Science.gov

Sample records for sodium selenite nanoparticles

  1. Silver Nanoparticle Exposure Induced Mitochondrial Stress, Caspase-3 Activation and Cell Death: Amelioration by Sodium Selenite

    PubMed Central

    Ma, Wanrui; Jing, Li; Valladares, Alexandra; Mehta, Suresh L.; Wang, Zhizhong; Li, P. Andy; Bang, John J.

    2015-01-01

    Silver nanoparticles (AgNP), one of the most commonly used engineered nanomaterial for biomedical and industrial applications, has shown a toxic potential to our ecosystems and humans. In this study, murine hippocampal neuronal HT22 cells were used to delineate subcellular responses and mechanisms to AgNP by assessing the response levels of caspase-3, mitochondrial oxygen consumption, reactive oxygen species (ROS), and mitochondrial membrane potential in addition to cell viability testing. Selenium, an essential trace element that has been known to carry protecting property from heavy metals, was tested for its ameliorating potential in the cells exposed to AgNP. Results showed that AgNP reduced cell viability. The toxicity was associated with mitochondrial membrane depolarization, increased accumulation of ROS, elevated mitochondrial oxygen consumption, and caspase-3 activation. Treatment with sodium selenite reduced cell death, stabilized mitochondrial membrane potential and oxygen consumption rate, and prevented accumulation of ROS and activation of caspase-3. It is concluded that AgNP induces mitochondrial stress and treatment with selenite is capable of preventing the adverse effects of AgNP on the mitochondria. PMID:26157341

  2. Nanoparticles of selenium as species with stronger physiological effects in sheep in comparison with sodium selenite.

    PubMed

    Sadeghian, Sirous; Kojouri, Gholam Ali; Mohebbi, Abdonnaser

    2012-06-01

    The present study was designed to compare the effects of nano red selenium and sodium selenite on the antioxidative activities of neutrophils and the hematological parameters in sheep. Fifteen sheep were randomly allocated into three groups. Groups 1 and 2 received selenium nanoparticles orally at 1 mg/kg and sodium selenite at 1 mg Se/kg for 10 consecutive days; group 3 served as the control. To assess the degrees of oxidative stress and of lipid peroxidation of the cellular membranes, the levels of thiobarbituric acid reactive substances (TBARS) were determined in serum samples that were collected at different supplementation intervals, i.e., after 0, 10, 20, and 30 days. In addition, hematological parameters in the serum samples were measured by routine procedures. It was found that TBARS levels in groups 1 and 2 were significantly higher on days 20 and 30 compared to the basal level on day 0. It was also found that on day 30, the TBARS activities in both treated groups were significantly higher than those of the controls (P < 0.05). These findings may explain the seemingly paradoxical effects of supplemental selenium on the indicators of oxidative stress, as the levels of TBARS were generally expected to decrease in the presence of selenium. There were no significant differences between the PCV and RBC values in the three groups. The white blood cell count (WBC) in group 1 showed a significant increase on days 20 and 30 in comparison with the control group. However, in group 2, there was a significant increase of the WBC value just on day 20 in comparison with the control group. Also, there were significant increases of the neutrophil counts and significant decreases of the lymphocyte counts on day 10 in group 1, in comparison with those in group 2 and controls, and on days 20 and 30 in groups 1 and 2 in comparison with those in the control group.

  3. Improvement of isolated rat pancreatic islets function by combination of cerium oxide nanoparticles/sodium selenite through reduction of oxidative stress.

    PubMed

    Pourkhalili, Nazila; Hosseini, Asieh; Nili-Ahmadabadi, Amir; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Hassani, Shokoufeh; Baeeri, Maryam; Abdollahi, Mohammad

    2012-07-01

    Insulin Dependent Diabetes Mellitus (IDDM) is a disease with high incidence with no pure cure therapy yet. In most of cases, these patients need pancreatic islets transplantation that is not completely successful because of oxidative stress happening during isolation and transplantation procedures. In the present study, effective factors in transplantation procedure such as viability, insulin secretion, production of reactive oxygen molecules (ROM), and mitochondrial energy as ATP/ADP ratio were examined in the isolated islets exposed to sodium selenite (Na₂SeO₃; 0 30 nmol/L), metal form of cerium oxide (100 nm), cerium oxide nanoparticles (100 nm) and combination of Na₂SeO₃ (30 nmol/L)/cerium oxide nanoparticles (100 nm) in a time course (1, 2, 4 and 6 days posttreatment) manner. The results showed a significant increase of cells viability, secretion of insulin, and ATP/ADP ratio and a reduction in ROM by use of sodium selenite, cerium oxide nanoparticles, and especially combination of cerium oxide nanoparticles/sodium selenite. Interestingly, not only no improvement was found with metal form of cerium oxide but also deterioration occurred in tested markers. Results suggest that pretreatment with combination of cerium oxide nanoparticles/sodium selenite can improve transplantation outcome and graft function by control of oxidative stress damage.

  4. Differential protein expression of Caco-2 cells treated with selenium nanoparticles compared with sodium selenite and selenomethionine

    NASA Astrophysics Data System (ADS)

    Fu, Linglin; Yan, Xuxia; Ruan, Xinming; Lin, Junda; Wang, Yanbo

    2014-10-01

    The study was designed to determine the differential protein expression of Caco-2 cells treated with different forms of selenium including sodium selenite, selenomethionine (Se-Met), and selenium nanoparticles (nano-Se). Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS) were used to identify the differentially expressed proteins. The results indicated that seven protein spots, ubiquitin-conjugating enzyme E2 (E2), glutathione synthetases (GS), triosephosphate isomerase (TSP), T-complex protein 1 subunit zeta (TCPZ), lamin-B1, heterogeneous nuclear ribonucleoprotein F (hnRNP F), and superoxide dismutase [Cu-Zn] (Cu, Zn-SOD) were significantly different among all the groups. According to the order of control, sodium selenite, Se-Met, and Nano-Se, the expression levels of two proteins (E2 and GS) increased and the other differential proteins were reverse. Except for E2, there were no significant differences in other protein expressions between the groups treated with nano-Se and Se-Met.

  5. Differential protein expression of Caco-2 cells treated with selenium nanoparticles compared with sodium selenite and selenomethionine.

    PubMed

    Fu, Linglin; Yan, Xuxia; Ruan, Xinming; Lin, Junda; Wang, Yanbo

    2014-01-01

    The study was designed to determine the differential protein expression of Caco-2 cells treated with different forms of selenium including sodium selenite, selenomethionine (Se-Met), and selenium nanoparticles (nano-Se). Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS) were used to identify the differentially expressed proteins. The results indicated that seven protein spots, ubiquitin-conjugating enzyme E2 (E2), glutathione synthetases (GS), triosephosphate isomerase (TSP), T-complex protein 1 subunit zeta (TCPZ), lamin-B1, heterogeneous nuclear ribonucleoprotein F (hnRNP F), and superoxide dismutase [Cu-Zn] (Cu, Zn-SOD) were significantly different among all the groups. According to the order of control, sodium selenite, Se-Met, and Nano-Se, the expression levels of two proteins (E2 and GS) increased and the other differential proteins were reverse. Except for E2, there were no significant differences in other protein expressions between the groups treated with nano-Se and Se-Met.

  6. The effects of oral consumption of selenium nanoparticles on chemotactic and respiratory burst activities of neutrophils in comparison with sodium selenite in sheep.

    PubMed

    Kojouri, Gholam Ali; Sadeghian, Sirous; Mohebbi, Abdonnaser; Mokhber Dezfouli, Mohammad Reza

    2012-05-01

    The present study was designed to compare the effects of nano-selenium and of sodium selenite on the chemotactic and respiratory burst activities of neutrophils in sheep. Fifteen sheep were randomly divided into three groups. Groups 1 and 2 received selenium nanoparticles (1 mg/kg) or sodium selenite (1 mg/kg) orally, respectively, for ten consecutive days, and the third group was considered as the control. To determine the chemotactic and respiratory burst activities of the neutrophils, the leading front assay and the NBT test were used on heparinized blood samples that were collected at different intervals (days 0, 10th, 20th, and 30th). The results obtained showed that the chemotactic activities in groups 1 and 2 increased significantly on the 10th, 20th, and 30th day, compared to day 0, and on the 20th day in comparison with the 10th day, while in group 2, there was a significant decrease on the 30th day compared to the 20th day. The chemotactic activities in group 1 were significantly higher than in group 2 on the 10th day and in the control group on the 10th, 20th, and 30th day, but the chemotactic activities in group 2 were significantly higher than those in the control group only on the 20th day. On the 30th day into the experiment, the respiratory bursts in groups 1 and 2 were significantly stronger in comparison with those at day 0. Overall, nano-selenium increased the chemotactic and respiratory burst activities more significantly than sodium selenite, which is suggestive of a stronger stimulatory effect of the Se nanoparticles on intracellular activities.

  7. On The Protection by The Combination of CeO2 Nanoparticles and Sodium Selenite on Human Lymphocytes against Chlorpyrifos-Induced Apoptosis In Vitro

    PubMed Central

    Pedram, Sahar; Mohammadirad, Azadeh; Rezvanfar, Mohammad Amin; Navaei-Nigjeh, Mona; Baeeri, Maryam; Abdollahi, Mohammad

    2015-01-01

    Objective Chlorpyrifos (CP) as an organophosphorus pesticide is thought to induce oxidative stress in human cells via producing reactive oxygen species (ROS) that leads to the presence of pathologic conditions due to apoptosis along with acetylcholinesterase (AChE) inhibition.This study aimed to evaluate the apoptotic effects of CP and to assess the protective potential of CeO2nanoparticle (CNP) and sodium selenite (SSe) by measuring cascades of apoptosis, oxidative stress, inflammation, and AChE inhibition in human isolated lymphocytes. Materials and Methods In the present experimental study, we examined the anti-oxidative and AChE activating potential of CNP and SSe in CP-treated human lymphocytes. Therefore, the lymphocytes were isolated and exposed to CP, CP+CNP, CP+SSe, and CP+CNP+SSe after a three-day incubation. Then tumor necrosis factor-alpha (TNF-α) release, myeloperoxidase (MPO) activity, thiobarbituric acid-reactive substances (TBARS) levels as inflammatory/oxidative stress indices along with AChE activity were assessed. In addition, the apoptotic process was measured by flow cytometry. Results Results showed a significant reduction in the mortality rate, TNF-α, MPO activity, TBARS, and apoptosis rate in cells treated with CNP, SSe and their combination. Interestingly, both CNP and SSe were able to activate AChE which is inhibited by CP. The results supported the synergistic effect of CNP/SSe combination in the prevention of apoptosis along with oxidative stress and inflammatory cascade. Conclusion CP induces apoptosis in isolated human lymphocytes via oxidative stress and inflammatory mediators. CP firstly produces ROS, which leads to membrane phospholipid damage. The beneficial effects of CNP and SSe in reduction of CP-induced apoptosis and restoring AChE inhibition relate to their anti-oxidative potentials. PMID:26199915

  8. Comparative oral dose toxicokinetics of sodium selenite and selenomethionine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The toxicokinetics of selenium (Se) absorption, distribution, and elimination were determined in serum and whole blood of lambs that were orally dosed with various doses of Se as sodium selenite (inorganic Se) or selenomethionine (organic Se). Thirty-two lambs were randomly assigned to eight treatm...

  9. Radioprotective effect of sodium selenite on developing teeth.

    PubMed

    Neves, Ellen Gaby; Ramos-Perez, Flávia Maria de Moraes; Freitas, Deborah Queiroz; Bóscolo, Frab Norberto; Almeida, Solange Maria

    2013-01-01

    Radioprotective agents like selenium are used to reduce the damage caused by radiation in healthy tissues. The aim of this study was to evaluate the effect of sodium selenite on the development of the molars of offspring of rats irradiated during odontogenesis. Twenty pregnant rats were randomly divided into 4 groups: control, irradiated, selenium and selenium/irradiated. The selenium and selenium/irradiated groups received 0.3 mg/kg of sodium selenite at 18 days of pregnancy. The rats of the irradiated and selenium/irradiated groups received a single dose of 4 Gy of X rays on the abdominal region at the 19th day of pregnancy. The offspring was sacrificed at 3 and 4 days after birth for evaluation of the birefringence of the enamel organic matrix, and at 30 days for evaluation of the intercuspal dimensions of the molars. The selenium/irradiated group was similar to the irradiated group with respect to the thickness and irregularity of the enamel organic matrix region in the evaluated birefringence, as the intercuspal dimensions of the molars. In conclusion, sodium selenite had no radioprotective action on the development of the molars of offspring of rats irradiated during odontogenesis and had a toxic effect in the initial time.

  10. Effects of 14-day oral low dose selenium nanoparticles and selenite in rat-as determined by metabolite pattern determination.

    PubMed

    Hadrup, Niels; Loeschner, Katrin; Skov, Kasper; Ravn-Haren, Gitte; Larsen, Erik H; Mortensen, Alicja; Lam, Henrik R; Frandsen, Henrik L

    2016-01-01

    Selenium (Se) is an essential element with a small difference between physiological and toxic doses. To provide more effective and safe Se dosing regimens, as compared to dosing with ionic selenium, nanoparticle formulations have been developed. However, due to the nano-formulation, unexpected toxic effects may occur. We used metabolite pattern determination in urine to investigate biological and/or toxic effects in rats administered nanoparticles and for comparison included ionic selenium at an equimolar dose in the form of sodium selenite. Low doses of 10 and 100 fold the recommended human high level were employed to study the effects at borderline toxicity. Evaluations of all significantly changed putative metabolites, showed that Se nanoparticles and sodium selenite induced similar dose dependent changes of the metabolite pattern. Putative identified metabolites included increased decenedioic acid and hydroxydecanedioic acid for both Se formulations whereas dipeptides were only increased for selenite. These effects could reflect altered fatty acid and protein metabolism, respectively.

  11. Effects of 14-day oral low dose selenium nanoparticles and selenite in rat—as determined by metabolite pattern determination

    PubMed Central

    Loeschner, Katrin; Skov, Kasper; Ravn-Haren, Gitte; Larsen, Erik H.; Mortensen, Alicja; Lam, Henrik R.; Frandsen, Henrik L.

    2016-01-01

    Selenium (Se) is an essential element with a small difference between physiological and toxic doses. To provide more effective and safe Se dosing regimens, as compared to dosing with ionic selenium, nanoparticle formulations have been developed. However, due to the nano-formulation, unexpected toxic effects may occur. We used metabolite pattern determination in urine to investigate biological and/or toxic effects in rats administered nanoparticles and for comparison included ionic selenium at an equimolar dose in the form of sodium selenite. Low doses of 10 and 100 fold the recommended human high level were employed to study the effects at borderline toxicity. Evaluations of all significantly changed putative metabolites, showed that Se nanoparticles and sodium selenite induced similar dose dependent changes of the metabolite pattern. Putative identified metabolites included increased decenedioic acid and hydroxydecanedioic acid for both Se formulations whereas dipeptides were only increased for selenite. These effects could reflect altered fatty acid and protein metabolism, respectively. PMID:27781177

  12. Sodium selenite and vitamin E in preventing mercuric chloride induced renal toxicity in rats.

    PubMed

    Aslanturk, Ayse; Uzunhisarcikli, Meltem; Kalender, Suna; Demir, Filiz

    2014-08-01

    This study aims to investigate improving effects of sodium selenite and/or vitamin E on mercuric chloride-induced kidney impairments in rats. Wistar male rats were exposed either to sodium selenite (0.25mg/kgday), vitamin E (100mg/kgday), sodium selenite+vitamin E, mercuric chloride (1mg/kgday), sodium selenite+mercuric chloride, vitamin E+mercuric chloride and sodium selenite+vitamin E+mercuric chloride for 4weeks. Mercuric chloride exposure resulted in an increase in the uric acid, creatinine, blood urea nitrogen and malondialdehyde (MDA) levels and a decrease in the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. Histopathological changes were detected in kidney tissues in mercuric chloride-treated groups. A significant decrease in the uric acid, creatinine, blood urea nitrogen and MDA levels and a significant increase in the SOD, CAT and GPx activities were observed in the supplementation of sodium selenite and/or vitamin E to mercuric chloride-treated groups. Conclusively, sodium selenite, vitamin E and vitamin E+sodium selenite significantly reduce mercuric chloride induced nephrotoxicity in rats, but not protect completely.

  13. Effects of sodium selenite on vascular smooth muscle reactivity.

    PubMed

    Togna, G; Russo, P; Pierconti, F; Caprino, L

    2000-02-01

    The effects of sodium selenite (Na(2)SeO(3)) on the vascular smooth muscle reactivity of rabbit aorta were studied. In isolated rabbit aorta, Na(2)SeO(3) inhibited contractile response to phenylephrine and developed a lasting contracture in the vascular tissue. Relaxation in phenylephrine-precontracted aortic rings induced by sodium nitroprusside and 8-bromo-guanosine 3':5'-cyclic-monophosphate was also inhibited. Preliminary data obtained with ascorbic acid suggested a partial involvement of an oxidative mechanism. Excluding the possibility that Se damages actin or modifies its distribution (immunohistochemical evaluation), results indicate that Se alters vascular smooth muscle reactivity by inhibiting both its contracting and relaxing properties. Calcium-dependent mechanisms appear to be primarily involved and an interference with calcium re-uptake by sarcoplasmic reticulum as a possible site of Se vascular action could be hypothesized.

  14. Computational characterization of sodium selenite using density functional theory.

    PubMed

    Barraza-Jiménez, Diana; Flores-Hidalgo, Manuel Alberto; Galvan, Donald H; Sánchez, Esteban; Glossman-Mitnik, Daniel

    2011-04-01

    In this theoretical study we used density functional theory to calculate the molecular and crystalline structures of sodium selenite. Our structural results were compared with experimental data. From the molecular structure we determined the ionization potential, electronic affinity, and global reactivity parameters like electronegativity, hardness, softness and global electrophilic index. A significant difference in the IP and EA values was observed, and this difference was dependent on the calculation method used (employing either vertical or adiabatic energies). Thus, values obtained for the electrophilic index (2.186 eV from vertical energies and 2.188 eV from adiabatic energies) were not significantly different. Selectivity was calculated using the Fukui functions. Since the Mulliken charge study predicted a negative value, it is recommended that AIM should be used in selectivity characterization. It was evident from the selectivity index that sodium atoms are the most sensitive sites to nucleophilic attack. The results obtained in this work provide data that will aid the characterization of compounds used in crop biofortification.

  15. Protective role of C-phycocyanin against secondary changes during sodium selenite mediated cataractogenesis.

    PubMed

    Kumari, Rasiah Pratheepa; Anbarasu, Kumarasamy

    2014-04-01

    Age related cataract is the leading cause of blindness associated with accumulation of oxidative stress in the eye lens. The present investigation reveals the rational of the beneficial effects of the natural compound C-phycocyanin (C-PC) is beneficial when administered to rat pups to protect against the secondary effects of sodium selenite induced cataractogenesis. A single subcutaneous dose of sodium selenite (19 μmol/kg body weight) on the 10th day of postpartum is adequate to induce cataract in rat pups. Serum biochemical parameters, such as the level of electrolytes, mean activities of anti-oxidant enzymes i.e. superoxide dismutase, catalase and reduced glutathione were observed to be significantly altered during selenite induced cataractogenic process. Histopathological examination revealed signs of degradation of normal cell architecture in the liver, kidney and eye lens. Interestingly, the deleterious effects of sodium selenite toxicity were restored with the simultaneous treatment with C-PC. The results suggest that an administration of 200 mg/kg body weight of C-PC has the ability to prevent/alter the secondary changes reflected in the serum biochemical and histological modifications in rats exposed to sodium selenite. These results complement the beneficial role of C-PC of cyanobacterial origin as a efficacious anti-cataractogenic agent against sodium selenite toxicity.

  16. Effects of coadministered sodium selenite on short-term distribution on methyl mercury in the rat

    SciTech Connect

    Thomas, D.J.; Smith, J.C.

    1984-08-01

    Adult male Sprague-Dawley rats received iv injections of 1 ..mu..mole of methyl mercury/kg alone or coadministered with 5 ..mu..mole of sodium selenite/kg. Tissue concentrations of methyl mercury were determined at 5, 20, and 60 min after treatment. Selenite treatment produced a significant increase in cerebral methyl mercury concentrations and a significant decrease in kidney methyl mercury concentrations at all time points. The concentration of methyl mercury in liver was significantly increased by selenite coadministration at 5 and 20 min but at 60 min after injection the concentration was not significantly different from that found in rats receiving methyl mercury alone. Selenite treatment also significantly lowered blood methyl mercury concentrations at all time points. This decrease was associated with a significant decrease in the concentration of methyl mercury in erythrocytes at 5, 20, and 60 min. Plasma methyl mercury levels at 5 min postinjection were slightly higher in selenite-treated rats but were significantly lower in treated animals at 20 and 60 min. Treatment of rats with selenite did not specifically alter the extent of methyl mercury binding to glutathione in the 108,000 g supernatant of cerebrum of in erythrocyte hemolysates. In rats receiving either methyl mercury alone or with selenite, low-molecular-weight methyl mercury complexes could not be detected in plasma 5 min after iv injection.

  17. Protective effects of sodium selenite on lead nitrate-induced hepatotoxicity in diabetic and non-diabetic rats.

    PubMed

    Kalender, Suna; Apaydin, Fatma Gökçe; Baş, Hatice; Kalender, Yusuf

    2015-09-01

    In the present study, the effect of sodium selenite on lead induced toxicity was studied in Wistar rats. Sodium selenite and lead nitrate were administered orally for 28 days to streptozotocin induced diabetic and non-diabetic rats. Eight groups of rats were used in the study: control, sodium selenite, lead nitrate, lead nitrate+sodium selenite, streptozotocin-induced diabetic-control, diabetic-sodium selenite, diabetic-lead nitrate, diabetic-lead nitrate+sodium selenite groups. Serum biochemical parameters, lipid peroxidation, antioxidant enzymes and histopathological changes in liver tissues were investigated in all groups. There were statistically significant changes in liver function tests, antioxidant enzyme activities and lipid peroxidation levels in lead nitrate and sodium selenite+lead nitrate treated groups, also in diabetic and non-diabetic groups. Furthermore, histopathological alterations were demonstrated in same groups. In the present study we found that sodium selenite treatment did not show completely protective effect on diabetes mellitus caused damages, but diabetic rats are more susceptible to lead toxicity than non-diabetic rats.

  18. Reduction of selenite to elemental selenium nanoparticles by activated sludge.

    PubMed

    Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L

    2016-01-01

    Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.

  19. Differential Acute Effects of Selenomethionine and Sodium Selenite on the Severity of Colitis

    PubMed Central

    Hiller, Franziska; Oldorff, Lisa; Besselt, Karolin; Kipp, Anna Patricia

    2015-01-01

    The European population is only suboptimally supplied with the essential trace element selenium. Such a selenium status is supposed to worsen colitis while colitis-suppressive effects were observed with adequate or supplemented amounts of both organic selenomethionine (SeMet) and inorganic sodium selenite. In order to better understand the effect of these selenocompounds on colitis development we examined colonic phenotypes of mice fed supplemented diets before the onset of colitis or during the acute phase. Colitis was induced by treating mice with 1% dextran sulfate sodium (DSS) for seven days. The selenium-enriched diets were either provided directly after weaning (long-term) or were given to mice with a suboptimal selenium status after DSS withdrawal (short-term). While long-term selenium supplementation had no effect on colitis development, short-term selenite supplementation, however, resulted in a more severe colitis. Colonic selenoprotein expression was maximized in all selenium-supplemented groups independent of the selenocompound or intervention time. This indicates that the short-term selenite effect appears to be independent from colonic selenoprotein expression. In conclusion, a selenite supplementation during acute colitis has no health benefits but may even aggravate the course of disease. PMID:25867950

  20. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite.

    PubMed

    Kora, Aruna Jyothi; Rastogi, Lori

    2016-10-01

    A facile and green method for the reduction of selenite was developed using a Gram-negative bacterial strain Pseudomonas aeruginosa, under aerobic conditions. During the process of bacterial conversion, the elemental selenium nanoparticles were produced. These nanoparticles were systematically characterized using various analytical techniques including UV-visible spectroscopy, XRD, Raman spectroscopy, SEM, DLS, TEM and FTIR spectroscopy techniques. The generation of selenium nanoparticles was confirmed from the appearance of red colour in the culture broth and broad absorption peaks in the UV-vis. The synthesized nanoparticles were spherical, polydisperse, ranged from 47 to 165 nm and the average particle size was about 95.9 nm. The selected-area electron diffraction, XRD patterns; and Raman spectroscopy established the amorphous nature of the fabricated nanoparticles. The IR data demonstrated the bacterial protein mediated selenite reduction and capping of the produced nanoparticles. The selenium removal was assessed at different selenite concentrations using ICP-OES and the results showed that the tested bacterial strain exhibited significant selenite reduction activity. The results demonstrate the possible application of P. aeruginosa for bioremediation of waters polluted with toxic and soluble selenite. Moreover, the potential metal reduction capability of the bacterial strain can function as green method for aerobic generation of selenium nanospheres.

  1. Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea (Cicer arietinum L.) sprouts.

    PubMed

    Guardado-Félix, Daniela; Serna-Saldivar, Sergio O; Cuevas-Rodríguez, Edith O; Jacobo-Velázquez, Daniel A; Gutiérrez-Uribe, Janet A

    2017-07-01

    Isoflavonoid compositions, phenylalanine ammonia lyase (PAL) activity and antioxidant capacity were evaluated in chickpea (Cicer arietinum L.) sprouts germinated after soaking with different sodium selenite (Na2SeO3) concentrations (0, 1 and 2mg/100g seeds). Chickpea seeds were germinated during four days at 24°C and the isoflavonoid profiles and concentrations evaluated by HPLC-UV daily during four days of germination. Eleven isoflavones and two pterocarpan phytoalexins forms were identified in sprouts, being malonylated formononetin glycoside, formononetin, isoformononetin glycoside and malonylated biochanin A glycoside the major compounds. Compared to untreated sprouts, total isoflavonoid, PAL activity and antioxidant capacity showed a remarkable increase of 83%, 56%, and 33%, respectively in chickpea sprouts that were treated with a high sodium selenite content (2mg/100g seeds). Results suggest that Se-enriched chickpea sprouts could represent a good source of dietary Se and as an upgraded source of isoflavonoids.

  2. The toxic level of sodium selenite in the diet of laying chickens.

    PubMed

    Ort, J F; Latshaw, J D

    1978-07-01

    Female chickens were fed graded levels of sodium selenite to determine at what level a selenium toxicity occurred. In the first experiment a basal diet was supplemented with 0, 0.1, 1.0, 3.0, and 5.0 ppm of selenium. These levels had no effect on egg production, egg weight or fertility of the eggs. Hatchability of fertile eggs was significantly decreased by 5 ppm of dietary selenium. In the second experiment a basal diet was supplemented with 0, 5.0, 7.0, and 9.0 ppm of selenium. Egg weight and hatchability were significantly decreased by 7 and 9 ppm, and egg production was decreased by 9 ppm of selenium in the diet. When selenite was added to the diet, there was a lag of 2 to 3 weeks before the selenium content of the egg reflected the content of the diet. As long as the selenium content of the diet remained the same, egg selenium remained the same. When selenium was no longer supplemented, egg selenium content decreased. Two weeks after cessation of selenite supplementation, egg selenium was markedly reduced. Four weeks after cessation of selenite supplementation, egg selenium levels approached those of birds fed a basal diet continuously.

  3. Influence of sodium selenite on growth, nutrient utilization and selenium uptake in Cavia porcellus.

    PubMed

    Mahima; Garg, A K; Mudgal, Vishal

    2012-05-01

    A 70 day experiment on forty guinea pigs (Cavia porcellus) was conducted to find the influence of different level of sodium selenite (inorganic selenium supplementation) on growth, nutrient utilization and selenium uptake. The sodium selenite was supplemented into a basal diet at 0, 0.1, 0.2 and 0.3 ppm, respectively and the basal diet comprised of 25% ground cowpea (Vigna unguiculata) hay, 30% ground maize (Zea mays) grain, 22% ground gram (Cicer arietinum) grain, 9.5% deoiled rice (Oryza sativa) bran, 6% soybean (Glycine max) meal, 6% fish meal, 1.5% mineral mixture (without Se), ascorbic acid (200 mg kg) and 0.1 ppm Se to meet their nutrient requirements. Daily feed intake and weekly body weights were recorded. Intake and digestibility of dry matter, organic matter, ether extract, crude fiber and nitrogen-free extract as well as uptake of calcium and phosphorus, total body weight and average daily gain were similar (p>0.05) among the four groups. However, there was a trend of increase in Se absorption of the guinea pigs with the increasing levels of Se, in the groups given 0.2 and 0.3 ppm of Se. It can be concluded that requirement of Se in guinea pigs is 0.1 ppm, as supplementation of > or =0.1 ppm sodium selenite in the diet (having 0.1 ppm Se) did not enhanced their growth rate and nutrient utilization.

  4. Protective effects of sodium selenite supplementation against irradiation-induced damage in non-cancerous human esophageal cells.

    PubMed

    Puspitasari, Irma M; Yamazaki, Chiho; Abdulah, Rizky; Putri, Mirasari; Kameo, Satomi; Nakano, Takashi; Koyama, Hiroshi

    2017-01-01

    The administration of radioprotective compounds is one approach to preventing radiation damage in non-cancerous tissues. Therefore, radioprotective compounds are crucial in clinical radiotherapy. Selenium is a radioprotective compound that has been used in previous clinical studies of radiotherapy. However, evidence regarding the effectiveness of selenium in radiotherapy and the mechanisms underlying the selenium-induced reduction of the side effects of radiotherapy remains insufficient. To further investigate the effectiveness of selenium in radiotherapy, the present study examined the protective effects of sodium selenite supplementation administered prior to X-ray radiation treatment in CHEK-1 non-cancerous human esophageal cells. Sodium selenite supplementation increased glutathione peroxidase 1 (GPx-1) activity in a dose- and time-dependent manner. The sodium selenite dose that induced the highest GPx-1 activity was determined to be 50 nM for 72 h prior to radiotherapy. The half-maximal inhibitory concentration of sodium selenite in CHEK-1 cells was 3.6 µM. Sodium selenite supplementation increased the survival rate of the cells in a dose-dependent manner and enhanced the degree of cell viability at 72 h post-irradiation (P<0.05). Combined treatment with 50 nM sodium selenite and 2 gray (Gy) X-ray irradiation decreased the number of sub-G1 cells from 5.9 to 4.2% (P<0.05) and increased the proportion of G1 cells from 58.8 to 62.1%, compared with 2 Gy X-ray irradiation alone; however, this difference was not statistically significant (P=1.00). Western blot analysis revealed that treatment with 2 Gy X-ray irradiation significantly increased the expression levels of cleaved poly (ADP-ribose) polymerase (PARP; P<0.05). In addition, combined treatment with 50 nM sodium selenite and 2 Gy X-ray irradiation reduced the expression levels of cleaved PARP protein, compared with 2 Gy X-ray irradiation alone; however, this reduction was not statistically significant (P=0

  5. Protective effects of sodium selenite supplementation against irradiation-induced damage in non-cancerous human esophageal cells

    PubMed Central

    Puspitasari, Irma M.; Yamazaki, Chiho; Abdulah, Rizky; Putri, Mirasari; Kameo, Satomi; Nakano, Takashi; Koyama, Hiroshi

    2017-01-01

    The administration of radioprotective compounds is one approach to preventing radiation damage in non-cancerous tissues. Therefore, radioprotective compounds are crucial in clinical radiotherapy. Selenium is a radioprotective compound that has been used in previous clinical studies of radiotherapy. However, evidence regarding the effectiveness of selenium in radiotherapy and the mechanisms underlying the selenium-induced reduction of the side effects of radiotherapy remains insufficient. To further investigate the effectiveness of selenium in radiotherapy, the present study examined the protective effects of sodium selenite supplementation administered prior to X-ray radiation treatment in CHEK-1 non-cancerous human esophageal cells. Sodium selenite supplementation increased glutathione peroxidase 1 (GPx-1) activity in a dose- and time-dependent manner. The sodium selenite dose that induced the highest GPx-1 activity was determined to be 50 nM for 72 h prior to radiotherapy. The half-maximal inhibitory concentration of sodium selenite in CHEK-1 cells was 3.6 µM. Sodium selenite supplementation increased the survival rate of the cells in a dose-dependent manner and enhanced the degree of cell viability at 72 h post-irradiation (P<0.05). Combined treatment with 50 nM sodium selenite and 2 gray (Gy) X-ray irradiation decreased the number of sub-G1 cells from 5.9 to 4.2% (P<0.05) and increased the proportion of G1 cells from 58.8 to 62.1%, compared with 2 Gy X-ray irradiation alone; however, this difference was not statistically significant (P=1.00). Western blot analysis revealed that treatment with 2 Gy X-ray irradiation significantly increased the expression levels of cleaved poly (ADP-ribose) polymerase (PARP; P<0.05). In addition, combined treatment with 50 nM sodium selenite and 2 Gy X-ray irradiation reduced the expression levels of cleaved PARP protein, compared with 2 Gy X-ray irradiation alone; however, this reduction was not statistically significant (P=0

  6. Mercuric chloride-induced testicular toxicity in rats and the protective role of sodium selenite and vitamin E.

    PubMed

    Kalender, Suna; Uzun, Fatma Gokce; Demir, Filiz; Uzunhisarcıklı, Meltem; Aslanturk, Ayse

    2013-05-01

    Mercury has been recognized as an environmental pollutant that adversely affects male reproductive systems of animals. This study examined the effects of mercuric chloride on the antioxidant system and histopathological changes and also evaluated the ameliorating effects of sodium selenite and/or vitamin E in the rat testis tissues. Sexually mature male Wistar rats (weighing 300-320g and each group six animals) were given mercuric chloride (1mg/kg bw) and/or sodium selenite (0.25mg/kg bw)+vitamin E (100mg/kg) daily via gavage for 4weeks. In the present study, mercuric chloride exposure resulted in an increase in the TBARS level and a decrease in the SOD, CAT, GPx activities, with respect to the control. Further, light microscopic investigation revealed that mercury exposure induced histopathological alterations in the testis tissues. Supplementation of sodium selenite and/or vitamin E to mercury-induced groups declined lipid peroxidation, increased SOD, CAT, GPx activities. While some histopathological changes were detected in mercuric chloride treated group, milder histopathological changes were observed in animal co-treated with sodium selenite and/or vitamin E supplementation to mercuric chloride-treated rats. As a result, mercuric chloride induced testicular toxicity is reduced by sodium selenite and/or vitamin E, but not ameliorate completely.

  7. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite.

    PubMed

    Li, Hongcheng; Zhang, Jinsong; Wang, Thanh; Luo, Wenru; Zhou, Qunfang; Jiang, Guibin

    2008-09-29

    Recent studies have shown that elemental selenium particles at nano-size (Nano-Se) exhibited comparable bioavailability and less toxicity in mice and rats when compared to sodium selenite, selenomethinine and methylselenocysteine. However, little is known about the toxicity profile of Nano-Se in aquatic animals. In the present study, toxicities of Nano-Se and selenite in selenium-sufficient Medaka fish were compared. Selenium bioaccumulation and subsequent clearance in fish livers, gills, muscles and whole bodies were examined after 10 days of exposure to Nano-Se and selenite (100 microg Se/L) and again after 7 days of depuration. Both forms of selenium exposure effectively increased selenium concentrations in the investigated tissues. Surprisingly, Nano-Se was found to be more hyper-accumulated in the liver compared to selenite with differences as high as sixfold. Selenium clearance of both Nano-Se and selenite occurred at similar ratios in whole bodies and muscles but was not rapidly cleared from livers and gills. Nano-Se exhibited strong toxicity for Medaka with an approximately fivefold difference in terms of LC(50) compared to selenite. Nano-Se also caused larger effects on oxidative stress, most likely due to more hyper-accumulation of selenium in liver. The present study suggests that toxicity of nanoparticles can largely vary between different species and concludes that the evaluation of nanotoxicology should be carried out on a case-by-case basis.

  8. Effects of lead nitrate and sodium selenite on DNA damage and oxidative stress in diabetic and non-diabetic rat erythrocytes and leucocytes.

    PubMed

    Baş, Hatice; Kalender, Yusuf; Pandir, Dilek; Kalender, Suna

    2015-05-01

    The adverse effects of lead nitrate (LN) and the preventive role of sodium selenite were investigated in diabetic and non-diabetic rat blood by measuring trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP), malondialdehyde (MDA) levels and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) also by evaluating DNA damage with comet assay. LN increased the levels of MDA, tail DNA%, mean tail length and tail moment, decreased the enzymes activities, FRAP and TEAC values. In sodium selenite+LN group, we observed the protective effect of sodium selenite on examining parameters. Diabetes caused alterations on these parameters, too. We found that sodium selenite did not protect against diabetes caused damages. As a result, LN caused toxic effects on blood cells and sodium selenite alleviated this toxicity but it did not show preventive effect against diabetes. Also, LN caused more harmfull effects in diabetic groups than non-diabetic groups.

  9. The effects of sodium selenite and selenomethionine on murine limb development in culture

    SciTech Connect

    Rousseaux, C.G.; Politis, M.J.; Keiner, J. . Dept. of Veterinary Pathology)

    1993-07-01

    The present study was performed to determine whether the lack of selenium-induced limb defects in mammals is due to either differences in pharmacokinetics or tissue sensitivity to the compound, or both. Sodium selenite (SS) and selenomethionine (SM) were added to BGJb medium containing 20% fetal bovine serum, in which limbs from CD-1 mouse embryos taken 12 d following conception were cultured. Concentrations of SS and SM ranged from 2 to 20 times the level of selenium normally present in fetal bovine serum. Limbs were grown for 72 h, fixed, stained with Alcian blue GX to highlight cartilage anlagen, and analyzed to determine tissue and anlage areas and shape factors. Sodium selenite induced a concentration-response maldevelopment of ulnar, radius, and humerus anlagen and delayed development of phalanges, whereas SM did not. Changes in development became obvious at SS levels four times normal. The size and length of anlagen also decreased. At six times the concentration of SS, areas occupied by cartilage anlagen were decreased 20-fold, with virtually no chondrogenesis evident in phalanges at higher concentrations. The results of these studies indicate that SS can cause deficits in early mammalian limb development if the element is allowed to reach the developing tissue, whereas the SM does not. The authors conclude that tissue differences in response and placental transfer may account for the differences seen among species.

  10. Nephrotoxic effects of lead nitrate exposure in diabetic and nondiabetic rats: Involvement of oxidative stress and the protective role of sodium selenite.

    PubMed

    Baş, Hatice; Kalender, Yusuf

    2016-10-01

    Heavy metals are known to be toxic to organisms. The present study was undertaken to evaluate the protective effect of sodium selenite against lead nitrate (LN)-induced nephrotoxicity in diabetic and nondiabetic rats. Animals were divided into eight groups where the first was served as a control, whereas the remaining groups were treated with sodium selenite (1 mg/kg b.w.), LN (22.5 mg/kg b.w.) and a combination of LN and sodium selenite and diabetic forms of these groups. Changes in antioxidant enzyme activities, malondialdehide levels, serum urea, uric acid, creatinine levels, body, and kidney weights and histopathological changes were determined after 28 days. LN caused severe histopathological changes, increment in urea, uric acid, creatinine, and MDA levels, also decreasing in antioxidant enzyme activities, body, and kidney weights. In sodium selenite + LN group, we observed the protective effect of sodium selenite on examining parameters. Also diabetes caused alterations on these parameters compared with nondiabetic animals. We found that sodium selenite did not show protective effect on diabetes caused damages. As a result, LN caused nephrotoxicity and sodium selenite alleviated this toxicity but sodium selenite did not protect kidneys against diabetes mediated toxicity. Also, LN caused more harmfull effects in diabetic groups compared with nondiabetic groups. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1229-1240, 2016.

  11. Dietary sodium selenite on host intestinal and systemic immune response and disease susceptibility to necrotic enteritis in commercial broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. The present study was conducted to evaluate the supplementary effects of dietary Selenium (Se) given as sodium selenite on host immune response against necrotic enteritis (NE) in commercial broiler chickens. 2. Chickens were fed from hatch with a non-supplemented diet or diets supplemented with ...

  12. [Anabolic effects of sodium selenite, vitamin E and retabolil in experimental hypotrophy induced by a pesticide].

    PubMed

    Makhmudov, T M; Makhsumov, M N; Mazgutov, V Z

    1989-01-01

    Forty Chinchilla rabbits of both sexes were examined for changes in some parameters of protein, lipid and trace elements metabolism (total protein, protein fractions, urea, residual nitrogen in blood serum, lipids, total cholesterol, free cholesterol, diglycerides, phospholipids, triglycerides, free fatty acids and the trace elements selenium, iron, zinc and so forth in the liver) during the animals' poisoning with the defoliant magnesium chlorate. A study was made of the effect on these changes of the administration for 3 weeks of sodium selenite (15 micrograms/kg), vitamin E (25 mg/kg) and retabolil (2 mg/kg once a week). It has been established that the combined administration of these agents removes and prevents the changes in protein, lipid and trace elements (hypoproteinemia, dysproteinemia and impairment of the nitrous balance) and lipid metabolism because of the animals' poisoning with magnesium chlorate.

  13. Survival of Tribolium confusum (Coleoptera: Tenebrionidae) in basal-casein medium supplemented with sodium selenite

    SciTech Connect

    Hogan, G.R.; Cole, B.S. )

    1988-01-01

    The trace substance selenium is known to influence several systems exhibiting a high rate of cellular proliferation. Data are reported on survival patterns and times in various developmental stages of Tribolium confusum Duval reared in a defined medium supplemented with sodium selenite. Insects reared from eggs hatching in a selenium medium (Se medium) show a prolonged time in the larval period and marked larval mortality compared with those reared on unsupplemented medium. Adults emerging in an Se medium show reduced survival compared with adults transferred to such medium 1 wk after emergence. Larval survival patterns mimic those of the adult, whereby younger larvae that are transferred to Se medium appear to be more sensitive than those exposed to Se medium later in the larval stage. Transfer of Se medium-reared adults to unsupplemented medium as pupae has a beneficial effect on survival compared with adults that emerged in Se medium 1 wk before transfer.

  14. Protective roles of sodium selenite against aflatoxin B1-induced apoptosis of jejunum in broilers.

    PubMed

    Peng, Xi; Zhang, Shengqiang; Fang, Jing; Cui, Hengmin; Zuo, Zhicai; Deng, Junliang

    2014-12-01

    The effects of aflatoxin B1 (AFB1) exposure and sodium selenite supplementation on cell apoptosis of jejunum in broilers were studied. A total of 240 one-day-old male AA broilers were randomly assigned four dietary treatments containing 0 mg/kg of AFB1 (control), 0.3 mg/kg AFB1 (AFB1), 0.4 mg/kg supplement Se (+ Se) and 0.3 mg/kg AFB1 + 0.4 mg/kg supplement Se (AFB1 + Se), respectively. Compared with the control broilers, the number of apoptotic cells, the expression of Bax and Caspase-3 mRNA were significantly increased, while the expression of Bcl-2 mRNA and the Bcl-2/Bax ratio were significantly decreased in AFB1 broilers. The number of apoptotic cells and the expression of Caspase-3 mRNA in AFB1 + Se broilers were significantly higher than those in the control broilers, but significantly lower than those in AFB1 broilers. There were no significant changes in the expression of Bax mRNA between AFB1 + Se and control broilers; the expression of Bcl-2 mRNA and the Bcl-2/Bax ratio in AFB1 + Se broilers were significantly lower than those in the control broilers, but significantly higher than those in AFB1 broilers. In conclusion, 0.3 mg/kg AFB1 in the diet can increase cell apoptosis, decrease Bcl-2 mRNA expression, and increase of Bax and Caspase-3 mRNA expression in broiler's jejunum. However, supplementation of dietary sodium selenite at the concentration of 0.4 mg/kg Se may ameliorate AFB1-induced apoptosis by increasing Bcl-2 mRNA expression, and decreasing Bax and Caspase-3 mRNA expression.

  15. Effect of sodium selenosulfate on restoring activities of selenium-dependent enzymes and selenium retention compared with sodium selenite in vitro and in vivo.

    PubMed

    Peng, Dungeng; Zhang, Jinsong; Liu, Qinliang

    2007-01-01

    Sodium selenosulfate has been extensively used as a precursor of selenide ions in the preparation of nano Se-containing compounds. Its biological properties remain completely unknown. Sodium selenosulfate and sodium selenite were added to the medium of HepG2 cells and administered intraperitoneally at a dose of 0.1 mg Se/kg body weight to selenium-deficient mice, respectively. Both of the selenium compounds could increase the activities of glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) in a dose-dependent manner in cells and efficiently restore selenium retention and activities of GPx and TrxR in mice. All of the variables were in correlation with the Se supply. There was no distinction in elevating activities of GPx and TrxR between selenosulfate and selenite in vitro. After a 2-d supply of selenosulfate, the activity of GPx in the liver was 65% (p<0.001) and Se accumulations in the liver, kidney and blood were 64%, 86%, and 65%, respectively, of those treated with selenite (all p<0.01). With the 7-d selenosulfate supplementation, the activity of GPx in the kidney and activities of TrxR in the liver and kidney were 88%, 75%, and 78%, respectively, of those treated with selenite (all p<0.01); Se retentions in the liver and kidney were 85% and 93%, respectively of those supplemented with selenite (both p<0.01). These facts indicated that selenosulfate could be absorbed and utilized in the biological system. No difference in vitro demonstrated that selenosulfate could be absorbed and generate reduced selenide as efficiently as selenite. The differences between the two compounds in vivo were the result of other factors that affected selenosulfate utilization in tissues.

  16. Protective Effects of Sodium Selenite against Aflatoxin B1-Induced Oxidative Stress and Apoptosis in Broiler Spleen

    PubMed Central

    Wang, Fengyuan; Shu, Gang; Peng, Xi; Fang, Jing; Chen, Kejie; Cui, Hengmin; Chen, Zhengli; Zuo, Zhicai; Deng, Junliang; Geng, Yi; Lai, Weimin

    2013-01-01

    The aim of this study was to investigate the possible protective role of sodium selenite on aflatoxin B1-induced oxidative stress and apoptosis in spleen of broilers. Two hundred one-day-old male broilers, divided into five groups, were fed with basal diet (control group), 0.3 mg/kg AFB1 (AFB1 group), 0.3 mg/kg AFB1 + 0.2 mg/kg Se (+Se group I), 0.3 mg/kg AFB1 + 0.4 mg/kg Se (+Se group II) and 0.3 mg/kg AFB1 + 0.6 mg/kg Se (+Se group III), respectively. According to biochemical assays, AFB1 significantly decreased the activities of glutathione peroxidase, total superoxide dismutase, glutathione reductase, catalase and the level of glutathione hormone, while it increased the level of malondialdehyde. Moreover, AFB1 increased the percentage of apoptosis cells by flow cytometry and the occurrence of apoptotic cells by TUNEL assay. Simultaneous supplementation with sodium selenite restored these parameters to be close to those in control group. In conclusion, sodium selenite exhibited protective effects on AFB1-induced splenic toxicity in broilers by inhibiting oxidative stress and excessive apoptosis. PMID:23839060

  17. Switching to instant black coffee modulates sodium selenite-induced cataract in rats

    PubMed Central

    El Okda, E. A.; Mohamed, M. M.; Shaheed, E. B.; Abdel-Moemin, A. R.

    2016-01-01

    The influence of daily consumption of some common beverages on the development of cataract in rats was investigated. Total phenol content was determined in the beverages and an oral standardized dose of total phenols from each beverage was given to the treated rats. Weaned male albino rats were used and divided into five groups (n=7). Rats were fed Ain 93G and administered the standardized dose of instant coffee, black tea and hibiscus beverages for 30 days. On day 14 all rats were injected with a single dose of sodium selenite (Na2SeO3) 15 µmol/kg bodyweight, except the control groups NC (negative control, did not receive Na2SeO3) and PC (positive control, was already injected on day 1 of the study). The rats were continued on Ain 93G and the standardized dose for another 16 days. Positive control rats were used. Total phenols were 210, 40, and 44 mg/g dry weight gallic acid equivalent in black coffee, black tea, and hibiscus, respectively. Decreased levels (statistically significant P<0.05) of malondialdehyde, total nitric oxide, Ca-ATPase, tumor necrosis factor-α, interleukin-1β, superoxide dismutase, and conversely, increased levels (statistically significant P<0.05) of total protein, reduced glutathione, catalase were found in the lenses of the coffee group compared to PC. There are co-phenol substances in the instant black coffee that promoted coffee to be the most effective beverage. PMID:27158251

  18. Switching to instant black coffee modulates sodium selenite-induced cataract in rats.

    PubMed

    El Okda, E A; Mohamed, M M; Shaheed, E B; Abdel-Moemin, A R

    2016-01-01

    The influence of daily consumption of some common beverages on the development of cataract in rats was investigated. Total phenol content was determined in the beverages and an oral standardized dose of total phenols from each beverage was given to the treated rats. Weaned male albino rats were used and divided into five groups (n=7). Rats were fed Ain 93G and administered the standardized dose of instant coffee, black tea and hibiscus beverages for 30 days. On day 14 all rats were injected with a single dose of sodium selenite (Na2SeO3) 15 µmol/kg bodyweight, except the control groups NC (negative control, did not receive Na2SeO3) and PC (positive control, was already injected on day 1 of the study). The rats were continued on Ain 93G and the standardized dose for another 16 days. Positive control rats were used. Total phenols were 210, 40, and 44 mg/g dry weight gallic acid equivalent in black coffee, black tea, and hibiscus, respectively. Decreased levels (statistically significant P<0.05) of malondialdehyde, total nitric oxide, Ca-ATPase, tumor necrosis factor-α, interleukin-1β, superoxide dismutase, and conversely, increased levels (statistically significant P<0.05) of total protein, reduced glutathione, catalase were found in the lenses of the coffee group compared to PC. There are co-phenol substances in the instant black coffee that promoted coffee to be the most effective beverage.

  19. Pharmacokinetics and Toxicity of Sodium Selenite in the Treatment of Patients with Carcinoma in a Phase I Clinical Trial: The SECAR Study

    PubMed Central

    Brodin, Ola; Eksborg, Staffan; Wallenberg, Marita; Asker-Hagelberg, Charlotte; Larsen, Erik H.; Mohlkert, Dag; Lenneby-Helleday, Clara; Jacobsson, Hans; Linder, Stig; Misra, Sougat; Björnstedt, Mikael

    2015-01-01

    Background: Sodium selenite at high dose exerts antitumor effects and increases efficacy of cytostatic drugs in multiple preclinical malignancy models. We assessed the safety and efficacy of intravenous administered sodium selenite in cancer patients’ refractory to cytostatic drugs in a phase I trial. Patients received first line of chemotherapy following selenite treatment to investigate altered sensitivity to these drugs and preliminary assessment of any clinical benefits. Materials and Methods: Thirty-four patients with different therapy resistant tumors received iv sodium selenite daily for consecutive five days either for two weeks or four weeks. Each cohort consisted of at least three patients who received the same daily dose of selenite throughout the whole treatment. If 0/3 patients had dose-limiting toxicities (DLTs), the study proceeded to the next dose-level. If 2/3 had DLT, the dose was considered too high and if 1/3 had DLT, three more patients were included. Dose-escalation continued until the maximum tolerated dose (MTD) was reached. MTD was defined as the highest dose-level on which 0/3 or 1/6 patients experienced DLT. The primary endpoint was safety, dose-limiting toxic effects and the MTD of sodium selenite. The secondary endpoint was primary response evaluation. Results and Conclusion: MTD was defined as 10.2 mg/m2, with a calculated median plasma half-life of 18.25 h. The maximum plasma concentration of selenium from a single dose of selenite increased in a nonlinear pattern. The most common adverse events were fatigue, nausea, and cramps in fingers and legs. DLTs were acute, of short duration and reversible. Biomarkers for organ functions indicated no major systemic toxicity. In conclusion, sodium selenite is safe and tolerable when administered up to 10.2 mg/m2 under current protocol. Further development of the study is underway to determine if prolonged infusions might be a more effective treatment strategy. PMID:26102212

  20. Effect of dietary co-administration of sodium selenite on sodium arsenite-induced ovarian and uterine disorders in mature albino rats.

    PubMed

    Chattopadhyay, Sandip; Pal Ghosh, Sampa; Ghosh, Debidas; Debnath, Jogen

    2003-10-01

    The subchronic treatment of mature female Wistar-strain albino rats in diestrous phase with sodium arsenite at a dose of 0.4 ppm/100 g body weight/rat/day via drinking water for period of 28 days (seven estrous cycles) caused a significant reduction in the plasma levels of leutinizing hormone (LH), follicle-stimulating hormone (FSH), and estradiol along with a significant decrease in ovarian activities of delta five, 3 beta-hydroxysteroid dehydrogenase (Delta5,3beta-HSD), and 17 beta-hydroxysteroid dehydrogenase (17beta-HSD) followed by a reduction in ovarian and uterine peroxidase activities. A significant weight loss of the ovary and uterus was also observed after this treatment, along with a prolonged diestrous phase and a high accumulation of arsenic in the plasma and these organs. Moreover, sodium arsenite was also responsible for ovarian follicular and uterine cell degeneration characterized by a high number of regressing follicles and a reduction in the uterine luminal diameter, respectively, in comparison with the controls. A dietary supplementation of sodium selenite at the dose of 0.6 mg/100 g body weight/rat/day for a period of 28 days along with arsenic treatment minimized the gonadal weight loss significantly and increased the activities of the ovarian steroidogenic enzymes as well as the ovarian and uterine peroxidase at the control level. Selenium was also able to increase the plasma levels of LH, FSH, and estradiol toward the control level. Vaginal smears showed normal estrous cyclicity in sodium selenite-supplemented arsenic-treated rats along with lower arsenic levels in the plasma and gonadal tissue in comparison with arsenic-only-treated rats. Histological sections of ovary and uterine tissues in the control and experimental groups confirmed that sodium selenite supplementation was able to prevent arsenic-induced histopathological changes in the ovary and uterus. Plasma levels of norepinephrine and dopamine in the midbrain and diencephalon

  1. Sodium selenite supplementation does not fully restore oxidative stress-induced deiodinase dysfunction: Implications for the nonthyroidal illness syndrome

    PubMed Central

    Wajner, Simone Magagnin; Rohenkohl, Helena Cecin; Serrano, Tulio; Maia, Ana Luiza

    2015-01-01

    Nonthyroidal illness syndrome (NTIS) is marked by low T3 and high reverse T3 levels. The physiopathology is poorly understood but involves oxidative stress-induced disruption of the iodothyronine deiodinases, which activate or inactivate thyroid hormones. Selenium, an essential trace element, exerts antioxidant function mainly through the thioredoxin reductase (TRx) and glutathione peroxidase (GPx) redox-regulating systems. We evaluated the effect of sodium selenite on IL6-induced disruption on deiodinase function. Cell lines expressing endogenous deiodinases type 1(D1), 2(D2) or 3(D3) (HepG2, MSTO, and MCF-7 cells, respectively) were used in an intact cell model that mimics the deiodination process under physiological conditions of substrate and cofactor, in the presence or not of IL6, with or without selenite. Deiodinase activity was quantified by the amount of iodine-125 in the medium (D1 and D2) or by ion-exchange chromatography (D3). Oxidative stress was evaluated by measuring reactive species (RS), carbonyl content as well as enzymatic and non-enzymatic antioxidant defenses. Results: IL6 induced ROS and carbonyl content in all 3 cell lines (all P<0.001). Increased ROS was paralleled by D1 and D2-decreased T3-production (P<0.01) and increased D3-catalyzed T3-inactivation (P<0.001). Selenite decreases the IL6-induced ROS and carbonyl content, while enhances Gpx and Trx activities. Nevertheless, it failed on restoring D1 or D2 function and only attenuates D3 activation (P<0.05). In conclusion, although sodium selenite reduces IL6-induced redox imbalance it does not fully repair deiodinase function. These results shed light on NTIS physiopathology and might explain why low T3 levels are unaffected by selenium supplementation in sick patients. PMID:26402162

  2. Bioavailability of selenium from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine, and sodium selenite assessed in selenium-deficient rats.

    PubMed

    Wen, H Y; Davis, R L; Shi, B; Chen, J J; Chen, L; Boylan, M; Spallholz, J E

    1997-01-01

    The bioavailability of selenium (Se) from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine (SeMet), and sodium selenite was assessed in Se-deficient Fischer-344 rats. Se as veal, chicken, beef, pork, lamb, flounder, tuna, SeMet, and sodium selenite was added to torula yeast (TY) basal diets to comprise Se-inadequate (0.05 mg Se/kg) diets. Se as sodium selenite was added to a TY basal diet to comprise a Se-adequate (0.10 mg Se/kg), Se-control diet. The experimental diets were fed to weanling Fischer-344 rats that had been subjected to dietary Se depletion for 6 wk. After 9 wk of the dietary Se repletion, relative activity of liver glutathione peroxidase (GSHPx) from the different dietary groups compared with control rats (100%) was: flounder 106%, tuna 101%, pork 86%, sodium selenite 81%, SeMet 80%, beef 80%, chicken 77%, veal 77%, and lamb 58%. Se from flounder was the most efficient at restoring Se concentrations in the liver and skeletal muscle. Se from sodium selenite, SeMet, beef, veal, chicken, pork, lamb, and tuna was not dietarily sufficient to restore liver and muscle Se after 9 wk of recovery following a 6-wk period of Se depletion.

  3. Sodium Selenite Radiosensitizes Hormone-Refractory Prostate Cancer Xenograft Tumors but Not Intestinal Crypt Cells In Vivo

    SciTech Connect

    Tian Junqiang; Ning Shouchen; Knox, Susan J.

    2010-09-01

    Purpose: We have previously shown that sodium selenite (SSE) increases radiation-induced cell killing of human prostate carcinoma cells in vitro. In this study we further evaluated the in vivo radiosensitizing effect of SSE in prostate cancer xenograft tumors and normal radiosensitive intestinal crypt cells. Methods and Materials: Immunodeficient (SCID) mice with hormone-independent LAPC-4 (HI-LAPC-4) and PC-3 xenograft tumors (approximately 200 mm{sup 3}) were divided into four groups: control (untreated), radiation therapy (XRT, local irradiation), SSE (2 mg/kg, intraperitoneally, 3 times/week), and XRT plus SSE. The XRT was given at the beginning of the regimen as a single dose of 5 Gy for HI-LAPC-4 tumors and a single dose of 7 Gy followed by a fractional dose of 3 Gy/d for 5 days for PC-3 tumors. The tumor volume was measured 3 times per week. The radiosensitizing effect of SSE on normal intestinal epithelial cells was assessed by use of a crypt cell microcolony assay. Results: In the efficacy study, SSE alone significantly inhibited the tumor growth in HI-LAPC-4 tumors but not PC-3 tumors. Sodium selenite significantly enhanced the XRT-induced tumor growth inhibition in both HI-LAPC-4 and PC-3 tumors. In the toxicity study, SSE did not affect the intestinal crypt cell survival either alone or in combination with XRT. Conclusions: Sodium selenite significantly enhances the effect of radiation on well-established hormone-independent prostate tumors and does not sensitize the intestinal epithelial cells to radiation. These results suggest that SSE may increase the therapeutic index of XRT for the treatment of prostate cancer.

  4. Interaction of alkylmercuric compounds with sodium selenite. III. Biotransformation, levels of metallothioneinlike proteins and endogenous copper in some tissues of rats exposed to methyl or ethylmercuric chloride with and without sodium selenite.

    PubMed Central

    Brzeźnicka, E A; Chmielnicka, J

    1985-01-01

    The biotransformation efficiency of alkylmercurial compounds was studied in rat liver, kidneys, blood, and brain after 2-week administration of methylmercuric chloride (MeHg) and ethylmercuric chloride (EtHg) at doses of 0.25 or 2.5 mg Hg/kg, alone or in combination with sodium selenite (Se) at a level of 0.5 mg Se/kg. Simultaneously, the level of metallothioneinlike proteins (MTP) and endogenous copper (Cu) was monitored in tissues of control rats and intoxicated rats. Regardless of the dose, the highest concentrations of inorganic mercury from both the alkylmercurials was found in the rat kidneys. Sodium selenite had a variable effect on the amount of inorganic mercury liberated, depending on the organ and the molar ratio of Hg:Se administered. A statistically significant increase in the levels of MTP and endogenous Cu, compared with control group, was found only in the kidneys of intoxicated rats. This increase was dependent on the concentration of inorganic mercury liberated by biotransformation of alkylmercurials. The observed changes appeared when the level of inorganic mercury exceeded 10 micrograms Hg/g tissue and reached a plateau at about 40 micrograms Hg/g tissue. In the presence of selenium the plateau of MTP and Cu levels were no observed in the kidneys, regardless of the amount of inorganic mercury liberated. PMID:3928366

  5. Interaction of alkylmercuric compounds with sodium selenite. III. Biotransformation, levels of metallothioneinlike proteins and endogenous copper in some tissues of rats exposed to methyl or ethylmercuric chloride with and without sodium selenite

    SciTech Connect

    Brzeznicka, E.A.; Chmielnicka, J.

    1985-05-01

    The biotransformation efficiency of alkylmercurial compounds was studied in rat liver, kidneys, blood, and brain after 2-week administration of methylmercuric chloride (MeHg) and ethylmercuric chloride (EtHg) at doses of 0.25 or 2.5 mg Hg/kg, alone or in combination with sodium selenite (Se) at a level of 0.5 mg Se/kg. Simultaneously, the level of metallothioneinlike proteins (MTP) and endogenous copper (Cu) was monitored in tissues of control rats and intoxicated rats. Regardless of the dose, the highest concentrations of inorganic mercury from both the alkylmercurials was found in the rat kidneys. Sodium selenite had a variable effect on the amount of inorganic mercury liberated, depending on the organ and the molar ratio of Hg:Se administered. A statistically significant increase in the levels of MTP and endogenous Cu, compared with control group, was found only in the kidneys of intoxicated rats. This increase was dependent on the concentration of inorganic mercury liberated by biotransformation of alkylmercurials. The observed changes appeared when the level of inorganic mercury exceeded 10 g Hg/g tissue and reached a plateau at about 40 g Hg/g tissue. In the presence of selenium the plateau of MTP and Cu levels were not observed in the kidneys, regardless of the amount of inorganic mercury liberated.

  6. Biointeraction of sodium selenite and aflatoxin B/sub 1/ in the Mongolian gerbil

    SciTech Connect

    Lalor, J.H.; Llewellyn, G.C.

    1981-09-01

    The interaction of sodium selenite (Na/sub 2/SeO/sub 3/) and aflatoxin B/sub 1/ (AFB/sub 1/) was studied in 6-wk-old male Mongolian gerbils. Each of four groups of gerbils were fed one of the following diets during a 12-wk experimental period: control (commercial Chow), 5.0 ppm Na/sub 2/SeO/sub 3/, 12.8 ppm AFB/sub 1/, or 5.0 ppm Na/sub 2/SeO/sub 3/ + 12.8 ppm AFB/sub 1/. Animals receiving Na/sub 2/SeO/sub 3/ in the diet, alone and with AFB/sub 1/, had a significantly lower mean total weight gain during the experiment than did control animals. Animals receiving both compounds together displayed a very high level of physical activity compared to the three other groups. Blood analysis showed no change in total leukocytes, but the relative percentage of lymphocytes increased and the percentage of neutrophils decreased concurrently in the order: control < AFB/sub 1/ < Na/sub 2/SeO/sub 3/ + AFB/sub 1/ < Na/sub 2/SeO/sub 3/. A significant reduction in organ weight relative to body weight was observed in the liver, kidney, and lung of the animals fed AFB/sub 1/ alone but only in the liver of those fed both Na/sub 2/SeO/sub 3/ and AFB/sub 1/. No similar alterations were observed in the Na/sub 2/SeO/sub 3/ group. Histopathological examination revealed considerably less hepatic damage in animals fed Na/sub 2/SeO/sub 3/ with AFB/sub 1/ than in those receiving either compound alone. Renal and intestinal damage, however, was most severe in this double-treatment group. Hepatic protein analysis revealed two protein peaks in the Na/sub 2/SeO/sub 3/ + AFB/sub 1/ group that were absent in all other groups. It was concluded that these proteins may be selenoproteins directly or indirectly involved in the lower incidence of histopathological damage in this group.

  7. Effect of dietary fat on plasma glutathione peroxidase levels and intestinal absorption of /sup 75/Se-labeled sodium selenite in chicks

    SciTech Connect

    Mutanen, M.L.; Mykkaenen, H.M.

    1984-05-01

    The effect of dietary fat on the availability of selenium was investigated in chicks fed either 4 or 20% butter, olive oil, rape oil, corn oil or sunflower oil in the diet for 3 weeks after hatching. Plasma glutathione peroxidase (GSH-Px) activity was used as an indicator of the body selenium status. In addition, the intestinal absorption of sodium selenite (/sup 75/Se-labeled) was determined by using both the in vivo ligated loop procedure and oral administration of the isotope. The plasma GSH-Px levels increased with increasing proportion of the polyunsaturated fatty acids in the diet. Increasing the amount of fat from 4 to 20% significantly enhanced the GSH-Px activity in the groups receiving butter or olive oil, but had no effect in animals fed the unsaturated fats. The absorption of (/sup 75/Se)selenite from the ligated duodenal loops tended to be reduced in chicks fed corn oil or sunflower oil as compared to the animals receiving butter in their diet. On the other hand, the type of dietary fat did not appear to affect the absorption of the orally administered selenite. The present study demonstrates that the type of dietary fat can affect the plasma GSH-Px levels in chicks without altering the intestinal absorption of selenite. However, the results on the absorption of the intraduodenally injected sodium selenite suggest that dietary fat plays some role in the intestinal transport of selenium.

  8. Sodium selenite supplementation during pregnancy and lactation promotes anxiolysis and improves mnemonic performance in wistar rats' offspring.

    PubMed

    Laureano-Melo, Roberto; Império, Güínever Eustáquio do; da Silva-Almeida, Claudio; Kluck, George Eduardo Gabriel; Cruz Seara, Fernando de Azevedo; da Rocha, Fábio Fagundes; da Silveira, Anderson Luiz Bezerra; Reis, Luís Carlos; Ortiga-Carvalho, Tania Maria; da Silva Côrtes, Wellington

    2015-11-01

    Selenium is a micronutrient which is part of selenoprotein molecules and participates in a vast number of physiological roles and, among them,we have fetal and neonatal development. Therefore, the aimof this studywas to evaluate possible behavioral changes in offspring of female rats supplemented during pregnancy and lactation with sodium selenite. To address that, we treated two groups of female rats by saline or sodium selenite at a dose of 1mg/kg through oral route and performed neurochemical and behavioral tests. In the offspring, the thyroid profile and hippocampal neurochemistrywere evaluated. Behavioral testswere performed in pups both during childhood and adulthood. We found out that selenium (Se) supplementation increased serum levels of triiodothyronine (25%, p b 0.001) and thyroxine (18%, p b 0.05) and promoted a tryptophan hydroxylase 2 (TPH 2) expression decrease (17%, p b 0.01) and tyrosine hydroxylase (TH) expression increase (202%, p b 0.01) in the hippocampus. The cholinesterase activity was decreased (28%, p b 0.01) in Se supplemented rats, suggesting a neurochemical modulation in the hippocampal activity. During childhood, the Sesupplemented offspring had a reduction in anxiety-like behavior both in elevated plus maze test and in light–dark box test. In adulthood, Se-treated pups had an increase in the locomotor activity (36%, p b 0.05) and in rearing episodes (77%, p b 0.001) in the open field test, while in the elevated plus maze test they also exhibited an increase in the time spent in the open arms (243%, p b 0.01). For the object recognition test, Se-treated offspring showed increase in the absolute (230.16%, p b 0.05) and relative index discrimination (234%, p b 0.05). These results demonstrate that maternal supplementation by sodium selenite promoted psychobiological changes both during childhood and adulthood. Therefore, the behavioral profile observed possibly can be explained by neurochemical changes induced by thyroid hormones during

  9. Effects of dietary sodium selenite and selenium yeast on antioxidant enzyme activities and oxidative stability of chicken breast meat.

    PubMed

    Ahmad, Hussain; Tian, Jinke; Wang, Jianjun; Khan, Muhammad Ammar; Wang, Yuanxiao; Zhang, Lili; Wang, Tian

    2012-07-25

    The effects of sodium selenite (SS) and selenium yeast (SY) alone and in combination (MS) on the selenium (Se) content, antioxidant enzyme activities (AEA), total antioxidant capacity (TAC), and oxidative stability of chicken breast meat were investigated. The results showed that the highest (p < 0.05) glutathione peroxidase (GSH-Px) activity was found in the SS-supplemented chicken breast meat; however, SY and MS treatments significantly increased (p < 0.05) the Se content and the activities of catalase (CAT), total superoxide dismutase (T-SOD), and TAC, but decreased (p < 0.05) the malondialdehyde (MDA) content at 42 days of age. Twelve days of storage at 4 °C decreased (p < 0.05) the activity of the GSH-Px, but CAT, T-SOD, and TAC remained stable. SY decreased the lipid oxidation more effectively in chicken breast meat. It was concluded that SY and MS are more effective than SS in increasing the AEA, TAC, and oxidative stability of chicken breast meat.

  10. Selenium enrichment and anti-oxidant status in baker's yeast, saccharomyces cerevisiae at different sodium selenite concentrations.

    PubMed

    Kaur, T; Bansal, M P

    2006-01-01

    The use of selenized yeast as enriched selenium supplements in human nutrition has become a topic of increasing interest over the last decade. The present study was designed with the aim to achieve a balance between selenium (Se) incorporation and optimal growth of yeast cells along with effect of Se enrichment on antioxidant defense status of yeast cells. Since oxidative stress has been known to play a role in the life span of all types of cells, so in the present studies anti-oxidant defense status was evaluated in the Se- enriched baker's yeast cell culture model. Upon Se supplementation as sodium selenite at various concentrations in the growth medium, a continuous increase in glutathione peroxidase (GSH-Px) activity and Se content was observed. In case of reduced glutathione (GSH) decreasing trend were observed with increasing Se concentrations. An increasing trend in total glutathione as well as glutathione-s-transferase activity was observed at increasing Se concentrations. Thus, Se supplementation significantly enhanced GSH-Px levels along with alterations in other anti-oxidant enzymes, suggesting the role of Se in the enzyme defense system of yeast against oxidative damage. Further, as Se exerts growth inhibitory effect on cells, the growth inhibition study was carried out and decrease in biomass was observed with increasing concentrations of Se. Due to nutritional benefits, Se-enriched yeast may be considered a safe source of Se supplementation.

  11. Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles.

    PubMed

    Ayano, Hiroyuki; Miyake, Masaki; Terasawa, Kanako; Kuroda, Masashi; Soda, Satoshi; Sakaguchi, Toshifumi; Ike, Michihiko

    2014-05-01

    Bacteria capable of synthesizing CdSe from selenite and cadmium ion were enriched from a soil sample. After repeated transfer of the soil-derived bacterial cultures to a new medium containing selenite and cadmium ion 42 times (during 360 days), an enrichment culture that can simultaneously remove selenite and cadmium ion (1 mM each) from the liquid phase was obtained. The culture's color became reddish-brown, indicating CdSe nanoparticle production, as confirmed by energy-dispersive x-ray spectra (EDS). As a result of isolation operations, the bacterium that was the most responsible for synthesizing CdSe, named Pseudomonas sp. RB, was obtained. Transmission electron microscopy and EDS revealed that this strain accumulated nanoparticles (10-20 nm) consisting of selenium and cadmium inside and on the cells when cultivated in the same medium for the enrichment culture. This report is the first describing isolation of a selenite-reducing and cadmium-resistant bacterium. It is useful for CdSe nanoparticle synthesis in the simple one-vessel operation.

  12. A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis.

    PubMed

    Mal, Joyabrata; Veneman, Wouter J; Nancharaiah, Y V; van Hullebusch, Eric D; Peijnenburg, Willie J G M; Vijver, Martina G; Lens, Piet N L

    2017-02-01

    Microbial reduction of selenium (Se) oxyanions to elemental Se is a promising technology for bioremediation and treatment of Se wastewaters. But a fraction of biogenic nano-Selenium (nano-Se(b)) formed in bioreactors remains suspended in the treated waters, thus entering the aquatic environment. The present study investigated the toxicity of nano-Se(b) formed by anaerobic granular sludge biofilms on zebrafish embryos in comparison with selenite and chemogenic nano-Se (nano-Se(c)). The nano-Se(b) formed by granular sludge biofilms showed a LC50 value of 1.77 mg/L, which was 3.2-fold less toxic to zebrafish embryos than selenite (LC50 = 0.55 mg/L) and 10-fold less toxic than bovine serum albumin stabilized nano-Se(c) (LC50 = 0.16 mg/L). Smaller (nano-Se(cs); particle diameter range: 25-80 nm) and larger (nano-Se(cl); particle diameter range: 50-250 nm) sized chemically synthesized nano-Se(c) particles showed comparable toxicity on zebrafish embryos. The lower toxicity of nano-Se(b) in comparison with nano-Se(c) was analyzed in terms of the stabilizing organic layer. The results confirmed that the organic layer extracted from the nano-Se(b) consisted of components of the extracellular polymeric substances (EPS) matrix, which govern the physiochemical stability and surface properties like ζ-potential of nano-Se(b). Based on the data, it is contented that the presence of humic acid like substances of EPS on the surface of nano-Se(b) plays a major role in lowering the bioavailability (uptake) and toxicity of nano-Se(b) by decreasing the interactions between nanoparticles and embryos.

  13. Dietary sodium selenite affects host intestinal and systemic immune response and disease susceptibility to necrotic enteritis in commercial broilers.

    PubMed

    Xu, S Z; Lee, S H; Lillehoj, H S; Bravo, D

    2015-01-01

    1. This study was to evaluate the effects of supplementary dietary selenium (Se) given as sodium selenite on host immune response against necrotic enteritis (NE) in commercial broiler chickens. 2. Chicks were fed from hatching on a non-supplemented diet or diets supplemented with different levels of Se (0.25, 0.50, and 1.00 Se mg/kg). To induce NE, broiler chickens were orally infected with Eimeria maxima at 14 d of age and then with Clostridium perfringens 4 d later using our previously established NE disease model. 3. NE-associated clinical signs and host protective immunity were determined by body weight changes, intestinal lesion scores, and serum antibodies against α-toxin and necrotic enteritis B (NetB) toxin. The effects of dietary Se on the gene expression of pro-inflammatory cytokines e.g., interleukin (IL)-1β, IL-6, IL-8LITAF (lipopolysaccharide-induced TNFα-factor), tumour necrosis factor (TNF) SF15, and inducible nitric oxide synthase (iNOS), glutathione peroxidase 7 (GPx7), and avian β-defensins (AvBD) 6, 8, and 13 (following NE infection) were analysed in the intestine and spleen. 4. The results showed that dietary supplementation of newly hatched broiler chicks with 0.25 Se mg/kg from hatch significantly reduced NE-induced gut lesions compared with infected birds given a non-supplemented diet. The levels of serum antibody against the NetB toxin in the chicks fed with 0.25 and 0.50 mg/kg Se were significantly higher than the non-supplemented control group. The transcripts for IL-1β, IL-6, IL-8, iNOS, LITAF, and GPx7, as well as AvBD6, 8, and 13 were increased in the intestine and spleen of Se-supplemented groups, whereas transcript for TNFSF15 was decreased in the intestine. 5. It was concluded that dietary supplementation with optimum levels of Se exerted beneficial effects on host immune response to NE and reduced negative consequence of NE-induced immunopathology.

  14. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum.

    PubMed

    Khoei, Nazanin Seyed; Lampis, Silvia; Zonaro, Emanuele; Yrjälä, Kim; Bernardi, Paolo; Vallini, Giovanni

    2017-01-25

    Microorganisms capable of transforming toxic selenium oxyanions into non-toxic elemental selenium (Se°) may be considered as biocatalysts for the production of selenium nanoparticles (SeNPs), eventually exploitable in different biotechnological applications. Two Burkholderia fungorum strains (B. fungorum DBT1 and B. fungorum 95) were monitored during their growth for both capacity and efficiency of selenite (SeO3(2-)) reduction and elemental selenium formation. Both strains are environmental isolates in origin: B. fungorum DBT1 was previously isolated from an oil refinery drainage, while B. fungorum 95 has been enriched from inner tissues of hybrid poplars grown in a soil contaminated by polycyclic aromatic hydrocarbons. Our results showed that B. fungorum DBT1 is able to reduce 0.5mM SeO3(2-) to Se° when cultured aerobically in liquid medium at 27°C, while B. fungorum 95 can reduce more than 1mM SeO3(2-) to Se° within 96h under the same growth conditions, with the appearance of SeNPs in cultures of both bacterial strains. Biogenic SeNPs were spherical, with pH-dependent charge and an average hydrodynamic diameter of 170nm and 200nm depending on whether they were produced by B. fungorum 95 or B. fungorum DBT1, respectively. Electron microscopy analyses evidenced that Se nanoparticles occurred intracellularly and extracellularly. The mechanism of SeNPs formation can be tentatively attributed to cytoplasmic enzymatic activation mediated by electron donors. Biogenic nanoparticles were then probably released outside the bacterial cells as a consequence of a secretory process or cell lysis. Nevertheless, formation of elemental selenium nanoparticles under aerobic conditions by B. fungorum DBT1 and B. fungorum 95 is likely due to intracellular reduction mechanisms. Biomedical and other high tech sectors might exploit these biogenic nanoparticles in the near future, once fully characterized and tested for their multiple properties.

  15. Differential effects of sodium selenite and nano-Se on growth performance, tissue se distribution, and glutathione peroxidase activity of avian broiler.

    PubMed

    Wang, Yanbo

    2009-05-01

    The present research evaluated differential effects of sodium selenite and nano-Se on growth performance, tissue Se distribution, and glutathione peroxidase (GSH-Px) activity of avian broiler. Broilers were randomly segregated into 12 groups so that three replicates were available for each of the three treatments (T-1, T-2, and T-3) and control groups. The control groups were fed basal diets without Se addition. T-1, T-2, and T-3 were fed with diets containing 0.2 mg kg(-1) sodium selenite, 0.2 mg kg(-1) nano-Se, and 0.5 mg kg(-1) nano-Se, respectively. Compared with the control, Se supplementation remarkably improved daily weight gain and survival rate and decreased feed conversion ratio (P < 0.05). However, no significant difference was observed between T-1, T-2, and T-3. The tissue Se content was significantly higher (P < 0.05) in Se-supplemented groups than the control, and T-3 showed the highest. Furthermore, higher Se content was observed in liver, and there was a significant difference (P < 0.05) compared with that in muscle. As for serum and hepatic GSH-Px activities, Se supplementation remarkably improved GSH-Px activity (P < 0.05), and there was no significant difference (P > 0.05) between treatments (T-1, T-2, and T-3).

  16. Protective role of sodium selenite on histopathological lesions, decreased T-cell subsets and increased apoptosis of thymus in broilers intoxicated with aflatoxin B₁.

    PubMed

    Chen, Kejie; Shu, Gang; Peng, Xi; Fang, Jing; Cui, Hengmin; Chen, Jin; Wang, Fengyuan; Chen, Zhengli; Zuo, Zhicai; Deng, Junliang; Geng, Yi; Lai, Weimin

    2013-09-01

    For evaluating the ability of selenium (Se) in counteracting the adverse effects of aflatoxin B₁ (AFB₁), two hundred 1-day-old male Avian broilers, divided into five groups, were fed with basal diet (control group), 0.3 mg/kg AFB₁ (AFB₁ group), 0.3 mg/kg AFB₁+0.2 mg/kg Se (+Se group I), 0.3mg/kg AFB₁+0.4 mg/kg Se (+Se group II) and 0.3mg/kg AFB₁+0.6 mg/kg Se (+Se group III), respectively. Compared with control group, the decreased relative weight of thymus and percentages of mature thymocytes, congestion in medulla and much debris in cortex of thymus, and the increased apoptotic thymocytes were observed in AFB1 group. However, supplied dietary sodium selenite could increase the relative weight of thymus and percentages of mature thymocytes, and alleviate histopathological lesions. Compared with AFB1 group, the percentages of apoptotic thymocytes detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method and flow cytometry method in three +Se groups were decreased, the expression of Caspase-3 and Bax, through quantitative real-time PCR and immunohistochemical method, in three +Se groups were decreased, while the expression of Bcl-2 was increased. The results indicate that sodium selenite supplied in the diet, through a mechanism of apoptosis regulation, may ameliorated AFB₁-induced lesions of thymus and accordingly improve the impaired cellular immune function.

  17. Thallium selenite

    Integrated Risk Information System (IRIS)

    Thallium selenite ; CASRN 12039 - 52 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  18. Selenium retention in tissues of swine fed carcasses of pigs grown on diets containing sodium selenite or high selenium white sweet clover grown on fly ash

    SciTech Connect

    Mandisodza, K.T.; Pond, W.G.; Lisk, D.J.; Gutenmann, W.H.; Hogue, D.E.

    1980-04-01

    Growing pigs were fed diets containing 5 or 10% white sweet clover, and 0, 3.5 or 7.0 ppM selenium (Se) supplied as sodium selenite (Na/sub 2/SeO/sub 3/) or occurring naturally in white sweet clover harvested from a coal fly ash dump. Ground carcasses of these pigs were included in corn meal diets at 23% and fed back to pigs. Compared to the pigs fed the high Se, fly ash-grown clover diets, the pigs fed Na/sub 2/SeO/sub 3/ diets had higher blood Se levels but lower Se concentrations in kidney, liver and skeletal muscle. Tissues of the pigs which were fed carcasses of the high Se clover-fed pigs had higher Se concentrations than those of the pigs fed carcasses of the Na/sub 2/SeO/sub 3/ - fed pigs.

  19. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.

    PubMed

    Xie, Wenbo; Liang, Qiqi; Qian, Tianwei; Zhao, Dongye

    2015-03-01

    Stabilized Fe-Mn binary oxide nanoparticles were synthesized and tested for removal and in-situ immobilization of Se(IV) in groundwater and soil. A water-soluble starch or food-grade carboxymethyl cellulose (CMC) was used as a stabilizer to facilitate in-situ delivery of the particles into contaminated soil. While bare and stabilized nanoparticles showed rapid sorption kinetics, starch-stabilized Fe-Mn offered the greatest capacity for Se(IV). The Langmuir maximum capacity was determined to be 109 and 95 mg-Se/g-Fe for starch- and CMC-stabilized nanoparticles, respectively, and the high Se(IV) uptake was observed over the typical groundwater pH range of 5-8. Column breakthrough tests indicated that the stabilized nanoparticles were deliverable in a model sandy soil while non-stabilized particles were not. When a Se(IV)-spiked soil was treated in situ with the nanoparticles, >90% water leachable Se(IV) was transferred to the nanoparticle phase, and thereby immobilized as the particles were retained in the downstream soil matrix. The nanoparticle amendment reduced the TCLP (toxicity characteristic leaching procedure) leachability and the California WET (waste extraction test) leachability of Se(IV) by 76% and 71%, respectively. The technology holds the potential to fill a major technology gap in remediation of metals-contaminated soil and groundwater.

  20. Dynamic equilibrium of endogenous selenium nanoparticles in selenite-exposed cancer cells: a deep insight into the interaction between endogenous SeNPs and proteins.

    PubMed

    Bao, Peng; Chen, Song-Can; Xiao, Ke-Qing

    2015-12-01

    Elemental selenium (Se) was recently found to exist as endogenous nanoparticles (i.e., SeNPs) in selenite-exposed cancer cells. By sequestrating critical intracellular proteins, SeNPs appear capable of giving rise to multiple cytotoxicity mechanisms including inhibition of glycolysis, glycolysis-dependent mitochondrial dysfunction, microtubule depolymerization and inhibition of autophagy. In this work, we reveal a dynamic equilibrium of endogenous SeNP assembly and disassembly in selenite-exposed H157 cells. Endogenous SeNPs are observed both in the cytoplasm and in organelles. There is an increase in endogenous SeNPs between 24 h and 36 h, and a decrease between 36 h and 72 h according to transmission electron microscopy results and UV-Vis measurements. These observations imply that elemental Se in SeNPs could be oxidized back into selenite by scavenging superoxide radicals and ultimately re-reduced into selenide; then the assembly and disassembly of SeNPs proceed simultaneously with the sequestration and release of SeNP high-affinity proteins. There is also a possibility that the reduction of elemental Se to selenide pathway may lie in selenite-exposed cancer cells, which results in the assembly and disassembly of endogenous SeNPs. Genome-wide expression analysis results show that endogenous SeNPs significantly altered the expression of 504 genes, compared to the control. The endogenous SeNPs induced mitochondrial impairment and decreasing of the annexin A2 level can lead to inhibition of cancer cell invasion and migration. This dynamic flux of endogenous SeNPs amplifies their cytotoxic potential in cancer cells, thus provide a starting point to design more efficient intracellular self-assembling systems for overcoming multidrug resistance.

  1. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions

    PubMed Central

    2014-01-01

    Background Selenite (SeO32−) oxyanion shows severe toxicity to biota. Different bacterial strains exist that are capable of reducing SeO32− to non-toxic elemental selenium (Se0), with the formation of Se nanoparticles (SeNPs). These SeNPs might be exploited for technological applications due to their physico-chemical and biological characteristics. The present paper discusses the reduction of selenite to SeNPs by a strain of Bacillus sp., SeITE01, isolated from the rhizosphere of the Se-hyperaccumulator legume Astragalus bisulcatus. Results Use of 16S rRNA and GyrB gene sequence analysis positioned SeITE01 phylogenetically close to B. mycoides. On agarized medium, this strain showed rhizoid growth whilst, in liquid cultures, it was capable of reducing 0.5 and 2.0 mM SeO32− within 12 and 24 hours, respectively. The resultant Se0 aggregated to form nanoparticles and the amount of Se0 measured was equivalent to the amount of selenium originally added as selenite to the growth medium. A delay of more than 24 hours was observed between the depletion of SeO32 and the detection of SeNPs. Nearly spherical-shaped SeNPs were mostly found in the extracellular environment whilst rarely in the cytoplasmic compartment. Size of SeNPs ranged from 50 to 400 nm in diameter, with dimensions greatly influenced by the incubation times. Different SeITE01 protein fractions were assayed for SeO32− reductase capability, revealing that enzymatic activity was mainly associated with the membrane fraction. Reduction of SeO32− was also detected in the supernatant of bacterial cultures upon NADH addition. Conclusions The selenite reducing bacterial strain SeITE01 was attributed to the species Bacillus mycoides on the basis of phenotypic and molecular traits. Under aerobic conditions, the formation of SeNPs were observed both extracellularly or intracellullarly. Possible mechanisms of Se0 precipitation and SeNPs assembly are suggested. SeO32− is proposed to be enzimatically reduced to

  2. Effects of different dl-selenomethionine and sodium selenite levels on growth performance, immune functions and serum thyroid hormones concentrations in broilers.

    PubMed

    Wang, Y; Wang, H; Zhan, X

    2016-06-01

    This trial was conducted in a 2 × 3 + 1 factorial arrangement based on a completely randomized design to evaluate the effects of different dl-selenomethionine (dl-Se-Met) and sodium selenite (SS) levels on growth performance, immune functions and serum thyroid hormones concentrations in broilers. A total of 840 Ross 308 broilers (7 days old) were allocated by body weight to seven treatments (three replicates of 40 birds each treatment) including (1) basal diet (containing 0.04 mg of selenium (Se)/kg; control) without supplementary Se; (2, 3 and 4) basal diet + 0.05, 0.15 or 0.25 mg/kg Se as SS; (5, 6 and 7) basal diet + 0.05, 0.15 or 0.25 mg/kg Se as dl-Se-Met. The experiment lasted 42 days. The results revealed that dietary Se supplementation improved (p < 0.05) average daily gain, feed efficiency, immune organ index, serum immunoglobulin A (IgA), immunoglobulin G (IgG), immunoglobulin M (IgM) and triiodothyronine (T3 ) concentrations and decreased (p < 0.01) thyroxine (T4 )/T3 ratio in serum compared with the control. Broilers receiving the dl-Se-Met-supplemented diets had higher (p < 0.05) feed efficiency, thymus index, the amounts of IgA, IgG, IgM and T3 as well as lower (p < 0.05) serum T4 concentrations and T4 /T3 ratio than those consuming the SS-supplemented diets. Serum IgA and IgM levels of broilers fed 0.15 mg Se/kg were significantly higher (p < 0.05) than those of broilers fed 0.05 or 0.25 mg Se/kg. In summary, we concluded that dl-Se-Met is more effective than SS in increasing immunity and promoting conversion of T4 to T3 , thus providing an effective way to improve the growth performance of broilers. Besides, based on a consideration of all experiment indices, 0.15 mg Se/kg was suggested to be the optimal level of Se supplementation under the conditions of this study.

  3. Effect of dietary selenium and vitamin E on the ultrastructure and ATP concentration of boar spermatozoa, and the efficacy of added sodium selenite in extended semen on sperm motility.

    PubMed

    Marin-Guzman, J; Mahan, D C; Whitmoyer, R

    2000-06-01

    Three experiments evaluated the effects of dietary Se and vitamin E on the ultrastructure of spermatozoa, ATP concentration of spermatozoa, and the effects of adding sodium selenite to semen extenders on subsequent sperm motility. The experiment was a 2 x 2 arrangement of treatments in a randomized complete block design. A total of 10 mature boars were fed from weaning to 18 mo of age diets fortified with two levels of supplemental Se (0 or .5 ppm) or vitamin E (0 or 220 IU/kg diet). The nonfortified diets contained .06 ppm Se and 4.4 IU vitamin E/kg. In Exp. 1, the spermatozoa from all boars were examined by electron microscopy. Vitamin E had no effect on structural abnormalities in the spermatozoa. When the low-Se diet was fed the acrosome or nuclei of the spermatozoa was unaffected, but the mitochondria in the tail midpiece were more oval with wider gaps between organelles. The plasma membrane connection to the tail midpiece was not tightly bound as when boars were fed Se. Immature spermatozoa with cytoplasmic droplets were more numerous when boars were fed the low-Se diet, but the occurrence of midpiece abnormalities occurred in boars fed diets with or without Se or vitamin E. Our results suggest that Se may enhance spermatozoa maturation in the epididymis and may reduce the number of sperm with cytoplasmic droplets. In Exp. 2, the concentration of ATP in the spermatozoa was evaluated in the semen of all treatment boars. When the low-Se diet was fed, ATP concentration was lower (P < .01), whereas vitamin E had no effect on ATP concentration. Experiment 3 investigated the effect of diluting boar semen with a semen extender with sodium selenite added at 0, .3, .6, or .9 ppm Se. Three ejaculates from each boar were used to evaluate these effects on sperm motility to 48 h after dilution. Sperm motility declined (P < .01) when Se was added to the extender, and this decline was exacerbated as the concentration of added Se increased (P < .01). The added Se was

  4. Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles

    PubMed Central

    Bhakta, Snehasis; Dixit, Chandra K; Bist, Itti; Jalil, Karim Abdel; Suib, Steven L; Rusling, James F

    2016-01-01

    Understanding of the synthesis kinetics and our ability to modulate medium conditions allowed us to generate nanoparticles via an ultra-fast process. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as precursor and 50% ethanol and sodium hydroxide catalyst. Synthesis is performed under gentle conditions at 20 °C for 20 min Long synthesis time and catalyst-associated drawbacks are most crucial in silica nanoparticle synthesis. We have addressed both these bottlenecks by replacing the conventional Stober catalyst, ammonium hydroxide, with sodium hydroxide. We have reduced the overall synthesis time from 20 to 1/3 h, ~60-fold decrease, and obtained highly monodispersed nanoparticles with 5-fold higher surface area than Stober particles. We have demonstrated that the developed NPs with ~3-fold higher silane can be used as efficient probes for biosensor applications. PMID:27606068

  5. Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhakta, Snehasis; Dixit, Chandra K.; Bist, Itti; Abdel Jalil, Karim; Suib, Steven L.; Rusling, James F.

    2016-07-01

    Understanding of the synthesis kinetics and our ability to modulate medium conditions allowed us to generate nanoparticles via an ultra-fast process. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as precursor and 50% ethanol and sodium hydroxide catalyst. Synthesis is performed under gentle conditions at 20 °C for 20 min Long synthesis time and catalyst-associated drawbacks are most crucial in silica nanoparticle synthesis. We have addressed both these bottlenecks by replacing the conventional Stober catalyst, ammonium hydroxide, with sodium hydroxide. We have reduced the overall synthesis time from 20 to 1/3 h, ∼60-fold decrease, and obtained highly monodispersed nanoparticles with 5-fold higher surface area than Stober particles. We have demonstrated that the developed NPs with ∼3-fold higher silane can be used as efficient probes for biosensor applications.

  6. Transformation of sodium bicarbonate and CO2 into sodium formate over NiPd nanoparticle catalyst

    PubMed Central

    Wang, Mengnan; Zhang, Jiaguang; Yan, Ning

    2013-01-01

    The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs). Ni NPs and eight NiM (M stands for a second metal) NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability. PMID:24790945

  7. Transformation of sodium bicarbonate and CO2 into sodium formate over NiPd nanoparticle catalyst.

    PubMed

    Wang, Mengnan; Zhang, Jiaguang; Yan, Ning

    2013-01-01

    The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs). Ni NPs and eight NiM (M stands for a second metal) NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability.

  8. Green synthesis of gold nanoparticles reduced and stabilized by sodium glutamate and sodium dodecyl sulfate.

    PubMed

    Cabrera, Gil Felicisimo S; Balbin, Michelle M; Eugenio, Paul John G; Zapanta, Charleo S; Monserate, Juvy J; Salazar, Joel R; Mingala, Claro N

    2017-03-18

    The Turkevich method has been used for many years in the synthesis of gold nanoparticles. Lately, the use of plant extracts and amino acids has been reported, which is valuable in the field of biotechnology and biomedicine. The AuNPs was synthesized from the reduction of HAuCl4 3H2O by sodium glutamate and stabilized with sodium dodecyl sulfate. The optimum concentrations for sodium glutamate and sodium dodecyl sulfate in the synthesis process were determined. The characteristics of the synthesized AuNPs was analysed through UV-Vis Spectroscopy and SEM. The AuNPs have spherical shape with a mean diameter of approximately 21.62 ± 4.39 nm and is well dispersed. FTIR analysis of the AuNPs reflected that the sulfate head group of sodium dodecyl sulfate is adsorbed at the surface of the AuNPs. Thus, we report herein the synthesis of AuNPs using sodium glutamate and sodium dodecyl sulfate.

  9. The preparation, physicochemical properties, and the cohesive energy of liquid sodium containing titanium nanoparticles

    NASA Astrophysics Data System (ADS)

    Saito, Jun-ichi; Itami, Toshio; Ara, Kuniaki

    2012-12-01

    Liquid sodium containing titanium nanoparticles (LSnanop) of 10-nm diameter was prepared by dispersing titanium nanoparticles (2 at.% Ti) into liquid sodium with the addition of stirring and ultrasonic sound wave. The titanium nanoparticles themselves were prepared by the vapor deposition method. This new liquid metal, LSnanop, shows a remarkable stability due to the Brownian motion of nanoparticles in liquid sodium medium. In addition, the difference of measured heat of reaction to water between this LSnanop and liquid sodium indicates the existence of cohesive energy between the liquid sodium medium and dispersed titanium nanoparticles. The origin of the cohesive energy, which serves to stabilize this new liquid metal, was explained by the model of screened nanoparticles in liquid sodium. In this model, negatively charged nanoparticles with transferred electrons from liquid sodium are surrounded by the positively charged screening shell, which may inhibit the gathering of nanoparticles by the "Coulombic repulsion coating." The atomic volume of LSnanop shows the shrinkage from the linear law, which also suggests the existence of cohesive energy. The viscosity of LSnanop is almost the same as that of liquid sodium. This behavior was explained by the Einstein equation. The surface tension of LSnanop is 17 % larger than that of liquid sodium. The cohesive energy and the negative adsorption may be responsible to this increase. Titanium nanoparticles in liquid sodium seem to be free from the Coulomb fission. This new liquid metal containing nanoparticles suggests the possibility to prepare various stable suspensions with new properties.

  10. Relative stability of selenites and selenates in feed premixes as a function of water activity.

    PubMed

    Eisenberg, Sylvan

    2007-01-01

    Sodium selenite is more hygroscopic than sodium selenate. It is, therefore, more likely to dissolve when dispersed in feeds of relatively high water activity. When dissolved, it may form selenious acid and disperse as a vapor. This is easily demonstrated by mounting a filter paper wetted with a reagent such as ascorbic acid over the subject feed, but not in contact with it. The paper turns brown as elemental selenium is formed from reduction of the vapor. Analysis of the paper ensures that the brown is indeed selenium. Though premixes are generally low enough in moisture content to ensure stability of the selenites, this is not true of many feeds. The water activities of a number of feeds, feed premixes, and feed ingredients have been determined instrumentally and compared to those of saturated solutions of sodium selenite and sodium selenate. There is no question that the selenite often dissolves with the potential to react and, in so doing, loses its nutritional function.

  11. Hollow nanoparticle cathode materials for sodium electrochemical cells and batteries

    SciTech Connect

    Shevchenko, Elena; Rajh, Tijana; Johnson, Christopher S.; Koo, Bonil

    2016-07-12

    A cathode comprises, in its discharged state, a layer of hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles disposed between two layers of carbon nanotubes, and preferably including a metallic current collector in contact with one of the layers of carbon nanotubes. Individual particles of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles comprise a crystalline shell of .gamma.-Fe.sub.2O.sub.3 including cation vacancies within the crystal structure of the shell (i.e., iron vacancies of anywhere between 3% to 90%, and preferably 44 to 77% of available octahedral iron sites). Sodium ions are intercalated within at least some of the cation vacancies within the crystalline shell of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles.

  12. Selenium uptake, tolerance and reduction in Flammulina velutipes supplied with selenite

    PubMed Central

    Zhang, Dan

    2016-01-01

    Recently, selenium (Se) enriched mushrooms have been exploited as dietary Se supplements, but our knowledge of the metabolic process during the Se enrichment process is far from complete. In this study, the uptake, tolerance and reduction of selenite in a widely cultivated mushroom, Flammulina velutipes, was investigated. The results showed that pH variation (from 5.5–7.5), metabolic inhibitor (0.1 mM 2,4-DNP) and P or S starvation led to 11–26% decreases in the selenite uptake rate of F. velutipes. This indicates that a minor portion of the selenite uptake was metabolism dependent, whereas a carrier-facilitated passive transport may be crucial. Growth inhibition of F. velutipes initiated at 0.1 mM selenite (11% decrease in the growth rate) and complete growth inhibition occurred at 3 mM selenite. A selenite concentration of 0.03–0.1 mM was recommended to maintain the balance between mycelium production and Se enrichment. F. velutipes was capable of reducing selenite to elemental Se [Se(0)] including Se(0) nanoparticles, possibly as a detoxification mechanism. This process depended on both selenite concentration and metabolism activity. Overall, the data obtained provided some basic information for the cultivation of the selenized F. velutipes, and highlighted the opportunity of using mushrooms for the production of Se(0) nanoparticles. PMID:27547513

  13. Effect of the Titanium Nanoparticle on the Quantum Chemical Characterization of the Liquid Sodium Nanofluid.

    PubMed

    Suzuki, Ai; Bonnaud, Patrick; Williams, Mark C; Selvam, Parasuraman; Aoki, Nobutoshi; Miyano, Masayuki; Miyamoto, Akira; Saito, Jun-ichi; Ara, Kuniaki

    2016-04-14

    Suspension state of a titanium nanoparticle in the liquid sodium was quantum chemically characterized by comparing physical characteristics, viz., electronic state, viscosity, and surface tension, with those of liquid sodium. The exterior titanium atoms on the topmost facet of the nanoparticle were found to constitute a stable Na-Ti layer, and the Brownian motion of a titanium nanoparticle could be seen in tandem with the surrounding sodium atoms. An electrochemical gradient due to the differences in electronegativity of both titanium and sodium causes electron flow from liquid sodium atoms to a titanium nanoparticle, Ti + Na → Ti(δ-) + Na(δ+), making the exothermic reaction possible. In other words, the titanium nanoparticle takes a role as electron-reservoir by withdrawing free electrons from sodium atoms and makes liquid sodium electropositive. The remaining electrons in the liquid sodium still make Na-Na bonds and become more stabilized. With increasing size of the titanium nanoparticle, the deeper electrostatic potential, the steeper electric field, and the larger Debye atmosphere are created in the electric double layer shell. Owing to electropositive sodium-to-sodium electrostatic repulsion between the external shells, naked titanium nanoparticles cannot approach each other, thus preventing the agglomeration.

  14. Expression changes in mRNAs and mitochondrial damage in lens epithelial cells with selenite.

    PubMed

    Belusko, P B; Nakajima, T; Azuma, M; Shearer, T R

    2003-10-13

    An overdose of sodium selenite induces cataracts in young rats. The mid-stage events producing the cataract include calpain-induced hydrolysis and precipitation of lens proteins. Apoptosis in lens epithelial cells has been suggested as an initial event in selenite cataracts. Expression levels of two genes associated with apoptosis were altered in lens epithelial cells from selenite-injected rats. The purpose of the present experiment was to perform a more comprehensive search for changes in expression of mRNAs in lens epithelial cells in order to more fully delineate the early events in selenite-induced cataracts. Lens epithelial cells were harvested at 1 and 2 days after a single subcutaneous injection of sodium selenite (30 mumol/kg body weight) into 12-day-old rats. Gene expression was analyzed using a commercial DNA array (Rat Genome U34A GeneChip array, Affymetrix). Of approximately 8000 genes assayed by hybridization, 13 genes were decreased and 27 genes were increased in the rat lens epithelial cells after injection of selenite. Some of the up-regulated genes included apoptosis-related genes, and a majority of the down-regulated genes were mitochondrial genes. Previously observed changes in expression of EGR-1 mRNA were also confirmed. Changes in the expression patterns of mRNAs were also confirmed by RT-PCR. To determine the mechanism for damage of lens epithelial cells (alpha TN4 cell) by culture in selenite, leakage of cytochrome c from mitochondria was measured. Selenite caused significant leakage of cytochrome c into the cytosol of alpha TN4 cells. Our data suggested that the loss of integrity of lens epithelial cells by selenite might be caused by preferential down-regulation of mitochondrial RNAs, release of cytochrome c, and impaired mitochondrial function. Up-regulation of mRNAs involved in maintenance of DNA, regulation of metabolism, and induction of apoptosis may also play roles.

  15. Involvement of Egr-1 in lens epithelial cell death induced by selenite.

    PubMed

    Nakajima, T; Belusko, P B; Walkup, R D; Azuma, M; Shearer, T R

    2006-05-01

    Selenite-overdose cataract in young rats may be caused by an initial insult to the lens epithelial cells. Our previous DNA array analysis revealed a significant increase in the expression of mRNA for early growth response protein-1 (Egr-1) in lens epithelial cells after injection of selenite. This suggested that up-regulation of Egr-1 mRNA may be involved in lens epithelial cell death. The purpose of the present experiment was to further clarify the involvement of Egr-1 in lens epithelial cell death induced by selenite. Rat lens epithelial explants were cultured with sodium selenite. Selenite caused epithelial explants to leak LDH into the medium. During LDH leakage, increased expression of mRNA for Egr-1 was observed by RT-PCR. To further test the involvement of Egr-1 in selenite-induced cell death, mouse lens epithelial cell line (alpha-TN4 cells) was treated with antisense oligonucleotide for Egr-1. Antisense oligonucleotide for Egr-1 significantly diminished expression of Egr-1 protein and leakage of LDH. These results suggested that increased activity of Egr-1 may be a factor in lens epithelial cell death induced by selenite.

  16. Analysis on the alterations of lens proteins by Vitex negundo in selenite cataract models

    PubMed Central

    Rooban, B.N.; Sasikala, V.; Sahasranamam, V.

    2011-01-01

    Purpose Cataract is the leading cause of blindness and is associated with oxidative damage and protein modification in the lens. In the present study, we have employed proteomic and microscopic approaches to investigate the attenuation of selenite cataract by the flavonoids from Vitex negundo (FVN). Methods To demonstrate this attenuation, Sprague-Dawley rat pups were divided into control (G I), selenite induced (G II), and selenite + FVN treated (G III). Cataract was induced by single subcutaneous injection of sodium selenite (4 mg/Kg bodyweight) on the 10th day and FVN (1 mg/Kg bodyweight) administered intraperitoneally from the 8th to the 15th day. Results Our study indicated that chaperone property of α-crystallin and soluble protein levels were reduced in the selenite induced group. Post translational modifications identified by two dimensional-polyacrylamide gel electrophoresis (2D-PAGE) and immunoblot analysis revealed the loss of cytoskeletal proteins in selenite induced group. Damage of lenticular membrane and abnormal fiber structure were observed by electron microscopy. Conclusions The results of this study suggest that FVN modulated selenite induced cataractogensis in rat pups by preventing loss of chaperone property, various changes in lens proteins, and lens structure, further strengthening its protective role. PMID:21617749

  17. C-phycocyanin modulates selenite-induced cataractogenesis in rats.

    PubMed

    Kumari, Rasiah Pratheepa; Sivakumar, Jeyarajan; Thankappan, Bency; Anbarasu, Kumarasamy

    2013-01-01

    The present investigation is aimed to evaluate the anticataractogenic potential of C-phycocyanin (C-PC), extracted and purified from Spirulina platensis. Enucleated rat lenses were maintained in vitro in Dulbecco's modified Eagle medium (DMEM). Group I contained DMEM, Group II and Group III contained 100 μM of sodium selenite, Group III was subdivided into three viz IIIa, IIIb, IIIc supplemented with 100, 150, 200 μg of C-PC respectively. In the in vivo study, on tenth day post partum: Group I rat pups received an intraperitoneal injection of saline, Group II, IIIa, IIIb, and IIIc rat pups received a subcutaneous injection of sodium selenite (19 μmol/kg bodyweight) Group IIIa, IIIb, IIIc also received an intraperitoneal injection of 100, 150, 200 mg/kg body weight of C-PC, respectively, from postpartum days 9-14. On termination of the experiment, the lenses from both in vitro and in vivo studies were subjected to morphological examination and subsequently processed to estimate the activities of antioxidant enzymes namely superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, levels of reduced glutathione and lipid peroxidation products. Sodium selenite-exposed, C-PC-treated rat lenses (Group IIIc), showed significant restoration of antioxidant enzyme activity (p < 0.05) when compared to their counterpart Group II. Group IIIc conserved the levels of GSH and lipid peroxidation products at near to normal levels as compared with Group II. Results conclude the possible role of C-PC in modulating the antioxidant enzyme status, thereby retarding sodium selenite-induced cataract incidence both in vitro and in vivo.

  18. Preparation and Evaluation of Montelukast Sodium Loaded Solid Lipid Nanoparticles

    PubMed Central

    Priyanka, K; Sathali, A Abdul Hasan

    2012-01-01

    Solid lipid nanoparticles (SLNs) are an alternative carrier system used to load the drug for targeting, to improve the bioavailability by increasing its solubility, and protecting the drug from presystemic metabolism. The avoidance of presystemic metabolism is due to the nano-metric size range, so that the liver cannot uptake the drug from the delivery system and is not metabolized by the liver. Montelukast sodium is an anti-asthmatic drug, because of its poor oral bioavailability, presystemic metabolism, and decreased half-life; it was chosen to formulate as the solid lipid nanoparticle (SLN) system by hot homogenization followed by an ultrasonication method, to overcome the above. Compritol ATO 888, stearic acid, and glyceryl monostearate were used as a lipid matrix and polyvinyl alcohol as a surfactant. The prepared formulations have been evaluated for entrapment efficiency, drug content, in vitro drug release, particle size analysis, scanning electron microscopy, Fourier transform-infrared studies (FT-IR), differential scanning calorimetry (DSC), and stability. Particle size analysis revealed that the SLN prepared from the higher melting point lipid showed a larger particle size and with increased carbon chain length of the fatty acids. Entrapment efficiency (EE) was ranging from 42% to 92%. In vitro release studies showed maximum cumulative drug release was obtained for F 1 (59.1%) containing stearic acid, and the lowest was observed for F 18 (28.1%) containing compritol ATO 888 after 12 h and all the formulations followed first-order release kinetics. FT-IR and DSC studies revealed no interaction between drug and lipids. Studies showed that increase in lipid concentration, increased particle size, EE, and maintained the sustained release of drug. Among all, compritol ATO 888 was chosen as the best lipid for formulating SLN because it had high EE and sustained the drug release. PMID:23112531

  19. Effects of cisplatin and selenite on the level of thiols in pig blood platelets.

    PubMed

    Wachowicz, B; Krajewski, T; Olas, B; Zbikowska, H M

    1995-03-01

    The level of free sulfhydryl groups of glutathione and proteins in pig blood platelets after short lasting incubation (30 min.) of these cells with cisplatin (cis-diamminedichloroplatinum II) and sodium selenite was investigated in vitro. The concentration of the platelet thiols after sodium selenite or cisplatin treatment distinctly decreased (p < 0.001). Pretreatment of blood platelets with sodium selenite at the low concentration (0.1 microM) protected platelet glutathione against the reaction with cisplatin (p < 0.001). The present study shows that in blood platelets after the incubation with cisplatin the GS-platinum complex was formed. The results of our experiments demonstrated also that the extracellular GSH (1 mM) had the protective effect against cisplatin-induced peroxidation of platelet lipids.

  20. Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-stabilized silver nanoparticles were prepared from amylose-sodium palmitate complexes by first converting sodium palmitate to silver palmitate by reaction with silver nitrate and then reducing the silver ion to metallic silver. This process produced water solutions that could be dried and the...

  1. Hesperetin prevents selenite-induced cataract in rats

    PubMed Central

    Nakazawa, Yosuke; Oka, Mikako; Bando, Masayasu

    2015-01-01

    Purpose This study investigated the ability of hesperetin, a natural flavonoid, to prevent selenite-induced cataracts in a rat model. Methods Animals were divided into four treatment groups: G1 (control group), G2 (hesperetin-treated group), G3 (selenite-induced cataract group), and G4 (hesperetin-treated selenite cataract group). Animals in the G1 and G3 groups were injected with vehicle alone, while those in the G2 and G4 groups received a subcutaneous injection of hesperetin (0.4 μg/g bodyweight on days 0, 1, and 2, corresponding to P13, P14, and P15). Sodium selenite (20 μmol/g bodyweight given 4 h after the hesperetin injection on day 0) was administered to rats in the G3 and G4 groups to induce cataract formation. Lenses were observed with slit-lamp microscopy, and filensin degradation and the decreased glutathione (GSH) and ascorbic acid levels in the lens were measured on day 6. Results Lenses in the G3 group showed mature central opacity, while some lenses in the G4 group lacked central opacity and had lower-grade cataracts. All lenses in the G1 and G2 groups were transparent. Expression of the 94 kDa and 50 kDa forms of filensin was significantly decreased in the lenses in the G3 group compared with those in the G1 and G2 groups. Interestingly, these forms of filensin rescued the rat lenses in the G4 group. In the G3 group lenses, the GSH and ascorbic acid levels were lower than in the control group but were normalized in the G4 group lenses. Conclusions The results suggest that hesperetin can prevent selenite-induced cataract formation. PMID:26283862

  2. Germinating Peanut (Arachis hypogaea L.) Seedlings Attenuated Selenite-Induced Toxicity by Activating the Antioxidant Enzymes and Mediating the Ascorbate-Glutathione Cycle.

    PubMed

    Wang, Guang; Zhang, Hong; Lai, Furao; Wu, Hui

    2016-02-17

    Selenite can enhance the selenium nutrition level of crops, but excessive selenite may be toxic to plant growth. To elucidate the mechanisms underlying the role of selenite in production and detoxification of oxidative toxicity, peanut seedlings were developed with sodium selenite (0, 3, and 6 mg/L). The effects of selenite on antioxidant capacity, transcript levels of antioxidant enzyme genes, and enzyme activities in hypocotyl were investigated. The CuZn-SOD, GSH-Px, GST, and APX gene expression levels and their enzyme activities in selenite treatments were 1.0-3.6-fold of the control. Selenite also significantly increased the glutathione and ascorbate concentrations by mediating the ascorbate-glutathione cycle, and the selenite-induced hydrogen peroxide may act as a second messenger in the signaling pathways. This work has revealed a complex antioxidative response to selenite in peanut seedling. Understanding these mechanisms may help future research in increasing selenite tolerance and selenium accumulation in peanut and other crops.

  3. [Screening and identification of a photosynthetic bacterium reducing selenite to red elemental selenium].

    PubMed

    Wang, Dong-liang; Xiao, Min; Qian, Wei; Han, Bo

    2007-02-01

    Selenium is essential element for humans and animals but is very toxic at higher concentrations. In four inorganic states of selenate [SeO4 2- ( VI)], selenite [SeO3 2- (IV)], elemental selenium [Se (0)] and selenide [Se2- (- II )], selenite is well known to be more soluble and higher toxic than other three forms. Many microorganisms have the capacity to reduce selenite to red elemental selenium, which provide the potential to cope with the detoxification of pollution and to use the biological availability of red elemental selenium. Strain S3 that was more resistant to sodium selenite was selected from 20 photosynthetic bacteria preserved in laboratory. The red granule produced by S3 was identified as elemental selenium ( Se) by transmission electron microscopy and Electron-Dispersive X-ray (EDX) analysis. The granule diameter of the red elemental selenium was 5nm - 200nm, similar as the Nano-Se that has bioavailability. Morphology, physiology and photosynthetic pigments analysis results showed that strain S3 was essentially consistent with Rhodobacter azotoformans . The 16S rDNA sequence analysis (GenBank accession number DQ402051) suggested that strain S3 was clustered together with R. azotoformans in phylogenetic tree, with the sequence identity of 99% . Based on all the results of taxonomy, strain S3 was identified as R. azotoformans S3. The effects of selenite on growth kinetics and the ability to resistant selenite of strain S3 were investigated. In contrast to Rhodospirillum rubrum which was reported not to reduce selenite until the end of exponential growth, strain S3 transformed selenite (1.25mmol/L) at the beginning of the growth, suggesting that strain S3 and Rs. rubrum may employ different strategies to reduce selenite. Strain S3 can grow in the presence of up to 125mmol/L sodium selenite, which is much higher than those which could be resisted to by other bacteria such as Escherichia coli ( < 20mmol/L) and Ralstonia metallidurans CH34 ( < 6mmol/L) . It

  4. Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation.

    PubMed

    Li, Zhi-Yong; Guo, Si-Yuan; Li, Lin

    2003-09-01

    The bioeffects of selenium on the growth of Spirulina platensis and the selenium distribution were investigated. S. platensis was batch cultured in Zarrouk medium containing increasing concentrations of sodium selenite. The biotransformation characteristic of selenium was analysed by the determination of the detailed selenium distribution forms. At 35 degrees C, 315.2 microEm(-2) x s(-1), sodium selenite concentrations below 400 mg x l(-1) were found to stimulate algal growth, especially in the range of 0.5-40 mg x l(-1). However, above 500 mg x l(-1) sodium selenite was toxic to this alga with the toxicity being related to the sulfite level in the medium. S. platensis was found to resist higher selenite by reducing toxic Se(IV) to nonsoluble Se(0). Selenium was accumulated efficiently in S. platensis during cultivation with accumulated selenium increasing with selenite concentration in the medium. It was demonstrated that inorganic selenite could be transformed into organic forms through binding with protein, lipids and polysaccharides and other cell components. The organic selenium accounted for 85.1% of the total accumulated selenium and was comprised of 25.2% water-soluble protein-bound, 10.6% lipids-bound and 2.1% polysaccharides-bound selenium. Among the organic fractions lipid possessed the strongest ability to accumulate Se (6.47 mg x kg(-1)). The 14.9% inorganic selenium in S. platensis was composed of Se(IV) (13.7%) and Se(VI) (1.2%).

  5. Incorporation of selenium into egg proteins from dietary selenite.

    PubMed

    Davis, R H; Fear, J

    1996-03-01

    1. The deposition of selenium in egg components has been investigated in two experiments in which sodium selenite was added to a conventional cereal-based layer diet. 2. Addition of graded amounts of selenite up to 4 mg Se/kg resulted in linear increases in the selenium content of egg white and yolk, and in protein fractions derived from them. The presence of selenium in yolk phosvitin indicates that deposition is not dependent upon the presence of cysteine. 3. Addition of sodium nitroprusside at 0.l5 and 0.3 g/kg to diets having an addition of selenite at the highest concentration, 4 mg Se/kg, resulted in substantial reductions in the selenium concentration in egg components. 4. Samples from eggs laid by hens receiving a diet containing an additional 8 mg selenite Se/kg were subjected to dialysis against sodium hydroxide or cysteine, or subjected to reduction with hydrochloric acid and zinc under anaerobic conditions. Comparisons were made with similar samples prepared from eggs laid by hens on the control diet. 5. Both sodium hydroxide and cysteine were more effective at extracting additional diet-derived selenium from whole white than from whole yolk. The proportion of selenium that could be extracted from the water-soluble or the high density fractions of yolk by either reagent was similar for both control and high selenium samples. However, neither reagent was effective at removing selenium from the ovalbumin or globin fractions of white from control eggs but substantial amounts were extracted from high selenium samples. 6. Most of the selenium was present in non-reducible forms in all samples. There was significantly more reducible selenium in ovalbumin from control eggs than from all other samples but even so non-reducible selenium accounted for two thirds of the selenium present. 7. The differential responses to chemical treatment suggest that selenium can be deposited in eggs in an unspecified number of different forms. These have still to be characterised

  6. Selenopeptides and elemental selenium in Thunbergia alata after exposure to selenite: quantification method for elemental selenium.

    PubMed

    Aborode, Fatai Adigun; Raab, Andrea; Foster, Simon; Lombi, Enzo; Maher, William; Krupp, Eva M; Feldmann, Joerg

    2015-07-01

    Three month old Thunbergia alata were exposed for 13 days to 10 μM selenite to determine the biotransformation of selenite in their roots. Selenium in formic acid extracts (80 ± 3%) was present as selenopeptides with Se-S bonds and selenium-PC complexes (selenocysteinyl-2-3-dihydroxypropionyl-glutathione, seleno-phytochelatin2, seleno-di-glutathione). An analytical method using HPLC-ICPMS to detect and quantify elemental selenium in roots of T. alata plants using sodium sulfite to quantitatively transform elemental selenium to selenosulfate was also developed. Elemental selenium was determined as 18 ± 4% of the total selenium in the roots which was equivalent to the selenium not extracted using formic acid extraction. The results are in an agreement with the XAS measurements of the exposed roots which showed no occurrence of selenite or selenate but a mixture of selenocysteine and elemental selenium.

  7. Reduced swim performance and aerobic capacity in adult zebrafish exposed to waterborne selenite.

    PubMed

    Massé, Anita J; Thomas, Jith K; Janz, David M

    2013-04-01

    Although dietary exposure of adult fish to organoselenium in contaminated aquatic ecosystems has been reported to bioaccumulate and cause larval deformities in offspring, subtle physiological effects produced through low level waterborne selenium exposure in fish such as swim performance and aerobic capacity have not been investigated. To evaluate potential effects of selenite on these responses, adult zebrafish (Danio rerio) were exposed to nominal aqueous concentrations of 0, 10 or 100 μg/L sodium selenite for 14 days. Upon completion of the exposure period, fish underwent two successive swim trials in a swim tunnel respirometer to determine critical swim speed (Ucrit), oxygen consumption (MO2), standard and active metabolic rates, aerobic scope (AS) and cost of transport (COT) followed by analysis of whole body triglyceride and glycogen concentrations. Selenite exposure had a significant negative effect on Ucrit and aerobic capacity. Active metabolic rates and AS significantly decreased in both selenite exposure groups after the second swim trial. No significant effect was observed in MO2, standard metabolic rate, COT, triglyceride and glycogen levels, or condition factor between groups. These results suggest that aqueous selenite exposure at environmentally relevant concentrations produces adverse effects on aerobic capacity that can diminish endurance and maximum swim speeds, which may lower fish survivability.

  8. Isorhamnetin-3-glucoside alleviates oxidative stress and opacification in selenite cataract in vitro.

    PubMed

    Devi, V Gayathri; Rooban, B N; Sasikala, V; Sahasranamam, V; Abraham, Annie

    2010-09-01

    Oxidative stress has long been recognized as an important mediator in the pathogenesis of cataract and the goal of this study was to determine the efficacy of isorhamnetin-3-glucoside (IR3G) in alleviating the toxicity induced by sodium selenite in in vitro culture condition. IR3G is the bioactive flavonoid isolated and characterized from the leaves of Cochlospermum religiosum. Enucleated rat lenses were maintained in organ culture containing M-199 medium alone (G-I), supplemented with 0.1 mM selenite (G-II) and selenite + 25 microg/ml IR3G (G-III). Treatment to G-III was from the second to fifth day while selenite administration to G-II & III was done on the third day. The antioxidant potential of the compound was assessed by Cu(2+) induced lipoprotein diene formation and superoxide scavenging assays. Morphological examination of the lenses also gave a supporting data. Antioxidant enzymes-superoxide dismutase (SOD), catalase and concentration of reduced glutathione (GSH) were significantly lower, while TBARS showed an increase in G-II than that in G-III and G-I lenses. Activity of Ca(2+)-ATPase was decreased and level of calcium was increased in G-II than G-III and G-I lenses. These data suggest that IR3G is able to significantly retard selenite cataract in vitro by virtue of its antioxidant property.

  9. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica

    USGS Publications Warehouse

    Pearce, C.I.; Pattrick, R.A.D.; Law, N.; Charnock, J.M.; Coker, V.S.; Fellowes, J.W.; Oremland, R.S.; Lloyd, J.R.

    2009-01-01

    The metal-reducing bacteria Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica, use different mechanisms to transform toxic, bioavailable sodium selenite to less toxic, non-mobile elemental selenium and then to selenide in anaerobic environments, offering the potential for in situ and ex situ bioremediation of contaminated soils, sediments, industrial effluents, and agricultural drainage waters. The products of these reductive transformations depend on both the organism involved and the reduction conditions employed, in terms of electron donor and exogenous extracellular redox mediator. The intermediary phase involves the precipitation of elemental selenium nanospheres and the potential role of proteins in the formation of these structures is discussed. The bionanomineral phases produced during these transformations, including both elemental selenium nanospheres and metal selenide nanoparticles, have catalytic, semiconducting and light-emitting properties, which may have unique applications in the realm of nanophotonics. This research offers the potential to combine remediation of contaminants with the development of environmentally friendly manufacturing pathways for novel bionanominerals. ?? 2009 Taylor & Francis.

  10. Antimicrobial Effects of Silver Nanoparticles Stabilized in Solution by Sodium Alginate

    PubMed Central

    Kubyshkin, Anatoliy; Chegodar, Denis; Katsev, Andrew; Petrosyan, Armen; Krivorutchenko, Yuri; Postnikova, Olga

    2016-01-01

    Background/purpose To investigate the effect of nanosilver particles in solution stabilized in a matrix of sodium alginate on the growth and development of pathogenic bacteria such as Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Proteus vulgaris, Enterobacter cloacae, the antibiotic-resistant strain of Pseudomonas aeruginosa, the yeast-like fungus Candida albicans, and the luminescent bacteria Photobacterium leiognathi Sh1. Methods Isolates of pathogenic bacteria obtained from bronchoalveolar and peritoneal lavage samples from Wistar rats with experimental pneumonia and peritonitis were tested for their susceptibility to silver nanoparticles in solution with an alginate stabilizer. The antifungal activity of silver nanoparticles in sodium alginate was studied for C. albicans (strain CCM885) using the Sabouraud agar method. The biocidal impact of silver nanoparticles in solution with a sodium alginate matrix on the luminescent bacteria P. leiognathi Sh1 was investigated using a BLM 8801 luminometer. Results It was observed that a 0.02-0.05% nanosilver solution with an alginate stabilizer limits the growth and development of pathogenic bacteria within the first 24 hours of exposure. If the concentration of nanosilver solution is 0.0005-0.05%, it inhibits the viability of the fungus C. albicans. A nanosilver solution at a concentration of 0.05-0.2 μg/mL represses bioluminescence in the bacteria P. leiognathi Sh1. From these results, it appears that the biocidal effect of nanosilver is related either to the presence of ions that are formed during dissolution, or to the availability of nanoparticles that interrupt the membrane permeability of bacterial cells. Conclusion Silver nanoparticles stabilized in a solution of sodium alginate possess significant in vitro antimicrobial activity, which is manifested by inhibition of the bioluminescence of P. leiognathi Sh1, and inhibition of the growth and development of the pathogenic bacteria S. aureus, E

  11. Sodium doping and reactivity in pure and mixed ice nanoparticles*

    NASA Astrophysics Data System (ADS)

    Lengyel, Jozef; Pysanenko, Andriy; Rubovič, Peter; Fárník, Michal

    2015-12-01

    Doping of clusters by sodium atoms and subsequent photoionization (NaPI) is used as a fragmentation-free cluster ionization method. Here we investigate different clusters using NaPI and electron ionization (EI) with a reflectron time-of-flight mass spectrometer (RTOF). The mass spectra of the same clusters ionized by NaPI and EI reveal significant differences which point to Na reactivity in the clusters. First, we discuss mixed X M ·(H2O) N (X = HNO3, N2O) clusters where reactions between Na and molecules X leads to the "cluster invisibility" for the NaPI method. Second, mixed (NH3) M ·(H2O) N clusters are observed by both methods, but they reveal different cluster compositions, and the mass spectra suggest that neither the EI nor the NaPI spectrum corresponds exactly to the neutral cluster distribution. Finally, we discuss the reactions of Na in pure water clusters as a function of the number of Na atoms doped into the clusters. In summary, we present experimental evidence that the NaPI method in the present cases does not reveal the size and composition of the neutral clusters. A detailed understanding of Na reactivity in the clusters is needed for its application as a fragmentation-free cluster ionization method. Besides, we introduce the combination of NaPI and EI as a new tool to investigate the sodium reactivity in clusters and aerosol particles.

  12. Effect of selenite and selenate on plant uptake of cadmium by maize (zea mays)

    SciTech Connect

    Shanker, K.; Mishra, S.; Srivastava, S.

    1996-03-01

    Selenium has been reported to confer tolerance to toxicity of heavy metals including cadmium, a highly toxic and non essential heavy metal, which enters the food chain via plant uptake from soils. Selenium reduces availability of cadmium to plants along with other aspects of its toxicokinetics. When plants are supplied with selenite, selenium concentrations in the xylem exudate are lower than selenate. Most of the selenate was transported as selenate and unidentified organic Se compounds. In contrast, Se distribution among various Se fractions within plants does not depend significantly on whether selenite or selenate was used. Selenium has a strong tendency to form complexes with heavy metals like Cd, Hg, Ag and Tl. It has been suggested that the protective effects of selenium are due to the formation of non toxic Se-metal complexes, although the mechanism by which this protective effect is exerted remains unclear. Studies on the effect of selenium (selenite) and cadmium additions to the soil on their concentrations in lettuce and wheat has indicated the role of selenite in reduction of cadmium uptake. The cletoxifying effect of sodium selenite on cadmium ion in the freshwater fish Potyacuthus cupanus has been reported. The discovery that an element like selenium counteracts the toxicity, chemical carcinogenesis and reduces the plant uptake of other toxic metals, highlights the possibility of existence of a Se-metal interaction mechanism in soil plant systems. The uptake and translocation of root-absorbed chromium supplied through irrigation in the trivalent and hexavalant states in various parts of the onion plant (Allium cepa) grown in soil and sand culture has been recently reported by us. In continuation of that, this preliminary report describes the effect of selenite and selenate pretreatment on the uptake of cadmium in the maize plant (Zea mays).

  13. Trigonella foenum-graecum (Fenugreek) protects against selenite-induced oxidative stress in experimental cataractogenesis.

    PubMed

    Gupta, Suresh K; Kalaiselvan, Vivekananthan; Srivastava, Sushma; Saxena, Rohit; Agrawal, Shyam S

    2010-09-01

    Cataract is the opacification in eye lens and leads to 50% of blindness worldwide. The present study was undertaken to evaluate the anticataract potential of Trigonella foenum-graecum Linn seeds (fenugreek) in selenite-induced in vitro and in vivo cataract. In vitro enucleated rat lenses were maintained in organ culture containing Dulbecco's modified Eagles medium (DMEM) alone or in addition with 100 microM selenite and served as the normal and control groups, respectively. For the test group, the medium was supplemented with selenite and T. foenum-graecum aqueous extract. The lenses were incubated for 24 h at 37 degrees C. After incubation, the lenses were processed for the estimation of reduced glutathione (GSH), lipid peroxidation product (malondialdehyde), and the antioxidant enzymes. In vivo selenite cataract was induced in 9-day-old rats by subcutaneous injection of sodium selenite (25 micromol/kg body weight). Animals in the test group were injected with different doses of aqueous extract of T. foenum-graecum 4 h before the selenite challenge. A fall in GSH and a rise in malondialdehyde levels were observed in control as compared to normal lenses. T. foenum-graecum significantly (P < 0.01) restored glutathione and decreased malondialdehyde levels. A significant restoration in the activities of antioxidant enzymes such as superoxide dismutase (P < 0.01), catalase, (P < 0.01), glutathione peroxidase (P < 0.01), and glutathione-S-transferase (P < 0.01) was observed in the T. foenum-graecum supplemented group as compared to control. In vivo, none of the eyes was found with nuclear cataract in treated group as opposed to 72.5% in the control group. T. foenum-graecum protects against experimental cataract by virtue of its antioxidant properties. Further studies are warranted to explore its role in human cataract.

  14. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake

    NASA Astrophysics Data System (ADS)

    Parab, Harshala J.; Huang, Jing-Hong; Lai, Tsung-Ching; Jan, Yi-Hua; Liu, Ru-Shi; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan; Hwu, Yeu-Kuang; Tsai, Din Ping; Chuang, Shih-Yi; Pang, Jong-Hwei S.

    2011-09-01

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  15. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake.

    PubMed

    Parab, Harshala J; Huang, Jing-Hong; Lai, Tsung-Ching; Jan, Yi-Hua; Liu, Ru-Shi; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan; Hwu, Yeu-Kuang; Tsai, Din Ping; Chuang, Shih-Yi; Pang, Jong-Hwei S

    2011-09-30

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  16. Preparation of superparamagnetic sodium alginate nanoparticles for covalent immobilization of Candida rugosa lipase

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Chen, Xia; Li, Yanfeng; Cui, Yanjun; Zhu, Hao; Zhu, Weiwei

    2012-03-01

    Superparamagnetic sodium alginate nanoparticles with diameter around 25-30 nm were prepared with a water-in-oil emulsion method. The resulted magnetic SA nanoparticle was activated with glutaraldehyde and epichlorohydrin to form nanoscale support. Candida rugosa lipase (CRL), hereby chosen as a model enzyme, was covalently immobilized on the resulted magnetic support. The structure and magnetic behavior of the magnetic nanoparticles were confirmed by transmission electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometer. Based on the structural character of enzyme (containing functional residues that are ideal reaction sites for the immobilization of enzyme repeatedly), the regeneration of support was investigated by reactivating the deactivated immobilized lipase with glutaraldehyde. And the results indicated that these regenerated supports remained to be efficient for lipase immobilization. Finally, all of the immobilized CRL prepared by different generations of supports displayed excellent reusability and applicability.

  17. UVA mediated synthesis of gold nanoparticles in pharmaceutical-grade heparin sodium solutions

    NASA Astrophysics Data System (ADS)

    Rodríguez-Torres, M. Del P.; Diaz-Torres, L. A.; Olmos-López, M.; Salas, P.; Gutiérrez, Clara

    2013-09-01

    A photochemical-based method in which UVA light (λ=366 nm) is used for synthesizing gold nanoparticles is presented by irradiating gold (III) chloride hydrate (HAuCl4) in the presence of pharmaceutical-grade heparin sodium (PGHEP) as a reducing and stabilizing agent in aqueous solution. Different HAuCl4 to PGHEP concentration ratios were exposed to UVA for up to seven hours. The as-synthesized nanoparticles were characterized by UV-VIS and Raman spectroscopy, transmission electron microscopy (TEM), and pH measurements. The synthesized AuNPs present spherical as well as anisotropic shapes, such as oval, triangular, hexagonal sheets, rods, and some other faceted forms, with dimensions ranging from 20 nm to 300 nm. All obtained products show good temporal stability in solution. Surface plasmons differ when varying HAuCl4 to PGHEP concentration ratio. The obtained samples exhibit two absorption peaks, one in the region between 500-600 nm, and another one in the near-IR between 900-1200 nm; both peaks shift to longer wavelengths and increase their absorption intensity as the HAuCl4 to PGHEP concentration ratio increase. TEM images show the change in nanoparticles yield as well as the shape and sizes change depending on HAuCl4 to PGHEP concentration ratio variation. Ph measurements suggest that acidic media promote anisotropic nanoparticle formation. Raman spectroscopy was used to find out which heparin sodium main groups attached to the nanoparticles surface, and in what amount. In summary, it is found that when modifying the reactants concentrations and keeping the UV exposition time as the only fixed parameter, different nanoparticles with distinctive characteristics can be attained.

  18. Selenite metabolism in total parenteral nutrition (TPN)

    SciTech Connect

    Sitrin, M.D.; Ting, B.T.G.; Hazell, T.; Janghorbani, M. )

    1989-02-01

    Patients on long-term TPN commonly receive selenite to prevent selenium (Se) deficiency. Little information is available concerning the effect of chronic selenite supplementation on Se metabolism. In this study, we have used {sup 74}Se to examine selenite metabolism in 2 home TPN patents, one on selenite and one on no supplementation. Afte rcollection of baseline blood and urine samples, 80 {mu}g of selenite enriched with {sup 74}Se was added to the TPN formula, and infused over 12 hrs. Daily urine output was collected for 10 d. Inductively coupled plasma mass spectrometry was used to determine the isotope ratios of {sup 74}Se to {sup 77}Se, and {sup 74}Se to {sup 82}Se (added in vitro and an internal standard) in urine. Cumulative {sup 74}Se retention and an apparent selenite exchangeable pool size were calculated using standard isotope dilution equations. The unsupplemented TPN patient had biochemical Se deficiency, with decreased plasma Se (1 ng/ml) urine Se (1 ug/d) and red cell and plasma glutathione peroxidase activity (GSH-Px). Retention of {sup 74}Se was very high, 93% at 10 d, and the pool size was extremely low, 566 ug at 10 d. The supplemented patent had normal plasma and urine Se levels and plasma and red cell GSH-Px. {sup 74}Se retention was very poor, only 42% at 1 d and 38% at 10 d. The Se pool size increased rapidly over time, reaching 12000 ug at 10 d. In contrast, our previous studies in normal subjects consuming dietary orgaic Se showed a selenite retention of 85-90% at 1 d and 70-80% at 10 d, and a pool size of 6000-8000 ug at 10 day. Conclusions: 1. Using {sup 74}Se, differences in Se retention and pool size can easily be detected in Se deficient vs replete TPN patients 2. Chronic supplementation with selenite appears to result in decreased {sup 74}Se retention and an expanded selenite exchangeable pool in comparison with normals consuming dietary Se.

  19. Toxicity and accumulation of selenite in four microalgae

    NASA Astrophysics Data System (ADS)

    Dazhi, Wang; Zhaodi, Cheng; Shaojing, Li; Yahui, Gao

    2003-09-01

    The toxicity and bioaccumulation of selenite in four microalgae, Spirulina platensis, Dunaliella salina, Dunaliella bardawill and Phaeodactylum tricornutum cultured in the presence of selenite were investigated. Lower concentrations of selenite were generally nontoxic and frequently stimulated algal growth, while higher concentrations of selenite inhibited algal growth. Selenite was more toxic to D. salina and D. bardawill than to S. platensis and P. Tricornutum. All algae cultured in selenite were able to incorporate Se to different degrees, which depended on algal species. The distributions of selenite among intracellular macromolecular compounds were different among algal species: most of the selenite was associated with proteins in S. platensis, D. salina and D. bardawill, while most of the selenite was associated with lipids in P. tricornutum, which reflected the physiological differences among the algae. These observations suggest that algae are able to accumulate selenite and bind it with intracellular macromolecular compounds when exposed to high concentration of selenite. This may represent a form of storage or detoxification of selenite by the algae.

  20. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles.

    PubMed

    Mohammadi, Abbas; Daemi, Hamed; Barikani, Mehdi

    2014-08-01

    In this study, superparamagnetic sodium alginate-coated Fe3O4 nanoparticles (Alg-Fe3O4) as a novel magnetic adsorbent were prepared by in situ coprecipitation method, in which Fe3O4 nanoparticles were precipitated from FeCl3 and FeCl2 under alkaline medium in the presence of sodium alginate. The Alg-Fe3O4 nanoparticles were used for removal of malachite green (MG) from aqueous solutions using batch adsorption technique. The characterization of synthesized nanoparticles was performed using XRD, FTIR, TEM, TGA and vibrating sample magnetometer (VSM) techniques. FTIR analysis of synthesized nanoparticles provided the evidence that sodium alginate was successfully coated on the surface of Fe3O4 nanoparticles. The FT-IR and TGA characterization showed that the Alg-Fe3O4 nanoparticles contained about 14% (w/w) of sodium alginate. Moreover, TEM analysis indicated that the average diameter of the Alg-Fe3O4 nanoparticles was about 12nm. The effects of adsorbent dosage, pH and temperature were investigated on the adsorption properties of MG onto Alg-Fe3O4 nanoparticles. The equilibrium adsorption data were modeled using the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 47.84mg/g. The kinetics of adsorption of MG onto Alg-Fe3O4 nanoparticles were investigated using the pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption of MG onto nanoparticles followed pseudo-second-order kinetic model.

  1. pH-Responsive PLGA Nanoparticle for Controlled Payload Delivery of Diclofenac Sodium

    PubMed Central

    Khanal, Shalil; Adhikari, Udhab; Rijal, Nava P.; Bhattarai, Shanta R.; Sankar, Jagannathan; Bhattarai, Narayan

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) based nanoparticles have gained increasing attention in delivery applications due to their capability for controlled drug release characteristics, biocompatibility, and tunable mechanical, as well as degradation, properties. However, thorough study is always required while evaluating potential toxicity of the particles from dose dumping, inconsistent release and drug-polymer interactions. In this research, we developed PLGA nanoparticles modified by chitosan (CS), a cationic and pH responsive polysaccharide that bears repetitive amine groups in its backbone. We used a model drug, diclofenac sodium (DS), a nonsteroidal anti-inflammatory drug (NSAID), to study the drug loading and release characteristics. PLGA nanoparticles were synthesized by double-emulsion solvent evaporation technique. The nanoparticles were evaluated based on their particle size, surface charge, entrapment efficacy, and effect of pH in drug release profile. About 390–420 nm of average diameters and uniform morphology of the particles were confirmed by scanning electron microscope (SEM) imaging and dynamic light scattering (DLS) measurement. Chitosan coating over PLGA surface was confirmed by FTIR and DLS. Drug entrapment efficacy was up to 52%. Chitosan coated PLGA showed a pH responsive drug release in in vitro. The release was about 45% more at pH 5.5 than at pH 7.4. The results of our study indicated the development of chitosan coating over PLGA nanoparticle for pH dependent controlled release DS drug for therapeutic applications. PMID:27490577

  2. The influence of sodium nanoparticles formation on luminescent properties of fluorophosphate glasses containing molecular clusters and quantum dots of lead selenide

    NASA Astrophysics Data System (ADS)

    Lipatova, Zh. O.; Kolobkova, E. V.; Sidorov, A. I.; Nikonorov, N. V.

    2016-08-01

    The influence of sodium nanoparticles and secondary heat treatment conditions on the spectralluminescent characteristics of fluorophosphate glasses with PbSe molecular clusters and quantum dots is studied. Experiments with glasses containing no sodium nanoparticles show that their thermal treatment leads to the formation of molecular clusters with subsequent formation of quantum dots having an intense luminescence. The results of numerical simulation for glasses with sodium nanoparticles shows that heat treatment leads to formation of a sodium fluoride shell on the nanoparticles surface. It is shown that quenching of the luminescence of PbSe molecular clusters and quantum dots takes place in these glasses.

  3. Alendronate Sodium as Enteric Coated Solid Lipid Nanoparticles; Preparation, Optimization, and In Vivo Evaluation to Enhance Its Oral Bioavailability

    PubMed Central

    Hosny, Khaled Mohamed

    2016-01-01

    Treatment of osteoporosis with alendronate sodium has several challenges. The first challenge is the low bioavailability. The second main challenge is side effects, which include oesophageal ulceration. The aim of this research was to reformulate alendronate sodium as enteric coated solid lipid nanoparticles in order to enhance its bioavailability, and preventing the free alendronate sodium from coming into direct contact with the gastrointestinal mucosa, and thereby reducing the possibility of side effects. Enteric coated solid lipid nanoparticles were prepared according to the Box-Behnken design employing Design expert® software, and characterized for size, morphology, and entrapment efficiency. The optimized formula was coated with an Eudragit S100 and evaluated for drug release in acidic and basic media, stability studies and pharmacokinetic evaluations on rabbits. The results indicated that, using Derringer's desirability functional tool for optimization, the highest entrapment efficiency value of 74.3% and the smallest size value of 98 nm were predicted under optimum conditions with a desirability value of 0.917. The optimized nanoparticles released alendronate sodium only at an alkaline pH. The pharmacokinetic evaluation revealed that alendronate sodium bioavailability was enhanced by more than 7.4-fold in rabbits. In conclusion, enteric coated solid lipid nanoparticles is a promising formula for the delivery of alendronate sodium, eliminating its oesophageal side effects and enhancing its bioavailability. PMID:27148747

  4. Use of nanoparticles to improve the performance of sodium dodecyl sulfate flooding in a sandstone reservoir

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mohammad Ali

    2016-12-01

    One of the prominent enhanced oil recovery (EOR) methods in oil reservoirs is surfactant flooding. The purpose of this research is to study the effect of nanoparticles on the surfactant adsorption. Real reservoir sandstone rock samples were implemented in adsorption tests. The ranges of the initial surfactant and nano silica concentrations were from 500 to 5000 ppm and 500 ppm to 2000 ppm, respectively. The commercial surfactant used is sodium dodecyl sulfate (SDS) as an ionic surfactant and two different types of nano silica were employed. The rate of surfactant losses extremely depends on the concentration of surfactant in the system, and it was found that the adsorption of surfactant decreased with increasing the concentration of nano silica. Also, it was found that hydrophobic nano silica is more effective than hydrophilic nanoparticles.

  5. Microscale Interface Synthesis of Ni-B Amorphous Nanoparticles from NiSO4 by Sodium Borohydride Reduction in Microreactor

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Peng, Jinhui; Meng, Binfang; Li, Wei; Liu, Bingguo; Luo, Huilong

    2016-09-01

    Amorphous nanoparticles have attracted a large amount of interest due to their superior catalytic activity and unique selectivity. The Ni-B amorphous nanoparticles were synthesized from aqueous reduction of NiSO4 by sodium borohydride in microscale interface at room temperature. The size, morphology, elemental compositions, and the chemical composition on the surface of Ni-B amorphous nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). All the results showed that the synthesized particles are Ni-B amorphous nanoparticles with uniform in size distribution and having good dispersion. The mean particle diameter of Ni-B amorphous nanoparticles was around 9 nm. The present work provides an alternative synthesis route for the Ni-B amorphous nanoparticles.

  6. Structural and optical properties of Cu-doped ZnS nanoparticles formed in chitosan/sodium alginate multilayer films.

    PubMed

    Wang, Liping; Sun, Yujie; Xie, Xiaodong

    2014-05-01

    Chitosan/alginate multilayers were fabricated using a spin-coating method, and ZnS:Cu nanoparticles were generated within the network of two natural polysaccharides, chitosan and sodium alginate. The synthesized nanoparticles were characterized using an X-ray diffractometer (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The results showed that cubic zinc blende-structured ZnS:Cu nanoparticles with an average crystal size of ~ 3 nm were uniformly distributed. UV-vis spectra indicate a large quantum size effect and the absorption edge for the ZnS:Cu nanoparticles slightly shifted to longer wavelengths with increasing Cu ion concentrations. The photoluminescence of the Cu-doped ZnS nanoparticles reached a maximum at a 1% doping level. The ZnS:Cu nanoparticles form and are distributed uniformly in the composite multilayer films with a surface average height of 25 nm.

  7. Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation.

    PubMed

    Kwok, Kevin W H; Dong, Wu; Marinakos, Stella M; Liu, Jie; Chilkoti, Ashutosh; Wiesner, Mark R; Chernick, Melissa; Hinton, David E

    2016-11-01

    Silver nanoparticles (AgNPs) have been increasingly commercialized and their release into the environment is imminent. Toxicity of AgNP has been studied with a wide spectrum of organisms, yet the mechanism of toxicity remains largely unknown. This study systematically compared toxicity of 10 AgNPs of different particle diameters and coatings to Japanese medaka (Oryzias latipes) larvae to understand how characteristics of AgNP relate to toxicity. Dissolution of AgNPs was largely dependent on particle size, but their aggregation behavior and toxicity were more dependent on coating materials. 96 h lethal concentration 50% (LC50) values correlated with AgNP aggregate size rather than size of individual nanoparticles. Of the AgNPs studied, the dissolved Ag concentration in the test suspensions did not account for all of the observed toxicity, indicating the role of NP-specific characteristics in resultant toxicity. Exposure to AgNP led to decrease of sodium concentration in the tissue and increased expression of Na(+)/K(+ )ATPase. Gene expression patterns also suggested that toxicity was related to disruption of sodium regulation and not to oxidative stress.

  8. Preparation and application of crosslinked poly(sodium acrylate)--coated magnetite nanoparticles as corrosion inhibitors for carbon steel alloy.

    PubMed

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; El-Saeed, Ashraf M

    2015-01-14

    This work presents a new method to prepare poly(sodium acrylate) magnetite composite nanoparticles. Core/shell type magnetite nanocomposites were synthesized using sodium acrylate as monomer and N,N-methylenebisacrylamide (MBA) as crosslinker. Microemulsion polymerization was used for constructing core/shell structures with magnetite nanoparticles as core and poly(sodium acrylate) as shell. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanocomposite chemical structure. Transmittance electron microscopy (TEM) was used to examine the morphology of the modified poly(sodium acrylate) magnetite composite nanoparticles. These particle will be evaluated for effective anticorrosion behavior as a hydrophobic surface on stainless steel. The composite nanoparticles has been designed by dispersing nanocomposites which act as a corrosion inhibitor. The inhibition effect of AA-Na/magnetite composites on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Polarization measurements indicated that the studied inhibitor acts as mixed type corrosion inhibitor. EIS spectra exhibit one capacitive loop. The different techniques confirmed that the inhibition efficiency reaches 99% at 50 ppm concentration. This study has led to a better understanding of active anticorrosive magnetite nanoparticles with embedded nanocomposites and the factors influencing their anticorrosion performance.

  9. Effect of Silver Nanoparticles on the Thermal Properties of Sodium Acetate Trihydrate

    NASA Astrophysics Data System (ADS)

    Garay-Ramírez, B.; Cruz-Orea, A.; San Martín-Martínez, E.

    2015-06-01

    Sodium acetate trihydrate (SAT) is used as a phase change material (PCM) because of its high latent heat of fusion. Mixtures were prepared with SAT, a blend of the polymer sodium carboxymethil cellulose (CMC) and silica gel, silver nanoparticles (AgNPs), and anhydrous sodium sulfate to form a composite-PCM (c-PCM) based on SAT; the relative proportions of CMC/silica gel in the blend and AgNP content were varied according to a central composite experimental design. The thermal properties were determined for raw SAT, CMC, , and c-PCM samples. The thermal effusivity of samples was evaluated by the inverse photopyroelectric technique. The thermal diffusivity was obtained for samples by the open photoacoustic cell technique. The thermal conductivity was calculated from the obtained and values. To assess the thermal performance of the c-PCM compared to raw SAT, samples were studied through differential scanning calorimetry which served to determine the latent heat recovery ( LHR). Properties , and LHR were analyzed by response surface methodology and compared. The SAT-based c-PCM was found to be more thermally conductive than raw SAT. The best LHR with good thermal diffusivity and thermal conductivity was identified in the region of the central composite experimental design with medium-low AgNPs and higher proportions of CMC in the polymer blend.

  10. Altered selenium status in Huntington's disease: neuroprotection by selenite in the N171-82Q mouse model.

    PubMed

    Lu, Zhen; Marks, Eileen; Chen, Jianfang; Moline, Jenna; Barrows, Lorraine; Raisbeck, Merl; Volitakis, Irene; Cherny, Robert A; Chopra, Vanita; Bush, Ashley I; Hersch, Steven; Fox, Jonathan H

    2014-11-01

    Disruption of redox homeostasis is a prominent feature in the pathogenesis of Huntington's disease (HD). Selenium an essential element nutrient that modulates redox pathways and has been reported to provide protection against both acute neurotoxicity (e.g. methamphetamine) and chronic neurodegeneration (e.g. tauopathy) in mice. The objective of our study was to investigate the effect of sodium selenite, an inorganic form of selenium, on behavioral, brain degeneration and biochemical outcomes in the N171-82Q Huntington's disease mouse model. HD mice, which were supplemented with sodium selenite from 6 to 14 weeks of age, demonstrated increased motor endurance, decreased loss of brain weight, decreased mutant huntingtin aggregate burden and decreased brain oxidized glutathione levels. Biochemical studies revealed that selenite treatment reverted HD-associated changes in liver selenium and plasma glutathione in N171-82Q mice and had effects on brain selenoprotein transcript expression. Further, we found decreased brain selenium content in human autopsy brain. Taken together, we demonstrate a decreased selenium phenotype in human and mouse HD and additionally show some protective effects of selenite in N171-82Q HD mice. Modification of selenium metabolism results in beneficial effects in mouse HD and thus may represent a therapeutic strategy.

  11. Selenite bioremediation potential of indigenous microorganisms from industrial activated sludge.

    PubMed

    Garbisu, C; Alkorta, I; Carlson, D E; Leighton, T; Buchanan, B B

    1997-12-01

    Ten bacterial strains were isolated from the activated sludge waste treatment system (BIOX) at the Exxon refinery in Benicia, California. Half of these isolates could be grown in minimal medium. When tested for selenite detoxification capability, these five isolates (members of the genera Bacillus, Pseudomonas, Enterobacter and Aeromonas), were capable of detoxifying selenite with kinetics similar to those of a well characterized Bacillus subtilis strain (168 Trp+) studied previously. The selenite detoxification phenotype of the Exxon isolates was stable to repeated transfer on culture media which did not contain selenium. Microorganisms isolated from the Exxon BIOX reactor were capable of detoxifying selenite. Treatability studies using the whole BIOX microbial community were also carried out to evaluate substrates for their ability to support growth and selenite bioremediation. Under the appropriate conditions, indigenous microbial communities are capable of remediating selenite in situ.

  12. Ameliorative effect of acetyl-L-carnitine and/or nifedipine against selenite-induced cataractogenesis in young albino rats.

    PubMed

    Farghaly, Lamiaa M; Ghobashy, Waleed A; Shoukry, Youssef; El-Azab, Mona F

    2014-04-15

    Free radical toxicity and calcium ion overload have been identified as the major two players in the causation of cataract. The current study was carried out to investigate the anti-cataractogenic effect of single and combined treatment with acetyl-l-carnitine and nifedipine in sodium selenite-induced cataract. Rat pups were divided into 5 groups; 1st group received intraperitoneal injection (i.p.) of saline and served as normal control, 2nd group received single subcutaneous injection of sodium selenite 30nmol/g body weight on p10 (postpartum day 10), 3rd and 4th groups received either acetyl-l-carnitine (200mg/kg, i.p.) or nifedipine (0.1mg/kg, i.p.) on p9, respectively, before the administration of sodium selenite, and the treatment continued till p14. Last group received the combined treatments of acetyl-l-carnitine and nifedipine in the same regimen. All animals were examined using a slit lamp and retroillumination then sacrificed on p30. Lenses were removed and processed for biochemical analyses, histopathological and electron microscopic examination. Selenite-treated groups showed significantly (P≤0.05) lower values of redox system components (glutathione and glutathione reductase activity) and anti-oxidant enzymes׳ activities (superoxide dismutase and catalase) along with increased lipid peroxidation that was accompanied by 100% opacified crystalline lenses (mature cataract) with abnormal structure as detected by electron microscopy. It is concluded that acetyl-l-carnitine or nifedipine was able to partially protect against selenite-induced abnormalities. While, combined treatment with acetyl-l-carnitine and nifedipine was superior to individual treatments in slowing down the development of cataract by restoring the anti-oxidant defense and mitigating lipid peroxidation in the lens and hence represents an attractive anti-cataractogenic remedy.

  13. Hepatic glutathione metabolism and lipid peroxidation in response to excess dietary selenomethionine and selenite in mallard ducklings. [Anas platyrhynchos

    SciTech Connect

    Hoffman, D.J.; Heinz, G.H.; Krynitsky, A.J. )

    1989-01-01

    Studies were conducted with mallard (Anas platyrhynchos) ducklings to determine the effects of excess dietary selenium (Se) on hepatic glatathione concentration and associated enzymes, and lipid peroxidation. Day-old ducklings were fed 0.1, 10, 20, or 40 ppm Se as seleno-DL-methionine or sodium selenite for 6 wk. Selenium from selenomethionine accumulated in a dose-dependent manner in the liver, resulting in a decrease in the concentration of hepatic-reduced glutathione (GSH) and total hepatic thiols (SH). These effects were accompanied by a dose-dependent increase in the ratio of oxidized glutathione (GSSG) to GSH, and an increase in malondialdehyde concentration as evidence of lipid peroxidation. Hepatic and plasma GSH peroxidase activity was initially elevated at 10 ppm Se as selenomethionine, whereas GSSG reductase activity was elevated at higher concentrations of Se. Selenium from sodium selenite accumulated in the liver to an apparent maximum at 10 ppm in the diet, resulting in an increase in hepatic GSH and GSSG accompanied by a small decrease in total hepatic SH. Sodium selenite resulted in an increase in hepatic GSSG reductase activity at 10 ppm and in plasm GSSG reductase activity at 40 ppm. A small increase in lipid peroxidation occurred at 40 ppm. These findings indicate that excess dietary Se as selenomethionine has a more pronounced effect on hepatic glutathione metabolism and lipid peroxidation in ducklings than dose selenite, which may be related to the pattern of accumulation. Effects of Se as selenite appear to be less pronounced in ducklings than reported in laboratory rodents. The effects of selenomethionine, which occurs in vegetation, are of particular interest with respect to the health of wild aquatic birds in seleniferous locations.

  14. Heat shock protein 90-mediated inactivation of nuclear factor-κB switches autophagy to apoptosis through becn1 transcriptional inhibition in selenite-induced NB4 cells.

    PubMed

    Jiang, Qian; Wang, Yuhan; Li, Tianjiao; Shi, Kejian; Li, Zhushi; Ma, Yushi; Li, Feng; Luo, Hui; Yang, Yang; Xu, Caimin

    2011-04-15

    Autophagy can protect cells while also contributing to cell damage, but the precise interplay between apoptosis and autophagy and the contribution of autophagy to cell death are still not clear. Previous studies have shown that supranutritional doses of sodium selenite promote apoptosis in human leukemia NB4 cells. Here, we report that selenite treatment triggers opposite patterns of autophagy in the NB4, HL60, and Jurkat leukemia cell lines during apoptosis and provide evidence that the suppressive effect of selenite on autophagy in NB4 cells is due to the decreased expression of the chaperone protein Hsp90 (heat shock protein 90), suggesting a novel regulatory function of Hsp90 in apoptosis and autophagy. Excessive or insufficient expression indicates that Hsp90 protects NB4 cells from selenite-induced apoptosis, and selenite-induced decreases in the expression of Hsp90, especially in NB4 cells, inhibit the activities of the IκB kinase/nuclear factor-κB (IKK/NF-κB) signaling pathway, leading to less nuclear translocation and inactivation of NF-κB and the subsequent weak binding of the becn1 promoter, which facilitates the transition from autophagy to apoptosis. Taken together, our observations provide novel insights into the mechanisms underlying the balance between apoptosis and autophagy, and we also identified Hsp90-NF-κB-Beclin1 as a potential biological pathway for signaling the switch from autophagy to apoptosis in selenite-treated NB4 cells.

  15. Regulatory effect of chrysin on expression of lenticular calcium transporters, calpains, and apoptotic-cascade components in selenite-induced cataract

    PubMed Central

    Sundararajan, Mahalingam; Thomas, Philip A.; Teresa, P. Archana; Anbukkarasi, Muniyandi

    2016-01-01

    Purpose Selenite-induced cataract is associated with oxidative stress, loss of calcium homeostasis, activation of calpain enzymes, and apoptotic cell death in the lens. An evaluation of naturally occurring antioxidants that also restrict calcium influx into the lens and calpain activation and thus prevent lenticular cell death may lead to the development of safe and effective anticataractogenic drugs. This study focuses on a naturally occurring flavone, chrysin, and its efficacy in preventing cataractogenic changes in in vitro cultured Wistar rat lenses. Methods Lenses from Wistar rats incubated for 24 h at 37 °C in Dulbecco’s modified Eagle’s medium (DMEM) were categorized into four main groups: Group I (control, incubated in DMEM alone); Group II (selenite-challenged and untreated, incubated in DMEM that contained 100 µM/ml of sodium selenite only); Group III (selenite-challenged and chrysin-treated, incubated in DMEM that contained sodium selenite [100 µM/ml of DMEM] and chrysin [200 µM/ml of DMEM]); and Group IV (chrysin-treated, incubated in DMEM that contained chrysin [200 µM/ml of DMEM] only). The Group III (selenite-challenged and chrysin-treated) lenses were further categorized into five sub-groups: Group IIIa (incubated for 24 h in DMEM that contained sodium selenite and chrysin added simultaneously), Group IIIb (first incubated for 2 h in DMEM that contained chrysin only and then for up to 24 h in fresh DMEM that contained sodium selenite only), Group IIIc (first incubated for 30 min in DMEM that contained sodium selenite only and subsequently for up to 24 h in DMEM that contained chrysin only), and Groups IIId and IIIe (first incubated for 1 h and 2 h, respectively, in DMEM that contained sodium selenite only and subsequently for up to 24 h in DMEM that contained chrysin only). Results Gross morphological assessment revealed dense opacification (Grade +++) in the selenite-challenged, untreated lenses (Group II); however, seven of the eight

  16. Effects of various polyoxyethylene sorbitan monooils (Tweens) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles

    SciTech Connect

    Zhang Xifeng; Yin Hengbo . E-mail: yin@ujs.edu.cn; Cheng Xiaonong; Hu Huifeng; Yu Qi; Wang Aili

    2006-11-09

    Size-controlled synthesis of phase pure Cu nanoparticles was carried out by using copper sulfate pentahydrate as a precursor, ascorbic acid as a reductant, Tweens and sodium dodecyl sulfate (SDS) as modifiers in an aqueous solution at 80 deg. C. The as-prepared Cu nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and Fourier transform infrared (FT-IR). The stabilizing effects of SDS and Tweens on the Cu nanoparticles should be through the coordination between Cu nanoparticles and the respective sulfate group and oxygen-containing bond. The synergic effect of the composite SDS and Tweens on Cu nanoparticles was different from those arising from the individuals.

  17. Selenite sorption by carbonate substituted apatite

    SciTech Connect

    Moore, Robert C.; Rigali, Mark J.; Brady, Patrick

    2016-08-31

    The sorption of selenite, SeO32–, by carbonate substituted hydroxylapatite was investigated using batch kinetic and equilibrium experiments. The carbonate substituted hydroxylapatite was prepared by a precipitation method and characterized by SEM, XRD, FT-IR, TGA, BET and solubility measurements. The material is poorly crystalline, contains approximately 9.4% carbonate by weight and has a surface area of 210.2 m2/g. Uptake of selenite by the carbonated hydroxylapatite was approximately an order of magnitude higher than the uptake by uncarbonated hydroxylapatite reported in the literature. Distribution coefficients, Kd, determined for the carbonated apatite in this work ranged from approximately 4200 to over 14,000 L/kg. A comparison of the results from kinetic experiments performed in this work and literature kinetic data indicates the carbonated apatite synthesized in this study sorbed selenite 23 times faster than uncarbonated hydroxylapatite based on values normalized to the surface area of each material. Furthermore, the results indicate carbonated apatite is a potential candidate for use as a sorbent for pump-and-treat technologies, soil amendments or for use in permeable reactive barriers for the remediation of selenium contaminated sediments and groundwaters.

  18. Selenite sorption by carbonate substituted apatite

    DOE PAGES

    Moore, Robert C.; Rigali, Mark J.; Brady, Patrick

    2016-08-31

    The sorption of selenite, SeO32–, by carbonate substituted hydroxylapatite was investigated using batch kinetic and equilibrium experiments. The carbonate substituted hydroxylapatite was prepared by a precipitation method and characterized by SEM, XRD, FT-IR, TGA, BET and solubility measurements. The material is poorly crystalline, contains approximately 9.4% carbonate by weight and has a surface area of 210.2 m2/g. Uptake of selenite by the carbonated hydroxylapatite was approximately an order of magnitude higher than the uptake by uncarbonated hydroxylapatite reported in the literature. Distribution coefficients, Kd, determined for the carbonated apatite in this work ranged from approximately 4200 to over 14,000 L/kg.more » A comparison of the results from kinetic experiments performed in this work and literature kinetic data indicates the carbonated apatite synthesized in this study sorbed selenite 23 times faster than uncarbonated hydroxylapatite based on values normalized to the surface area of each material. Furthermore, the results indicate carbonated apatite is a potential candidate for use as a sorbent for pump-and-treat technologies, soil amendments or for use in permeable reactive barriers for the remediation of selenium contaminated sediments and groundwaters.« less

  19. The suppression of prostate LNCaP cancer cells growth by Selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis.

    PubMed

    Kong, Ling; Yuan, Qing; Zhu, Huarui; Li, Ying; Guo, Quanyi; Wang, Qin; Bi, Xiaolin; Gao, Xueyun

    2011-09-01

    The trace element Selenium is suggested having cancer prevention activity and used as food supplement. Previous results had shown Selenium nanoparticles are safer compared with other Selenium compounds like selenomethionine, sodium selenite and monomethylated Selenium, however, its anticancer activity and intrinsic mechanisms are still elusive. Here, we prepared Selenium nanoparticles and investigated its inherent anticancer mechanisms. We found Selenium nanoparticles inhibit growth of prostate LNCaP cancer cells partially through caspases mediated apoptosis. Selenium nanoparticles suppress transcriptional activity of androgen receptor via down-regulating its mRNA and protein expression. Moreover, Selenium nanoparticles activate Akt kinase by increasing its phosphorylation, promote Akt-dependent androgen receptor phosphorylation and Mdm2 regulated degradation through proteasome pathway. We suggest Selenium nanoparticles suppress prostate cancer cells growth by disrupting androgen receptor, implicating a potential application in cancer treatment.

  20. Selenite protects human endothelial cells from oxidative damage and induces thioredoxin reductase.

    PubMed

    Miller, S; Walker, S W; Arthur, J R; Nicol, F; Pickard, K; Lewin, M H; Howie, A F; Beckett, G J

    2001-05-01

    The ability of selenium to protect cultured human coronary artery endothelial cells (HCAEC), human umbilical vein endothelial cells (HUVEC) and bovine aortic endothelial cells (BAEC) from oxidative damage induced by 100 microM t-butyl hydroperoxide (t-BuOOH) was compared. Preincubation of human endothelial cells for 24 h with sodium selenite at concentrations as low as 5 nM provided significant protection against the harmful effects of 100 microM t-BuOOH, with complete protection being achieved with 40 nM selenite. The preincubation period was required for selenite to exert this protective effect on endothelial cells. When compared with selenium-deficient cells, the activities of cytoplasmic glutathione peroxidase (GPX-1), phospholipid hydroperoxide glutathione peroxidase (GPX-4) and thioredoxin reductase (TR) were each induced approx. 3--4-fold by 40 nM selenite. HCAEC and HUVEC showed great similarity in their relative abilities to resist oxidative damage in the presence and absence of selenite, and the activities of TR and the GPXs were also similar in these cell types. BAEC were more susceptible to damage by 100 microM t-BuOOH than were human endothelial cells, and could not be protected completely by incubation with selenite at concentrations up to 160 nM. The activity of TR in human endothelial cells was approx. 25-fold greater than that in BAEC of a similar selenium status, but GPX-1 and GPX-4 activities were not significantly different between the human and bovine cells. These studies, although performed with a small number of cultures, show for the first time that selenium at low doses can provide significant protection of the human coronary artery endothelium against damage by oxidative stress. TR may be an important antioxidant selenoprotein in this regard, in addition to the GPXs. The data also suggest that HUVEC, but not BAEC, represent a suitable model system in which to study the effects of selenium on the endothelium of human coronary arteries.

  1. Sodium alginate stabilized silver nanoparticles-silica nanohybrid and their antibacterial characteristics.

    PubMed

    Pandey, Sadanand; Ramontja, James

    2016-12-01

    Due to the problem of resistance of many infectious agents to the usual treatments, this study addresses the ways of obtaining and using new sodium alginate stabilized-silver/mesoporous silica (Na-Alg-s-AgNPs@SiO2) nanohybrid as antimicrobial agents. Capping AgNPs with a shell of mesoporous SiO2 is a system to build the increase biocompatibility of AgNPs. In this work, we report a simple and green way to deal with setting up a uniform sodium alginate-stabilized silver nanoparticles embedded mesoporous silica (Na-Alg-s-AgNPs@SiO2 nanohybrid). The synthesized nanocomposite was characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, and ultraviolet-visible (UV-vis) absorption spectra, which exhibited that AgNPs with average of size of ∼7nm were consistently and compactly deposited in the nanocomposite. The nanohybrid demonstrated excellent antibacterial activity against both Gram negative (-ve) and Gram positive (+ve) bacteria. Thus, the developed Na-Alg-s-AgNPs@SiO2 nanohybrid has a potential to be used for various antibacterial applications in biotechnology and biomedical fields.

  2. Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes.

    PubMed

    Fanta, George F; Kenar, James A; Felker, Frederick C; Byars, Jeffrey A

    2013-01-30

    Starch-stabilized silver nanoparticles (AgNP) were prepared from amylose-sodium palmitate helical inclusion complexes by first converting sodium palmitate within the amylose helix to silver palmitate by an ion-exchange reaction with silver nitrate, and then reducing the complexed silver palmitate salt with NaBH(4). This process yielded stable aqueous solutions that could be dried and then re-dispersed in water for end-use applications. Reaction products were characterized by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), UV-VIS spectroscopy, X-ray diffraction, TEM, SEM and light microscopy. Addition of acid to reduce the pH of aqueous starch-AgNP solutions produced an increase in viscosity, and nearly quantitative precipitation of starch-AgNP was observed at low pH. Smaller AgNP and higher conversions of silver nitrate to water-soluble starch-AgNP were obtained in this process, as compared with a process carried out under similar conditions using a commercial soluble starch as a stabilizer.

  3. Luteolin Supplementation Prevents Selenite-Induced Cataractogenesis in Sprague Dawley Rat Pups.

    PubMed

    Sreelakshmi, Vasudevanpillai; Sasikala, Vilasini; Abraham, Annie

    2015-12-01

    Luteolin, a flavonoid present in leaves and stems of many plants finds mention in literature for beneficial effects on eyes. Presently, no reports are available on the in vivo anticataractogenic effect of luteolin. The current study was designed to evaluate the efficacy of luteolin on selenite-induced cataract models in vivo. The study consisted of three groups of Sprague Dawley rat pups 8-10 d old (Group I (Normal), Group II (Cataract induced), and Group III (Treatment)). Cataract was induced in Group II and Group III by a subcutaneous injection of sodium selenite (4 μg/g body weight) on the 10th day. Luteolin was administered orally from 8th day up to 12th day at a concentration of 1 μg/g body weight in Group III. After 30 d, lenses of treated animals showed normal morphology. Activities of antioxidant enzymes were increased and levels of reactive oxygen species were decreased in the luteolin-treated group when compared to the cataract-induced group. Increased Ca(2+) ATPase activity and lowered calcium level, caspase 3 activity and down-regulation of caspase 3 expression were seen in the treatment group when compared to the selenite group. Luteolin enhances the antioxidant potential and thereby lowers the oxidative damages to the lens. It also stabilizes the membrane integrity of the lens and maintains the ionic balance.

  4. Cromolyn sodium encapsulated PLGA nanoparticles: An attempt to improve intestinal permeation.

    PubMed

    Patel, Ravi R; Chaurasia, Sundeep; Khan, Gayasuddin; Chaubey, Pramila; Kumar, Nagendra; Mishra, Brahmeshwar

    2016-02-01

    High hydrophilicity curtails the intestinal permeation of cromolyn sodium (CS) which in turn compels to compromise with its multiple biological activities. Hence, the present research was intended with an objective to develop CS encapsulated polylactide-co-glycolide (PLGA) nanoparticles (CS-PNs) for enhancing intestinal permeation. The CS-PNs were prepared by double emulsification solvent evaporation method (W1/O/W2). The "Quality by Design" approach using box-behnken experimental design was employed to enhance encapsulation of CS inside CS-PNs without compromising with particle size. The polymer concentration, surfactant concentration and organic/aqueous phase ratio significantly affected the physicochemical properties of CS-PNs. The optimized CS-PNs were subjected to various solid-state and surface characterization studies using FTIR, DSC, XRD, TEM and AFM, which pointed towards the encapsulation of CS inside the spherical shaped nanoparticles without any physical as well as chemical interactions. Ex-vivo intestinal permeation study demonstrated ∼4 fold improvements in CS permeation by forming CS-PNs as compared to pure CS. Further, in-vivo intestinal uptake study performed using confocal microscopy, after oral administration confirmed the permeation potential of CS-PNs. Thus, the findings of the studies suggest that CS-PNs could provide a superior therapeutic carrier system of CS, with enhanced intestinal permeation.

  5. Antimony nanoparticles anchored in three-dimensional carbon network as promising sodium-ion battery anode

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Zhang, Pengfei; Wang, Xuanpeng; Li, Qidong; Dong, Yifan; Hua, Jingchen; Zhou, Liang; Mai, Liqiang

    2016-02-01

    A novel composite with antimony (Sb) nanoparticles anchored in three-dimensional carbon network (denoted as SbNPs@3D-C) is successfully synthesized via a NaCl template-assisted self-assembly strategy, followed by freeze-drying and one-step in-situ carbonization. The three-dimensional interconnected macroporous carbon framework can not only stabilize the architecture and buffer the volume expansion for Sb nanoparticles, but also provide high electrical conductivity for the whole electrode. Consequently, as a sodium-ion battery anode, the SbNPs@3D-C delivers a high reversible capacity (456 mAh g-1 at 100 mA g-1), stable cycling performance (94.3% capacity retention after 500 cycles at 100 mA g-1) as well as superior rate capability (270 mAh g-1 at 2000 mA g-1). When compared with commercial Sb particles, the SbNPs@3D-C exhibits dramatically enhanced electrochemical performance. Free from expensive template sources and complex manipulation, this work might shed some light on the synthesis of low-cost and high-performance materials for the next "beyond lithium" battery generation.

  6. Electrochemical investigation of methyl parathion at gold-sodium dodecylbenzene sulfonate nanoparticles modified glassy carbon electrode.

    PubMed

    Li, Chunya; Wang, Zhengguo; Zhan, Guoqin

    2011-01-01

    A gold/sodium dodecylbenzene sulfonate nanoparticles modified glassy carbon electrode (nano-Au/SDBS/GCE) was electrochemically fabricated with a constant potential at -0.4V. The obtained nano-Au/SDBS/GCE was characterized with scanning electronic microscopy, X-ray photoelectron spectroscopy and electrochemical techniques. Electrochemical behaviors of methyl parathion at the nano-Au/SDBS/GCE were thoroughly investigated. Compared to the unmodified electrode, the peak current obviously increased and the oxidation peak potential negatively shifted. These changes indicated that the composite nanoparticles possess good electrocatalytic performance on the electrochemical reaction of methyl parathion. Experimental parameters such as deposition time, pH value and accumulation conditions were optimized. Under optimum conditions, the peak current corresponding to the oxidation of the hydroxylamine group was found in a good linear relationship with the methyl parathion concentration. In addition, a calibration curve with excellent linearity was obtained in the concentration range from 5.0×10(-7)molL(-1) to 1.0×10(-4)molL(-1) with an estimated detection limit of 8.6×10(-8)molL(-1) (S/N=3). The successful determination of methyl parathion in real samples demonstrated the usefulness and potential applications of this method.

  7. Development and Evaluation of Diclofenac Sodium Loaded-N-Trimethyl Chitosan Nanoparticles for Ophthalmic Use.

    PubMed

    Asasutjarit, Rathapon; Theerachayanan, Thitaree; Kewsuwan, Prartana; Veeranodha, Sukitaya; Fuongfuchat, Asira; Ritthidej, Garnpimol C

    2015-10-01

    The ophthalmic preparation of diclofenac sodium (DC) for relieving ocular inflammation is presently available in the market only as an eye drop solution. Due to its low occular bioavailability, it requires frequent application leading to low patients' compliance and quality of life. This study was conducted to develop formulations of DC loaded-N-trimethyl chitosan nanoparticles (DC-TMCNs) for ophthalmic use to improve ocular biavailabiltiy of DC. DC-TMCNs varied in formulation compositions were prepared using ionic gelation technique and evaluated for their physicochemical properties, drug release, eye irritation potential, and ophthalmic absorption of diclofenac sodium. N-Trimethyl chitosan (TMC) with a 49.8% degree of quaternization was synthesized and used for DC-TMCNs production. The obtained DC-TMCNs had particle size in a range of 130-190 nm with zeta potential values of +4 to +9 mV and drug entrapment efficiencies of more than 70% depending on the content of TMC and sodium tripolyphosphate (TPP). The optimized DC-TMCNs formulation contained TMC, DC, and TPP at a weight ratio of TMC/DC/TPP = 3:1:1. Their lyophilized product reconstituted with phosphate buffer solution pH 5.5 possessed a drug release pattern that fitted within the zero-order model. The eye irritation tests showed that DC-TMCNs were safe for ophthalmic use. The in vivo ophthalmic drug absorption study performed on rabbits indicated that DC-TMCNs could improve ophthalmic bioavailability of DC. Results of this study suggested that DC-TMCNs had potential for use as an alternative to conventional DC eye drops for ophthalmic inflammation treatment.

  8. CO2 foam properties and the stabilizing mechanism of sodium bis(2-ethylhexyl)sulfosuccinate and hydrophobic nanoparticle mixtures.

    PubMed

    Zhang, Chao; Li, Zhaomin; Sun, Qian; Wang, Peng; Wang, Shuhua; Liu, Wei

    2016-01-21

    In this work, we have prepared CO2-in-water foam by mixing partially hydrophobic SiO2 nanoparticles and sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and studied its properties. The observation of the appearance of the foam revealed that, with the continuous addition of AOT, the phase behavior of the SiO2 nanoparticle and the AOT mixed system transformed from that of a two-phase system of aggregated nanoparticles into that of a uniform dispersed phase. Both foaming ability and foam stability were optimized when the nanoparticles and the AOT were mixed in a proportion of 1 : 5. On the basis of our findings from measurements of the dispersion properties, including measurements of the adsorption isotherm of the surfactant on the nanoparticles, zeta potentials, interfacial tension and the three-phase contact angle, we concluded that the synergistic interactions between the SiO2 nanoparticles and the AOT led to the adsorption of nanoparticles around the bubble surface and the formation of a spatial network structure of nanoparticles in the film, thereby enhancing the mechanical strength of the bubble and improving the resistance to outside disturbances, deformation and drainage. Laser scanning confocal microscopy (LCSM) analysis of the same foams further confirmed the existence of a "viscoelastic shell" wrapped around and protecting the bubble.

  9. Controlled formation of ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution.

    PubMed

    Huber, Klaus; Witte, Thomas; Hollmann, Jutta; Keuker-Baumann, Susanne

    2007-02-07

    A new tool is presented to control formation of Ag nanoparticles. Small amounts of silver ions were added to dilute solutions of long-chain sodium polyacrylates (NaPA). Four NaPA samples covering a molar mass regime of 97 kD < or = Mw < or = 650 kD have been used. With amounts of added Ag(+) as low as 1-2% of the COO(-) groups of the polyanionic chains, significant changes could already be induced in the NaPA coils with 650 kD. If the NaPA concentration was kept below 0.1 g/L, the coils with 650 kD exhibited a significant coil shrinking in stable solutions. At larger NaPA concentrations, addition of Ag+ initiates an aggregation of the polyacrylate coils toward compact structures. Coil shrinking and aggregation was revealed by means of time-resolved static light scattering. If exposed to UV-radiation, small Ag particles formed within the shrunken anionic polyacrylate coils. The Ag nanoparticles were identified by means of an enhanced light scattering and a characteristic plasmon absorption band around 410 nm. No such Ag particle formation could be observed even at 5 times larger concentrations of Ag(+) and NaPA if the two smallest polyacrylate samples have been used under otherwise equal conditions. This molar mass sensitive response of NaPA to Ag(+)-addition suggests an interesting phenomenon: if the coil size of the NaPa chains, which act as Ag(+) collectors, is large enough, local Ag(+) concentration in these coil-shaped Ag(+) containers exceeds a critical value, and irradiation with UV generates Ag nanoparticles.

  10. Pseudomonas seleniipraecipitans proteins potentially involved in selenite reduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas seleniipraecipitans grows in the presence of high levels of selenite and selenate and reduces both oxyanions to elemental selenium, a property that may make P. seleniipraecipitans useful as an inoculant for biobarriers designed to remove selenite or selenate from ground or surface-waters...

  11. High Pressure Reduction of Selenite by Shewanella oneidensis MR-1

    NASA Astrophysics Data System (ADS)

    Picard, A.; Daniel, I.; Testemale, D.; Letard, I.; Bleuet, P.; Cardon, H.; Oger, P.

    2007-12-01

    High-pressure biotopes comprise cold deep-sea environments, hydrothermal vents, and deep subsurface or deep-sea sediments. The latter are less studied, due to the technical difficulties to sample at great depths without contamination. Nevertheless, microbial sulfate reduction and methanogenesis have been found to be spatially distributed in deep deep-sea sediments (1), and sulfate reduction has been shown to be actually more efficient under high hydrostatic pressure (HHP) in some sediments (2). Sulfate-reducing bacteria obtained from the Japan Sea are characterized by an increased sulfide production under pressure (3,4). Unfortunately, investigations of microbial metabolic activity as a function of pressure are extremely scarce due to the experimental difficulty of such measurements at high hydrostatic pressure. We were able to measure the reduction of selenite Se(IV) by Shewanella oneidensis MR-1 as a function of pressure, to 150 MPa using two different high-pressure reactors that allow in situ X-ray spectroscopy measurements on a synchrotron source. A first series of measurements was carried out in a low-pressure Diamond Anvil Cell (DAC) of our own design (5) at ID22 beamline at ESRF (European Synchrotron Radiation Facility); a second one was performed in an autoclave (6) at the BM30B beamline at ESRF. Selenite reduction by strain MR-17 was monitored from ambient pressure to 150 MPa over 25 hours at 30 deg C by XANES spectroscopy (X-ray Analysis of Near Edge Structure). Spectra were recorded hourly in order to quantify the evolution of the oxidation state of selenium with time. Stationary-phase bacteria were inoculated at a high concentration into fresh growth medium containing 5 or 10 M of sodium selenite and 20 mM sodium lactate. Kinetic parameters of the Se (IV) reduction by Shewanella oneidensis strain MR-1 could be extracted from the data, as a function of pressure. They show 1) that the rate constant k of the reaction is decreased by a half at high pressure

  12. Fabrication and study of properties of magnetite nanoparticles in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate

    SciTech Connect

    Loginova, T. P. Timofeeva, G. I.; Lependina, O. L.; Shandintsev, V. A.; Matyushin, A. A.; Khotina, I. A.; Shtykova, E. V.

    2016-01-15

    Magnetite nanoparticles have been formed for the first time in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate in water by ultrasonic treatment at room temperature. An analysis by small-angle X-ray scattering and transmission electron microscopy (TEM) showed that magnetite nanoparticles in hybrid micelles of block copolymer and sodium dodecyl sulfate are polydesperse (have sizes from 0.5 to 20 nm). The specific magnetization of solid samples has been measured.

  13. Characterization and adsorption of arsenate and selenite onto Kemiron.

    PubMed

    Oti, Douglas; Trotz, Maya

    2008-08-01

    Kemiron, a commercially available, porous iron oxide sorbent was evaluated in batch systems for arsenate (As(V)) and selenite (Se(IV)) removal from aqueous solutions as a function of pH, ionic strength, and particle size (< 38 micro m and between 250 and 425 micro m). BET surface area of Kemiron is 39.8 m(2)/g and Electron dispersive spectroscopy (EDS) studies found Kemiron to be 40.37% iron and 42.25% oxygen by mass. Langmuir isotherms best described the As(V) and Se(IV) removal at pH 7 with maximum adsorption capacity of 82 mg/g and 52 mg/g respectively. As(V) and Se(IV) sorption decreased as pH increased and both anions were unaffected by sodium nitrate (NaNO(3)) background electrolyte. As(V) sorption was not affected in surface water samples from the Hillsborough River. Batch kinetic models of the experimental data on the 250 to 425 micro m particle size yielded mass transfer coefficients of 0.0008 min(-1) and 0.009 min(-1) for As(V) and Se(IV) respectively.

  14. Selenite biotransformation during brewing. Evaluation by HPLC-ICP-MS.

    PubMed

    Sánchez-Martínez, Maria; da Silva, Erik Galvão P; Pérez-Corona, Teresa; Cámara, Carmen; Ferreira, Sergio L C; Madrid, Yolanda

    2012-01-15

    Yeast (Saccharomyces cerevisiae) and lactic bacteria have shown their ability to accumulate and transform inorganic selenium into organo Se compounds. The objective of this work was to evaluate selenium biotransformation during brewing by using S. cerevisiae and Saccharomyces uvarum for Ale and Lager fermentation, respectively. Se-enriched beer was produced by the addition of sodium selenite (0, 0.2, 1.0, 2.0, 10.0, 20.0 μg Se mL(-1), respectively) to the fermentation media composed of yeast, malt extract and water. The alcoholic fermentation process was not affected by the presence of selenium regardless of the type of Saccharomyces being used. The percentage of selenium incorporated into beer, added between 1.0 and 10 μg mL(-1) was 55-60% of the selenium initially present. Se-compounds in post-fermentation (beer and yeast) products were investigated by using an analytical methodology based on HPLC-ICP-MS. For this purpose, several sample treatments, including ultrasonic-assisted enzymatic hydrolysis, in conjunction with different separation mechanisms like dialysis and anion exchange HPLC chromatography were applied for unambiguously identifying Se-species that produce during brewing. Selenomethionine was the main selenium compound identified in beer and yeast, being this species in the only case of the former not associated to peptides or proteins.

  15. Synthesis, electrical and magnetic properties of sodium borosilicate glasses containing Co-ferrites nanoparticles

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Eltabey, M. M.; Ibrahim, Samia. E.; El-Deen, L. M. Sharaf; Elkholy, M. M.

    2017-02-01

    Co-ferrites nanoparticles that have been prepared by the co-precipitation method were added to sodium borosilicate (Na2O-B2O3-SiO2) glass matrix by the solid solution method and they were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and magnetization measurements. (XRD) revealed the formation of the Co-ferrite magnetic crystalline phase embedded in an amorphous matrix in all the samples. The investigated samples by (TEM) showed the formation of the cobalt ferrite nanoparticles with a spherical shape and highly monodispersed with an average size about 13 nm. IR data revealed that the BO3 and BO4 are the main structural units of these samples network. IR spectra of the investigated samples showed the characteristic vibration bands of Co-ferrite. Composition and frequency dependent dielectric properties of the prepared samples were measured at room temperature in the frequency range 100-100 kHz. The conductivity was found to increase with increasing cobalt ferrite content. The variations of conductivity and dielectric properties with frequency and composition were discussed. Magnetic hysteresis loops were traced at room temperature using VSM and values of saturation magnetization MS and coercive field HC were determined. The obtained results revealed that a ferrimagnetic behavior were observed and as Co-ferrite concentration increases the values of MS and HC increase from 2.84 to 8.79 (emu/g) and from 88.4 to 736.3 Oe, respectively.

  16. Transcriptional regulation of crystallin, redox, and apoptotic genes by C-Phycocyanin in the selenite-induced cataractogenic rat model

    PubMed Central

    Kumari, Rasiah Pratheepa; Ramkumar, Srinivasagan; Thankappan, Bency; Natarajaseenivasan, Kalimuthusamy; Balaji, Sadhasivam

    2015-01-01

    Purpose This study was designed to examine the constrictive potential of C-Phycocyanin (C-PC) in regulating changes imposed on gene expression in the selenite-induced cataract model. Methods Wistar rat pups were divided into three groups of eight each. On P10, Group I received an intraperitoneal injection of normal saline. Groups II and III received a subcutaneous injection of sodium selenite (19 μmol/kg bodyweight); Group III also received an intraperitoneal injection of C-PC (200 mg/kg bodyweight) on P9–14. Total RNA was isolated on P16, and the relative abundance of mRNA of the crystallin structural genes, redox components, and apoptotic cascade were ascertained with real-time PCR with reference to the internal control β-actin. Results Real-time PCR analysis showed the crystallin genes (αA-, βB1-, γD-) and redox cycle components (Cat, SOD-1, Gpx) were downregulated, the apoptotic components were upregulated, and antiapoptotic Bcl-2 was downregulated in Group II. Treatment with 200 mg/kg bodyweight C-PC (Group III) transcriptionally regulated the instability of the expression of these genes, thus ensuring C-PC is a prospective anticataractogenic agent that probably delays the onset and progression of cataractogenesis induced by sodium selenite. Conclusions C-PC treatment possibly prevented cataractogenesis triggered by sodium selenite, by regulating the lens crystallin, redox genes, and apoptotic cascade mRNA expression and thus maintains lens transparency. C-PC may be developed as a potential antioxidant compound applied in the future to prevent and treat age-related cataract. PMID:25593511

  17. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries.

    PubMed

    Yu, Denis Y W; Prikhodchenko, Petr V; Mason, Chad W; Batabyal, Sudip K; Gun, Jenny; Sladkevich, Sergey; Medvedev, Alexander G; Lev, Ovadia

    2013-01-01

    Sodium-ion batteries are an alternative to lithium-ion batteries for large-scale applications. However, low capacity and poor rate capability of existing anodes are the main bottlenecks to future developments. Here we report a uniform coating of antimony sulphide (stibnite) on graphene, fabricated by a solution-based synthesis technique, as the anode material for sodium-ion batteries. It gives a high capacity of 730 mAh g(-1) at 50 mA g(-1), an excellent rate capability up to 6C and a good cycle performance. The promising performance is attributed to fast sodium ion diffusion from the small nanoparticles, and good electrical transport from the intimate contact between the active material and graphene, which also provides a template for anchoring the nanoparticles. We also demonstrate a battery with the stibnite-graphene composite that is free from sodium metal, having energy density up to 80 Wh kg(-1). The energy density could exceed that of some lithium-ion batteries with further optimization.

  18. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method

    NASA Astrophysics Data System (ADS)

    Liu, Dongfei; Jiang, Sunmin; Shen, Hong; Qin, Shan; Liu, Juanjuan; Zhang, Qing; Li, Rui; Xu, Qunwei

    2011-06-01

    The preparation of solid lipid nanoparticles (SLNs) suffers from the drawback of poor incorporation of water-soluble drugs. The aim of this study was therefore to assess various formulation and process parameters to enhance the incorporation of a water-soluble drug (diclofenac sodium, DS) into SLNs prepared by the emulsion/solvent evaporation method. Results showed that the entrapment efficiency (EE) of DS was increased to approximately 100% by lowering the pH of dispersed phase. The EE of DS-loaded SLNs (DS-SLNs) had been improved by the existence of cosurfactants and increment of PVA concentration. Stabilizers and their combination with PEG 400 in the dispersed phase also resulted in higher EE and drug loading (DL). EE increased and DL decreased as the phospholipid/DS ratio became greater, while the amount of DS had an opposite effect. Ethanol turned out to be the ideal solvent making DS-SLNs. EE and DL of DS-SLNs were not affected by either the stirring speed or the viscosity of aqueous and dispersed phase. According to the investigations, drug solubility in dispersion medium played the most important role in improving EE.

  19. Formation of Rod Shape Secondary Aggregation of Copper Nanoparticles in Aqueous Solution of Sodium Borohydride with Stabilizing Polymer

    NASA Astrophysics Data System (ADS)

    Harada, Takuya; Fujiwara, Hidemichi

    2007-03-01

    Morphological variations of copper nanoparticles synthesized by the reduction of copper acetate with sodium borohydride in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) have been investigated. The results indicate that the specific rod shape secondary aggregation of copper nanoparticles are formed in the case that the oxygen is dissolved in the reacting solutions. Furthermore, it is also demonstrated that the copper nanorods with the aspect ratio of 2 - 20 and the average short axis length of 5 nm are synthesized in the weak oxidizing ambiance with a medium amount of PVP. The anomalous variations of copper nanoparticles are explained by the alignments of precursor copper ions and their reducing rates, which are modified by the density of resolved oxygen and the amount of PVP.

  20. Selenite Protection of Tellurite Toxicity Toward Escherichia coli

    PubMed Central

    Vrionis, Helen A.; Wang, Siyuan; Haslam, Bronwyn; Turner, Raymond J.

    2015-01-01

    In this work the influence of selenite on metal resistance in Escherichia coli was examined. Both synergistic and antagonistic resistance and toxicities were found upon co exposure with selenite. In wild type cells co-exposure to selenite had little effect on arsenic resistance, decreased resistance to cadmium and mercury but led to a dramatically increased resistance to tellurite of 32-fold. Due to the potential importance of thiol chemistry in metal biochemistry, deletion strains in γ-glutamylcysteine synthetase (key step in glutathione biosynthesis, encoded by gshA), thioredoxin (trxA), glutaredoxin (grxA), glutathione oxidoreductase (gor), and the periplasmic glutathione transporter (cydD) were also evaluated for resistance to various metals in the presence of selenite. The protective effect of selenite on tellurite toxicity was seen in several of the mutants and was pronounced in the gshA mutant were resistance to tellurite was increased up to 1000-fold relative to growth in the absence of selenite. Thiol oxidation studies revealed a faster rate of loss of reduced thiol content in the cell with selenite than with tellurite, indicating differential thiol reactivity. Selenite addition resulted in reactive oxygen species (ROS) production equivalent to levels associated with H2O2 addition. Tellurite addition resulted in considerably lower ROS generation while vanadate and chromate treatment did not increase ROS production above that of background. This work shows increased resistance toward most oxyanions in mutants of thiol redox suggesting that metalloid reaction with thiol components such as glutathione actually enhances toxicity of some metalloids. PMID:26732755

  1. Chondroitin sulfate-chitosan nanoparticles for ocular delivery of bromfenac sodium: Improved permeation, retention, and penetration

    PubMed Central

    Abdullah, Tara Abdulrahman; Ibrahim, Naz Jamal; Warsi, Musarrat Husain

    2016-01-01

    Introduction: Superiority of topical instillation of drug into the cul-de-sac for the treatment of various ophthalmic complications can be validated with commercial availability of a large number of conventional formulations even though this mode of instillation still elicits limitations owing to poor ocular bioavailability. To overcome the drawbacks of conventional formulations, a large number of novel carriers have been investigated. In this perspective, a new novel nanocarrier, chondroitin sulfate (ChS)-chitosan (CS)-nanoparticles (NPs) are being evaluated for improved delivery of bromfenac sodium. Materials and Methods: Formulation was developed and optimized for CS, chondroitin, and initial drug concentration. Optimized formulation was evaluated for various in vitro aspects i.e., particles’ size, size distribution, zeta potential, shape and morphology, in vitro release profile, corneal permeation, corneal retention, corneal uptake, and ocular tolerance test. Results: The mean particle size, polydispersity index, zeta potential, and entrapment efficiency of optimized formulation were found to be 245.6 ± 14.22 nm, 0.187 ± 0.016, +37.59 ± 4.05 mV, and 71.72 ± 4.43%, respectively. Transmission electron microscopic analysis revealed a spherical shape of developed formulation. Further, formulation exhibited biphasic release profile and Korsmeyer–Peppas model was found to be the best fit model. Significantly high transcorneal permeation (1.62-fold) and corneal retention (1.92-fold) of bromfenac was observed through ChS-CS-NPs when compared with marketed eyedrops (P < 0.01). Furthermore, high corneal uptake of CHS-CS-NPs was confirmed by confocal laser scanning microscopy (CLSM). Safety profile of the developed formulation was established by hen's egg test-chorioallantoic membrane test. Conclusion: Encouraging outcomes of in vitro and ex vivo studies indicated that CHS-CS-NPs could be a potential substitute for improved ocular delivery. PMID:27051629

  2. Effect of concentration of sodium silicate solution in the synthesis of silica-coated magnetite nanoparticles by ultrasonication

    NASA Astrophysics Data System (ADS)

    Fajaroh, Fauziatul; Sumari, Nazriati

    2016-02-01

    An ex-situ silica coating of magnetite nanoparticles synthesized electrochemically had been successfully carried out by ultrasonication. An aqueous solution of sodium silicate had been used as silica source.The Si-O-Si, Si-O and Fe-O-Si bonds on the surface of the silica-coated magnetite had been successfully identified using FTIR. Reduction in particle size due to the influence of ultrasound was studied using SEM. Enhancement in the specific surface area of the particles due to the silica coating and reduction in particle size was learned through BET analysis. The Characters of the resulting silica-coated magnetite were influenced by the concentration of sodium silicate solution. The greater the concentration of sodium silicate solution, the smaller the particle crystallinity and the larger the particles surface area was produced. The resulting silica-coated magnetite has a surface area of 38.171 to 67.993 m2/g, otherwise the non-coated particles only has a surface area of 27.894 m2/g. This silica-coated magnetite nanoparticles has more potent as an adsorbent than that of the bare magnetite. Besides that, the presence of silanol groups on its surface makes an opportunity for further functionalization needed for some applications.

  3. The cellular uptake and transport of zein nanoparticles: Effect of sodium caseinate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellular evaluation of zein nanoparticles has not been studied systematically due to their poor redispersibility. Caseinate (CAS) stabilized zein nanoparticles have been recently developed with better redispersibility in salt solutions. In this study, zein-CAS nanoparticles were prepared with differ...

  4. Comparative Cytotoxic Evaluation of Free and Sodium Alginate Nanoparticle-Encapsulated ICD-85 on Primary Lamb Kidney Cells

    PubMed Central

    Zare Mirakabadi, Abbas; Moradhaseli, Saeed

    2013-01-01

    Background Current anti-cancer drug therapy results in systemic side effects due to non-specific uptake by normal healthy noncancerous tissues. To alleviate this difficulty, many attempts have been devoted to the development of new delivery systems such as polymeric Nanoparticles (NPs). In this study, we prepared ICD-85 NPs based on sodium alginate and analyzed the cytotoxic activity of ICD-85 NPs relative to free ICD-85 on primary lamb kidney cells. Methods ICD-85 loaded sodium alginate nanoparticles were prepared by ionic gelation method and were characterized by the particle size, size distribution and Fourier Transform Infrared (FT-IR) spectroscopy. The in vitro cytotoxicity was evaluated by MTT assay and membrane integrity was evaluated by measuring Lactate Dehydrogenase (LDH) activity. The morphological alterations of untreated and treated cells were assessed by light inverted microscope. Results MTT assay showed that ICD-85 NPs could significantly decrease the in vitro cytotoxicity on primary lamb kidney cells compared to the free ICD-85. The IC10 value at 72 hours was increased from 9±2.7 μg/ml for free ICD-85 to 52±4.3 μg/ml for ICD-85 NPs. LDH assay demonstrated that free ICD-85 had dose-dependent cytotoxicity on primary lamb kidney cells while ICD-85 NPs exhibited significantly decreased cytotoxicity at equivalent concentrations. Moreover, morphological analysis showed no significant difference between control and treated cells with ICD-85 NPs. Conclusion Based on the results obtained in the present study it can be concluded that encapsulation of ICD-85 with sodium alginate nanoparticles can reduce its necrotic effect on primary lamb kidney cells. PMID:25250126

  5. Preparation of photocatalytic ZnO nanoparticles and application in photochemical degradation of betamethasone sodium phosphate using taguchi approach

    NASA Astrophysics Data System (ADS)

    Giahi, M.; Farajpour, G.; Taghavi, H.; Shokri, S.

    2014-07-01

    In this study, ZnO nanoparticles were prepared by a sol-gel method for the first time. Taguchi method was used to identify the several factors that may affect degradation percentage of betamethasone sodium phosphate in wastewater in UV/K2S2O8/nano-ZnO system. Our experimental design consisted of testing five factors, i.e., dosage of K2S2O8, concentration of betamethasone sodium phosphate, amount of ZnO, irradiation time and initial pH. With four levels of each factor tested. It was found that, optimum parameters are irradiation time, 180 min; pH 9.0; betamethasone sodium phosphate, 30 mg/L; amount of ZnO, 13 mg; K2S2O8, 1 mM. The percentage contribution of each factor was determined by the analysis of variance (ANOVA). The results showed that irradiation time; pH; amount of ZnO; drug concentration and dosage of K2S2O8 contributed by 46.73, 28.56, 11.56, 6.70, and 6.44%, respectively. Finally, the kinetics process was studied and the photodegradation rate of betamethasone sodium phosphate was found to obey pseudo-first-order kinetics equation represented by the Langmuir-Hinshelwood model.

  6. Determination of ampicillin sodium using the cupric oxide nanoparticles-luminol-H2 O2 chemiluminescence reaction.

    PubMed

    Iranifam, Mortaza; Kharameh, Merhnaz Khabbaz

    2014-09-01

    A simple and sensitive chemiluminescence (CL) method has been developed for the determination of ampicillin sodium at submicromolar levels. The method is based on the inhibitory effect of ampicillin sodium on the cupric oxide nanoparticles (CuO NPs)-luminol-H2 O2 CL reaction. Experimental parameters affecting CL inhibition including concentrations of CuO NPs, luminol, H2 O2 and NaOH were optimized. Under optimum conditions, the calibration plot was linear in the analyte concentration range 4.0 × 10(-7) -4.0 × 10(-6) mol/L. The limit of detection was 2.6 × 10(-7) mol/L and the relative standard deviation (RSD) for six replicate determinations of 1 × 10(-6) mol/L ampicillin sodium was 4.71%. Also, X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were employed to characterize the CuO NPs. The utility of the proposed method was demonstrated by determining ampicillin sodium in pharmaceutical preparation.

  7. Morphology evolution of gold nanoparticles as function of time, temperature, and Au(III)/sodium ascorbate molar ratio

    NASA Astrophysics Data System (ADS)

    Priolisi, Ornella; Fabrizi, Alberto; Deon, Giovanna; Bonollo, Franco; Cattini, Stefano

    2016-01-01

    In this work the morphology evolution of Au nanoparticles (AuNPs), obtained by direct reduction, was studied as a function of time, temperature, and Au(III)/sodium ascorbate molar ratio. The NPs morphology was examined by transmission electron microscope with image analysis, while time evolution was investigated by visible and near-infrared absorption spectroscopy and dynamic light scattering. It is found that initially formed star-like NPs transform in more spheroidal particles and the evolution appears more rapid by increasing the temperature while a large amount of reducing agent prevents the remodeling of AuNPs. An explication of morphology evolution is proposed.

  8. Gold nanoparticles assisted structural and spectroscopic modification in Er3+-doped zinc sodium tellurite glass

    NASA Astrophysics Data System (ADS)

    Awang, Asmahani; Ghoshal, S. K.; Sahar, M. R.; Arifin, R.

    2015-04-01

    Achieving enhanced spectroscopic properties of rare earth doped inorganic glasses by embedding metallic nanoparticles of controlled sizes is a challenging task. We report the gold (Au) NPs assisted modifications in structural and spectroscopic properties of melt-quench synthesized Er3+ doped zinc sodium tellurite glass. The growth of NPs is stimulated via time varying heat treatment at 300 °C. XRD patterns confirm the amorphous nature of glasses and TEM images manifest the growth of gold NPs with sizes between 6.1 and 10.7 nm. The heat treatment time dependent variations in physical properties are ascribed to the alteration in bonding of non-bridging oxygen ions. The UV-VIS-NIR spectra reveal six absorption peaks centered at 488, 523, 655, 800, 973 and 1533 nm corresponding to the transition from ground state of 4I15/2 to 4F7/2, 2H11/2, 4F9/2, 4I9/2,4I11/2, and 4I13/2 excited states of Er3+ ions, respectively. Surface plasmon resonance (SPR) bands are observed in the range of 618-632 nm. Judd-Ofelt analyses demonstrate a significant increase of spectroscopic quality factors (0.86-1.05) and branching ratio (0.62-92.38%). The up-conversion emission spectra of Er3+ exhibit three prominent peaks of reasonable green (502 nm), a moderate green (546 nm) and a strong red (629 nm). An enhancement in the red band luminescence intensity by a factor of 8.19 and 8.54 times are achieved for 2 and 4 h of heat treatments, respectively. This enhancement is attributed to the SPR effects of gold NPs producing an intense local field in the proximity of Er3+ ions and subsequent energy transfer between RE ions and NPs. The FTIR spectra display the presence of vibrational modes for ZnO4 bonds, Te-O bond in TeO3 (tp) and TeO4 (tbp) units and the hydroxyl groups. Excellent features of the results suggest that our method constitute a basis for tunable growth of gold NPs which is exceedingly useful for the optimization of optical and structural properties.

  9. Attenuating the toxicity of cisplatin by using selenosulfate with reduced risk of selenium toxicity as compared with selenite

    SciTech Connect

    Zhang Jinsong Peng Dungeng; Lu Hongjuan; Liu Qingliang

    2008-02-01

    It has been reported that high doses of sodium selenite can reduce side effects of cisplatin (CDDP) without compromising its antitumor activity, thus substantially enhancing the cure rate in tumor-bearing mice. However, the toxicity of selenite at high doses should be a concern. The present study revealed that selenosulfate had much lower toxicity, but possessed equal efficacy in selenium (Se) utilization, as compared with selenite at similar doses when used for the intervention of CDDP. In addition, Se accumulation in whole blood and kidney of mice treated with selenosulfate was highly correlated with the survival rate of mice treated with CDDP (both r > 0.96 and both p < 0.05), suggesting that whole blood Se is a potential clinical biomarker to predict host tolerance to CDDP. In either Se-deficient or -sufficient mice bearing solid tumors of hepatoma 22 (H22), selenosulfate did not disturb the therapeutic effect of CDDP on tumors but effectively attenuated the toxicity of CDDP. Furthermore, in a highly malignant cancer model, with Se-sufficient mice bearing ascitic H22 cells, 8 or 10 mg/kg CDDP alone only achieved a null or 25% cure rate, whereas coadministration of selenosulfate with the above two doses of CDDP achieved cure rates of 87.5% or 75%. These results together argue for consideration of selenosulfate as an agent to enhance the therapeutic efficacy of CDDP.

  10. Recovery of Salmonella by Using Selenite Brilliant Green Sulfa Enrichment Broth

    PubMed Central

    Chang, Chiao-tang; Yuo, Chung-Yee; Shen, Hui-Ching; Li, A-Mai; Chen, Chao-yu; Chou, Jui-ling; Huang, Shiao-ping

    1999-01-01

    The efficacy and sensitivity of selenite brilliant green sulfa enrichment (SBG) broth for the isolation of Salmonella from fecal specimens were evaluated by using both clinical and artificially infected (artificial) fecal specimens. An examination of 1,588 clinical fecal specimens found Salmonella in 296 specimens, including 89 cases detected by the direct-plating xylose-lysine-desoxycholate method and an additional 207 cases detected after enrichment with SBG broth. Therefore, the recovery of Salmonella with SBG broth is increased 3.3-fold over that by the direct-plating method alone. Furthermore, the isolation rate of Salmonella is higher when using SBG broth than when using gram-negative (GN) broth or GN broth supplemented with sodium selenite. To determine the sensitivity for the recovery of Salmonella, artificial specimens containing various amounts of Salmonella were prepared and analyzed. The results indicated that the sensitivity is also higher with SBG broth than with GN broth. Moreover, the optimal incubation period for SBG broth can be extended to 24 h. In conclusion, the SBG enrichment method provides a higher recovery rate of Salmonella from fecal specimens. PMID:10565941

  11. Putative free radical-scavenging activity of an extract of Cineraria maritima in preventing selenite-induced cataractogenesis in Wistar rat pups

    PubMed Central

    Anitha, Thirugnanasambandhar Sivasubramanian; Muralidharan, Arumugam Ramachandran; Annadurai, Thangaraj; Jesudasan, Christdas Arul Nelson; Thomas, Philip Aloysius

    2013-01-01

    Purpose To investigate the possible free radical-scavenging activity of an extract of Cineraria maritima on selenite-induced cataractous lenses in Wistar rat pups. Methods In the present study, Wistar rat pups were divided into three experimental groups. On P10, Group I (control) rat pups received an intraperitoneal injection of 0.89% saline. Rats in groups II (selenite-challenged, untreated) and III (selenite-challenged, C. maritima treated) received a subcutaneous injection of sodium selenite (19 μmol/kg bodyweight); Group III rat pups also received an intraperitoneal injection of the extract of C. maritima (350 mg/kg bodyweight) once daily P9–14. Both eyes of each pup were examined from P16 until P30. Cytochemical localization of nitroblue tetrazolium salts and generation of superoxide, hydroxyl, and nitric oxide levels were measured. The expression of the inducible nitric oxide synthase gene was evaluated with reverse transcription-PCR. Immunoblot analysis was also performed to confirm the differential expression of the inducible nitric oxide synthase protein. Results Subcutaneous injection of sodium selenite led to severe oxidative damage in the lenticular tissues, shown by increased formation of formazan crystals, elevated generation of superoxide, hydroxyl, and nitric oxide radicals, and elevated inducible nitric oxide synthase gene and protein expression that possibly contributed to the opacification of the lens and thus cataract formation. When rat pups were treated with intraperitoneal administration of the extract of C. maritima, the generation of free radicals as well as the messenger ribonucleic acid and protein expression of inducible nitric oxide synthase were maintained at near normal levels. Conclusions The data generated by this study suggest that an ethanolic extract of C. maritima possibly prevents cataractogenesis in a rat model by minimizing free radical generation. PMID:24357923

  12. Progress Toward Clonable Inorganic Nanoparticles

    PubMed Central

    Ni, Thomas W.; Staicu, Lucian C.; Nemeth, Richard S.; Schwartz, Cindi; Crawford, David; Seligman, Jeffrey D.; Hunter, William J.; Pilon-Smits, Elizabeth; Ackerson, Christopher J.

    2015-01-01

    Pseudomonas moraviensis stanleyae was recently isolated from the roots of the Selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32− in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32− (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32− concentration, varying in size form 5nm diameter when formed at 1.0 μM [SeO32−] to 50nm maximum diameter when formed at 100 μM [SeO32−]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site. PMID:26350616

  13. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells.

    PubMed

    Raguvaran, R; Manuja, Balvinder K; Chopra, Meenu; Thakur, Rajesh; Anand, Taruna; Kalia, Anu; Manuja, Anju

    2017-03-01

    An ideal biomaterial for wound dressing applications should possess antibacterial and anti-inflammatory properties without any toxicity to the host cells while providing the maximum healing activity. Zinc oxide nanoparticles (ZnONPs) possess antimicrobial activity and enhance wound healing, but the questions regarding their safety arise before application to the biological systems. We synthesized ZnONPs-loaded-sodium alginate-gum acacia hydrogels (SAGA-ZnONPs) by cross linking hydroxyl groups of the polymers sodium alginate and gum acacia with the aldehyde group of gluteradehyde. Here, we report the wound healing properties of sodium alginate/gum acacia/ZnONPs, circumventing the toxicity of ZnONPs simultaneously. We demonstrated the concentration-dependent zones of inhibition in treated cultures of Pseudomonas aerigunosa and Bacillus cereus and biocompatability on peripheral blood mononuclear/fibroblast cells. SAGA-ZnONPs hydrogels showed a healing effect at a low concentration of ZnONPs using sheep fibroblast cells. Our findings suggest that high concentrations of ZnONPs were toxic to cells but SAGA-ZnONPs hydrogels significantly reduced the toxicity and preserved the beneficial antibacterial and healing effect.

  14. Synthesis and factorial design applied to a novel chitosan/sodium polyphosphate nanoparticles via ionotropic gelation as an RGD delivery system.

    PubMed

    Kiilll, Charlene Priscila; Barud, Hernane da Silva; Santagneli, Sílvia Helena; Ribeiro, Sidney José Lima; Silva, Amélia M; Tercjak, Agnieszka; Gutierrez, Junkal; Pironi, Andressa Maria; Gremião, Maria Palmira Daflon

    2017-02-10

    Chitosan nanoparticles have been extensively studied for both drug and protein/peptide delivery. The aim of this study was to develop an optimized chitosan nanoparticle, by ionotropic gelation method, using 3(2) full factorial design with a novel polyanion, sodium polyphosphate, well known under the trade name Graham salt. The effects of these parameters on the particle size, zeta potential, and morphology and association efficiency were investigated. The optimized nanoparticles showed an estimated size of 166.20±1.95nm, a zeta potential of 38.7±1.2mV and an efficacy of association of 97.0±2.4%. The Atomic Force Microscopy (AFM) and Scanning Electronic Microscopy (SEM) revealed spherical nanoparticles with uniform size. Molecular interactions among the components of the nanoparticles and peptide were evaluated by Fourier Transform Infrared Spectra (FTIR) and Differential Scanning Calorimetry (DSC). The obtained results indicated that, the developed nanoparticles demonstrated high biocompatible, revealing no or low toxicity in the human cancer cell line (Caco-2). In conclusion, this work provides parameters that contribute to production of chitosan nanoparticles and sodium polyphosphate with desirable size, biocompatible and enabling successful use for protein/peptides delivery.

  15. A rhizobium selenitireducens protein showing selenite reductase activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobarriers remove, via precipitation, the metalloid selenite (SeO3–2) from groundwater; a process that involves the biological reduction of soluble SeO3–2 to insoluble elemental red selenium (Se0). The enzymes associated with this reduction process are poorly understood. In Rhizobium selenitiredu...

  16. Visual and light scattering spectrometric method for the detection of melamine using uracil 5'-triphosphate sodium modified gold nanoparticles.

    PubMed

    Liang, Lijiao; Zhen, Shujun; Huang, Chengzhi

    2017-02-15

    A highly selective method was presented for colorimetric determination of melamine using uracil 5'-triphosphate sodium modified gold nanoparticles (UTP-Au NPs) in this paper. Specific hydrogen-bonding interaction between uracil base (U) and melamine resulted in the aggregation of AuNPs, displaying variations of localized surface plasmon resonance (LSPR) features such as color change from red to blue and enhanced localized surface plasmon resonance light scattering (LSPR-LS) signals. Accordingly, the concentration of melamine could be quantified based on naked eye or a spectrometric method. This method was simple, inexpensive, environmental friendly and highly selective, which has been successfully used for the detection of melamine in pretreated liquid milk products with high recoveries.

  17. Lupeol, a pentacyclic triterpenoid isolated from Vernonia cinerea attenuate selenite induced cataract formation in Sprague Dawley rat pups.

    PubMed

    Asha, Radha; Gayathri Devi, V; Abraham, Annie

    2016-02-05

    This study investigated the inhibitory effects of active component isolated from flavonoid fraction of Vernonia cinerea (FVC), lupeol on selenite induced cataract formation. Previous reports suggest that phytochemicals or natural plant products retard the process of cataractogenesis by scavenging free oxygen radicals. Hence, the present study sought to assess the potential of lupeol on in vivo selenite induced cataract models. Lupeol, a pentacyclic triterpenoid, was isolated from the ethyl acetate fraction of methanolic extract of Vernonia cinerea, follows standard chromatographic techniques. Structural elucidation of the compound was carried out using (1)H NMR, (13)C NMR, Mass spectrometry together with other complementary techniques (UV and IR). From these, the isolated compound was identified as Lupeol (3'-hydroxylup-20(29)-ene). The antioxidant activity was comparatively studied using DPPH radical scavenging and FRAP assay. Lupeol exhibited higher DPPH radical scavenging activity as well as reducing power assay. In this study, cataract was induced by a single subcutaneous injection of sodium selenite (4 μg/g body weight) on rat pups. Lupeol was administered orally from 8th day upto 21st day at a concentration 25 μg/g body weight. Cataract was visualized on 16th day with the help of an ophthalmoscope and later on with the naked eye. On the 30th day, rats were euthanized by sodium pentothal injection, lenses were excised and the biochemical parameters such as activity of superoxide dismutase (SOD), catalase (CAT), Glutathione peroxidase (GPx), Glutathione reductase (GR), Glutathione-S-transferase (GST), Ca(2+) ATPase, glutathione content (GSH), reactive oxygen species (ROS), lipid peroxidation products (malondialdehyde) were estimated and found effective in the treatment of cataract by lupeol.

  18. Methods for Purifying and Detoxifying Sodium Dodecyl Sulfate-Stabilized Polyacrylate Nanoparticles

    PubMed Central

    Garay-Jimenez, Julio C.; Young, Ashley; Gergeres, Danielle; Greenhalgh, Kerriann; Turos, Edward

    2008-01-01

    Recent research in our laboratory has centered on studies of polyacrylate and polyacrylamide nanoparticle emulsions for use in antibiotic delivery. Our goal is to develop these nanoparticle emulsions for treatment of life-threatening bacterial infections such as those caused by methicillin-resistant Staphylococcus aureus (MRSA). For this intended application, it is necessary to ensure that the biological activity of the emulsion is due only to the drug attached to the polymeric chain, rather than to any extraneous components. To investigate this, we evaluated cytotoxicity and microbiological activity of the nanoparticle emulsions before and after purification by centrifugation, dialysis, and gel filtration. Depending on the amount of surfactant used, all or most of the microbial and cellular toxicity can be removed by a simple purification procedure. PMID:18472305

  19. Highly Reversible and Ultrafast Sodium Storage in NaTi2(PO4)3 Nanoparticles Embedded in Nanocarbon Networks.

    PubMed

    Jiang, Yu; Shi, Jinan; Wang, Min; Zeng, Linchao; Gu, Lin; Yu, Yan

    2016-01-13

    Sodium ion batteries (NIBs) have been considered as an alternative for Li ion batteries (LIBs). NaTi2(PO4)3 (denoted as NTP) is a superior anode material for NIBs. However, the poor electrochemical performance of NTP resulting from the low electronic conductivity prevents its application. Here, NTP nanoparticles embedded in carbon network (denoted as NTP/C) were fabricated using a simple soft-template method. This anode material exhibits superior electrochemical performance when used as anode electrodes for NIBs, including highly reversible capacity (108 mAh g(-1) at 100 C) for excellent rate performance and long cycle life (83 mAh g(-1) at 50 C after 6000 cycles). The excellent sodium storage property can be resulted from the synergistic effects of nanosized NTP, thinner carbon shell and the interconnected carbon network, leading to the low charge transfer resistance, the large surface area for electrolyte to soak in and enough void to buffer the volume variation during the repeated cycle.

  20. Polyvinyl pyrrolidone capped fluorescent anthracene nanoparticles for sensing fluorescein sodium in aqueous solution and analytical application for ophthalmic samples.

    PubMed

    Bhopate, Dhanaji P; Mahajan, Prasad G; Garadkar, Kalyanrao M; Kolekar, Govind B; Patil, Shivajirao R

    2015-11-01

    Based on the known complexation ability between polyvinyl pyrrolidone (PVP) and fluorescein sodium (FL Na(+)), fluorescent PVP capped anthracene nanoparticles (PVP-ANPs) were prepared using a reprecipitation method for detection of fluorescein in aqueous solution using the fluorescence resonance energy transfer (FRET) approach. A dynamic light scattering histogram of PVP-ANPs showed narrower particle size distribution and the average particle size was 15 nm. The aggregation-induced enhanced emission (AIEE) of PVP-ANPs was red shifted from its monomer by 1087.22 cm(-1). The maximum emission was seen to occur at 420 nm. The presence of FL Na(+) in the vicinity of PVP-ANPs quenched the fluorescence of PVP-ANPs because of its adsorption on the surface of PVP-ANPs in aqueous suspension. The FL Na(+) and PVP-ANPs were brought close enough, typically to 7.89 nm, which was less than the distance of 10 nm that is required between the energy donor-acceptor molecule for efficient FRET. The quenching results fit into the Stern-Volmer relationship even at temperatures greater than ambient temperatures. The thermodynamic parameters determined from FRET results helped to propose binding mechanisms involving hydrophobic and electrostatic molecular interaction. The fluorescence quenching results were used further to develop an analytical method for estimation of fluorescein sodium from ophthalmic samples available commercially in the market.

  1. Silver nanoparticles-containing dual-function hydrogels based on a guar gum-sodium borohydride system

    PubMed Central

    Dai, Lei; Nadeau, Ben; An, Xingye; Cheng, Dong; Long, Zhu; Ni, Yonghao

    2016-01-01

    Dual-function hydrogels, possessing both stimuli-responsive and self-healing properties, have recently attracted attention of both chemists and materials scientists. Here we report a new paradigm using natural polymer (guar gum, GG) and sodium borohydride (NaBH4), for the preparation of silver nanoparticles (AgNPs)-containing smart hydrogels in a simple, fast and economical way. NaBH4 performs as a reducing agent for AgNPs synthesis using silver nitrate (AgNO3) as the precursor. Meanwhile, sodium metaborate (NaBO2) (from NaBH4) behaves as a cross-linking agent between GG molecular chains. The AgNPs/GG hydrogels with excellent viscoelastic properties can be obtained within 3 min at room temperature without the addition of other cross-linkers. The resultant AgNPs/GG hydrogels are flowable and injectable, and they possess excellent pH/thermal responsive properties. Additionally, they exhibit rapid self-healing capacity. This work introduces a facile and scale-up way to prepare a class of hydrogels that can have great potential to biomedical and other industrial applications. PMID:27819289

  2. Proteomic profiling of L-cysteine induced selenite resistance in Enterobacter sp. YSU

    PubMed Central

    Jasenec, Ashley; Barasa, Nathaniel; Kulkarni, Samatha; Shaik, Nabeel; Moparthi, Swarnalatha; Konda, Venkataramana; Caguiat, Jonathan

    2009-01-01

    Background Enterobacter sp. YSU is resistant to several different heavy metal salts, including selenite. A previous study using M-9 minimal medium showed that when the selenite concentration was 100,000 times higher than the sulfate concentration, selenite entered Escherichia coli cells using two pathways: a specific and a non-specific pathway. In the specific pathway, selenite entered the cells through a yet to be characterized channel dedicated for selenite. In the non-specific pathway, selenite entered the cells through a sulfate permease channel. Addition of L-cystine, an L-cysteine dimer, appeared to indirectly decrease selenite import into the cell through the non-specific pathway. However, it did not affect the level of selenite transport into the cell through the specific pathway. Results Growth curves using M-9 minimal medium containing 40 mM selenite and 1 mM sulfate showed that Enterobacter sp. YSU grew when L-cysteine was present but died when it was absent. Differential protein expression analysis by two dimensional gel electrophoresis showed that CysK was present in cultures containing selenite and lacking L-cysteine but absent in cultures containing both selenite and L-cysteine. Additional RT-PCR studies demonstrated that transcripts for the sulfate permease genes, cysA, cysT and cysW, were down-regulated in the presence of L-cysteine. Conclusion L-cysteine appeared to confer selenite resistance upon Enterobacter sp. YSU by decreasing the level of selenite transport into the cell through the non-specific pathway. PMID:19715574

  3. Selenite-stress selected mutant strains of probiotic bacteria for Se source production.

    PubMed

    Pusztahelyi, Tünde; Kovács, Szilvia; Pócsi, István; Prokisch, József

    2015-04-01

    Selenium deficiency is a major health problem worldwide for about 1 billion people. Bacterial cells usually possess low tolerance to selenite stress and also low ability to reduce high concentrations of toxic selenite. Here, high tolerance to selenite and selenium bioaccumulation capability were developed in mutated clones of probiotic and starter bacteria including Enterococcus faecium, Bifidobacterium animalis ssp. lactis, Lactobacillus casei and Lactococcus lactis ssp. lactis by food-level strain development process and clone selection. All mutant clones possessed increased glutathione concentration and glutathione reductase activity. The selenite treatment increased further these values in L. casei mutant strain pointing at a different selenite reduction pathway and/or stress response in this organism. Considerable conversion of selenite to cell bound selenium forms with a concomitant high biomass production was detected in E. faecium and B. animalis ssp. lactis cultures. Possible application of these strains as food and feed supplements is under investigation.

  4. On the mechanical properties of selenite glass nanocomposites

    NASA Astrophysics Data System (ADS)

    Bar, Arun Kr.; Kundu, Ranadip; Roy, Debasish; Bhattacharya, Sanjib

    2016-05-01

    In this paper the room temperature micro-hardness of selenite glass-nanocomposites has been measured using a Vickers and Knoop micro hardness tester where the applied load varies from 0.01N to 0.98 N. A significant indentation size effect was observed for each sample at relatively low indentation test loads. The classical Meyer's law and the proportional specimen resistance model were used to analyze the micro-hardness behavior. It was found that the selenite glass-nanocomposite becomes harder with increasing CuI composition and the work hardening coefficient and mechanical properties like Young modulus, E, were also calculated. Our results open the way for the preparation, application and investigation of significant mechanical properties of new type of glass-nanocomposites.

  5. Comparison of short-term toxicity between Nano-Se and selenite in mice.

    PubMed

    Zhang, Jinsong; Wang, Huali; Yan, Xiangxue; Zhang, Lide

    2005-01-21

    We previously reported that, as compared with selenite, nano red elemental selenium (Nano-Se) had lower acute toxicity in mice and similar bioavailability in terms of up-regulating seleno-enzymes. The short-term toxicity of both selenite and Nano-Se in mice was further compared in this study. At an oral dose of 6 mg/kg bw per day administered for consecutive 12 days, selenite and Nano-Se completely and partially suppressed mice growth respectively. Abnormal liver function was more pronounced with selenite treatment than Nano-Se as indicated by the increase of both alanine aminotransferase and aspartate aminotransferase in serum. Selenite inhibited liver catalase and superoxide dismutase activities, whereas, Nano-Se did not affect these two antioxidant enzymes. Selenite increased the malondialdehyde content of liver, but Nano-Se decreased it. Both Se forms had similar effects on depletion of reduced glutathione and up-regulated glutathione peroxidase. Nano-Se was more potent than selenite in the induction of glutathione S-transferase. At oral doses of 2 or 4 mg/kg bw per day for consecutive 15 days, selenite was more active than Nano-Se in supressing growth, deleting reduced glutathione, and inhibiting superoxide dismutase activities. Taken together, these results indicate that over a short-term, a high-dose of selenite caused more pronounced oxidative stress, greater liver injury, and prominent retardation of growth as compared to Nano-Se.

  6. Immobilization of selenite via two parallel pathways during in situ bioremediation.

    PubMed

    Tang, Youneng; Werth, Charles J; Sanford, Robert A; Singh, Rajveer; Michelson, Kyle; Nobu, Masaru; Liu, Wen-Tso; Valocchi, Albert J

    2015-04-07

    It is widely understood that selenite can be biologically reduced to elemental selenium. Limited studies have shown that selenite can also be immobilized through abiotic precipitation with sulfide, a product of biological sulfate reduction. We demonstrate that both pathways significantly contribute to selenite immobilization in a microfluidic flow cell having a transverse mixing zone between propionate and selenite that mimics the reaction zone along the margins of a selenite plume undergoing bioremediation in the presence of background sulfate. The experiment showed that red particles of amorphous elemental selenium precipitate on the selenite-rich side of the mixing zone, while long crystals of selenium sulfides precipitate on the propionate-rich side of the mixing zone. We developed a continuum-scale reactive transport model that includes both pathways. The simulated results are consistent with the experimental results, and indicate that spatial segregation of the two selenium precipitates is due to the segregation of the more thermodynamic favorable selenite reduction and the less thermodynamically favorable sulfate reduction. The improved understanding of selenite immobilization and the improved model can help to better design in situ bioremediation processes for groundwater contaminated by selenite or other contaminants (e.g., uranium(IV)) that can be immobilized via similar pathways.

  7. Highly stable polyaniline-poly(sodium 4-styrenesulfonate) nanoparticles for sensing of amines.

    PubMed

    Li, Ligui; Ferng, Lin-Huei; Yang, Catherine; Ji, Hai-Feng

    2014-09-01

    Sensing technology is the key of intelligent packaging. A variety of different sensing systems for indicating freshness through intelligent packaging have been presented. Polyaniline (PANI) can change its color reversibly through the acid-base reaction with reactive compounds and has been widely used in different kinds of sensors. However, because PANI is insoluble in common organic solvents, this limits its practical usage in many applications. In this work, a highly stable polyaniline-poly(sodium 4-styrenesulfonate) (PANI:PSS) colloid has been developed as a facile colorimetric sensor of volatile amines. The results showed the PANI:PSS colloid is quite sensitive to changes in pH. When PANI:PSS colloids were homogenously deposited on filter paper, the paper are used as a sensor to detect triethylamine (TEA) vapor. The green color of the test paper changed to blue at a TEA concentration as low as 188 ppm.

  8. An Investigative Study on the Effect of Silver Nanoparticles on E.Coli K12 in Various Sodium Chloride Concentrations

    NASA Astrophysics Data System (ADS)

    Levard, C.; Mitra, S.; Badireddy, A.; Jew, A. D.; Brown, G. E.

    2011-12-01

    Engineered nanomaterials have had an increasing presence in consumer products. Consequently, their release in wastewater systems is believed to pose a viable threat to the environment. NPs are used for drug delivery devices, imaging agents, and consumer products like sunscreens, paints, and cosmetics. Among the major types of manufactured nanoparticles, silver nanoparticles (Ag-NPs) are currently the most widely used in the nanotechnology industry. These particles have unique antibacterial, antiviral, and antifungal properties and as a result, there is a growing concern about the environmental impact of released Ag nanoparticles, particularly their unintended impact on organisms and ecosystems. Even though the toxicity of Ag-NPs has been extensively studied, the environmental transformations that the Ag-NPs may experience once released in the environment have not been considered. These transformations can readily impact their properties and therefore their behavior in terms of reactivity and toxicity. For example, it is known that silver strongly react with Chloride (Cl), which is ubiquitous in natural waters. At a low Cl/Ag ratio, Cl may precipitate on the surface and partly inhibit dissolution. On the contrary, for a high Cl/Ag ratio, chloride may enhance dissolution and therefore toxicity since soluble Ag species are a main source of toxicity. In this context, the focus of this study is on understanding the toxicity of coated Ag-NPs at various concentrations (1ppb-100ppm) on E.Coli (K12) in deionized water and various sodium chloride concentrations that mimic natural conditions (.5, .1 and .01 M NaCl). Ag+ ions (100 ppm-1ppb) were also tested in these salt concentrations as a control. Samples were inoculated in bacteria and incubated for 24 hours. Based on this test, we inferred that increasing concentrations of Ag+ ions/ AgNps played a role in the inhibition of growth of E.Coli K12. A live-dead staining test has shown the correlation between inhibition of

  9. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    PubMed

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility.

  10. Reduction of selenium-binding protein 1 sensitizes cancer cells to selenite via elevating extracellular glutathione: a novel mechanism of cancer-specific cytotoxicity of selenite.

    PubMed

    Wang, Yulei; Fang, Wenfeng; Huang, Ying; Hu, Fen; Ying, Qi; Yang, Wancai; Xiong, Bin

    2015-02-01

    Selenium is an essential trace element and has been extensively studied for preventive effects on cancers. Recent emerging evidence has also shown that selenium at supranutritional dosage has a preferential cytotoxicity in cancer cells and chemotherapeutic drug-resistant cells, but the underlying mechanisms remain largely unknown. This study was to investigate the roles of two distinct representatives of selenium-containing proteins, selenium-binding protein 1 (SBP1) and glutathione peroxidase 1 (GPX1), in selenite-mediated cancer-specific cytotoxicity. We found that there was a significantly inverse correlation between SBP1 and GPX1 protein level in human breast cancers and adjacent matched nontumor tissues (Pearson r=-0.4347, P=0.0338). Ectopic expression of GPX1 enhanced selenite cytotoxicity through down-regulation of SBP1, and SBP1 was likely to be a crucial determinant for selenite-mediated cytotoxicity. Reduction of SBP1 in cancer cells and epirubicin-resistant cells on selenite exposure resulted in a dramatic increase in the generation of hydrogen peroxide and superoxide anion, which in turn caused oxidative stress and triggered apoptosis. Furthermore, knockdown SBP1 by small interfering RNA increased selenite sensitivity by elevating extracellular glutathione (GSH), which spontaneously reacted with selenite and led to the rapid depletion of selenium (IV) in growth medium and the high-affinity uptake of selenite. In conclusion, these findings would improve our understanding of the roles of selenium-containing proteins in selenite-mediated cytotoxicity, and revealed a potent mechanism of the selective cytotoxicity of selenite in cancer cells and drug-resistant cells, in which SBP1 was likely to play an important role in modulating the extracellular microenvironment by regulating the levels of extracellular GSH.

  11. Role of surface ligands in the nanoparticle assemblies: a case study of regularly shaped colloidal crystals composed of sodium rare earth fluoride.

    PubMed

    Feng, Wei; Sun, Ling-Dong; Yan, Chun-Hua

    2011-04-05

    Assembly of nanoparticles is a promising route to fabricate devices from nanomaterials. Colloidal crystals are well-defined three-dimensional assemblies of nanoparticles with long-range ordered structures and crystalline symmetries. Here, we use a solvent evaporation induced assembly method to obtain colloidal crystals composed of polyhedral sodium rare earth fluoride nanoparticles. The building blocks exhibit the same crystalline orientation in each colloidal crystal as indicated in electron diffraction patterns. The driving force of the oriented assembly is ascribed to the facet-selected capping of oleic acid molecules on {110} facets of the nanoparticles, and the favorable coordination behavior of OA molecules is explained by the steric hindrance determined adsorption based on the studies of the surface atomic structure of nanocrystals and molecular mechanics simulation of OA molecules. The capping ligands also provide hydrophobic interactions between nanoparticles and further direct the oriented assembly process to construct a face-centered cubic structure. These results not only provide a new type of building block for colloidal crystals, but also clarify the important role of surface ligands, which determine the packed structure and orientations of nanoparticles in the assemblies.

  12. Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu

    2014-04-01

    Mesoporous nickel cobaltite (NiCo2O4) nanoparticles have been synthesized via a facile hydrothermal strategy with the assistance of sodium dodecyl sulfate (SDS) soft template (ST). Their physicochemical properties have been characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. Their electrocatalytic performances have been examined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit a typical nanoscale crystalline hexagonal morphology with specific surface area (SSA) and mesopore volume of 88.63 m2 g-1 and 0.298 cm3 g-1. Impressively, the SDS-assisted NiCo2O4 electrode shows a catalytic current density of 125 mA cm-2 and 72% retention for consecutive 1000 s at 0.6 V in 1 M KOH and 0.5 M CH3OH electrolytes towards methanol (CH3OH) electrooxidation, which is better than the one without SDS assistance. The pronounced electrocatalytic activity is largely ascribed to their higher surface intensities of Co and Ni species and superior mesoporous nanostructures, which provide the richer electroactive sites and faster electrochemical kinetics, leading to the enhanced electrocatalytic activity.

  13. Drying and nondrying layer-by-layer assembly for the fabrication of sodium silicate/TiO2 nanoparticle composite films.

    PubMed

    Zhang, Lianbin; Liu, He; Zhao, Engui; Qiu, Lingying; Sun, Junqi; Shen, Jiacong

    2012-01-24

    Influences of drying and nondrying steps on structures of layer-by-layer (LbL) assembled sodium silicate/TiO(2) nanoparticles films (donated as silicate/TiO(2) films) have been systematically investigated. The nondrying LbL assembly produces highly porous silicate/TiO(2) films with large thickness. In contrast, the silicate/TiO(2) films fabricated with a drying step after each layer deposition are flat and thin without porous structures. In situ atomic force microscopy (AFM) measurements confirm that the sodium silicate and TiO(2) nanoparticles are deposited in their aggregated forms. A N(2) drying step can disintegrate the aggregated silicate and TiO(2) nanoparticles to produce thin silicate/TiO(2) films with compact structures. Without the drying steps, the aggregated silicate and TiO(2) nanoparticles are well retained, and their LbL assembly produces highly porous silicate/TiO(2) films of large thickness. The highly porous silicate/TiO(2) films are demonstrated to be useful as reusable film adsorbents for dye removal from wastewater because they can adsorb a large amount of cationic organic dyes and decompose them under UV irradiation. The present study is meaningful for exploring drying/nondrying steps for tailoring structure and functions of LbL assembled films.

  14. Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles.

    PubMed

    Zhang, Wei; Chen, Jiwang; Chen, Yue; Xia, Wenshui; Xiong, Youling L; Wang, Hongxun

    2016-03-15

    Chitosan/whey protein isolate film incorporated with sodium laurate-modified TiO2 nanoparticles was developed. The nanocomposite film was characterized by scanning electron microscopy, X-ray diffraction and differential scanning calorimetry, and investigated in physicochemical properties as color, tensile strength, elongation at break, water vapor permeability and water adsorption isotherm. Our results showed that the nanoparticles improved the compatibility of whey protein isolate and chitosan. Addition of nanoparticles increased the whiteness of chitosan/whey protein isolate film, but decreased its transparency. Compared with binary film, the tensile strength and elongation at break of nanocomposite film were increased by 11.51% and 12.01%, respectively, and water vapor permeability was decreased by 7.60%. The equilibrium moisture of nanocomposite film was lower than binary film, and its water sorption isotherm of the nanocomposite film fitted well to Guggenheim-Anderson-deBoer model. The findings contributed to the development of novel food packaging materials.

  15. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice.

    PubMed

    Zhang, Lianhe; Hu, Bin; Li, Wei; Che, Ronghui; Deng, Kun; Li, Hua; Yu, Feiyan; Ling, Hongqing; Li, Youjun; Chu, Chengcai

    2014-03-01

    Selenite is a predominant form of selenium (Se) available to plants, especially in anaerobic soils, but the molecular mechanism of selenite uptake by plants is not well understood. • ltn1, a rice mutant previously shown to have increased phosphate (Pi) uptake, was found to exhibit higher selenite uptake than the wild-type in both concentration- and time-dependent selenite uptake assays. Respiratory inhibitors significantly inhibited selenite uptake in the wildtype and the ltn1 mutant, indicating that selenite uptake was coupled with H(+) and energy-dependent. Selenite uptake was greatly enhanced under Pi-starvation conditions, suggesting that Pi transporters are involved in selenite uptake. • OsPT2, the most abundantly expressed Pi transporter in the roots, is also significantly up-regulated in ltn1 and dramatically induced by Pi starvation. OsPT2-overexpressing and knockdown plants displayed significantly increased and decreased rates of selenite uptake, respectively, suggesting that OsPT2 plays a crucial role in selenite uptake. Se content in rice grains also increased significantly in OsPT2-overexpressing plants. • These data strongly demonstrate that selenite and Pi share similar uptake mechanisms and that OsPT2 is involved in selenite uptake, which provides a potential strategy for breeding Se-enriched rice varieties.

  16. Reduction of Selenite to Elemental Red Selenium by Pseudomonas sp. strain CA5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Pseudomonas sp. that may be useful in bioremediation projects was isolated from soil. The strain is of potential value because it reduces selenite to elemental red selenium and is unusual in that it was resistant to high concentrations of both selenate and selenite. Cell of the strain removed 1....

  17. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenite adsorption behavior was investigated on amorphous aluminum and iron oxides, clay minerals: kaolinite, montmorillonite, and illite, and 45 surface and subsurface soil samples from the Southwestern and Midwestern regions of the USA as a function of solution pH. Selenite adsorption decreased ...

  18. Progress toward clonable inorganic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ni, Thomas W.; Staicu, Lucian C.; Nemeth, Richard S.; Schwartz, Cindi L.; Crawford, David; Seligman, Jeffrey D.; Hunter, William J.; Pilon-Smits, Elizabeth A. H.; Ackerson, Christopher J.

    2015-10-01

    Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site.Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular

  19. Effect of sodium and nitrates salts on TiO2 nanoparticles transport in porous media

    NASA Astrophysics Data System (ADS)

    Sinos, Charalampos P.; Manariotis, Ioannis D.; Chrysikopoulos, Constantinos V.

    2015-04-01

    Titanium dioxide (TiO2) is one of the most widely used nanomaterials, which is introduced into the environment from different activities. The scope of this study was to investigate the effect of solution chemistry on the transport and retention of TiO2 nanoparticles (NPs) in water saturated porous media, under varying flow rate and initial NPs concentration. More specifically, TiO2 anatase NPs solutions were prepared at concentrations of 5 and 50 mg/L. The ionic strength (IS) of TiO2 NPs solution was adjusted to 0, 0.1, 1, 10, 100 and 1000 mM with NaCl or NaNO3. More than 70 flowthrough experiments were conducted in glass columns with diameter of 2.5 cm and length of 30 cm, packed with 2-mm diameter glass beads. The flow rate was adjusted at 1 and 2 mL/min. The TiO2 NPs solution concentrations were measured by fluorescence spectroscopy at 625 nm. The breakthrough curves of multiple experiments under the same operating conditions presented significant variation. Generally, the retention of NPs in the column was increased with increasing initial concentration. Furthermore, the retention of NPs was affected by the IS, and was shown to be greater at very high IS values (i.e 100 mM and 1000 mM). As expected, more NPs were retained near the inlet of the column. The retention of NPs was enhanced as the initial concentration increased.

  20. Effects of nano red elemental selenium on sodium currents in rat dorsal root ganglion neurons.

    PubMed

    Yuan, Huijun; Lin, Jiarui; Lan, Tonghan

    2006-01-01

    Nano red elemental selenium (Nano-Se), was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Se on sodium currents on rat dorsal root ganglion neurons (DRG), using the whole-cell patch clamp method. Nano-Se reversibly decrease the I(Na)(TTX-S) in a concentration-dependent, time-dependent and open-channel block manners without affecting I(Na)(TTX-R). It shifted the steady-state activation and inactivation curves for I(Na) to more negative potentials. In the research of recovery from inactivation, the recovery time constant is longer in the present of Nano-Se. Nano-Se had a weaker inhibitory effect on I(Na), compared with marked decrease caused by selenite which indicated that Nano-Se is less neurotoxic than selenite in short-term/large dose treatments and had similar bio availability to sodium selenite. The results of interaction between the effects of Nano-Se and selenite on sodium currents indicated a negative allosteric interaction between the selenite binding site and the Nano-Se binding site or that they have the same competitive binding site.

  1. Incorporation of neptunium(VI) into a uranyl selenite.

    PubMed

    Meredith, Nathan A; Polinski, Matthew J; Lin, Jian; Simonetti, Antonio; Albrecht-Schmitt, Thomas E

    2012-10-15

    The incorporation of neptunium(VI) into the layered uranyl selenite Cs[(UO(2))(HSeO(3))(SeO(3))] has yielded the highest level of neptunium uptake in a uranyl compound to date with an average of 12(±3)% substitution of Np(VI) for U(VI). Furthermore, this is the first case in nearly 2 decades of dedicated incorporation studies in which the oxidation state of neptunium has been determined spectroscopically in a doped uranyl compound and also the first time in which neptunium incorporation has resulted in a structural transformation.

  2. HIV-1 Gag Blocks Selenite-Induced Stress Granule Assembly by Altering the mRNA Cap-Binding Complex

    PubMed Central

    Cinti, Alessandro; Le Sage, Valerie; Ghanem, Marwan

    2016-01-01

    ABSTRACT Stress granules (SGs) are dynamic accumulations of stalled preinitiation complexes and translational machinery that assemble under stressful conditions. Sodium selenite (Se) induces the assembly of noncanonical type II SGs that differ in morphology, composition, and mechanism of assembly from canonical SGs. Se inhibits translation initiation by altering the cap-binding activity of eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1). In this work, we show that human immunodeficiency virus type 1 (HIV-1) Gag is able to block the assembly of type II noncanonical SGs to facilitate continued Gag protein synthesis. We demonstrate that expression of Gag reduces the amount of hypophosphorylated 4EBP1 associated with the 5′ cap potentially through an interaction with its target, eIF4E. These results suggest that the assembly of SGs is an important host antiviral defense that HIV-1 has evolved for inhibition through several distinct mechanisms. PMID:27025252

  3. Selenite transport in unsaturated tuff from Yucca Mountain

    SciTech Connect

    Conca, J.L.; Triay, I.R.

    1994-04-01

    Direct measurements of unsaturated selenite retardation coefficients and unsaturated hydraulic conductivity were obtained on two tuff samples from Yucca Mountain using the UFA{trademark} technology. The retardation factor for the selenite species was only 2.5 in both Yucca Mountain vitric member at 62.6% saturation and zeolitized nonwelded tuff from G-tunnel at 52.8% saturation with respect to J-13 well water from the Nevada Test Site contaminated with selenium at 1.31 mg/l (ppm). In batch tests on the same material using 1.2 mg/l (ppm), the average K{sub d} was determined to be 13, giving retardation factors higher than the UFA column breakthrough tests by an order of magnitude. The difference could result from preferential flow paths in the UFA column as might occur in the field or differences in residence times between the two types of test. The unsaturated hydraulic conductivities during the experiments were 2.49 {times} 10{sup {minus}8} cm/s for the Yucca Mountain vitric member and 1.16 {times} 10{sup {minus}8} cm/s for the zeolitized nonwelded tuff.

  4. Selenite transport in unsaturated tuff from Yucca Mountain

    SciTech Connect

    Conca, J.L.; Triay, I.R.

    1994-12-31

    Direct measurements of unsaturated selenite retardation coefficients and unsaturated hydraulic conductivity were obtained on two tuff samples from Yucca Mountain using the UFA{trademark} technology. The retardation factor for the selenite species was only 2.5 in both Yucca Mountain vitric member at 62.6% saturation and zeolitized nonwelded tuff from G-tunnel at 52.8% saturation with respect to J-13 well water from the Nevada Test Site contaminated with selenium at 1.31 mg/l (ppm). In batch tests on the same material using 1.2 mg/l (ppm), the average K{sub d} was determined to be 13, giving retardation factors higher than the UFA column breakthrough tests by an order of magnitude. The difference could result from preferential flow paths in the UFA column as might occur in the field or differences in residence times between the two types of tests. The unsaturated hydraulic conductivities during the experiments were 2.49 {times} 10{sup {minus}8} cm/s for the Yucca Mountain vitric member and 1.16 {times} 10{sup {minus}8} cm/s for the zeolited nonwelded tuff.

  5. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions

    NASA Astrophysics Data System (ADS)

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-12-01

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO32- and DCCM/SeO32- complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation.

  6. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions

    PubMed Central

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-01-01

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO32− and DCCM/SeO32− complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation. PMID:26635113

  7. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions.

    PubMed

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-12-04

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO3(2-) and DCCM/SeO3(2-) complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation.

  8. Selenite Reduction by a Denitrifying Culture: Batch- and Packed-Bed- Reactor Studies

    SciTech Connect

    William A. Apel; Sridhar Viamajala; Yared Bereded-Samuel; James N. Petersen

    2006-08-01

    Selenite reduction by a bacterial consortium enriched from an oil refinery waste sludge was studied under denitrifying conditions using acetate as the electron donor. Fed-batch studies with nitrate as the primary electron acceptor showed that accumulation of nitrite led to a decrease in the extent of selenite reduction. Also, when nitrite was added as the primary electron acceptor, rapid selenite reduction was observed only after nitrite was significantly depleted from the medium. These results indicate that selenite reduction was inhibited at high nitrite concentrations. In addition to batch experiments, continuous flow selenite reduction experiments were performed in packed-bed columns using immobilized enrichment cultures. These experiments were carried out in three phases: In phase-I, a continuous nitrate feed with different inlet selenite concentration was applied; in phase-II, nitrate was fed in a pulsed fashion; and in phase-III, nitrate was fed in a continuous mode but at much lower concentrations than the other two phases. During the phase-I experiments, little selenite was removed from the influent. However, when the column was operated in the pulse feed strategy (phase II), or in the continuous mode with low nitrate levels (phase-III), significant quantities of selenium was removed from solution and retained in the immobilization matrix in the column. Thus, immobilized denitrifying cultures can be effective in removing selenium from waste streams, but nitrate-limited operating conditions might be required.

  9. Template-free formation of carbon nanotube-supported cobalt sulfide@carbon hollow nanoparticles for stable and fast sodium ion storage

    NASA Astrophysics Data System (ADS)

    Han, Fei; Jun Tan, Clara Yi; Gao, Zhiqiang

    2017-01-01

    Carbon-coated cobalt sulfide (CoS) hollow nanoparticles on carbon nanotube (CNT) networks are synthesized by combining three simple approaches: direct growth of Co3O4 nanocrystals on the CNT backbones, chemical conversion of the Co3O4 nanocrystals to CoS hollow nanoparticles, and the spatial introduction of conformal surface modification by carbon. It is noteworthy that the CoS hollow nanoparticles with inner cavity of <50 nm and an average wall thickness of 6-8 nm are derived from a template-free method. Such a template-free-derived multifunctional nanostructure design achieves the amalgamation of the favorite traits of one-dimensional conducting networks, hollow nanoparticles, and surface modification, thus resulting in much enhanced charge transfer, ion transport, and upholding the integrity of the electrode and electrode/electrolyte interface. When applied the synthesized CoS-based material as anodes in sodium-ion batteries (SIBs), excellent performance is observed. For instance, a reversible specific capacity of 562 mAh g-1 at 100 mA g-1 and a capacity retention rate of 90% after 200 cycles at a higher current density of 500 mA g-1 are obtained. Moreover, a superior rate capability is observed with reversible specific capacities of 341 and 276 mAh g-1 at 2000 and at 5000 mA g-1, respectively.

  10. Photocatalytic removal of selenite and selenate species: effect of EDTA and other process variables.

    PubMed

    Labaran, B A; Vohra, M S

    2014-01-01

    TiO2-assisted photocatalysis was employed for the removal of aqueous phase selenite and selenate species in conjunction with EDTA as a hole (h+) scavenger. Findings from the binary selenite/EDTA and selenate/EDTA systems showed high selenite and selenate removal at pH 4 and pH 6, with faster removal kinetics noted for the selenite species compared with the selenate species that showed a gradual change over the reaction course. The noted removal of selenite and selenate was attributed to their reduction by the conduction band electrons (e-). The effect of pH studies indicated high selenite, selenate, and EDTA removal in the acidic pH range, with the following specific trend: pH 4 > pH 6 > pH 12. Different from the EDTA studies, the use of thiocyanate alone did not initiate reduction of selenium oxyanions, and hence, its role as a hole scavenger in the present systems was not evident. However, the addition of EDTA to respective selenite/selenate/thiocyanate system at pH 4 did yield near complete removal of selenite and selenate species. The marginal role of thiocyanate as a hole scavenger was attributed to its negligible adsorption onto TiO2 surface. Furthermore, at pH 4 and within 3 h reaction time, enhanced selenate removal was noted with an increase in its initial concentration from 20 to 100 ppm, with near complete selenate removal noted for both cases. In general, findings from the present work indicate that both selenite and selenate can be successfully removed from the aqueous phase employing the TiO2-mediated photocatalysis and h(+)-scavenging agent EDTA.

  11. Comparison of selenite and selenate apparent absorption and retention in infants using stable isotope methodology.

    PubMed

    Van Dael, Peter; Davidsson, Lena; Ziegler, Ekhard E; Fay, Laurent B; Barclay, Denis

    2002-01-01

    The inorganic selenium compounds selenite and selenate are used for selenium fortification of infant formulas. However, information on absorption and retention of selenium from these compounds is lacking. The purpose of this study was therefore to determine apparent absorption and retention of selenium from selenate and selenite added to a milk-based infant formula in healthy infants. Labeled test meals were prepared by addition of 10 microg Se as (76)Se-selenate or (74)Se-selenite to 500 mL formula. The two batches of labeled formulas were fed as alternate feeds during the first day of the balance period, followed by unlabeled formula. Selenium isotopes were determined in feces collected for 72h after intake and in 3 consecutive 24h collections of urine. Mean apparent absorption was 97.1% for (76)Se-selenate and 73.4% for (74)Se-selenite; mean difference 23.7% (range: 13.8%-35.7%; SD 6.8%, p < 0.001). Mean urinary excretion (% of ingested dose) was 36.4% ((76)Se-selenate) and 9.7% ((74)Se-selenite); mean difference 26.7% (range: 13.9%-36.5%; SD 5.9%, p < 0.001). Mean apparent retention of selenium from (76)Se-selenate and (74)Se-selenite was not significantly different, 60.7% ((76)Se-selenate) versus 63.7% (for (74)Se-selenite). The average difference was -3.01% (range: -14.0%-12.0%; SD 9.4%, p = 0.36). Although apparent selenium absorption and urinary excretion differed for selenite and selenate, selenium was equally well retained by infants from both selenium compounds. We therefore concluded that Se fortification of infant formulas with selenate or selenite can be expected to have similar impact on the selenium nutritional status of term infants.

  12. Effects of excess dietary selenite on lead toxicity in sheep.

    PubMed

    Mayland, H F; Doyle, J J; Sharma, R P

    1986-07-01

    The hypothesis that excess dietary selenite ameliorates lead (Pb) toxicosis in domestic sheep was tested. Twenty 6-8-yr-old ewes fed alfalfa pellets were assigned to the following treatments: (1) control; (2) 9.8 mg Pb/kg body weight (b.w.)/d as PbCO3; (3) 3 mg Se/animal/d as Na2SeO3·5H2O; or (4) a combination of treatments 2 and 3. The gelatin-encapsulated salts were given orally. The study was terminated on d 104, by which time three animals in the Pb group and all five animals in the Pb+Se group had died. All remaining animals were slaughtered on d 104. Lead and Se concentrations were determined in six biweekly-collected blood samples and in soft tissues and bone. Sheep on the control and Se treatments had similar feed intakes, body weights, and tissue Pb levels. Those in the Pb+Se group had lower feed intake, but higher blood Pb values compared with the Pb group. Feeding either element increased (P<0.05) the concentration of that element in blood, kidney, liver, spleen, and bone. Muscle-Pb concentrations were not affected (P<0.05) by treatment. Selenium concentrations in kidney, liver, and muscle were greater (P<0.05), whereas those in heart were less (P<0.05) for the Pb+Se group than for the Se Group. Clinical signs associated with Pb toxicosis noted in other animals were not observed in the poisoned sheep in this study. Selenite did not protect sheep against Pb toxicity and likely served as a synergistic factor.

  13. The importance of glutathione and phytochelatins on the selenite and arsenate detoxification in Arabidopsis thaliana.

    PubMed

    Aborode, Fatai Adigun; Raab, Andrea; Voigt, Matthias; Costa, Leticia Malta; Krupp, Eva M; Feldmann, Joerg

    2016-11-01

    We investigated the role of glutathione (GSH) and phytochelatins (PCs) on the detoxification of selenite using Arabidopsis thaliana. The wild-type (WT) of Arabidopsis thaliana and its mutants (glutathione deficient Cad 2-1 and phytochelatins deficient Cad 1-3) were separately exposed to varying concentrations of selenite and arsenate and jointly to both toxicants to determine their sensitivities. The results of the study revealed that, the mutants were about 20-fold more sensitive to arsenate than the WT, an indication that the GSH and PCs affect arsenate detoxification. On the contrary, the WT and both mutants showed a similar level of sensitivity to selenite, an indication that the GSH and PCs do not significantly affect selenite detoxification. However, the WT is about 8 times more sensitive to selenite than to arsenate, and the mutants were more resistant to selenite than arsenate by a factor of 2. This could not be explained by the accumulation of both elements in roots and shoots in exposure experiments. The co-exposure of the WT indicates a synergistic effect with regards to toxicity since selenite did not induce PCs but arsenic and selenium compete in their PC binding as revealed by speciation analysis of the root extracts using HPLC-ICP-MS/ESI-MS. In the absence of PCs an antagonistic effect has been detected which might suggest indirectly that the formation of Se glutathione complex prevent the formation of detrimental selenopeptides. This study, therefore, revealed that PC and GSH have only a subordinate role in the detoxification of selenite.

  14. Preparation and characterization of selenium incorporated guar gum nanoparticle and its interaction with H9c2 cells.

    PubMed

    Soumya, Rema Sreenivasan; Vineetha, Vadavanath Prabhakaran; Reshma, Premachandran Latha; Raghu, Kozhiparambil Gopalan

    2013-01-01

    This study deals with the preparation and characterization of selenium incorporated guar gum nanoparticle (SGG), and its effect on H9c2 cardiomyoblast. Herein, nanoprecipitation techniques had been employed for the preparation of SGG nanoparticle. The prepared nanoparticle had been subjected to various types of analytical techniques like transmission electron microscopy (TEM), X-ray diffraction (XRD) and particle size analysis to confirm the characteristics of nanoparticle as well as for selenium incorporation. Physical characterization of nanoparticle showed that the size of nanoparticles increase upto ∼69-173 nm upon selenium incorporation from ∼41-132 nm. Then the prepared nanoparticles were evaluated for its effect on H9c2 cells. In this regard, the effect of nanoparticle on various vital parameters of H9c2 cells was studied. Parameters like cell viability, uptake of selenium incorporated guar gum nanoparticle by the cells, effect of SGG on DNA integrity, apoptosis, reactive oxygen species generation, alteration in transmembrane potential of mitochondria and cytoskeletal integrity had been investigated. Viability results showed that up to 25 nM of SGG was safe (10.31%) but beyond that it induces cytotoxicity. Cellular uptake of selenium showed that cell permeability for SGG is significantly high compared to normal selenium (7.2 nM of selenium for 25 nM SGG compared with 5.2 nM selenium for 25 nM sodium selenite). There was no apoptosis with SGG and also it protects DNA from hydroxyl radical induced breakage. Likewise no adverse effect on mitochondria and cytoskeleton was observed for 25 nM of SGG. Overall results reveal that SGG is highly suitable for biomedical research application.

  15. Dynamic control of gold nanoparticle morphology in a microchannel flow reactor by glucose reduction in aqueous sodium hydroxide solution.

    PubMed

    Ishizaka, Takayuki; Ishigaki, Atsushi; Kawanami, Hajime; Suzuki, Akira; Suzuki, Toshishige M

    2012-02-01

    Continuous flow synthesis of gold nanoparticles was demonstrated using a microchannel reactor with glucose reduction in aqueous alkaline medium. Particle size, morphology, and visual/optical properties of the dispersion liquid were controlled dynamically by tuning of the rate of NaOH addition. Characteristic star-like nanoparticles formed spontaneously as a quasi-stable state, but they changed the morphology to round shape and showed spectral change over time.

  16. Development, characterization, and in vitro evaluation of phosphatidylcholine-sodium cholate-based nanoparticles for siRNA delivery to MCF-7 human breast cancer cells

    NASA Astrophysics Data System (ADS)

    Pérez, Sebastián Ezequiel; Gándola, Yamila; Carlucci, Adriana Mónica; González, Lorena

    2015-03-01

    Phosphatidylcholine-sodium cholate (SC)-based nanoparticles were designed, characterized, and evaluated as plausible oligonucleotides delivery systems. For this purpose, formulation of the systems was optimized to obtain low cytotoxic vehicles with high siRNA-loading capacity and acceptable transfection ability. Mixtures of soybean phosphatidylcholine (SPC) and SC were prepared at different molar ratios with 2 % w/v total concentration; distilled water and two different buffers were used as dispersion medium. Nanoparticles below 150 nm were observed showing spherical shape which turned smaller in diameter as the SC molar proportion increased, accounting for small unilamellar vesicles when low proportions of SC were present in the formulation, but clear mixed micellar solutions at higher SC percentages. Macroscopic characteristics along with physico-chemical parameters values supported the presence of these types of structures. SYBR green displacement assays demonstrated an important oligonucleotide binding that increased as bile salt relative content got higher. Within the same molar ratio, nanoparticles showed the following binding efficiency order: pH 7.4 > pH 5.0 > distilled water. siRNA-loading capacity assays confirmed the higher siRNA binding by the mixed micelles containing higher SC proportion; moreover, the complexes formed were smaller as the SC:SPC ratio increased. Considering cytotoxicity and siRNA-loading capacity, 1:2 and 1:4 SPC:SC formulations were selected for further biological assays. Nanoparticles prepared in any of the three media were able to induce dsRNA uptake and efficiently transfect RNA for gene silencing, for the compositions prepared in buffer pH 5.0 being the most versatile.

  17. Mineral systems and the thermodynamics of selenites and selenates in the oxidation zone of sulfide ores - a review

    NASA Astrophysics Data System (ADS)

    Charykova, Marina V.; Krivovichev, Vladimir G.

    2017-02-01

    Contemporary mineralogy and geochemistry are concerned with understanding and deciphering processes that occur near the surface of the Earth. These processes are especially important for resolving ecological challenges and developing principles of good environmental management. Selenium oxysalts, selenites and selenates, are relatively rare as minerals; there are presently only 34 known mineral species. Thirty-one "pure" selenites, which contain only selenite anionic groups, are known to occur naturally. The other three minerals each contain two anionic groups: selenate and selenite (schmiederite), selenate and sulphate (olsacherite), and selenate and iodate (carlosruizite).

  18. Mineral systems and the thermodynamics of selenites and selenates in the oxidation zone of sulfide ores - a review

    NASA Astrophysics Data System (ADS)

    Charykova, Marina V.; Krivovichev, Vladimir G.

    2016-08-01

    Contemporary mineralogy and geochemistry are concerned with understanding and deciphering processes that occur near the surface of the Earth. These processes are especially important for resolving ecological challenges and developing principles of good environmental management. Selenium oxysalts, selenites and selenates, are relatively rare as minerals; there are presently only 34 known mineral species. Thirty-one "pure" selenites, which contain only selenite anionic groups, are known to occur naturally. The other three minerals each contain two anionic groups: selenate and selenite (schmiederite), selenate and sulphate (olsacherite), and selenate and iodate (carlosruizite). This work is intended to provide a classification of natural selenium oxysalts based on their chemical composition. Selenites belong to a particular mineral system, whose components are chemical elements required to construct the crystal structure of a mineral (species-defining constituents). The number of components represents the minimum number of independent elements necessary to define the composition of the system. All selenites and selenates are divided into two groups: anhydrous selenites (I) and hydrous selenites and selenates (II). The paper also presents systematized data published on the thermodynamics of selenites, which are formed in the weathering zone of sulfide and selenide ores, and determines approaches to the quantitative physicochemical modeling of formation conditions. The Eh-pH diagrams of the Me-Se-H2O systems (Me = Cu, Co, Ni, Fe, Zn, Ca, Al) were calculated and plotted for the average contents of these elements in aqueous weathering solutions in sulfide deposit oxidation zones.

  19. Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana L.

    PubMed

    Lehotai, Nóra; Kolbert, Zsuzsanna; Peto, Andrea; Feigl, Gábor; Ördög, Attila; Kumar, Devanand; Tari, Irma; Erdei, László

    2012-09-01

    Selenium excess can cause toxicity symptoms, e.g. root growth inhibition in non-hyperaccumulator plants such as Arabidopsis. Selenite-induced hormonal and signalling mechanisms in the course of development are poorly understood; therefore this study set out to investigate the possible hormonal and signalling processes using transgenic and mutant Arabidopsis plants. Significant alterations were observed in the root architecture of the selenite-treated plants, due to the loss of cell viability in the root apex. During mild selenite excess, the plants showed symptoms of the morphogenic response: primary root (PR) shortening and increased initiation of laterals, ensuring better nutrient and water uptake and stress acclimation. As well as lower meristem cell activity, the second reason for the Se-induced growth hindrance is the hormonal imbalance, since the in situ expression of the auxin-responsive DR5::GUS, and consequently the auxin levels, significantly decreased, while that of the cytokinin-inducible ARR5::GUS and the ethylene biosynthetic ACS8::GUS increased. It is assumed that auxin and ethylene might positively regulate selenium tolerance, since reduced levels of them resulted in sensitivity. Moreover, high cytokinin levels caused notable selenite tolerance. During early seedling development, nitric oxide (NO) contents decreased but hydrogen peroxide levels increased reflecting the antagonism between the two signal molecules during Se excess. High levels of NO in gsnor1-3, lead to selenite tolerance, while low NO production in nia1nia2 resulted in selenite sensitivity. Consequently, NO derived from the root nitrate reductase activity is responsible for the large-scale selenite tolerance in Arabidopsis.

  20. Visual and light scattering spectrometric method for the detection of melamine using uracil 5‧-triphosphate sodium modified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Liang, Lijiao; Zhen, Shujun; Huang, Chengzhi

    2017-02-01

    A highly selective method was presented for colorimetric determination of melamine using uracil 5‧-triphosphate sodium modified gold nanoparticles (UTP-Au NPs) in this paper. Specific hydrogen-bonding interaction between uracil base (U) and melamine resulted in the aggregation of AuNPs, displaying variations of localized surface plasmon resonance (LSPR) features such as color change from red to blue and enhanced localized surface plasmon resonance light scattering (LSPR-LS) signals. Accordingly, the concentration of melamine could be quantified based on naked eye or a spectrometric method. This method was simple, inexpensive, environmental friendly and highly selective, which has been successfully used for the detection of melamine in pretreated liquid milk products with high recoveries.

  1. Evaluation of the of antibacterial efficacy of polyvinylpyrrolidone (PVP) and tri-sodium citrate (TSC) silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Dey, Arindam; Dasgupta, Abhirup; Kumar, Vijay; Tyagi, Aakriti; Verma, Anita Kamra

    2015-09-01

    We present silver nanoparticles as the new age broad spectrum antibiotic. Siver nanoparticles exhibit unique physical and chemical properties that make them suitable for understanding their biological potential as antimicrobials. In this study, we explored the antibacterial activity of silver nanoparticles (TSC-AgNPs) and silver nanoparticles doped with polyvinylpyrrolidone (PVP-AgNPs) against Gram-negative and Gram-positive bacteria, Escherichia coli (DH5α) and Staphylococcus aureus, (ATCC 13709). Nucleation and growth kinetics during the synthesis process of AgNPs were precisely controlled using citrate (TSC) and further doped with polyvinylpyrrolidone (PVP). This resulted in the formation of two different sized nanoparticles 34 and 54 nm with PDI of 0.426 and 0.643. The physical characterization was done by nanoparticle tracking analysis and scanning electron microscopy, the results of which are in unison with the digital light scattering data. We found the bactericidal effect for both TSC-AgNPs and PVP-AgNPs to be dose-dependent as determined by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against E. coli and S. aureus. Interestingly, we also observed that AgNPs showed enhanced antimicrobial activity with a MIC of 26.75 and 13.48 µg/ml for E. coli and S. aureus, respectively, while MBC for AgNPs are 53.23 and 26.75 µg/ml for E. coli and S. aureus, respectively. Moreover, AgNPs showed increased DNA degradation as observed confirming its higher efficacy as antibacterial agent than the PVP doped AgNPs.

  2. Protective effects of poly(lactic-co-glycolic acid) nanoparticles loaded with erythropoietin stabilized by sodium cholate against glutamate-induced neurotoxicity.

    PubMed

    Jeong, Ji Heun; Kang, Seung Hee; Kim, Jeong Hwan; Yu, Kwang Sik; Lee, In Ho; Lee, Ye Ji; Lee, Je Hun; Lee, Nam Seob; Jeong, Young Gil; Kim, Do Kyung; Kim, Gyu Hyun; Lee, Shin Hye; Hong, Seul Ki; Han, Seung-Yun; Kang, Bo Sun

    2014-11-01

    The final aim of this study was to confirm the neuroprotective effects of recombinant human erythropoietin (rhEPO)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles stabilized by sodium cholate (rhEPO-Ch-NP) and compare their effects with those of rhEPO using an in vitro model of cerebral ischemia. Glutamate-induced excitotoxic damage on SH-SY5Y cells, a human neuroblastoma cell line, with or without rhEPO-Ch-NPs was quantitatively evaluated. The rhEPO-Ch-NPs were carefully prepared using a water-in-oil-in-water (w/o/w) emulsion solvent evaporation technique with PLGA, sodium cholate hydrate, and ethyl acetate. The rhEPO-Ch-NPs were fully characterized by both transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). In addition, significant intracellular uptake of these particles was monitored by confocal microscopy. Notably, the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and nuclear changes observed by 4',6-diamidino-2-phenylindole (DAPI) staining in SH-SY5Y cells demonstrated that rhEPO-Ch-NPs were safer at any concentration investigated and rescued more neuronal cells, while preserving normocytic features against glutamate-induced excitotoxic damages compared to rhEPO.

  3. Thermodynamics of arsenates, selenites and sulfates in the oxidation zone of sulfide ores: XII. Mineral equilibria in the Cd-Se-H2O system at 25°C

    NASA Astrophysics Data System (ADS)

    Charykova, M. V.; Vishnevsky, A. V.; Krivovichev, V. G.; Fokina, E. L.; Ivanova, N. M.; Platonova, N. V.; Semenova, V. V.

    2016-12-01

    Understanding the mechanisms of cadmium and selenium behavior under near-surface conditions is very important for solving certain environmental problems. The principal aim of this study is physicochemical analysis of the formation conditions of synthetic cadmium selenite CdSeO3 · H2O and experimental investigation of its thermal stability and dehydration and dissociation mechanisms. The synthesis was performed by boiling-dry aqueous solutions of cadmium nitrate and sodium selenite. The obtained samples were identified with electron microprobe and powder X-ray diffraction. Complex thermal analysis (thermogravimetry and differential scanning calorimetry) have shown that CdSeO3 · H2O is dehydrated at 177-241°C in two stages, apparently corresponding to the formation of CdSeO3 · 2/3H2O. The Eh-pH diagrams were calculated using the Geochemist's Workbench (GWB 9.0) software package. The Eh-pH diagrams have been calculated for the Cd-Se-H2O and Cd-Se-CO2-H2O systems for the average content of these elements in underground waters. The formation of cadmium selenite, CdSeO3 · H2O in the oxidation medium is quite possible. The existence of CdSeO3 is possible at high temperature.

  4. Functionalized silica nanoparticles as a carrier for Betamethasone Sodium Phosphate: Drug release study and statistical optimization of drug loading by response surface method.

    PubMed

    Ghasemnejad, M; Ahmadi, E; Mohamadnia, Z; Doustgani, A; Hashemikia, S

    2015-11-01

    Mesoporous silica nanoparticles with a hexagonal structure (SBA-15) were synthesized and modified with (3-aminopropyl) triethoxysilane (APTES), and their performance as a carrier for drug delivery system was studied. Chemical structure and morphology of the synthesized and modified SBA-15 were characterized by SEM, BET, TEM, FT-IR and CHN technique. Betamethasone Sodium Phosphate (BSP) as a water soluble drug was loaded on the mesoporous silica particle for the first time. The response surface method was employed to obtain the optimum conditions for the drug/silica nanoparticle preparation, by using Design-Expert software. The effect of time, pH of preparative media, and drug/silica ratio on the drug loading efficiency was investigated by the software. The maximum loading (33.69%) was achieved under optimized condition (pH: 1.8, time: 3.54 (h) and drug/silica ratio: 1.7). The in vitro release behavior of drug loaded particles under various pH values was evaluated. Finally, the release kinetic of the drug was investigated using the Higuchi and Korsmeyer-Peppas models. Cell culture and cytotoxicity assays revealed the synthesized product doesn't have any cytotoxicity against human bladder cell line 5637. Accordingly, the produced drug-loaded nanostructures can be applied via different routes, such as implantation and topical or oral administration.

  5. In-tube magnetic solid phase microextraction of some fluoroquinolones based on the use of sodium dodecyl sulfate coated Fe3O4 nanoparticles packed tube.

    PubMed

    Manbohi, Ahmad; Ahmadi, Seyyed Hamid

    2015-07-23

    In-tube magnetic solid phase microextraction (in-tube MSPME) of fluoroquinolones from water and urine samples based on the use of sodium dodecyl sulfate (SDS) coated Fe3O4 nanoparticles packed tube has been reported. After the preparation of Fe3O4 nanoparticles (NPs) by a batch synthesis, these NPs were introduced into a stainless steel tube by a syringe and then a strong magnet was placed around the tube, so that the Fe3O4 NPs were remained in the tube and the tube was used in the in-tube SPME-HPLC/UV for the analysis of fluoroquinolones in water and urine samples. Plackett-Burman design was employed for screening the variables significantly affecting the extraction efficiency. Then, the significant factors were more investigated by Box-Behnken design. Calibration curves were linear (R(2)>0.990) in the range of 0.1-1000μgL(-1) for ciprofloxacin (CIP) and 0.5-500μgL(-1) for enrofloxacin (ENR) and ofloxacin (OFL), respectively. LODs for all studied fluoroquinolones ranged from 0.01 to 0.05μgL(-1). The main advantages of this method were rapid and easy automation and analysis, short extraction time, high sensitivity, possibility of fully sorbent collection after analysis, wide linear range and no need to organic solvents in extraction.

  6. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm

    PubMed Central

    Li, Dao-Bo; Cheng, Yuan-Yuan; Wu, Chao; Li, Wen-Wei; Li, Na; Yang, Zong-Chuang; Tong, Zhong-Hua; Yu, Han-Qing

    2014-01-01

    In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils. PMID:24435070

  7. Selenite promotes all-trans retinoic acid-induced maturation of acute promyelocytic leukemia cells

    PubMed Central

    Misra, Sougat; Selvam, Arun Kumar; Wallenberg, Marita; Ambati, Aditya; Matolcsy, András; Magalhaes, Isabelle; Lauter, Gilbert; Björnstedt, Mikael

    2016-01-01

    Selective targeting of the PML/RARα oncoprotein demonstrates a successful molecular targeted therapy in acute promyelocytic leukemia (APL) with a typical t(15:17) chromosomal translocation. The zinc-thiolate coordination is critical for structural stability of zinc finger proteins, including the PML moiety of PML/RARα. Based on the known interaction of redox-active selenium compounds with thiolate ligands of zinc, we herein have investigated the abrogatory effects of selenite alone or in combination with all-trans retinoic acid on PML/RARα and the possible effects on differentiation in these cells. At pharmacological concentrations, selenite inhibited the proliferation and survival of APL originated NB4 cells. In combination with ATRA, it potentiated the differentiation of NB4 cells without any differentiating effects of its own as a single agent. Concordant with our hypothesis, PML/RARα oncoprotein expression was completely abrogated by selenite. Increased expression of RAR, PU.1 and FOXO3A transcription factors in the combined treatment suggested the plausible basis for increased differentiation in these cells. We show that selenite at clinically achievable dose targets PML/RARα oncoprotein for degradation and potentiates differentiation of promyelocytic leukemic cells in combination with ATRA. The present investigation reveals the hitherto unknown potential of selenite in targeted abrogation of PML/RARα in APL cells with prospective therapeutic value. PMID:27732960

  8. The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system

    PubMed Central

    Pérez-Sampietro, María; Serra-Cardona, Albert; Canadell, David; Casas, Celia; Ariño, Joaquín; Herrero, Enrique

    2016-01-01

    The yeast Saccharomyces cerevisiae is employed as a model to study the cellular mechanisms of toxicity and defense against selenite, the most frequent environmental selenium form. We show that yeast cells lacking Aft2, a transcription factor that together with Aft1 regulates iron homeostasis, are highly sensitive to selenite but, in contrast to aft1 mutants, this is not rescued by iron supplementation. The absence of Aft2 strongly potentiates the transcriptional responses to selenite, particularly for DNA damage- and oxidative stress-responsive genes, and results in intracellular hyperaccumulation of selenium. Overexpression of PHO4, the transcriptional activator of the PHO regulon under low phosphate conditions, partially reverses sensitivity and hyperaccumulation of selenite in a way that requires the presence of Spl2, a Pho4-controlled protein responsible for post-transcriptional downregulation of the low-affinity phosphate transporters Pho87 and Pho90. SPL2 expression is strongly downregulated in aft2 cells, especially upon selenite treatment. Selenite hypersensitivity of aft2 cells is fully rescued by deletion of PHO90, suggesting a major role for Pho90 in selenite uptake. We propose that the absence of Aft2 leads to enhanced Pho90 function, involving both Spl2-dependent and independent events and resulting in selenite hyperaccumulation and toxicity. PMID:27618952

  9. Draft Genome Sequence of a Selenite- and Tellurite-Reducing Marine Bacterium, Lysinibacillus sp. Strain ZYM-1

    PubMed Central

    Zhao, Yonghe; Dong, Yuxuan; Zhang, Yiwen; Che, Lin; Pan, Haixia

    2016-01-01

    Lysinibacillus sp. ZYM-1, a Gram-positive strain isolated from marine sediments, reduces selenite and tellurite efficiently. Meanwhile, it also exhibits high resistance to Zn2+ and Mn2+. Here, we report the draft genome sequence of strain ZYM-1, which contains genes related to selenite and tellurite reduction and also metal resistance. PMID:26769938

  10. The microbial impact on the sorption behaviour of selenite in an acidic, nutrient-poor boreal bog.

    PubMed

    Lusa, M; Bomberg, M; Aromaa, H; Knuutinen, J; Lehto, J

    2015-09-01

    (79)Se is among the most important long lived radionuclides in spent nuclear fuel and selenite, SeO3(2-), is its typical form in intermediate redox potential. The sorption behaviour of selenite and the bacterial impact on the selenite sorption in a 7-m-deep profile of a nutrient-poor boreal bog was studied using batch sorption experiments. The batch distribution coefficient (Kd) values of selenite decreased as a function of sampling depth and highest Kd values, 6600 L/kg dry weight (DW), were observed in the surface moss and the lowest in the bottom clay at 1700 L/kg DW. The overall maximum sorption was observed at pH between 3 and 4 and the Kd values were significantly higher in unsterilized compared to sterilized samples. The removal of selenite from solution by Pseudomonas sp., Burkholderia sp., Rhodococcus sp. and Paenibacillus sp. strains isolated from the bog was affected by incubation temperature and time. In addition, the incubation of sterilized surface moss, subsurface peat and gyttja samples with added bacteria effectively removed selenite from the solution and on average 65% of selenite was removed when Pseudomonas sp. or Burkholderia sp. strains were used. Our results demonstrate the important role of bacteria for the removal of selenite from the solution phase in the bog environment, having a high organic matter content and a low pH.

  11. Differential effects of selenite and selenate on human melanocytes, keratinocytes, and melanoma cells.

    PubMed

    Bandura, Laura; Drukala, Justyna; Wolnicka-Glubisz, Agnieszka; Björnstedt, Mikael; Korohoda, Wlodzimierz

    2005-04-01

    Among the substances that attracted the attention of oncologists in recent years are selenium-containing compounds, both inorganic and organic. Several epidemiological studies have shown an inverse correlation between selenium intake and cancer incidence. In the experiments reported here, we compared the effects of 2 inorganic selenium-containing salts that differed in the level of selenium oxidation, selenite IV and selenate VI. We tested the effects of these 2 compounds on cell survival and growth, cell cycle processing, cell morphology, cytoskeleton, and lipid peroxidation in 3 human skin cell types: normal keratinocytes, melanocytes, and human melanoma cell line HTB140. The different effects of selenite and selenate on the viability, growth, and morphology of normal cells and tumor cells are reported and provide a base for future research and treatment of some neoplastic diseases. The attention is paid to cell apoptosis induced by selenite and not by selenate, and the effects of tested substances on thioredoxin reductase system are postulated.

  12. In vivo synthesis of selenium nanoparticles by Halococcus salifodinae BK18 and their anti-proliferative properties against HeLa cell line.

    PubMed

    Srivastava, Pallavee; Braganca, Judith M; Kowshik, Meenal

    2014-01-01

    Nanoparticles synthesis by bacteria and yeasts has been widely reported, however, synthesis using halophilic archaea is still in a nascent stage. This study aimed at the intracellular synthesis of selenium nanoparticles (SeNPs) by the haloarchaeon Halococcus salifodinae BK18 when grown in the presence of sodium selenite. Crystallographic characterization of SeNPs by X-ray diffraction, Selected area electron diffraction, and transmission electron microscopy exhibited rod shaped nanoparticles with hexagonal crystal lattice, a crystallite domain size of 28 nm and an aspect ratio (length:diameter) of 13:1. Energy disruptive analysis of X-ray analysis confirmed the presence of selenium in the nano-preparation. The nitrate reductase enzyme assay and the inhibitor studies indicated the involvement of NADH-dependent nitrate reductase in SeNPs synthesis and metal tolerance. The SeNPs exhibited good anti-proliferative properties against HeLa cell lines while being non-cytotoxic to normal cell line model HaCat, suggesting the use of these SeNPs as cancer chemotherapeutic agent. This is the first study on selenium nanoparticles synthesis by haloarchaea.

  13. Biogenic Strain of Silver and Selenium Nanoparticles by Pseudomonas fluorescens and Cladosporium sp. JAPSK3 Isolated from Coal Mine Samples and Their Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Singh, Nidhi; Saha, Prasenjit; Rajkumar, Karthik; Abraham, Jayanthi

    2014-08-01

    Selenium and silver have unique properties and great potential in the field of physics, chemistry and biology. The bacterial strain Pseudomonas fluorescens was isolated by using Kings'B media and Cladosporium sp. was isolated by using potato dextrose agar for soil sample collected from Andhra Pradesh coal field of Singareni. Rapid formation of stable silver and selenium nanoparticles (AgNPs; SeNPs) were observed on exposure of the microbial culture with solution of silver nitrate and sodium selenite. The nanoparticles were characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and atomic force microscopy (AFM). Further, the biologically synthesized nanoparticles were found to have efficient antimicrobial activity against pathogenic bacteria, thus implying significance of the present study in production of biomedical products. AgNPs synthesized by P. fluorescens showed more antimicrobial activity than Cladosporium sp. As the AgNPs are much smaller in size, they showed effective antimicrobial activity when compared to that of SeNPs which showed less effective antimicrobial activity in both P. fluorescens and Cladosporium sp. The microbes are capable of reducing both AgNPs and SeNPs. The biological synthesis of nanoparticles is useful when compared with other physical and chemical methods as they are eco-friendly.

  14. Strontium-copper selenite-chlorides: Synthesis and structural investigation

    SciTech Connect

    Berdonosov, Peter S.; Olenev, Andrei V.; Dolgikh, Valery A.

    2009-09-15

    Two new complex selenite-chlorides of strontium and copper Sr{sub 2}Cu(SeO{sub 3}){sub 2}Cl{sub 2} (I) and SrCu{sub 2}(SeO{sub 3}){sub 2}Cl{sub 2} (II) were obtained and characterized by X-ray diffraction technique, DTA and IR spectroscopy. Both compounds crystallize in the monoclinic system I: Sp. gr. P2{sub 1}/n, a=5.22996(3) A, b=6.50528(4) A, c=12.34518(7) A, beta=91.3643(2){sup o}, Z=2; II: Sp. gr. P2{sub 1}, a=7.1630(14) A, b=7.2070(14) A, c=8.0430(16) A, beta=95.92(3){sup o}, Z=2. Comparison of the crystal structure of (I) with the structures of Sr{sub 2}M(SeO{sub 3}){sub 2}Cl{sub 2} (M=Co, Ni) was performed. The substitution of strontium atom in the structure of (I) by Cu{sup 2+} ion with a 3d{sup 9} Jahn-Teller distorted surrounding leads to the lowering of the structure symmetry and to the appearance of the noncentrosymmetric structure of (II). The noncentrosymmetric character of the structure of (II) was confirmed by SHG signal (1.2 units relative to an alpha-quartz powder sample). - Graphical abstract: Sr{sub 2}Cu(SeO{sub 3}){sub 2}Cl{sub 2} and SrCu{sub 2}(SeO{sub 3}){sub 2}Cl{sub 2} were obtained and characterized by X-ray diffraction technique, DTA and IR spectroscopy.

  15. Characterization of casein and casein-silver conjugated nanoparticle containing multifunctional (pectin-sodium alginate/casein) bilayer film.

    PubMed

    Bora, Anupama; Mishra, Poonam

    2016-10-01

    Casein nano particles and casein-silver conjugated nano composite containing edible bilayer pouch was developed from a heat sealable casein layer laminated with sodium alginate-pectin layer. The physicochemical, mechanical, biodegradability and the toxicity of the film were evaluated. The synthesized casein nano particle was incorporated in the casein layer (inner layer) of the film, however, the casein-silver conjugated nano composite were incorporated in the sodium alginate-pectin (outer) layer of the film. The mechanical, barrier, physical and antimicrobial properties of the film were investigated. Addition of nano composite/nano particle reduced the water solubility (from 67 to 46 % at 80 °C temperature) of the film improved the water barrier properties, light barrier properties, tensile strength and thermal properties of the film. The light barrier properties of the film increased and transparency reduced with increase in silver content in the conjugated nano composite film. The nano particles/nano composite containing film showed antibacterial activity against E. coli. The films were recorded safe for red blood cells as % haemolysis for all the tested samples were found to be well below the safe level.

  16. Selenium speciation profiles in selenite-enriched soybean (Glycine Max) by HPLC-ICPMS and ESI-ITMS.

    PubMed

    Chan, Qilin; Afton, Scott E; Caruso, Joseph A

    2010-02-01

    Soybean (Glycine Max) plants were grown in soil supplemented with sodium selenite. A comprehensive selenium profile, including total selenium concentration, distribution of high molecular weight selenium and characterization of low molecular weight selenium compounds, is reported for each plant compartment: bean, pod, leaf and root of the Se-enriched soybean plants. Two chromatographic techniques, coupled with inductively coupled plasma mass spectrometry (ICPMS) for specific selenium detection, were employed in this work to analyze extract solutions from the plant compartments. Size-exclusion chromatography revealed that the bean compartment, well-known for its strong ability to make proteins, produced high amounts (82% of total Se) of high molecular weight selenospecies, which may offer additional nutritional value and suggest high potential for studying proteins containing selenium in plants. The pod, leaf and root compartments primarily accumulate low molecular weight selenium species. For each compartment, low molecular weight selenium species (lower than 5 kDa) were characterized by ion-pairing reversed phase HPLC-ICPMS and confirmed by electrospray ionization ion trap mass spectrometry (ESI-ITMS). Selenomethionine and selenocystine are the predominant low molecular weight selenium compounds found in the bean, while inorganic selenium was the major species detected in other plant compartments.

  17. Synthesis and evaluation of poly(Sodium 2-Acrylamido-2-Methylpropane Sulfonate-co-Styrene)/magnetite nanoparticle composites as corrosion inhibitors for steel.

    PubMed

    El-Mahdy, Gamal A; Atta, Ayman M; Al-Lohedan, Hamad A

    2014-01-30

    Self-stabilized magnetic polymeric composite nanoparticles of coated poly-(sodium 2-acrylamido-2-methylpropane sulfonate-co-styrene)/magnetite (PAMPS-Na-co-St/Fe3O4) were prepared by emulsifier-free miniemulsion polymerization using styrene (St) as a monomer, 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na) as an ionic comonomer, N,N-methylenebisacrylamide (MBA) as crosslinker, hexadecane (HD) as a hydrophobic solvent, and 2,2-azodiisobutyronitrile (AIBN) as an initiator in the presence of hydrophobic oleic acid coated magnetite particles. Hydrophobic oleic acid coated magnetite particles with an average size of about 7-10 nm were prepared with the new modified water-based magnetite ferrofluid, synthesized by a chemical modified coprecipitation method. The morphology and the particle size distributions of the crosslinked PAMPS-Na-co-St/Fe3O4 composite were observed and analyzed by transmission electron microscopy (TEM). The average Fe3O4 content of PAMPS-Na-co-St/Fe3O4 was determined by thermogravimetric analysis (TGA). The inhibitory action of PAMPS-Na-co-St/Fe3O4 towards steel corrosion in 1 M HCl solutions has been investigated by polarization and electrochemical impedance spectroscopy (EIS) methods. Polarization measurements indicate that PAMPS-Na-co-St/Fe3O4 acts as a mixed type-inhibitor and the inhibition efficiency increases with inhibitor concentration. The results of potentiodynamic polarization and EIS measurements clearly showed that the inhibition mechanism involves blocking of the steel surface by inhibitor molecules via adsorption.

  18. The thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. XI. Solubility of synthetic chalcomenite analog and zinc selenite at 25°C

    NASA Astrophysics Data System (ADS)

    Charykova, M. V.; Krivovichev, V. G.; Ivanova, N. M.; Semenova, V. V.

    2015-12-01

    The aim of this study is the synthesis of CuSeO3·2H2O (chalcomenite analog), ZnSeO3·2H2O, and ZnSeO3·H2O and the investigation of their solubility in water. CuSeO3·2H2O has been synthesized from solutions of Cu nitrate and Na selenite, while Zn selenites were synthesized from solutions of Zn nitrate and Na selenite. The samples obtained have been examined with X-ray diffraction and infrared and Raman spectroscopy. The solubility has been determined using the isothermal saturation method in ampoules at 25°C. The solubility has been calculated using the Geochemist's Workbench (GMB 9.0) software package. Solubility products have been calculated for CuSeO3·2H2O (10-10.63), ZnSeO3·2H2O (10-8.35), and ZnSeO3·H2O (10-7.96). The database used comprises thermodynamic characteristics of 46 elements, 47 base particles, 48 redox pairs, 551 particles in solution, and 624 solid phases. The Eh-pH diagrams of the Zn-Se-H2O and Cu-Se-H2O systems were plotted for the average contents of these elements in underground water in oxidation zones of sulfide deposits.

  19. Increasing Selenium and Yellow Pigment Concentrations in Foxtail Millet (Setaria italica L.) Grain with Foliar Application of Selenite.

    PubMed

    Ning, Na; Yuan, Xiang-Yang; Dong, Shu-Qi; Wen, Yin-Yuan; Gao, Zhen-Pan; Guo, Mei-Jun; Guo, Ping-Yi

    2016-03-01

    Although addition of selenium (Se) is known to increase Se in crops, it is unclear whether exogenous Se is linked to nutritional and functional components in foxtail millet (Setaria italica L.). In this study, we examined the potential of increasing Se and yellow pigment (YP) in foxtail millet grain by foliar application of Se. Field experiments were conducted during the growing season of foxtail millet in 2013 and 2014 to assess the effects of foliar spray of sodium selenite (10-210 g Se ha(-1)) on the yield, Se uptake and accumulation, total YP, and microminerals in the grain. Average grain yields with Se application were 5.60 and 4.53 t ha(-1) in the 2 years, showing no significant differences from the unfertilized control. However, grain Se concentration increased linearly with Se application rate, by 8.92 and 6.09 μg kg(-1) in the 2 years with application of 1 g Se ha(-1) (maximum grain recovery rates of Se fertilizer, 52 and 28 %). Likewise, total grain YP concentration markedly increased by 0.038 and 0.031 mg kg(-1) in the 2 years with application of 1 g Se ha(-1). Grain Mn, Cu, Fe, and Zn concentrations were not significantly affected by Se application. This study indicated that foliar application of Se effectively and reliably increased the concentrations of Se and YP in foxtail millet grain without affecting the yield or mineral micronutrient concentrations. Thus, foliar-applied selenite has a significant potential to increase the concentrations of selenium and YP (putative lutein (Shen, J Cereal Sci 61:86-93, 2015; Abdel-Aal, Cereal Chem 79:455-457, 2002; Abdel-Aal, J Agric Food Chem 55:787-794, 2007)) of foxtail millet and, thus, the health benefits of this crop.

  20. Macroscopic experimental and modeling evaluation of selenite and selenate adsorption mechanisms on gibbsite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenite Se(IV) and selenate Se(VI) selenium adsorption behavior was investigated on gibbsite as a function of solution pH and solution ionic strength. Adsorption of both Se redox states decreased with increasing solution pH. Electrophoretic mobility measurements showed downward shifts in point of...

  1. Macroscopic experimental and modeling evaluation of selenite and selenate adsorption mechanisms on gibbsite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenite Se(IV) and selenate Se(VI) adsorption behavior was investigated on gibbsite as a function of solution pH and solution ionic strength. Adsorption of both Se redox states decreased with increasing solution pH. Electrophoretic mobility measurements showed downward shifts in point of zero cha...

  2. Rhizobium selenitireducens proteins involved in the reduction of selenite to elemental selenium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial based bioremediation barriers can remove the metalloid selenite (SeO3–2) from flowing groundwater. The organisms associated with the process include microorganisms from within the bacterial and archaeal domains that can reduce soluble SeO3–2 to the insoluble and reddish-colored elemental ...

  3. ADSORPTION MECHANISMS AND TRANSPORT BEHAVIOR BETWEEN SELENATE AND SELENITE ON DIFFERENT SORBENTS

    SciTech Connect

    Snyder, Michelle MV; Um, Wooyong

    2014-04-30

    Adsorption of different oxidation species of selenium (Se), selenate (SeO42-) and selenite (SeO32-), with varying pHs (2 - 10) and ionic strengths (I = 0.01 M, 0.1 M and 1.0 M NaNO3) was measured on quartz, aluminum oxide, and synthetic iron oxide (ferrihydrite) using batch reactors to obtain a more detailed understanding of the adsorption mechanisms (e.g., inner- and outer-sphere complex). In addition to the batch experiments with single minerals contained in native Hanford Site sediment, additional batch adsorption studies were conducted with native Hanford Site sediment and groundwater as a function of 1) total Se concentration (from 0.01 to 10 mg L-1) and 2) soil to solution ratios (1:20 and 1:2 grams per mL). Results from these batch studies were compared to a set of saturated column experiments that were conducted with natural Hanford sediment and groundwater spiked with either selenite or selenate to observe the transport behavior of these species. Both batch and column results indicated that selenite adsorption was consistently higher than that of selenate in all experimental conditions used. These different adsorption mechanisms between selenite and selenate result in the varying mobility of Se in the subsurface environment and explain the dependence on the oxidation species.

  4. Effects of selenite on green microalga Haematococcus pluvialis: Bioaccumulation of selenium and enhancement of astaxanthin production.

    PubMed

    Zheng, Yihong; Li, Ze; Tao, Ming; Li, Jiancheng; Hu, Zhangli

    2017-02-01

    Algae are at a low trophic level and play a crucial role in aquatic food webs. They can uptake and accumulate the trace element selenium (Se), which can be either essential or toxic to algal growth depending on the dosage and species. Se toxicity and algae resistance varied across different organisms. In order to investigate the effects of Se on the unicellular green alga Haematococcus pluvialis, an important industrial resource for natural astaxanthin, the algal growth rate, chlorophyll content, and fluorescence parameters were derived from experimental treatment with different concentrations of selenite. The results showed that the EC50 for the algal growth rate was 24mg/L, and that a low dosage of selenite (3mg/L) may not hinder H. pluvialis cell growth, but selenite at levels higher than 13mg/L do restrain cell growth. Bioaccumulation experiments showed that H. pluvialis accumulated up to 646μg/g total Se and 380μg/g organic Se, dry weight. However, treatment with high concentrations of selenite significantly increased intracellular hydrogen peroxide levels, antioxidant enzyme activity, and the production of astaxanthin, suggesting that Se bioaccumulation might be toxic to H. pluvialis.

  5. 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples.

    PubMed

    Sobhanardakani, Soheil; Zandipak, Raziyeh

    2015-07-01

    2,4-Dinitrophenylhydrazine immobilized on sodium dodecyl sulfate (SDS)-coated magnetite and was used for removal of Cd(II) and Ni(II) ions from aqueous solution. The prepared product was characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The size of the nanoparticles according to SEM was obtained around 20-35 nm. In batch tests, the effects of pH, contact time, initial metal concentration, and temperature were studied. The kinetic and equilibrium data were modeled with recently developed models. The adsorption kinetics and isotherms were well fitted by the fractal-like pseudo-second-order model and Langmuir-Freundlich model, respectively. Maximum adsorption capacity by this adsorbent is 255.1 mg g(-1) for Cd(II) ion and 319.6 mg g(-1) for Ni(II) ion at pH 7.0 and 25 °C. The method was successfully applied to the removal of metal cations in real samples (tap water, river water, and petrochemical wastewater).

  6. Solid phase extraction of trace amounts of cadmium(II) ions in water and food samples using iron magnetite nanoparticles modified by sodium dodecyl sulfate and 2-mercaptobenzothiazole.

    PubMed

    Abbasi, Shahriar; ShanbehDehbalai, Mehdi; Khani, Hossein

    2017-03-01

    A new, simple and rapid method for solid phase extraction and preconcentration of trace amounts of cadmium ions using 2-mercaptobenzothiazole/sodium dodecyl sulfate immobilized on magnetite nanoparticles (MBT-SDS-MNPs) was proposed. The method is based on the extraction of cadmium ions via complexation with MBT immobilized on SDS-coated MNPs and their determination by flame atomic absorption spectrometry. The effects of different parameters - pH; eluent type, concentration and volume; amounts of salt and adsorbent; contact time and interfering ions - on the adsorption of cadmium ions were studied. Under optimized conditions, the calibration curve was linear in the range of 10-5,000 μg L(-1). Detection limit and relative standard deviation of the proposed method were 0.009 μg L(-1) and 2.2%, respectively. The adsorption data were analyzed by Langmuir and Freundlich isotherm models and a maximum adsorption amount of 24.80 mg g(-1), a Langmuir adsorption equilibrium constant (b) of 4.62 and Freundlich constants Kf and n of 6.075 mg(1-1/n) L(1/n) g(-1) and 2.391, respectively, were obtained. Finally, this adsorbent was successfully used for extraction of cadmium from water and food samples.

  7. Hydrogen generation from the hydrolysis of sodium borohydride using chemically modified multiwalled carbon nanotubes with pyridinium based ionic liquid and decorated with highly dispersed Mn nanoparticles

    NASA Astrophysics Data System (ADS)

    Chinnappan, Amutha; Puguan, John Marc C.; Chung, Wook-Jin; Kim, Hern

    2015-10-01

    Multiwalled carbon nanotubes (MWCNTs)/Ionic liquid (IL)/Mn nanohybrids are synthesized and their catalytic activity is examined for hydrogen generation from the hydrolysis of sodium borohydride (NaBH4). Transmission electron microscopy reveals that Mn nanoparticles well-distributed on the MWCNTs surface. Energy dispersive x-ray spectrometer and x-ray photoelectron spectroscopy confirms the presence of Mn and Ni atom in the nanohybrids. The nanohybrids exhibit excellent catalytic lifetime and gives the total turnover number of 18496 mol H2/mol catalyst in the hydrolysis of NaBH4, which can be attributed to the presence of Mn atom and IL containing nickel halide anion. It is worthy of note that a very small amount of catalyst is used for this hydrolysis reaction. The activation energy is found to be 40.8 kJ/mol by MWCNTs/IL/Mn nanohybrids from the kinetic study of the hydrogen generation from the hydrolysis of NaBH4. The improved hydrogen generation rate, lower activation energy, and less expensive make the nanohybrids promising candidate as catalyst for the hydrogen generation from NaBH4 solution. The nanohybrids are easy to prepare, store and yet catalytically active. The recycling process is very simple and further purification is not tedious.

  8. Influence of Temperature on the Formation of Silver Nanoparticles by using a Seed-Free Photochemical Method under Sodium-Lamp Irradiation.

    PubMed

    Kuo, Yen-Ling; Juang, Tzong-Yuan; Chang, Shi-Hise; Tsai, Chin-Ming; Lai, Yen-Shang; Yang, Li-Chen; Huang, Cheng-Liang

    2015-10-26

    Silver nanoparticles can be prepared by using a seed-free photo-assisted citrate reduction method under the irradiation of a sodium lamp. Under the same irradiation intensity, bath temperatures are crucial in influencing the reaction rate, morphologies of final products, and shape evolution of the silver nanostructures. For example, when the bath temperature is 80 °C, the product yields of silver nanoplates, nanorods, and nanodecahedra are 38±6 %, 35±10 %, and 12±8 %, respectively. However, when the bath temperature is 30 °C, the product yields of silver nanoplates, nanorods, and nanodecahedra are 6±3 %, 0 %, and 83±16 %, respectively. Time-dependent UV/Vis spectra and TEM images show that silver nanoplates were formed at the earlier reaction stage and greatly decreased in amount at the later stage when the bath temperatures are less than or equal to 40 °C. This indicates that the silver nanoplates, which can be regarded as intermediates, are kinetically favored products. They are not thermodynamically favored products at these relatively low bath temperatures. The SERS spectra of crystal violet (CV) show that all the silver colloids synthesized at various temperatures exhibit good enhancement factors and that the colloids prepared at lower bath temperatures have a higher enhancement factor.

  9. nanoparticles

    NASA Astrophysics Data System (ADS)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  10. Sodium selenosulfate at an innocuous dose markedly prevents cisplatin-induced gastrointestinal toxicity

    SciTech Connect

    Li, Jun; Sun, Kang; Ni, Lijuan; Wang, Xufang; Wang, Dongxu; Zhang, Jinsong

    2012-02-01

    Our previous studies in mice revealed that two weeks short-term toxicity of sodium selenosulfate was significantly lower than that of sodium selenite, but selenium repletion efficacy of both compounds was equivalent. In addition, we showed that sodium selenosulfate reduced nephrotoxicity of cisplatin (CDDP) without compromising its anticancer activity, thus leading to a dramatic increase of cancer cure rate from 25% to 75%. Hydration has been used in clinical practice to reduce CDDP-induced nephrotoxicity, but it cannot mitigate CDDP-induced gastrointestinal toxicity. The present work investigated whether sodium selenosulfate is a potential preventive agent for the gastrointestinal toxicity. In tumor-bearing mice, sodium selenosulfate was administered at a dose of 9.5 μmol/kg daily for 11 days, CDDP alone resulted in diarrhea by 88% on day 12, whereas the co-administration of CDDP and sodium selenosulfate dramatically reduced diarrhea to 6% (p < 0.0001). Such a prominent protective effect promoted us to evaluate the safety potential of long-term sodium selenosulfate application. Mice were administered with sodium selenosulfate or sodium selenite for 55 days at the doses of 12.7 and 19 μmol/kg. The low-dose sodium selenite caused growth suppression and hepatotoxicity which were aggravated by the high-dose, leading to 40% mortality rate, but no toxic symptoms were observed in the two sodium selenosulfate groups. Altogether these results clearly show that sodium selenosulfate at an innocuous dose can markedly prevent CDDP-induced gastrointestinal toxicity. -- Highlights: ►Cisplatin resulted in diarrhea in mice by 88%. ►i.p. selenosulfate at 9.5 μmol/kg daily for 11 days reduced diarrhea to 6%. ►i.p. selenosulfate at 19 μmol/kg daily for 55 days was not toxic. ►i.p. selenite at 19 μmol/kg daily for 55 days was lethal. ►Innocuous dose of selenosulfate greatly prevents cisplatin-induced diarrhea.

  11. Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine.

    PubMed

    Wu, Hsin-Pin; Huang, Chia-Chi; Cheng, Tian-Lu; Tseng, Wei-Lung

    2008-07-15

    A sensor for detecting cysteine (Cys) in a solution of fluorosurfactant (FSN)-capped gold nanoparticles (AuNPs) has been developed. Under acidic conditions, FSN-capped AuNPs are aggregated in the presence of homocysteine (HCys) and Cys but not in the presence of cysteinylglycine, glutathione, and gamma-glutamycysteine. When adding NaOH to a solution of HCys, the five-membered ring transition state is formed through intramolecular hydrogen abstraction. By contrast, it is difficult for Cys to form a four-membered ring transition state after Cys has been pretreated with NaOH. As a result, the HCys-induced aggregation of the FSN-capped AuNPs is suppressed because the five-membered ring transition state exhibits relatively larger steric hindrance and has stronger interaction with the FSN molecules. Thus, we can discriminate between Cys and HCys on the basis of different aggregation kinetics. Under the optimum condition, the selectivity of the probe for Cys in aqueous solutions is remarkably high over the other aminthiols. Note that HCys and Cys have very similar structure and pK(a) value. We have validated the applicability of our method through the analyses of Cys in urine samples. It is believed that this approach has great potential for the detection of Cys in biological samples.

  12. Enzymic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus.

    PubMed

    Kessi, Janine

    2006-03-01

    Various enzymic systems, such as nitrite reductase, sulfite reductase and glutathione reductase, have been proposed for, or suspected to be involved in, the reduction of selenite in bacteria. As alphaproteobacteria have been shown to be highly tolerant to transition metal oxyanions, it seemed interesting to investigate the hypothetical involvement of these different enzymes in the reduction of selenite in the purple non-sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus. The hypothetical involvement of nitrite reductase and sulfite reductase in the reduction of selenite in these bacteria was investigated by analysing the effects of nitrite and sulfite amendments on the growth and kinetics of selenite reduction. The reduction of selenite was not concomitant with that of either sulfite or nitrite in Rs. rubrum, suggesting that the reduction pathways operate independently. In Rb. capsulatus, strong interactions were observed between the nitrite reduction and selenite reduction pathways. However, in both organisms, selenite reduction took place during both the growth phase and the stationary phase, indicating that selenite metabolism is constitutively expressed. In contrast, neither nitrite nor sulfite was transformed during stationary phase, suggesting that the metabolism of both ions is induced, which implies that identical reduction pathways for selenite and nitrite or selenite and sulfite are excluded. Buthionine sulfoximine (BSO, S-n-butyl homocysteine sulfoximine), a specific inhibitor of glutathione synthesis, was used to depress the intracellular glutathione level. In stationary-phase cultures of both Rs. rubrum and Rb. capsulatus amended with BSO, the rate of reduction of selenite was slowed, indicating that glutathione may be involved in the dissimilatory reduction of selenite in these organisms. The analysis of the headspace gases of the cultures indicated that the synthesis of methylated selenium compounds was prevented in the presence of 3

  13. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity

    NASA Astrophysics Data System (ADS)

    Torres, S. K.; Campos, V. L.; León, C. G.; Rodríguez-Llamazares, S. M.; Rojas, S. M.; González, M.; Smith, C.; Mondaca, M. A.

    2012-11-01

    The bio-reduction of selenite (Se (IV)) generates nanoparticles with sizes ranging between 30 and 300 nm. Biologic properties of Se nanoparticles, e.g., antioxidant activity, are dependent on the nanoparticle size; smaller particles have greater activity. In this study, the bio-reduction of selenite by Pantoea agglomerans strain UC-32 under aerobic conditions and room temperature to produce bioactive Se nanoparticles smaller than 100 nm was demonstrated. Isolation and purification of the nanoparticles was performed by alkaline lysis. These purified nanoparticles were stabilized with l-cysteine (4 mM). The visualization and characterization of nanoparticles were performed by transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning electron microscopy. The antioxidant activity of nanoparticles was determined by production of reactive oxygen species using human umbilical vein endothelial cells. Transmission electron microscopy images showed the accumulation of spherical selenium nanoparticles as intracellular and extracellular deposits. The size of Se nanoparticles varied with incubation time. Amorphous Se nanoparticles with size in the order of 100 nm were obtained before 24 h of incubation; but, at 24 h of incubation, the size of the majority of the nanoparticles was in the desirable order of 100 nm and they were not aggregated. Energy dispersive spectroscopy spectra indicated that nanoparticles were composed entirely of selenium. Antioxidant activity of stabilized selenium nanoparticles demonstrated high antioxidant activity when compared to selenite and selenium nanoparticles without stabilization. Stabilized biologically synthetized selenium (0) nanoparticles with size less than 100 nm have a potential application as a food additive with antioxidant properties relevant to human health.

  14. Pharmacological and toxicological effects of co-exposure of human gingival fibroblasts to silver nanoparticles and sodium fluoride

    PubMed Central

    Inkielewicz-Stepniak, Iwona; Santos-Martinez, Maria Jose; Medina, Carlos; Radomski, Marek W

    2014-01-01

    Background Silver nanoparticles (AgNPs) and fluoride (F) are pharmacological agents widely used in oral medicine and dental practice due to their anti-microbial/anti-cavity properties. However, risks associated with the co-exposure of local cells and tissues to these xenobiotics are not clear. Therefore, we have evaluated the effects of AgNPs and F co-exposure on human gingival fibroblast cells. Methods Human gingival fibroblast cells (CRL-2014) were exposed to AgNPs and/or F at different concentrations for up to 24 hours. Cellular uptake of AgNPs was examined by transmission electron microscopy. Downstream inflammatory effects and oxidative stress were measured by real-time quantitative polymerase chain reaction (PCR) and reactive oxygen species (ROS) generation. Cytotoxicity and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and real-time quantitative PCR and flow cytometry, respectively. Finally, the involvement of mitogen-activated protein kinases (MAPK) was studied using Western blot. Results We found that AgNPs penetrated the cell membrane and localized inside the mitochondria. Co-incubation experiments resulted in increased oxidative stress, inflammation, and apoptosis. In addition, we found that co-exposure to both xenobiotics phosphorylated MAPK, particularly p42/44 MAPK. Conclusion A combined exposure of human fibroblasts to AgNPs and F results in increased cellular damage. Further studies are needed in order to evaluate pharmacological and potentially toxicological effects of AgNPs and F on oral health. PMID:24729703

  15. Adsorption of selenite and selenate by nanocrystalline aluminum oxide, neat and impregnated in chitosan beads.

    PubMed

    Yamani, Jamila S; Lounsbury, Amanda W; Zimmerman, Julie B

    2014-03-01

    Nanocrystalline metal oxide impregnated chitosan beads (MICB) were successfully developed with nanocrystalline aluminum oxide (n-Al2O3) to form n-Al2O3 impregnated chitosan beads (AICB). AICB were able to simultaneously adsorb inorganic aqueous selenite and selenate more effectively than n-Al2O3 or chitosan alone. For completeness, adsorption performance was also compared to n-TiO2, a widely studied adsorbent for selenium, and n-TiO2 impregnated chitosan beads (TICB). For the selenite system, n-Al2O3 was the primary active adsorbent responsible for removal as chitosan has a low affinity for selenite. For selenate, however, chitosan was the primary active adsorbent. The association constants for the adsorbent/adsorbate complexes and the relative amounts in which they are present supported this hypothesis. The association constants for selenate binding on n-Al2O3 and chitosan were 1.215 × 10(-2) and 3.048 × 10(-3), respectively, and the association constants for selenite binding on n-Al2O3 and chitosan were 1.349 × 10(-2) and 1.990 × 10(-4), respectively. For systems with coexisting selenite and selenate, AICB is potentially the most robust option as it maintained the most consistent performance regardless of fractionation of the selenium species. Kinetic studies and equilibrium isotherms were completed and effectively modeled using pseudo-second order kinetics and Langmuir adsorption theory, making it the first comprehensive systematic study of neat n-Al2O3 and AICB for selenium adsorption. pH significantly impacted adsorption due to changes in the adsorbent surface charge; increasing pH corresponded with decreasing adsorbent performance, beginning at approximately pH 6.5-7 for AICB. The trend in performance due to the effect of pH indicated that selenate binds to the amine group in chitosan, as suggested by other studies. In addition, increasing background sulfate concentration was found to negatively impact adsorption efficacy for both selenite, and

  16. Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies.

    PubMed

    Severino, Patrícia; Chaud, Marco V; Shimojo, Andrea; Antonini, Danilo; Lancelloti, Marcelo; Santana, Maria Helena A; Souto, Eliana B

    2015-05-01

    Polymyxins are a group of antibiotics with a common structure of a cyclic peptide with a long hydrophobic tail. Polymyxin B sulphate (PLX) has cationic charge, which is an obstacle for the efficient loading into Solid Lipid Nanoparticles (SLN). In the present paper, we describe an innovative method to load PLX into SLN to achieve the sustained release of the drug. PLX was firstly cross-linked with sodium alginate (SA) at different ratios (1:1, 1:2 and 1:3 SA/PLX), and loaded into SLN produced by high pressure homogenization (HPH). Optimized SLN were produced applying 500bar pressure and 5 homogenization cycles. The best results were obtained with SA/PLX (1:1), recording 99.08±1.2% for the association efficiency of the drug with SA, 0.99±10g for the loading capacity and 212.07±5.84% degree of swelling. The rheological profile of aqueous SA solution followed the typical behaviour of concentrated polymeric solutions, whereas aqueous SA/PLX solution exhibited a gel-like dynamic behaviour. Micrographs show that SA/PLX depicted a porous and discontinuous amorphous phase in different ratios. The encapsulation efficiency of SA/PLX (1:1) in SLN, the mean particle diameter, polydispersity index and zeta potential were, respectively, 82.7±5.5%; 439.5±20.42nm, 0.241±0.050 and -34.8±0.55mV. The effect of SLN on cell viability was checked in HaCat and NIH/3T3 cell lines, and the minimal inhibitory concentrations (MIC) were determined in Pseudomonas aeruginosa strains. SA/PLX-loaded SLN were shown to be less toxic than free PLX. Minimal inhibitory concentrations (MIC) showed the presence of the cross-linker polymer-drug complex, and SLN were shown to enhance MIC in the evaluated strains.

  17. Chemical vapor transport and solid-state exchange synthesis of new copper selenite bromides

    NASA Astrophysics Data System (ADS)

    Charkin, Dmitri O.; Kayukov, Roman A.; Zagidullin, Karim A.; Siidra, Oleg I.

    2017-02-01

    A new dimorphic copper selenite bromide, Cu5(SeO3)4Br2 was obtained via chemical transport reactions. α-Cu5(SeO3)4Br2, monoclinic (1m) and β-Cu5(SeO3)4Br2, triclinic (1a) polymorphs were produced simultaneously upon reaction of amorphous, partially dehydrated copper selenite and copper bromide. 1m is similar to Cu5(SeO3)4Cl2, whereas 1a is distantly related to Ni5(SeO3)4Br2 and Co5(SeO3)4Br2. Attempts to reproduce synthesis of 1a via exchange reaction between Na2SeO3 and CuBr2 resulted in a new Na2[Cu7O2](SeO3)4Br4 (2). Current study demonstrates for the first time, that both chemical vapor and exchange reactions can be employed in preparation of new selenite halides.

  18. Effect of hesperetin on chaperone activity in selenite-induced cataract

    PubMed Central

    Oka, Mikako; Tamura, Hiroomi; Takehana, Makoto

    2016-01-01

    Abstract Background. Chaperone activity of α-crystallin in the lens works to prevent protein aggregation and is important to maintain the lens transparency. This study evaluated the effect of hesperetin on lens chaperone activity in selenite-induced cataracts. Methodology. Thirteen-day-old rats were divided into four groups. Animals were given hesperetin (groups G2 and G4) or vehicle (G1 and G3) on Days 0, 1, and 2. Rats in G3 and G4 were administered selenite subcutaneously 4 hours after the first hesperetin injection. On Days 2, 4, and 6, cataract grades were evaluated using slit-lamp biomicroscopy. The amount of a-crystallin and chaperone activity in water-soluble fraction were measured after animals sacrificed. Results. G3 on day 4 had developed significant cataract, as an average cataract grading of 4.6 ± 0.2. In contrast, G4 had less severe central opacities and lower stage cataracts than G3, as an average cataract grading of 2.4 ± 0.4. The a-crystallin levels in G3 lenses were lower than in G1, but the same as G4. Additionally, chaperone activity was weaker in G3 lenses than G1, but the same as in G4. Conclusions. Our results suggest that hesperetin can prevent the decreasing lens chaperone activity and a-crystallin water solubility by administered of selenite. PMID:28352791

  19. Selenate Enhances STAT3 Transcriptional Activity in Endothelial Cells: Differential Actions of Selenate and Selenite on LIF Cytokine Signaling and Cell Viability

    PubMed Central

    Alturkmani, Hani J.; Zgheib, Carlos; Zouein, Fouad A.; Alshaaer, Nour Eddin F.; Kurdi, Mazen; Booz, George W.

    2012-01-01

    Sodium selenate may have utility in treating Alzheimer’s disease and diabetes; however, its impact on the associated proinflammatory cytokine signaling of endothelial cells has not been investigated. We report that treatment of human microvascular endothelial cells with sodium selenate at a pharmacological dose (100 μM) enhanced tyrosine phosphorylation of nuclear STAT3 on Y705 in response to IL-6-type cytokine, leukemia inhibitory factor (LIF), indicative of enhanced STAT3 activity. Accordingly, STAT3 nuclear binding to DNA was increased, as well as LIF-induced gene expression of chemokine (C-C motif) ligand 2 (CCL2). CCL2 plays a key role in inflammatory processes associated with neuronal degenerative and vascular diseases. The enhancing action of selenate on LIF-induced STAT3 Y705 phosphorylation was replicated by vanadate and a specific inhibitor of protein tyrosine phosphatase, non-receptor type 1 (PTP1B). Moreover, we observed that selenite, the cellular reduction bioproduct of selenate but not selenate itself, inhibited enzymatic activity of human recombinant PTP1B. Our findings support the conclusion that in human microvascular endothelial cells selenate has a vanadate-like effect in inhibiting PTP1B and enhancing proinflammatory STAT3 activation. These findings raise the possibility that beneficial actions of supranutritional levels of selenate for treating Alzheimer’s and diabetes may be offset by a proinflammatory action on endothelial cells. PMID:22366233

  20. Selenate enhances STAT3 transcriptional activity in endothelial cells: differential actions of selenate and selenite on LIF cytokine signaling and cell viability.

    PubMed

    Alturkmani, Hani J; Zgheib, Carlos; Zouein, Fouad A; Alshaaer, Nour Eddin F; Kurdi, Mazen; Booz, George W

    2012-04-01

    Sodium selenate may have utility in treating Alzheimer's disease and diabetes; however, its impact on the associated proinflammatory cytokine signaling of endothelial cells has not been investigated. We report that treatment of human microvascular endothelial cells with sodium selenate at a pharmacological dose (100 μM) enhanced tyrosine phosphorylation of nuclear STAT3 on Y705 in response to IL-6-type cytokine, leukemia inhibitory factor (LIF), indicative of enhanced STAT3 activity. Accordingly, STAT3 nuclear binding to DNA was increased, as well as LIF-induced gene expression of chemokine (C-C motif) ligand 2 (CCL2). CCL2 plays a key role in inflammatory processes associated with neuronal degenerative and vascular diseases. The enhancing action of selenate on LIF-induced STAT3 Y705 phosphorylation was replicated by vanadate and a specific inhibitor of protein tyrosine phosphatase, non-receptor type 1 (PTP1B). Moreover, we observed that selenite, the cellular reduction bioproduct of selenate but not selenate itself, inhibited enzymatic activity of human recombinant PTP1B. Our findings support the conclusion that in human microvascular endothelial cells selenate has a vanadate-like effect in inhibiting PTP1B and enhancing proinflammatory STAT3 activation. These findings raise the possibility that beneficial actions of supranutritional levels of selenate for treating Alzheimer's and diabetes may be offset by a proinflammatory action on endothelial cells.

  1. Sodium Test

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Sodium Share this page: Was this page helpful? Also known as: Na Formal name: Sodium Related tests: Chloride , Bicarbonate , Potassium , Electrolytes , Osmolality , Basic ...

  2. Sodium Oxybate

    MedlinePlus

    Sodium oxybate is used to prevent attacks of cataplexy (episodes of muscle weakness that begin suddenly and ... urge to sleep during daily activities, and cataplexy). Sodium oxybate is in a class of medications called ...

  3. Sodium - blood

    MedlinePlus

    ... naproxen Lower than normal sodium level is called hyponatremia. It may be due to: Use of medicines ... overview Hepatorenal syndrome Hyperaldosteronism - primary and secondary Hypopituitarism Hypothyroidism Ions Low sodium level Nephrotic syndrome Sweating Review ...

  4. Sodium Bicarbonate

    MedlinePlus

    ... to 2 hours after meals, with a full glass of water. If you are using sodium bicarbonate for another reason, it may be taken with or without food. Do not take sodium bicarbonate on an overly full stomach.Dissolve sodium bicarbonate powder in at least 4 ounces (120 milliliters) of ...

  5. Growth, structural, optical, thermal and mechanical properties of cytosinium hydrogen selenite: A novel nonlinear optical single crystal

    SciTech Connect

    Jaikumar, P.; Sathiskumar, S.; Balakrishnan, T.; Ramamurthi, K.

    2016-06-15

    Highlights: • Growth of bulk single crystals of cytosinium hydrogen selenite (CHS) is reported. • Dielectric constant of CHS is measured as a function of Frequency and temperature. • Lower cut off value of UV–vis-NIR spectrum of CHS crystal is observed at 210 nm. • Meyer’s index value of CHS crystal calculated identifies it as a soft material. • Powder SHG efficiency of CHS is about 1.5 times that of KDP crystal. - Abstract: A novel nonlinear optical single crystal of cytosinium hydrogen selenite was grown from aqueous solution of cytosinium hydrogen selenite by slow solvent evaporation method at room temperature. The structural properties of grown crystal have been studied by single crystal and powder X-ray diffraction analysis. Presence of various functional groups was identified from Fourier transform infrared spectroscopy. The optical transmittance and absorbance spectra were recorded by UV–vis-NIR spectrometer and the grown crystal possesses good transparency in the entire visible region. The dielectric constant and dielectric loss of the crystal were calculated as a function of frequency at different temperatures. The mechanical strength of the cytosinium hydrogen selenite crystal was estimated using Vicker’s microhardness tester. Etch patterns of the cytosinium hydrogen selenite crystal were obtained using distilled water as etchant for different etching time. Second harmonic generation efficiency tested using Nd:YAG laser is about 1.5 times that of KDP.

  6. Development of a dual-analyte fluorescent sensor for the determination of bioactive nitrite and selenite in water samples.

    PubMed

    Martínez-Tomé, M J; Esquembre, R; Mallavia, R; Mateo, C R

    2010-01-20

    Nitrite and selenium are two bioactive compounds found in the environment which show beneficial effects for health at low levels but have toxic effects at higher doses. Consequently, quantification of both analytes in water samples results of great interest in areas such as biomedicine, food technology and environmental analysis. In a recent paper, we immobilized the inclusion complex formed between 2,3-diaminonaphthalene (DAN) and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) in a sol-gel matrix, in order to prepare a highly sensitive reagentless fluorescence-based sensor for the specific measurement of nitrite. Here we have explored the possibility of using the sol-gel immobilized complex to quantify selenite (Se (IV)), the more toxic form of selenium, as well as to act as a dual-analyte chemical sensor for simultaneous quantification of both nitrite and selenite in aqueous samples. Results show that (a) inclusion of DAN in HP-beta-CD and its subsequent immobilization in a sol-gel matrix do not modify the reactivity of DAN against selenite, (b) the reaction product formed (4,5-benzopiazselenol) remains into the cyclodextrin increasing considerably its fluorescence quantum yield and avoiding, therefore, its extraction into organic solvents, (c) the developed sensor can detect selenite concentrations at submicromolar level with a minimum detection limit of 13 nM, (d) the immobilized system is able to simultaneously quantify nitrite and selenite at submicromolar concentrations in natural water samples with no further sample pre-treatment.

  7. Superoxide generated from the glutathione-mediated reduction of selenite damages the iron-sulfur cluster of chloroplastic ferredoxin.

    PubMed

    Fisher, Brian; Yarmolinsky, Dmitry; Abdel-Ghany, Salah; Pilon, Marinus; Pilon-Smits, Elizabeth A; Sagi, Moshe; Van Hoewyk, Doug

    2016-09-01

    Selenium assimilation in plants is facilitated by several enzymes that participate in the transport and assimilation of sulfate. Manipulation of genes that function in sulfur metabolism dramatically affects selenium toxicity and accumulation. However, it has been proposed that selenite is not reduced by sulfite reductase. Instead, selenite can be non-enzymatically reduced by glutathione, generating selenodiglutathione and superoxide. The damaging effects of superoxide on iron-sulfur clusters in cytosolic and mitochondrial proteins are well known. However, it is unknown if superoxide damages chloroplastic iron-sulfur proteins. The goals of this study were twofold: to determine whether decreased activity of sulfite reductase impacts selenium tolerance in Arabidopsis, and to determine if superoxide generated from the glutathione-mediated reduction of selenite damages the iron-sulfur cluster of ferredoxin. Our data demonstrate that knockdown of sulfite reductase in Arabidopsis does not affect selenite tolerance or selenium accumulation. Additionally, we provide in vitro evidence that the non-enzymatic reduction of selenite damages the iron-sulfur cluster of ferredoxin, a plastidial protein that is an essential component of the photosynthetic light reactions. Damage to ferredoxin's iron-sulfur cluster was associated with formation of apo-ferredoxin and impaired activity. We conclude that if superoxide damages iron-sulfur clusters of ferredoxin in planta, then it might contribute to photosynthetic impairment often associated with abiotic stress, including toxic levels of selenium.

  8. Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity.

    PubMed

    Jia, Xuewei; Liu, Qingye; Zou, Siwei; Xu, Xiaojuan; Zhang, Lina

    2015-03-06

    We report on a green procedure for the stabilization of selenium nanoparticles (SeNPs) by a naturally occurring β-glucan with triple helical conformation known as Lentinan (t-LNT) in water after denaturing into single chains (s-LNT) at 140 °C. The results demonstrated that the s-LNT can interact with SeNPs through Se-O-H interaction. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectra, UV/vis, X-ray diffraction (XRD) and dynamic light scattering (DLS) showed that s-LNT coated SeNPs to form a stable nano-composite Se/s-LNT, leading to good dispersion of SeNPs. Especially, the as-prepared Se/s-LNT composite in the solution could remain homogeneous and translucent for 30 days without any precipitates. Different size distribution of SeNPs was prepared by simply controlling the concentrations of selenite sodium and the corresponding reducing agent ascorbic acid. The size effect of SeNPs on anti-tumor activity was revealed that the SeNPs with more evenly particle size distribution show the higher anticancer activity.

  9. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate.

    PubMed

    Longchamp, Mélanie; Castrec-Rouelle, Maryse; Biron, Philippe; Bariac, Thierry

    2015-09-01

    Quantification of selenium bioavailability from foods is a key challenge following the discovery of the antioxidant role of this micronutrient in human health. This study presents the uptake, accumulation and rate of metabolization in mature Zea mays plants grown in hydroponic solution supplemented with selenate or selenite. Selenium content was lower in plants supplemented with selenate and accumulated mainly in the leaves compared with selenite-treated plants where the selenium was retained in the roots. Selenite-treated grains accumulated more selenium. Selenate was metabolized less than selenite in whole plants, but in grains selenium was present exclusively as organic selenium compounds. For humans, the bioavailability of organic selenium was evaluated at 90% compared with only 50% for inorganic forms. Our results show that the potential for selenium bioavailability is increased with selenite treatment.

  10. Expulsion of selenium/protein nanoparticles through vesicle-like structures by Saccharomyces cerevisiae under microaerophilic environment.

    PubMed

    Zhang, Liang; Li, Daping; Gao, Ping

    2012-12-01

    Nano-selenium/protein is a kind of lower toxic supplement to human. Many microorganisms can reduce selenite/selenate to intracellular or extracellular selenium nanoparticles. This study examined the influence of dissolved oxygen on the expulsion of extracellular selenium/protein produced in Saccharomyces cerevisiae. More of the added selenite was reduced to extracellular selenium nanoparticles by yeast cells only under oxygen-limited condition than under aerobic or anaerobic condition. For the first time, we evidenced that selenium/protein nanoparticles synthesized in vivo were transported out of the cells by vesicle-like structures under microaerophilic environment. The characterizations of the extracellular spherical selenium/protein nanoparticles were also examined by SEM, TEM, EDX and FTIR.

  11. Syntheses, structures and characterizations of three novel vanadium selenites with organically bonded copper/nickel complex

    NASA Astrophysics Data System (ADS)

    Qian, Cheng; Kong, Fang; Mao, Jiang-Gao

    2016-06-01

    A series of vanadium selenites covalently bonded with metal-organic complex, namely, Ni(2,2-bipy)2V2O4(SeO3)2 (1), Cu(2,2-bipy)V2O4(SeO3)2·0.5H2O (2) and Cu2(2,2-bipy)2V5O12(SeO3)2 (3) (2,2-bipy=2,2-bipyridine) have been hydrothermally synthesized and structurally characterized. They exhibit three different structural dimensions, from 0D cluster, 1D chain to 2D layer. Compound 1 features a 0D {Ni(2,2-bipy)2V2O4(SeO3)2}2 dimeric cluster composed of two {Ni(2,2-bipy)2}2+ moieties connected by the {V4O8(SeO3)4}4- cluster. Compound 2 shows a 1D {Cu(2,2-bipy)V2O4(SeO3)2}n chain in which the {Cu2(2,2-bipy)2}4+ moieties are bridged by the {V4O8(SeO3)4}4- clusters. Compound 3 displays a 2D structure consisted of mixed valence vanadium selenites layers {VIVVV4SeIV2O18}n4- and {Cu(2,2-bipy)}2+ complex moieties. The adjacent layers are further interconnected via π-π interactions between the 2,2-bipy ligands exhibiting an interesting 3D supramolecular architecture. Both compound 1 and 2 contain a new {V4O8(SeO3)4}4- cluster and compound 3 exhibits the first 2D vanadate polyhedral layer in vanadium selenites/tellurites with organic moieties.

  12. Selenite and tellurite form mixed seleno- and tellurotrisulfides with CstR from Staphylococcus aureus.

    PubMed

    Luebke, Justin L; Arnold, Randy J; Giedroc, David P

    2013-04-01

    Staphylococcus aureus CstR (CsoR-like sulfur transferase repressor) is a member of the CsoR family of transition metal sensing metalloregulatory proteins. Unlike CsoR, CstR does not form a stable complex with transition metals but instead reacts with sulfite to form a mixture of di- and trisulfide species, CstR2(RS-SR') and CstR2(RS-S-SR')n)n=1 or 2, respectively. Here, we investigate if CstR performs similar chemistry with related chalcogen oxyanions selenite and tellurite. In this work we show by high resolution tandem mass spectrometry that CstR is readily modified by selenite (SeO3(2-)) or tellurite (TeO3(2-)) to form a mixture of intersubunit disulfides and selenotrisulfides or tellurotrisulfides, respectively, between Cys31 and Cys60'. Analogous studies with S. aureus CsoR reveals no reaction with selenite and minimal reaction with tellurite. All cross-linked forms of CstR exhibit reduced DNA binding affinity. We show that Cys31 initiates the reaction with sulfite through the formation of S-sulfocysteine (RS-SO3(2-)) and Cys60 is required to fully derivatize CstR to CstR2(RS-SR') and CstR2(RS-S-SR'). The modification of Cys31 also drives an allosteric switch that negatively regulates DNA binding while derivatization of Cys60 alone has no effect on DNA binding. These results highlight the differences between CstRs and CsoRs in chemical reactivity and metal ion selectivity and establish Cys31 as the functionally important cysteine residue in CstRs.

  13. Selenite and tellurite form mixed seleno- and tellurotrisulfides with CstR from Staphylococcus aureus

    PubMed Central

    Luebke, Justin L.; Arnold, Randy J.; Giedroc, David P.

    2013-01-01

    Staphylococcus aureus CstR (CsoR-like sulfur transferase repressor) is a member of the CsoR family of transition metal sensing metalloregulatory proteins. Unlike CsoR, CstR does not form a stable complex with transition metals but instead reacts with sulfite to form a mixture of di- and trisulfide species, CstR2(RS-SR′) and CstR2(RS-S-SR′)n, n = 1 or 2, respectively. Here, we investigate if CstR performs similar chemistry with related chalcogen oxyanions selenite and tellurite. In this work we show by high resolution tandem mass spectrometry that CstR is readily modified by selenite (SeO32−) or tellurite (TeO32−) to form a mixture of intersubunit disulfides and selenotrisulfides or tellurotrisulfides, respectively, between Cys31 and Cys60′. Analogous studies with S. aureus CsoR reveals no reaction with selenite and minimal reaction with tellurite. All cross-linked forms of CstR exhibit reduced DNA binding affinity. We show that Cys31 initiates the reaction with sulfite through the formation of S-sulfocysteine (RS-SO32−) and Cys60 is required to fully derivatize CstR to CstR2(RS-SR′) and CstR2(RS-S-SR′). The modification of Cys31 also drives an allosteric switch that negatively regulates DNA binding while derivatization of Cys60 alone has no effect on DNA binding. These results highlight the differences between CstRs and CsoRs in chemical reactivity and metal ion selectivity and establish Cys31 as the functionally important cysteine residue in CstRs. PMID:23385876

  14. Sodium in diet

    MedlinePlus

    Diet - sodium (salt); Hyponatremia - sodium in diet; Hypernatremia - sodium in diet; Heart failure - sodium in diet ... The body uses sodium to control blood pressure and blood volume. Your body also needs sodium for your muscles and nerves to work ...

  15. Nanocrystalline hydroxyapatite enriched in selenite and manganese ions: physicochemical and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Kolmas, Joanna; Groszyk, Ewa; Piotrowska, Urszula

    2015-07-01

    In this work, we used the co-precipitation method to synthesize hydroxyapatite (Mn-SeO3-HA) containing both selenium IV (approximately 3.60 wt.%) and manganese II (approximately 0.29 wt.%). Pure hydroxyapatite (HA), hydroxyapatite-containing manganese (II) ions (Mn-HA), and hydroxyapatite-containing selenite ions alone (SeO3-HA), prepared with the same method, were used as reference materials. The structures and physicochemical properties of all the obtained samples were investigated. PXRD studies showed that the obtained materials were homogeneous and consisted of apatite phase. Introducing selenites into the hydroxyapatite crystals considerably affects the size and degree of ordering. Experiments with transmission electron microscopy (TEM) showed that Mn-SeO3-HA crystals are very small, needle-like, and tend to form agglomerates. Fourier transform infrared spectroscopy (FT-IR) and solid-state nuclear magnetic resonance (ssNMR) were used to analyze the structure of the obtained material. Preliminary microbiological tests showed that the material demonstrated antibacterial activity against Staphylococcus aureus, yet such properties were not confirmed regarding Escherichia coli. PACS codes: 61, 76, 81

  16. Ion-beam-induced modifications in the structural and electrical properties of copper oxide selenite nanowires

    NASA Astrophysics Data System (ADS)

    Rana, Pallavi; Chauhan, R. P.

    2015-04-01

    Irradiation with swift heavy ions (SHIs) with energy in the MeV range is a unique tool for engineering the properties of materials. In this context, the objective of the present work is to study the conduction of charge carriers in pre- and post-ion-irradiated semiconducting nanowires. Copper oxide selenite nanowires were synthesized using a template-assisted electrodeposition technique from an aqueous solution of 0.8 M CuSO4·5H2O and 8 mM SeO2. The synthesized nanowires were observed to have a monoclinic structure with linear I-V characteristics (IVC). The effect of irradiation with 160 MeV Ni+12 ions on the properties of the copper oxide selenite nanowires was investigated for fluences varying from 1011 to 1013 ions/cm2. XRD spectra confirmed no change in the phase of the swift-heavy-ion-irradiated nanowires, but a modification in the orientation of the planes was observed that depended on the ion fluence. The electrical resistivity of the semiconducting nanowires also varied with the ion fluence. Simultaneous irradiation-induced modifications to the electro-chemical potential gradient and the granular properties of the material may have been the origin of the alteration in the structural and electrical properties of the nanowires.

  17. Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product.

    PubMed

    Mishra, Rashmi Ranjan; Prajapati, Sunita; Das, Jyotirmayee; Dangar, Tushar Kanti; Das, Nigamananda; Thatoi, Hrudayanath

    2011-08-01

    Two Gram (+) bacterial strains, BSB6 and BSB12, showing resistance and potential for Se(IV) reduction among 26 moderately halotolerant isolates from the Bhitarkanika mangrove soil were characterized by biochemical and 16S rDNA sequence analyses. Both of them were strictly aerobic and able to grow in a wide range of pH (4-11), temperature (4-40°C) and salt concentration (4-12%) having an optimum growth at 37°C, pH ∼7.5 and 7% salt (NaCl). The biochemical characteristics and 16S rDNA sequence analysis of BSB6 and BSB12 showed the closest phylogenetic similarity with the species Bacillus megaterium. Both the strains effectively reduced Se(IV) and complete reduction of selenite (up to 0.25 mM) was achieved within 40 h. SEM with energy dispersive X-ray and TEM analyses revealed the formation of nano size spherical selenium particles in and around the bacterial cells which were also supported by the confocal micrograph study. The UV-Vis diffuse reflectance spectra and XRD of selenium precipitates revealed that the selenium particles are in the nanometric range and crystalline in nature. These bacterial strains may be exploited further for bioremediation process of Se(IV) at relatively high salt concentrations and green synthesis of selenium nanoparticles.

  18. pH controlled pathway and systematic hydrothermal phase diagram for elaboration of synthetic lead nickel selenites.

    PubMed

    Kovrugin, Vadim M; Colmont, Marie; Terryn, Christine; Colis, Silviu; Siidra, Oleg I; Krivovichev, Sergey V; Mentré, Olivier

    2015-03-02

    The PbO-NiO-SeO2 ternary system was fully studied using constant hydrothermal conditions at 473 K. It yields the establishment of the corresponding phase diagram using a systematic assignment of reaction products by both powder and single-crystal X-ray diffraction. It leads to the preparation of three novel lead nickel selenites, α-PbNi(SeO3)2 (I), β-PbNi(SeO3)2 (II), and PbNi2(SeO2OH)2(SeO3)2 (III), and one novel lead cobalt selenite, α-PbCo(SeO3)2 (IV), which have been structurally characterized. The crystal structures of the α-forms I, IV, and III are based on a 3D complex nickel selenite frameworks, whereas the β-PbNi(SeO3)2 modification (II) consists of nickel selenite sheets stacked in a noncentrosymmetric structure, second-harmonic generation active. The pH value of the starting solution was shown to play an essential role in the reactive processes. Magnetic measurements of I, III, and IV are discussed.

  19. Effects of selenite and chelating agents on mammalian thioredoxin reductase inhibited by mercury: implications for treatment of mercury poisoning.

    PubMed

    Carvalho, Cristina M L; Lu, Jun; Zhang, Xu; Arnér, Elias S J; Holmgren, Arne

    2011-01-01

    Mercury toxicity is a highly interesting topic in biomedicine due to the severe endpoints and treatment limitations. Selenite serves as an antagonist of mercury toxicity, but the molecular mechanism of detoxification is not clear. Inhibition of the selenoenzyme thioredoxin reductase (TrxR) is a suggested mechanism of toxicity. Here, we demonstrated enhanced inhibition of activity by inorganic and organic mercury compounds in NADPH-reduced TrxR, consistent with binding of mercury also to the active site selenolthiol. On treatment with 5 μM selenite and NADPH, TrxR inactivated by HgCl(2) displayed almost full recovery of activity. Structural analysis indicated that mercury was complexed with TrxR, but enzyme-generated selenide removed mercury as mercury selenide, regenerating the active site selenocysteine and cysteine residues required for activity. The antagonistic effects on TrxR inhibition were extended to endogenous antioxidants, such as GSH, and clinically used exogenous chelating agents BAL, DMPS, DMSA, and α-lipoic acid. Consistent with the in vitro results, recovery of TrxR activity and cell viability by selenite was observed in HgCl(2)-treated HEK 293 cells. These results stress the role of TrxR as a target of mercurials and provide the mechanism of selenite as a detoxification agent for mercury poisoning.

  20. Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions.

    PubMed

    Wang, Yongjie; Dang, Fei; Zhong, Huan; Wei, Zhongbo; Li, Ping

    2016-03-01

    Biogeochemical cycling of sulfur and selenium (Se) could play an important role in methylmercury (MeHg) dynamics in soil, while their potential effects on MeHg production in rice paddy soil are less understood. The main objective of this study was to explore the effects of sulfate and selenite on net MeHg production in contaminated rice paddy soil, characterized with massive MeHg production and thus MeHg accumulation in rice. A series of microcosm incubation experiments were conducted using a contaminated paddy soil amended with sulfate and/or selenite, in which sulfate-reducing bacteria were mainly responsible for MeHg production. Our results demonstrated that sulfate addition reduced solid and dissolved MeHg levels in soils by ≤18 and ≤25 %, respectively. Compared to sulfate, selenite was more effective in inhibiting net MeHg production, and the inhibitory effect depended largely on amended selenite doses. Moreover, sulfate input played a dual role in affecting Hg-Se interactions in soil, which could be explained by the dynamics of sulfate under anoxic conditions. Therefore, the effects of sulfate and selenium input should be carefully considered when assessing risk of Hg in anoxic environments (e.g., rice paddy field and wetland).

  1. Selenite Treatment Inhibits LAPC-4 Tumor Growth and Prostate-Specific Antigen Secretion in a Xenograft Model of Human Prostate Cancer

    SciTech Connect

    Bhattacharyya, Rumi S.; Husbeck, Bryan; Feldman, David; Knox, Susan J.

    2008-11-01

    Purpose: Selenium compounds have known chemopreventive effects on prostate cancer. However selenite, an inorganic form of selenium, has not been extensively studied as a treatment option for prostate cancer. Our previous studies have demonstrated the inhibition of androgen receptor expression and androgen stimulated prostate-specific antigen (PSA) expression by selenite in human prostate cancer cell lines. In this study, we investigated the in vivo effects of selenite as a therapy to treat mice with established LAPC-4 tumors. Methods and Materials: Male mice harboring androgen-dependent LAPC-4 xenograft tumors were treated with selenite (2 mg/kg intraperitoneally three times per week) or vehicle for 42 days. In addition, androgen-independent LAPC-4 xenograft tumors were generated in female mice over 4 to 6 months. Once established, androgen-independent LAPC-4 tumor fragments were passaged into female mice and were treated with selenite or vehicle for 42 days. Changes in tumor volume and serum PSA levels were assessed. Results: Selenite significantly decreased androgen-dependent LAPC-4 tumor growth in male mice over 42 days (p < 0.001). Relative tumor volume was decreased by 41% in selenite-treated animals compared with vehicle-treated animals. The inhibition of LAPC-4 tumor growth corresponded to a marked decrease in serum PSA levels (p < 0.01). In the androgen-independent LAPC-4 tumors in female mice, selenite treatment decreased tumor volume by 58% after 42 days of treatment (p < 0.001). Conclusions: These results suggest that selenite may have potential as a novel therapeutic agent to treat both androgen-dependent and androgen-independent prostate cancer.

  2. Production of selenium nanoparticles in Pseudomonas putida KT2440.

    PubMed

    Avendaño, Roberto; Chaves, Nefertiti; Fuentes, Paola; Sánchez, Ethel; Jiménez, Jose I; Chavarría, Max

    2016-11-15

    Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano-Se occurs at a rate of 0.444 mmol L(-1) h(-1) beginning in the middle-exponential phase and with a final conversion yield of 89%. Measurements with a transmission electron microscope (TEM) show that nano-Se particles synthesized by P. putida have a size range of 100 to 500 nm and that they are located in the surrounding medium or bound to the cell membrane. Experiments involving dynamic light scattering (DLS) show that, in aqueous solution, recovered nano-Se particles have a size range of 70 to 360 nm. The rapid kinetics of conversion, easy retrieval of nano-Se and the metabolic versatility of P. putida offer the opportunity to use this model organism as a microbial factory for production of selenium nanoparticles.

  3. Production of selenium nanoparticles in Pseudomonas putida KT2440

    PubMed Central

    Avendaño, Roberto; Chaves, Nefertiti; Fuentes, Paola; Sánchez, Ethel; Jiménez, Jose I.; Chavarría, Max

    2016-01-01

    Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano-Se occurs at a rate of 0.444 mmol L−1 h−1 beginning in the middle-exponential phase and with a final conversion yield of 89%. Measurements with a transmission electron microscope (TEM) show that nano-Se particles synthesized by P. putida have a size range of 100 to 500 nm and that they are located in the surrounding medium or bound to the cell membrane. Experiments involving dynamic light scattering (DLS) show that, in aqueous solution, recovered nano-Se particles have a size range of 70 to 360 nm. The rapid kinetics of conversion, easy retrieval of nano-Se and the metabolic versatility of P. putida offer the opportunity to use this model organism as a microbial factory for production of selenium nanoparticles. PMID:27845437

  4. Sodium MRI.

    PubMed

    Ouwerkerk, Ronald

    2011-01-01

    Sodium ((23)Na) imaging has a place somewhere between (1)H-MRI and MR spectroscopy (MRS). Like MRS it potentially provides information on metabolic processes, but only one single resonance of ionic (23)Na is observed. Therefore pulse sequences do not need to code for a chemical shift dimension, allowing (23)Na images to be obtained at high resolutions as compared to MRS. In this chapter the biological significance of sodium in the brain will be discussed, as well as methods for observing it with (23)Na-MRI. Many vital cellular processes and interactions in excitable tissues depend on the maintenance of a low intracellular and high extracellular sodium concentration. Healthy cells maintain this concentration gradient at the cost of energy. Leaky cell membranes or an impaired energy metabolism immediately leads to an increase in cytosolic total tissue sodium. This makes sodium a biomarker for ischemia, cancer, excessive tissue activation, or tissue damage as might be caused by ablation therapy. Special techniques allow quantification of tissue sodium for the monitoring of disease or therapy in longitudinal studies or preferential observation of the intracellular component of the tissue sodium. New methods and high-field magnet technology provide new opportunities for (23)Na-MRI in clinical and biomedical research.

  5. Dalteparin sodium.

    PubMed

    Pineo, G F; Hull, R D

    2001-08-01

    Dalteparin sodium (Fragmin, Pharmacia Corporation) is a low molecular weight heparin (LMWH) with a mean molecular weight of approximately 5000 Da. As with the other LMWHs, dalteparin sodium has certain advantages over unfractionated heparin (UFH), most important of which are improved bio-availability by sc. injection, a prolonged antithrombotic activity which is highly correlated with body weight permitting the o.d. administration of the drug. Dalteparin sodium has been subjected to a large number of well-designed randomised clinical trials for the prevention and treatment of thrombotic disorders. Based on data from the randomised clinical trials, dalteparin sodium has been approved internationally for a wide spectrum of clinical indications (e.g., prevention of thromboembolic events after surgery). Dalteparin sodium has also been studied in randomised controlled trials in the maintenance of graft patentcy following peripheral vascular surgery, in place of warfarin for the long-term treatment of patients presenting with deep vein thrombosis (DVT), in the prevention of upper extremity thrombosis in patients with indwelling portacath devices and in pregnant patients with a history of previous venous thromboembolism with or without thrombophilia. Dalteparin sodium has been compared with heparin for the prevention of thrombotic complications during haemodyalisis and haemofiltration. These studies have shown promising results but further work is required before dalteparin sodium can be recommended for these indications.

  6. In vitro effect of mercuric chloride and sodium selenite on chemiluminescent response of pronephros cells isolated from Tilapia, oreochromis aureus

    SciTech Connect

    Low, K.W.; Sin, Y.M.

    1995-12-01

    Phagocytosis is a basic immunological function of mononuclear phagocytes and polymorphonuclear leukocytes. This process is a major defence mechanism in fish which involves recognition and killing of pathogenic microorganisms. It has been reported that phagocytic cells consume more oxygen and release several reactive oxygen species (ROS) during phagocytosis. This {open_quote}respiratory burst{close_quote} was first quantified by measuring the chemiluminescence (CL) emitted from human polymorphonuclear leukocytes and later in fish phagocytes. The oxygen intermediates responsible for this CL reaction include O{sub 2}{sup {minus}}, {center_dot}OH and H{sub 2}O{sub 2} which are also the major bactericidal agents in phagocytes{prime} oxygen-dependent killing process. Therefore, CL response can be used as an indicator of phagocytosis. This study is designed to examine the individual effects of mercury and selenium and also their possible interaction on CL response of fish pronephros phagocytes, because a defect in phagocytosis may predispose fish to diseases. 25 refs., 3 tabs.

  7. High Dietary Intake of Sodium Selenite Does Not Affect Gene Mutation Frequency in Rat Colon and Liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we reported that both Se deficiency and Cu deficiency decreased plasma homocysteine (pHcys) and increased plasma glutathione (pGSH) in rats. We also showed that the catalytic subunit of glutamate-cysteine ligase (Gclc), which catalyzes the rate limiting step in glutathione biosynthesis, w...

  8. Zinc- and bicarbonate-dependent ZIP8 transporter mediates selenite uptake

    PubMed Central

    McDermott, Joseph R.; Geng, Xiangrong; Jiang, Lan; Gálvez-Peralta, Marina; Chen, Fei; Nebert, Daniel W.; Liu, Zijuan

    2016-01-01

    Selenite (HSeO3−) is a monovalent anion of the essential trace element and micronutrient selenium (Se). In therapeutic concentrations, HSeO3− has been studied for treating certain cancers, serious inflammatory disorders, and septic shock. Little is known, however, about HSeO3− uptake into mammalian cells; until now, no mammalian HSeO3− uptake transporter has been identified. The ubiquitous mammalian ZIP8 divalent cation transporter (encoded by the SLC39A8 gene) is bicarbonate-dependent, moving endogenous substrates (Zn2+, Mn2+, Fe2+ or Co2+) and nonessential metals such as Cd2+ into the cell. Herein we studied HSeO3− uptake in: human and mouse cell cultures, shRNA-knockdown experiments, Xenopus oocytes, wild-type mice and two transgenic mouse lines having genetically altered ZIP8 expression, and mouse erythrocytes ex vivo. In mammalian cell culture, excess Zn2+ levels and/or ZIP8 over-expression can be associated with diminished viability in selenite-treated cells. Intraperitoneal HSeO3− causes the largest ZIP8-dependent increases in intracellular Se content in liver, followed by kidney, heart, lung and spleen. In every model system studied, HSeO3− uptake is tightly associated with ZIP8 protein levels and sufficient Zn2+ and HCO3− concentrations, suggesting that the ZIP8-mediated electroneutral complex transported contains three ions: Zn2+/(HCO3−)(HSeO3−). Transporters having three different ions in their transport complex are not without precedent. Although there might be other HSeO3− influx transporters as yet undiscovered, data herein suggest that mammalian ZIP8 plays a major role in HSeO3− uptake. PMID:27166256

  9. Sodium modified molybdenum sulfide via molten salt electrolysis as an anode material for high performance sodium-ion batteries.

    PubMed

    Wang, Shuai; Tu, Jiguo; Yuan, Yan; Ma, Rui; Jiao, Shuqiang

    2016-01-28

    The paper reports a facile and cost effective method for fabricating sodium molybdenum sulfide nanoparticles through using MoS2 sheets as the precursor by sodium-modification. The electrochemical performances of sodium molybdenum sulfide nanoparticles are studied as anode materials for sodium-ion batteries. The galvanostatic charge-discharge measurements have been performed in a voltage range of 0.01-2.6 V vs. Na(+)/Na under different current densities, using the as-prepared sodium molybdenum sulfide nanoparticles as a working electrode. Typically, the initial discharge and charge capacities of sodium molybdenum sulfide nanoparticles are 475 and 380 mA h g(-1), respectively, at a current density of 20 mA g(-1). The sodium molybdenum sulfide nanoparticles exhibit high capacity with a reversible discharge capacity of about 190 mA h g(-1) after 100 cycles. It should be emphasized that the discharge reaction consists of two steps which correspond to voltage plateaus of 0.93 V and 0.85 V vs. Na(+)/Na in the first discharge curve of the Na/MoS2 battery, respectively. But there is only one apparent voltage plateau in the Na/Na-Mo-S battery, and it reduces to below 0.5 V vs. Na(+)/Na, which can enhance the power density. All of the findings demonstrate that sodium molybdenum sulfide nanoparticles have steady cycling performance and environmental and cost friendliness as next generation secondary batteries.

  10. Syntheses, crystal structures and properties of new lead(II) or bismuth(III) selenites and tellurite.

    PubMed

    Zhang, Su-Yun; Hu, Chun-Li; Li, Pei-Xin; Jiang, Hai-Long; Mao, Jiang-Gao

    2012-08-21

    Four new lead(II) or bismuth(III) selenites and a tellurite, namely, Pb(3)(TeO(3))Cl(4), Pb(3)(SeO(3))(2)Br(2), Pb(2)Cd(3)(SeO(3))(4)I(2)(H(2)O), Pb(2)Ge(SeO(3))(4) and BiFe(SeO(3))(3), have been prepared and structurally characterized by single crystal X-ray diffraction (XRD) analyses. These compounds exhibit five different types of structures. The structure of Pb(3)(TeO(3))Cl(4) features a three-dimensional (3D) lead(II) chloride network with tellurite anions filling in the 1D tunnels of Pb(4) 4-member rings (MRs) along the c-axis. Pb(3)(SeO(3))(2)Br(2) contains a 3D network composed of lead(II) selenite layers interconnected by bromide anions. Pb(2)Cd(3)(SeO(3))(4)I(2)(H(2)O) is a 3D structure based on 2D cadmium(II) selenite layers which are further connected by 1D lead(II) iodide ladder chains with lattice water molecules located at the 1D tunnels of the structure. Pb(2)Ge(SeO(3))(4) features a 3D framework constructed by the alternate arrangement of lead(II) selenite layers and germanium(iv) selenite layers in the [100] direction. The structure of BiFe(SeO(3))(3) is built on the 3D anionic framework of ion(III) selenite with the bismuth(III) ions located at its Fe(6)Se(6) 12-MR tunnels. Pb(3)(TeO(3))Cl(4) (Pna2(1)) is polar and BiFe(SeO(3))(3) (P2(1)2(1)2(1)) is noncentrosymmetric. Powder second-harmonic generation (SHG) measurements using 1064 nm radiation indicate that BiFe(SeO(3))(3) exhibits a weak SHG efficiency of about 0.2 × KH(2)PO(4) (KDP). Magnetic property measurements for BiFe(SeO(3))(3) show a dominant antiferromagnetic interaction with weak spin-canting at low temperatures. IR, UV-vis and thermogravimetric, as well as electronic structure calculations were also performed.

  11. The ROS/JNK/ATF2 pathway mediates selenite-induced leukemia NB4 cell cycle arrest and apoptosis in vitro and in vivo.

    PubMed

    An, J J; Shi, K J; Wei, W; Hua, F Y; Ci, Y L; Jiang, Q; Li, F; Wu, P; Hui, K Y; Yang, Y; Xu, C M

    2013-12-19

    It has previously been shown that selenite can act as an antitumor agent and inhibit cancer cell growth, although the mechanism responsible for this effect is not well understood. In this study, we have shown that selenite can induce cell cycle arrest and apoptosis in NB4 cells. Selenite treatment of these cells also inhibited the JNK/ATF2 axis. Further experiments demonstrated that selenite-induced production of reactive oxygen species (ROS) worked as an upstream of the JNK/ATF2 axis, cell cycle arrest and apoptosis. Inactivation of ATF2 resulted in decreased affinity of this transcription factor for the promoters of cyclin A, cyclin D3 and CDK4, which led to the arrest of the NB4 cells in the G0/G1 phase. Finally, in vivo experiments confirmed the antitumor activity of selenite and the mechanisms that were described in vitro. Taken together, our results indicate that selenite-induced ROS arrest NB4 cells at G0/G1 phase through inhibiting the JNK/ATF2 axis in vitro and in vivo.

  12. Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy

    PubMed Central

    Li, Jie; Qi, Wei; Chen, Guo; Feng, Du; Liu, Jinhua; Ma, Biao; Zhou, Changqian; Mu, Chenglong; Zhang, Weilin; Chen, Quan; Zhu, Yushan

    2015-01-01

    Mitochondria serve as membrane sources and signaling platforms for regulating autophagy. Accumulating evidence has also shown that damaged mitochondria are removed through both selective mitophagy and general autophagy in response to mitochondrial and oxidative stresses. Protein ubiquitination through mitochondrial E3 ligases plays an integrative role in mitochondrial outer membrane protein degradation, mitochondrial dynamics, and mitophagy. Here we showed that MUL1, a mitochondria-localized E3 ligase, regulates selenite-induced mitophagy in an ATG5 and ULK1-dependent manner. ULK1 partially translocated to mitochondria after selenite treatment and interacted with MUL1. We also demonstrated that ULK1 is a novel substrate of MUL1. These results suggest the association of mitochondria with autophagy regulation and provide a new mechanism for the beneficial effects of selenium as a chemopreventive agent. PMID:26018823

  13. Tellurite-, tellurate-, and selenite-based anaerobic respiration by strain CM-3 isolated from gold mine tailings.

    PubMed

    Maltman, Chris; Piercey-Normore, Michele D; Yurkov, Vladimir

    2015-09-01

    The newly discovered strain CM-3, a Gram-negative, rod-shaped bacterium from gold mine tailings of the Central Mine in Nopiming Provincial Park, Canada, is capable of dissimilatory anaerobic reduction of tellurite, tellurate, and selenite. CM-3 possesses very high level resistance to these oxides, both aerobically and anaerobically. During aerobic growth, tellurite and tellurate resistance was up to 1500 and 1000 µg/ml, respectively. In the presence of selenite, growth occurred at the highest concentration tested, 7000 µg/ml. Under anaerobic conditions, resistance was decreased to 800 µg/ml for the Te oxides; however, much like under aerobic conditions, growth with selenite still took place at 7000 µg/ml. In the absence of oxygen, CM-3 couples oxide reduction to an increase in biomass. Following an initial drop in viable cells, due to switching from aerobic to anaerobic conditions, there was an increase in CFU/ml greater than one order of magnitude in the presence of tellurite (6.6 × 10(3)-8.6 × 10(4) CFU/ml), tellurate (4.6 × 10(3)-1.4 × 10(5) CFU/ml), and selenite (2.7 × 10(5)-5.6 × 10(6) CFU/ml). A control culture without metalloid oxides showed a steady decrease in CFU/ml with no recovery. ATP production was also increased in the presence of each oxide, further indicating anaerobic respiration. Partial 16S rRNA gene sequencing revealed a 99.0 % similarity of CM-3 to Pseudomonas reactans.

  14. Selenium bioaccumulation and speciation in Chironomus dilutus exposed to water-borne selenate, selenite, or seleno-DL-methionine.

    PubMed

    Franz, Eric D; Wiramanaden, Cheryl I E; Janz, David M; Pickering, Ingrid J; Liber, Karsten

    2011-10-01

    The objective of the present study was to describe the uptake and elimination kinetics of selenium (Se) administered in the forms of selenate, selenite, and selenomethionine (seleno-DL-methionine) in different life stages of the midge Chironomus dilutus, and to determine the relationship between Se bioavailability and Se speciation using X-ray absorption spectroscopy (XAS). Midge larvae exposed to 4.3 µg/L as dissolved selenate for 10 d of had negligible accumulation of Se (indistinguishable from control organisms). However, larvae rapidly accumulated Se over 10 d of exposure to 3.8 and 1.8 µg/L selenite and seleno-DL-methionine (Se-met), respectively. Most Se accumulated by larvae exposed to selenite or Se-met was retained after 10 d of elimination in clean water. When additional midge larvae were exposed to Se until emergence, Se accumulated during the larval stage was largely retained in the adults. Although a strong correlation was found between the adult whole-body Se concentration and the Se concentration in the exuvia after emergence, only a minor loss of Se occurred in the shed exuvia compared with larvae and adult whole-body concentrations. X-ray absorption spectroscopy analysis showed that organic selenides and diselenides, modeled as Se-met and selenocystine, respectively, were the dominant forms of Se in both the larval and adult insect stages. The proportion and concentration of organic selenides (selenomethionine) increased in larvae and adults exposed to Se-met and selenite compared with larvae exposed to selenate, whereas the concentration of diselenides (selenocystine) remained relatively constant for all treatments.

  15. Comparative toxicity of selenate, selenite, seleno-DL-methionine and seleno-DL-cystine to Daphnia magna

    SciTech Connect

    Maier, K.J.; Foe, C.G.; Knight, A.W. )

    1993-04-01

    Elevated concentrations of the trace element selenium (Se) have resulted in the degradation of several aquatic ecosystems. This study evaluated the comparative toxicity of several aqueous chemical species of selenium to an aquatic cladoceran, Daphnia magna. Responses to mixtures of these selenium forms, varying the sulfate concentration, were also examined. Initial experiments compared the toxicity of aqueous forms of selenate, selenite, seleno-DL-methionine, and seleno-DL-cystine to neonate Daphnia magna, resulting in 4-h LC50 values of 2.84, 0.55, 0.31, and 2.01 mg Se per liter, respectively. Immobilization was an acute sublethal response observed during exposure to the organic selenium forms only. The 48-h IC50 values were 0.045 and 0.52 mg Se per liter for seleno-DL-methionine and seleno-DL-cystine, respectively. Evaluation of the invertebrate response to various combinations of selenate, selenite, and seleno-DL-methionine demonstrated that the toxicities of these forms of selenium are additive. Increasing the concentration of sulfate decreased, varied, and left unaffected the toxicities of selenate, selenite, and seleno-DL-methionine, respectively. These results indicate that both the chemical form of selenium and the sulfate concentration can influence the toxicity of selenium.

  16. Sodium azide

    Integrated Risk Information System (IRIS)

    Sodium azide ; CASRN 26628 - 22 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  17. Acifluorfen, sodium

    Integrated Risk Information System (IRIS)

    Acifluorfen , sodium ; CASRN 62476 - 59 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  18. Sodium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for sodium cyanide is included in the

  19. Sodium diethyldithiocarbamate

    Integrated Risk Information System (IRIS)

    Sodium diethyldithiocarbamate ; CASRN 148 - 18 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non

  20. Sodium fluoroacetate

    Integrated Risk Information System (IRIS)

    Sodium fluoroacetate ; CASRN 62 - 74 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  1. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    NASA Astrophysics Data System (ADS)

    Li, Honghong; Qin, Li; Feng, Ying; Hu, Lihua; Zhou, Chunhua

    2015-06-01

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe3O4 magnetic nanoparticles (Fe3O4-AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe3O4-AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe3O4-AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe3O4. Transmission electron microscopy (TEM) analysis confirmed that the Fe3O4-AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe3O4-AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe3O4-MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe3O4-AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature TB of Fe3O4-AOS-MN capped with double-layered AOS is 170 K.

  2. Comparative effects of selenite and selenate on nitrate assimilation in barley seedlings

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Harbit, K. B.; Huffaker, R. C.

    1990-01-01

    The effect of SeO3= and SeO4= on NO3- assimilation in 8-d-old barley (Hordeum vulgare L.) seedlings was studied over a 24-h period. Selenite at 0.1 mol m-3 in the uptake solutions severely inhibited the induction of NO3- uptake and active nitrate reductases. Selenate, at 1.0 mol m-3 in the nutrient solution, had little effect on induction of activities of these systems until after 12 h; however, when the seedlings were pretreated with 1.0 mol m-3 SeO4= for 24 h, subsequent NO3- uptake from SeO4(=) -free solutions was inhibited about 60%. Sulphate partially alleviated the inhibitory effect of SeO3= when supplied together in the ambient solutions, but had no effect in seedlings pretreated with SeO3=. By contrast, SO4= partially alleviated the inhibitory effect of SeO4= even in seedlings pretreated with SeO4=. Since uptake of NO3- by intact seedlings was also inhibited by SO3=, the percentage of the absorbed NO3- that was reduced was not affected. By contrast, SeO4=, which affected NO3- uptake much less, inhibited the percentage reduced of that absorbed. However, when supplied to detached leaves, both SeO3= and SeO4= inhibited the in vivo reduction of NO3- as well as induction of nitrate reductase and nitrite reductase activities. Selenite was more inhibitory than SeO4= ; approximately a five to 10 times higher concentration of SeO4= than SeO3= was required to achieve similar inhibition. In detached leaves, the inhibitory effect of both SeO3= and SeO4= on in vivo NO3- reduction as well as on the induction of nitrate reductase activity was partially alleviated by SO4=. The inhibitory effects of Se salts on the induction of the nitrite reductase were, however, completely alleviated by SO4=. The results show that in barley seedlings SeO3= is more toxic than SeO4=. The reduction of SeO4= to SeO3= may be a rate limiting step in causing Se toxicity.

  3. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study.

    PubMed

    Finck, Nicolas; Dardenne, Kathy

    2016-05-01

    In this study, we investigated the interaction between selenite and either Fe((II))aq or S((-II))aq in solution, and the results were used to investigate the interaction between Se((IV))aq and FeS in suspension. The reaction products were characterized by a combination of methods (SEM, XRD and XAS) and the reaction mechanisms were identified. In a first experiment, Se((IV))aq was reduced to Se((0)) by interaction with Fe((II))aq which was oxidized to Fe((III)), but the reaction was only partial. Subsequently, some Fe((III)) produced akaganeite (β-FeOOH) and the release of proton during that reaction decreased the pH. The pH decrease changed the Se speciation in solution which hindered further Se((IV)) reduction by Fe((II))aq. In a second experiment, Se((IV))aq was quantitatively reduced to Se((0)) by S((-II))aq and the reaction was fast. Two sulfide species were needed to reduce one Se((IV)), and the observed pH increase was due to a proton consumption. For both experiments, experimental results are consistent with expectations based on the oxidation reduction potential of the various species. Upon interaction with FeS, Se((IV))aq was reduced to Se((0)) and minute amounts of pyrite were detected, a consequence of partial mackinawite oxidation at surface sulfur sites. These results are of prime importance with respect to safe deep disposal of nuclear waste which contains the long-lived radionuclide (79)Se. This study shows that after release of (79)Se((IV)) upon nuclear waste matrix corrosion, selenite can be reduced in the near field to low soluble Se((0)) by interaction with Fe((II))aq and/or S((-II))aq species. Because the solubility of Se((0)) species is significantly lower than that of Se((IV)), selenium will become much less (bio)available and its migration out of deep HLW repositories may be drastically hindered.

  4. Test Your Sodium Smarts

    MedlinePlus

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  5. Electrochemical imprinted sensor for determination of oleanic acid based on poly (sodium 4-styrenesulfonate-co-acrylic acid)-grafted multi-walled carbon nanotubes-chitosan and cobalt hexacyanoferrate nanoparticles.

    PubMed

    Hu, Yufang; Zhang, Zhaohui; Li, Jiaxing; Zhang, Huabin; Luo, Lijuan; Yao, Shouzhuo

    2012-01-15

    A novel sensitive and selective imprinted electrochemical sensor for the determination of oleanic acid was constructed on a carbon electrode by stepwise modification of functional multi-walled carbon nanotubes, cobalt hexacyanoferrate nanoparticles and a thin imprinted sol-gel film. The fabrication of a homogeneous porous poly (sodium 4-styrenesulfonate-co-acrylic acid)-grafted multi-walled carbon nanotubes/SiO(2)-chitosan nanocomposite film was conducted by controllable electrodeposition technology. The surface morphologies of the modified electrodes were characterized by scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy in detail. The imprinted sensor displayed high sensitivity and selectivity towards oleanic acid. A linear relationship between the sensor response signal and the logarithm of oleanic acid concentrations ranging from 1.0×10(-8) to 1.0×10(-3) mol L(-1) was obtained with a detection limit of 2.0×10(-9) mol L(-1). It was applied to the determination of oleanic acid in real capsule samples successfully.

  6. Synthesis of Ru(0.58)In(0.42)O(y)⋅nH(2)O nanoparticles dispersed onto poly(sodium-4-styrene sulfonate)-functionalized multi-walled carbon nanotubes and their application for electrochemical capacitors.

    PubMed

    Yuan, Changzhou; Hou, Linrui; Yang, Long; Li, Diankai; Tan, Jie; Shen, Laifa; Zhang, Fang; Zhang, Xiaogang

    2011-02-15

    In this work, poly(sodium-4-styrene sulfonate) (PSS)-functionalized multi-walled carbon nanotubes (FMWCNTs) were first synthesized via a polymer-assisted technique. Then, Ru(0.58)In(0.42)O(y)⋅nH(2)O nanoparticles (NPs) were mono-dispersed onto the FMWCNTs surfaces under mild hydrothermal condition. Here, PSS with negative charge serves as a bifunctional molecule both for solubilizing and dispersing MWCNTs into aqueous solution and for tethering Ru(3+) and In(3+) to facilitate the good dispersion of Ru(1-)(x)In(x)O(y)⋅nH(2)O NPs onto their surfaces. The good dispersion of Ru(0.58)In(0.42)O(y)⋅nH(2)O NPs onto FMWCNTs makes OH(-) ions and electrons easily contact these NPs with abundant electroactive sites, which results in a large specific capacitance (SC) of 319Fg(-1) for the naocomposites. Moreover, a symmetric electrochemical capacitor (EC) is constructed by using the nanocomposites as electrodes and delivers large specific energy density of 18.1Whkg(-1), desirable power property of 1302Wkg(-1), high electrochemical reversibility and good SC retention of 84.7%.

  7. Low sodium diet (image)

    MedlinePlus

    ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, or ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, or ...

  8. Synthesis, characterization and optical properties of non-traditional tellurite-selenite glasses

    NASA Astrophysics Data System (ADS)

    Bachvarova-Nedelcheva, A.; Iordanova, R.; Kostov, K. L.; Ganev, V.; Yordanov, St.

    2014-06-01

    This study continues our investigations on non-traditional tellurite-selenite amorphous materials. Two glasses containing TeO2, SeO2, MoO3 and V2O5 were obtained at high oxygen pressure (P = 36 MPa) using pure oxides as precursors. The real bulk chemical composition of both glasses was verified by LA-ICP-MS method. The glasses were characterized by X-ray diffraction, Scanning Electron Microscopy (SEM), Differential Thermal Analysis (DTA), UV-Vis, XPS, IR and EPR spectroscopy. According to DTA the glass transition temperature (Tg) is below 300 °C. Both glasses were subjected to heat treatment (300 °C - 12 h) and as a result no crystallization was observed. The main building units (TeO3, TeO4, Mo2O8, and SеО3) were determined by IR and X-ray photoelectron spectroscopy and the existence of mixed bridging bonds only, which build up the amorphous network. It was established by UV-Vis that the obtained glasses are transparent above 550 nm and they were red colored.

  9. Explorations of new selenites of the group IIIA and IVA metals

    NASA Astrophysics Data System (ADS)

    Kong, Fang; Li, Pei-Xin; Zhang, Su-Yun; Mao, Jiang-Gao

    2012-06-01

    Systematic explorations of new phases in the GaIII/InIII/GeIV-SeIV-O systems by hydrothermal syntheses or solid-state reactions at high-temperature led to six new ternary compounds, namely, M2Se2O7 (M=Ga 1, In 2), M(OH)(SeO3) (M=Ga 3, In 4), α-Ge(SeO3)25 and β-Ge(SeO3)26. Ga2Se2O71 displays a 3D open framework composed of 2D gallium oxide layers being further bridged and capped by SeO3 groups. In2Se2O72 features a 3D indium oxide framework formed by corner- and edge- sharing InO6 octahedra with SeO3 groups attached on the cavities and the 8-member ring tunnels of the structure. The isostructural of M(OH)(SeO3) (M=Ga 3, In 4) exhibit a 2D metal selenite layer composed of 1D edge-sharing MO6 octahedral chains that are interconnected by SeO3 groups. α-Ge(SeO3)2 (P21/n) 5 displays a 3D open framework with 1D 8-member ring tunnels along the a-axis while β-Ge(SeO3)2 (Pa-3) 6 exhibits a condensed 3D network.

  10. Reduction of selenite to elemental selenium by Enterobacter cloacae SLD1a-1

    SciTech Connect

    Dungan, R.S.; Frankenberger, W.T. Jr.

    1998-11-01

    The facultative anaerobic bacterium Enterobacter cloacae strain SLD1a-1 was studied in washed cell suspensions to assess optimal conditions required for the reduction of selenite (SeO{sub 3}{sup 2{minus}}) to elemental selenium (Se{sup 0}). Enterobacter cloacae using glucose (1.4 mM) as an electron donor removed 79% of the added SeO{sub 3}{sup 2{minus}} from solution in 2.5 h. Optimal SeO{sub 3}{sup 2{minus}} reduction occurred at a pH of 6.5 and a temperature of 40 C. Carbohydrate sources arabinose, xylose, and sorbose were found to significantly enhance SeO{sub 3}{sup 2{minus}} reduction over that of glucose. The reduction of SeO{sub 3}{sup 2{minus}} at 7.9 {micro}M was inhibited by nitrate of levels 1 to 100 times greater, nitrite at levels 5 and 10 times greater, while sulfite at levels of two to four times greater was found to stimulate the reduction of SeO{sub 3}{sup 2{minus}}. Enterobacter cloacae grows on anaerobically incubated plates containing NO{sub 3}{sup {minus}} as the sole terminal electron acceptor and acetate as the electron donor. Use of SeO{sub 3}{sup 2{minus}} as the terminal electron acceptor during anaerobic respiration did not support growth and could only be reduced to Se{sup 0} when NO{sub 3}{sup {minus}} was present.

  11. Selenite Enhances Immune Response against Pseudomonas aeruginosa PA14 via SKN-1 in Caenorhabditis elegans

    PubMed Central

    Huang, Chi-Wei; Wei, Chia-Cheng; Liao, Vivian Hsiu-Chuan

    2014-01-01

    Background Selenium (Se) is an important nutrient that carries out many biological processes including maintaining optimal immune function. Here, inorganic selenite (Se(IV)) was evaluated for its pathogen resistance and potential-associated factors in Caenorhabditis elegans. The immune effects of Se(IV) were investigated by examining the responses of C. elegans to Pseudomonas aerugonisa PA14 strain. Principal Findings Se(IV)-treated C. elegans showed increased survival under PA14 infection compared with untreated controls. The significant pathogen resistance of Se(IV) on C. elegans might not be attributed to the effects of Se(IV) on PA14 as Se(IV) showed no effect on bacterial quorum-sensing and virulence factors of PA14. This study showed that Se(IV) enhanced the expression of a gene pivotal for the innate immunity in C. elegans. The study found that the pathogen-resistant phenotypes contributed by Se(IV) was absent from the skn-1 mutant worms. Moreover, Se(IV) influenced the subcellular distribution of SKN-1/Nrf in C. elegans upon PA14 infection. Furthermore, Se(IV) increased mRNA levels of SKN-1 target genes (gst-4 and gcs-1). Conclusions This study found evidence of Se(IV) protecting C. elegans against P. aeruginosa PA14 infection by exerting effects on the innate immunity of C. elegans that is likely mediated via regulation of a SKN-1-dependent signaling pathway. PMID:25147937

  12. The synthesis and crystal structure of LaHSe2O6, a layered, anhydrous selenite

    NASA Astrophysics Data System (ADS)

    Morris, Russell E.; Harrison, William T.; Stucky, Galen D.; Cheetham, Anthony K.

    1992-05-01

    Lanthanum hydrogen selenite, LaHSe2O6, M(sub r), = 393.83, orthorhombic, P(sub c)2(sub 1)b (No. 29), a = 7.139(6) A, b = 19.008(9) A, c = 8.469(9) A, (alpha = 90 deg, beta = 90 deg, gamma = 90 deg, V = 1149.24 cu A, Z = 8, D(sub x) = 4.55 g cu cm, mu = 199.7 cm(-1), lambda (Mo Ka, graphite monochromator) = 0.71073 A, F(000) = 1392, room temperature 298(2) K. Final R = 3.61 percent, wR = 4.21 percent for 1701 observed reflections with I greater than 3 sigma(I)). LaHSe2O6 has been prepared using hydrothermal synthetic techniques and its crystal structure elucidated by single crystal X-ray diffraction. This new structure consists of layers of LaOl0, HSeO3 and SeO3 polyhedra parallel to the ac-place; the layers are interconnected by Se-OH...O-(Se,La) hydrogen bonds.

  13. Synthesis, vibrational and quantum chemical investigations of hydrogen bonded complex betaine dihydrogen selenite

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Marchewka, Mariusz K.; Kalaivani, M.

    2012-10-01

    The molecular complex of betaine with selenious acid namely, betaine dihydrogen selenite (C5H13NO5Se, BDHSe) was synthesised by the reaction of betaine and SeO2 in a 1:1:1 solution of isopropanol, methanol and water. Crystals were grown from this solution by cooling to 253 K for few days. The complex was formed without accompanying proton transfer from selenious acid molecule to betaine. The complete vibrational assignments and analysis of BDHSe have been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP) method using 6-311++G∗∗, 6-31G∗∗, cc-pVDZ and 3-21G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of BDHSe were determined by the DFT method. The 1H and 13C isotropic chemical shifts (δ ppm) of BDHSe with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. SHG experiment was carried out using Kurtz-Perry powder technique. The efficiency of second harmonic generation for BDHSe was estimated relatively to KDP: deff = 0.97 deff (KDP).

  14. Removal of selenite from water using a synthetic dithiolate: an experimental and quantum chemical investigation.

    PubMed

    Burriss, Daniel; Zou, Wenli; Cremer, Dieter; Walrod, John; Atwood, David

    2014-04-21

    Combination of the dithiol N,N'-bis(2-mercaptoethyl)isophthalamide, abbreviated as BDTH2 and as 1, with excess H2SeO3 in aqueous acidic (pH ≈ 1) conditions resulted in precipitation of BDT(S-Se-S) (6), with a (77)Se NMR chemical shift of δ = 675 ppm, and oxidized BDT. When the reaction is conducted under basic conditions Se(IV) is reduced to red Se(0) and oxidized 1. No reaction takes place between 1 and selenate (Se(VI)) under acidic or basic conditions. Compound 6 is stable in air but decomposes to red Se(0) and the disulfide BDT(S-S) (9) with heating and in basic solutions. Mechanisms and energetics of the reactions leading to 6 in aqueous solution were unraveled by extensive calculations at the ωB97X-D/aug-cc-pVTZ-PP level of theory. NMR chemical shift calculations with the gauge-independent atomic orbital (GIAO) method for dimethyl sulfoxide as solvent confirm the generation of 6 (calculated δ value = 677 ppm). These results define the conditions and limitations of using 1 for the removal of selenite from wastewaters. Compound 6 is a rare example of a bidentate selenium dithiolate and provides insight into biological selenium toxicity.

  15. Development of novel zein-sodium caseinate nanoparticle (ZP)-stabilized emulsion films for improved water barrier properties via emulsion/solvent evaporation.

    PubMed

    Wang, Li-Juan; Yin, Ye-Chong; Yin, Shou-Wei; Yang, Xiao-Quan; Shi, Wei-Jian; Tang, Chuan-He; Wang, Jin-Mei

    2013-11-20

    This work attempted to develop novel high barrier zein/SC nanoparticle (ZP)-stabilized emulsion films through microfluidic emulsification (ZPE films) or in combination with solvent (ethyl acetate) evaporation techniques (ZPE-EA films). Some physical properties, including tensile and optical properties, water vapor permeability (WVP), and surface hydrophobicity, as well as the microstructure of ZP-stabilized emulsion films were evaluated and compared with SC emulsion (SCE) films. The emulsion/solvent evaporation approach reduced lipid droplets of ZP-stabilized emulsions, and lipid droplets of ZP-stabilized emulsions were similar to or slightly lower than that of SC emulsions. However, ZP- and SC-stabilized emulsion films exhibited a completely different microstructure, nanoscalar lipid droplets were homogeneously distributed in the ZPE film matrix and interpenetrating protein-oil complex networks occurred within ZPE-EA films, whereas SCE films presented a heterogeneous microstructure. The different stabilization mechanisms against creaming or coalescence during film formation accounted for the preceding discrepancy of the microstructures between ZP-and SC-stabilized emulsion films. Interestingly, ZP-stabilized emulsion films exhibited a better water barrier efficiency, and the WVP values were only 40-50% of SCE films. A schematic representation for the formation of ZP-stabilized emulsion films was proposed to relate the physical performance of the films with their microstructure and to elucidate the possible forming mechanism of the films.

  16. Selenite-induced variation in glutathione peroxidase activity of three mammalian cell lines: no effect on radiation-induced cell killing or DNA strand breakage

    SciTech Connect

    Sandstroem, B.E.C.; Carlsson, J.; Marklund, S.L.

    1989-02-01

    The selenium-dependent glutathione peroxidase activities of three mammalian cell lines, HT29, P31, and N-18, cultured in medium with low serum content, increased about 2-, 5-, and 40-fold, respectively, after supplementation with 100 nM selenite. Catalase, CuZn superoxide dismutase, and Mn superoxide dismutase activities were not generally influenced by selenite supplementation, and there was only a minor nonselenium-dependent glutathione peroxidase activity in the investigated cell lines. Gamma-irradiated control and selenite-supplemented cells showed no changes in the surviving fractions, as estimated by clonogenic survival or (/sup 3/H)-thymidine uptake, nor were there any significant differences between the two groups in the induction of DNA strand breaks after gamma irradiation under repairing (37 degrees C) or nonrepairing (0 degrees C) conditions. The results suggest that selenium-dependent glutathione peroxidase does not contribute significantly to the radiation resistance of cultured mammalian cells.

  17. ROS inhibit autophagy by downregulating ULK1 mediated by the phosphorylation of p53 in selenite-treated NB4 cells.

    PubMed

    Ci, Y; Shi, K; An, J; Yang, Y; Hui, K; Wu, P; Shi, L; Xu, C

    2014-11-27

    Reactive oxygen species (ROS) have an important role in regulating various cellular processes. Our previous study confirmed that selenite, an anti-tumour agent, triggered apoptosis through the production of ROS in multiple types of cancer cells. In this study, we discovered that ROS also inhibited protective autophagy by decreasing the expression of ULK1, an initiator of autophagy, in selenite-treated NB4 cells. Further experiments demonstrated that p-p53 (S392), a phosphorylation event promoted by p70S6K, bound to the promoter of ULK1 and modulated its expression. Experiments in a mouse tumour model with NB4 cells provided in vivo confirmation of the alterations in the p70S6K/p53/ULK1 axis. Collectively, our results show that ROS inhibited autophagy by downregulating the p70S6K/p53/ULK1 axis in selenite-treated NB4 cells.

  18. Syntheses and structures of three f-element selenite/hydroselenite compounds

    SciTech Connect

    Burns, Wendy L.; Ibers, James A.

    2009-06-15

    The selenite/hydroselenite compounds Ce(SeO{sub 3})(HSeO{sub 3}), Tb(SeO{sub 3})(HSeO{sub 3}).2H{sub 2}O, and Cs[U(SeO{sub 3})(HSeO{sub 3})].3H{sub 2}O were synthesized by hydrothermal means at 453 K from the reaction of CeO{sub 2} or Tb{sub 4}O{sub 7} or UO{sub 2} with SeO{sub 2} and CsCl (as a mineralizer). Ce(SeO{sub 3})(HSeO{sub 3}) crystallizes in the non-centrosymmetric orthorhombic space group Pca2{sub 1}. The structure comprises a two-dimensional network of interconnected CeO{sub 10} bicapped distorted square antiprisms and SeO{sub 3} trigonal pyramids. Tb(SeO{sub 3})(HSeO{sub 3}).2H{sub 2}O crystallizes in the non-centrosymmetric orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. The structure features a two-dimensional layer of interconnected TbO{sub 8} distorted square antiprisms and SeO{sub 3} trigonal pyramids. Cs[U(SeO{sub 3})(HSeO{sub 3})].3H{sub 2}O crystallizes in the centrosymmetric monoclinic space group P2{sub 1}/n. The structure consists of two-dimensional layers of interconnected UO{sub 7} pentagonal bipyramids and SeO{sub 3} trigonal pyramids. The layers in all three structures are held together by hydrogen-bonding networks. - Graphical abstract: Structure of Ce[U(SeO{sub 3})(HSeO{sub 3})].3H{sub 2}O (Cs, purple; U, black; Se, blue; O, red; O{sub w}, green; H, gray).

  19. Mixed Hemi/Ad-Micelle Sodium Dodecyl Sulfate-Coated Magnetic Iron Oxide Nanoparticles for the Efficient Removal and Trace Determination of Rhodamine-B and Rhodamine-6G.

    PubMed

    Ranjbari, Elias; Hadjmohammadi, Mohammad Reza; Kiekens, Filip; De Wael, Karolien

    2015-08-04

    Mixed hemi/ad-micelle sodium dodecyl sulfate (SDS)-coated magnetic iron oxide nanoparticles (MHAMS-MIONPs) were used as an efficient adsorbent for both removal and preconcentration of two important carcinogenic xanthine dyes named rhodamine-B (RB) and rhodamine-6G (RG). To gain insight in the configuration of SDS molecules on the surface of MIONPs, zeta potential measurements were performed in different [SDS]/[MIONP] ratios. Zeta potential data indicated that mixed hemi/ad-micelle MHAM was formed in [SDS]/[MIONP] ratios over the range of 1.1 to 7.3. Parameters affecting the adsorption of dyes were optimized as removal efficiency by one variable at-a-time and response surface methodology; the obtained removal efficiencies were ∼100%. Adsorption kinetic and equilibrium studies, under the optimum condition (pH = 2; amount of MIONPs = 87.15 mg; [SDS]/[MIONP] ratio = 2.9), showed that adsorption of both dyes are based on the pseudo-second-order and the Langmuir isotherm models, respectively. The maximum adsorption capacities for RB and RG were 385 and 323 mg g(-1), respectively. MHAMS-MIONPs were also applied for extraction of RB and RG. Under optimum conditions (pH = 2; amount of damped MHAMS-MIONPs = 90 mg; eluent solvent volume = 2.6 mL of 3% acetic acid in acetonitrile), extraction recoveries for 0.5 mg L(-1) of RB and RG were 98% and 99%, with preconcentration factors of 327 and 330, respectively. Limit of detection obtained for rhodamine dyes were <0.7 ng mL(-1). Finally, MHAMS-MIONPs were successfully applied for both removal and trace determination of RB and RG in environmental and wastewater samples.

  20. Sodium and Food Sources

    MedlinePlus

    ... Disease Cholesterol High Blood Pressure Million Hearts® WISEWOMAN Sodium and Food Sources Recommend on Facebook Tweet Share ... food [PDF-867K] and how to reduce sodium. Sodium Reduction Is Challenging Types of food matter: More ...

  1. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.).

    PubMed

    Chauhan, Reshu; Awasthi, Surabhi; Tripathi, Preeti; Mishra, Seema; Dwivedi, Sanjay; Niranjan, Abhishek; Mallick, Shekhar; Tripathi, Pratibha; Pande, Veena; Tripathi, Rudra Deo

    2017-04-01

    Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements.

  2. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    PubMed Central

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-01-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates. PMID:27095071

  3. Preparation, crystal structure, vibrational spectra and thermal behaviour of piperazinium(2+) selenite monohydrate and piperazinium(2+) diselenite

    NASA Astrophysics Data System (ADS)

    Havlíček, David; Chudoba, Vít.; Němec, Ivan; Císařová, Ivana; Mička, Zdeněk

    2002-03-01

    Piperazinium(2+) selenite monohydrate and piperazinium(2+) diselenite were prepared by crystallization from aqueous solutions. The crystal structures of both substances were solved. Piperazinium(2+) selenite monohydrate crystallizes in the monoclinic space group P2 1/ c, a=12.308(2), b=6.5530(7), c=10.4936(6) Å; β=92.915(7)°, Z=4, R=0.0193 for 1492 observed reflections. Piperazinium(2+) diselenite crystals belong to triclinic space group P 1¯, a=7.0801(8), b=8.325(1), c=8.496(1) Å; α=97.130(10), β=105.927(9), γ=101.240(10)°; Z=2, R=0.0390 for 1621 observed reflections. The lattice parameters of the substances were also refined using powder diffraction methods. The piperazinium(2+) cations in the chair conformation are arranged almost plane-parallel above one another in the structure of the first substance, while the second substance contains piperazinium(2+) rings almost perpendicular to one another. The FTIR and FT Raman spectra were measured and studied at laboratory temperature for both the prepared substances. Their thermoanalytical properties were studied using TG, DTG and DTA methods in the temperature range 293-573 K. DSC measurements were carried out in the temperature range 95-423 K. No phase transitions were observed within this temperature interval.

  4. Draft Genome Sequence of “Halomonas chromatireducens” Strain AGD 8-3, a Haloalkaliphilic Chromate- and Selenite-Reducing Gammaproteobacterium

    PubMed Central

    Sharko, Fedor S.; Shapovalova, Anna A.; Tsygankova, Svetlana V.; Komova, Anastasia V.; Boulygina, Eugenia S.; Teslyuk, Anton B.; Gotovtsev, Pavel M.; Namsaraev, Zorigto B.; Khijniak, Tatiana V.; Vasilov, Raif G.

    2016-01-01

    Here, we report the complete genome sequence (3.97 Mb) of “Halomonas chromatireducens” AGD 8-3, a denitrifying bacterium capable of chromate and selenite reduction under extreme haloalkaline conditions. This strain was isolated from soda solonchak soils of the Kulunda steppe, Russian Federation. PMID:26988058

  5. Cerebral Area Differential Redox Response of Neonatal Rats to Selenite-Induced Oxidative Stress and to Concurrent Administration of Highbush Blueberry Leaf Polyphenols.

    PubMed

    Ferlemi, Anastasia-Varvara; Mermigki, Penelope G; Makri, Olga E; Anagnostopoulos, Dimitrios; Koulakiotis, Nikolaos S; Margarity, Marigoula; Tsarbopoulos, Anthony; Georgakopoulos, Constantinos D; Lamari, Fotini N

    2015-11-01

    Our goal was to delineate the mechanisms of selenite-induced oxidative stress in neonatal rats and investigate the potential of blueberry leaf polyphenols to counteract the induced stress. Vaccinium corymbosum leaf decoction (BLD) was analyzed by UPLC-MS and LC-DAD, along with its in vitro antioxidant activity (DPPH radical scavenging, FRAP, ferrous chelation). Newborn suckling Wistar rats were randomly divided into three groups: 'Se' and 'SeBLD' received 20 μmol Na2SeO3/kg BW subcutaneously (PN day 10); 'SeBLD' received 100 mg dry BLD/kg BW intraperitoneally (PN11 and 12) and Group 'C' received normal saline. Βiochemical analysis revealed tissue-specific effects of selenite. Brain as a whole was more resistant to selenite toxicity in comparison to liver; midbrain and cerebellum were in general not affected, but cortex was moderately disturbed. Liver lipid peroxidation, GSH, SOD, CAT, GPx were significantly affected, whereas proteolytic activity was not. BLD, which is rich in chlorogenic acid and flavonols (especially quercetin derivatives), exerted significant antioxidant protective effects in all regions. In conclusion, we provide for the first time an insight to the neonatal rat cerebral and liver redox response against a toxic selenite dose and blueberry leaf polyphenols.

  6. Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge.

    PubMed

    Jain, Rohan; Seder-Colomina, Marina; Jordan, Norbert; Dessi, Paolo; Cosmidis, Julie; van Hullebusch, Eric D; Weiss, Stephan; Farges, François; Lens, Piet N L

    2015-09-15

    Selenite containing wastewaters can be treated in activated sludge systems, where the total selenium is removed from the wastewater by the formation of elemental selenium nanoparticles, which are trapped in the biomass. No studies have been carried out so far on the characterization of selenium fed activated sludge flocs, which is important for the development of this novel selenium removal process. This study showed that more than 94% of the trapped selenium in activated sludge flocs is in the form of elemental selenium, both as amorphous/monoclinic selenium nanospheres and trigonal selenium nanorods. The entrapment of the elemental selenium nanoparticles in the selenium fed activated sludge flocs leads to faster settling rates, higher hydrophilicity and poorer dewaterability compared to the control activated sludge (i.e., not fed with selenite). The selenium fed activated sludge showed a less negative surface charge density as compared to the control activated sludge. The presence of trapped elemental selenium nanoparticles further affected the spatial distribution of Al and Mg in the activated sludge flocs. This study demonstrated that the formation and subsequent trapping of elemental selenium nanoparticles in the activated sludge flocs affects their physicochemical properties.

  7. Doped with Sodium Acetate and Metallic Sodium

    NASA Astrophysics Data System (ADS)

    Tada, Satoki; Isoda, Yukihiro; Udono, Haruhiko; Fujiu, Hirofumi; Kumagai, Shunji; Shinohara, Yoshikazu

    2014-06-01

    We have investigated the thermoelectric properties of p-type Na-doped Mg2 Si0.25Sn0.75 solid solutions prepared by liquid-solid reaction and hot-pressing methods. Na was introduced into Mg2Si0.25Sn0.75 by using either sodium acetate (CH3COONa) or metallic sodium (2 N). The samples doped with sodium acetate consisted of phases with antifluorite structure and a small amount of MgO as revealed by x-ray diffraction, whereas the sample doped with metallic sodium contained the Sn, MgO, and Mg2SiSn phases. The hole concentrations of Mg1.975Na0.025Si0.25Sn0.75 doped by sodium acetate and metallic sodium were 1.84 × 1025 m-3 and 1.22 × 1025 m-3, respectively, resulting in resistivities of 4.96 × 10-5 Ω m (sodium acetate) and 1.09 × 10-5 Ω m (metallic sodium). The Seebeck coefficients were 198 μV K-1 (sodium acetate) and 241 μV K-1 (metallic sodium). The figures of merit for Mg1.975Na0.025Si0.25Sn0.75 were 0.40 × 10-3 K-1 (sodium acetate) and 0.25 × 10-3 K-1 (metallic sodium) at 400 K. Thus, sodium acetate is a suitable Na dopant for Mg2Si1- x Sn x .

  8. Topologically and geometrically flexible structural units in seven new organically templated uranyl selenates and selenite-selenates

    NASA Astrophysics Data System (ADS)

    Gurzhiy, Vladislav V.; Kovrugin, Vadim M.; Tyumentseva, Olga S.; Mikhaylenko, Pavel A.; Krivovichev, Sergey V.; Tananaev, Ivan G.

    2015-09-01

    Single crystals of seven novel uranyl oxysalts of selenium with protonated methylamine molecules, [C2H8N]2[(UO2)(SeO4)2(H2O)] (I), [C2H8N]2[(UO2)2(SeO4)3(H2O)] (II), [C4H15N3][H3O]0.5[(UO2)2(SeO4)2.93(SeO3)0.07(H2O)](NO3)0.5 (III), [C2H8N]3[H5O2][(UO2)2(SeO4)3(H2O)2]2(H2O)5 (IV), [C2H8N]2[H3O][(UO2)3(SeO4)4(HSeO3)(H2O)](H2SeO3)0.2 (V), [C4H12N]3[H3O][(UO2)3(SeO4)5(H2O)] (VI), and [C2H8N]3(C2H7N)[(UO2)3(SeO4)4(HSeO3)(H2O)] (VII) have been prepared by isothermal evaporation from aqueous solutions. Their crystal structures have been solved by direct methods and their uranyl selenate and selenite-selenate units investigated using black-and-white graphs from the viewpoints of topology of interpolyhedral linkages and isomeric variations. The crystal structure of IV is based upon complex layers with unique topology, which has not been observed previously in uranyl selenates. Investigations of the statistics and local distribution of the U-Obr-Se bond angles demonstrates that shorter angles associate with undulations, whereas larger angles correspond to planar areas of the uranyl selenite layers.

  9. Plants and microbes assisted selenium nanoparticles: characterization and application.

    PubMed

    Husen, Azamal; Siddiqi, Khwaja Salahuddin

    2014-08-16

    Selenium is an essential trace element and is an essential component of many enzymes without which they become inactive. The Se nanoparticles of varying shape and size may be synthesized from Se salts especially selenite and selenates in presence of reducing agents such as proteins, phenols, alcohols and amines. These biomolecules can be used to reduce Se salts in vitro but the byproducts released in the environment may be hazardous to flora and fauna. In this review, therefore, we analysed in depth, the biogenic synthesis of Se nanoparticles, their characterization and transformation into t- Se, m-Se, Se-nanoballs, Se-nanowires and Se-hollow spheres in an innocuous way preventing the environment from pollution. Their shape, size, FTIR, UV-vis, Raman spectra, SEM, TEM images and XRD pattern have been analysed. The weak forces involved in aggregation and transformation of one nano structure into the other have been carefully resolved.

  10. Plants and microbes assisted selenium nanoparticles: characterization and application

    PubMed Central

    2014-01-01

    Selenium is an essential trace element and is an essential component of many enzymes without which they become inactive. The Se nanoparticles of varying shape and size may be synthesized from Se salts especially selenite and selenates in presence of reducing agents such as proteins, phenols, alcohols and amines. These biomolecules can be used to reduce Se salts in vitro but the byproducts released in the environment may be hazardous to flora and fauna. In this review, therefore, we analysed in depth, the biogenic synthesis of Se nanoparticles, their characterization and transformation into t- Se, m-Se, Se-nanoballs, Se-nanowires and Se-hollow spheres in an innocuous way preventing the environment from pollution. Their shape, size, FTIR, UV–vis, Raman spectra, SEM, TEM images and XRD pattern have been analysed. The weak forces involved in aggregation and transformation of one nano structure into the other have been carefully resolved. PMID:25128031

  11. Nanocomposite anode materials for sodium-ion batteries

    DOEpatents

    Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric

    2016-06-14

    The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.

  12. Fractional excretion of sodium

    MedlinePlus

    FE sodium; FENa ... to a lab. There, they are examined for salt (sodium) and creatinine levels. Creatinine is a chemical waste ... your normal foods with a normal amount of salt, unless otherwise instructed by your health care provider. ...

  13. Sodium carbonate poisoning

    MedlinePlus

    Sodium carbonate (known as washing soda or soda ash) is a chemical found in many household and ... products. This article focuses on poisoning due to sodium carbonate. This article is for information only. Do ...

  14. Naproxen sodium overdose

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002507.htm Naproxen sodium overdose To use the sharing features on this page, please enable JavaScript. Naproxen sodium is a nonsteroidal anti-inflammatory drug (NSAID) used ...

  15. Sodium Ferric Gluconate Injection

    MedlinePlus

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  16. Sodium hydroxide poisoning

    MedlinePlus

    Sodium hydroxide is a very strong chemical. It is also known as lye and caustic soda. This ... poisoning from touching, breathing in (inhaling), or swallowing sodium hydroxide. This article is for information only. Do ...

  17. Diclofenac sodium overdose

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002630.htm Diclofenac sodium overdose To use the sharing features on this page, please enable JavaScript. Diclofenac sodium is a prescription medicine used to relieve pain ...

  18. Docusate Sodium and Pregnancy

    MedlinePlus

    ... live chat Live Help Fact Sheets Share Docusate Sodium Friday, 01 April 2016 In every pregnancy, a ... This sheet talks about whether exposure to docusate sodium may increase the risk for birth defects over ...

  19. Low sodium level

    MedlinePlus

    ... osmolality Urine sodium Treatment The cause of low sodium must be diagnosed and treated. If cancer is the cause of the condition, then radiation, chemotherapy , or surgery to remove the tumor may correct the sodium imbalance. Other treatments depend on the specific type ...

  20. A novel function for selenium in biological system: selenite as a highly effective iron carrier for Chinese hamster ovary cell growth and monoclonal antibody production.

    PubMed

    Zhang, Jinyou; Robinson, David; Salmon, Peter

    2006-12-20

    As the market for biopharmaceuticals especially monoclonal antibodies (MAbs) rapidly grows, their manufacturing methods are coming under increasing regulatory scrutiny, particularly due to concerns about the potential introduction of adventitious agents from animal-sourced components in the media used for their production in mammalian cell culture. Chinese hamster ovary (CHO) cells are by far the most commonly used production vehicles for these recombinant glycoproteins. In developing animal-component free media for CHO and other mammalian cell lines, the iron-transporter function of serum or human/bovine transferrin is usually replaced by certain organic or inorganic chelators capable of delivering iron for cell respiration and metabolism, but few of them are sufficiently effective. Selenium is a well-known essential trace element (TE) for cell growth and development, and its positive role in biological system includes detoxification of free radicals by activating glutathione peroxidase. In cell culture, selenium in the form of selenite can help cells to detoxify the medium thus protect them from oxidative damage. In this presentation, we describe the discovery and application of a novel function of selenite, that is, as a highly effective carrier to deliver iron for cell growth and function. In our in-house-developed animal protein-free (APF) medium for CHO cells, using an iron-selenite compound to replace the well-established tropolone delivery system for iron led to comparable or better cell growth and antibody production. A high cell density of >10 x 10(6) viable cells/mL and excellent antibody titer of approximately 3 g/L were achieved in 14-day fed-batch cultures in shake flasks, followed by successful scale-up to stirred bioreactors. The preparation of the commercially unavailable iron-selenite compound from respective ions, and its effectiveness in cell-culture performance, were dependent on reaction time, substrates, and other conditions.

  1. Bi{sub 6}(SeO{sub 3}){sub 3}O{sub 5}Br{sub 2}: A new bismuth oxo-selenite bromide

    SciTech Connect

    Berdonosov, Peter S.; Olenev, Andrei V.; Kirsanova, Maria A.; Lebed, Julia B.; Dolgikh, Valery A.

    2012-12-15

    A new bismuth oxo-selenite bromide Bi{sub 6}(SeO{sub 3}){sub 3}O{sub 5}Br{sub 2} was synthesized and structurally characterized. The crystal structure belongs to the triclinic system (space group P1-bar , Z=2, a=7.1253(7) A, b=10.972(1) A, c=12.117(1) A, {alpha}=67.765(7) Degree-Sign , {beta}=82.188(8) Degree-Sign , {gamma}=78.445(7) Degree-Sign ) and is unrelated to those of other known oxo-selenite halides. It can be considered as an open framework composed of BiO{sub x} or BiO{sub y}Br{sub z} polyhedrons forming channels running along [1 0 0] direction which contain the selenium atoms in pyramidal shape oxygen coordination (SeO{sub 3}E). The spectroscopic properties and thermal stability were studied. The new compound is stable up to 400 Degree-Sign C. - graphical abstract: New bismuth oxo-selenite bromide with new open framework structure. Highlights: Black-Right-Pointing-Pointer New bismuth oxo-selenite bromide was found and structurally characterized. Black-Right-Pointing-Pointer Bi{sub 6}(SeO{sub 3}){sub 3}O{sub 5}Br{sub 2} exhibit a new open framework structure type. Black-Right-Pointing-Pointer BiO{sub x} or BiO{sub y}Br{sub z} polyhedrons form channels in the structure which are decorated by [SeO{sub 3}E] groups.

  2. Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex.

    PubMed

    Yamani, Jamila S; Lounsbury, Amanda W; Zimmerman, Julie B

    2016-01-01

    The potential for a chitosan-copper polymer complex to select for the target contaminants in the presence of their respective competitive ions was evaluated by synthesizing chitosan-copper beads (CCB) for the treatment of (arsenate:phosphate), (selenite:phosphate), and (selenate:sulfate). Based on work by Rhazi et al., copper (II) binds to the amine moiety on the chitosan backbone as a monodentate complex (Type I) and as a bidentate complex crosslinking two polymer chains (Type II), depending on pH and copper loading. In general, the Type I complex exists alone; however, beyond threshold conditions of pH 5.5 during synthesis and a copper loading of 0.25 mol Cu(II)/mol chitosan monomer, the Type I and Type II complexes coexist. Subsequent chelation of this chitosan-copper ligand to oxyanions results in enhanced and selective adsorption of the target contaminants in complex matrices with high background ion concentrations. With differing affinities for arsenate, selenite, and phosphate, the Type I complex favors phosphate chelation while the Type II complex favors arsenate chelation due to electrostatic considerations and selenite chelation due to steric effects. No trend was exhibited for the selenate:sulfate system possibly due to the high Ksp of the corresponding copper salts. Binary separation factors, α12, were calculated for the arsenate-phosphate and selenite-phosphate systems, supporting the mechanistic hypothesis. While, further research is needed to develop a synthesis method for the independent formation of the Type II complexes to select for target contaminants in complex matrices, this work can provide initial steps in the development of a selective adsorbent.

  3. Formation of Se (0) Nanoparticles by Duganella sp. andAgrobacterium sp. isolated from Se-laden soil of North-East Punjab, India

    PubMed Central

    2012-01-01

    Background Selenium (Se) is an essential trace element, but is toxic at high concentrations. Depending upon the geological background, the land use or on anthropogenic pollution, different amounts of Se may be present in soil. Its toxicity is related to the oxyanions selenate and selenite as they are water soluble and bioavailable. Microorganisms play an important role in Se transformations in soil and its cycling in the environment by transforming water-soluble oxyanions into water insoluble, non-toxic elemental Se (0). For this study, soil samples were collected from selenium-contaminated agricultural soils of Punjab/India to enrich and isolate microbes that interacted with the Se cycle. Results A mixed microbial culture enriched from the arable soil of Punjab could reduce 230 mg/l of water soluble selenite to spherical Se (0) nanoparticles during aerobic growth as confirmed by SEM-EDX. Four pure cultures (C 1, C 4, C 6, C 7) of Gram negative, oxidase and catalase positive, aerobic bacteria were isolated from this mixed microbial consortium and identified by 16 S rDNA gene sequence alignment as two strains of Duganella sp. (C 1, C 4) and two strains of Agrobacterium sp.(C 6, C 7). SEM/TEM-EDX analyses of the culture broth of the four strains revealed excretion of uniformly round sharply contoured Se (0) nanoparticles by all cultures. Their size ranged from 140–200 nm in cultures of strains C 1 and C 4, and from 185–190 nm in cultures of strains C 6 and C 7. Both Duganella sp. revealed better selenite reduction efficiencies than the two Agrobacterium sp. Conclusions This is the first study reporting the capability of newly isolated, aerobically growing Duganella sp. and Agrobacterium sp. from soils of Punjab/India to form spherical, regularly formed Se (0) nanoparticles from water soluble selenite. Among others, the four strains may significantly contribute to the biogeochemical cycling of Se in soil. Bioconversion of toxic selenite to non-toxic Se (0

  4. Synthesis of noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bahadory, Mozhgan

    Improved methods were developed for the synthesis of noble metal nanoparticles. Laboratory experiments were designed for introducing of nanotechnology into the undergraduate curriculum. An optimal set of conditions for the synthesis of clear yellow colloidal silver was investigated. Silver nanoparticles were obtained by borohydride reduction of silver nitrate, a method which produces particles with average size of 12+/-2 nm, determined by Transmission Electron Microscopy (TEM). The plasmon absorbance is at 397 nm and the peak width at half maximum (PWHM) is 70-75 nm. The relationship between aggregation and optical properties was determined along with a method to protect the particles using polyvinylpyrrolidone (PVP). A laboratory experiment was designed in which students synthesize yellow colloidal silver, estimate particle size using visible spectroscopy, and study aggregation effects. The synthesis of the less stable copper nanoparticles is more difficult because copper nanopaticles are easily oxidized. Four methods were used for the synthesis of copper nanoparticles, including chemical reduction with sodium borohydride, sodium borohydride with potassium iodide, isopropyl alcohol with cetyltrimethylammonium bormide (CTAB) and reducing sugars. The latter method was also the basis for an undergraduate laboratory experiment. For each reaction, the dependence of stability of the copper nanoparticles on reagent concentrations, additives, relative amounts of reactants, and temperature is explored. Atomic force microscopy (AFM), TEM and UV-Visible Spectroscopy were used to characterize the copper nanoparticles. A laboratory experiment to produce copper nanoparticles from household chemicals was developed.

  5. Sodium in feline nutrition.

    PubMed

    Nguyen, P; Reynolds, B; Zentek, J; Paßlack, N; Leray, V

    2016-08-23

    High sodium levels in cat food have been controversial for a long time. Nonetheless, high sodium levels are used to enhance water intake and urine volume, with the main objective of reducing the risk of urolithiasis. This article is a review of current evidence of the putative risks and benefits of high dietary sodium levels. Its secondary aim is to report a possible safe upper limit (SUL) for sodium intake. The first part of the manuscript is dedicated to sodium physiology, with a focus on the mechanisms of sodium homeostasis. In this respect, there is only few information regarding possible interactions with other minerals. Next, the authors address how sodium intake affects sodium balance; knowledge of these effects is critical to establish recommendations for sodium feed content. The authors then review the consequences of changes in sodium intake on feline health, including urolithiasis, blood pressure changes, cardiovascular alterations and kidney disease. According to recent, long-term studies, there is no evidence of any deleterious effect of dietary sodium levels as high as 740 mg/MJ metabolizable energy, which can therefore be considered the SUL based on current knowledge.

  6. Sodium sensing in neurons with a dendrimer-based nanoprobe.

    PubMed

    Lamy, Christophe M; Sallin, Olivier; Loussert, Céline; Chatton, Jean-Yves

    2012-02-28

    Ion imaging is a powerful methodology to assess fundamental biological processes in live cells. The limited efficiency of some ion-sensing probes and their fast leakage from cells are important restrictions to this approach. In this study, we present a novel strategy based on the use of dendrimer nanoparticles to obtain better intracellular retention of fluorescent probes and perform prolonged fluorescence imaging of intracellular ion dynamics. A new sodium-sensitive nanoprobe was generated by encapsulating a sodium dye in a PAMAM dendrimer nanocontainer. This nanoprobe is very stable and has high sodium sensitivity and selectivity. When loaded in neurons in live brain tissue, it homogenously fills the entire cell volume, including small processes, and stays for long durations, with no detectable alterations of cell functional properties. We demonstrate the suitability of this new sodium nanosensor for monitoring physiological sodium responses such as those occurring during neuronal activity.

  7. Effects of selenium-enriched Agaricus blazei Murill on liver metabolic dysfunction in mice, a comparison with selenium-deficient Agaricus blazei Murill and sodium selenite.

    PubMed

    Yu, Lei; Yang, Shaolong; Sun, Lei; Jiang, Yan-Fang; Zhu, Li-Ying

    2014-07-01

    In the present study, we investigated the effects of Se-enriched Agaricus blazei Murill (Se-AbM) on liver injury in mice induced by acute alcohol administration. Mice received ethanol (5 g/kg body weight (BW)) by gavage every 12 h for a total of 3 doses. Se-AbM was administrated before ethanol administration. Subsequent serum alanine aminotransferase (ALT) level, aspartate aminotransaminase (AST) level, maleic dialdehyde (MDA) level, hepatic total antioxidant status (TAOS), nuclear factor kappa B (NF-κB) level, polymorphonuclear cells (PMN) level, interleukin-1β (IL-1β) level, inducible nitric oxide synthase (iNOS) level, tumor necrosis factor-α (TNF-α) level, intercellular adhesion molecule 1 (ICAM-1), and cyclooxygenase-2 (COX-2) were determined by ELISA and immunohistochemistry, respectively. Se-AbM administration markedly (p < 005) decreased serum ALT, AST, and MDA levels, hepatic IL-1β and TNF-α levels, as well as PMN infiltration and the expression of ICAM-1, COX-2, iNOS, and NF-κB compared with alcohol administration. In conclusion, we observed that Se-AbM supplementation could restrain the hepatic damage caused by acute alcohol exposure.

  8. Metabolism of selenium (Se) in rats chronically poisoned with D- or L-selenomethionine (SeMet), selenite or selenate

    SciTech Connect

    McAdam, P.A.; Levander, O.A.

    1986-03-01

    L-SeMet is a potential cancer chemoprevention agent for humans. Little difference was seen in the acute toxicity of L vs. D-SeMet in rats. To study chronic toxicity, weanling male rats were fed purified diets containing 2.5, 5.0 or 10 ppm Se as L-SeMet, D-SeMet, Na/sub 2/SeO/sub 3/ or Na/sub 2/SeO/sub 4/ for 6 weeks. Controls received 0.1 ppm Se as selenite. All rats fed 10 ppm Se died within 29 days. Se fed as D-SeMet was retained in the tissues as strongly as L-SeMet. Rats fed D or L-SeMet deposited large amounts of Se in muscle not reflected by proportionate increases in either plasma or RBC Se. Therefore, attempts to follow increases in Se body burden in individuals supplemented with large doses of L-SeMet by monitoring plasma or whole blood Se levels should be interpreted with caution.

  9. Cobalt selenite dihydrate as an effective and stable Pt-free counter electrode in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Dong, Jia; Wu, Jihuai; Jia, Jinbiao; Fan, Leqing; Lan, Zhang; Lin, Jianming; Wei, Yuelin

    2016-12-01

    Cobalt selenite dihydrate (CoSeO3·2H2O) is spin-coated on conductive glass and used as counter electrode (CE) in dye-sensitized solar cells (DSSCs). Owing to CoSeO3·2H2O electrode good electrocatalytic activity, high conductivity and low resistance, the DSSC based on optimal CoSeO3·2H2O CE provides a power conversion efficiency of 8.90% under one sun irradiation from the front of DSSC, which is superior to the DSSC based on conventional Pt CE. Furthermore, when incorporating trace amounts of reduced graphene oxide (rGO) into CoSeO3·2H2O CE, the DSSC device achieves an improved power conversion efficiency of 9.89%. The research presented here indicates that hydration oxysalt can be used as efficient, stable and free-Pt counter electrode material and shows excellent prospects for application in DSSCs.

  10. Survivin-2B promotes autophagy by accumulating IKK alpha in the nucleus of selenite-treated NB4 cells.

    PubMed

    Shi, K; An, J; Shan, L; Jiang, Q; Li, F; Ci, Y; Wu, P; Duan, J; Hui, K; Yang, Y; Xu, C

    2014-02-20

    Survivin-2B, a known splice variant of survivin, has been reported to promote cell death in some cancer cells, although it keeps prosurvival function in others, and the mechanisms are unclear. In this report, we discovered that selenite, an antitumor agent, switched protective autophagy to apoptosis in NB4 cells. In this process, the level of survivin-2B was decreased and the interaction between IKK alpha and survivin-2B in the nucleus was attenuated, which further led to the decrease of nuclear IKK alpha. As a result, P73, a known transcript factor of UVRAG, was downregulated. Therefore, the expression of UVRAG, one of the initiators of autophagy, was inhibited. The regulatory status of survivin-2B was also proved in NB4 cells after different chemicals' exposure and in other tumor cell lines (Jurkat, HCT116). Finally, experiments in vivo confirmed that the alterations of survivin-2B, IKK alpha, P73 and UVRAG were the same as that in vitro. Taken together, survivin-2B promoted autophagy and further regulated cell death by accumulating and stabilizing IKK alpha in the nucleus.

  11. Effect of sulfate concentration on acute toxicity of selenite and selenate to invertebrates and fish. Final report

    SciTech Connect

    McIntyre, D.O.; McCauley, D.J.; McCool, P.; Winkler, N.; DeGraeve, M.

    1998-12-01

    The effect of sulfate concentration on the acute toxicity of selenite (Se IV) and selenate (Se VI) to freshwater organisms was evaluated using toxicity test data generated from this study and toxicity data obtained from the open literature. The acute toxicity of Se IV and Se VI to fathead minnows and two amphipod species, Gammarus pseudolimnaeus and Hyalella azteca, were determined in four different sulfate concentrations. The newly generated toxicity data combined with the data obtained from the literature were evaluated using analysis of covariance to determine if there was a significant relationship between acute toxicity and sulfate concentration. The analysis of the Se IV data indicated that there was not a significant relationship between the acute toxicity of Se IV and sulfate concentration. A significant relationship was found between the acute toxicity of Se VI to freshwater organisms and sulfate concentration. Statistically significant slopes describing the relationship between Se VI toxicity and sulfate concentration were determined for individual species and for the combined data. A sulfate-based equation was constructed using the pooled slope to modify the criterion maximum concentration (CMC) for selenate: CMC = e{sup [0.4259(ln[sulfate]) + 4.6305]}.

  12. Decode the Sodium Label Lingo

    MedlinePlus

    ... For Preschooler For Gradeschooler For Teen Decode the Sodium Label Lingo Published January 24, 2013 Print Email Reading food labels can help you slash sodium. Here's how to decipher them. "Sodium free" or " ...

  13. New insights into the chemical structure of Y2Ti2O7-δ nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Badjeck, V.; Walls, M. G.; Chaffron, L.; Malaplate, J.; March, K.

    2015-01-01

    In this paper we study by high resolution scanning transmission electron microscopy coupled with electron energy-loss spectroscopy (STEM-EELS) an oxide dispersion-strengthened (ODS) steel with the nominal composition Fe-14Cr-1W-0.3TiH2-0.3Y2O3 (wt.%) designed to withstand the extreme conditions met in Gen. IV nuclear reactors. After denoising via principal component analysis (PCA) the data are analyzed using independent component analysis (ICA) which is useful in the investigation of the physical properties and chemical structure of the material by separating the individual spectral responses. The Y-Ti-O nanoparticles are found to be homogeneously distributed in the ferritic matrix, sized from 1 to 20 nm and match a non-stoichiometric pyrochlore-Y2Ti2O7-δ structure for sizes greater than 5 nm. We show that they adopt a (Y-Ti-O)-Cr core-shell structure and that Cr also segregates at the matrix grain boundaries, which may slightly modify the corrosion properties of the steel. Using Ti-L2,3 and O-K fine structure (ELNES) the Ti oxidation state is shown to vary from the center of the nanoparticles to their periphery, from Ti4+ in distorted Oh symmetry to a valency often lower than 3+. The sensitivity of the Ti "white lines" ELNES to local symmetry distortions is also shown to be useful when investigating the strain induced in the nanoparticles by the surrounding matrix. The Cr-shell and the variation of the Ti valence state highlight a complex nanoparticle-matrix interface.

  14. Mercury's sodium exosphere

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Johnson, R. E.

    2003-08-01

    Mercury's neutral sodium exosphere is simulated using a comprehensive 3D Monte Carlo model following sodium atoms ejected from Mercury's surface by thermal desorption, photon stimulated desorption, micro-meteoroid vaporization and solar wind sputtering. The evolution of the sodium surface density with respect to Mercury's rotation and its motion around the Sun is taken into account by considering enrichment processes due to surface trapping of neutrals and ions and depletion of the sodium available for ejection from the surfaces of grains. The change in the sodium exosphere is calculated during one Mercury year taking into account the variations in the solar radiation pressure, the photo-ionization frequency, the solar wind density, the photon and meteoroid flux intensities, and the surface temperature. Line-of-sight column densities at different phase angles, the supply rate of new sodium, average neutral and ion losses over a Mercury year, surface density distribution and the importance of the different processes of ejection are discussed in this paper. The sodium surface density distribution is found to become significantly nonuniform from day to night sides, from low to high latitudes and from morning to afternoon because of rapid depletion of sodium atoms in the surfaces of grains mainly driven by thermal depletion. The shape of the exosphere, as it would be seen from the Earth, changes drastically with respect to Mercury's heliocentric position. High latitude column density maxima are related to maxima in the sodium surface concentration at high latitudes in Mercury's surface and are not necessarily due to solar wind sputtering. The ratio between the sodium column density on the morning side of Mercury's exosphere and the sodium column density on the afternoon side is consistent with the conclusions of Sprague et al. (1997, Icarus 129, 506-527). The model, which has no fitting parameters, shows surprisingly good agreement with recent observations of Potter et

  15. Selenite Reduction by Anaerobic Microbial Aggregates: Microbial Community Structure, and Proteins Associated to the Produced Selenium Spheres.

    PubMed

    Gonzalez-Gil, Graciela; Lens, Piet N L; Saikaly, Pascal E

    2016-01-01

    Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se(0)), insights into the microbial community structure and synthesis of Se(0) within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20%) and Pseudomonadaceae (c.a.10%) were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (∼200 μm) of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se(0) (nano)spheres, with some cells having high numbers of intracellular Se(0) spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se(0) spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS) analysis of extracted Se(0) spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se(0) spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se(0) spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se(0) spheres. In view of these and previous findings, a schematic model for the synthesis of Se(0) spheres by the microorganisms inhabiting the granular sludge is proposed.

  16. Selenite Reduction by Anaerobic Microbial Aggregates: Microbial Community Structure, and Proteins Associated to the Produced Selenium Spheres

    PubMed Central

    Gonzalez-Gil, Graciela; Lens, Piet N. L.; Saikaly, Pascal E.

    2016-01-01

    Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0), insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20%) and Pseudomonadaceae (c.a.10%) were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (∼200 μm) of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano)spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS) analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthesis of Se0 spheres by the microorganisms inhabiting the granular sludge is proposed. PMID:27199909

  17. VSb(SeO3)4, first selenite containing V3+ cation: synthesis, structure, characterization, magnetic properties, and calculations.

    PubMed

    Shin, Yiseul; Lee, Dong Woo; Choi, Kwang Yong; Koo, Hyun-Joo; Ok, Kang Min

    2013-12-16

    A new vanadium antimony selenite, VSb(SeO3)4, has been synthesized through a solid-state reaction by using V2O5, Sb2O3, and SeO2 as reagents. The crystal structure of VSb(SeO3)4 has been solved and refined by single-crystal X-ray diffraction. Whereas the starting V(5+) cation has been reduced to V(3+), the Sb(3+) cation has been oxidized to Sb(5+) during the synthesis. VSb(SeO3)4 has a three-dimensional framework structure consisting of V/SbO6 octahedra and SeO3 groups. The V(3+) and Sb(5+) cations are statistically disordered in the same site with 50% occupancy. The oxide ligands in SeO3 groups are shared by V/SbO6 octahedra, and the framework expands outward radially from the center. The effective magnetic moment is estimated to be μeff = 2.57 μB per V(3+) from the magnetic property measurements. The g-factor is determined to be g = 1.9(4) from the electron paramagnetic resonance spectrum, which is typical for a d(2) ion. The spin-polarized DFT+U calculations with U = 4 and 5 eV exhibit the magnetic moments of 1.98 μB and 2.01 μB, respectively, on V(3+) ion. Infrared and UV-vis diffuse reflectance spectra, elemental analysis, X-ray photoelectron spectroscopy, thermal analysis, and electronic structure calculations are also reported.

  18. METHOD FOR REMOVING SODIUM OXIDE FROM LIQUID SODIUM

    DOEpatents

    Bruggeman, W.H.; Voorhees, B.G.

    1957-12-01

    A method is described for removing sodium oxide from a fluent stream of liquid sodium by coldtrapping the sodium oxide. Apparatus utilizing this method is disclosed in United States Patent No. 2,745,552. Sodium will remain in a molten state at temperatures below that at which sodium oxide will crystallize out and form solid deposits, therefore, the contaminated stream of sodium is cooled to a temperature at which the solubility of sodium oxide in sodium is substantially decreased. Thereafter the stream of sodium is passed through a bed of stainless steel wool maintained at a temperature below that of the stream. The stream is kept in contact with the wool until the sodium oxide is removed by crystal growth on the wool, then the stream is reheated and returned to the system. This method is useful in purifying reactor coolants where the sodium oxide would otherwise deposit out on the walls and eventually plug the coolant tubes.

  19. Ethylenediammonium dication: H-bonded complexes with terephthalate, chloroacetate, phosphite, selenite and sulfamate anions. Detailed vibrational spectroscopic and theoretical studies of ethylenediammonium terephthalate.

    PubMed

    Marchewka, M K; Drozd, M

    2012-12-01

    Crystalline complexes between ethylenediammonium dication and terephthalate, chloroacetate, phosphite, selenite and sulfamate anions were obtained by slow evaporation from water solution method. Room temperature powder infrared and Raman measurements were carried out. For ethylenediammonium terephthalate theoretical calculations of structure were performed by two ways: ab-initio HF and semiempirical PM3. In this case the PM3 method gave more accurate structure (closer to X-ray results). The additional PM3 calculations of vibrational spectra were performed. On the basis theoretical approach and earlier vibrational studies of similar compounds the vibrational assignments for observed bands have been proposed. All compounds were checked for second harmonic generation (SHG).

  20. Submersible sodium pump

    DOEpatents

    Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.

    1989-11-21

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.

  1. Submersible sodium pump

    DOEpatents

    Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.

    1989-01-01

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.

  2. SODIUM DEUTERIUM REACTOR

    DOEpatents

    Oppenheimer, E.D.; Weisberg, R.A.

    1963-02-26

    This patent relates to a barrier system for a sodium heavy water reactor capable of insuring absolute separation of the metal and water. Relatively cold D/sub 2/O moderator and reflector is contained in a calandria into which is immersed the fuel containing tubes. The fuel elements are cooled by the sodium which flows within the tubes and surrounds the fuel elements. The fuel containing tubes are surrounded by concentric barrier tubes forming annular spaces through which pass inert gases at substantially atmospheric pressure. Header rooms above and below the calandria are provided for supplying and withdrawing the sodium and inert gases in the calandria region. (AEC)

  3. Sodium hypochlorite poisoning

    MedlinePlus

    ... poisoning, especially if the product is mixed with ammonia. This article is for information only. Do NOT ... hypochlorite, which may cause severe injury. NEVER mix ammonia with sodium hypochlorite (bleach or bleach-containing products). ...

  4. Sodium hypochlorite dental accidents.

    PubMed

    Goswami, Mridula; Chhabra, Nidhi; Kumar, Gyanendra; Verma, Mahesh; Chhabra, Anuj

    2014-02-01

    Sodium hypochlorite is widely used in dentistry as an intra-canal irrigant, for debridement and to disinfect root canals. Although it is considered to be safe, serious mishap can result from its inappropriate use, and this has been reported infrequently in the literature. Two unusual cases of sodium hypochlorite toxicity and their successful non-surgical management are described in a 14-year-old girl and a 13-year-old boy.

  5. [Disorders of sodium metabolism].

    PubMed

    Pizarro-Torres, D

    1991-08-01

    We do not know why sodium was chosen to fill the extracellular space while potassium occupies the intracellular area. The sodium/potassium pump was placed in charge of maintaining this separation. The usual sodium blood concentration, in vertebrates, and in all ages, ranges from 135 to 145 mmol/L, although it may decrease with age. The maintenance of its concentration within these limits, as well as the total amount locally deposited are regulated by an intertwined net of sensors and effectors found in the Central Nervous System, in the cardiovascular apparatus including the right auricle, in the kidneys and adrenal glands, or indirectly due to a number of factors which act on the sodium/potassium pump--for examples the thyroid hormone, the digestive system and the skin. The changes in the metabolism and regulation of water and sodium may cause an excess (hypernatremia) or a deficit (hyponatremia) in the concentration of sodium in plasma--either extreme can be fatal. The prompt correction of these changes should include treating the causes while taking into consideration the time they took to occur. The most frequent cause of these changes in children is diarrheal disease and its inadequate treatment. The correct administration of the oral rehydrating solution recommended by the World Health Organization can prevent fatal endings.

  6. Lysozyme loading and release from Se doped hydroxyapatite nanoparticles.

    PubMed

    Wang, Yanhua; Hao, Hang; Zhang, Shengmin

    2016-04-01

    Element-substituted hydroxyapatite (HA) based nanocomposites have become a promising therapeutic material for improving bone defect repair. Selenium substituted HA nanoparticles can both induce apoptosis of bone tumor cells and enhance osteointegration. However, the effect of selenite ions on the proteins in combination with the HA nanoparticles remains to be elucidated. Here, we investigated the influence of selenium doping concentration on the loading and release of lysozyme (LSM) as a model protein drug. The selenium substituted HA-LSM composites with different doping concentrations were synthesized and characterized. The subsequent delivery of lysozyme was studied in a phosphate buffer solution (PBS). We found that selenium substituted HA-LSM composites with Se:P=10% showed the highest amount of lysozyme loading (41.7%), whereas the amount of lysozyme loaded in undoped HA nanoparticles was the lowest (34.1%). The doped selenium interacts with lysozyme molecules, which leads to the increase of β-sheet and unordered, and the decrease of self-association, α-helix and β-turns in protein structures. Moreover, selenium addition significantly slows the protein release from HA-LSM composites. The composites with Se:P=10% release lysozyme at the slightly slower rate among the samples with different Se doping concentrations. It also shows that the released lysozyme retains most of its enzymatic activity.

  7. Sodium sulfur battery seal

    DOEpatents

    Mikkor, Mati

    1981-01-01

    This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

  8. Drug release behavior of poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA) prepared by direct polycondensation.

    PubMed

    Shi, Gang; Ding, Yuanyuan; Zhang, Xin; Wu, Luyan; He, Fei; Ni, Caihua

    2015-01-01

    Hydrophobically modified sodium alginate, poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA), was successfully synthesized through direct one-step polymerization of sodium alginate, glycolic acid, and lactic acid. ALG-g-PLGA self-assembled to colloidal nanoparticles and subsequently hydrogel microspheres were obtained by crosslinking ALG-g-PLGA nanoparticles in the solution of calcium chloride. The modified hydrogel microspheres could be used as the drug delivery vehicles for a hydrophobic ibuprofen. Compared with sodium alginate, ALG-g-PLGA demonstrated an improved drug loading rate, encapsulation efficiency, and prolonged release speed. The products, as novel and highly promising biomaterials, have potential applications.

  9. Sodium storage and injection system

    NASA Technical Reports Server (NTRS)

    Keeton, A. R. (Inventor)

    1979-01-01

    A sodium storage and injection system for delivering atomized liquid sodium to a chemical reactor employed in the production of solar grade silicon is disclosed. The system is adapted to accommodate start-up, shut-down, normal and emergency operations, and is characterized by (1) a jacketed injection nozzle adapted to atomize liquefied sodium and (2) a supply circuit connected to the nozzle for delivering the liquefied sodium. The supply circuit is comprised of a plurality of replaceable sodium containment vessels, a pump interposed between the vessels and the nozzle, and a pressurizing circuit including a source of inert gas connected with the vessels for maintaining the sodium under pressure.

  10. Comparison of the migration behavior of nanoparticles based on polyethylene glycol and silica using micellar electrokinetic chromatography.

    PubMed

    Kato, Masaru; Sasaki, Minoru; Ueyama, Yukari; Koga, Ayaka; Sano, Akira; Higashi, Tatsuya; Santa, Tomofumi

    2015-02-01

    Nanoparticles, spherical particles with diameters less than 100 nm, are promising theranostic devices for noninvasive diagnosis and therapy. In this study, nanoparticles composed of polyethylene glycol and silica were prepared, and their migration behavior was examined using capillary electrophoresis. The effects of the sodium dodecyl sulfate concentration in the electrolyte, the nanoparticle size, and the encapsulated molecule on the migration were examined. The addition of sodium dodecyl sulfate into the electrolyte had a significant effect on the electrophoretic mobility of polyethylene glycol nanoparticles, but a small effect on that of silica nanoparticles. As for the size effect, the mobility became a little faster for smaller nanoparticle sizes for both polyethylene glycol and silica nanoparticles. The encapsulated molecule affected the mobility of the nanoparticles through interactions between the encapsulated molecules and sodium dodecyl sulfate. We propose that the large effect of sodium dodecyl sulfate on the migration of the polyethylene glycol nanoparticles was due to the large spaces within the nanoparticles. These results indicate that nanoparticle migration is mainly determined by the nanoparticle components.

  11. Decomposition of Sodium Tetraphenylborate

    SciTech Connect

    Barnes, M.J.

    1998-11-20

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability.

  12. Dalapon, sodium salt

    Integrated Risk Information System (IRIS)

    Dalapon , sodium salt ; CASRN 75 - 99 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  13. Chlorite (sodium salt)

    Integrated Risk Information System (IRIS)

    Chlorite ( sodium salt ) ; CASRN 7758 - 19 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  14. Sodium sulfur battery seal

    DOEpatents

    Topouzian, Armenag

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  15. The sodium zenocorona

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Combi, Michael R.

    1991-01-01

    A recent narrow-band-filtered CCD image by Mendillo et al. (1990) has shown that a sodium corona, produced near Io, extends at least 400 Jupiter radii in the planet's equatorial plane. Isophotes indicate that the polar to equatorial extents are in about 1 to 3 proportions. The image can be reproduced by a model which includes both a high- and an intermediate-speed distribution, with source rates of 2.2 and 1.1 x 10 exp 26 atoms/s, respectively. The high-speed distribution was ejected from Io with a velocity tangential to the satellite orbit of 57 km/s (about 74 km/s relative to Jupiter) plus an isotropic Maxwellian velocity distribution of about 25 km/s. This distribution likely corresponds to a charge exchange source of plasma torus sodium ions which are neutralized in the near-Io atmosphere and are ejected relative to Jupiter with a corotational velocity (74 km/s) plus a thermal ion (25 km/s) Maxwellian distribution. The intermediate speed distribution was ejected from Io with a tangential speed near 20 km/s (37 km/s relative to Jupiter) plus an isotropic Maxwellian velocity distribution of about 12 km/s. This distribution corresponds to the same nonthermal sodium atoms earlier identified near Io in the sodium directional features (Pilcher et al., 1984).

  16. Towards high throughput screening of nanoparticle flotation collectors.

    PubMed

    Abarca, Carla; Yang, Songtao; Pelton, Robert H

    2015-12-15

    To function as flotation collectors for mineral processing, polymeric nanoparticles require a delicate balance of surface properties to give mineral-specific deposition and colloidal stability in high ionic strength alkaline media, while remaining sufficiently hydrophobic to promote flotation. Combinatorial nanoparticle surface modification, in conjunction with high throughput screening, is a promising approach for nanoparticle development. However, efficient automated screening assays are required to reject ineffective particles without having to undergo time consuming flotation testing. Herein we demonstrate that determining critical coagulation concentrations of sodium carbonate in combination with measuring the advancing water contact angle of nanoparticle-saturated glass surfaces can be used to screen ineffective nanoparticles. Finally, none of our first nanoparticle library based on poly(ethylene glycol) methyl ether methacrylate (PEG-methacrylate) were effective flotation collectors because the nanoparticles were too hydrophilic.

  17. Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Xu, Zejing; Li, Yejia; Zhang, Boyu; Purkait, Tapas; Alb, Alina; Mitchell, Brian S.; Grayson, Scott M.; Fink, Mark J.

    2015-01-01

    Water-soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water-stable chloroalkyl or alkynyl-terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the Si nanoparticles with sodium azide in DMF. The azido-terminated nanoparticles were then grafted with mono-alkynyl-PEG polymers using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked Si nanoparticle clusters were synthesized via the CuAAC "click" reaction of functional Si NPs with α,ω-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle aggregates undergo a solvent-dependent change in volume (ethanol > dichloromethane > toluene) similar in behavior to hydrogel nanocomposites.

  18. In situ growth and performance of spherical Fe2F5·H2O nanoparticles in multi-walled carbon nanotube network matrix as cathode material for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Jiang, Miaoling; Wang, Xianyou; Hu, Hai; Wei, Shuangying; Fu, Yanqing; Shen, Yongqiang

    2016-06-01

    The multi-wall carbon nanotubes wired spherical Fe2F5·H2O particles (MWCNTs-wired Fe2F5·H2O) are synthesized via an ionic liquid (IL) based precipitation route as the cathode material for sodium ion batteries (SIBs), in which the IL 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (BMMimBF4) is used as environmentally friendly fluorine source, appropriate solvent and binder. The structure, morphology and electrochemical performance of the as-prepared samples have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), charge/discharge tests, cyclic voltammetric measurements (CV). The results show that the MWCNTs-wired spherical Fe2F5·H2O particles present the cubic crystal structure with the cell volume of 1.12821 nm3. Moreover, the SEM and TEM images show that the spherical Fe2F5·H2O particles and disentangled MWCNTs are intertwined together to form a chestnut-like micrometer-sized aggregates. Furthermore, the MWCNTs-wired spherical Fe2F5·H2O particles show a high initial discharge capacity of 251.2 mAh g-1 at 20 mA g-1 in the voltage of 1.0-4.0 V, and the corresponding reversible discharge capacity is 197.4 mAh g-1. Comparing with bare Fe2F5·H2O, the discharge capacity of the MWCNTs-wired spherical Fe2F5·H2O particles still can maintain about 115.0 mAh g-1 after 50 cycles when the current density increased to 100 mA g-1, and the corresponding capacity retention reaches 90.2%.

  19. Expansion of the rich structures and magnetic properties of neptunium selenites: soft ferromagnetism in Np(SeO3)2.

    PubMed

    Diefenbach, Kariem; Lin, Jian; Cross, Justin N; Dalal, Naresh S; Shatruk, Michael; Albrecht-Schmitt, Thomas E

    2014-07-21

    Two new neptunium selenites with different oxidation states of the metal centers, Np(IV)(SeO3)2 and Np(VI)O2(SeO3), have been synthesized under mild hydrothermal conditions at 200 °C from the reactions of NpO2 and SeO2. Np(SeO3)2 crystallizes as brown prisms (space group P21/n, a = 7.0089(5) Å, b = 10.5827(8) Å, c = 7.3316(5) Å, β = 106.953(1)°); whereas NpO2(SeO3) crystals are garnet-colored with an acicular habit (space group P21/m, a = 4.2501(3) Å, b = 9.2223(7) Å, c = 5.3840(4) Å, β = 90.043(2)°). Single-crystal X-ray diffraction studies reveal that the structure of Np(SeO3)2 features a three-dimensional (3D) framework consisting of edge-sharing NpO8 units that form chains that are linked via SeO3 units to create a 3D framework. NpO2(SeO3) possesses a lamellar structure in which each layer is composed of NpO8 hexagonal bipyramids bridged via SeO3(2-) anions. Bond-valence sum calculations and UV-vis-NIR absorption spectra support the assignment of tetravalent and hexavalent states of neptunium in Np(SeO3)2 and NpO2(SeO3), respectively. Magnetic susceptibility data for Np(SeO3)2 deviates substantially from typical Curie-Weiss behavior, which can be explained by large temperature-independent paramagnetic (TIP) effects. The Np(IV) selenite shows weak ferromagnetic ordering at 3.1(1) K with no detectable hysteresis, suggesting soft ferromagnetic behavior.

  20. Preserved Expression of mRNA Coding von Willebrand Factor–Cleaving Protease ADAMTS13 by Selenite and Activated Protein C

    PubMed Central

    Ekaney, Michael L; Bockmeyer, Clemens L; Sossdorf, Maik; Reuken, Philipp A; Conradi, Florian; Schuerholz, Tobias; Blaess, Markus F; Friedman, Scott L; Lösche, Wolfgang; Bauer, Michael; Claus, Ralf A

    2015-01-01

    In sepsis, the severity-dependent decrease of von Willebrand factor (VWF)–inactivating protease, a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13), results in platelet aggregation and consumption, leading to sepsis-associated thrombotic microangiopathy (TMA) and organ failure. Previous reports assessing its functional deficiency have pinpointed involvement of autoantibodies or mutations to propagate thrombotic thrombocytopenic purpura (TTP). However, mechanisms of acquired ADAMTS13 deficiency during host response remain unclear. To enhance understanding of ADAMTS13 deficiency in sepsis, we evaluated changes in expression of mRNA coding ADAMTS13 during septic conditions using primary cellular sources of the protease. We hypothesized that proinflammatory cytokines and constituents of serum from septic patients affect the transcriptional level of ADAMTS13 in vitro, and previously recommended therapeutic agents as adjunctive therapy for sepsis interact therewith. Cultured hepatic stellate cells (HSCs), endothelial cells (HMEC) and human precision-cut liver slices as an ex vivo model were stimulated with sepsis prototypic cytokines, bacterial endotoxin and pooled serum obtained from septic patients. Stimulation resulted in a significant decrease in ADAMTS13 mRNA between 10% and 80% of basal transcriptional rates. Costimulation of selenite or recombinant activated protein C (APC) with serum prevented ADAMTS13 decrease in HSCs and increased ADAMTS13 transcripts in HMEC. In archived clinical samples, the activity of ADAMTS13 in septic patients treated with APC (n = 5) increased with an accompanying decrease in VWF propeptide as surrogate for improved endothelial function. In conclusion, proinflammatory conditions of sepsis repress mRNA coding ADAMTS13 and the ameliorating effect by selenite and APC may support the concept for identification of beneficial mechanisms triggered by these drugs at a molecular level. PMID:25860876

  1. Synthesis, crystal structure and magnetic property of a new nickel selenite chloride: Ni{sub 5}(SeO{sub 3}){sub 4}Cl{sub 2}

    SciTech Connect

    Shen Yueling; Mao Jianggao . E-mail: mjg@ms.fjirsm.ac.cn; Jiang Hailong

    2005-09-15

    The new nickel selenite chloride, Ni{sub 5}(SeO{sub 3}){sub 4}Cl{sub 2}, was obtained by high-temperature solid state reaction of NiCl{sub 2}, Ni{sub 2}O{sub 3} and SeO{sub 2} in a 1:2:4molar ratio at 700{sup o}C in an evacuated quartz tube. Its structure was established by single-crystal X-ray diffraction. Ni{sub 5}(SeO{sub 3}){sub 4}Cl{sub 2} crystallizes in the triclinic system, space group P-1 (No. 2) with cell parameters of a=8.076(2), b=9.288(2), c=9.376(2)A, {alpha}=101.97(3), {beta}=105.60(3), {gamma}=91.83(3){sup o} and Z=2. All nickel(II) ions in Ni{sub 5}(SeO{sub 3}){sub 4}Cl{sub 2} are octahedrally coordinated by selenite oxygens or/and chloride anions (([Ni(1)O{sub 5}Cl], [Ni(2)O{sub 4}Cl{sub 2}], [Ni(3)O{sub 5}Cl], [Ni(4)O{sub 6}] and [Ni(5)O{sub 4}Cl]). The structure of the title compound features a condensed three-dimensional (3D) network built by Ni(II) ions interconnected by SeO{sub 3}{sup 2-} anions as well as Cl{sup -} anions. Magnetic property measurements show strong antiferromagnetic interaction between nickel(II) ions.

  2. Preserved Expression of mRNA Coding von Willebrand Factor-Cleaving Protease ADAMTS13 by Selenite and Activated Protein C.

    PubMed

    Ekaney, Michael L; Bockmeyer, Clemens L; Sossdorf, Maik; Reuken, Philipp A; Conradi, Florian; Schuerholz, Tobias; Blaess, Markus F; Friedman, Scott L; Lösche, Wolfgang; Bauer, Michael; Claus, Ralf A

    2015-04-03

    In sepsis, the severity-dependent decrease of von Willebrand factor (VWF)-inactivating protease, a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13), results in platelet aggregation and consumption, leading to sepsis-associated thrombotic microangiopathy (TMA) and organ failure. Previous reports assessing its functional deficiency have pinpointed involvement of autoantibodies or mutations to propagate thrombotic thrombocytopenic purpura (TTP). However, mechanisms of acquired ADAMTS13 deficiency during host response remain unclear. To enhance understanding of ADAMTS13 deficiency in sepsis, we evaluated changes in expression of mRNA coding ADAMTS13 during septic conditions using primary cellular sources of the protease. We hypothesized that proinflammatory cytokines and constituents of serum from septic patients affect the transcriptional level of ADAMTS13 in vitro, and previously recommended therapeutic agents as adjunctive therapy for sepsis interact therewith. Cultured hepatic stellate cells (HSCs), endothelial cells (HMEC) and human precision-cut liver slices as an ex vivo model were stimulated with sepsis prototypic cytokines, bacterial endotoxin and pooled serum obtained from septic patients. Stimulation resulted in a significant decrease in ADAMTS13 mRNA between 10% and 80% of basal transcriptional rates. Costimulation of selenite or recombinant activated protein C (APC) with serum prevented ADAMTS13 decrease in HSCs and increased ADAMTS13 transcripts in HMEC. In archived clinical samples, the activity of ADAMTS13 in septic patients treated with APC (n = 5) increased with an accompanying decrease in VWF propeptide as surrogate for improved endothelial function. In conclusion, proinflammatory conditions of sepsis repress mRNA coding ADAMTS13 and the ameliorating effect by selenite and APC may support the concept for identification of beneficial mechanisms triggered by these drugs at a molecular level.

  3. A group of new selenite-chlorides of strontium and d-metals (Co,Ni): Synthesis, thermal behavior and crystal chemistry

    SciTech Connect

    Berdonosov, Peter S. Olenev, Andrey V.; Kuznetsov, Alexei N.; Dolgikh, Valery A.

    2009-01-15

    The new selenite-chlorides with composition Sr{sub 3}(SeO{sub 3}){sub 2}Cl{sub 2} (I) and Sr{sub 2}M(SeO{sub 3}){sub 2}Cl{sub 2} (M=Co, Ni (II and III)) were obtained. They crystallize in monoclinic system I: space group C2/m, a=13.203(2) A, b=5.5355(8) A, c=6.6170(10) A, {beta}=95.89(1){sup o}, Z=2; II Space group P2{sub 1}/n, a=5.3400(10) A, b =6.4279(6) A, c=12.322(1) A, {beta}=92.44(1){sup o}, Z=2; III: space group P2{sub 1}/n, a=5.3254(11) A, b=6.4363(13) A, c=12.197(2), {beta}=92.53(3){sup o}, Z=2. All three compounds are constructed in the same manner. Sr polyhedra form infinite layers, which are interconnected into a 3D framework by means of Sr polyhedra in the case of I or Co and Ni polyhedra in the case of II and III. Se atoms are situated inside the channels of the 3D framework. The topological analysis of ELF for I confirmed that the lone electron pairs of SeO{sub 3} groups are located inside these channels. - Graphical abstract: Three new selenite-chlorides Sr{sub 3}(SeO{sub 3}){sub 2}Cl{sub 2} and Sr{sub 2}M(SeO{sub 3}){sub 2}Cl{sub 2} (M= Co,Ni)

  4. Inhaled sodium metabisulphite induced bronchoconstriction: inhibition by nedocromil sodium and sodium cromoglycate.

    PubMed Central

    Dixon, C M; Ind, P W

    1990-01-01

    1. The effects of nedocromil sodium and sodium cromoglycate on bronchoconstriction induced by inhaled sodium metabisulphite have been studied in eight atopic subjects, three of whom had mild asthma. 2. Nedocromil sodium (4 mg, 7.8 X 10(-6) M), sodium cromoglycate (10 mg, 24.1 X 10(-6) M) and matched placebo were administered by identical metered dose inhalers 30 min before a dose-response to sodium metabisulphite (5-100 mg ml-1) was performed. 3. Maximum fall in sGaw after placebo pre-treatment was -43.9 +/- 3.3% baseline (mean +/- s.e. mean). At the same metabisulphite concentration maximum fall in sGaw after sodium cromoglycate was -13.0 +/- 3.6% and after nedocromil sodium was +4.3 +/- 6.8%. Nedocromil sodium prevented any significant fall in sGaw even after higher concentrations of metabisulphite. 4. Both nedocromil sodium, 4 mg, and sodium cromoglycate, 10 mg, inhibited sodium metabisulphite induced bronchoconstriction but nedocromil sodium was significantly more effective. Relative in vivo potency of the two drugs is broadly in line with other in vivo and in vitro studies. PMID:2171616

  5. The influence of sodium carbonate on sodium aluminosilicate crystallisation and solubility in sodium aluminate solutions

    NASA Astrophysics Data System (ADS)

    Zheng, Kali; Gerson, Andrea R.; Addai-Mensah, Jonas; Smart, Roger St. C.

    1997-01-01

    Isothermal batch precipitation experiments have been carried out in synthetic Bayer liquors to investigate the effects of sodium carbonate concentration on both silica solubility and the crystallisation of sodium aluminosilicates. At both 90 and 160°C cancrinite (generically defined as a sodium aluminosilicate of space group P6 3) is the stable solid phase. Sodalite (generically defined as a sodium aluminosilicate with space group P4¯3n seed transforms to cancrinite at both these temperatures. A high concentration of sodium carbonate in the synthetic liquor causes a decrease in the rate of conversion of sodalite to cancrinite. The solubility of both cancrinite and sodalite decreases as the concentration of sodium carbonate in the synthetic liquor is increased. For instance at 90°C and with 40.0 g dm -3 sodium carbonate in the synthetic liquor after 13 days the sodium aluminosilicate concentration is 0.52 g dm -3 compared to 0.85 g dm -3 with 4.6 g dm -3 of sodium carbonate in solution. At 160°C the sodium aluminosilicate concentration is 0.47 g dm -3 with 40.0 g dm -3 sodium carbonate in solution after 13 days and 0.79 g dm -3 with 4.6 g dm -3 sodium carbonate in solution. Throughout all these experiments a progressive loss of carbonate from the sodium aluminosilicate crystallisation products was observed as a function of time.

  6. Hanford site sodium management plan

    SciTech Connect

    Guttenberg, S.

    1995-09-25

    The Hanford Site Sodium Management Plan, Revision 1, provides changes to the major elements and management strategy to ensure an integrated and coordinated approach for disposition of the more than 350,000 gallons of sodium and related sodium facilities located at the DOE`s Hanford Site

  7. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium...

  8. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium...

  9. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium bicarbonate solution with...

  10. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium...

  11. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium...

  12. The Surface Modification and Antimicrobial Activity of Basic Magnesium Hypochlorite Nanoparticles.

    PubMed

    Xu, Lijian; Tang, Zengmin; Xu, Jianxiong; Zhang, Jide; Du, Jingjing; Li, Na

    2015-02-01

    The basic magnesium hypochlorite (BMH) nanoparticles were prepared by two micro-emulsion techniques and modified with sodium stearate. The influences of the main technical parameters such as the addition amount of sodium stearate, reaction temperature and reaction time on the Lipophilic degree (LD) of the modified BMH nanoparticles were investigated. The characteristics of the BMH nanoparticles were analysed by means of Malvern Instruments, transmission electron microscopy (TEM), water contact angle measurements, Fourier transform infrared spectroscopy (FTIR) and thermogravimetry analysis (TGA). The antimicrobial activity of the modified BMH nanoparticles was investigated with the antibacterial circle test. The results showed that the average size of the BMH nanoparticles was 305 nm. The BMH nanoparticles had been successfully modified by sodium stearate and the LD of.the modified BMH nanoparticles was 8.4% when the addition amount of sodium stearate was 0.15 g, the reaction temperature was 10 °C and the reaction time was 5 h. The dispersibility and hydrophobicity of the modified BMH nanoparticles were improved and the contact angle was up to 103 °, the modified BMH nanoparticles still had excellent antimicrobial activity after modification.

  13. Sodium intake and cardiovascular health.

    PubMed

    O'Donnell, Martin; Mente, Andrew; Yusuf, Salim

    2015-03-13

    Sodium is an essential nutrient. Increasing sodium intake is associated with increasing blood pressure, whereas low sodium intake results in increased renin and aldosterone levels. Randomized controlled trials have reported reductions in blood pressure with reductions in sodium intake, to levels of sodium intake <1.5 g/d, and form the evidentiary basis for current population-wide guidelines recommending low sodium intake. Although low sodium intake (<2.0 g/d) has been achieved in short-term feeding clinical trials, sustained low sodium intake has not been achieved by any of the longer term clinical trials (>6-month duration). It is assumed that the blood pressure-lowering effects of reducing sodium intake to low levels will result in large reductions in cardiovascular disease globally. However, current evidence from prospective cohort studies suggests a J-shaped association between sodium intake and cardiovascular events, based on studies from >300 000 people, and suggests that the lowest risk of cardiovascular events and death occurs in populations consuming an average sodium intake range (3-5 g/d). The increased risk of cardiovascular events associated with higher sodium intake (>5 g/d) is most prominent in those with hypertension. A major deficit in the field is the absence of large randomized controlled trials to provide definitive evidence on optimal sodium intake for preventing cardiovascular events. Pending such trials, current evidence would suggest a recommendation for moderate sodium intake in the general population (3-5 g/d), with targeting the lower end of the moderate range among those with hypertension.

  14. Functional Application of Noble Metal Nanoparticles In Situ Synthesized on Ramie Fibers

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Yao, Ya; Li, Jingliang; Qin, Si; Zhu, Haijin; Kaur, Jasjeet; Chen, Wu; Sun, Lu; Wang, Xungai

    2015-09-01

    Different functions were imparted to ramie fibers through treatment with noble metal nanoparticles including silver and gold nanoparticles. The in situ synthesis of silver and gold nanoparticles was achieved by heating in the presence of ramie fibers in the corresponding solutions of precursors. The unique optical property of synthesized noble metal nanoparticles, i.e., localized surface plasmon resonance, endowed ramie fibers with bright colors. Color strength (K/S) of fibers increased with heating temperature. Silver nanoparticles were obtained in alkaline solution, while acidic condition was conducive to gold nanoparticles. The optical properties of treated ramie fibers were investigated using UV-vis absorption spectroscopy. Scanning electron microscopy (SEM) was employed to observe the morphologies of silver and gold nanoparticles in situ synthesized on fibers. The ramie fibers treated with noble metal nanoparticles showed remarkable catalytic activity for reduction of 4-nitrophenol (4-NP) by sodium borohydride. Moreover, the silver nanoparticle treatment showed significant antibacterial property on ramie fibers.

  15. Robust Nanoparticles

    DTIC Science & Technology

    2015-01-21

    Lawrence, Gregory M. Grason, Todd Emrick, Alfred J. Crosby. Stretching of assembled nanoparticle helical springs, Physical Chemistry Chemical...par with thermally sintered conductive adhesives. C. Examination of stretching of nanoparticle-based springs. This part of the project...examined the stretching properties of these helical ribbons, which are nanometers thick, sub-micron in width, and arbitrarily long. The force-extension

  16. A stable room-temperature sodium-sulfur battery

    NASA Astrophysics Data System (ADS)

    Wei, Shuya; Xu, Shaomao; Agrawral, Akanksha; Choudhury, Snehashis; Lu, Yingying; Tu, Zhengyuan; Ma, Lin; Archer, Lynden A.

    2016-06-01

    High-energy rechargeable batteries based on earth-abundant materials are important for mobile and stationary storage technologies. Rechargeable sodium-sulfur batteries able to operate stably at room temperature are among the most sought-after platforms because such cells take advantage of a two-electron-redox process to achieve high storage capacity from inexpensive electrode materials. Here we report a room-temperature sodium-sulfur battery that uses a microporous carbon-sulfur composite cathode, and a liquid carbonate electrolyte containing the ionic liquid 1-methyl-3-propylimidazolium-chlorate tethered to SiO2 nanoparticles. We show that these cells can cycle stably at a rate of 0.5 C (1 C=1675, mAh g-1) with 600 mAh g-1 reversible capacity and nearly 100% Coulombic efficiency. By means of spectroscopic and electrochemical analysis, we find that the particles form a sodium-ion conductive film on the anode, which stabilizes deposition of sodium. We also find that sulfur remains interred in the carbon pores and undergo solid-state electrochemical reactions with sodium ions.

  17. A stable room-temperature sodium-sulfur battery.

    PubMed

    Wei, Shuya; Xu, Shaomao; Agrawral, Akanksha; Choudhury, Snehashis; Lu, Yingying; Tu, Zhengyuan; Ma, Lin; Archer, Lynden A

    2016-06-09

    High-energy rechargeable batteries based on earth-abundant materials are important for mobile and stationary storage technologies. Rechargeable sodium-sulfur batteries able to operate stably at room temperature are among the most sought-after platforms because such cells take advantage of a two-electron-redox process to achieve high storage capacity from inexpensive electrode materials. Here we report a room-temperature sodium-sulfur battery that uses a microporous carbon-sulfur composite cathode, and a liquid carbonate electrolyte containing the ionic liquid 1-methyl-3-propylimidazolium-chlorate tethered to SiO2 nanoparticles. We show that these cells can cycle stably at a rate of 0.5 C (1 C=1675, mAh g(-1)) with 600 mAh g(-1) reversible capacity and nearly 100% Coulombic efficiency. By means of spectroscopic and electrochemical analysis, we find that the particles form a sodium-ion conductive film on the anode, which stabilizes deposition of sodium. We also find that sulfur remains interred in the carbon pores and undergo solid-state electrochemical reactions with sodium ions.

  18. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  19. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2017-01-03

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  20. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  1. Selenium-substituted hydroxyapatite nanoparticles and their in vivo antitumor effect on hepatocellular carcinoma.

    PubMed

    Yanhua, Wang; Hao, Hang; Li, Yan; Zhang, Shengmin

    2016-04-01

    Absence of curative treatment creates urgent need for new strategies for unresectable hepatoma. Novel selenium-substituted hydroxyapatite nanoparticles (SeHAN) were designed to serve as anticancer agent. The authors examined the nanoparticles by physicochemical techniques. The in vivo efficacy and toxicity of these nanoparticles were also investigated on a nude mice model of human hepatocellular carcinoma. The results showed that the selenite ions can be incorporated into the hydroxyapatite lattice facilely. They exhibited bundles of needles shape with a size of 160-200 nm. In the in vivo study, they showed better survival advantage. The overall survival rate of nude mice in the control, pure hydroxyapatite and SeHAN group were 50.00%, 76.92%, and 100.00% respectively. Blood biochemical studies showed that SeHAN group had significantly lower toxicities on the liver and kidney functions. Histopathological studies confirmed that massive tumor necrosis and calcium deposition were evident after SeHAN treatment. Moreover, immunohistochemistry and Western blot assay showed significantly reduced expression of the Ki-67, VEGF and MMP-9 protein in the SeHAN group. Taken together, these results suggest that the selenium-substituted hydroxyapatite nanoparticles could be a new type of promising anticancer agent to provide both survival advantage and lower toxicity.

  2. Magnetometry with mesospheric sodium

    PubMed Central

    Higbie, James M.; Rochester, Simon M.; Patton, Brian; Holzlöhner, Ronald; Bonaccini Calia, Domenico; Budker, Dmitry

    2011-01-01

    Measurement of magnetic fields on the few 100-km length scale is significant for many geophysical applications including mapping of crustal magnetism and ocean circulation measurements, yet available techniques for such measurements are very expensive or of limited accuracy. We propose a method for remote detection of magnetic fields using the naturally occurring atomic sodium-rich layer in the mesosphere and existing high-power lasers developed for laser guide star applications. The proposed method offers a dramatic reduction in cost and opens the way to large-scale, parallel magnetic mapping and monitoring for atmospheric science, navigation, and geophysics. PMID:21321235

  3. Astronomy and Sodium Lighting,

    DTIC Science & Technology

    1984-02-01

    o-... 0 -23- rincreased Oxygen Atoms , Soodum Oxygen Atoms Peckg trom LPS Ligh t Level Limit Motel Br-ue Green...Yellow Orcrge Red Fig. 5 - San Jose 1979 with bPS street lights New Sodium Peaks frome Oxyge.n Atom’s HPS Oxygen Atoms Full Growth Light Level- 1990...Light LevelI 1979 Light Level I L Light Level - 0 Lmt Broad Specr ,,m Excess Li;hl SVoel Blue Gpen Yelloo Oro-’e Red Fig. 6 -- Sarn Jose with 11PS street

  4. Tuning of depletion interaction in nanoparticle-surfactant systems

    SciTech Connect

    Ray, D. Aswal, V. K.

    2014-04-24

    The interaction of anionic silica nanoparticles (Ludox LS30) and non-ionic surfactants decaethylene glycol monododecylether (C12E10) without and with anionic sodium dodecyl sulfate (SDS) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticlesurfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-C12E10 system leads to the depletion-induced aggregation of nanoparticles. The system however behaves very differently on addition of SDS where depletion interaction gets suppressed and aggregation of nanoparticles can be prevented. We show that C12E10 and SDS form mixed micelles and the charge on these micelles plays important role in tuning the depletion interaction.

  5. Tribological effects of oxide based nanoparticles in lubricating oils

    NASA Astrophysics Data System (ADS)

    Gu, Cai-Xiang; Zhu, Guan-Jun; Li, Lei; Tian, Xiao-Yu; Zhu, Guang-Yao

    2009-03-01

    In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.

  6. Antimicrobial activity of silver nanoparticles impregnated wound dressing

    NASA Astrophysics Data System (ADS)

    Shinde, V. V.; Jadhav, P. R.; Patil, P. S.

    2013-06-01

    In this work, silver nanoparticles were synthesized by simple wet chemical reduction method. The silver nitrate was reduced by Sodium borohydride used as reducing agent and Poly (vinyl pyrrolidone) (PVP) as stabilizing agent. The formation of silver nanoparticles was evaluated by UV-visible spectroscope and transmission electron microscope (TEM). Absorption spectrum consist two plasmon peaks at 410 and 668 nm revels the formation of anisotropic nanoparticles confirmed by TEM. The formation of silver nanoparticles was also evidenced by dynamic light scattering (DLS) study. DLS showed polydisperse silver nanoparticles with hydrodynamic size 32 nm. Protecting mechanism of PVP was manifested by FT-Raman study. Silver nanoparticles were impregnated into wound dressing by sonochemical method. The Kirby-Bauer disc diffusion methods were used for antimicrobial susceptibility testing. The antimicrobial activity of the samples has been tested against gram-negative bacterium Escherichia coli and gram-positive bacterium Staphylococcus aureus.

  7. Sodium bicarbonate in chemical flooding: Part 1: Topical report. [Sodium bicarbonate and sodium carbonate

    SciTech Connect

    Peru, D.A.; Lorenz, P.B.

    1987-07-01

    To compare oil recovery and alkali consumption in alkaline flooding using sodium bicarbonate with other alkaline agents, coreflooding experiments were performed in turn with viscosified sodium bicarbonate and viscosified sodium carbonate solutions. Oil recovery was monitored, and the effluent brine from these corefloods was analyzed for silicon, aluminum, pH, and total inorganic carbon. The results indicate that viscosified sodium bicarbonate recovered more of the asphaltic Cerro-Negro crude than of the less asphaltic Wilmington crude oil. The recovery efficiency using the viscosified sodium carbonate was similar for the two crudes. For both crudes, the percent oil recovery using viscosified sodium carbonate was slightly higher than that using the viscosified sodium bicarbonate. Mineral dissolution and decrease in pH were found to be greater in corefloods using viscosified sodium carbonate. Total inorganic carbon recovery can be obtained in corefloods with either agent, provided that a sufficient water drive follows the chemical slug. Long-term experiments were performed by recirculating alkaline solutions through oil-free, unfired Berea sandstone to monitor the rock/alkali interactions. The experimental results indicate an eight-fold decrease in quartz dissolution by sodium bicarbonate compared with sodium carbonate. Moderate magnesium solubility was observed at the pH of the bicarbonate solution. Low solubility of magnesium and aluminum at the pH of the carbonate indicates the possible formation of precipitates. In these experiments 13% of the carbonate was converted to bicarbonate. Total alkalinity was not significantly decreased with either agent. 18 refs., 5 tabs.

  8. Sodium channel auxiliary subunits.

    PubMed

    Tseng, Tsai-Tien; McMahon, Allison M; Johnson, Victoria T; Mangubat, Erwin Z; Zahm, Robert J; Pacold, Mary E; Jakobsson, Eric

    2007-01-01

    Voltage-gated ion channels are well known for their functional roles in excitable tissues. Excitable tissues rely on voltage-gated ion channels and their auxiliary subunits to achieve concerted electrical activity in living cells. Auxiliary subunits are also known to provide functional diversity towards the transport and biogenesis properties of the principal subunits. Recent interests in pharmacological properties of these auxiliary subunits have prompted significant amounts of efforts in understanding their physiological roles. Some auxiliary subunits can potentially serve as drug targets for novel analgesics. Three families of sodium channel auxiliary subunits are described here: beta1 and beta3, beta2 and beta4, and temperature-induced paralytic E (TipE). While sodium channel beta-subunits are encoded in many animal genomes, TipE has only been found exclusively in insects. In this review, we present phylogenetic analyses, discuss potential evolutionary origins and functional data available for each of these subunits. For each family, we also correlate the functional specificity with the history of evolution for the individual auxiliary subunits.

  9. Chemical Synthesis of Iron-Nickel Nanoparticles

    NASA Astrophysics Data System (ADS)

    Abel, Frank; Tzitzios, Vasilias; Hadjipanayis, George

    2015-03-01

    Equiatomic FeNi alloys undergo a phase transformation, like FePt, from a disordered fcc structure to an ordered fct structure. However, unlike FePt in Fe-Ni this transformation is very sluggish and has been only observed in heavily irradiated thin films and in meteorite samples as was recently reported.1,2 In this study, we used a high temperature chemical synthesis route to investigate the possibility of fabricating fct FeNi nanoparticles. The Iron Nickel Boron nanoparticles were made using anhydrous Iron (II) Chloride and Nickel (II) Chloride using Sodium borohydrite as a reducing agent in tetraglyme under a nitrogen hydrogen atmosphere. The high temperature of the reaction allowed for the formation of as made crystalline Iron Nickel nanoparticles without additional annealing. By changing the concentration of sodium borohydrite we were able to prepare nanoparticles either in the pure fcc phase, or in a new mixed phase. The magnetic properties were improved by increasing the concentration of Iron precursor. We obtained FeNi nanoparticles with saturation magnetization of (56 emu/g) and coercivity of (190 Oe). The particle size distribution of the FeNi particles ranged from several hundred nanometers to a half micron. Work Supported by DOE-BES-DMSE (Grants No. DE-FG02-04ER4612).

  10. Gold nanoparticles-graphene hybrids as active catalysts for Suzuki reaction

    SciTech Connect

    Li, Yang; Fan, Xiaobin; Qi, Junjie; Ji, Junyi; Wang, Shulan; Zhang, Guoliang; Zhang, Fengbao

    2010-10-15

    Graphene was successfully modified with gold nanoparticles in a facile route by reducing chloroauric acid in the presence of sodium dodecyl sulfate, which is used as both a surfactant and reducing agent. The gold nanoparticles-graphene hybrids were characterized by high-resolution transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction and energy X-ray spectroscopy. We demonstrate for the first time that the gold nanoparticles-graphene hybrids can act as efficient catalysts for the Suzuki reaction in water under aerobic conditions. The catalytic activity of gold nanoparticles-graphene hybrids was influenced by the size of the gold nanoparticles.

  11. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Van Dong, Pham; Ha, Chu Hoang; Binh, Le Tran; Kasbohm, Jörn

    2012-06-01

    Silver nanoparticles are useful for medical applications due to their strong antibacterial activity. The antibacterial activity can be tuned by controlling the size and shape of the prepared silver nanoparticles. In this work, silver nanoparticles with different sizes and shapes were synthesized by solution phase routes, and their interactions with Escherichia coli were studied. Triangular silver nanoprisms were prepared by the reduction of silver nitrate at room temperature in the presence of polyvinylpyrrolidone, sodium citrate, hydrogen peroxide and sodium borohydride. Spherical silver nanoparticles were also prepared using silver nitrate as metal precursor and sodium citrate as well as sodium borohydride as reducing agents. The morphologies and structures of the nanoparticles were characterized by transmission electron microscopy, UV-visible spectroscopy and X-ray diffraction. The results indicated that spherical silver nanoparticles were obtained with different average sizes of 4, 21 and 40 nm, respectively. The edged silver nanoprisms containing mainly {111} lattice planes were obtained in the range size of 25 to 400 nm. The antibacterial study revealed that the edged triangular silver nanoprisms with {111} lattice planes exhibited the strongest antibacterial property, compared with spherical nanoparticles. Our study demonstrated that triangular silver nanoprisms with sharp edges also display a good antibacterial activity in comparison to other shaped nanoparticles.

  12. Hypoxia-sensitive, Multifunctional Nanoparticles for Targeted Drug Delivery to Breast Cancer

    DTIC Science & Technology

    2012-09-01

    of paclitaxel and lactone was dramatically increased over 36 hr as shown in Figure 3. The inclusion of sodium salicylate at a concentration of 0.8 M...maintained sink conditions during the release study. It has been known that sodium salicylate is able to increase paclitaxel solubility in aqueous...microenvironments would better evaluate the TMBQ-based polymer nanoparticles. The inclusion of sodium salicylate at a concentration of 80 mM maintained sink

  13. A Simple Quantitative Synthesis: Sodium Chloride from Sodium Carbonate.

    ERIC Educational Resources Information Center

    Gold, Marvin

    1988-01-01

    Describes a simple laboratory procedure for changing sodium carbonate into sodium chloride by adding concentrated HCl to cause the reaction and then evaporating the water. Claims a good stoichiometric yield can be obtained in one three-hour lab period. Suggests using fume hood for the reaction. (ML)

  14. GENOTOXICITY STUDIES OF SODIUM DICHLOROACETATE AND SODIUM TRICHLOROACETATE

    EPA Science Inventory

    The genotoxic properties of sodium dichloroacetate (DCA) and sodium trichloroacetate (TCA)were evaluated in several short-term in vitro and in vivo assays. Neither compound was mutagenic in tester strain TA102 in the Salmonella mutagenicity assay. Both DCA and TCA were weak induc...

  15. Biocidal effects of silver and zinc oxide nanoparticles on the bioluminescent bacteria

    NASA Astrophysics Data System (ADS)

    Taran, M. V.; Starodub, N. F.; Katsev, A. M.; Guidotti, M.; Khranovskyy, V. D.; Babanin, A. A.; Melnychuk, M. D.

    2013-11-01

    The effect of silver and zinc oxide nanoparticles in combination with alginate on bioluminescent Photobacterium leiognathi Sh1 bacteria was investigated. Silver nanoparticles were found to be more toxic than zinc oxide nanoparticles on bioluminescent bacteria. The nanoparticles and their ions released results in the same effect, however, it was absent in combination with alginate. The effective inhibiting concentration (EC50) for silver nanoparticles was found about 0.3 - 0.4 μg mL-1, which was up to two times larger then for zinc oxide nanoparticles. The absence of sodium chloride in the tested media prevented the formation of colloidal particles of larger size and the effective inhibition concentrations of metal derivatives were lower than in the presence of sodium chloride.

  16. Foam droplet separation for nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Tyree, Corey A.; Allen, Jonathan O.

    2008-03-01

    A novel approach to nanoparticle synthesis was developed whereby foam bubble bursting produced aerosol droplets, an approach patterned after the marine foam aerosol cycle. The droplets were dried to remove solvent, leaving nanometer-sized particles composed of precursor material. Nanoparticles composed of sodium chloride (mean diameter, bar{D}_p≈ 100 nm), phosphotungstic acid (bar{D}_p≈ 55 nm), and bovine insulin ({D}_p≈ 5-30 nm) were synthesized. Foam droplet separation can be carried out at ambient temperature and pressure. The `soft' nature of the process makes it compatible with a wide range of materials.

  17. Bacterial sodium channels: models for eukaryotic sodium and calcium channels.

    PubMed

    Scheuer, Todd

    2014-01-01

    Eukaryotic sodium and calcium channels are made up of four linked homologous but different transmembrane domains. Bacteria express sodium channels comprised of four identical subunits, each being analogous to a single homologous domain of their eukaryotic counterparts. Key elements of primary structure are conserved between bacterial and eukaryotic sodium and calcium channels. The simple protein structure of the bacterial channels has allowed extensive structure-function probes of key regions as well as allowing determination of several X-ray crystallographic structures of these channels. The structures have revealed novel features of sodium and calcium channel pores and elucidated the structural importance of many of the conserved features of primary sequence. The structural information has also formed the basis for computational studies probing the basis for sodium and calcium selectivity and gating.

  18. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  19. Precision Nanoparticles

    ScienceCinema

    John Hemminger

    2016-07-12

    A revolutionary technology that efficiently produces nanoparticles in uniform and prescribed sizes (1-100 nanometers) using supercritical fluids. INL researcher Robert Fox was joined by Idaho State University researchers Rene Rodriquez and Joshua Pak in d

  20. Precision Nanoparticles

    SciTech Connect

    John Hemminger

    2009-07-21

    A revolutionary technology that efficiently produces nanoparticles in uniform and prescribed sizes (1-100 nanometers) using supercritical fluids. INL researcher Robert Fox was joined by Idaho State University researchers Rene Rodriquez and Joshua Pak in d

  1. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium benzoate. 184.1733 Section 184.1733 Food and... Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium carbonate,...

  2. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium benzoate. 184.1733 Section 184.1733 Food... GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium carbonate, or...

  3. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium alginate. 184.1724 Section 184.1724 Food and... Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate...

  4. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is prepared by...

  5. 21 CFR 186.1756 - Sodium formate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium formate. 186.1756 Section 186.1756 Food and....1756 Sodium formate. (a) Sodium formate (CHNaO2, CAS Reg. No. 141-53-7) is the sodium salt of formic acid. It is produced by the reaction of carbon monoxide with sodium hydroxide. (b) The ingredient...

  6. Stability of aztreonam and ampicillin sodium-sulbactam sodium in 0.9% sodium chloride injection.

    PubMed

    Belliveau, P P; Nightingale, C H; Quintiliani, R

    1994-04-01

    The stability of aztreonam, ampicillin sodium, and sulbactam sodium admixed in 0.9% sodium chloride injection and stored at room temperature and under refrigeration was studied. Each of the following admixtures was prepared in 0.9% sodium chloride injection: (1) aztreonam 10 mg/mL; (2) ampicillin 20 mg/mL (as the sodium salt) and sulbactam 10 mg/mL (as the sodium salt); and (3) aztreonam 10 mg/mL, ampicillin 20 mg/mL, and sulbactam 10 mg/mL. Three minibags of each admixture were stored at room temperature and three were refrigerated. Every 12 hours, up to 96 hours, the admixtures were visually inspected and 5-mL samples were withdrawn for high-performance liquid chromatography and pH testing. No color change or precipitation was observed in any sample. In admixtures containing ampicillin, ampicillin was the first or only drug to lose more than 10% of initial concentration. In the ampicillin-sulbactam admixture, ampicillin was stable for 32 hours at room temperature and 68 hours refrigerated. In the aztreonam-ampicillin-sulbactam admixture, ampicillin was stable for 30 hours at room temperature and 94 hours refrigerated. Aztreonam 10 mg/mL, ampicillin 20 mg/mL (as the sodium salt), and sulbactam 10 mg/mL (as the sodium salt) in 0.9% sodium chloride injection were stable in combination for up to 30 hours at room temperature and 94 hours under refrigeration.

  7. Sodium fluoroacetate poisoning.

    PubMed

    Proudfoot, Alex T; Bradberry, Sally M; Vale, J Allister

    2006-01-01

    Sodium fluoroacetate was introduced as a rodenticide in the US in 1946. However, its considerable efficacy against target species is offset by comparable toxicity to other mammals and, to a lesser extent, birds and its use as a general rodenticide was therefore severely curtailed by 1990. Currently, sodium fluoroacetate is licensed in the US for use against coyotes, which prey on sheep and goats, and in Australia and New Zealand to kill unwanted introduced species. The extreme toxicity of fluoroacetate to mammals and insects stems from its similarity to acetate, which has a pivotal role in cellular metabolism. Fluoroacetate combines with coenzyme A (CoA-SH) to form fluoroacetyl CoA, which can substitute for acetyl CoA in the tricarboxylic acid cycle and reacts with citrate synthase to produce fluorocitrate, a metabolite of which then binds very tightly to aconitase, thereby halting the cycle. Many of the features of fluoroacetate poisoning are, therefore, largely direct and indirect consequences of impaired oxidative metabolism. Energy production is reduced and intermediates of the tricarboxylic acid cycle subsequent to citrate are depleted. Among these is oxoglutarate, a precursor of glutamate, which is not only an excitatory neurotransmitter in the CNS but is also required for efficient removal of ammonia via the urea cycle. Increased ammonia concentrations may contribute to the incidence of seizures. Glutamate is also required for glutamine synthesis and glutamine depletion has been observed in the brain of fluoroacetate-poisoned rodents. Reduced cellular oxidative metabolism contributes to a lactic acidosis. Inability to oxidise fatty acids via the tricarboxylic acid cycle leads to ketone body accumulation and worsening acidosis. Adenosine triphosphate (ATP) depletion results in inhibition of high energy-consuming reactions such as gluconeogenesis. Fluoroacetate poisoning is associated with citrate accumulation in several tissues, including the brain. Fluoride

  8. Nanoparticle vaccines.

    PubMed

    Zhao, Liang; Seth, Arjun; Wibowo, Nani; Zhao, Chun-Xia; Mitter, Neena; Yu, Chengzhong; Middelberg, Anton P J

    2014-01-09

    Nanotechnology increasingly plays a significant role in vaccine development. As vaccine development orientates toward less immunogenic "minimalist" compositions, formulations that boost antigen effectiveness are increasingly needed. The use of nanoparticles in vaccine formulations allows not only improved antigen stability and immunogenicity, but also targeted delivery and slow release. A number of nanoparticle vaccines varying in composition, size, shape, and surface properties have been approved for human use and the number of candidates is increasing. However, challenges remain due to a lack of fundamental understanding regarding the in vivo behavior of nanoparticles, which can operate as either a delivery system to enhance antigen processing and/or as an immunostimulant adjuvant to activate or enhance immunity. This review provides a broad overview of recent advances in prophylactic nanovaccinology. Types of nanoparticles used are outlined and their interaction with immune cells and the biosystem are discussed. Increased knowledge and fundamental understanding of nanoparticle mechanism of action in both immunostimulatory and delivery modes, and better understanding of in vivo biodistribution and fate, are urgently required, and will accelerate the rational design of nanoparticle-containing vaccines.

  9. Preparation and characterization of silver chloride nanoparticles as an antibacterial agent

    NASA Astrophysics Data System (ADS)

    Duong Trinh, Ngoc; Thanh Binh Nguyen, Thi; Hai Nguyen, Thanh

    2015-12-01

    Silver chloride nanoparticles were prepared by the precipitation reaction between silver nitrate and sodium chloride in an aqueous solution containing poly(vinyl alcohol) as a stabilizing agent. Different characteristics of the nanoparticles in suspension and in lyophilized powder such as size, morphology, chemical nature, interaction with stabilizing agent and photo-stability were investigated. Biological tests showed that the obtained silver chloride nanoparticles displayed antibacterial activities against Escherichia coli and Staphylococcus aureus.

  10. Size-controlled synthesis of Cu2O nanoparticles via reaction-diffusion

    NASA Astrophysics Data System (ADS)

    Badr, Layla; Epstein, Irving R.

    2017-02-01

    Copper (I) oxide nanoparticles are synthesized by a simple reaction-diffusion process involving Cu+ ions and sodium hydroxide in gelatin. The mean diameter and the size dispersion of the nanoparticles can be controlled by two experimental parameters, the percent of gelatin in the medium and the hydroxide ion concentration. UV-visible spectroscopy, transmission electron microscopy and X-ray diffraction are used to analyze the size, morphology, and chemical composition of the nanoparticles generated.

  11. Facile synthesis of stable, water soluble, dendron-coated gold nanoparticles.

    PubMed

    Enciso, Alan E; Doni, Giovanni; Nifosì, Riccardo; Palazzesi, Ferruccio; Gonzalez, Roberto; Ellsworth, Amy A; Coffer, Jeffery L; Walker, Amy V; Pavan, Giovanni M; Mohamed, Ahmed A; Simanek, Eric E

    2017-03-02

    Upon reduction with sodium borohydride, diazonium tetrachloroaurate salts of triazine dendrons yield dendron-coated gold nanoparticles connected by a gold-carbon bond. These robust nanoparticles are stable in water and toluene solutions for longer than one year and present surface groups that can be reacted to change surface chemistry and manipulate solubility. Molecular modeling was used to provide insight on the hydration of the nanoparticles and their observed solubilties.

  12. One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network.

    PubMed

    Wei, Gang; Zhou, Hualan; Liu, Zhiguo; Song, Yonghai; Wang, Li; Sun, Lanlan; Li, Zhuang

    2005-05-12

    Here, we describe a one-step synthesis of silver nanoparticles, nanorods, and nanowires on DNA network surface in the absence of surfactant. Silver ions were first adsorbed onto the DNA network and then reduced in sodium borohydride solution. Silver nanoparticles, nanorods, and nanowires were formed by controlling the size of pores of the DNA network. The diameter of the silver nanoparticles and the aspect ratio of the silver nanorods and nanowires can be controlled by adjusting the DNA concentration and reduction time.

  13. Sodium heat transfer system modeling

    NASA Astrophysics Data System (ADS)

    Baker, A. F.; Fewell, M. E.

    1983-11-01

    The sodium heat transfer system of the international energy agency (IEA) small solar power systems (SSPS) central receiver system (CRS), which includes the heliostat field, receiver, hot and cold storage vessels, and sodium/water steam generator was modeled. The computer code SOLTES (simulator of large thermal energy systems), was used to model this system. The results from SOLTES are compared to measured data.

  14. Sodium-glucose cotransport

    PubMed Central

    Poulsen, Søren Brandt; Fenton, Robert A.; Rieg, Timo

    2017-01-01

    Purpose of review Sodium-glucose cotransporters (SGLTs) are important mediators of glucose uptake across apical cell membranes. SGLT1 mediates almost all sodium-dependent glucose uptake in the small intestine, while in the kidney SGLT2, and to a lesser extent SGLT1, account for more than 90% and nearly 3%, respectively, of glucose reabsorption from the glomerular ultrafiltrate. Although the recent availability of SGLT2 inhibitors for the treatment of diabetes mellitus has increased the number of clinical studies, this review has a focus on mechanisms contributing to the cellular regulation of SGLTs. Recent findings Studies have focused on the regulation of SGLT expression under different physiological/pathophysiological conditions, for example diet, age or diabetes mellitus. Several studies provide evidence of SGLT regulation via cyclic adenosine monophosphate/protein kinase A, protein kinase C, glucagon-like peptide 2, insulin, leptin, signal transducer and activator of transcription-3 (STAT3), phosphoinositide-3 kinase (PI3K)/Akt, mitogen-activated protein kinases (MAPKs), nuclear factor-kappaB (NF-kappaB), with-no-K[Lys] kinases/STE20/SPS1-related proline/alanine-rich kinase (Wnk/SPAK) and regulatory solute carrier protein 1 (RS1) pathways. Summary SGLT inhibitors are important drugs for glycemic control in diabetes mellitus. Although the contribution of SGLT1 for absorption of glucose from the intestine as well as SGLT2/SGLT1 for renal glucose reabsorption has been comprehensively defined, this review provides an up-to-date outline for the mechanistic regulation of SGLT1/SGLT2. PMID:26125647

  15. Isolation of Tellurite- and Selenite-Resistant Bacteria from Hydrothermal Vents of the Juan de Fuca Ridge in the Pacific Ocean

    PubMed Central

    Rathgeber, Christopher; Yurkova, Natalia; Stackebrandt, Erko; Beatty, J. Thomas; Yurkov, Vladimir

    2002-01-01

    Deep-ocean hydrothermal-vent environments are rich in heavy metals and metalloids and present excellent sites for the isolation of metal-resistant microorganisms. Both metalloid-oxide-resistant and metalloid-oxide-reducing bacteria were found. Tellurite- and selenite-reducing strains were isolated in high numbers from ocean water near hydrothermal vents, bacterial films, and sulfide-rich rocks. Growth of these isolates in media containing K2TeO3 or Na2SeO3 resulted in the accumulation of metallic tellurium or selenium. The MIC of K2TeO3 ranged from 1,500 to greater than 2,500 μg/ml, and the MIC of Na2SeO3 ranged from 6,000 to greater than 7,000 μg/ml for 10 strains. Phylogenetic analysis of 4 of these 10 strains revealed that they form a branch closely related to members of the genus Pseudoalteromonas, within the γ-3 subclass of the Proteobacteria. All 10 strains were found to be salt tolerant, pH tolerant, and thermotolerant. The metalloid resistance and morphological, physiological, and phylogenetic characteristics of newly isolated strains are described. PMID:12200320

  16. In vitro culture of Babesia bovis in a bovine serum-free culture medium supplemented with insulin, transferrin, and selenite.

    PubMed

    Rojas Martínez, C; Rodríguez-Vivas, R I; Figueroa Millán, J V; Acosta Viana, K Y; Gutiérrez Ruiz, E J; Álvarez Martínez, J A

    2016-11-01

    Bovine serum is an important factor for the optimal growth of Babesia bovis in vitro. This protozoan can be cultured in M-199 with Earle's salts medium (M-199) supplemented with 40% bovine serum (BS). In the present study, four media were assessed along with the control medium M-199. The effect on the proliferation of B. bovis in vitro was tested when these media were combined with insulin (Ins), transferrin (Trans) and selenite (Sel) in the absence of bovine serum. Treatment with Advanced DMEM/F12 medium (A-DMEM/F12) achieved the highest percentage of parasitized erythrocytes (PPE), reaching a maximum value of 9.59%. A-DMEM/F12 medium supplemented with a mixture of Ins (2000 mg/L), Trans (1100 mg/L), and Sel (1.34 mg/L) allowed for the adaptation and proliferation of B. bovis without bovine serum, showed a constant increase in PPE, and reached a maximum value of 9.7% during seven cycles of in vitro culture. It was concluded that continuous proliferation of B. bovis in vitro could be achieved using A-DMEM/F12 medium supplemented with Ins-Trans-Sel, without bovine serum. After adaptation for proliferation in serum-free medium, the B. bovis strain of parasites could have future use in the study of this economically important protozoan species that affects cattle.

  17. Evolutionary primacy of sodium bioenergetics

    PubMed Central

    Mulkidjanian, Armen Y; Galperin, Michael Y; Makarova, Kira S; Wolf, Yuri I; Koonin, Eugene V

    2008-01-01

    Background The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts) and V-type (found in archaea, some bacteria, and eukaryotic vacuoles) ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments. Results We combine structural and phylogenetic analyses to clarify the evolutionary relation between the proton- and sodium-translocating ATPases. A comparison of the structures of the membrane-embedded oligomeric proteolipid rings of sodium-dependent F- and V-ATPases reveals nearly identical sets of amino acids involved in sodium binding. We show that the sodium-dependent ATPases are scattered among proton-dependent ATPases in both the F- and the V-branches of the phylogenetic tree. Conclusion Barring convergent emergence of the same set of ligands in several lineages, these findings indicate that the use of sodium gradient for ATP synthesis is the ancestral modality of membrane bioenergetics. Thus, a primitive, sodium-impermeable but proton-permeable cell membrane that harboured a set of sodium-transporting enzymes appears to have been the evolutionary predecessor of the more structurally demanding proton-tight membranes. The use of proton as the coupling ion appears to be a later innovation that emerged on several independent occasions. Reviewers This article was reviewed by J. Peter Gogarten, Martijn A. Huynen, and Igor B. Zhulin. For the full reviews, please go to the Reviewers' comments section. PMID:18380897

  18. Development and Evaluation of Novel Polymeric Nanoparticles of Brimonidine Tartrate.

    PubMed

    Singh, Kavita H; Shinde, Ujwala A

    2010-07-01

    Micro and nanoparticulate carriers have been in focus in ophthalmic drug delivery with the objective of improving bioavailability, drug targeting and reducing pulse entry of the drug in ocular cul de sac. Polymeric nanoparticles for ocular purpose have potential in reducing the pulse entry and frequency of dosing, thus improving patient compliance. In the present study, mucoadhesive sodium alginate nanoparticles were developed for Brimonidine Tartrate (BT) as a model antiglaucoma drug by controlled ionic gelation technique. These nanoparticles would not only prolong drugs residence time but also reduce pulse entry in cul de sac. Nanoparticles were evaluated for morphology, surface characteristics, drug polymer interactions, particle size, polydispersibility index, zeta potential, entrapment efficiency, in vitro release profile and in vivo efficacy. The effect of various stabilizers on stabilization of blank and drug loaded nanoparticles was investigated. Irregular shape and loss of crystallinity for BT loaded sodium alginate nanoparticles was observed by TEM and SEM images respectively. IR spectra and DSC thermograms revealed the physicochemical interaction was involved during sodium alginate nanoparticle formation and entrapment of BT. The developed nanoparticles have average particle size of 450nm with PI 0.65, the entrapment efficiency ranged from 4-18 % and zeta potential values ranged from -27.5 mV to -24.1 mV. In vitro release profile showed a gradual drug release over the period of 3 hrs. In-vivo experiments showed that it was possible to prolong the drug release over a period of 8 hr, on topical instillation of BT loaded nanoparticles to albino rabbits, hence reducing the dosage frequency.

  19. Method of Manufacturing Micro-Disperse Particles of Sodium Borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester. Alan P.; Bell, Nelson S.

    2008-09-23

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  20. Method of generating hydrogen gas from sodium borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2007-12-11

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  1. Antifungal activity of gold nanoparticles prepared by solvothermal method

    SciTech Connect

    Ahmad, Tokeer; Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna; Manzoor, Nikhat; Ahmad, Aijaz; Ahmed, Jahangeer; Al-Shihri, Ayed S.

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  2. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium citrate. 184.1751 Section 184.1751 Food and....1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68-0904-092) is the sodium salt of citric acid. It is prepared by neutralizing citric acid with sodium hydroxide or sodium...

  3. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium oleate. 186.1770 Section 186.1770 Food and....1770 Sodium oleate. (a) Sodium oleate (C18H33O2Na, CAS Reg. No. 143-19-1) is the sodium salt of oleic.... Commercially, sodium oleate is made by mixing and heating flaked sodium hydroxide and oleic acid. (b)...

  4. Tables of thermodynamic properties of sodium

    SciTech Connect

    Fink, J.K.

    1982-06-01

    The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units.

  5. Synthesis and characterization of lanthanum doped zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Sonia, Suman, Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    La doped ZnO (Zn1-xLaxO, x = 0, 3, 6 and 9) were prepared via chemical co-precipitation method using Zinc Acetate, Lanthanum Acetate and Sodium Hydroxide at 50°C. Hydrate nanoparticles were annealed in air at 300°C for 3 hours. The synthesized samples have been characterized by powder X-ray diffraction and UV-Visiblespectrophotometer. The XRD measurement revealsthat the prepared nanoparticles have different microstructure without changing a hexagonal wurtzite structure. The result shows the change in nanoparticles size with the increment of lanthanum concentration for lower concentration for x = 0 to 6 and decreases at x = 9.

  6. Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry.

    PubMed

    Adil, Syed Farooq; Assal, Mohamed E; Khan, Mujeeb; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Liz-Marzán, Luis M

    2015-06-07

    The immense importance of nanoparticles and their applications is a strong motivation for exploring new synthetic techniques. However, due to strict regulations that manage the potential environmental impacts greener alternatives for conventional synthesis are the focus of intense research. In the scope of this perspective, a concise discussion about the use of green reducing and stabilizing agents toward the preparation of metal nanoparticles is presented. Reports on the synthesis of noble metal nanoparticles using plant extracts, ascorbic acid and sodium citrate as green reagents are summarized and discussed, pointing toward an urgent need of understanding the mechanistic aspects of the involved reactions.

  7. Sodium MRI: Methods and applications

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2014-01-01

    Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges and limitations, and current and potential new applications of sodium MRI. PMID:24815363

  8. Alginate Nanoparticles as a Promising Adjuvant and Vaccine Delivery System

    PubMed Central

    Sarei, F.; Dounighi, N. Mohammadpour; Zolfagharian, H.; Khaki, P.; Bidhendi, S. Moradi

    2013-01-01

    During last decades, diphtheria has remained as a serious disease that still outbreaks and can occur worldwide. Recently, new vaccine delivery systems have been developed by using the biodegradable and biocompatible polymers such as alginate. Alginate nanoparticles as a carrier with adjuvant and prolong release properties that enhance the immunogenicity of vaccines. In this study diphtheria toxoid loaded nanoparticles were prepared by ionic gelation technique and characterized with respect to size, zeta potential, morphology, encapsulation efficiency, release profile, and immunogenicity. Appropriate parameters (calcium chloride and sodium alginate concentration, homogenization rate and homogenization time) redounded to the formation of suitable nanoparticles with a mean diameter of 70±0.5 nm. The loading studies of the nanoparticles resulted in high loading capacities (>90%) and subsequent release studies showed prolong profile. The stability and antigenicity of toxoid were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and ouchterlony test and proved that the encapsulation process did not affect the antigenic integrity and activity. Guinea pigs immunized with the diphtheria toxoid-loaded alginate nanoparticles showed highest humoral immune response than conventional vaccine. It is concluded that, with regard to the desirable properties of nanoparticles and high immunogenicity, alginate nanoparticles could be considered as a new promising vaccine delivery and adjuvant system. PMID:24302799

  9. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells.

    PubMed

    Chen, Tianfeng; Wong, Yum-Shing; Zheng, Wenjie; Bai, Yan; Huang, Liang

    2008-11-15

    Selenium nanoparticle (Nano-Se) is a novel Se species with novel biological activities and low toxicity. In the present study, we demonstrated a simple method for synthesis of size-controlled Nano-Se by adding Undaria pinnatifida polysaccharides to the redox system of selenite and ascorbic acid. A panel of four human cancer cell lines was shown to be susceptible to Nano-Se, with IC(50) values ranging from 3.0 to 14.1 microM. Treatment of A375 human melanoma cells with the Nano-Se resulted in dose-dependent cell apoptosis as indicated by DNA fragmentation and phosphatidylserine translocation. Further investigation on intracellular mechanisms found that Nano-Se treatment triggered apoptotic cell death in A375 cells with the involvement of oxidative stress and mitochondrial dysfunction. Our results suggest that Nano-Se may be a candidate for further evaluation as a chemopreventive and chemotherapeutic agent for human cancers, especially melanoma cancer.

  10. Sodium management in dialysis by conductivity.

    PubMed

    Bosetto, A; Bene, B; Petitclerc, T

    1999-07-01

    The determination of dialysate sodium concentration is one of the challenges of dialysis prescription, because no accurate information on the predialytic sodium overload is available. Too low dialysate sodium is responsible for intradialytic intolerance symptoms, whereas too high sodium may lead to long-term water sodium overload with cardiovascular hazards (hypertension, left heart failure). We propose here a biofeedback system based on noninvasive repeated measures of ionic dialysance and plasma water conductivity used here as a surrogate of plasma water sodium. This system achieves a stable postdialytic sodium pool and subsequently a dialysate sodium concentration adapted to the inter dialytic sodium load. This new tool in dialysate sodium prescription aims at reducing the morbidity related to patient sodium balance impairment.

  11. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Manigandan, R.; Suresh, R.; Giribabu, K.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2014-01-01

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  12. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    SciTech Connect

    Manigandan, R.; Suresh, R.; Giribabu, K.; Narayanan, V.; Vijayalakshmi, L.; Stephen, A.

    2014-01-28

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  13. Nanoparticle standards

    SciTech Connect

    Havrilla, George Joseph

    2016-12-08

    We will purchase a COTS materials printer and adapt it for solution printing of known elemental concentration solutions. A methodology will be developed to create deposits of known mass in known locations on selected substrates. The deposits will be characterized for deposited mass, physical morphology, thickness and uniformity. Once an acceptable methodology has been developed and validated, we will create round robin samples to be characterized by LGSIMS instruments at LANL, PNNL and NIST. We will demonstrate the feasibility of depositing nanoparticles in known masses with the goal of creating separated nanoparticles in known locations.

  14. Dead Sea Minerals loaded polymeric nanoparticles.

    PubMed

    Dessy, Alberto; Kubowicz, Stephan; Alderighi, Michele; Bartoli, Cristina; Piras, Anna Maria; Schmid, Ruth; Chiellini, Federica

    2011-10-15

    Therapeutic properties of Dead Sea Water (DSW) in the treatment of skin diseases such as atopic dermatitis, psoriasis and photo aging UV damaged skin have been well established. DSW is in fact rich in minerals such as calcium, magnesium, sodium, potassium, zinc and strontium which are known to exploit anti-inflammatory effects and to promote skin barrier recovery. In order to develop a Dead Sea Minerals (DSM) based drug delivery system for topical therapy of skin diseases, polymeric nanoparticles based on Poly (maleic anhydride-alt-butyl vinyl ether) 5% grafted with monomethoxy poly(ethyleneglycol) 2000 MW (PEG) and 95% grafted with 2-methoxyethanol (VAM41-PEG) loaded with DSM were prepared by means of a combined miniemulsion/solvent evaporation process. The resulting nanoparticles were characterized in terms of dimension, morphology, biocompatibility, salt content and release. Cytocompatible spherical nanoparticles possessing an average diameter of about 300 nm, a time controlled drug release profile and a high formulation yield were obtained.

  15. Lifetime of Sodium Beta-Alumina Membranes in Molten Sodium Hydroxide

    DTIC Science & Technology

    2008-07-01

    Report 3. DATES COVERED (From – To) 1 April 2007 – 01 April 2008 4. TITLE AND SUBTITLE Lifetime of Sodium Beta-alumina Membranes in Molten Sodium ...ABSTRACT Summary: Sodium metal can be made by electrolysis of molten sodium hydroxide in sodium beta-alumina membrane electrolysis cells...However, there are some uncertainties about the lifetime of the sodium beta-alumina membranes in contact with molten sodium hydroxide. The main objective

  16. HIGH TEMPERATURE PROPERTIES OF SODIUM

    DTIC Science & Technology

    turboelectric systems utilizing sodium ass the working fluid to 2500F. This report covers the status of the measurement program and presents thermoelectric stability data for several noble metal thermocouples at 2500F.

  17. CALANDRIA TYPE SODIUM GRAPHITE REACTOR

    DOEpatents

    Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.

    1964-02-11

    A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)

  18. Catalyst for sodium chlorate decomposition

    NASA Technical Reports Server (NTRS)

    Wydeven, T.

    1972-01-01

    Production of oxygen by rapid decomposition of cobalt oxide and sodium chlorate mixture is discussed. Cobalt oxide serves as catalyst to accelerate reaction. Temperature conditions and chemical processes involved are described.

  19. Ultrasonic imaging in liquid sodium

    SciTech Connect

    Lubeigt, E.; Mensah, S.; Chaix, J.F.; Rakotonarivo, S.; Gobillot, G.

    2015-07-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  20. Dietary sodium and cardiovascular disease.

    PubMed

    Smyth, Andrew; O'Donnell, Martin; Mente, Andrew; Yusuf, Salim

    2015-06-01

    Although an essential nutrient, higher sodium intake is associated with increasing blood pressure (BP), forming the basis for current population-wide sodium restriction guidelines. While short-term clinical trials have achieved low intake (<2.0 g/day), this has not been reproduced in long-term trials (>6 months). Guidelines assume that low sodium intake will reduce BP and reduce cardiovascular disease (CVD), compared to moderate intake. However, current observational evidence suggests a J-shaped association between sodium intake and CVD; the lowest risks observed with 3-5 g/day but higher risk with <3 g/day. Importantly, these observational data also confirm the association between higher intake (>5 g/day) and increased risk of CVD. Although lower intake may reduce BP, this may be offset by marked increases in neurohormones and other adverse effects which may paradoxically be adverse. Large randomised clinical trials with sufficient follow-up are required to provide robust data on the long-term effects of sodium reduction on CVD incidence. Until such trials are completed, current evidence suggests that moderate sodium intake for the general population (3-5 g/day) is likely the optimum range for CVD prevention.

  1. Facile synthesis of efficient photocatalytic tantalum nitride nanoparticles

    SciTech Connect

    Wang, Zheng; Wang, Jiangting; Hou, Jungang; Huang, Kai; Jiao, Shuqiang; Zhu, Hongmin

    2012-11-15

    Graphical abstract: Tantalum nitride nanoparticles as a visible-light-driven photocatalyst prepared by a novel homogeneously chemical reduction of tantalum pentachloride using sodium in liquid ammonia and the morphologies, visible-light photocatalytic properties and stability of tantalum nitride nanoparticles were investigated. Highlights: ► Tantalum nitride nanoparticles have been prepared by a homogeneously chemical reduction. ► The crystal structure of tantalum nitride was determined by Rietveld refinement and XRD patterns. ► The Tantalum nitride nanoparticle size was in the range of 20–50 nm. ► Much high photocatalytic activities of Ta{sub 3}N{sub 5} nanoparticles were obtained under visible-light irradiation. -- Abstract: Tantalum nitride nanoparticles, as visible-light photocatalysts were synthesized by a two-step homogeneously chemical reduction without any polymers and templates. The well-crystallized Ta{sub 3}N{sub 5} nanoparticles with a range of 20–50 nm in size have been characterized by a number of techniques, such as XRD, XPS, SEM, TEM, BET and UV–Vis spectrum. Most importantly, the Ta{sub 3}N{sub 5} nanoparticles with good stability exhibited higher photooxidation activities in the water splitting and degradation of methylene blue under visible light irradiation than bulk Ta{sub 3}N{sub 5} particles and commercial P25 TiO{sub 2}, demonstrating that Ta{sub 3}N{sub 5} nanoparticle is a promising candidate as a visible-light photocatalyst.

  2. Template based synthesis of gold nanotubes using biologically synthesized gold nanoparticles.

    PubMed

    Ballabh, R; Nara, S

    2015-12-01

    Reliable experimental protocols using green technologies to synthesize metallic nanostructures widen their applications, both biological as well as biomedical. Here, we describe a method for synthesizing gold nanotubes using biologically synthesized gold nanoparticles in a template based approach. E. coli DH5α was used as bionanofactory to synthesize gold nanoparticles. These nanoparticles were then deposited on sodium sulfate (Na2SO4) nanowires which were employed as sacrificial template for gold nanotube (Au-NT) formation. The gold nanoparticles, sodium sulphate nanowires and gold nanotubes were appropriately characterized using transmission electron microscopy. The TEM results showed that the average diameter of gold nanotubes was 72 nm and length up to 4-7 μm. The method discussed herein is better than other reported conventional chemical synthesis approaches as it uses biologically synthesized gold nanoparticles, and does not employ any harsh conditions/solvents for template removal which makes it a clean and ecofriendly method.

  3. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  4. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium benzoate. 184.1733 Section 184.1733 Food... Specific Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate,...

  5. 21 CFR 573.700 - Sodium nitrite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium nitrite. 573.700 Section 573.700 Food and... Listing § 573.700 Sodium nitrite. Sodium nitrite may be safely used in canned pet food containing meat and... byproducts so that the level of sodium nitrite does not exceed 20 parts per million. (b) To assure safe...

  6. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  7. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  8. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  9. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  10. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  11. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium aluminosilicate. 182.2727 Section 182.2727...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2727 Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance. This substance is generally recognized...

  12. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  13. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium aluminosilicate. 182.2727 Section 182.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  14. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  15. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  16. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  17. 21 CFR 573.700 - Sodium nitrite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium nitrite. 573.700 Section 573.700 Food and... Listing § 573.700 Sodium nitrite. Sodium nitrite may be safely used in canned pet food containing meat and... byproducts so that the level of sodium nitrite does not exceed 20 parts per million. (b) To assure safe...

  18. 21 CFR 573.700 - Sodium nitrite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium nitrite. 573.700 Section 573.700 Food and... Listing § 573.700 Sodium nitrite. Sodium nitrite may be safely used in canned pet food containing meat and... byproducts so that the level of sodium nitrite does not exceed 20 parts per million. (b) To assure safe...

  19. 21 CFR 172.175 - Sodium nitrite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrite. 172.175 Section 172.175 Food and... Preservatives § 172.175 Sodium nitrite. The food additive sodium nitrite may be safely used in or on specified... follows: (1) As a color fixative in smoked cured tunafish products so that the level of sodium...

  20. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminosilicate. 182.2727 Section 182.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  1. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  2. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  3. 21 CFR 522.460 - Cloprostenol sodium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Cloprostenol sodium. 522.460 Section 522.460 Food... Cloprostenol sodium. (a)(1) Specifications. Each milliliter of the aqueous solution contains 263 micrograms of cloprostenol sodium (equivalent to 250 micrograms of cloprostenol) in a sodium citrate, anhydrous citric...

  4. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method...

  5. 21 CFR 522.460 - Cloprostenol sodium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Cloprostenol sodium. 522.460 Section 522.460 Food... Cloprostenol sodium. (a)(1) Specifications. Each milliliter of the aqueous solution contains 263 micrograms of cloprostenol sodium (equivalent to 250 micrograms of cloprostenol) in a sodium citrate, anhydrous citric...

  6. 21 CFR 184.1792 - Sodium sesquicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium sesquicarbonate. 184.1792 Section 184.1792... GRAS § 184.1792 Sodium sesquicarbonate. (a) Sodium sesquicarbonate (Na2CO3·NaHCO3·2H2O, CAS Reg. No..., centrifugation, and drying; (2) double refining of trona ore, a naturally occurring impure sodium...

  7. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  8. 21 CFR 573.700 - Sodium nitrite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium nitrite. 573.700 Section 573.700 Food and... Listing § 573.700 Sodium nitrite. Sodium nitrite may be safely used in canned pet food containing meat and... byproducts so that the level of sodium nitrite does not exceed 20 parts per million. (b) To assure safe...

  9. 21 CFR 522.460 - Cloprostenol sodium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Cloprostenol sodium. 522.460 Section 522.460 Food... Cloprostenol sodium. (a)(1) Specifications. Each milliliter of the aqueous solution contains 263 micrograms of cloprostenol sodium (equivalent to 250 micrograms of cloprostenol) in a sodium citrate, anhydrous citric...

  10. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  11. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium benzoate. 184.1733 Section 184.1733 Food... Specific Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate,...

  12. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye....

  13. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye....

  14. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium aluminosilicate. 182.2727 Section 182.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  15. 21 CFR 172.175 - Sodium nitrite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrite. 172.175 Section 172.175 Food and... Preservatives § 172.175 Sodium nitrite. The food additive sodium nitrite may be safely used in or on specified... follows: (1) As a color fixative in smoked cured tunafish products so that the level of sodium...

  16. 21 CFR 184.1792 - Sodium sesquicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sesquicarbonate. 184.1792 Section 184.1792... Listing of Specific Substances Affirmed as GRAS § 184.1792 Sodium sesquicarbonate. (a) Sodium... naturally occurring impure sodium sesquicarbonate. (b) The ingredient meets the specifications of the...

  17. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  18. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  19. 21 CFR 172.175 - Sodium nitrite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrite. 172.175 Section 172.175 Food and... Preservatives § 172.175 Sodium nitrite. The food additive sodium nitrite may be safely used in or on specified... follows: (1) As a color fixative in smoked cured tunafish products so that the level of sodium...

  20. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method...

  1. 21 CFR 186.1750 - Sodium chlorite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS Reg. No. 7758-19-2) exists as... solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient is used at levels from 125 to...

  2. 21 CFR 186.1750 - Sodium chlorite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... of Specific Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS... passing chlorine dioxide into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient...

  3. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  4. 21 CFR 184.1792 - Sodium sesquicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sesquicarbonate. 184.1792 Section 184.1792... Listing of Specific Substances Affirmed as GRAS § 184.1792 Sodium sesquicarbonate. (a) Sodium... naturally occurring impure sodium sesquicarbonate. (b) The ingredient meets the specifications of the...

  5. 21 CFR 172.175 - Sodium nitrite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrite. 172.175 Section 172.175 Food and... Preservatives § 172.175 Sodium nitrite. The food additive sodium nitrite may be safely used in or on specified... follows: (1) As a color fixative in smoked cured tunafish products so that the level of sodium...

  6. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium benzoate. 184.1733 Section 184.1733 Food... Specific Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate,...

  7. 21 CFR 522.460 - Cloprostenol sodium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cloprostenol sodium. 522.460 Section 522.460 Food... Cloprostenol sodium. (a)(1) Specifications. Each milliliter of the aqueous solution contains 263 micrograms of cloprostenol sodium (equivalent to 250 micrograms of cloprostenol) in a sodium citrate, anhydrous citric...

  8. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method...

  9. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  10. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium aluminosilicate. 182.2727 Section 182.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  11. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  12. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium polyacrylate. 173.73 Section 173.73 Food and... Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium polyacrylate (CAS... polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method entitled...

  13. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye....

  14. 21 CFR 178.3900 - Sodium pentachlorophenate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium pentachlorophenate. 178.3900 Section 178... § 178.3900 Sodium pentachlorophenate. Sodium pentachlorophenate may be safely used as a preservative for... temperature. The quantity of sodium pentachlorophenate used shall not exceed 0.5 percent by weight of...

  15. 21 CFR 573.700 - Sodium nitrite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium nitrite. 573.700 Section 573.700 Food and... Listing § 573.700 Sodium nitrite. Sodium nitrite may be safely used in canned pet food containing meat and... byproducts so that the level of sodium nitrite does not exceed 20 parts per million. (b) To assure safe...

  16. 21 CFR 184.1792 - Sodium sesquicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sesquicarbonate. 184.1792 Section 184.1792... Listing of Specific Substances Affirmed as GRAS § 184.1792 Sodium sesquicarbonate. (a) Sodium... naturally occurring impure sodium sesquicarbonate. (b) The ingredient meets the specifications of the...

  17. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye....

  18. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... for Food Treatment § 173.73 Sodium polyacrylate. Sodium polyacrylate (CAS Reg. No. 9003-04-7) may be... aqueous sodium hydroxide solution. As determined by a method entitled “Determination of Weight Average...

  19. 21 CFR 184.1792 - Sodium sesquicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sesquicarbonate. 184.1792 Section 184.1792... Listing of Specific Substances Affirmed as GRAS § 184.1792 Sodium sesquicarbonate. (a) Sodium... naturally occurring impure sodium sesquicarbonate. (b) The ingredient meets the specifications of the...

  20. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...