 0.66[Mn 0.66Ti 0.34]O 2. The tunnel-type structure of Na 0.44MnO 2 obtained for thismore » compound was confirmed by XRD and atomic-scale STEM/EELS. When cycled as positive electrode in full cells using NaTi 2(PO 4) 3/C as negative electrode in 1M Na 2SO 4 aqueous electrolyte, this material shows the highest capacity of 76 mAh g -1 among the Na insertion oxides with an average operating voltage of 1.2 V at a current rate of 2C. These results demonstrate that Na 0.66[Mn 0.66Ti 0.34]O 2 is a promising positive electrode material for rechargeable aqueous sodium-ion batteries.« less
Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won
2016-01-01
There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g−1 at a current density of 100 mA g−1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour. PMID:27189834
Quamrun, Masuda; Mamoon, Rashid; Nasheed, Shams; Randy, Mullins
2014-01-01
The compounding and evaluation of ondansetron hydrochloride dihydrate topical gel, 2.5% w/w, were conducted in this study. The gelling agent was Carbopol 940. Ethanol 70% in purified water was used to dissolve the drug and disperse the gelling agent. A gel was formed by adding drops of 0.1 N sodium hydroxide solution. To assay this gel, we developed a simple and reproducible stability--indicating high-performance liquid chromatographic method. This method was validated for specificity, accuracy, and precision. The compounded gel was assayed in triplicate, and the average recovery was 98.3%. Ondansetron marketed products were analyzed for comparison with the compounded formulation. Assay, accuracy, and precision data of the compounded topical gel were comparable to the marketed products.
Bourdat-Deschamps, Marjolaine; Leang, Sokha; Bernet, Nathalie; Daudin, Jean-Jacques; Nélieu, Sylvie
2014-07-04
The aim of this study was to develop and optimise an analytical method for the quantification of a bactericide and 13 pharmaceutical products, including 8 antibiotics (fluoroquinolones, tetracyclines, sulfonamides, macrolide), in various aqueous environmental samples: soil water and aqueous fractions of pig slurry, digested pig slurry and sewage sludge. The analysis was performed by online solid-phase extraction coupled to ultra-high performance liquid chromatography with tandem mass spectrometry (online SPE-UHPLC-MS-MS). The main challenge was to minimize the matrix effects observed in mass spectrometry, mostly due to ion suppression. They depended on the dissolved organic carbon (DOC) content and its origin, and ranged between -22% and +20% and between -38% and -93% of the signal obtained without matrix, in soil water and slurry supernatant, respectively. The very variable levels of these matrix effects suggested DOC content cut-offs above which sample purification was required. These cut-offs depended on compounds, with concentrations ranging from 30 to 290mgC/L for antibiotics (except tylosine) up to 600-6400mgC/L for the most apolar compounds. A modified Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) extraction procedure was therefore optimised using an experimental design methodology, in order to purify samples with high DOC contents. Its performance led to a compromise, allowing fluoroquinolone and tetracycline analysis. The QuEChERS extraction salts consisted therefore of sodium acetate, sodium sulfate instead of magnesium sulfate, and sodium ethylenediaminetetraacetate (EDTA) as a ligand of divalent cations. The modified QuEChERS procedure employed for the extraction of pharmaceuticals in slurry and digested slurry liquid phases reduced the matrix effects for almost all the compounds, with extraction recoveries generally above 75%. The performance characteristics of the method were evaluated in terms of linearity, intra-day and inter-day precision, accuracy and limits of quantification, which reached concentration ranges of 5-270ng/L in soil water and sludge supernatant, and 31-2400ng/L in slurry and digested slurry supernatants, depending on the compounds. The new method was then successfully applied for the determination of the target compounds in environmental samples. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yahia, H. Ben; Essehli, R., E-mail: ressehli@qf.org.qa; Avdeev, M.
The new compounds NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} were synthesized by sol-gel method and their crystal structures were determined by using neutron powder diffraction data. These compounds were characterized by galvanometric cycling and cyclic voltammetry. NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} crystallize with a stuffed α-CrPO{sub 4}-type structure. The structure consists of a 3D-framework made of octahedra and tetrahedra that are sharing corners and/or edges generating channels along [100] and [010], in which the sodium atoms are located. Of significance, in the structuresmore » of NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} a statistical disorder Ni{sup 2+}/Cr{sup 3+} was observed on both the 8g and 4a atomic positions, whereas in NaCoCr{sub 2}(PO{sub 4}){sub 3} the statistical disorder Co{sup 2+}/Cr{sup 3+} was only observed on the 8g atomic position. When tested as negative electrode materials, NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} delivered specific capacities of 352, 385, and 368 mA h g{sup −1}, respectively, which attests to the electrochemical activity of sodium in these compounds. - Highlights: • NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} were synthesized by sol-gel method. • The crystal structures were determined by using neutron powder diffraction data. • The three compounds crystallize with a stuffed α-CrPO{sub 4}-type structure. • The three compounds were tested as anodes in sodium-ion batteries. • Relatively high specific capacities were obtained for these compounds.« less
NASA Astrophysics Data System (ADS)
Wulandari, A.; Sunarti, TC; Fahma, F.; Noor, E.
2018-05-01
Bioactive compounds such as anthocyanin are a natural ingredient that produces color with typical specificity. Anthocyanin from Ayamurasaki purple sweet potato (Ipomoea batatas L.) was extracted in ethanol and used as crude anthocyanin extracts. The color of bioactive anthocyanin can be used as a biosensor to detect chemical of food products because it provides a unique color change. However, the each bioactive has a particular sensitivity and selectivity to a specific chemical, so it is necessary to select and test the selectivity. Six chemicals, which were sodium nitrite, sodium benzoate, sodium cyclamate (food additives), formalin, borax (illegal food preservatives), and residue fertilizer (urea) were tested and observed for its color change. The results showed that the bioactive anthocyanin of purple sweet potato with the concentration of ± 42.65 ppm had better selectivity and sensitivity to sodium nitrite with a detection limit of 100 ppm, where the color change response time ranged from 15-20 minutes. The selectivity and sensitivity of this bioactive can be used as the basic information for the development of biosensor.
Effect of nitrite on the odourant volatile fraction of cooked ham.
Thomas, Caroline; Mercier, Frédéric; Tournayre, Pascal; Martin, Jean-Luc; Berdagué, Jean-Louis
2013-08-15
The aim of this work was to reliably identify the key odour compounds in cooked ham and acquire new knowledge on the role of sodium nitrite on the formation of its aroma. Gas chromatography coupled with mass spectrometry and (or) olfactometry was used. In all, 24 odourants were identified in the volatile fraction of cooked ham. Their main origins are discussed. Orthonasal sniffing of the hams was used to study how these substances contributed to the overall aroma of the product. The aroma of cooked ham is a balance between that of certain sulfur compounds produced during cooking and that of oxidation compounds commonly found in cooked meats. In the absence of nitrite, this balance is disturbed by extensive formation of oxidation compounds that mask the meaty notes induced by the sulfur compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Charve, Joséphine; Manganiello, Sonia; Glabasnia, Arne
2018-02-28
Corn sauce, an ingredient obtained from the fermentation of enzymatically hydrolyzed corn starch and used in culinary applications to provide savory taste, was investigated in this study. The links between its sensory properties and taste compounds were assessed using a combination of analytical and sensory approaches. The analyses revealed that glutamic acid, sodium chloride, and acetic acid were the most abundant compounds, but they could not explain entirely the savory taste. The addition of other compounds, found at subthreshold concentrations (alanine, glutamyl peptides, and one Amadori compound), contributed partly to close the sensory gap between the re-engineered sample and the original product. Further chemical breakdown, by a sensory-guided fractionation approach, led to the isolation of two fractions with taste-modulating effects. Analyses by mass spectrometry and nuclear magnetic resonance showed that the fractions contained glutamyl peptides, pyroglutamic acid, glutamic acid, valine, N-formyl-glutamic acid, and N-acetyl-glutamine.
Mast cells in citric acid-induced cough of guinea pigs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Y.-L.; Lin, T.-Y.
2005-01-01
It was demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. To investigate the role of mast cells in CA-induced cough, three experiments were carried out in this study. In the first experiment, 59 guinea pigs were employed and we used compound 48/80 to deplete mast cells, cromolyn sodium to stabilize mast cells, MK-886 to inhibit leukotriene synthesis, pyrilamine to antagonize histamine H{sub 1} receptor, methysergide to antagonize serotonin receptor, and indomethacin to inhibit cyclooxygenase. In the second experiment, 56 compound 48/80-pretreated animals were divided into two parts; the first one was used tomore » test the role of exogenous leukotriene (LT) C{sub 4}, while the second one to test the role of exogenous histamine in CA-induced cough. Each animal with one of the above pretreatments was exposed sequentially to saline (baseline) and CA (0.6 M) aerosol, each for 3 min. Then, cough was recorded for 12 min using a barometric body plethysmograph. In the third experiment, the activation of mast cells upon CA inhalation was investigated by determining arterial plasma histamine concentration in 17 animals. Exposure to CA induced a marked increase in cough number. Compound 48/80, cromolyn sodium, MK-886 and pyrilamine, but not indomethacin or methysergide, significantly attenuated CA-induced cough. Injection of LTC{sub 4} or histamine caused a significant increase in CA-induced cough in compound 48/80-pretreated animals. In addition, CA inhalation caused significant increase in plasma histamine concentration, which was blocked by compound 48/80 pretreatment. These results suggest that mast cells play an important role in CA aerosol inhalation-induced cough via perhaps mediators LTs and histamine.« less
Tang, Pei-Ling; Hassan, Osman; Maskat, Mohamad Yusof; Badri, Khairiah
2015-01-01
In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g(-1) lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced.
Mast cell mediators in citric acid-induced airway constriction of guinea pigs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C.-H.; Lai, Y.-L.
2005-08-15
We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H{sub 1} receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C{submore » 4} (LTC{sub 4}) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV{sub 0.1}) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV{sub 0.1}, indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC{sub 4} and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction.« less
Hardman, Ned J; Wright, Robert J; Phillips, Andrew D; Power, Philip P
2003-03-05
The synthesis, structure, and properties of several new organogallium(I) compounds are reported. The monovalent compounds GaAr* (Ar* = C(6)H(3)-2,6-Trip(2), Trip = C(6)H(2)-2,4,6-Pr(i)()(3), 1), GaAr# (Ar# = C(6)H(3)-2,6(Bu(t)Dipp)(2), Bu(t)Dipp = C(6)H(2)-2,6-Pr(i)(2)-4-Bu(t)(), 4), and the dimeric (GaAr')(2) (Ar' = C(6)H(3)-2,6-Dipp(2), Dipp = C(6)H(3)-2,6-Pr(i)(2), 6) were synthesized by the reaction of "GaI" with (Et(2)O)LiAr*, (Et(2)O)LiAr# (3), or (LiAr')(2). Compounds 1 and 4 were isolated as green crystals, whereas 6 was obtained as a brown-red crystalline solid. All three compounds dissolved in hydrocarbon solvents to give green solutions and almost identical UV/visible spectra. Cryoscopy of 1 and 6 showed that they were monomeric in cyclohexane. Crystals of 1 and 4 were unsuitable for X-ray crystal structure determinations, but an X-ray data set for 6 showed that it was weakly dimerized in the solid with a long Ga-Ga bond of 2.6268(7) A and a trans-bent CGaGaC core array. The 1,2-diiodo-1,2-diaryldigallane compounds [Ga(Ar*)I](2) (2), [Ga(Ar#)I](2) (5), and [Ga(Ar')I](2) (7) were isolated as byproducts of the synthesis of 1, 4, and 6. The crystal structures of 2 and 7 showed that they had planar ICGaGaCI core arrays with Ga-Ga distances near 2.49 A, consistent with Ga-Ga single bonding. Treatment of 1, 4, and 6 with B(C(6)F(5))(3) immediately afforded the 1:1 donor-acceptor complexes ArGa[B(C(6)F(5))(3)] (Ar = Ar*, 8; Ar#, 9; Ar', 10) that featured almost linear gallium coordination, Ga-B distances near the sum of the covalent radii of gallium and boron, as well as some close Ga...F contacts. Compound 1 also reacted with Fe(CO)(5) under ambient conditions to give Ar*GaFe(CO)(4) (11), which had been previously synthesized by the reaction of GaAr*Cl(2) with Na(2)Fe(CO)(4). Reaction of 1 with 2,3-dimethyl-1,3-butadiene afforded the compound [Ar*GaCH(2)C(Me)C(Me)CH(2)]2 (12) that had a 10-membered 1,5-Ga(2)C(8) ring with no Ga-Ga interaction. Stirring 1 or 6 with sodium readily gave Na(2)[Ar*GaGaAr*] (13) and Na(2)(Ar'GaGaAr') (14). The former species 13 had been synthesized previously by reduction of GaAr*Cl(2) with sodium and was described as having a Ga-Ga triple bond because of the short Ga-Ga distance and the electronic relationship between [Ar*GaGaAr*](2-) and the corresponding neutral group 14 alkyne analogues. Compound 14 has a similar structure featuring a trans-bent CGaGaC core, bridged by sodiums which were also coordinated to the flanking aryl rings of the Ar' ligands. The Ga-Ga bond length was found to be 2.347(1) A, which is slightly (ca. 0.02 A) longer than that reported for 13. Reaction of Ga[N(Dipp)C(Me)](2)CH, 15 (i.e., GaN(wedge)NDipp(2)), which is sterically related to 1, 4, and 6, with Fe(CO)(5) yielded Dipp(2)N(wedge)NGaFe(CO)(4) (16), whose Ga-Fe bond is slightly longer than that observed in 11. Reaction of the less bulky LiAr"(Ar"= C(6)H(3)-2,6-Mes(2)) with "GaI" afforded the new paramagnetic cluster Ga(11)Ar(4)" (17). The ready dissociation of 1, 4, and 6 in solution, the long Ga-Ga distance in 6, and the chemistry of these compounds showed that the Ga-Ga bonds are significantly weaker than single bonds. The reduction of 1 and 6 with sodium to give 13 and 14 supplies two electrons to the di-gallium unit to generate a single bond (in addition to the weak interaction in the neutral precursor) with retention of the trans-bent geometry. It was concluded that the stability of 13 and 14 depends on the matching size of the sodium ion, and the presence of Na-Ga and Na-Ar interactions that stabilize their Na(2)Ga(2) core structures.
An expeditious and efficient protocol for the synthesis of naphthopyrans has been developed that proceeds via one-pot three-component sequential reaction in water catalyzed by hydroxyapatite or sodium-modified-hydroxyapatite. The title compounds have been obtained in high yield a...
77 FR 68686 - Xylenesulfonic Acid, Sodium Salt; Exemption From the Requirement of a Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... this methodology is compounded by EPA's decision to assume that, for each commodity, the active... be affected. The North American Industrial Classification System (NAICS) codes have been provided to....'' This includes exposure through drinking water and in residential settings, but does not include...
Analytical artifacts attributed to the bromination of toluene, xylenes, and trimethylbenzenes were found during the heated headspace gas chromatography/mass spectrometry (GC/MS) analysis of aqueous samples. The aqueous samples were produced from Fenton-like chemical oxidation rea...
Design and synthesis of the superionic conductor Na10SnP2S12
NASA Astrophysics Data System (ADS)
Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand
2016-03-01
Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm-1 rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.
Efficacy of sodium dodecyl sulphate and natural extracts against E. coli biofilm.
Fink, Rok; Kulaš, Stefan; Oder, Martina
2018-05-02
The aim of this study was to determine and compare the efficacy of a standard cleaning agent, sodium dodecyl sulphate, and natural extracts from pomegranate peel grape skin and bay laurel leaf against E. coli biofilm. The biofilm was exposed for 10 minutes to three different concentrations of each tested compound. The results show that bay laurel leaf extract is the most efficient with 43% biofilm biomass reduction, followed by pomegranate peel extract (35%); sodium dodecyl sulphate and grape skin extract each have 30% efficacy. Our study demonstrated that natural extracts from selected plants have the same or even better efficacy against E. coli biofilm removal from surfaces than the tested classical cleaning agent do. All this indicates that natural plant extracts, which are acceptable from the health and environment points of view, can be potential substitutes for classical cleaning agents.
Biernacka, Joanna; Betlejewska-Kielak, Katarzyna; Kłosińska-Szmurło, Ewa; Pluciński, Franciszek A; Mazurek, Aleksander P
2013-01-01
The physicochemical properties relevant to biological activity of selected bisphosphonates such as clodronate disodium salt, etidronate disodium salt, pamidronate disodium salt, alendronate sodium salt, ibandronate sodium salt, risedronate sodium salt and zoledronate disodium salt were determined using in silico methods. The main aim of our research was to investigate and propose molecular determinants thataffect bioavailability of above mentioned compounds. These determinants are: stabilization energy (deltaE), free energy of solvation (deltaG(solv)), electrostatic potential, dipole moment, as well as partition and distribution coefficients estimated by the log P and log D values. Presented values indicate that selected bisphosphonates a recharacterized by high solubility and low permeability. The calculated parameters describing both solubility and permeability through biological membranes seem to be a good bioavailability indicators of bisphosphonates examined and can be a useful tool to include into Biopharmaceutical Classification System (BCS) development.
Design and synthesis of the superionic conductor Na10SnP2S12.
Richards, William D; Tsujimura, Tomoyuki; Miara, Lincoln J; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand
2016-03-17
Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm(-1) rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.
Devesa-Rey, R; Bustos, G; Cruz, J M; Moldes, A B
2011-06-01
The objective of this work was to study the entrapped conditions of activated carbon in calcium-alginate beads for the clarification of winery wastewaters. An incomplete 3(3) factorial design was carried out to study the efficiency of activated carbon (0.5-2%); sodium alginate (1-5%); and calcium chloride (0.050-0.900 M), on the following dependent variables: colour reduction at 280, 465, 530 and 665 nm. The activated carbon and calcium chloride were the most influential variables in the colour reduction. Nearly 100% colour reductions were found for the wavelengths assayed when employing 2% of activated carbon, 5% of sodium alginate and intermediate concentrations of calcium chloride (0.475 M). Instead, other conditions like, 2% of activated carbon, 4% of sodium alginate and 0.580 M of calcium chloride can also give absorbance reductions close to 100%. Copyright © 2011 Elsevier Ltd. All rights reserved.
Study and application of molluscicides in Japan*
Komiya, Yoshitaka
1961-01-01
For several years after the First World War calcium oxide was the main compound used in the control of Oncomelania nosophora in Japan. This was generally replaced in 1944 by calcium cyanamide; since 1952 the prefectural authorities in areas of endemic bilharziasis have increasingly turned to the use of sodium pentachlorophenate as the molluscicide of choice. Applied at a rate of 5 g per m2, this compound has been found to kill 70%-80% of snails per application. Laboratory and field experiments with calcium-arsenic compounds have been conducted in Japan and have indicated that these products have a relatively high molluscicidal effect; they have, however, not been used on a wide scale for snail control. PMID:14458130
Newbury, H. John; Possingham, John V.
1977-01-01
Using conventional methods it is impossible to extract RNA as uncomplexed intact molecules from the leaves of grapevines (Vitis vinifera L.) and from a number of woody perennial species that contain high levels of reactive phenolic compounds. A procedure involving the use of high concentrations of the chaotropic agent sodium perchlorate prevents the binding of phenolic compounds to RNA during extraction. Analyses of the phenolics present in plant tissues used in these experiments indicate that there is a poor correlation between the total phenolic content and the complexing of RNA. However, qualitative analyses suggest that proanthocyanidins are involved in the tanning of RNA during conventional extractions. PMID:16660134
The effect of sodium pertechnetate human carbonic anhydrase I and II
NASA Astrophysics Data System (ADS)
Sahin, Ali; Senturk, Murat
2017-04-01
The inhibitory effects of Na99mTcO4 (Sodium pertechnetate) on human erythrocyte carbonic anhydrase I and II activity were investigated. For this purpose, hCA I was initially purified 114,29-fold at a yield of 69,19 % and hCA II was initially purified 710,82-fold at a yield of 71,72 % using sepharose 4B-tyrosine-sulfanilamide affinity gel chromatography. The in vitro effect of this compound on hCA I and II isoenzyme were studied. It was detected in in vitro studies that the hCA I and II enzymes are inhibited due to Na99mTcO4.
Axial vibration control of melt structure of sodium nitrate in crystal growth process
NASA Astrophysics Data System (ADS)
Sadovskiy, Andrey; Sukhanova, Ekaterina; Belov, Stanislav; Kostikov, Vladimir; Zykova, Marina; Artyushenko, Maxim; Zharikov, Evgeny; Avetissov, Igor
2015-05-01
The melt structure evolution under the action of the low-frequency axial vibration control (AVC) technique was studied in situ by Raman spectroscopy for several complex chemical compound melts: sodium nitrate, margarine acid, paraffin mixture (C17-C20). The measurements were conducted in the temperature range from the melting point up to 60 °C above. Comparison of crystallization heats for AVC activated and steady melts with melting heats of AVC-CZ and conventional CZ produced powders allowed to propose the energy diagram of NaNO3 states for activated and non-activated melts and crystals based on DTA, XRD, DSC and Raman experimental data.
Aromatic fluorine compounds. VI. Displacement of aryl fluorine in diazonium salts
Finger, G.C.; Oesterling, R.E.
1956-01-01
Several chlorofluorobenzenes have been isolated from the Schiemann synthesis of fluorobenzenes. These have been shown to be the products of two side reactions occurring during thermal decomposition of the dry benzenediazonium fluoborate salt containing coprecipitated sodium chloride, an unavoidable contaminant in large preparations involving the use of hydrochloric acid and sodium fluoborate. The major side reaction and its chloro product were unexpected; a unique displacement of fluorine ortho to the diazonium group was observed. Replacement of the diazo group with chlorine was the predicted side reaction which proved to be minor. Conditions causing the side reactions and the isolation and identification of the products are described.
Hiskey, Michael A [Los Alamos, NM; Huynh, My Hang V [Los Alamos, NM
2011-01-25
The present invention provides a compound of the formula (Cat).sup.+.sub.z[M.sup.++(5-nitro-1H-tetrazolato-N2).sup.-.sub.x(H.sub.2- O).sub.y] where x is 3 or 4, y is 2 or 3, x+y is 6, z is 1 or 2, and M.sup.++ is selected from the group consisting of iron, cobalt, nickel, copper, zinc, chromium, and manganese, and (Cat).sup.+ is selected from the group consisting of ammonium, sodium, potassium, rubidium and cesium. A method of preparing the compound of that formula is also disclosed.
Hiskey, Michael A [Los Alamos, NM; Huynh, My Hang V [Los Alamos, NM
2009-03-03
The present invention provides a compound of the formula (Cat).sup.+.sub.z[M.sup.++(5-nitro-1H-tetrazolato-N2).sup.-.sub.x(H.sub.2- O).sub.y] where x is 3 or 4, y is 2 or 3, x+y is 6, z is 1 or 2, and M.sup.++ is selected from the group consisting of iron, cobalt, nickel, copper, zinc, chromium, and manganese, and (Cat).sup.+ is selected from the group consisting of ammonium, sodium, potassium, rubidium and cesium. A method of preparing the compound of that formula is also disclosed.
Specific Appetite for Carotenoids in a Colorful Bird
Senar, Juan Carlos; Møller, Anders Pape; Ruiz, Iker; Negro, Juan José; Broggi, Juli; Hohtola, Esa
2010-01-01
Background Since carotenoids have physiological functions necessary for maintaining health, individuals should be selected to actively seek and develop a specific appetite for these compounds. Methodology/Principal Findings Great tits Parus major in a diet choice experiment, both in captivity and the field, preferred carotenoid-enriched diets to control diets. The food items did not differ in any other aspects measured besides carotenoid content. Conclusions/Significance Specific appetite for carotenoids is here demonstrated for the first time, placing these compounds on a par with essential nutrients as sodium or calcium. PMID:20502717
Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry.
Nistor, Cristina Lavinia; Ianchis, Raluca; Ghiurea, Marius; Nicolae, Cristian-Andi; Spataru, Catalin-Ilie; Culita, Daniela Cristina; Pandele Cusu, Jeanina; Fruth, Victor; Oancea, Florin; Donescu, Dan
2016-01-05
The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA). The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium silicate with OLA revealed a stabilization phenomenon of silica/OLA vesicles and the dependence between their average size and reagent's molar ratio. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) measurements emphasized the successful synthesis of silica nanoparticles starting from renewable materials, in mild condition of green chemistry. By grafting octadecyltrimethoxysilane on the initial silica particles, an increased interaction between silica particles and the OLA/OLANa complex was achieved. This interaction between the oleyl and octadecyl chains resulted in the formation of stable gel-like aqueous systems. Subsequently, olive oil and an oleophylic red dye were solubilized in these stable aqueous systems. This great dispersing capacity of oleosoluble compounds opens new perspectives for future green chemistry applications. After the removal of water and of the organic chains by thermal treatment, mesoporous silica was obtained.
Sidedness of Carbamazepine Accessibility to Voltage-Gated Sodium Channels
Jo, Sooyeon
2014-01-01
Voltage-gated sodium channels are inhibited by many local anesthetics, antiarrhythmics, and antiepileptic drugs. The local anesthetic lidocaine appears to be able to access its binding site in the sodium channel only from the membrane phase or from the internal face of the channel. In contrast, the antiepileptic drug carbamazepine was found to inhibit voltage-gated sodium channels only with external, but not internal, application, implying a major difference. We investigated this point using both whole-cell and inside-out patch recordings from human Nav1.7 channels in a stable cell line. In the whole-cell configuration, carbamazepine inhibited sodium current within seconds when applied externally, but had little or no effect when applied internally for up to 15 minutes, confirming previous results. However, carbamazepine inhibited sodium channels effectively and rapidly when applied to the internal face of the membrane using inside-out patch recording. We found that lidocaine also has little or no effect when applied intracellularly in whole-cell recording, but blocks effectively and rapidly when applied to the internal surface using inside-out patches. In contrast, the cationic lidocaine derivative QX-314 (N-ethyl-lidocaine) blocks effectively when applied internally with whole-cell dialysis, as well as when applied to inside-out patches. We conclude that carbamazepine and lidocaine access the sodium channel in similar ways and hypothesize that their lack of effect with internal dialysis in whole-cell recording reflects rapid exit through membrane near the pipette recording site. This effect likely limits the ability of any compound with significant membrane permeability to be applied intracellularly by whole-cell dialysis. PMID:24319110
Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A
2016-05-15
The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Levina, E V; Kalinovskiĭ, A I; Andriiashchenko, P V; Menzorova, N I; Dmitrenok, P S
2007-01-01
Three new polar steroids identified as trofoside A, (20R,24S)-24-O-(3-O-methyl-beta-D-xylopyranosyl)-3beta,6alpha,8,15beta,24-pentahydroxy-5alpha-cholestane, its 22(23)-dehydro derivative (trofoside B), and 15-sulfoxy-(20R,24S)-5alpha-cholestane-3beta,6beta,8,15alpha,24-pentaol sodium salt, were isolated from Trofodiscus uber starfish extracts collected in the Sea of Okhotsk. Two known compounds, trofoside A aglycone, (20R,24S)-3beta,6alpha,8,15beta,24-pentahydroxy-5alpha-cholestane, and triseramide, (20R,24R,25S,22E)-24-methyl-3beta,6alpha,8,15beta-tetrahydroxy-5alpha-cholest-22-en-27-oic acid (2-sulfoethyl)amide sodium salt, were also found. The structures of the isolated polyoxysteroids were established from their spectra. Minimal concentrations causing degradation of unfertilized egg-cells of the sea-urchin Strongylocentrotus intermedius (C(min)) and terminating the cell division at the stage of the first division (C(min) embr.), as well as the concentrations causing 50% immobilization of sperm cells (ImC50) and inhibiting their ability to fertilize egg-cells by 50% (IC50) were determined for the isolated compounds. Of three compounds highly toxic in embryos and sea-urchin sperm cells, the polyol with a sulfo group in the steroid core was the most active; two glycosides with monosaccharide chains located at C3 and C24 atoms were less toxic. Note that all the compounds with the spermiotoxic activities differently affected the embryo development. The positions of monosaccharide residues in the core considerably influence the compound activity. For example, both mono- and double chained glycosides with the monosaccharide fragment at C3 and C24 atoms are active against sea-urchin sperm cells and embryos, whereas the C24 glycosylated trofoside A does not affect embryos and displays a poor spermiotoxicity.
Gao, Shengli; Kushida, Hirotaka; Makino, Toshiaki
2017-01-01
Recent pharmacokinetic studies have revealed that ginsenosides, the major ingredients of ginseng (the roots of Panax ginseng), are present in the plasma collected from subjects receiving ginseng, and speculated that ginsenosides might be actively transported via glucose transporters. We evaluated whether ginsenosides Rb 1 and Rg 1 , and their metabolites from enteric bacteria act as substrates of sodium-glucose cotransporter (SGLT) 1, the major glucose transporter expressed on the apical side of intestinal epithelial cells. First, we evaluated the competing effects of ginseng extract and ginsenosides on the uptake of [ 14 C]methyl-glucose, a substrate of SGLT1, by SGLT1-overexpressing HEK293 cells. A boiling water extract of ginseng inhibited SGLT1 in a concentration-dependent manner with an IC 50 value of 0.85 mg/ml. By activity-guided fractionation, we determined that the fraction containing ginsenosides displayed an inhibitory effect on SGLT1. Of the ginsenosides evaluated, protopanaxatriol-type ginsenosides were not found to inhibit SGLT1, whereas protopanaxadiol-type ginsenosides, including ginsenosides Rd, Rg 3 , Rh 2 , F 2 and compound K, exhibited significant inhibitory effects on SGLT1, with ginsenoside F 2 having the highest activity with an IC 50 value of 23.0 µM. Next, we measured the uptake of ginsenoside F 2 and compound K into Caco-2 cells, a cell line frequently used to evaluate the intestinal absorption of drugs. The uptake of ginsenoside F 2 and compound K into Caco-2 cells was not competitively inhibited by glucose. Furthermore, the uptake of ginsenoside F 2 and compound K into SGLT1-overexpressing HEK293 cells was not significantly higher than into mock cells. Ginsenoside F 2 and compound K did not appear to be substrates of SGLT1, although these compounds could inhibit SGLT1. Ginsenosides might be absorbed by passive diffusion through the intestinal membrane or actively transported via unknown transporters other than SGLT1.
Organic non-aqueous cation-based redox flow batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lu; Huang, Jinhua; Burrell, Anthony
The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturatedmore » moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte comprises a tetrafluorohydroquinone ether compound or a tetrafluorocatechol ether compound.« less
Bonding-Compatible Corrosion Inhibitor for Rinsing Metals
NASA Technical Reports Server (NTRS)
Saunders, C. R.; Wurth, L. A.; Radar, A.
2005-01-01
A corrosion-inhibiting mixture of compounds has been developed for addition to the water used to rinse metal parts that have been cleaned with aqueous solutions in preparation for adhesive bonding of the metals to rubber and rubber-like materials. Prior to the development of this corrosion inhibitor, the parts (made, variously, of D6AC steel and 7075-T73 aluminum) were rinsed by deionized water, which caused corrosion in some places on the steel parts especially in such occluded places as sealing surfaces and threaded blind holes. An integral part of the particular cleaning process is the deposition of a thin layer of silicates and silane primers that increase the strength of the adhesive bond. The corrosion inhibitor is formulated, not only to inhibit corrosion of both D6AC steel and 7075- T73 aluminum, but also to either increase or at least not reduce the strength of the adhesive bond to be formed subsequently. The corrosion inhibitor is a mixture of sodium silicate and sodium tetraborate. The sodium silicate functions as both a corrosion inhibitor and a bond-strength promoter in association with the silane primers. The sodium tetraborate buffers the rinse solution at the optimum pH and functions as a secondary corrosion inhibitor for the steel. For a given application, the concentrations of sodium silicate and sodium tetraborate must be chosen in a compromise among the needs to inhibit corrosion of steel, inhibit corrosion of aluminum, and minimize cosmetic staining of both steel and aluminum. Concentrations of sodium silicate in excess of 150 parts of silicon per million parts of solution (ppm Si) have been determined to enhance inhibition of corrosion; unfortunately, because of the alkalinity of sodium silicate, even a small concentration can raise the pH of the rinse solution to such a level that aluminum becomes corroded despite the inhibiting effect. The pH of a solution that contains a high concentration of sodium silicate can be decreased by adding sodium tetraborate. On the other hand, the addition of sodium tetraborate increases the concentration of dissolved solids to such a high level that cosmetic staining becomes an issue.
Tondreau, Aaron M.; Scott, Brian L.; Boncella, James M.
2016-05-23
We explored ligand-induced reduction of ferrous alkyl complexes via homolytic cleavage of the alkyl fragment with simple chelating diphosphines. The reactivities of the sodium salts of diphenylmethane, phenyl(trimethylsilyl)methane, or diphenyl(trimethylsilyl)methane were explored in their reactivity with (py) 4FeCl 2. Furthermore, we prepared a series of monoalkylated salts of the type (py) 2FeRCl and characterized from the addition of 1 equiv of the corresponding alkyl sodium species. These complexes are isostructural and have similar magnetic properties. The double alkylation of (py) 4FeCl 2 resulted in the formation of tetrahedral high-spin iron complexes with the sodium salts of diphenylmethane and phenyl(trimethylsilyl)methane thatmore » readily decomposed. A bis(cyclohexadienyl) sandwich complex was formed with the addition of 2 equiv of the tertiary alkyl species sodium diphenyl(trimethylsilyl)methane. The addition of chelating phosphines to (py) 2FeRCl resulted in the overall transfer of Fe(I) chloride concurrent with loss of pyridine and alkyl radical. (dmpe) 2FeCl was synthesized via addition of 1 equiv of sodium diphenyl(trimethylsilyl)methane, whereas the addition of 2 equiv of the sodium compound to (dmpe) 2FeCl 2 gave the reduced Fe(0) nitrogen complex (dmpe) 2Fe(N 2). Our results demonstrate that iron–alkyl homolysis can be used to afford clean, low-valent iron complexes without the use of alkali metals.« less
Theoduloz, Cristina; Carrión, Ivanna Bravo; Pertino, Mariano Walter; Valenzuela, Daniela; Schmeda-Hirschmann, Guillermo
2012-11-01
The stem bark of Tabebuia species and the rhizomes of Jatropha isabelii are used in Paraguayan traditional medicine to treat gastric lesions and as anti-inflammatory agents. The sesquiterpene cyperenoic acid obtained from J. isabelii has been shown to display a gastroprotective effect in animal models of induced gastric ulcers while the quinone lapachol shows several biological effects associated with the use of the crude drug. The aim of this work was to prepare hybrid molecules presenting a terpene and a quinone moiety and to obtain an assessment of the gastroprotective activity of the new compounds using human cell cultures (MRC-5 fibroblasts and AGS epithelial gastric cells). Eight compounds, including the natural products and semisynthetic derivatives were assessed for proliferation of MRC-5 fibroblasts, protection against sodium taurocholate-induced damage, prostaglandin E2 content, and stimulation of cellular-reduced glutathione synthesis in AGS cells. The following antioxidant assays were performed: DPPH discoloration, scavenging of the superoxide anion, and inhibition of induced lipoperoxidation in erythrocyte membranes. 3-Hydroxy-β-lapachone (3) and cyperenoic acid (4) stimulated fibroblast proliferation. Lapachol (1), dihydroprenyl lapachol (2), 3-hydroxy-β-lapachone (3), and lapachoyl cyperenate (6) protected against sodium taurocholate-induced damage in AGS cells. Lapachol (1) and dihydroprenyl lapachoyl cyperenate (7) significantly stimulated prostaglandin E2 synthesis in AGS cells. Compounds 3, 4, and 7 raised reduced glutathione levels in AGS cells. The hybrid compounds presented activities different than those of the starting sesquiterpene or quinones. Georg Thieme Verlag KG Stuttgart · New York.
New indole, aminoindole and pyranoindole derivatives with anti-inflammatory activity.
Nakkady, S S; Fathy, M M; Hishmat, O H; Mahmond, S S; Ebeid, M Y
2000-01-01
6-Methoxy-1-methyl-2,3-diphenyl indol-5-carboxaldehyde (2) was demethylated to give the 6-hydroxy derivative (3) which was cyclized to the pyrano[3,2-f]indole derivatives (4a-d) by the action of ethyl acetoacetate, diethyl malonate, malononitrile, ethyl cyanoacetate. When 4c was boiled in acetic acid, it gave 4d. Reduction of 4c by sodium borohydride yielded the orthoaminonitrile (5). Friedel Craft's acetylation of 1b yielded the 5-acetyl derivative (6), which reacted with hydrazine hydrate, o-toluidine and o-aminophenol to afford (7a-c). Demethylation of (1b) yielded the hydroxyl derivative (8), which differs from compound (9) obtained by demethylation of 6-methoxy-2,3-diphenyl-indole (1a). Friedel Craft's acetylation of 9 gave the 7-acetyl compound (10) which yielded the hydrazone (11). The reaction of primary aromatic amines, (i.e. p-nitroaniline, p-anisidine and p-bromo aniline) with 6-methoxy-1-methyl-2,3-diphenyl-indol-5-carboxaldehyde (2) gave the Schiff bases (12a-c). The latter compounds were reduced by sodium borohydride to yield the corresponding Mannich bases (13a-c). Treatment of 12a-c with thioglycolic acid led to the thiazolidin-4-one-derivatives (14a-c). When (12a-c) reacted with cyanoacetamide, the amino group was replaced by the active methylene to form the cyano compound (15). The structure was confirmed by reacting the carboxaldehyde (2) with cyanoacetamide to yield (15). Pharmacological screening was has been carried out to test the anti-inflammatory activity, ulcerogenecity, effect on the isolated rabbit intestine and the antispasmodic activity.
McCook, John P; Dorogi, Peter L; Vasily, David B; Cefalo, Dustin R
2015-01-01
Background Inhibitors of hyaluronidase are potent agents that maintain hyaluronic acid homeostasis and may serve as anti-aging, anti-inflammatory, and anti-microbial agents. Sodium copper chlorophyllin complex is being used therapeutically as a component in anti-aging cosmeceuticals, and has been shown to have anti-hyaluronidase activity. In this study we evaluated various commercial lots of sodium copper chlorophyllin complex to identify the primary small molecule constituents, and to test various sodium copper chlorophyllin complexes and their small molecule analog compounds for hyaluronidase inhibitory activity in vitro. Ascorbate analogs were tested in combination with copper chlorophyllin complexes for potential additive or synergistic activity. Materials and methods For hyaluronidase activity assays, dilutions of test materials were evaluated for hydrolytic activity of hyaluronidase by precipitation of non-digested hyaluronate by measuring related turbidity at 595 nm. High-performance liquid chromatography and mass spectroscopy was used to analyze and identify the primary small molecule constituents in various old and new commercial lots of sodium copper chlorophyllin complex. Results The most active small molecule component of sodium copper chlorophyllin complex was disodium copper isochlorin e4, followed by oxidized disodium copper isochlorin e4. Sodium copper chlorophyllin complex and copper isochlorin e4 disodium salt had hyaluronidase inhibitory activity down to 10 µg/mL. The oxidized form of copper isochlorin e4 disodium salt had substantial hyaluronidase inhibitory activity at 100 µg/mL but not at 10 µg/mL. Ascorbate derivatives did not enhance the hyaluronidase inhibitory activity of sodium copper chlorophyllin. Copper isochlorin e4 analogs were always the dominant components of the small molecule content of the commercial lots tested; oxidized copper isochlorin e4 was found in increased concentrations in older compared to newer lots tested. Conclusion These results support the concept of using the hyaluronidase inhibitory activity of sodium copper chlorophyllin complex to increase the hyaluronic acid level of the dermal extracellular matrix for the improvement of the appearance of aging facial skin. PMID:26300653
McCook, John P; Dorogi, Peter L; Vasily, David B; Cefalo, Dustin R
2015-01-01
Inhibitors of hyaluronidase are potent agents that maintain hyaluronic acid homeostasis and may serve as anti-aging, anti-inflammatory, and anti-microbial agents. Sodium copper chlorophyllin complex is being used therapeutically as a component in anti-aging cosmeceuticals, and has been shown to have anti-hyaluronidase activity. In this study we evaluated various commercial lots of sodium copper chlorophyllin complex to identify the primary small molecule constituents, and to test various sodium copper chlorophyllin complexes and their small molecule analog compounds for hyaluronidase inhibitory activity in vitro. Ascorbate analogs were tested in combination with copper chlorophyllin complexes for potential additive or synergistic activity. For hyaluronidase activity assays, dilutions of test materials were evaluated for hydrolytic activity of hyaluronidase by precipitation of non-digested hyaluronate by measuring related turbidity at 595 nm. High-performance liquid chromatography and mass spectroscopy was used to analyze and identify the primary small molecule constituents in various old and new commercial lots of sodium copper chlorophyllin complex. The most active small molecule component of sodium copper chlorophyllin complex was disodium copper isochlorin e4, followed by oxidized disodium copper isochlorin e4. Sodium copper chlorophyllin complex and copper isochlorin e4 disodium salt had hyaluronidase inhibitory activity down to 10 µg/mL. The oxidized form of copper isochlorin e4 disodium salt had substantial hyaluronidase inhibitory activity at 100 µg/mL but not at 10 µg/mL. Ascorbate derivatives did not enhance the hyaluronidase inhibitory activity of sodium copper chlorophyllin. Copper isochlorin e4 analogs were always the dominant components of the small molecule content of the commercial lots tested; oxidized copper isochlorin e4 was found in increased concentrations in older compared to newer lots tested. These results support the concept of using the hyaluronidase inhibitory activity of sodium copper chlorophyllin complex to increase the hyaluronic acid level of the dermal extracellular matrix for the improvement of the appearance of aging facial skin.
Catalyzed sodium chlorate candles
NASA Technical Reports Server (NTRS)
Malich, C. W.; Wydeven, T.
1972-01-01
The catalytic effect of cobalt powder on chlorate decomposition has been confirmed. Catalysis is enhanced by oxidation of the metal during burning. Catalysts other than cobalt compounds should also be effective; the complete elimination of fuel has shown that the oxidation of cobalt during decomposition is not a vital factor in the improved performance of catalyzed candles.
ERIC Educational Resources Information Center
Faust, Kristen E.; Storhoff, Bruce N.
1989-01-01
Describes an experiment for advanced-level undergraduate students for extending student experiences involving recording and interpreting infrared (IR) and nuclear magnetic resonance (NMR) spectra from reactions of organometallic compounds. Experimental procedures, analyses and structural assignments, and suggestions for extension and modification…
Study of Wear-Preventive Properties of Macrocyclic Compounds for High Temperature Application
1990-01-01
and hence its lubricating properties adversely affected. Another molybdenum based lubricant is molybdenum silicide . This has good resistance to...Porphyrins 21 Contract No. N62269-88-R-0234 Report No. NADC-91049-60 N N N N N\\ -/ N N .. 05 NICKEL PHTH-ALOCYANINE TETRASULFONIC ACID TETRA SODIUM SALT
21 CFR 74.705 - FD&C Yellow No. 5.
Code of Federal Regulations, 2010 CFR
2010-04-01
...-sulfophenyl-azo]-1H-pyrazole-3-carboxylic acid (CAS Reg. No. 1934-21-0). To manufacture the additive, 4-amino-benzenesulfonic acid is diazotized using hydrochloric acid and sodium nitrite. The diazo compound is coupled with... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR...
21 CFR 74.705 - FD&C Yellow No. 5.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-sulfophenyl-azo]-1H-pyrazole-3-carboxylic acid (CAS Reg. No. 1934-21-0). To manufacture the additive, 4-amino-benzenesulfonic acid is diazotized using hydrochloric acid and sodium nitrite. The diazo compound is coupled with... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR...
Low toxic corrosion inhibitors for aluminum in fresh water
NASA Technical Reports Server (NTRS)
Humphries, T. S.
1978-01-01
Combinations of chemical compounds that reportedly reduce the corrosion of aluminum in fresh water were evaluated. These included combinations of borates, nitrates, nitrites, phosphates, silicates, and mercaptobenzothiazole. Eight of fifty inhibitor combinations evaluated gave excellent corrosion protection and compared favorably with sodium chromate, which has generally been considered standard for many years.
40 CFR 63.11412 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... ore from trivalent to hexavalent chromium. Sodium chromate means Na2CrO4. It is produced by roasting...: Chromium Compounds Other Requirements and Information § 63.11412 What definitions apply to this subpart... matter loadings. Chromic acid means chromium trioxide (CrO3). It is produced by the electrolytic reaction...
40 CFR 63.11412 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... ore from trivalent to hexavalent chromium. Sodium chromate means Na2CrO4. It is produced by roasting...: Chromium Compounds Other Requirements and Information § 63.11412 What definitions apply to this subpart... matter loadings. Chromic acid means chromium trioxide (CrO3). It is produced by the electrolytic reaction...
40 CFR 63.11412 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... ore from trivalent to hexavalent chromium. Sodium chromate means Na2CrO4. It is produced by roasting...: Chromium Compounds Other Requirements and Information § 63.11412 What definitions apply to this subpart... matter loadings. Chromic acid means chromium trioxide (CrO3). It is produced by the electrolytic reaction...
Encapsulation optimization of lemon balm antioxidants in calcium alginate hydrogels.
Najafi-Soulari, Samira; Shekarchizadeh, Hajar; Kadivar, Mahdi
2016-11-01
Calcium alginate hydrogel beads were used to encapsulate lemon balm extract. Chitosan layer was used to investigate the effect of hydrogel coating. To determine the interactions of antioxidant compounds of extract with encapsulation materials and its stability, microstructure of hydrogel beads was thoroughly monitored using scanning electron microscopy and Fourier transform infrared (FTIR). Total polyphenols content and antiradical activity of lemon balm extract were also evaluated before and after encapsulation. Three significant parameters (lemon balm extract, sodium alginate, and calcium chloride concentrations) were optimized by response surface methodology to obtain maximum encapsulation efficiency. The FTIR spectra showed no interactions between extract and polymers as there were no new band in spectra of alginate hydrogel after encapsulation of active compounds of lemon balm extract. The antioxidant activity of lemon balm extract did not change after encapsulation. Therefore, it was found that alginate is a suitable material for encapsulation of natural antioxidants. Sodium alginate solution concentration, 1.84%, lemon balm extract concentration, 0.4%, and calcium chloride concentration, 0.2% was determined to be the optimum condition to reach maximum encapsulation efficiency.
Peru, Aurélien A M; Flourat, Amandine L; Gunawan, Christian; Raverty, Warwick; Jevric, Martyn; Greatrex, Ben W; Allais, Florent
2016-07-29
Chiral epoxides-such as ethyl and methyl (S)-3-(oxiran-2-yl)propanoates ((S)-1a/1b)-are valuable precursors in many chemical syntheses. Until recently, these compounds were synthesized from glutamic acid in four steps (deamination, reduction, tosylation and epoxide formation) in low to moderate overall yield (20%-50%). Moreover, this procedure requires some harmful reagents such as sodium nitrite ((eco)toxic) and borane (carcinogen). Herein, starting from levoglucosenone (LGO), a biobased chiral compound obtained through the flash pyrolysis of acidified cellulose, we propose a safer and more sustainable chemo-enzymatic synthetic pathway involving lipase-mediated Baeyer-Villiger oxidation, palladium-catalyzed hydrogenation, tosylation and treatment with sodium ethoxide/methoxide as key steps. This route afforded ethyl and methyl (S)-3-(oxiran-2-yl)propanoates in 57% overall yield, respectively. To demonstrate the potentiality of this new synthetic pathway from LGO, the synthesis of high value-added (S)-dairy lactone was undertaken from these epoxides and provided the target in 37% overall yield from LGO.
NASA Astrophysics Data System (ADS)
Mardiana, L.; Bakri, R.; Septiarti, A.; Ardiansah, B.
2017-04-01
The novel compound of 2-(5-(3-methoxyphenyl)-4,5-dihydro-1H-pyrazol-3-yl)phenol as a pyrazoline derivative has been synthesized by two-steps reaction using sodium impregnated on activated chicken eggshells (Na-ACE) catalyst. Na-ACE was primarily prepared by a simple wet impregnation of NaOH solution on activated chicken eggshells solid support. The Na-ACE catalyst produced was characterized using FTIR spectrophotometer, XRD and SEM then applied in pyrazoline synthesis. First, chalcone was prepared from the reaction of 2-hydroxyacetophenone and 3-methoxybenzaldehyde by base-catalyzed aldol condensation. This product was subsequently reacted with hydrazine hydrate to give corresponding pyrazoline. The structure elucidation of the compound using FTIR, UV-Vis, LC-ESI-MS and 1H-NMR indicated the desired product has been successfully synthesized. Furthermore, the potential antioxidant activities of chalcone and pyrazoline have also been studied in-vitro using DPPH radical scavenging method. The results revealed that pyrazoline has a greater antioxidant activity than chalcone.
Effect of detergents from laundry greywater on soil properties: a preliminary study
NASA Astrophysics Data System (ADS)
Mohamed, R. M.; Al-Gheethi, A. A.; Noramira, J.; Chan, C. M.; Hashim, M. K. Amir; Sabariah, M.
2018-03-01
Detergent compounds are classes of the organic micro-pollutants in the laundry wastewater. The disposal of these compounds into the soil has several adverse effects on their composition. In the present study, changes in the soil characteristics, which included saturated hydraulic conductivity ( K sat), EC, pH, exchangeable sodium percentage, cation exchange capacity (CEC), and sodium adsorption on ratio were examined after the irrigation with laundry wastewater. Ten clothes were washed with one full cap of powder (PLD) and liquid laundry (LLD). Laundry greywater samples were used for the irrigation of soil. The results revealed that the pH of soil increased from 3.85 to 4.42 and 4.09 after irrigation by PLD and LLD greywater, respectively. The EC of the irrigated soil increased from 50.32 to 152.5 and 147.6 μS/cm, respectively. The CEC was raised to 79.93 and 41.39 meq/100 g, while K sat was reduced to 7.38 × 10-10 and 7.11 × 10-10 cm/s, respectively. These findings highlighted the negative effects of laundry greywater discharge on soil properties.
Determination of the solubility of inorganic salts by headspace gas chromatography.
Chai, X S; Zhu, J Y
2003-05-09
This work reports a novel method for determination of salt solubility using headspace gas chromatography. A very small amount of volatile compound (such as methanol) is added in the studied solution. Due to the molecular interaction in the solution, the vapor-liquid equilibrium (VLE) partitioning coefficient of the volatile species will change with different salt contents in the solution. Therefore, the concentration of volatile species in the vapor phase is proportional to the salt concentration in the liquid phase, which can be easily determined by headspace gas chromatography. Until the salt concentration in the solution is saturated, the concentration of volatile compound in the vapor phase will continue to increase further and a breakpoint will appear on the VLE curve. The solubility of the salts can be determined by the identification of the breakpoint. It was found that the measured solubility of sodium carbonate and sodium sulfate in aqueous solutions is slightly higher (about 6-7%) than those reported in the literature method. The present method can be easily applied to industrial solution systems.
Fang, Fang; Feng, Tingting; Du, Guocheng; Chen, Jian
2016-01-01
Four strains of lactic acid bacteria showing antimicrobial activity against some food-spoilage microorganisms or pathogens, including both Gram-negative and -positive strains, were isolated from naturally fermented pickled vegetables and a traditional cheese product. Among these isolates, Lactobacillus coryniformis strain BBE-H3, characterised previously to be a non-biogenic amine producer, showed a high level of activity in degrading sodium nitrite and exhibited the ability to eliminate ethyl carbamate and one of its precursors, urea. The antimicrobial substance produced by L. coryniformis BBE-H3 was found to be active at an acidic pH range of 4.0-4.5. The antimicrobial activity of this strain decreased differentially after treatment with proteolytic enzymes (pepsin, papain, trypsin and proteinase K), implying this growth inhibitory compound is either a protein or a polypeptide. The results of this study show the suitability of L. coryniformis BBE-H3 as a starter in food manufacturing processes, and demonstrate its potential role in eliminating food origin carcinogens such as sodium nitrite and ethyl carbamate.
NASA Astrophysics Data System (ADS)
Lalasari, Latifa Hanum; Andriyah, Lia; Arini, Tri; Firdiyono, F.
2018-04-01
Sodium stannate is an intermediate compound with the formula Na2SnO3. This compound is easily dissolved in water and has many applications in the electroplating industry, tin alloy production, and catalysts for organic synthesis. In this occasion was investigated the effect of temperature and the addition of reducing agent on making of sodium stannate phase from cassiterite by an alkaline roasting process using sodium carbonate (Na2CO3). Firstly, cassiterite was roasted at 700 °C for 3 hours and continued leaching process using 10% HCl solution at 110 °C for 2 hours. The cassiterite residue than was dried at 110 °C and mixed homogenously with a Na2CO3 decomposer at a mass ratio Na2CO3/cassiterite as 5:3 for the decomposition process. It was done by variation temperatures (300 °C, 700 °C, 800 °C, 870 °C, 900 °C) for 3 hours, variation times (3, 4, 5 hours) at a roasting temperature of 700 °C and addition of reducing agent such as sub-bituminous coal. The result of the experiment shows that cassiterite prepared by roasting and acid leaching process has the chemical composition as follows: 59.98% Sn, 22.58% O, 3.20% Ce, 3.15% La, 2.57% Nd, 1.67% Ti, 1.56% Fe, 1.24% P, 0.62% Ca and others. The Na2SnO3 phase begins to form at a roasting temperature of 870 °C for 3 hours. Although the roasting times was extended from 3 hours to 5 hours at 700 °C, the Na2SnO3 phase also has not yet formed. In other conditions, the addition of coal reducing agent to the roasting process would cause formations of Sn metal besides Na2SnO3 phase at 870 °C. At temperatures lower than 870 °C, the addition of coal only forms Sn metal, whereas the sodium stannate phase is not formed.
Zibara, Kazem; El-Zein, Ali; Joumaa, Wissam; El-Sayyad, Mohammad; Mondello, Stefania; Kassem, Nouhad
2015-01-01
Thyroxine (T4) hormone is synthesized by the thyroid gland and then released into the systemic circulation where it binds to a number of proteins. Dysfunction in T4 transport mechanisms has been demonstrated in multiple central nervous system (CNS) diseases including Alzheimer's disease. In the presence of different compounds that inhibit potential T4 transport mechanisms, this study investigated the transfer of T4 from cerebrospinal fluid (CSF) into Choroid Plexus (CP) and other brain tissues. The compounds used were brefeldin A, low sodium artificial CSF (aCSF), BCH, phloretin, and taurocholate (TA). Radiolabeled T4 ((125)I-T4) was perfused continuously into the CSF and was assessed in several brain compartments with reference molecule (14)C-mannitol and blue dextran, using the in vivo ventriculo-cisternal perfusion (V-C) technique in the rabbit. The aCSF containing the drug of interest was infused after 1 h of perfusion. Drugs were applied independently to the aCSF after 1 h of control perfusion. Of interest, in presence of low sodium or BCH, the percentage recovery of (125)I-T4, was increased compared to controls, with concomitant increase in T4 clearance. Conversely, brefeldin A, phloretin, and TA did not exert any significant effect on the recovery and clearance of (125)I-T4 assessed in aCSF. On the other hand, the uptake of (125)I-T4 into CP was raised by 18 fold compared to controls in the presence of brefeldin A. In addition, low sodium, BCH, or phloretin alone, enhanced the uptake of (125)I-T4 by almost 3-fold, whereas TA did not show any significant effect. Finally, the uptake and distribution of (125)I-T4 into other brain regions including ependymal region (ER) and caudate putamen (CAP) were significantly higher than in controls. Our study suggests the involvement of different mechanisms for the transfer of (125)I-T4 from CSF into CP and other brain regions. This transfer may implicate sodium-dependent mechanisms, amino acid "L" system, or organic anion transporting polypeptide (OATP).
Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J
2017-02-20
The structural elucidation of unknown pharmaceutical impurities plays an important role in the quality control of newly developed and well-established active pharmaceutical ingredients (APIs). The United States Pharmacopeia (USP) monograph for the API Levothyroxine Sodium, a synthetic thyroid hormone, features two high pressure liquid chromatography (HPLC) methods using UV-VIS absorption detection to determine organic impurities in the drug substance. The impurity profile of the first USP method ("Procedure 1") has already been extensively studied, however for the second method ("Procedure 2"), which exhibits a significantly different impurity profile, no wholistic structural elucidation of impurities has been performed yet. Applying minor modifications to the chromatographic parameters of USP "Procedure 2" and using various comprehensive structural elucidation methods such as high resolution tandem mass spectrometry with on-line hydrogen-deuterium (H/D) exchange or two-dimensional nuclear magnetic resonance spectroscopy (NMR) we gained new insights about the complex impurity profile of the synthetic thyroid hormone. This resulted in the characterization of 24 compounds previously unknown to literature and the introduction of two new classes of Levothyroxine Sodium impurities. Five novel compounds were unambiguously identified via isolation or synthesis of reference substances and subsequent NMR spectroscopic investigation. Additionally, Collision-Induced Dissociation (CID)-type fragmentation of identified major impurities as well as neutral loss fragmentation patterns of many characterized impurities were discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Oggioni, Marco R; Coelho, Joana Rosado; Furi, Leonardo; Knight, Daniel R; Viti, Carlo; Orefici, Graziella; Martinez, Jose-Luis; Freitas, Ana Teresa; Coque, Teresa M; Morrissey, Ian
2015-01-01
There is a growing concern by regulatory authorities for the selection of antibiotic resistance caused by the use of biocidal products. We aimed to complete the detailed information on large surveys by investigating the relationship between biocide and antibiotic susceptibility profiles of a large number of Staphylococcus aureus isolates using four biocides and antibiotics commonly used in clinical practice. The minimal inhibitory concentration (MIC) for most clinically-relevant antibiotics was determined according to the standardized methodology for over 1600 clinical S. aureus isolates and compared to susceptibility profiles of benzalkonium chloride, chlorhexidine, triclosan, and sodium hypochlorite. The relationship between antibiotic and biocide susceptibility profiles was evaluated using non-linear correlations. The main outcome evidenced was an absence of any strong or moderate statistically significant correlation when susceptibilities of either triclosan or sodium hypochlorite were compared for any of the tested antibiotics. On the other hand, correlation coefficients for MICs of benzalkonium chloride and chlorhexidine were calculated above 0.4 for susceptibility to quinolones, beta-lactams, and also macrolides. Our data do not support any selective pressure for association between biocides and antibiotics resistance and furthermore do not allow for a defined risk evaluation for some of the compounds. Importantly, our data clearly indicate that there does not involve any risk of selection for antibiotic resistance for the compounds triclosan and sodium hypochlorite. These data hence infer that biocide selection for antibiotic resistance has had so far a less significant impact than feared.
Can, Nafiz O; Arli, Goksel; Lafci, Yigit
2011-08-01
Potassium sorbate and sodium benzoate are food additives that are generally employed for prevention of food spoilage originating from bacteria, molds or yeasts. Although these compounds were generally recognized as safe due to their low risk of acute and chronic toxicity, they have limitations of usage to protect human health. Development and validation of a novel RP-HPLC method, in which a C18-bonded monolithic silica column was used as stationary phase to assay these compounds, is described for the first time. Aliquots of 10 μL of samples were injected into chromatograph and eluted using phosphate buffer (0.025 M, pH 2.0)-water-acetonitrile (50:45:5, v/v/v) solution, which was pumped at the rate of 3.0 mL/min. To sharpen the peaks, 10 mM octylamine was added to the mobile phase. Potassium sorbate and sodium benzoate were detected at about 12(th) and 14(th) min, respectively, and quantified at 230 nm using photodiode array detector. A total of 41 samples were prepared by simply filtering through 0.45 μm filters after sonication, and injected into the system without any pre-treatment steps. Applicability of the method was demonstrated by performing total procedure on samples of different brands and types, and their compliance to official regulations was assessed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Garrido-Acosta, Osvaldo; Meza-Toledo, Sergio Enrique; Anguiano-Robledo, Liliana; Valencia-Hernández, Ignacio; Chamorro-Cevallos, Germán
2014-01-01
We determined the median effective dose (ED50) values for the anticonvulsants phenobarbital and sodium valproate using a modification of Lorke's method. This modification allowed appropriate statistical analysis and the use of a smaller number of mice per compound tested. The anticonvulsant activities of phenobarbital and sodium valproate were evaluated in male CD1 mice by maximal electroshock (MES) and intraperitoneal administration of pentylenetetrazole (PTZ). The anticonvulsant ED50 values were obtained through modifications of Lorke's method that involved changes in the selection of the three first doses in the initial test and the fourth dose in the second test. Furthermore, a test was added to evaluate the ED50 calculated by the modified Lorke's method, allowing statistical analysis of the data and determination of the confidence limits for ED50. The ED50 for phenobarbital against MES- and PTZ-induced seizures was 16.3mg/kg and 12.7mg/kg, respectively. The sodium valproate values were 261.2mg/kg and 159.7mg/kg, respectively. These results are similar to those found using the traditional methods of finding ED50, suggesting that the modifications made to Lorke's method generate equal results using fewer mice while increasing confidence in the statistical analysis. This adaptation of Lorke's method can be used to determine median letal dose (LD50) or ED50 for compounds with other pharmacological activities. Copyright © 2014 Elsevier Inc. All rights reserved.
Lee, Hyosung; Park, Ki Duk; Torregrosa, Robert; Yang, Xiao-Fang; Dustrude, Erik T; Wang, Yuying; Wilson, Sarah M; Barbosa, Cindy; Xiao, Yucheng; Cummins, Theodore R; Khanna, Rajesh; Kohn, Harold
2014-07-24
We prepared 13 derivatives of N-(biphenyl-4'-yl)methyl (R)-2-acetamido-3-methoxypropionamide that differed in type and placement of a R-substituent in the terminal aryl unit. We demonstrated that the R-substituent impacted the compound's whole animal and cellular pharmacological activities. In rodents, select compounds exhibited excellent anticonvulsant activities and protective indices (PI=TD50/ED50) that compared favorably with clinical antiseizure drugs. Compounds with a polar, aprotic R-substituent potently promoted Na+ channel slow inactivation and displayed frequency (use) inhibition of Na+ currents at low micromolar concentrations. The possible advantage of affecting these two pathways to decrease neurological hyperexcitability is discussed.
Selection of nutrient used in biogenic healing agent for cementitious materials
NASA Astrophysics Data System (ADS)
Tziviloglou, Eirini; Wiktor, Virginie; Jonkers, Henk M.; Schlangen, Erik
2017-06-01
Biogenic self-healing cementitious materials target on the closure of micro-cracks with precipitated inorganic minerals originating from bacterial metabolic activity. Dormant bacterial spores and organic mineral compounds often constitute a biogenic healing agent. The current paper focuses on the investigation of the most appropriate organic carbon source to be used as component of a biogenic healing agent. It is of great importance to use an appropriate organic source, since it will firstly ensure an optimal bacterial performance in terms of metabolic activity, while it should secondly affect the least the properties of the cementitious matrix. The selection is made among three different organic compounds, namely calcium lactate, calcium acetate and sodium gluconate. The methodology that was used for the research was based on continuous and non-continuous oxygen consumption measurements of washed bacterial cultures and on compressive strength tests on mortar cubes. The oxygen consumption investigation revealed a preference for calcium lactate and acetate, but an indifferent behaviour for sodium gluconate. The compressive strength on mortar cubes with different amounts of either calcium lactate or acetate (up to 2.24% per cement weight) was not or it was positively affected when the compounds were dissolved in the mixing water. In fact, for calcium lactate the increase in compressive strength reached 8%, while for calcium acetate the maximum strength increase was 13.4%.
Chutipongtanate, Somchai; Chaiyarit, Sakdithep; Thongboonkerd, Visith
2012-08-15
Dissolution therapy of calcium oxalate monohydrate (COM) kidney stone disease has not yet been implemented due to a lack of well characterized COM dissolution agents. The present study therefore aimed to identify potential COM crystal dissolution compounds. COM crystals were treated with deionized water (negative control), 5 mM EDTA (positive control), 5 mM sodium citrate, or 5mM sodium phosphate. COM crystal dissolution activities of these compounds were evaluated by phase-contrast and video-assisted microscopic examinations, semi-quantitative analysis of crystal size, number and total mass, and spectrophotometric oxalate-dissolution assay. In addition, effects of these compounds on detachment of COM crystals, which adhered tightly onto renal tubular cell surface, were also investigated. The results showed that citrate, not phosphate, had a significant dissolution effect on COM crystals as demonstrated by significant reduction of crystal size (approximately 37% decrease), crystal number (approximately 53% decrease) and total crystal mass (approximately 72% decrease) compared to blank and negative controls. Spectrophotometric oxalate-dissolution assay successfully confirmed the COM crystal dissolution property of citrate. Moreover, citrate could detach up to 85% of the adherent COM crystals from renal tubular cell surface. These data indicate that citrate is better than phosphate for dissolution and detachment of COM crystals. Copyright © 2012 Elsevier B.V. All rights reserved.
Rodríguez-Espinosa, P F; Mendoza-Pérez, J A; Tabla-Hernandez, J; Martínez-Tavera, E; Monroy-Mendieta, M M
2018-01-02
The objective of the present study was to investigate the ability of water hyacinth (Eichhornia crassipes) to absorb organic compounds (potassium hydrogen phthalate, sodium tartrate, malathion, 2,4-dichlorophenoxy acetic acid (2,4-D), and piroxicam). For the aforementioned purpose, an artificial wetland system (AWS) was constructed and filled with water hyacinth collected from the Valsequillo Reservoir, Puebla, Mexico. Potassium hydrogen phthalate and sodium tartrate were measured in terms of chemical oxygen demand (COD) and biological oxygen demand (BOD). The present study indicated that the water hyacinths absorbed nearly 1.8-16.6 g of COD kg -1 dm (dry mass of water hyacinth), while the absorbance efficiency of BOD was observed to be 45.8%. The results also indicated that the maximum absorbance efficiency of malathion, 2,4-D, and piroxicam was observed to be 67.6%, 58.3%, and 99.1%, respectively. The kinetics of organic compounds fitted different orders as malathion followed a zeroth-order reaction, while 2,4-D and piroxicam followed the first-order reactions. Preliminary assessment of absorption of heavy metals by the water hyacinth in the AWS was observed to be (all values in mg g -1 ) 7 (Ni), 13.4 (Cd), 16.3 (Pb), and 17.5 (Zn) of dry biomass, thus proving its feasibility to depurate wastewater.
Goueguel, Christian; McIntyre, Dustin L.; Jain, Jinesh; ...
2015-06-30
A significant portion of the carbon sequestration research being performed in the United States involves the risk assessment of injecting large quantities of carbon dioxide into deep saline aquifers. Leakage of CO 2 has the potential to affect the quality of groundwater supplies in case contaminants migrate through underlying conduits. New remote sensing and near-surface monitoring technologies are needed to ensure that injection, abandoned, and monitoring wells are structurally sound, and that CO 2 remains within the geologic storage reservoir. In this paper, we propose underwater laser-induced breakdown spectroscopy (underwater LIBS) as an analytical method for monitoring naturally occurring elementsmore » that can act as tracers to detect a CO 2 leak from storage sites. Laboratory-scale experiments were conducted to measure Sr 2+, Ca 2+, K +, and Li + in bulk solutions to ascertain the analytical performance of underwater LIBS. We compared the effect of NaCl, Na 2CO 3, and Na 2SO 4 on the analytes calibration curves to determine underwater LIBS’ ability to analyze samples of sodium compounds. In all cases, the calibration curves showed a good linearity within 2 orders of magnitude. The limit of detections (LODs) obtained for K + (30±1 ppb) and Li + (60±2 ppb) were in ppb range, while higher LODs were observed for Ca 2+ (0.94±0.14 ppm) and Sr 2+ (2.89±0.11 ppm). Evaluation of the calibration curves for the analytes in mixed solutions showed dependence of the lines’ intensity with the sodium compounds. The intensities increased respectively in the presence of dissolved NaCl and Na 2SO 4, whereas the intensities slightly decreased in the presence of Na 2CO 3. Lastly, the capabilities of underwater LIBS to detect certain elements in the ppb or in the low ppm range make it particularly appealing for in situ monitoring of a CO 2 leak.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goueguel, Christian; McIntyre, Dustin L.; Jain, Jinesh
A significant portion of the carbon sequestration research being performed in the United States involves the risk assessment of injecting large quantities of carbon dioxide into deep saline aquifers. Leakage of CO 2 has the potential to affect the quality of groundwater supplies in case contaminants migrate through underlying conduits. New remote sensing and near-surface monitoring technologies are needed to ensure that injection, abandoned, and monitoring wells are structurally sound, and that CO 2 remains within the geologic storage reservoir. In this paper, we propose underwater laser-induced breakdown spectroscopy (underwater LIBS) as an analytical method for monitoring naturally occurring elementsmore » that can act as tracers to detect a CO 2 leak from storage sites. Laboratory-scale experiments were conducted to measure Sr 2+, Ca 2+, K +, and Li + in bulk solutions to ascertain the analytical performance of underwater LIBS. We compared the effect of NaCl, Na 2CO 3, and Na 2SO 4 on the analytes calibration curves to determine underwater LIBS’ ability to analyze samples of sodium compounds. In all cases, the calibration curves showed a good linearity within 2 orders of magnitude. The limit of detections (LODs) obtained for K + (30±1 ppb) and Li + (60±2 ppb) were in ppb range, while higher LODs were observed for Ca 2+ (0.94±0.14 ppm) and Sr 2+ (2.89±0.11 ppm). Evaluation of the calibration curves for the analytes in mixed solutions showed dependence of the lines’ intensity with the sodium compounds. The intensities increased respectively in the presence of dissolved NaCl and Na 2SO 4, whereas the intensities slightly decreased in the presence of Na 2CO 3. Lastly, the capabilities of underwater LIBS to detect certain elements in the ppb or in the low ppm range make it particularly appealing for in situ monitoring of a CO 2 leak.« less
Bhattachar, Shobha N; Risley, Donald S; Werawatganone, Pornpen; Aburub, Aktham
2011-06-30
This work reports on the solubility of two weakly basic model compounds in media containing sodium lauryl sulfate (SLS). Results clearly show that the presence of SLS in the media (e.g. simulated gastric fluid or dissolution media) can result in an underestimation of solubility of some weak bases. We systematically study this phenomenon and provide evidence (chromatography and pXRD) for the first time that the decrease in solubility is likely due to formation of a less soluble salt/complex between the protonated form of the weak base and lauryl sulfate anion. Copyright © 2011 Elsevier B.V. All rights reserved.
Highly conductive electrolyte composites containing glass and ceramic, and method of manufacture
Hash, M.C.; Bloom, I.D.
1992-10-13
An electrolyte composite is manufactured by pressurizing a mixture of sodium ion conductive glass and an ionically conductive compound at between 12,000 and 24,000 pounds per square inch to produce a pellet. The resulting pellet is then sintered at relatively lower temperatures (800--1200 C), for example 1000 C, than are typically required (1400 C) when fabricating single constituent ceramic electrolytes. The resultant composite is 100 percent conductive at 250 C with conductivity values of 2.5 to 4[times]10[sup [minus]2](ohm-cm)[sup [minus]1]. The matrix exhibits chemical stability against sodium for 100 hours at 250 to 300 C. 1 figure.
Highly conductive electrolyte composites containing glass and ceramic, and method of manufacture
Hash, Mark C.; Bloom, Ira D.
1992-01-01
An electrolyte composite is manufactured by pressurizing a mixture of sodium ion conductive glass and an ionically conductive compound at between 12,000 and 24,000 pounds per square inch to produce a pellet. The resulting pellet is then sintered at relatively lower temperatures (800.degree. C.-1200.degree. C.), for example 1000.degree. C., than are typically required (1400.degree. C.) when fabricating single constituent ceramic electrolytes. The resultant composite is 100 percent conductive at 250.degree. C. with conductivity values of 2.5 to 4.times.10.sup.-2 (ohm-cm).sup.-1. The matrix exhibits chemical stability against sodium for 100 hours at 250.degree. to 300.degree. C.
von Stein, Richard T.
2012-01-01
Sodium channel inhibitor (SCI) insecticides selectively target voltage-gated sodium (Nav) channels in the slow-inactivated state by binding at or near the local anesthetic receptor within the sodium channel pore. Metaflumizone is a new insecticide for the treatment of fleas on domesticated pets and has recently been reported to block insect sodium channels in the slow-inactivated state, thereby implying that it is also a member of the SCI class. Using the two-electrode voltage-clamp technique, we examined metaflumizone inhibition of rat Nav1.4 sodium channels expressed in Xenopus laevis oocytes. Metaflumizone selectively inhibited Nav1.4 channels at potentials that promoted slow inactivation and shifted the voltage dependence of slow inactivation in the direction of hyperpolarization. Metaflumizone perfusion at a hyperpolarized holding potential also shifted the conductance-voltage curve for activation in the direction of depolarization and antagonized use-dependent lidocaine inhibition of fast-inactivated sodium channels, actions not previously observed with other SCI insecticides. We expressed mutated Nav1.4/F1579A and Nav1.4/Y1586A channels to investigate whether metaflumizone shares the domain IV segment S6 (DIV-S6) binding determinants identified for other SCI insecticides. Consistent with previous investigations of SCI insecticides on rat Nav1.4 channels, the F1579A mutation reduced sensitivity to block by metaflumizone, whereas the Y1586A mutation paradoxically increased the sensitivity to metaflumizone. We conclude that metaflumizone selectively inhibits slow-inactivated Nav1.4 channels and shares DIV-S6 binding determinants with other SCI insecticides and therapeutic drugs. However, our results suggest that metaflumizone interacts with resting and fast-inactivated channels in a manner that is distinct from other compounds in this insecticide class. PMID:22127519
Kamel, Alaa; Tomasino, Stephen F
2017-03-01
An analytical method for determining the presence and levels of residual active ingredients found in neutralized suspensions of phenolic and quaternary ammonium salt-based antimicrobial products was developed using solid-phase extraction in combination with LC-tandem MS. A single-laboratory validation of the method was performed at three concentration levels for the quaternary ammonium compounds (also referred to as benzalkonium chlorides or BACs) and the phenols in the presence of letheen broth neutralizer at 2.5 and 2.75 μg/mL, respectively, as well as at dilutions of 1:10 and 1:100 in those concentrations. The method's lowest LODs were 0.005 μg/g for BACs and 0.006 μg/g for phenols. The average recovery of the fortified samples for both active ingredients ranged between 80 and 124%, and RSDs were generally <20%. In a related study, the effectiveness of letheen broth with and without sodium thiosulfate was evaluated as a neutralizer for sodium hypochlorite. The results showed that letheen broth without sodium thiosulfate neutralizes chlorine concentrations up to 60 ppm, and that 200 μg sodium thiosulfate are required to neutralize a 72 ppm concentrated chlorine solution in letheen broth.
Mattison, Christopher P; Desormeaux, Wendy A; Wasserman, Richard L; Yoshioka-Tarver, Megumi; Condon, Brian; Grimm, Casey C
2014-07-16
Cashew nut and other nut allergies can result in serious and sometimes life-threatening reactions. Linear and conformational epitopes within food allergens are important for immunoglobulin E (IgE) binding. Methods that disrupt allergen structure can lower IgE binding and lessen the likelihood of food allergy reactions. Previous structural and biochemical data have indicated that 2S albumins from tree nuts and peanuts are potent allergens, and that their structures are sensitive to strong reducing agents such as dithiothreitol. This study demonstrates that the generally regarded as safe (GRAS) compound sodium sulfite effectively disrupted the structure of the cashew 2S albumin, Ana o 3, in a temperature-dependent manner. This study also showed that sulfite is effective at disrupting the disulfide bond within the cashew legumin, Ana o 2. Immunoblotting and ELISA demonstrated that the binding of cashew proteins by rabbit IgG or IgE from cashew-allergic patients was markedly lowered following treatment with sodium sulfite and heating. The results indicate that incorporation of sodium sulfite, or other food grade reagents with similar redox potential, may be useful processing methods to lower or eliminate IgE binding to food allergens.
Crystal structure of bis(μ-N-hydroxypicolinamidato)bis[bis(N-hydroxypicolinamide)sodium
Safyanova, Inna S.; Ohui, Kateryna A.; Omelchenko, Irina V.
2017-01-01
The title compound, [Na2(C6H5N2O2)2(C6H6N2O2)4], is a centrosymmetric coordination dimer based on the sodium(I) salt of N-hydroxypicolinamide. The molecule has an {Na2O6(μ-O)2} core with two bridging carbonyl O atoms and two hydroxamate O atoms of two mono-deprotonated residues of N-hydroxypicolinamide, while two neutral N-hydroxypicolinamide molecules are coordinated in a monodentate manner to each sodium ion via the carbonyl O atoms [the Na—O distances range from 2.3044 (2) to 2.3716 (2) Å]. The pentacoordinated sodium ion exhibits a distorted trigonal–pyramidal coordination polyhedron. In the crystal, the coordination dimers are linked into chains along the c axis via N—H⋯O and N—H⋯N hydrogen bonds; the chains are linked into a two-dimensional framework parallel to (100) via weak C—H⋯O and π–π stacking interactions. PMID:28083127
Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu
2010-04-15
Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept. 2009 Elsevier B.V. All rights reserved.
Chi, Xiaowei; Liang, Yanliang; Hao, Fang; Zhang, Ye; Whiteley, Justin; Dong, Hui; Hu, Pu; Lee, Sehee; Yao, Yan
2018-03-01
All-solid-state sodium batteries (ASSSBs) with nonflammable electrolytes and ubiquitous sodium resource are a promising solution to the safety and cost concerns for lithium-ion batteries. However, the intrinsic mismatch between low anodic decomposition potential of superionic sulfide electrolytes and high operating potentials of sodium-ion cathodes leads to a volatile cathode-electrolyte interface and undesirable cell performance. Here we report a high-capacity organic cathode, Na 4 C 6 O 6 , that is chemically and electrochemically compatible with sulfide electrolytes. A bulk-type ASSSB shows high specific capacity (184 mAh g -1 ) and one of the highest specific energies (395 Wh kg -1 ) among intercalation compound-based ASSSBs. The capacity retentions of 76 % after 100 cycles at 0.1 C and 70 % after 400 cycles at 0.2 C represent the record stability for ASSSBs. Additionally, Na 4 C 6 O 6 functions as a capable anode material, enabling a symmetric all-organic ASSSB with Na 4 C 6 O 6 as both cathode and anode materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gören, Ahmet C; Bilsel, Gökhan; Şimşek, Adnan; Bilsel, Mine; Akçadağ, Fatma; Topal, Kevser; Ozgen, Hasan
2015-05-15
High Performance Liquid Chromatography LC-UV and LC-MS/MS methods were developed and validated for quantitative analyses of sodium benzoate and potassium sorbate in foods and beverages. HPLC-UV and LC-MS/MS methods were compared for quantitative analyses of sodium benzoate and potassium sorbate in a representative ketchup sample. Optimisation of the methods enabled the chromatographic separation of the analytes in less than 4 min. A correlation coefficient of 0.999 was achieved over the measured calibration range for both compounds and methods (HPLC and LC-MS/MS). The uncertainty values of sodium benzoate and potassium sorbate were found as 0.199 and 0.150 mg/L by HPLC and 0.072 and 0.044 mg/L by LC-MS/MS, respectively. Proficiency testing performance of Turkish accredited laboratories between the years 2005 and 2013 was evaluated and reported herein. The aim of the proficiency testing scheme was to evaluate the performance of the laboratories, analysing benzoate and sorbate in tomato ketchup. Copyright © 2014 Elsevier Ltd. All rights reserved.
Crippa, José Alexandre; Hallak, Jaime Eduardo Cecílio; Abílio, Vanessa Costhek; de Lacerda, Acioly Luiz Tavares; Zuardi, Antonio Waldo
2015-01-01
Since most patients with schizophrenia do not respond properly to treatment, scientific effort has been driven to the development of new compounds acting on pharmacological targets beyond the dopaminergic system. Therefore, the aim is to review basic and clinical research findings from studies evaluating the effects of cannabidiol (CBD), an inhibitor of the reuptake and metabolism of anandamide and several other effects on nervous system, and sodium nitroprusside, a nitric oxide donor, on the prevention and treatment of psychosis. Animal and human research supports that CBD and sodium nitroprusside might be effective in the prevention and treatment of psychosis in general and especially in schizophrenia. The evidence available to date shows that CBD and sodium nitroprusside act in pathways associated with psychotic symptoms and that they may be important agents in the management of prodromal psychotic states and psychosis. This underscores the relevance of further research on the effects of these agents and others that mediate the activity of the cannabinoid system and of nitric oxide, as well as comparative studies of their antipsychotic effects and those of other antipsychotic drugs currently used to treat schizophrenia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Bingjun; Soderlund, David M., E-mail: dms6@cornell.edu
2011-12-15
We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}1 and {beta}2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na{sub v}1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent 'late' currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltagemore » dependence of the pyrethroid-induced late and tail currents, were {approx} 25 mV for tefluthrin and {approx} 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of {approx} 5-10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na{sub v}1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by {approx} 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na{sub v}1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na{sub v}1.6 channels in HEK293 cells differ from the effects of these compounds on Na{sub v}1.6 channels in Xenopus oocytes and more closely reflect the actions of pyrethroids on channels in their native neuronal environment. -- Highlights: Black-Right-Pointing-Pointer We expressed rat Na{sub v}1.6 voltage-gated sodium channels in HEK293 cells. Black-Right-Pointing-Pointer Tefluthrin and deltamethrin caused resting modification of Na{sub v}1.6 channels. Black-Right-Pointing-Pointer Only deltamethrin exhibited use-dependent enhancement of modification. Black-Right-Pointing-Pointer State-dependent effects of pyrethroids are influenced by the cellular context. Black-Right-Pointing-Pointer Channels in HEK293 cells exhibit properties similar to native neuronal channels.« less
Burgot, G; Burgot, J-L
2002-10-15
Thermometric titrimetry permits titration of acido-basic compounds in water in the presence of n-octanol. n-Octanol permits the solubilization of protolytes and moreover may also displace the equilibria of the titration reactions. Hydrochlorides of highly insoluble derivatives such as phenothiazine derivatives can be titrated with satisfactory accuracy and precision by sodium hydroxide despite their high pK(a) values. Likewise barbiturate salts can be titrated by hydrochloric acid. In the case of some salts, the methodology may permit the sequential titration of the ion and counter ion. Copyright 2002 Elsevier Science B.V.
Cariani, L; Thomas, L; Brito, J; del Castillo, J R
2004-01-01
This paper describes a rapid and sensitive method to determine inorganic phosphate, even in the presence of labile organic phosphate compounds and large quantities of proteins. The method eliminates the use of sodium arsenite, a highly toxic compound, substituting bismuth citrate for it to stabilize the phosphomolybdic acid complex formed during the interaction of inorganic phosphate and molybdate reduced by ascorbic acid. This method has also been adapted to microplates and has been used to determine the activities of Na/K ATPase and alkaline phosphatase of intestinal basolateral and luminal plasma membranes.
Synthesis of labeled compounds using recovered tritium from expired beta light sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matei, L.; Postolache, C.; Bubueanu, G.
2008-07-15
In this paper, the technological procedures for extracting tritium from beta light source are highlighted. The recovered tritium was used in the synthesis of organically labeled compounds and in the preparation of tritiated water (HTO) with high specific activity. Technological procedures for treatment of beta light sources consist of: envelope breaking into evacuated enclosure, the radioactive gaseous mixture pumping and its storage on metallic sodium. The mixtures of T{sub 2} and {sup 3}He were used in the synthesis of tritium labeled steroid hormones, nucleosides analogues and for the preparation of HTO with high radioactivity concentrations. (authors)
Guo, Cheng; Hu, Min; DeOrazio, Russell J; Usyatinsky, Alexander; Fitzpatrick, Kevin; Zhang, Zhenjun; Maeng, Jun-Ho; Kitchen, Douglas B; Tom, Susan; Luche, Michele; Khmelnitsky, Yuri; Mhyre, Andrew J; Guzzo, Peter R; Liu, Shuang
2014-07-01
The sodium glucose co-transporter 2 (SGLT2) has received considerable attention in recent years as a target for the treatment of type 2 diabetes mellitus. This report describes the design, synthesis and structure-activity relationship (SAR) of C-glycosides with benzyltriazolopyridinone and phenylhydantoin as the aglycone moieties as novel SGLT2 inhibitors. Compounds 5p and 33b demonstrated high potency in inhibiting SGLT2 and high selectivity against SGLT1. The in vitro ADMET properties of these compounds will also be discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ran, Weizhi; Wang, Xiaoli; Hu, Yuefei; Gao, Songying; Yang, Yahong; Sun, Jian; Sun, Shuming; Liu, Zhongmei; Wang, Jiangling
2015-05-01
To investigate the biocompatibility and degradation rate of crosslinking sodium hyaluronate gel with different ratio of molecular weight, so as to choose the effective, safe and totally degraded hyaluronate gel for aesthetic injection. (1) Compound colloid was formed by cross-linking the divinyl sulphone and sodium hyaluronate with different molecular weight (4 x 10(5), 8 x 10(5), 10 x 10(5), 12 x 10(5)). (2) Healthy level KM mice was randomly divided into two groups to receive hyaluronic acid gel or liquid injection. Each group was subdivided into three subgroup to receive hyaluronic acid with different molecular weight. The biocompatibility and degradation rate, of hyaluronate were observed at 7, 90, 180 days after injection. At the same time, different molecular weight of sodium hyaluronate gel is sealed or exposed respectively under the low temperature preservation to observe its natural degradation rate. (3) The most stable colloid was selected as aesthetic injector for volunteers to observe the aesthetic effect. The sodium hyaluronate gel with molecular of 4 x 10(5) was completely degraded 90 days later. The sodium hyaluronate gel with molecular of 8 x 10(5) was completely degraded 180 days later. The sodium hyaluronate gel with molecular of 10 x 10(5) was degraded to 90.0% after 180 days. The sodium hyaluronate liquid can be degraded completely within 7 days. The colloid could be kept for at least 12 months when sealed under low temperature, but was totally degraded when exposed for I d. Sodium hyaluronate gel with molecular 10 x 10(5) was confirmed to be kept for at least 6 months in animal experiment and clinical trials. Under the same condition of material ratio, the higher the molecular weight is, the lower the degradation rate is. But the liquidity of gel is not good for injection when molecular weight is too large. It suggests that Sodium hyaluronate gel with molecular 10 x 10(5) maybe the best choice in cosmetic injections.
Alcohol-free alkoxide process for containing nuclear waste
Pope, James M.; Lahoda, Edward J.
1984-01-01
Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.
Influence of iodine on the treatment of spacecraft humidity condensate to produce potable water
NASA Technical Reports Server (NTRS)
Symons, James M.; Muckle, Susan V.
1990-01-01
Several compounds in the ersatz humidity condensate do react with iodine to form iodine-substituted organic compounds (TOI), most notably phenol, acetaldehyde, ethanol, and sodium formate. Iodination of the ersatz humidity condensate produced 3.0 to 3.5 mg/L of TOI within 24 hours. The TOI that was produced by the passage of the ersatz humidity condensate through the first iodinated resin (IR) in the adsorption system was removed by the granular activated carbon that followed. TOI detected in the final effluent was formed by the reaction of the non-adsorbable condensate compounds with the final IR in the treatment series. The activated carbon bed series in the adsorption system performed poorly in its removal of TOC. The rapid breakthrough of TOC was not surprising, as the ersatz humidity condensate contained several highly soluble organic compounds, alcohols and organic acids.
Radio- and photosensitization of DNA with compounds containing platinum and bromine atoms
NASA Astrophysics Data System (ADS)
Śmiałek, Małgorzata A.; Ptasińska, Sylwia; Gow, Jason; Vrønning Hoffmann, Søren; Mason, Nigel J.
2015-05-01
Irradiations of plasmid DNA by both X-rays and UV light in the presence and absence of compounds containing platinum and bromine atoms were performed in order to asses the sensitization potential of these compounds. Plasmid DNA pBR322 was incubated with platinum (II) bromide, hydrogen hexabromoplatinate (IV), hydrogen hexahydroxyplatinate (IV) and sodium hexahydroxyplatinate (IV). Incubation was followed by X-ray or UV irradiations. It was found that amongst the sensitizers tested, during irradiations carried out in the presence of platinum (II) bromide, the highest levels of double strand breaks formation upon X-ray treatment were recorded. In contrast much less damage was induced by UV light. Data presented here suggests that this compound may be a promising radiosensitizer for cancer treatment. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.
Silva, Fábio Pedrosa Lins; Dantas, Bruna Braga; Faheina Martins, Gláucia Veríssimo; de Araújo, Demétrius Antônio Machado; Vasconcellos, Mário Luiz Araújo de Almeida
2016-06-21
In this paper we present the convenient syntheses of six new guanylhydrazone and aminoguanidine tetrahydropyran derivatives 2-7. The guanylhydrazone 2, 3 and 4 were prepared in 100% yield, starting from corresponding aromatic ketones 8a-c and aminoguanidine hydrochloride accessed by microwave irradiation. The aminoguanidine 5, 6 and 7 were prepared by reduction of guanylhydrazone 2-4 with sodium cyanoborohydride (94% yield of 5, and 100% yield of 6 and 7). The aromatic ketones 8a-c were prepared from the Barbier reaction followed by the Prins cyclization reaction (two steps, 63%-65% and 95%-98%). Cytotoxicity studies have demonstrated the effects of compounds 2-7 in various cancer and normal cell lines. That way, we showed that these compounds decreased cell viabilities in a micromolar range, and from all the compounds tested we can state that, at least, compound 3 can be considered a promising molecule for target-directed drug design.
Viuda-Martos, Manuel; Lucas-Gonzalez, Raquel; Ballester-Costa, Carmen; Pérez-Álvarez, José A; Muñoz, Loreto A; Fernández-López, Juana
2018-01-24
The aim of this work was to determine the protective effect of different dietary fibers on (i) the recovery and bioaccessibility indexes, and (ii) the stability of polyphenolic compounds (phenolic acids, flavonoids and anthocyanins) of maqui berry powder subjected to in vitro gastrointestinal digestion (GID). The extracts obtained in each phase (oral, gastric and intestinal) of GID were used to analyze the stability of polyphenolic compounds by HPLC, and the bioaccessibility of these compounds was also determined. At the end of the GID process, the mixture of maqui berry with the different fibers increased the bioaccessibility index of the phenolic and flavonoid compounds in all cases. The results obtained suggest that the anthocyanins and phenolic acids and flavonoid compounds present in maqui are stabilized through dietary fiber interactions, which might provide sufficient levels for absorption during gastrointestinal digestion. The gums sodium carboxymethyl cellulose, xanthan gum and guar gum provided the best protective effect.
Marine Cyanobacteria Compounds with Anticancer Properties: A Review on the Implication of Apoptosis
Costa, Margarida; Costa-Rodrigues, João; Fernandes, Maria Helena; Barros, Piedade; Vasconcelos, Vitor; Martins, Rosário
2012-01-01
Marine cyanobacteria have been considered a rich source of secondary metabolites with potential biotechnological applications, namely in the pharmacological field. Chemically diverse compounds were found to induce cytoxicity, anti-inflammatory and antibacterial activities. The potential of marine cyanobacteria as anticancer agents has however been the most explored and, besides cytotoxicity in tumor cell lines, several compounds have emerged as templates for the development of new anticancer drugs. The mechanisms implicated in the cytotoxicity of marine cyanobacteria compounds in tumor cell lines are still largely overlooked but several studies point to an implication in apoptosis. This association has been related to several apoptotic indicators such as cell cycle arrest, mitochondrial dysfunctions and oxidative damage, alterations in caspase cascade, alterations in specific proteins levels and alterations in the membrane sodium dynamics. In the present paper a compilation of the described marine cyanobacterial compounds with potential anticancer properties is presented and a review on the implication of apoptosis as the mechanism of cell death is discussed. PMID:23170077
Effect of Vanadium and Sodium Compounds on Accelerated Oxidation of Nickel-Base Alloys.
The product of the reaction between V2O5 and the substrates is dependent upon the alloying elements present in the alloy. In the absence of alloying...reaction appears to be a glass . The study is related to corrosion inhibitions in vanadium containing fuels in gas turbines. (Modified author abstract)
Mechanisms of protection by NHA against fungal decay
Frederick Green; William Henry; Tor Schultz
2002-01-01
Treating wood with the water-borne sodium salt of N'-N-naphthaloylhydroxylamine (Na-NHA) protects wood against decay and termite damage. Initial testing indicated little or no inhibition of sapstain fungi, molds, or soft-rot fungi by Na-NHA, suggesting that the mechanism by which this compound protected wood was complex and not that of a broad-spectrum biocide....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, J.; Agblevor, F. A.; Beis, S. H.
Pine wood samples were used as model feedstock to study the properties of catalytic fast pyrolysis oils. The influence of two commercial zeolite catalysts (BASF and SudChem) and pretreatment of the pine wood with sodium hydroxide on pyrolysis products were investigated. The pyrolysis oils were first fractionated using column chromatography and characterized using GC-MS. Long chain aliphatic hydrocarbons, levoglucosan, aldehydes and ketones, guaiacols/syringols, and benzenediols were the major compounds identified in the pyrolysis oils. The catalytic pyrolysis increased the polycyclic hydrocarbons fraction. Significant decreases in phthalate derivatives using SudChem and long chain aliphatics using BASF catalyst were observed. Significant amountsmore » of aromatic heterocyclic hydrocarbons and benzene derivatives were formed, respectively, using BASF and SudChem catalysts. Guaiacyl/syringyl and benzenediols derivatives were partly suppressed by the zeolite catalysts, while the sodium hydroxide treatment enriched phenolic derivatives. Zeolite catalyst and sodium hydroxide were employed together; they showed different results for each catalyst.« less
Can, Zehra; Dincer, Barbaros; Sahin, Huseyin; Baltas, Nimet; Yildiz, Oktay; Kolayli, Sevgi
2014-12-01
In this study, firstly, antioxidant and polyphenol oxidase (PPO) properties of Yomra apple were investigated. Seventeen phenolic constituents were measured by reverse phase-high-performance liquid chromatography (RP-HPLC). Total phenolic compounds (TPCs), ferric reducing antioxidant power (FRAP) and 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activities were performed to measure antioxidant capacity. Some kinetic parameters (Km, Vmax), and inhibition behaviors against five different substrates were measured in the crude extract. Catechin and chlorogenic acid were found as the major components in the methanolic extract, while ferulic acid, caffeic acid, p-hydroxybenzoic acid, quercetin and p-coumaric acid were small quantities. Km values ranged from 0.70 to 10.10 mM in the substrates, and also 3-(4-hydroxyphenyl) propanoic acid (HPPA) and L-DOPA showed the highest affinity. The inhibition constant of Ki were ranged from 0.05 to 14.90 mM against sodium metabisulphite, ascorbic acid, sodium azide and benzoic acid, while ascorbic acid and sodium metabisulphite were the best inhibitors.
On the size of pores arising in erythrocytes under the action of detergents.
Senkovich, O A; Chernitsky, E A
1998-01-01
The size of pores arising in human erythrocytes under the action of two detergents (Triton X-100 and sodium dodecyl sulfate) and causing the slow component of hemolysis was estimated by the method of osmotic protectors. The pore diameters were found to be about 40 A. The pores responsible for the fast component of hemolysis induced by sodium dodecyl sulfate were shown to be of greater size and even molecules of polyethylene glycol 4000 could pass through them. The unusual decrease. In the rate and percentage of this hemolytic component was caused by the side action of the protectors, i.e., by the acceleration of erythrocyte vesiculation, a process that competed with pore formation. Vesiculation protected erythrocytes against fast and slow detergent-induced hemolysis. It is shown that the method of osmotic protectors can not be used for estimation of pore size in fast hemolysis by sodium dodecyl sulfate. The application of this method for hemolysis by other amphiphilic compounds is discussed.
Design and synthesis of the superionic conductor Na10SnP2S12
Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand
2016-01-01
Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm−1 rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity. PMID:26984102
Isolation of prolyl endopeptidase inhibitory peptides from a sodium caseinate hydrolysate.
Hsieh, Cheng-Hong; Wang, Tzu-Yuan; Hung, Chuan-Chuan; Hsieh, You-Liang; Hsu, Kuo-Chiang
2016-01-01
Prolyl endopeptidase (PEP) has been associated with neurodegenerative disorders, and the PEP inhibitors can restore the memory loss caused by amnesic compounds. In this study, we investigated the PEP inhibitory activity of the enzymatic hydrolysates from various food protein sources, and isolated and identified the PEP inhibitory peptides. The hydrolysate obtained from sodium caseinate using bromelain (SC/BML) displayed the highest inhibitory activity of 86.8% at 5 mg mL(-1) in the present study, and its IC50 value against PEP was 0.77 mg mL(-1). The F-5 fraction by RP-HPLC (reversed-phase high performance liquid chromatography) from SC/BML showed the highest PEP inhibition rate of 88.4%, and 9 peptide sequences were identified. The synthetic peptides (1245.63-1787.94 Da) showed dose-dependent inhibition effects on PEP as competitive inhibitors with IC50 values between 29.8 and 650.5 μM. The results suggest that the peptides derived from sodium caseinate have the potential to be PEP inhibitors.
Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2
NASA Astrophysics Data System (ADS)
Ben Yahia, Hamdi; Essehli, Rachid; Amin, Ruhul; Boulahya, Khalid; Okumura, Toyoki; Belharouak, Ilias
2018-04-01
The compound NaFe2(PO4)(SO4)2 is successfully synthesized via a solid state reaction route and its crystal structure is determined using powder X-ray diffraction data. NaFe2(PO4)(SO4)2 phase is also characterized by cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. NaFe2(PO4)(SO4)2 crystallizes with the well-known NASICON-type structure. SAED and HRTEM experiments confirm the structural model, and no ordering between the PO4-3 and SO4-2 polyanions is detected. The electrochemical tests indicate that NaFe2(PO4)(SO4)2 is a 3 V sodium intercalating cathode. The electrical conductivity is relatively low (2.2 × 10-6 Scm-1 at 200 °C) and the obtained activation energy is ∼0.60eV. The GITT experiments indicate that the diffusivity values are in the range of 10-11-10-12 cm2/s within the measured sodium concentrations.
Controlling epithelial sodium channels with light using photoswitchable amilorides
NASA Astrophysics Data System (ADS)
Schönberger, Matthias; Althaus, Mike; Fronius, Martin; Clauss, Wolfgang; Trauner, Dirk
2014-08-01
Amiloride is a widely used diuretic that blocks epithelial sodium channels (ENaCs). These heterotrimeric transmembrane proteins, assembled from β, γ and α or δ subunits, effectively control water transport across epithelia and sodium influx into non-epithelial cells. The functional role of δβγENaC in various organs, including the human brain, is still poorly understood and no pharmacological tools are available for the functional differentiation between α- and δ-containing ENaCs. Here we report several photoswitchable versions of amiloride. One compound, termed PA1, enables the optical control of ENaC channels, in particular the δβγ isoform, by switching between blue and green light, or by turning on and off blue light. PA1 was used to modify functionally δβγENaC in amphibian and mammalian cells. We also show that PA1 can be used to differentiate between δβγENaC and αβγENaC in a model for the human lung epithelium.
Pereira, J.; Agblevor, F. A.; Beis, S. H.
2012-01-01
Pine wood samples were used as model feedstock to study the properties of catalytic fast pyrolysis oils. The influence of two commercial zeolite catalysts (BASF and SudChem) and pretreatment of the pine wood with sodium hydroxide on pyrolysis products were investigated. The pyrolysis oils were first fractionated using column chromatography and characterized using GC-MS. Long chain aliphatic hydrocarbons, levoglucosan, aldehydes and ketones, guaiacols/syringols, and benzenediols were the major compounds identified in the pyrolysis oils. The catalytic pyrolysis increased the polycyclic hydrocarbons fraction. Significant decreases in phthalate derivatives using SudChem and long chain aliphatics using BASF catalyst were observed. Significant amountsmore » of aromatic heterocyclic hydrocarbons and benzene derivatives were formed, respectively, using BASF and SudChem catalysts. Guaiacyl/syringyl and benzenediols derivatives were partly suppressed by the zeolite catalysts, while the sodium hydroxide treatment enriched phenolic derivatives. Zeolite catalyst and sodium hydroxide were employed together; they showed different results for each catalyst.« less
Yu, Fei; Guo, Menglin; Deng, Yabin; Lu, Yin; Chen, Lin; Huang, Ping; Li, Donghui
2016-01-01
We have found that a positively charged cationic copper phthalocyanine, Alcian blue (Alcian blue 8GX), can efficiently quench the fluorescence of an oppositely charged red fluorescent phthalocyanine compound with a matched molecular structure, tetrasulfonated aluminum phthalocyanine (AlS4Pc), because of the formation of an ion pair complex (AlS4Pc-Alcian blue 8GX) that exhibits almost no fluorescence. An investigation was carried out on the fluorescence recovery of AlS4Pc-Alcian blue 8GX caused by a series of anionic surfactants containing a sulfonic group (sodium dodecylbenzenesulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfate (SDS)). The results showed that SDBS exhibited a significant response, and the highest sensitivity among the surfactants. Due to its high efficiency of fluorescence quenching and the high level of fluorescence recovery, direct observes can even be performed by the naked eye. The results revealed that the Alcian blue 8GX-AlS4Pc ion-pair complex fluorescent probe only responded to SDBS in the low-concentration range. Based on the new founding, this study proposed a novel principle and method of fluorescence enhancement to specifically measure the concentration of SDBS, thereby achieving a highly sensitive and highly specific determination of SDBS. Under the optimal conditions, the fluorescence intensity (I(f)) of the system and the concentration of SDBS in the range of 1 × 10(-7) - 1 × 10(-5) mol/dm(3) exhibited a good linear relationship. This method is highly sensitive, and the operation is simple and rapid. It had been applied for the quantitative analysis of SDBS in environmental water, while achieving satisfactory results compared with those of the standard method. This study developed a new application of the fluorescent phthalocyanine compounds used as molecular probes in analytical sciences.
NASA Astrophysics Data System (ADS)
Kataoka, Kunimitsu; Akimoto, Junji
2016-02-01
Polycrystalline sample of sodium titanium oxide Na2Ti4O9 with the tunnel-type structure was prepared by topotactic sodium extraction in air atmosphere from the as prepared Na3Ti4O9 sample. The starting Na3Ti4O9 compound was synthesized by solid state reaction at 1273 K in Ar atmosphere. The completeness of oxidation reaction from Na3Ti4O9 to Na2Ti4O9 was monitored by the change in color from dark blue to white, and was also confirmed by the Rietveld refinement using the powder X-ray diffraction data. The sodium deficient Na2Ti4O9 maintained the original Na2.08Ti4O9-type tunnel structure and had the monoclinic crystal system, space group C2/m, and the lattice parameters of a = 23.1698(3) Å, b = 2.9406(1) Å, c = 10.6038(2) Å, β = 102.422(3)°, and V = 705.57(2) Å3. The electrochemical measurements of thus obtained Na2Ti4O9 sample showed the reversible sodium insertion and extraction reactions at 1.1 V, 1.5 V, and 1.8 V vs. Na/Na+, and reversible lithium insertion and extraction reactions at around 1.4 V, 1.8 V, and 2.0 V vs. Li/Li+. The reversible capacity for the lithium cell was achieved to be 104 mAh g-1 at the 100th cycle.
Stratford, Joshua M; Mayo, Martin; Allan, Phoebe K; Pecher, Oliver; Borkiewicz, Olaf J; Wiaderek, Kamila M; Chapman, Karena W; Pickard, Chris J; Morris, Andrew J; Grey, Clare P
2017-05-31
The alloying mechanism of high-capacity tin anodes for sodium-ion batteries is investigated using a combined theoretical and experimental approach. Ab initio random structure searching (AIRSS) and high-throughput screening using a species-swap method provide insights into a range of possible sodium-tin structures. These structures are linked to experiments using both average and local structure probes in the form of operando pair distribution function analysis, X-ray diffraction, and 23 Na solid-state nuclear magnetic resonance (ssNMR), along with ex situ 119 Sn ssNMR. Through this approach, we propose structures for the previously unidentified crystalline and amorphous intermediates. The first electrochemical process of sodium insertion into tin results in the conversion of crystalline tin into a layered structure consisting of mixed Na/Sn occupancy sites intercalated between planar hexagonal layers of Sn atoms (approximate stoichiometry NaSn 3 ). Following this, NaSn 2 , which is predicted to be thermodynamically stable by AIRSS, forms; this contains hexagonal layers closely related to NaSn 3 , but has no tin atoms between the layers. NaSn 2 is broken down into an amorphous phase of approximate composition Na 1.2 Sn. Reverse Monte Carlo refinements of an ab initio molecular dynamics model of this phase show that the predominant tin connectivity is chains. Further reaction with sodium results in the formation of structures containing Sn-Sn dumbbells, which interconvert through a solid-solution mechanism. These structures are based upon Na 5-x Sn 2 , with increasing occupancy of one of its sodium sites commensurate with the amount of sodium added. ssNMR results indicate that the final product, Na 15 Sn 4 , can store additional sodium atoms as an off-stoichiometry compound (Na 15+x Sn 4 ) in a manner similar to Li 15 Si 4 .
Liu, Lihong; Yun, Zhaojun; He, Bin; Jiang, Guibin
2014-08-19
A simple and highly efficient online system coupling of capillary electrophoresis to inductively coupled plasma-mass spectrometry (CE-ICP-MS) for simultaneous separation and determination of arsenic and selenium compounds was developed. CE was coupled to an ICP-MS system by a sprayer with a novel direct-injection high-efficiency nebulizer (DIHEN) chamber as the interface. By using this interface, six arsenic species, including arsenite (As(III), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) and five selenium species (such as sodium selenite (Se(IV)), sodium selenate (Se(VI)), selenocysteine (SeCys), selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys)) were baseline-separated and determined in a single run within 9 min under the optimized conditions. Minimum dead volume, low and steady sheath flow liquid, high nebulization efficiency, and high sample transport efficiency were obtained by using this interface. Detection limits were in the range of 0.11-0.37 μg L(-1) for the six arsenic compounds (determined as (75)As at m/z 75) and 1.33-2.31 μg L(-1) for the five selenium species (determined as (82)Se at m/z 82). Repeatability expressed as the relative standard deviations (RSD, n = 6) of both migration time and peak area were better than 2.68% for arsenic compounds and 3.28% for selenium compounds, respectively. The proposed method had been successfully applied for the determination of arsenic and selenium species in the certified reference materials DORM-3, water, urine, and fish samples.
Lisková, Anna; Krivánková, Ludmila
2005-12-01
Accurate determination of pK(a) values is important for proper characterization of newly synthesized molecules. In this work we have used CZE for determination of pK(a) values of new compounds prepared from intermediates, 2, 3 and 4-(2-chloro-acetylamino)-phenoxyacetic acids, by substituting chloride for 2-oxo-pyrrolidine, 2-oxo-piperidine or 2-oxo-azepane. These substances are expected to have a cognition enhancing activity and free radicals scavenging effect. Measurements were performed in a polyacrylamide-coated fused-silica capillary of 0.075 mm ID using direct UV detection at 254 nm. Three electrolyte systems were used for measurements to eliminate effects of potential interactions between tested compounds and components of the BGE. In the pH range 2.7-5.4, chloride, formate, acetate and phosphate were used as BGE co-ions, and sodium, beta-alanine and epsilon-aminocaproate as counterions. Mobility standards were measured simultaneously with the tested compounds for calculations of correct electrophoretic mobilities. Several approaches for the calculation of the pK(a) values were used. The values of pK(a) were determined by standard point-to-point calculation using Henderson-Hasselbach equation. Mobility and pH data were also evaluated by using nonlinear regression. Three parameter sigmoidal function fitted the experimental data with correlation coefficients higher than 0.99. Results from CZE measurements were compared with spectrophotometric measurements performed in sodium formate buffer solutions and evaluated at wavelength where the highest absorbance difference for varying pH was recorded. The experimental pK(a) values were compared with corresponding values calculated by the SPARC online calculator. Results of all three used methods were in good correlation.
Politi, Lucia; Groppi, Angelo; Polettini, Aldo; Montagna, Maria
2004-05-10
A high performance liquid chromatographic method for toxicological drug screening of gastric content has been developed. The samples were diluted (1:3-1:30) in 0.01 N hydrochloric acid and injected into a reverse phase column for separation by gradient elution. Mobile phase consisted of solvent A (acetonitrile/water 90:10, 0.01 M sodium dodecylsulphate, 0.5% v/v glacial acetic acid) and solvent B (water/acetonitrile 90:10, 0.01 M sodium dodecylsulphate, 0.5% v/v glacial acetic acid); the gradient was programmed from 20 to 80% A in 30 min. The flow was kept constant at 1.5 ml/min. Two home-made internal standards, butyrylsalicylic acid and diacetyltubocurarine with retention times of 5.6 and 21.4 min, respectively, were used. Drugs are identified by matching their relative retention times and UV spectra (200-400 nm) with those contained in a home made library of more than 340 reference compounds (9 analgesics, 22 antidepressants, 30 antihistamines, 14 antihypertensives, 21 antirheumatics, 15 beta-blockers, 9 bronchodilators, 10 Ca antagonists, 14 diuretics, 26 neuroleptics, 25 tranquilizers, and other significant xenobiotic compounds). The fluorometric (FLD) emission spectrum (280-700 nm; excitation wavelength, 230 nm) was used as a further identification. At 50mg/l analyte concentrations, the injection of gastric content after dilution (1:3) produced S/N ratios in the range 8-140. The method is simple, rapid, rather inexpensive and proved to be a useful means of investigation if used in combination with GC-MS screening in blood. On the other hand, the system suffers from a relatively limited sensitivity for compounds with a low UV absorption and from interferences due to the presence in the matrix of some highly UV- and FL-responsive compounds (e.g. tryptophan).
do Rosário, Denes Kaic Alves; da Silva Mutz, Yhan; Peixoto, Jaqueline Moreira Curtis; Oliveira, Syllas Borburema Silva; de Carvalho, Raquel Vieira; Carneiro, Joel Camilo Souza; de São José, Jackline Freitas Brilhante; Bernardes, Patrícia Campos
2017-01-16
New sanitization methods have been evaluated to improve food safety and food quality and to replace chlorine compounds. However, these new methods can lead to physicochemical and sensory changes in fruits and vegetables. The present study evaluated the effects of acetic acid, peracetic acid, and sodium dodecylbenzenesulfonate isolated or combined with 5min of ultrasound treatment (40kHz, 500W) on strawberry quality over 9days of storage at 8°C. The strawberry natural contaminant microbiota (molds and yeasts, mesophilic aerobic and lactic acid bacteria), physicochemical quality (pH, total titratable acidity, total soluble solids, vitamin C, and color), sensory quality (triangle test) and inactivation of Salmonella enterica subsp. enterica intentionally inoculated onto strawberries were analyzed. Ultrasound increased the effect of all chemical compounds in the reduction of aerobic mesophilic, molds and yeasts. The best treatment for those groups of microorganisms was ultrasound combined with peracetic acid (US+PA) that reduced 1.8 and 2.0logcfu/g during 9days of storage. Bactericidal effect of peracetic acid was also improved by ultrasound inactivation of S. enterica, reaching a decimal reduction of 2.1logcfu/g. Moreover, synergistic effects were observed in contaminant natural microbiota inactivation for all tested compounds during storage, without any major physicochemical or sensory alteration to the strawberries. Therefore, ultrasound treatment can improve the effect of sanitizers that are substitutes of chlorine compounds without altering the quality of strawberries during storage. Acetic acid (PubChem CID: 176); Peracetic acid (PubChem CID: 6585); Sodium dodecylbenzenesulfonate (PubChem CID: 18372154). Copyright © 2016 Elsevier B.V. All rights reserved.
Ferreira, L A; Chervenak, A; Placko, S; Kestranek, A; Madeira, P P; Zaslavsky, B Y
2014-11-14
Solubilities of 17 polar organic compounds in aqueous solutions of Na2SO4, NaCl, NaClO4, and NaSCN at the salt concentrations of up to 1.0-2.0 M were determined and the Setschenow constant, ksalt, values were estimated. It was found that NaClO4 may display both salting-in and salting-out effects depending on the particular compound structure. The Setschenow constant values for all the polar compounds examined in different salt solutions are found to be interrelated. Similar relationships were observed for partition coefficients of nonionic organic compounds in aqueous polyethylene glycol-sodium sulfate two-phase systems in the presence of different salt additives reported previously [Ferreira et al., J. Chromatogr. A, 2011, 1218, 5031], and for the effects of different salts on optical rotation of amino acids reported by Rossi et al. [J. Phys. Chem. B, 2007, 111, 10510]. In order to explain the observed relationships it is suggested that all the effects observed originate as responses of the compounds to the presence of a given ionic environment and its interaction with the compounds by forming direct or solvent-separated ionic pairs. The response is compound-specific and its strength is determined by the compound structure and the type (and concentration) of ions inducing the response.
NASA Astrophysics Data System (ADS)
Cuadrarodriguez, L.; Zelenyuk, A.; Imre, D.; Ellison, B.
2006-12-01
Measurements of atmospheric aerosol compositions routinely show that organic compounds account for a very large fraction of the particle mass. The organic compounds that make up this aerosol mass represent a wide range of molecules with a variety of properties. Many of the particles are composed of hygroscopic salts like sulfates, nitrates and sea-salt internally mixed with organics. While the properties of the hygroscopic salts are known, the effect of the organic compounds on the microphysical and chemical properties which include CCN activity is not clear. .One particularly interesting class of internally mixed particles is composed of aqueous salts solutions that are coated with organic surfactants which are molecules with long aliphatic chain and a water soluble end. Because these molecules tend to coat the particles' surfaces, a monolayer might be sufficient to drastically alter their hygroscopic properties, their CCN activity, and reactivity. The aliphatic chains, being exposed to the oxidizing atmosphere are expected to be transformed through heterogeneous chemistry, yielding complex products with mixed properties. We will report the results from a series of observations on ammonium sulfate, sodium chloride and sea salt particles coated with three types of surfactant molecules: sodium lauryl sulfate, sodium oleate and laurtrimonium chloride. We have been able to measure the effective densities of internally mixed particles with a range of surfactant concentration that start below a monolayer and extend all the way to particles composed of pure surfactant. For many of the measurements the data reveal a rather complex picture that cannot be simply interpreted in terms of the known pure-compound densities. For unsaturated hydrocarbons we observed and quantified the effect of oxidation by ozone on particle size, effective density and individual particle mass spectral signatures. One of the more important properties of these surfactants is that they can form a water impregnable layer that can change the dynamics of water evaporation from the hygroscopic particle core. To test this aspect we have used a tandem of mobility analyzers together with the measurements of vacuum aerodynamic diameters and mass spectral signatures. The combined measurements reveal that the hygroscopic properties of common salts can be significantly altered by the surfactants coatings when their concentrations exceed those required to form a monolayer.
Tang, Pei-Ling; Hassan, Osman; Maskat, Mohamad Yusof; Badri, Khairiah
2015-01-01
In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g−1 lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced. PMID:26798644
Consumer Acceptance of Bars and Gummies with Unencapsulated and Encapsulated Resveratrol.
Koga, Clarissa C; Lee, Soo-Yeun; Lee, Youngsoo
2016-05-01
The addition of resveratrol, a polyphenol found in red wine and peanuts, to food products would help to provide the health benefits associated with the compound to the consumer in a wide array of food matrices. The bitterness of resveratrol and instability of its bioactive form in light are 2 major challenges with the incorporation of the compound into food products. Microencapsulation in a sodium caseinate matrix was utilized as a strategy to overcome these challenges. The objective of this research was to show the application of the resveratrol microcapsules in easy-to-consume foods. Consumer acceptance was evaluated for gummies and bars with encapsulated resveratrol in comparison to the controls. Four different controls were used: 1) without any resveratrol OR protein (Plain), 2) unencapsulated resveratrol (Resv), 3) sodium caseinate and unencapsulated resveratrol just mixed without encapsulation (P + R), and 4) sodium caseinate only (PRO). Two concentrations of resveratrol that have been shown to offer therapeutic effects in humans were tested (10 and 40 mg/d). The overall liking, evaluated using a 9-point scale, of bars with 10 mg of encapsulated resveratrol did not differ significantly from the control without any added resveratrol and protein (Plain) or from the controls with equivalent protein and/or resveratrol concentrations. For gummies, the samples with the resveratrol microcapsules had a significantly lower overall liking than the controls with the same protein and/or resveratrol content. This research demonstrated application of resveratrol microcapsules into easy-to-consume food products in order to deliver the health benefits to the consumer. © 2016 Institute of Food Technologists®
Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea.
Arnold, T; Jackson, A J; Sanchez-Fernandez, A; Magnone, D; Terry, A E; Edler, K J
2015-12-01
Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration.
Cabeça, Tatiane Karen; Pizzolitto, Antonio Carlos; Pizzolitto, Elisabeth Loshchagin
2012-01-01
The purpose of this study was to investigate and compare the efficacy of various disinfectants on planktonic cells and biofilm cells of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli. Numbers of viable biofilm cells decreased after treatment with all tested disinfectants (iodine, biguanide, quaternary ammonium compounds, peracetic acid and sodium hypochlorite). Sodium hypochlorite was the most effective disinfectant against biofilm cells, while biguanide was the least effective. Scanning electron microscopy observations revealed that cells adhered on stainless steel surface after treatment with the disinfectants. No viable planktonic cells were observed after treatment with the same disinfectants. Based on our findings, we concluded that biofilm cells might be more resistant to disinfectants than plancktonic cells. PMID:24031935
Hasegawa, Hirohiko; Muraoka, Masami; Ohmori, Mikiko; Matsui, Kazuki; Kojima, Atsuyuki
2005-10-01
Design, synthesis, and structure-activity relationships for 3,4-dihydropyridopyrimidin-2(1H)-one derivatives, which are aza-3,4-dihydro-2(1H)-quinazolinone derivatives, as the sodium/calcium (Na+/Ca2+) exchanger inhibitors are discussed. These studies based on 3,4-dihydro-2(1H)-quinazolinone derivatives led to the discovery of a structurally novel and potent Na+/Ca2+ exchanger inhibitor, 3,4-dihydropyridopyrimidin-2(1H)-one derivative (26), with an IC30 value of 0.02 microM. Compound 26 directly inhibited the Na+-dependent Ca2+ influx via the Na+/Ca2+ exchanger after Na+-free treatment in cardiomyocytes.
Evans, M. H.
1969-01-01
1. It has been shown that nerve fibres from rat cauda equina will conduct action potentials after immersion in saline in which lithium chloride is substituted for sodium chloride. 2. Both saxitoxin and tetrodotoxin inhibit lithium-generated action potentials. The concentration of toxin needed to inhibit the lithium-generated action potentials is similar to that needed to inhibit sodium-generated action potentials. 3. If magnesium chloride is added to the saline to give a concentration of 10-15 mM there is usually a slight fall in amplitude of the compound action potential. Saxitoxin and tetrodotoxin now inhibit the action potential to a greater degree than in the absence of magnesium ions. PMID:5789802
NASA Astrophysics Data System (ADS)
Guo, Sheng-Ping; Li, Jia-Chuang; Xu, Qian-Ting; Ma, Ze; Xue, Huai-Guo
2017-09-01
In the past several years, many efforts have been made to develop polyanion-type cathode materials for sodium ion batteries by chemists and material scientists. These materials are one of the main types of promising cathodes though the studies are still in their infancy. This paper reviews almost all the important advances of polyanion-type cathodes on their syntheses, crystal structures, morphologies, electrochemical performance and Na redox mechanisms. It specifically focuses on their crystal chemistry and electrochemical behaviors. The contents are divided into several categories according to their chemical compositions. After introduction of the synthetic methods, phosphates (ortho-, pyro- and fluoro-), silicates, sulfates, and mixed anions type cathodes are summarized and discussed successively.
Sakurai, T; Fujiwara, K
2001-01-01
1. In this study, we investigated the biological effects of trimethyl (carboxymethyl) arsonium zwitterion, namely arsenobetaine (AsBe), which is a major organic arsenic compound in marine animals using murine bone marrow (BM) cells and compared them with those of an inorganic arsenical, sodium arsenite, in vitro. 2. Sodium arsenite showed strong cytotoxicity in BM cells, and its IC(50) was 6 microM. In contrast, AsBe significantly enhanced the viability of BM cells in a dose-dependent manner during a 72-h incubation; about a twofold increase in the viability of cells compared with that of control cells cultured with the medium alone was observed with a microM level of AsBe. 3. In morphological investigations, AsBe enhanced the numbers of large mature adherent cells, especially granulocytes, during a 72-h BM culture. When BM cells were cultured together with AsBe and a low dose (1 u ml(-1)) of recombinant murine granulocyte/macrophage colony-stimulating factor (rMu GM-CSF), significant additive-like increasing effects were observed on the numbers of both granulocytes and macrophages originated from BM cells. However, AsBe did not cause proliferation of BM cells at all as determined by colony-forming assay using a gelatinous medium. 4. These findings demonstrate the unique and potent biological effects in mammalian cells of AsBe, a major organic arsenic compound in various marine animals which are ingested daily as seafood in many countries.
Brito, Adriane F; Fajemiroye, James O; Neri, Hiasmin F S; Silva, Dayane M; Silva, Daiany P B; Sanz, Germán; Vaz, Boniek G; de Carvalho, Flávio S; Ghedini, Paulo C; Lião, Luciano M; Menegatti, Ricardo; Costa, Elson A
2017-09-01
In this study, we proposed the design, synthesis of a new compound 2-(4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethan-1-ol (LQFM032), and pharmacological evaluation of its anxiolytic-like effect. This new compound was subjected to pharmacological screening referred to as Irwin test, prior to sodium pentobarbital-induced sleep, open-field and wire tests. The anxiolytic-like effect of this compound was evaluated using elevated plus maze and light-dark box tests. In addition, the mnemonic activity was evaluated through step-down test. In sodium pentobarbital-induced sleep test, LQFM032 decreased latency and increased duration of sleep. In the open-field test, LQFM032 altered behavioral parameter, that suggested anxiolytic-like activity, as increased in crossings and time spent at the center of open field. In the plus maze test and light-dark box test, the LQFM032 showed anxiolytic-like activity, increased entries and time spent on open arms, and increased in number of transitions and time spent on light area, respectively. Those effects was antagonized by flumazenil but not with 1-(2-Methoxyphenyl)-4-(4-phthalimidobutyl)piperazine (NAN-190). The LQFM032 did not alter mnemonic activity. Moreover, the anxiolytic-like activity of LQFM032 was antagonized by mecamylamine. In summary, LQFM032 showed benzodiazepine and nicotinic pathways mediated anxiolytic-like activity without altering the mnemonic activity. © 2017 John Wiley & Sons A/S.
Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander
2014-02-18
Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.
Azman, Samet; Khadem, Ahmad F; Zeeman, Grietje; van Lier, Jules B; Plugge, Caroline M
2015-03-25
Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C) and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid.
Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes.
Chen, Hao Min; Maohua, Chen; Adams, Stefan
2015-07-07
In the search for fast lithium-ion conducting solids for the development of safe rechargeable all-solid-state batteries with high energy density, thiophosphates and related compounds have been demonstrated to be particularly promising both because of their record ionic conductivities and their typically low charge transfer resistances. In this work we explore a wide range of known and predicted thiophosphates with a particular focus on the cubic argyrodite phase with a robust three-dimensional network of ion migration pathways. Structural and hydrolysis stability are calculated employing density functional method in combination with a generally applicable method of predicting the relevant critical reaction. The activation energy for ion migration in these argyrodites is then calculated using the empirical bond valence pathway method developed in our group, while bandgaps of selected argyrodites are calculated as a basis for assessing the electrochemical window. Findings for the lithium compounds are also compared to those of previously known copper argyrodites and hypothetical sodium argyrodites. Therefrom, guidelines for experimental work are derived to yield phases with the optimum balance between chemical stability and ionic conductivity in the search for practical lithium and sodium solid electrolyte materials.
Biosynthesis of Ergothioneine from Endogenous Hercynine in Mycobacterium smegmatis
Genghof, Dorothy S.; Van Damme, Olga
1968-01-01
Ergothioneine was synthesized and accumulated in growing cultures of Mycobacterium smegmatis when the medium was adequately supplied with sulfur. In a low sulfur medium, the accumulation was sharply limited although growth of the organism was apparently normal. Synthesis of hercynine, the precursor of ergothioneine, was unaffected by low sulfur levels and was markedly increased by addition of l-histidine, the precursor of hercynine. Resting-cell pellicle experiments, performed with cells grown on the low sulfur high histidine medium, showed that ergothioniene was synthesized from endogenous hercynine, when cysteine or compounds readily converted to cysteine (such as cystine, lanthionine, cystathionine, and thiazolidine carboxylic acid) were added. Homocysteine and djenkolic acid allowed for minimal synthesis of betaine, whereas methionine, S-methylcysteine, sodium sulfate, and sodium thiosulfate were unable to donate sulfur for ergothioniene synthesis under the experimental conditions employed. Addition of cysteine to a resting pellicle preparation caused the formation of 100 to 200 μg of ergothioneine per g of dry cells in 2.5 to 3 hr. A modified procedure for isolating ergothioneine and hercynine, employing a 75% ethyl alcohol extraction of wet organisms, followed by a single alumina column separation of the compounds, is described. PMID:5644441
Manz, Katherine E; Haerr, Gregory; Lucchesi, Jessica; Carter, Kimberly E
2016-12-01
The objective of this study was to understand the adsorption ability of a surfactant and a non-surfactant chemical additive used in hydraulic fracturing onto shale and GAC. Experiments were performed at varying temperatures and sodium chloride concentrations to establish these impacts on the adsorption of the furfural (a non-surfactant) and 2-Butoxyethanol (2-BE) (a surfactant). Experiments were carried out in continuously mixed batch experiments with Langmuir and Freundlich isotherm modeling. The results of the experiments showed that adsorption of these compounds onto shale does not occur, which may allow these compounds to return to the surface in flowback and produced waters. The adsorption potential for these chemicals onto GAC follows the assumptions of the Langmuir model more strongly than those of the Freundlich model. The results show uptake of furfural and 2-BE occurs within 23 h in the presence of DI water, 0.1 mol L -1 sodium chloride, and in lab synthesized hydraulic fracturing brine. Based on the data, 83% of the furfural and 62% of the 2-BE was adsorbed using GAC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts
Azman, Samet; Khadem, Ahmad F.; Zeeman, Grietje; van Lier, Jules B.; Plugge, Caroline M.
2015-01-01
Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C) and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid. PMID:28955013
The oxidation of 2,6-di-tert-butyl-4-methylphenol
Yohe, G.R.; Dunbar, J.E.; Pedrotti, R.L.; Scheidt, F.M.; Lee, F.G.H.; Smith, E.C.
1956-01-01
The products formed in the oxidation of 2,6-di-tert-butyl-4-methylphenol with oxygen and sodium hydroxide at about 100?? are 3,5-di-tert-butyl-4-hydroxybenzaldehyde, trimethylacetic acid, an acidic compound C14H22O3, and probably 2,6-di-tert-butylbenzoquinone (which was actually isolated in the similar oxidation of the above-named benzaldehyde), in addition to compounds previously reported. Some of the properties of C14H22O3 are given, and the oxidation of it to 2,3-di-tert-butylsuccinic anhydride is described, but assignment of structure is reserved pending the completion of more experimental work.
Eckard, P R; Taylor, L T
1997-02-01
The supercritical fluid extraction (SFE) of an ionic compound, pseudoephedrine hydrochloride, from a spiked-sand surface was successfully demonstrated. The effect of carbon dioxide density (CO2), supercritical fluid composition (pure vs. methanol modified), and the addition of a commonly used reversed-phase liquid chromatographic ion-pairing reagent, 1-heptanesulfonic acid, sodium salt, on extraction efficiency was examined. The extraction recoveries of pseudoephedrine hydrochloride with the addition of the ion-pairing reagent from a spiked-sand surface were shown to be statistically greater than the extraction recoveries without the ion-pairing reagent with both pure and methanol-modified carbon dioxide.
The role of sodium in the salty taste of permeate.
Frankowski, K M; Miracle, R E; Drake, M A
2014-09-01
Many food companies are trying to limit the amount of sodium in their products. Permeate, the liquid remaining after whey or milk is ultrafiltered, has been suggested as a salt substitute. The objective of this study was to determine the sensory and compositional properties of permeates and to determine if elements other than sodium contribute to the salty taste of permeate. Eighteen whey (n=14) and reduced-lactose (n=4) permeates were obtained in duplicate from commercial facilities. Proximate analyses, specific mineral content, and nonprotein nitrogen were determined. Organic acids and nucleotides were extracted followed by HPLC. Aromatic volatiles were evaluated by gas chromatography-mass spectrometry. Descriptive analysis of permeates and model solutions was conducted using a trained sensory panel. Whey permeates were characterized by cooked/milky and brothy flavors, sweet taste, and low salty taste. Permeates with lactose removed were distinctly salty. The organic acids with the highest concentration in permeates were lactic and citric acids. Volatiles included aldehydes, sulfur-containing compounds, and diacetyl. Sensory tests with sodium chloride solutions confirmed that the salty taste of reduced-lactose permeates was not solely due to the sodium present. Permeate models were created with NaCl, KCl, lactic acid, citric acid, hippuric acid, uric acid, orotic acid, and urea; in addition to NaCl, KCl, lactic acid, and orotic acid were contributors to the salty taste. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Brower, Alexandra; Struthers, Jason; Schmidt, Jemima
2017-12-01
In May 2016, thirteen dogs housed in backyards within a single neighborhood were reported to have developed convulsions and died within a 24 h period. An investigation of the scene by law enforcement resulted in submission of eight dogs for postmortem examination. It was suspected that a rapid acting toxin was the cause of death. A gas chromatography-mass spectrophotometry (GC-MS) protocol combined with thin-layer chromatography that allows screening for common convulsants failed to identify a toxin in either pooled gastric content or liver samples from select cases. After consultation with a veterinary toxicologist, sodium fluoroacetate poisoning was investigated. Sodium fluoroacetate, also known as 1080, is a pesticide that was available in the United States from the 1940's to the 1970's, but since 1972 has been banned or under EPA restricted use. When gastric content was re-tested using a GC-MS protocol with selective fluoroacetate ion monitoring and carbon 14 radiolabeling to facilitate quantification, 379 ppb sodium fluoroacetate was detected in a pooled gastric content sample. In spite of its banned status, sodium fluoroacetate remains a rarely reported cause of malicious poisoning in domestic dogs in the United Sates. This compound is highly toxic and is capable of causing death in dogs, humans, other mammals, and insects in ingested quantities as small as a few droplets. Even when geographic or historical proximity to a source is not evident, this intoxication should be considered in dogs exhibiting compatible clinical signs.
Testing of selected pharmacological agents for capturing waterfowl [Annual Progress Report
Cline, D.R.
1970-01-01
The response of game-farm mallards (Frost strain) to seven pharmacological immobilizing agents was evaluated in Phase I of a planned four-phase study. A limited amount of testing was also done with wild mallards. Single dosages were administered to determine the mean effective dose (ED50) and mean lethal dose (LD50), The therapeutic index, or safety factor (LD50/ED50), and palatability were also established. Optimum dosage rates of compounds administered orally on baits were not considered in this phase of the study. Compounds were-administered by intubation and calculated in terms of mg/kg. All except one compound produced narcosis within 5 minutes at the effective dose rate.Immobilization periods for the seven compounds ranged from 7-24 minutes, and recovery periods from 1.0-6.5 hours. Such wide variations in actions of the compounds can be attributed to a compound's rate of absorption, the ease with which it passes the blood-brain barrier, its solubility in tissues, and its rate of metabolism in the liver and kidneys. Length of both the immobilization and recovery periods were extended when dosages were increased. There was no delayed mortality among survivors with any of the seven compounds at either the ED50 or LD50. Females were generally more sensitive to the anesthetizing agents than males. The ED50 for wild mallards was substantially higher than that for the experimental game-farm birds for the two compounds on which this was tested.Tribromoethanol (Avertin of Winthrop Laboratories) satisfied all test criteria an Phase I and will be subjected to more intensive investigation in ensuing tests. Thiopental sodium (Pentothal of Amdal Company) and pentobarbital sodium (Nembutal of Abbott Laboratories) were judged to be marginal. Although their therapeutic indexes were good (5.00), recovery periods were prolonged and toxic convulsions occurred at medium to high dose rates as the LD50 was approached.Alpha-chloralose (Fisher Scientific) proved least promising of the seven compounds, mainly because of its unacceptable therapeutic index (2.25) and because it possesses prolonged induction and recovery periods. Two new experimental drugs, methoxymol and metomidate (Pitman-Moore), appeared effective and safe when administered by intubation but produced a taste aversion when added to bait. Rejection because of taste was also a problem with secobarbital (Seconal of Elanco Products), and its therapeutic index of 2.75 was unacceptable. Monitoring of heart and respiratory rates, and body temperature by telemetry showed promise as a technique for determining physiological response to drug action.
Falls, Roman; Seman, Michael; Braat, Sabine; Sortino, Joshua; Allen, Jason D; Neil, Christopher J
2017-08-08
Acute heart failure (AHF) is a frequent reason for hospitalization worldwide and effective treatment options are limited. It is known that AHF is a condition characterized by impaired vasorelaxation, together with reduced nitric oxide (NO) bioavailability, an endogenous vasodilatory compound. Supplementation of inorganic sodium nitrate (NaNO 3 ) is an indirect dietary source of NO, through bioconversion. It is proposed that oral sodium nitrate will favorably affect levels of circulating NO precursors (nitrate and nitrite) in AHF patients, resulting in reduced systemic vascular resistance, without significant hypotension. We propose a single center, randomized, double-blind, placebo-controlled pilot trial, evaluating the feasibility of sodium nitrate as a treatment for AHF. The primary hypothesis that sodium nitrate treatment will result in increased systemic levels of nitric oxide pre-cursors (nitrate and nitrite) in plasma, in parallel with improved vasorelaxation, as assessed by non-invasively derived systemic vascular resistance index. Additional surrogate measures relevant to the known pathophysiology of AHF will be obtained in order to assess clinical effect on dyspnea and renal function. The results of this study will provide evidence of the feasibility of this novel approach and will be of interest to the heart failure community. This trial may inform a larger study.
Treasure Na-ion anode from trash coke by adept electrolyte selection
NASA Astrophysics Data System (ADS)
Cabello, Marta; Chyrka, Taras; Klee, Rafael; Aragón, María J.; Bai, Xue; Lavela, Pedro; Vasylchenko, Gennadiy M.; Alcántara, Ricardo; Tirado, José L.; Ortiz, Gregorio F.
2017-04-01
Converting 'trash' waste residua to active functional materials 'treasure' with high added value is being regarded as a promising way to achieve the sustainable energy demands. Carbonaceous materials cannot insert sodium except when graphite co-intercalates solvents such as diglyme. Here, we show that petroleum coke and shale coke annealed at different temperatures can also insert sodium by reversible intercalation phenomena in a diglyme-based electrolyte. The structural and morphological studies will reveal significant differences justifying their distinct electrochemical behavior. Galvanostatic tests exhibit a flat plateau at about 0.7 V ascribable to the reversible reaction. At the end of the discharge, a Stage-I ternary intercalation compound is detected. Two diglyme molecules are co-intercalated per alkali ion, as evidenced by 1-D Patterson diagrams, FTIR and TGA analyses. The full sodium-ion cell made with P-2500/NaPF6(diglyme)/Na3V2(PO4)3 delivered an initial reversible capacity of 75 mA h g-1 at C rate and an average potential of 2.7 V. Thus, the full cell provides an energy density of 202 W h kg-1. This sodium-ion system can be considered a promising power source that encourages the potential use of low-cost energy storage systems.
Gaonkar, Teja; Nayak, Pramoda Kumar; Garg, Sandeep; Bhosle, Saroj
2012-01-01
Bioremediation in natural ecosystems is dependent upon the availability of micronutrients and cofactors, of which iron is one of the essential elements. Under aerobic and alkaline conditions, iron oxidizes to Fe(+3) creating iron deficiency. To acquire this essential growth-limiting nutrient, bacteria produce low-molecular-weight, high-affinity iron chelators termed siderophores. In this study, siderophore-producing bacteria from rhizosphere and nonrhizosphere areas of coastal sand dunes were isolated using a culture-dependent approach and were assigned to 8 different genera with the predominance of Bacillus sp. Studies on the ability of these isolates to grow on sodium benzoate revealed that a pigmented bacterial culture TMR2.13 identified as Pseudomonas aeruginosa showed growth on mineral salts medium (MSM) with 2% of sodium benzoate and produced a yellowish fluorescent siderophore identified as pyoverdine. This was inhibited above 54 μM of added iron in MSM with glucose without affecting growth, while, in presence of sodium benzoate, siderophore was produced even up to the presence of 108 μM of added iron. Increase in the requirement of iron for metabolism of aromatic compounds in ecosystems where the nutrient deficiencies occur naturally would be one of the regulating factors for the bioremediation process.
Vecino, X; Devesa-Rey, R; Moldes, A B; Cruz, J M
2014-09-01
The cellulosic fraction of vineyard pruning waste (free of hemicellulosic sugars) was entrapped in calcium alginate beads and evaluated as an eco-friendly adsorbent for the removal of different nutrients and micronutrients (Mg, P, Zn, K, N-NH4, SO4, TN, TC and PO4) from an agroindustrial effluent (winery wastewater). Batch adsorption studies were performed by varying the amounts of cellulosic adsorbent (0.5-2%), sodium alginate (1-5%) and calcium chloride (0.05-0.9M) included in the biocomposite. The optimal formulation of the adsorbent composite varied depending on the target contaminant. Thus, for the adsorption of cationic contaminants (Mg, Zn, K, N-NH4 and TN), the best mixture comprised 5% sodium alginate, 0.05M calcium chloride and 0.5% cellulosic vineyard pruning waste, whereas for removal of anionic compounds (P, SO4 and PO4), the optimal mixture comprised 1% sodium alginate, 0.9M calcium chloride and 0.5% cellulosic vineyard pruning waste. To remove TC from the winery wastewater, the optimal mixture comprised 3% of sodium alginate, 0.475M calcium chloride and 0.5% cellulosic vineyard pruning waste. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gaonkar, Teja; Nayak, Pramoda Kumar; Garg, Sandeep; Bhosle, Saroj
2012-01-01
Bioremediation in natural ecosystems is dependent upon the availability of micronutrients and cofactors, of which iron is one of the essential elements. Under aerobic and alkaline conditions, iron oxidizes to Fe+3 creating iron deficiency. To acquire this essential growth-limiting nutrient, bacteria produce low-molecular-weight, high-affinity iron chelators termed siderophores. In this study, siderophore-producing bacteria from rhizosphere and nonrhizosphere areas of coastal sand dunes were isolated using a culture-dependent approach and were assigned to 8 different genera with the predominance of Bacillus sp. Studies on the ability of these isolates to grow on sodium benzoate revealed that a pigmented bacterial culture TMR2.13 identified as Pseudomonas aeruginosa showed growth on mineral salts medium (MSM) with 2% of sodium benzoate and produced a yellowish fluorescent siderophore identified as pyoverdine. This was inhibited above 54 μM of added iron in MSM with glucose without affecting growth, while, in presence of sodium benzoate, siderophore was produced even up to the presence of 108 μM of added iron. Increase in the requirement of iron for metabolism of aromatic compounds in ecosystems where the nutrient deficiencies occur naturally would be one of the regulating factors for the bioremediation process. PMID:22629215
Could vitamin C and zinc chloride protect the germ cells against sodium arsenite?
Altoé, L S; Reis, I B; Gomes, Mlm; Dolder, H; Pirovani, Jc Monteiro
2017-10-01
Arsenic (As) is commonly associated with natural and human processes such as volcanic emissions, mining and herbicides production, being an important pollutant. Several studies have associated As intake with male fertility reduction, thus the aim of the present study was to evaluate whether vitamin C and/or zinc would counteract As side effects within the testicles. Adult male Wistar rats were divided into six experimental groups: control, sodium arsenite (5 mg/kg/day), vitamin C (100 mg/kg/day), zinc chloride (ZnCl 2 ; 20 mg/kg/day), sodium arsenite + vitamin C and sodium arsenite + ZnCl 2 . Testicles and epididymis were harvested and either frozen or routinely processed to be embedded in glycol methacrylate resin. As reduced the seminiferous epithelium and tubules diameter due to germ cell loss. In addition, both the round spermatids population and the daily sperm production were reduced. However, ZnCl 2 and vitamin C showed to be effective against such side effects, mainly regarding to sperm morphology. Long-term As intake increased the proportions of abnormal sperm, whereas the concomitant intake of As with zinc or vitamin C enhanced the proportions of normal sperm, showing that such compounds could be used to protect this cell type against morphological defects.
Palatability of sous vide processed chicken breast.
Turner, B E; Larick, D K
1996-08-01
The influences of brine composition, internal temperature, heating rate, and storage periods up to 28 d on flavor, texture, and color of sous vide processed chicken breast were evaluated. Pectoralis major muscles containing water and sodium chloride, with or without sodium lactate, were browned and vacuum packaged. Sous vide processing was by fast or slow heating to an internal temperature of 77 or 94 C. Product was evaluated after 0, 14, and 28 d storage at 4 C. Quality was evaluated by gas chromatographic analyses of flavor volatiles, shear, color, and sensory panels. Incorporation of sodium lactate into brine did not influence oxidative stability (as measured by headspace gas chromatography) or sensory warmed-over flavor. Presence of sodium lactate did result in enhanced fresh roasted or meaty and saltiness sensory scores as well as a more yellow color. The more rapid heating rate decreased sulfur-containing compounds and did not influence other volatile concentrations. Products processed to 94 C were less juicy, less tender, and contained higher quantities of alcohols and hydrocarbons than those processed to 77 C. Storage resulted in a decline in fresh roasted or meaty flavor note and an increase in warmed-over flavor note and quantities of alcohols, aldehydes and ketones, hydrocarbons, and total headspace volatiles.
Cao, Lishuang; McDonnell, Aoibhinn; Nitzsche, Anja; Alexandrou, Aristos; Saintot, Pierre-Philippe; Loucif, Alexandre J C; Brown, Adam R; Young, Gareth; Mis, Malgorzata; Randall, Andrew; Waxman, Stephen G; Stanley, Philip; Kirby, Simon; Tarabar, Sanela; Gutteridge, Alex; Butt, Richard; McKernan, Ruth M; Whiting, Paul; Ali, Zahid; Bilsland, James; Stevens, Edward B
2016-04-20
In common with other chronic pain conditions, there is an unmet clinical need in the treatment of inherited erythromelalgia (IEM). TheSCN9Agene encoding the sodium channel Nav1.7 expressed in the peripheral nervous system plays a critical role in IEM. A gain-of-function mutation in this sodium channel leads to aberrant sensory neuronal activity and extreme pain, particularly in response to heat. Five patients with IEM were treated with a new potent and selective compound that blocked the Nav1.7 sodium channel resulting in a decrease in heat-induced pain in most of the patients. We derived induced pluripotent stem cell (iPSC) lines from four of five subjects and produced sensory neurons that emulated the clinical phenotype of hyperexcitability and aberrant responses to heat stimuli. When we compared the severity of the clinical phenotype with the hyperexcitability of the iPSC-derived sensory neurons, we saw a trend toward a correlation for individual mutations. The in vitro IEM phenotype was sensitive to Nav1.7 blockers, including the clinical test agent. Given the importance of peripherally expressed sodium channels in many pain conditions, our approach may have broader utility for a wide range of pain and sensory conditions. Copyright © 2016, American Association for the Advancement of Science.
Lomax, A; Patel, S; Wang, N; Kakar, K; Kakar, A; Bosma, M L
2017-11-01
In previous studies, toothpastes with high levels of sodium bicarbonate (>50%) have reduced gingival inflammation and oral malodour. This study compared the effects of brushing for 6 weeks with 67% (test group) or 0% (control group) sodium bicarbonate toothpaste on gingival health. This was a single-centre, single examiner-blind, randomized, controlled, two-treatment, parallel-group study. Eligible subjects (≥18 years) had ≥20 gradable teeth, mild-to-moderate gingivitis, a positive response to bleeding on brushing and ≥20 bleeding sites. The primary objective was to compare the number of bleeding sites following twice-daily use of 67% sodium bicarbonate toothpaste or 0% sodium bicarbonate toothpaste after 6 weeks. Secondary endpoints included Modified Gingival Index (MGI), Bleeding Index (BI) and volatile sulphur compounds (VSC), assessed after 6 weeks. Safety was assessed by treatment-emergent oral soft tissue abnormalities and adverse events. Of 148 patients randomized (74 to each treatment), 66 (89.2%) completed the study in the test group, compared with 69 (93.2%) in the control group. Compared with the control group, the test group had a significant reduction in the number of bleeding sites at Week 6 (absolute difference - 11.0 [-14.0, -8.0], P < 0.0001; relative difference - 25.4%), together with significant reductions in MGI and BI (both P < 0.0001). Although the median reductions from baseline for VSC were numerically greater in the test group, the difference did not reach statistical significance (P = 0.9701). This 67% sodium bicarbonate toothpaste provided statistically significant improvements in gingival health and bleeding after 6 weeks of use. © 2016 The Authors. International Journal of Dental Hygiene Published by John Wiley & Sons Ltd.
Local anesthetic inhibition of a bacterial sodium channel
Lee, Sora; Goodchild, Samuel J.
2012-01-01
Recent structural breakthroughs with the voltage-gated sodium channel from Arcobacter butzleri suggest that such bacterial channels may provide a structural platform to advance the understanding of eukaryotic sodium channel gating and pharmacology. We therefore set out to determine whether compounds known to interact with eukaryotic NaVs could also inhibit the bacterial channel from Bacillus halodurans and NaChBac and whether they did so through similar mechanisms as in their eukaryotic homologues. The data show that the archetypal local anesthetic (LA) lidocaine inhibits resting NaChBac channels with a dissociation constant (Kd) of 260 µM, and channels displayed a left-shifted steady-state inactivation gating relationship in the presence of the drug. Extracellular application of QX-314 to expressed NaChBac channels had no effect on sodium current, whereas internal exposure via injection of a bolus of the quaternary derivative rapidly reduced sodium conductance, consistent with a hydrophilic cytoplasmic access pathway to an internal binding site. However, the neutral derivative benzocaine applied externally inhibited NaChBac channels, suggesting that hydrophobic pathways can also provide drug access to inhibit channels. Alternatively, ranolazine, a putative preopen state blocker of eukaryotic NaVs, displayed a Kd of 60 µM and left-shifted the NaChBac activation-voltage relationship. In each case, block enhanced entry into the inactivated state of the channel, an effect that is well described by a simple kinetic scheme. The data suggest that although significant differences exist, LA block of eukaryotic NaVs also occurs in bacterial sodium channels and that NaChBac shares pharmacological homology to the resting state of vertebrate NaV homologues. PMID:22641643
Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh,S.; Yamashita, A.; Gouaux, E.
Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibitionmore » exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational design of new inhibitors.« less
Stability of extemporaneously prepared sodium phenylbutyrate oral suspensions.
Caruthers, Regine L; Johnson, Cary E
2007-07-15
In an effort to minimize barriers to compliance and adherence and to improve the accuracy of dosage measurement, sugar-containing and sugar-free sodium phenylbutyrate suspensions were formulated, and the stability of these products over a 90-day period was determined. An oral suspension of sodium phenylbutyrate 200 mg/mL was prepared by thoroughly grinding 12 g of Sodium Phenylbutyrate Powder, USP, in a glass mortar. Thirty milliliters of Ora-Plus and 30 mL of either Ora-Sweet or Ora-Sweet SF were mixed and added to the powder to make a final volume of 60 mL. Three identical samples of each formulation were prepared and placed in 2-oz amber plastic bottles with child-resistant caps and were stored at room temperature. A 500-microL sample was withdrawn from each of the six bottles with a micropipette immediately after preparation and at 7, 14, 28, 60, and 90 days. After further dilution to an expected concentration of 100 microg/mL with the mobile phase, the samples were assayed by high-performance liquid chromatography. Stability was defined as the retention of at least 90% of the initial concentration. At least 95% of the initial sodium phenylbutyrate concentration remained throughout the 90-day study period in both preparations. There were no detectable changes in color, odor, taste, and pH and no visible microbial growth in any sample. Extemporaneously compounded suspensions of sodium phenylbutyrate, 200 mg/mL, in a 1:1 mixture of Ora-Plus and Ora-Sweet or Ora-Sweet SF were stable for at least 90 days when stored in 2-oz amber plastic bottles at room temperature.
Bendini, Alessandra; Bonoli, Matteo; Cerretani, Lorenzo; Biguzzi, Barbara; Lercker, Giovanni; Toschi, Tullia Gallina
2003-01-24
The high oxidative stability of virgin olive oil is related to its high monounsaturated/polyunsaturated ratio and to the presence of antioxidant compounds, such as tocopherols and phenols. In this paper, the isolation of phenolic compounds from virgin olive oil, by different methods, was tested and discussed. Particularly liquid-liquid and solid-phase extraction methods were compared, assaying, for the latter, three stationary phases (C8, C18 and Diol) and several elution mixtures. Quantification of phenolic and o-diphenolic substances in the extracts was performed by the traditional Folin-Ciocalteau method and the sodium molybdate reaction, respectively. Furthermore, the quantification of phenolic compounds in the extracts and in a standard mixture was carried out both with diode array and mass spectrometric detection and capillary zone electrophoresis.
Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands
Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.
2004-01-01
The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.
The analgesic, anti-inflammatory and calcium antagonist potential of Tanacetum artemisioides.
Bukhari, Ishfaq Ali; Khan, Rafeeq Alam; Gilani, Anwar-ul Hassan; Shah, Abdul Jabbar; Hussain, Javid; Ahmad, Viqar Uddin
2007-03-01
Several species of the genus Tanacetum are traditionally used in a variety of health conditions including pain, inflammation, respiratory and gastrointestinal disorders. In the current investigation, we evaluated the plant extract of T. artemisioides and some of its pure compounds (flavonoids) for analgesic, anti-inflammatory and calcium antagonist effects in various in-vivo and in vitro studies. Using the actetic acid induced writhing test, intraperitoneal (i.p) administration of the plant extract (25-50 mg/kg) and its flavonoid compounds TA-1 and TA-2 (1-5 mg/kg ) exhibited significant analgesic actvity. The maximum analgesic effect observed with the crude extract of the plant was 71% at 50 mg/kg, while that of compounds TA-1 and TA-2 (5 mg/kg i.p) was 75 and 47%, respectively. The plant extract and its pure compounds caused inhbition of formalin induced paw licking in mice predominatly in the second phase of the test. Diclofenac sodium, a standard reference compound, showed a simlar effect in these chemical induced pain models. In the carrgeenan induced rat paw edema assay, the plant extract (50-200 mg/kg i.p) demonstrated significant (P< 0.01) anti-inflammatory activity which was comparable to that obtained with diclofenac sodium and indomethacin. In isolated rabbit jejunum preprations the plant extract showed an atropine sensitive dose-dependent (0.10-1.0 mg/mL) spasmogenic activity followed by a spasmolytic effect at the next higher doses (3-5 mg/mL). The crude extract of the plant also inhibited the high K+-induced contractions, indicating a calcium channel blocking (CCB) activity, which was further confirmed when the plant extract caused a rightward shift in the Ca++ concentration response curves in the isolated rabbit jejunum preparations, similar to that seen with verapamil. The flavonoid compounds isolated from the plant were devoid of any activity in the isolated tissue preparations. These results indicate that the plant extract of T. artemisioides possesses analgesic, anti-inflammatory and CCB activities. The flavonoid compounds of the plant may have a role in its observed analgesic and antiinflammatory activities, while the CCB activity of the plant may be attributed to some other chemical constituents present. Moreover the findings support the traditional reputation of the genus Tanacetum for its therapeutic benefits in pain and inflammatory conditions.
Ashley, Kevin; Applegate, Gregory T; Marcy, A Dale; Drake, Pamela L; Pierce, Paul A; Carabin, Nathalie; Demange, Martine
2009-02-01
Because toxicities may differ for Cr(VI) compounds of varying solubility, some countries and organizations have promulgated different occupational exposure limits (OELs) for soluble and insoluble hexavalent chromium (Cr(VI)) compounds, and analytical methods are needed to determine these species in workplace air samples. To address this need, international standard methods ASTM D6832 and ISO 16740 have been published that describe sequential extraction techniques for soluble and insoluble Cr(VI) in samples collected from occupational settings. However, no published performance data were previously available for these Cr(VI) sequential extraction procedures. In this work, the sequential extraction methods outlined in the relevant international standards were investigated. The procedures tested involved the use of either deionized water or an ammonium sulfate/ammonium hydroxide buffer solution to target soluble Cr(VI) species. This was followed by extraction in a sodium carbonate/sodium hydroxide buffer solution to dissolve insoluble Cr(VI) compounds. Three-step sequential extraction with (1) water, (2) sulfate buffer and (3) carbonate buffer was also investigated. Sequential extractions were carried out on spiked samples of soluble, sparingly soluble and insoluble Cr(VI) compounds, and analyses were then generally carried out by using the diphenylcarbazide method. Similar experiments were performed on paint pigment samples and on airborne particulate filter samples collected from stainless steel welding. Potential interferences from soluble and insoluble Cr(III) compounds, as well as from Fe(II), were investigated. Interferences from Cr(III) species were generally absent, while the presence of Fe(II) resulted in low Cr(VI) recoveries. Two-step sequential extraction of spiked samples with (first) either water or sulfate buffer, and then carbonate buffer, yielded quantitative recoveries of soluble Cr(VI) and insoluble Cr(VI), respectively. Three-step sequential extraction gave excessively high recoveries of soluble Cr(VI), low recoveries of sparingly soluble Cr(VI), and quantitative recoveries of insoluble Cr(VI). Experiments on paint pigment samples using two-step extraction with water and carbonate buffer yielded varying percentages of relative fractions of soluble and insoluble Cr(VI). Sequential extractions of stainless steel welding fume air filter samples demonstrated the predominance of soluble Cr(VI) compounds in such samples. The performance data obtained in this work support the Cr(VI) sequential extraction procedures described in the international standards.
Dinday, Matthew T.
2015-01-01
Abstract Mutations in a voltage-gated sodium channel (SCN1A) result in Dravet Syndrome (DS), a catastrophic childhood epilepsy. Zebrafish with a mutation in scn1Lab recapitulate salient phenotypes associated with DS, including seizures, early fatality, and resistance to antiepileptic drugs. To discover new drug candidates for the treatment of DS, we screened a chemical library of ∼1000 compounds and identified 4 compounds that rescued the behavioral seizure component, including 1 compound (dimethadione) that suppressed associated electrographic seizure activity. Fenfluramine, but not huperzine A, also showed antiepileptic activity in our zebrafish assays. The effectiveness of compounds that block neuronal calcium current (dimethadione) or enhance serotonin signaling (fenfluramine) in our zebrafish model suggests that these may be important therapeutic targets in patients with DS. Over 150 compounds resulting in fatality were also identified. We conclude that the combination of behavioral and electrophysiological assays provide a convenient, sensitive, and rapid basis for phenotype-based drug screening in zebrafish mimicking a genetic form of epilepsy. PMID:26465006
The in-vitro anti-leishmanial activity of inhibitors of ergosterol biosynthesis.
Gebre-Hiwot, A; Frommel, D
1993-12-01
The in-vitro activity of a group of antifungal compounds known to inhibit ergosterol synthesis was investigated against Leishmania donovani grown as intracellular amastigotes in the human leukaemia monocyte cell line, THP-1. Toxicity on the host cells was assessed using the colorimetric MTT assay. Compounds inhibiting 2,3 oxidosqualene lanosterol cyclase; RO 43-3815, RO 43-5955, RO 43-8208, RO 42-6589 and RO 43-0688 displayed high activity with a median effective dose (ED50) of 0.6, 0.9, 3.5, 2.2 and 0.7 mg/L respectively. Of the azole compounds, oxiconazole had an ED50 value of 3.3 mg/L while ketoconazole showed the least activity. The delta-14-reductase and delta-8-delta-7 isomerase inhibitor, amorolfine, gave the highest therapeutic index with an ED50 value of 1.6 mg/L. Most compounds tested had a lower ED50 value than the standard antileishmanial drugs, sodium stibogluconate (5.5 mg Sbv/L) and meglumine antimoniate (3.0 mg Sbv/L) indicating the clean potential of these antifungal compounds in treating leishmaniasis.
McCormack, Paul; Lemmo, John S; Macomber, Margaret; Holcomb, Mark L; Lieckfield, Robert
2011-04-01
Superabsorbent polyacrylate (SAP) is an important industrial chemical manufactured primarily as sodium polyacrylate but occasionally as potassium salt. It has many applications owing to its intrinsic physical property of very high water absorption, which can be more than 100 times it own weight. SAP is commonly used in disposable diapers and feminine hygiene products and is known by a number of synonyms-sodium polyacrylate, superabsorbent polyacrylate (SAP), polyacrylate absorbent (PA), and superabsorbent material (SAM). Germany and The Netherlands have adopted a nonbinding scientific guideline value 0.05 mg/m³ (8-hr time-weighted average, TWA) as the maximum allowable workplace concentration for the respirable dust of SAP (<10 μm particle diameter). Three industry associations representing Europe, the United States, and Asia have adopted the German scientific guideline value of 0.05 mg/m³ (8-hr TWA) as a voluntary guideline. A new test method based on alcohol derivatization of the acrylate was developed and validated for the analysis of respirable superabsorbent polyacrylate dust collected on filter cassettes in the workplace environment. This method is an alternative to the commonly used sodium-based method, which is limited owing to potential interference by other sources of sodium from the workplace and laboratory environments. The alcohol derivatization method effectively eliminates sodium interference from several classes of sodium compounds, as shown by their purposeful introduction at two and six times the equivalent amount of SAP present in reference samples. The accuracy of the method, as determined by comparison with sodium analysis of known reference samples, was greater than 80% over the study range of 5-50 μg of SAP dust. The lower reporting limit of the method is 3.0 μg of SAP per sample, which is equivalent to 3 (μg/m³) for an 8-hr sampling period at the recommended flow rate of 2.2 L/min.
Stratford, Joshua M.; Mayo, Martin; Allan, Phoebe K.; ...
2017-05-04
Here, the alloying mechanism of high-capacity tin anodes for sodium-ion batteries is investigated using a combined theoretical and experimental approach. Ab initio random structure searching (AIRSS) and high-throughput screening using a species-swap method provide insights into a range of possible sodium–tin structures. These structures are linked to experiments using both average and local structure probes in the form of operando pair distribution function analysis, X-ray diffraction, and 23Na solid-state nuclear magnetic resonance (ssNMR), along with ex situ 119Sn ssNMR. Through this approach, we propose structures for the previously unidentified crystalline and amorphous intermediates. The first electrochemical process of sodium insertionmore » into tin results in the conversion of crystalline tin into a layered structure consisting of mixed Na/Sn occupancy sites intercalated between planar hexagonal layers of Sn atoms (approximate stoichiometry NaSn 3). Following this, NaSn 2, which is predicted to be thermodynamically stable by AIRSS, forms; this contains hexagonal layers closely related to NaSn 3, but has no tin atoms between the layers. NaSn 2 is broken down into an amorphous phase of approximate composition Na 1.2Sn. Reverse Monte Carlo refinements of an ab initio molecular dynamics model of this phase show that the predominant tin connectivity is chains. Further reaction with sodium results in the formation of structures containing Sn–Sn dumbbells, which interconvert through a solid-solution mechanism. These structures are based upon Na 5–xSn 2, with increasing occupancy of one of its sodium sites commensurate with the amount of sodium added. ssNMR results indicate that the final product, Na 15Sn 4, can store additional sodium atoms as an off-stoichiometry compound (Na 15+xSn 4) in a manner similar to Li 15Si 4.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratford, Joshua M.; Mayo, Martin; Allan, Phoebe K.
Here, the alloying mechanism of high-capacity tin anodes for sodium-ion batteries is investigated using a combined theoretical and experimental approach. Ab initio random structure searching (AIRSS) and high-throughput screening using a species-swap method provide insights into a range of possible sodium–tin structures. These structures are linked to experiments using both average and local structure probes in the form of operando pair distribution function analysis, X-ray diffraction, and 23Na solid-state nuclear magnetic resonance (ssNMR), along with ex situ 119Sn ssNMR. Through this approach, we propose structures for the previously unidentified crystalline and amorphous intermediates. The first electrochemical process of sodium insertionmore » into tin results in the conversion of crystalline tin into a layered structure consisting of mixed Na/Sn occupancy sites intercalated between planar hexagonal layers of Sn atoms (approximate stoichiometry NaSn 3). Following this, NaSn 2, which is predicted to be thermodynamically stable by AIRSS, forms; this contains hexagonal layers closely related to NaSn 3, but has no tin atoms between the layers. NaSn 2 is broken down into an amorphous phase of approximate composition Na 1.2Sn. Reverse Monte Carlo refinements of an ab initio molecular dynamics model of this phase show that the predominant tin connectivity is chains. Further reaction with sodium results in the formation of structures containing Sn–Sn dumbbells, which interconvert through a solid-solution mechanism. These structures are based upon Na 5–xSn 2, with increasing occupancy of one of its sodium sites commensurate with the amount of sodium added. ssNMR results indicate that the final product, Na 15Sn 4, can store additional sodium atoms as an off-stoichiometry compound (Na 15+xSn 4) in a manner similar to Li 15Si 4.« less
Comerton, Anna M; Andrews, Robert C; Bagley, David M
2009-02-01
The impact of natural organic matter (NOM) and cations on the rejection of five endocrine disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs) (acetaminophen, carbamazepine, estrone, gemfibrozil, oxybenzone) by nanofiltration (NF) was examined. The water matrices included membrane bioreactor (MBR) effluent, Lake Ontario water and laboratory-prepared waters modelled to represent the characteristics of the Lake Ontario water. The impact of cations in natural waters on compound rejection was also examined by doubling the natural cation concentration (calcium, magnesium, sodium) in both the Lake Ontario water and the MBR effluent. The presence of Suwannee River NOM spiked into laboratory-grade water was found to cause an increase in compound NF rejection. In addition, the presence of cations alone in laboratory-grade water did not have a significant impact on rejection with the exception of the polar compound gemfibrozil. However, when cation concentration in natural waters was increased, a significant decrease in the rejection of EDCs and PhACs was observed. This suggests that the presence of cations may result in a reduction in the association of EDCs and PhACs with NOM.
Effects of Surfactants on Chlorobenzene Absorption on Pyrite Surface
NASA Astrophysics Data System (ADS)
Hoa, P. T.; Suto, K.; Inoue, C.; Hara, J.
2007-03-01
Recently, both surfactant extraction of chlorinated compounds from contaminated soils and chemical reduction of chlorinated compounds by pyrite have had received a lot of attention. The reaction of the natural mineral pyrite was found as a surface controlling process which strongly depends on absorption of contaminants on the surface. Surfactants were not only aggregated into micelle which increase solubility of hydrophobic compounds but also tend to absorb on the solid surface. This study investigated effects of different kinds of Surfactants on absorption of chlorobenzene on pyrite surface in order to identify coupling potential of surfactant application and remediation by pyrite. Surfactants used including non-ionic, anionic and cationic which were Polyoxyethylene (23) Lauryl Ether (Brij35), Sodium Dodecyl Sulfate (SDS) and Cetyl TrimethylAmmonium Bromide (CTAB) respectively were investigated with a wide range of surfactant concentration up to 4 times of each critical micelle concentration (CMC). Chlorobenzene was chosen as a representative compound. The enhancement or competition effects of Surfactants on absorption were discussed.
Storage stability of light cycle oil: Studies for the root substance of insoluble sediment formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motohashi, Katsunori; Nakazono, Kingo; Oki, Masami
1995-04-01
The storage stabilities of a raw and pretreated light cycle oils (LCOs) have been studied under the condition of ASTM D2274-88. The raw LCO was pretreated by five methods; 10% sulfuric acid-extraction, 10% sodium hydroxide-extraction, methanol-extraction, active clay- treatment, and catalytic hydrotreating. The raw and pretreated LCOs were aged at 95{degrees}C for 144 hours while oxygen was bubbled. The pretreatment except 10% sulfuric acid-extraction showed the decreasing sediments. After removing the sediments by filtration, the changes of component of the residual oils before and after aging, were analyzed by GUMS, GC/AED and GC/NPD. Remarkable changes were observed in nitrogen compoundsmore » such as anilines and indoles, sulfur compounds such as thiophenols, and oxygen compounds such as phenol and its derivatives. It was clarified that the sediment formation was caused by the mutual interactions among heteroatom-containing compounds mentioned above. In addition, unstable hydrocarbons were suggested to behave as key-compounds for sediment formation.« less
Gravitational Agglomeration of Post-HCDA LMFBR Nonspherical Aerosols.
1980-12-01
equations for two particle motions are developed . A computer program NGCEFF is constructed., the Navier-Stokes equation is solved by the finite difference...dynamic equations for two particle motions are developed . A computer program NGCEFF I is constructed, the Navier-Stokes equation is solved by the...spatial inhomogeneities for the aerosol. Thus, following an HCDA, an aerosol mixture of sodium compounds, fuel and core structural materials will
Effects of inorganic ions on leachability of wood preserving N'N-hydroxynapthalimide (NHA).
S. Nami Kartal; Ben F. Dorau; Stan T. Lebow; Frederick III Green
2004-01-01
Southern yellow pine sapwood stakes and blocks were treated with the sodium salt of the calcium-precipitating compound NâN-hydroxynapthalimide (NHA) and leach tested for 2 weeks using the American Wood-Preserversâ Association (AWPA) standard. Leacheates were measured for NHA using a microplate optical density ultraviolet reader, and leach rates were estimated for tap...
Methaemoglobinaemia following ingestion of a commonly available food additive.
Maric, Peter; Ali, Sayed S; Heron, Leon G; Rosenfeld, David; Greenwood, Matthew
2008-02-04
Five cases of methaemoglobinaemia after ingestion of sodium nitrite occurred in two clusters in Sydney in 2006. All cases were unintentional poisonings following use in cooking of an imported compound sold as a food additive. In all cases, methaemoglobinaemia was recognised early and treated promptly, with all patients making a full recovery. These cases highlight the importance of accurate food labelling and surveillance of imported goods.
A pilot-scale in situ chemical oxidation (ISCO) demonstration, involving subsurface injections of sodium permanganate (NaMnO4), was performed at the US Marine Corp Recruit Depot (MCRD), site 45 (Parris Island (PI), SC). The ground water was originally contaminated with perchloroe...